diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ctgex2.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ctgex2.c')
-rw-r--r-- | contrib/libs/clapack/ctgex2.c | 373 |
1 files changed, 373 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ctgex2.c b/contrib/libs/clapack/ctgex2.c new file mode 100644 index 00000000000..59846f2836f --- /dev/null +++ b/contrib/libs/clapack/ctgex2.c @@ -0,0 +1,373 @@ +/* ctgex2.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__2 = 2; +static integer c__1 = 1; + +/* Subroutine */ int ctgex2_(logical *wantq, logical *wantz, integer *n, + complex *a, integer *lda, complex *b, integer *ldb, complex *q, + integer *ldq, complex *z__, integer *ldz, integer *j1, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, + z_offset, i__1, i__2, i__3; + real r__1; + complex q__1, q__2, q__3; + + /* Builtin functions */ + double sqrt(doublereal), c_abs(complex *); + void r_cnjg(complex *, complex *); + + /* Local variables */ + complex f, g; + integer i__, m; + complex s[4] /* was [2][2] */, t[4] /* was [2][2] */; + real cq, sa, sb, cz; + complex sq; + real ss, ws; + complex sz; + real eps, sum; + logical weak; + complex cdum; + extern /* Subroutine */ int crot_(integer *, complex *, integer *, + complex *, integer *, real *, complex *); + complex work[8]; + real scale; + extern doublereal slamch_(char *); + extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex + *, integer *, complex *, integer *), clartg_(complex *, + complex *, real *, complex *, complex *), classq_(integer *, + complex *, integer *, real *, real *); + real thresh, smlnum; + logical strong; + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22) */ +/* in an upper triangular matrix pair (A, B) by an unitary equivalence */ +/* transformation. */ + +/* (A, B) must be in generalized Schur canonical form, that is, A and */ +/* B are both upper triangular. */ + +/* Optionally, the matrices Q and Z of generalized Schur vectors are */ +/* updated. */ + +/* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' */ +/* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)' */ + + +/* Arguments */ +/* ========= */ + +/* WANTQ (input) LOGICAL */ +/* .TRUE. : update the left transformation matrix Q; */ +/* .FALSE.: do not update Q. */ + +/* WANTZ (input) LOGICAL */ +/* .TRUE. : update the right transformation matrix Z; */ +/* .FALSE.: do not update Z. */ + +/* N (input) INTEGER */ +/* The order of the matrices A and B. N >= 0. */ + +/* A (input/output) COMPLEX arrays, dimensions (LDA,N) */ +/* On entry, the matrix A in the pair (A, B). */ +/* On exit, the updated matrix A. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* B (input/output) COMPLEX arrays, dimensions (LDB,N) */ +/* On entry, the matrix B in the pair (A, B). */ +/* On exit, the updated matrix B. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* Q (input/output) COMPLEX array, dimension (LDZ,N) */ +/* If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit, */ +/* the updated matrix Q. */ +/* Not referenced if WANTQ = .FALSE.. */ + +/* LDQ (input) INTEGER */ +/* The leading dimension of the array Q. LDQ >= 1; */ +/* If WANTQ = .TRUE., LDQ >= N. */ + +/* Z (input/output) COMPLEX array, dimension (LDZ,N) */ +/* If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit, */ +/* the updated matrix Z. */ +/* Not referenced if WANTZ = .FALSE.. */ + +/* LDZ (input) INTEGER */ +/* The leading dimension of the array Z. LDZ >= 1; */ +/* If WANTZ = .TRUE., LDZ >= N. */ + +/* J1 (input) INTEGER */ +/* The index to the first block (A11, B11). */ + +/* INFO (output) INTEGER */ +/* =0: Successful exit. */ +/* =1: The transformed matrix pair (A, B) would be too far */ +/* from generalized Schur form; the problem is ill- */ +/* conditioned. */ + + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ +/* Umea University, S-901 87 Umea, Sweden. */ + +/* In the current code both weak and strong stability tests are */ +/* performed. The user can omit the strong stability test by changing */ +/* the internal logical parameter WANDS to .FALSE.. See ref. [2] for */ +/* details. */ + +/* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */ +/* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */ +/* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */ +/* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */ + +/* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */ +/* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */ +/* Estimation: Theory, Algorithms and Software, Report UMINF-94.04, */ +/* Department of Computing Science, Umea University, S-901 87 Umea, */ +/* Sweden, 1994. Also as LAPACK Working Note 87. To appear in */ +/* Numerical Algorithms, 1996. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + q_dim1 = *ldq; + q_offset = 1 + q_dim1; + q -= q_offset; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + + /* Function Body */ + *info = 0; + +/* Quick return if possible */ + + if (*n <= 1) { + return 0; + } + + m = 2; + weak = FALSE_; + strong = FALSE_; + +/* Make a local copy of selected block in (A, B) */ + + clacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__2); + clacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__2); + +/* Compute the threshold for testing the acceptance of swapping. */ + + eps = slamch_("P"); + smlnum = slamch_("S") / eps; + scale = 0.f; + sum = 1.f; + clacpy_("Full", &m, &m, s, &c__2, work, &m); + clacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m); + i__1 = (m << 1) * m; + classq_(&i__1, work, &c__1, &scale, &sum); + sa = scale * sqrt(sum); +/* Computing MAX */ + r__1 = eps * 10.f * sa; + thresh = dmax(r__1,smlnum); + +/* Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks */ +/* using Givens rotations and perform the swap tentatively. */ + + q__2.r = s[3].r * t[0].r - s[3].i * t[0].i, q__2.i = s[3].r * t[0].i + s[ + 3].i * t[0].r; + q__3.r = t[3].r * s[0].r - t[3].i * s[0].i, q__3.i = t[3].r * s[0].i + t[ + 3].i * s[0].r; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i; + f.r = q__1.r, f.i = q__1.i; + q__2.r = s[3].r * t[2].r - s[3].i * t[2].i, q__2.i = s[3].r * t[2].i + s[ + 3].i * t[2].r; + q__3.r = t[3].r * s[2].r - t[3].i * s[2].i, q__3.i = t[3].r * s[2].i + t[ + 3].i * s[2].r; + q__1.r = q__2.r - q__3.r, q__1.i = q__2.i - q__3.i; + g.r = q__1.r, g.i = q__1.i; + sa = c_abs(&s[3]); + sb = c_abs(&t[3]); + clartg_(&g, &f, &cz, &sz, &cdum); + q__1.r = -sz.r, q__1.i = -sz.i; + sz.r = q__1.r, sz.i = q__1.i; + r_cnjg(&q__1, &sz); + crot_(&c__2, s, &c__1, &s[2], &c__1, &cz, &q__1); + r_cnjg(&q__1, &sz); + crot_(&c__2, t, &c__1, &t[2], &c__1, &cz, &q__1); + if (sa >= sb) { + clartg_(s, &s[1], &cq, &sq, &cdum); + } else { + clartg_(t, &t[1], &cq, &sq, &cdum); + } + crot_(&c__2, s, &c__2, &s[1], &c__2, &cq, &sq); + crot_(&c__2, t, &c__2, &t[1], &c__2, &cq, &sq); + +/* Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T))) */ + + ws = c_abs(&s[1]) + c_abs(&t[1]); + weak = ws <= thresh; + if (! weak) { + goto L20; + } + + if (TRUE_) { + +/* Strong stability test: */ +/* F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A, B))) */ + + clacpy_("Full", &m, &m, s, &c__2, work, &m); + clacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m); + r_cnjg(&q__2, &sz); + q__1.r = -q__2.r, q__1.i = -q__2.i; + crot_(&c__2, work, &c__1, &work[2], &c__1, &cz, &q__1); + r_cnjg(&q__2, &sz); + q__1.r = -q__2.r, q__1.i = -q__2.i; + crot_(&c__2, &work[4], &c__1, &work[6], &c__1, &cz, &q__1); + q__1.r = -sq.r, q__1.i = -sq.i; + crot_(&c__2, work, &c__2, &work[1], &c__2, &cq, &q__1); + q__1.r = -sq.r, q__1.i = -sq.i; + crot_(&c__2, &work[4], &c__2, &work[5], &c__2, &cq, &q__1); + for (i__ = 1; i__ <= 2; ++i__) { + i__1 = i__ - 1; + i__2 = i__ - 1; + i__3 = *j1 + i__ - 1 + *j1 * a_dim1; + q__1.r = work[i__2].r - a[i__3].r, q__1.i = work[i__2].i - a[i__3] + .i; + work[i__1].r = q__1.r, work[i__1].i = q__1.i; + i__1 = i__ + 1; + i__2 = i__ + 1; + i__3 = *j1 + i__ - 1 + (*j1 + 1) * a_dim1; + q__1.r = work[i__2].r - a[i__3].r, q__1.i = work[i__2].i - a[i__3] + .i; + work[i__1].r = q__1.r, work[i__1].i = q__1.i; + i__1 = i__ + 3; + i__2 = i__ + 3; + i__3 = *j1 + i__ - 1 + *j1 * b_dim1; + q__1.r = work[i__2].r - b[i__3].r, q__1.i = work[i__2].i - b[i__3] + .i; + work[i__1].r = q__1.r, work[i__1].i = q__1.i; + i__1 = i__ + 5; + i__2 = i__ + 5; + i__3 = *j1 + i__ - 1 + (*j1 + 1) * b_dim1; + q__1.r = work[i__2].r - b[i__3].r, q__1.i = work[i__2].i - b[i__3] + .i; + work[i__1].r = q__1.r, work[i__1].i = q__1.i; +/* L10: */ + } + scale = 0.f; + sum = 1.f; + i__1 = (m << 1) * m; + classq_(&i__1, work, &c__1, &scale, &sum); + ss = scale * sqrt(sum); + strong = ss <= thresh; + if (! strong) { + goto L20; + } + } + +/* If the swap is accepted ("weakly" and "strongly"), apply the */ +/* equivalence transformations to the original matrix pair (A,B) */ + + i__1 = *j1 + 1; + r_cnjg(&q__1, &sz); + crot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1], & + c__1, &cz, &q__1); + i__1 = *j1 + 1; + r_cnjg(&q__1, &sz); + crot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1], & + c__1, &cz, &q__1); + i__1 = *n - *j1 + 1; + crot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1], lda, + &cq, &sq); + i__1 = *n - *j1 + 1; + crot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1], ldb, + &cq, &sq); + +/* Set N1 by N2 (2,1) blocks to 0 */ + + i__1 = *j1 + 1 + *j1 * a_dim1; + a[i__1].r = 0.f, a[i__1].i = 0.f; + i__1 = *j1 + 1 + *j1 * b_dim1; + b[i__1].r = 0.f, b[i__1].i = 0.f; + +/* Accumulate transformations into Q and Z if requested. */ + + if (*wantz) { + r_cnjg(&q__1, &sz); + crot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 + 1], + &c__1, &cz, &q__1); + } + if (*wantq) { + r_cnjg(&q__1, &sq); + crot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1], & + c__1, &cq, &q__1); + } + +/* Exit with INFO = 0 if swap was successfully performed. */ + + return 0; + +/* Exit with INFO = 1 if swap was rejected. */ + +L20: + *info = 1; + return 0; + +/* End of CTGEX2 */ + +} /* ctgex2_ */ |