aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/cpstrf.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/cpstrf.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/cpstrf.c')
-rw-r--r--contrib/libs/clapack/cpstrf.c521
1 files changed, 521 insertions, 0 deletions
diff --git a/contrib/libs/clapack/cpstrf.c b/contrib/libs/clapack/cpstrf.c
new file mode 100644
index 0000000000..aab54b91d5
--- /dev/null
+++ b/contrib/libs/clapack/cpstrf.c
@@ -0,0 +1,521 @@
+/* cpstrf.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static complex c_b1 = {1.f,0.f};
+static integer c__1 = 1;
+static integer c_n1 = -1;
+static real c_b29 = -1.f;
+static real c_b30 = 1.f;
+
+/* Subroutine */ int cpstrf_(char *uplo, integer *n, complex *a, integer *lda,
+ integer *piv, integer *rank, real *tol, real *work, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ real r__1;
+ complex q__1, q__2;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, j, k, maxlocval, jb, nb;
+ real ajj;
+ integer pvt;
+ extern /* Subroutine */ int cherk_(char *, char *, integer *, integer *,
+ real *, complex *, integer *, real *, complex *, integer *);
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int cgemv_(char *, integer *, integer *, complex *
+, complex *, integer *, complex *, integer *, complex *, complex *
+, integer *);
+ complex ctemp;
+ extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
+ complex *, integer *);
+ integer itemp;
+ real stemp;
+ logical upper;
+ real sstop;
+ extern /* Subroutine */ int cpstf2_(char *, integer *, complex *, integer
+ *, integer *, integer *, real *, real *, integer *),
+ clacgv_(integer *, complex *, integer *);
+ extern doublereal slamch_(char *);
+ extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
+ *), xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ extern logical sisnan_(real *);
+ extern integer smaxloc_(real *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Craig Lucas, University of Manchester / NAG Ltd. */
+/* October, 2008 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CPSTRF computes the Cholesky factorization with complete */
+/* pivoting of a complex Hermitian positive semidefinite matrix A. */
+
+/* The factorization has the form */
+/* P' * A * P = U' * U , if UPLO = 'U', */
+/* P' * A * P = L * L', if UPLO = 'L', */
+/* where U is an upper triangular matrix and L is lower triangular, and */
+/* P is stored as vector PIV. */
+
+/* This algorithm does not attempt to check that A is positive */
+/* semidefinite. This version of the algorithm calls level 3 BLAS. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* Specifies whether the upper or lower triangular part of the */
+/* symmetric matrix A is stored. */
+/* = 'U': Upper triangular */
+/* = 'L': Lower triangular */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input/output) COMPLEX array, dimension (LDA,N) */
+/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
+/* n by n upper triangular part of A contains the upper */
+/* triangular part of the matrix A, and the strictly lower */
+/* triangular part of A is not referenced. If UPLO = 'L', the */
+/* leading n by n lower triangular part of A contains the lower */
+/* triangular part of the matrix A, and the strictly upper */
+/* triangular part of A is not referenced. */
+
+/* On exit, if INFO = 0, the factor U or L from the Cholesky */
+/* factorization as above. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* PIV (output) INTEGER array, dimension (N) */
+/* PIV is such that the nonzero entries are P( PIV(K), K ) = 1. */
+
+/* RANK (output) INTEGER */
+/* The rank of A given by the number of steps the algorithm */
+/* completed. */
+
+/* TOL (input) REAL */
+/* User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) ) */
+/* will be used. The algorithm terminates at the (K-1)st step */
+/* if the pivot <= TOL. */
+
+/* WORK REAL array, dimension (2*N) */
+/* Work space. */
+
+/* INFO (output) INTEGER */
+/* < 0: If INFO = -K, the K-th argument had an illegal value, */
+/* = 0: algorithm completed successfully, and */
+/* > 0: the matrix A is either rank deficient with computed rank */
+/* as returned in RANK, or is indefinite. See Section 7 of */
+/* LAPACK Working Note #161 for further information. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --work;
+ --piv;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CPSTRF", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Get block size */
+
+ nb = ilaenv_(&c__1, "CPOTRF", uplo, n, &c_n1, &c_n1, &c_n1);
+ if (nb <= 1 || nb >= *n) {
+
+/* Use unblocked code */
+
+ cpstf2_(uplo, n, &a[a_dim1 + 1], lda, &piv[1], rank, tol, &work[1],
+ info);
+ goto L230;
+
+ } else {
+
+/* Initialize PIV */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ piv[i__] = i__;
+/* L100: */
+ }
+
+/* Compute stopping value */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + i__ * a_dim1;
+ work[i__] = a[i__2].r;
+/* L110: */
+ }
+ pvt = smaxloc_(&work[1], n);
+ i__1 = pvt + pvt * a_dim1;
+ ajj = a[i__1].r;
+ if (ajj == 0.f || sisnan_(&ajj)) {
+ *rank = 0;
+ *info = 1;
+ goto L230;
+ }
+
+/* Compute stopping value if not supplied */
+
+ if (*tol < 0.f) {
+ sstop = *n * slamch_("Epsilon") * ajj;
+ } else {
+ sstop = *tol;
+ }
+
+
+ if (upper) {
+
+/* Compute the Cholesky factorization P' * A * P = U' * U */
+
+ i__1 = *n;
+ i__2 = nb;
+ for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
+
+/* Account for last block not being NB wide */
+
+/* Computing MIN */
+ i__3 = nb, i__4 = *n - k + 1;
+ jb = min(i__3,i__4);
+
+/* Set relevant part of first half of WORK to zero, */
+/* holds dot products */
+
+ i__3 = *n;
+ for (i__ = k; i__ <= i__3; ++i__) {
+ work[i__] = 0.f;
+/* L120: */
+ }
+
+ i__3 = k + jb - 1;
+ for (j = k; j <= i__3; ++j) {
+
+/* Find pivot, test for exit, else swap rows and columns */
+/* Update dot products, compute possible pivots which are */
+/* stored in the second half of WORK */
+
+ i__4 = *n;
+ for (i__ = j; i__ <= i__4; ++i__) {
+
+ if (j > k) {
+ r_cnjg(&q__2, &a[j - 1 + i__ * a_dim1]);
+ i__5 = j - 1 + i__ * a_dim1;
+ q__1.r = q__2.r * a[i__5].r - q__2.i * a[i__5].i,
+ q__1.i = q__2.r * a[i__5].i + q__2.i * a[
+ i__5].r;
+ work[i__] += q__1.r;
+ }
+ i__5 = i__ + i__ * a_dim1;
+ work[*n + i__] = a[i__5].r - work[i__];
+
+/* L130: */
+ }
+
+ if (j > 1) {
+ maxlocval = (*n << 1) - (*n + j) + 1;
+ itemp = smaxloc_(&work[*n + j], &maxlocval);
+ pvt = itemp + j - 1;
+ ajj = work[*n + pvt];
+ if (ajj <= sstop || sisnan_(&ajj)) {
+ i__4 = j + j * a_dim1;
+ a[i__4].r = ajj, a[i__4].i = 0.f;
+ goto L220;
+ }
+ }
+
+ if (j != pvt) {
+
+/* Pivot OK, so can now swap pivot rows and columns */
+
+ i__4 = pvt + pvt * a_dim1;
+ i__5 = j + j * a_dim1;
+ a[i__4].r = a[i__5].r, a[i__4].i = a[i__5].i;
+ i__4 = j - 1;
+ cswap_(&i__4, &a[j * a_dim1 + 1], &c__1, &a[pvt *
+ a_dim1 + 1], &c__1);
+ if (pvt < *n) {
+ i__4 = *n - pvt;
+ cswap_(&i__4, &a[j + (pvt + 1) * a_dim1], lda, &a[
+ pvt + (pvt + 1) * a_dim1], lda);
+ }
+ i__4 = pvt - 1;
+ for (i__ = j + 1; i__ <= i__4; ++i__) {
+ r_cnjg(&q__1, &a[j + i__ * a_dim1]);
+ ctemp.r = q__1.r, ctemp.i = q__1.i;
+ i__5 = j + i__ * a_dim1;
+ r_cnjg(&q__1, &a[i__ + pvt * a_dim1]);
+ a[i__5].r = q__1.r, a[i__5].i = q__1.i;
+ i__5 = i__ + pvt * a_dim1;
+ a[i__5].r = ctemp.r, a[i__5].i = ctemp.i;
+/* L140: */
+ }
+ i__4 = j + pvt * a_dim1;
+ r_cnjg(&q__1, &a[j + pvt * a_dim1]);
+ a[i__4].r = q__1.r, a[i__4].i = q__1.i;
+
+/* Swap dot products and PIV */
+
+ stemp = work[j];
+ work[j] = work[pvt];
+ work[pvt] = stemp;
+ itemp = piv[pvt];
+ piv[pvt] = piv[j];
+ piv[j] = itemp;
+ }
+
+ ajj = sqrt(ajj);
+ i__4 = j + j * a_dim1;
+ a[i__4].r = ajj, a[i__4].i = 0.f;
+
+/* Compute elements J+1:N of row J. */
+
+ if (j < *n) {
+ i__4 = j - 1;
+ clacgv_(&i__4, &a[j * a_dim1 + 1], &c__1);
+ i__4 = j - k;
+ i__5 = *n - j;
+ q__1.r = -1.f, q__1.i = -0.f;
+ cgemv_("Trans", &i__4, &i__5, &q__1, &a[k + (j + 1) *
+ a_dim1], lda, &a[k + j * a_dim1], &c__1, &
+ c_b1, &a[j + (j + 1) * a_dim1], lda);
+ i__4 = j - 1;
+ clacgv_(&i__4, &a[j * a_dim1 + 1], &c__1);
+ i__4 = *n - j;
+ r__1 = 1.f / ajj;
+ csscal_(&i__4, &r__1, &a[j + (j + 1) * a_dim1], lda);
+ }
+
+/* L150: */
+ }
+
+/* Update trailing matrix, J already incremented */
+
+ if (k + jb <= *n) {
+ i__3 = *n - j + 1;
+ cherk_("Upper", "Conj Trans", &i__3, &jb, &c_b29, &a[k +
+ j * a_dim1], lda, &c_b30, &a[j + j * a_dim1], lda);
+ }
+
+/* L160: */
+ }
+
+ } else {
+
+/* Compute the Cholesky factorization P' * A * P = L * L' */
+
+ i__2 = *n;
+ i__1 = nb;
+ for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
+
+/* Account for last block not being NB wide */
+
+/* Computing MIN */
+ i__3 = nb, i__4 = *n - k + 1;
+ jb = min(i__3,i__4);
+
+/* Set relevant part of first half of WORK to zero, */
+/* holds dot products */
+
+ i__3 = *n;
+ for (i__ = k; i__ <= i__3; ++i__) {
+ work[i__] = 0.f;
+/* L170: */
+ }
+
+ i__3 = k + jb - 1;
+ for (j = k; j <= i__3; ++j) {
+
+/* Find pivot, test for exit, else swap rows and columns */
+/* Update dot products, compute possible pivots which are */
+/* stored in the second half of WORK */
+
+ i__4 = *n;
+ for (i__ = j; i__ <= i__4; ++i__) {
+
+ if (j > k) {
+ r_cnjg(&q__2, &a[i__ + (j - 1) * a_dim1]);
+ i__5 = i__ + (j - 1) * a_dim1;
+ q__1.r = q__2.r * a[i__5].r - q__2.i * a[i__5].i,
+ q__1.i = q__2.r * a[i__5].i + q__2.i * a[
+ i__5].r;
+ work[i__] += q__1.r;
+ }
+ i__5 = i__ + i__ * a_dim1;
+ work[*n + i__] = a[i__5].r - work[i__];
+
+/* L180: */
+ }
+
+ if (j > 1) {
+ maxlocval = (*n << 1) - (*n + j) + 1;
+ itemp = smaxloc_(&work[*n + j], &maxlocval);
+ pvt = itemp + j - 1;
+ ajj = work[*n + pvt];
+ if (ajj <= sstop || sisnan_(&ajj)) {
+ i__4 = j + j * a_dim1;
+ a[i__4].r = ajj, a[i__4].i = 0.f;
+ goto L220;
+ }
+ }
+
+ if (j != pvt) {
+
+/* Pivot OK, so can now swap pivot rows and columns */
+
+ i__4 = pvt + pvt * a_dim1;
+ i__5 = j + j * a_dim1;
+ a[i__4].r = a[i__5].r, a[i__4].i = a[i__5].i;
+ i__4 = j - 1;
+ cswap_(&i__4, &a[j + a_dim1], lda, &a[pvt + a_dim1],
+ lda);
+ if (pvt < *n) {
+ i__4 = *n - pvt;
+ cswap_(&i__4, &a[pvt + 1 + j * a_dim1], &c__1, &a[
+ pvt + 1 + pvt * a_dim1], &c__1);
+ }
+ i__4 = pvt - 1;
+ for (i__ = j + 1; i__ <= i__4; ++i__) {
+ r_cnjg(&q__1, &a[i__ + j * a_dim1]);
+ ctemp.r = q__1.r, ctemp.i = q__1.i;
+ i__5 = i__ + j * a_dim1;
+ r_cnjg(&q__1, &a[pvt + i__ * a_dim1]);
+ a[i__5].r = q__1.r, a[i__5].i = q__1.i;
+ i__5 = pvt + i__ * a_dim1;
+ a[i__5].r = ctemp.r, a[i__5].i = ctemp.i;
+/* L190: */
+ }
+ i__4 = pvt + j * a_dim1;
+ r_cnjg(&q__1, &a[pvt + j * a_dim1]);
+ a[i__4].r = q__1.r, a[i__4].i = q__1.i;
+
+/* Swap dot products and PIV */
+
+ stemp = work[j];
+ work[j] = work[pvt];
+ work[pvt] = stemp;
+ itemp = piv[pvt];
+ piv[pvt] = piv[j];
+ piv[j] = itemp;
+ }
+
+ ajj = sqrt(ajj);
+ i__4 = j + j * a_dim1;
+ a[i__4].r = ajj, a[i__4].i = 0.f;
+
+/* Compute elements J+1:N of column J. */
+
+ if (j < *n) {
+ i__4 = j - 1;
+ clacgv_(&i__4, &a[j + a_dim1], lda);
+ i__4 = *n - j;
+ i__5 = j - k;
+ q__1.r = -1.f, q__1.i = -0.f;
+ cgemv_("No Trans", &i__4, &i__5, &q__1, &a[j + 1 + k *
+ a_dim1], lda, &a[j + k * a_dim1], lda, &c_b1,
+ &a[j + 1 + j * a_dim1], &c__1);
+ i__4 = j - 1;
+ clacgv_(&i__4, &a[j + a_dim1], lda);
+ i__4 = *n - j;
+ r__1 = 1.f / ajj;
+ csscal_(&i__4, &r__1, &a[j + 1 + j * a_dim1], &c__1);
+ }
+
+/* L200: */
+ }
+
+/* Update trailing matrix, J already incremented */
+
+ if (k + jb <= *n) {
+ i__3 = *n - j + 1;
+ cherk_("Lower", "No Trans", &i__3, &jb, &c_b29, &a[j + k *
+ a_dim1], lda, &c_b30, &a[j + j * a_dim1], lda);
+ }
+
+/* L210: */
+ }
+
+ }
+ }
+
+/* Ran to completion, A has full rank */
+
+ *rank = *n;
+
+ goto L230;
+L220:
+
+/* Rank is the number of steps completed. Set INFO = 1 to signal */
+/* that the factorization cannot be used to solve a system. */
+
+ *rank = j - 1;
+ *info = 1;
+
+L230:
+ return 0;
+
+/* End of CPSTRF */
+
+} /* cpstrf_ */