aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ctftri.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ctftri.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ctftri.c')
-rw-r--r--contrib/libs/clapack/ctftri.c500
1 files changed, 500 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ctftri.c b/contrib/libs/clapack/ctftri.c
new file mode 100644
index 00000000000..1453e33caee
--- /dev/null
+++ b/contrib/libs/clapack/ctftri.c
@@ -0,0 +1,500 @@
+/* ctftri.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static complex c_b1 = {1.f,0.f};
+
+/* Subroutine */ int ctftri_(char *transr, char *uplo, char *diag, integer *n,
+ complex *a, integer *info)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+ complex q__1;
+
+ /* Local variables */
+ integer k, n1, n2;
+ logical normaltransr;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int ctrmm_(char *, char *, char *, char *,
+ integer *, integer *, complex *, complex *, integer *, complex *,
+ integer *);
+ logical lower;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ logical nisodd;
+ extern /* Subroutine */ int ctrtri_(char *, char *, integer *, complex *,
+ integer *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+
+/* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
+/* -- November 2008 -- */
+
+/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
+/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CTFTRI computes the inverse of a triangular matrix A stored in RFP */
+/* format. */
+
+/* This is a Level 3 BLAS version of the algorithm. */
+
+/* Arguments */
+/* ========= */
+
+/* TRANSR (input) CHARACTER */
+/* = 'N': The Normal TRANSR of RFP A is stored; */
+/* = 'C': The Conjugate-transpose TRANSR of RFP A is stored. */
+
+/* UPLO (input) CHARACTER */
+/* = 'U': A is upper triangular; */
+/* = 'L': A is lower triangular. */
+
+/* DIAG (input) CHARACTER */
+/* = 'N': A is non-unit triangular; */
+/* = 'U': A is unit triangular. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input/output) COMPLEX array, dimension ( N*(N+1)/2 ); */
+/* On entry, the triangular matrix A in RFP format. RFP format */
+/* is described by TRANSR, UPLO, and N as follows: If TRANSR = */
+/* 'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is */
+/* (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is */
+/* the Conjugate-transpose of RFP A as defined when */
+/* TRANSR = 'N'. The contents of RFP A are defined by UPLO as */
+/* follows: If UPLO = 'U' the RFP A contains the nt elements of */
+/* upper packed A; If UPLO = 'L' the RFP A contains the nt */
+/* elements of lower packed A. The LDA of RFP A is (N+1)/2 when */
+/* TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is */
+/* even and N is odd. See the Note below for more details. */
+
+/* On exit, the (triangular) inverse of the original matrix, in */
+/* the same storage format. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, A(i,i) is exactly zero. The triangular */
+/* matrix is singular and its inverse can not be computed. */
+
+/* Notes: */
+/* ====== */
+
+/* We first consider Standard Packed Format when N is even. */
+/* We give an example where N = 6. */
+
+/* AP is Upper AP is Lower */
+
+/* 00 01 02 03 04 05 00 */
+/* 11 12 13 14 15 10 11 */
+/* 22 23 24 25 20 21 22 */
+/* 33 34 35 30 31 32 33 */
+/* 44 45 40 41 42 43 44 */
+/* 55 50 51 52 53 54 55 */
+
+
+/* Let TRANSR = 'N'. RFP holds AP as follows: */
+/* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
+/* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
+/* conjugate-transpose of the first three columns of AP upper. */
+/* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
+/* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
+/* conjugate-transpose of the last three columns of AP lower. */
+/* To denote conjugate we place -- above the element. This covers the */
+/* case N even and TRANSR = 'N'. */
+
+/* RFP A RFP A */
+
+/* -- -- -- */
+/* 03 04 05 33 43 53 */
+/* -- -- */
+/* 13 14 15 00 44 54 */
+/* -- */
+/* 23 24 25 10 11 55 */
+
+/* 33 34 35 20 21 22 */
+/* -- */
+/* 00 44 45 30 31 32 */
+/* -- -- */
+/* 01 11 55 40 41 42 */
+/* -- -- -- */
+/* 02 12 22 50 51 52 */
+
+/* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
+/* transpose of RFP A above. One therefore gets: */
+
+
+/* RFP A RFP A */
+
+/* -- -- -- -- -- -- -- -- -- -- */
+/* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
+/* -- -- -- -- -- -- -- -- -- -- */
+/* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
+/* -- -- -- -- -- -- -- -- -- -- */
+/* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
+
+
+/* We next consider Standard Packed Format when N is odd. */
+/* We give an example where N = 5. */
+
+/* AP is Upper AP is Lower */
+
+/* 00 01 02 03 04 00 */
+/* 11 12 13 14 10 11 */
+/* 22 23 24 20 21 22 */
+/* 33 34 30 31 32 33 */
+/* 44 40 41 42 43 44 */
+
+
+/* Let TRANSR = 'N'. RFP holds AP as follows: */
+/* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
+/* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
+/* conjugate-transpose of the first two columns of AP upper. */
+/* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
+/* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
+/* conjugate-transpose of the last two columns of AP lower. */
+/* To denote conjugate we place -- above the element. This covers the */
+/* case N odd and TRANSR = 'N'. */
+
+/* RFP A RFP A */
+
+/* -- -- */
+/* 02 03 04 00 33 43 */
+/* -- */
+/* 12 13 14 10 11 44 */
+
+/* 22 23 24 20 21 22 */
+/* -- */
+/* 00 33 34 30 31 32 */
+/* -- -- */
+/* 01 11 44 40 41 42 */
+
+/* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
+/* transpose of RFP A above. One therefore gets: */
+
+
+/* RFP A RFP A */
+
+/* -- -- -- -- -- -- -- -- -- */
+/* 02 12 22 00 01 00 10 20 30 40 50 */
+/* -- -- -- -- -- -- -- -- -- */
+/* 03 13 23 33 11 33 11 21 31 41 51 */
+/* -- -- -- -- -- -- -- -- -- */
+/* 04 14 24 34 44 43 44 22 32 42 52 */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ *info = 0;
+ normaltransr = lsame_(transr, "N");
+ lower = lsame_(uplo, "L");
+ if (! normaltransr && ! lsame_(transr, "C")) {
+ *info = -1;
+ } else if (! lower && ! lsame_(uplo, "U")) {
+ *info = -2;
+ } else if (! lsame_(diag, "N") && ! lsame_(diag,
+ "U")) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CTFTRI", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* If N is odd, set NISODD = .TRUE. */
+/* If N is even, set K = N/2 and NISODD = .FALSE. */
+
+ if (*n % 2 == 0) {
+ k = *n / 2;
+ nisodd = FALSE_;
+ } else {
+ nisodd = TRUE_;
+ }
+
+/* Set N1 and N2 depending on LOWER */
+
+ if (lower) {
+ n2 = *n / 2;
+ n1 = *n - n2;
+ } else {
+ n1 = *n / 2;
+ n2 = *n - n1;
+ }
+
+
+/* start execution: there are eight cases */
+
+ if (nisodd) {
+
+/* N is odd */
+
+ if (normaltransr) {
+
+/* N is odd and TRANSR = 'N' */
+
+ if (lower) {
+
+/* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
+/* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
+/* T1 -> a(0), T2 -> a(n), S -> a(n1) */
+
+ ctrtri_("L", diag, &n1, a, n, info);
+ if (*info > 0) {
+ return 0;
+ }
+ q__1.r = -1.f, q__1.i = -0.f;
+ ctrmm_("R", "L", "N", diag, &n2, &n1, &q__1, a, n, &a[n1], n);
+ ctrtri_("U", diag, &n2, &a[*n], n, info)
+ ;
+ if (*info > 0) {
+ *info += n1;
+ }
+ if (*info > 0) {
+ return 0;
+ }
+ ctrmm_("L", "U", "C", diag, &n2, &n1, &c_b1, &a[*n], n, &a[n1]
+, n);
+
+ } else {
+
+/* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
+/* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
+/* T1 -> a(n2), T2 -> a(n1), S -> a(0) */
+
+ ctrtri_("L", diag, &n1, &a[n2], n, info)
+ ;
+ if (*info > 0) {
+ return 0;
+ }
+ q__1.r = -1.f, q__1.i = -0.f;
+ ctrmm_("L", "L", "C", diag, &n1, &n2, &q__1, &a[n2], n, a, n);
+ ctrtri_("U", diag, &n2, &a[n1], n, info)
+ ;
+ if (*info > 0) {
+ *info += n1;
+ }
+ if (*info > 0) {
+ return 0;
+ }
+ ctrmm_("R", "U", "N", diag, &n1, &n2, &c_b1, &a[n1], n, a, n);
+
+ }
+
+ } else {
+
+/* N is odd and TRANSR = 'C' */
+
+ if (lower) {
+
+/* SRPA for LOWER, TRANSPOSE and N is odd */
+/* T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1) */
+
+ ctrtri_("U", diag, &n1, a, &n1, info);
+ if (*info > 0) {
+ return 0;
+ }
+ q__1.r = -1.f, q__1.i = -0.f;
+ ctrmm_("L", "U", "N", diag, &n1, &n2, &q__1, a, &n1, &a[n1 *
+ n1], &n1);
+ ctrtri_("L", diag, &n2, &a[1], &n1, info);
+ if (*info > 0) {
+ *info += n1;
+ }
+ if (*info > 0) {
+ return 0;
+ }
+ ctrmm_("R", "L", "C", diag, &n1, &n2, &c_b1, &a[1], &n1, &a[
+ n1 * n1], &n1);
+
+ } else {
+
+/* SRPA for UPPER, TRANSPOSE and N is odd */
+/* T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0) */
+
+ ctrtri_("U", diag, &n1, &a[n2 * n2], &n2, info);
+ if (*info > 0) {
+ return 0;
+ }
+ q__1.r = -1.f, q__1.i = -0.f;
+ ctrmm_("R", "U", "C", diag, &n2, &n1, &q__1, &a[n2 * n2], &n2,
+ a, &n2);
+ ctrtri_("L", diag, &n2, &a[n1 * n2], &n2, info);
+ if (*info > 0) {
+ *info += n1;
+ }
+ if (*info > 0) {
+ return 0;
+ }
+ ctrmm_("L", "L", "N", diag, &n2, &n1, &c_b1, &a[n1 * n2], &n2,
+ a, &n2);
+ }
+
+ }
+
+ } else {
+
+/* N is even */
+
+ if (normaltransr) {
+
+/* N is even and TRANSR = 'N' */
+
+ if (lower) {
+
+/* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
+/* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
+/* T1 -> a(1), T2 -> a(0), S -> a(k+1) */
+
+ i__1 = *n + 1;
+ ctrtri_("L", diag, &k, &a[1], &i__1, info);
+ if (*info > 0) {
+ return 0;
+ }
+ q__1.r = -1.f, q__1.i = -0.f;
+ i__1 = *n + 1;
+ i__2 = *n + 1;
+ ctrmm_("R", "L", "N", diag, &k, &k, &q__1, &a[1], &i__1, &a[k
+ + 1], &i__2);
+ i__1 = *n + 1;
+ ctrtri_("U", diag, &k, a, &i__1, info);
+ if (*info > 0) {
+ *info += k;
+ }
+ if (*info > 0) {
+ return 0;
+ }
+ i__1 = *n + 1;
+ i__2 = *n + 1;
+ ctrmm_("L", "U", "C", diag, &k, &k, &c_b1, a, &i__1, &a[k + 1]
+, &i__2);
+
+ } else {
+
+/* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
+/* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
+/* T1 -> a(k+1), T2 -> a(k), S -> a(0) */
+
+ i__1 = *n + 1;
+ ctrtri_("L", diag, &k, &a[k + 1], &i__1, info);
+ if (*info > 0) {
+ return 0;
+ }
+ q__1.r = -1.f, q__1.i = -0.f;
+ i__1 = *n + 1;
+ i__2 = *n + 1;
+ ctrmm_("L", "L", "C", diag, &k, &k, &q__1, &a[k + 1], &i__1,
+ a, &i__2);
+ i__1 = *n + 1;
+ ctrtri_("U", diag, &k, &a[k], &i__1, info);
+ if (*info > 0) {
+ *info += k;
+ }
+ if (*info > 0) {
+ return 0;
+ }
+ i__1 = *n + 1;
+ i__2 = *n + 1;
+ ctrmm_("R", "U", "N", diag, &k, &k, &c_b1, &a[k], &i__1, a, &
+ i__2);
+ }
+ } else {
+
+/* N is even and TRANSR = 'C' */
+
+ if (lower) {
+
+/* SRPA for LOWER, TRANSPOSE and N is even (see paper) */
+/* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
+/* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
+
+ ctrtri_("U", diag, &k, &a[k], &k, info);
+ if (*info > 0) {
+ return 0;
+ }
+ q__1.r = -1.f, q__1.i = -0.f;
+ ctrmm_("L", "U", "N", diag, &k, &k, &q__1, &a[k], &k, &a[k * (
+ k + 1)], &k);
+ ctrtri_("L", diag, &k, a, &k, info);
+ if (*info > 0) {
+ *info += k;
+ }
+ if (*info > 0) {
+ return 0;
+ }
+ ctrmm_("R", "L", "C", diag, &k, &k, &c_b1, a, &k, &a[k * (k +
+ 1)], &k);
+ } else {
+
+/* SRPA for UPPER, TRANSPOSE and N is even (see paper) */
+/* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) */
+/* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
+
+ ctrtri_("U", diag, &k, &a[k * (k + 1)], &k, info);
+ if (*info > 0) {
+ return 0;
+ }
+ q__1.r = -1.f, q__1.i = -0.f;
+ ctrmm_("R", "U", "C", diag, &k, &k, &q__1, &a[k * (k + 1)], &
+ k, a, &k);
+ ctrtri_("L", diag, &k, &a[k * k], &k, info);
+ if (*info > 0) {
+ *info += k;
+ }
+ if (*info > 0) {
+ return 0;
+ }
+ ctrmm_("L", "L", "N", diag, &k, &k, &c_b1, &a[k * k], &k, a, &
+ k);
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CTFTRI */
+
+} /* ctftri_ */