diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/clatdf.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/clatdf.c')
-rw-r--r-- | contrib/libs/clapack/clatdf.c | 357 |
1 files changed, 357 insertions, 0 deletions
diff --git a/contrib/libs/clapack/clatdf.c b/contrib/libs/clapack/clatdf.c new file mode 100644 index 0000000000..89c38a297e --- /dev/null +++ b/contrib/libs/clapack/clatdf.c @@ -0,0 +1,357 @@ +/* clatdf.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static complex c_b1 = {1.f,0.f}; +static integer c__1 = 1; +static integer c_n1 = -1; +static real c_b24 = 1.f; + +/* Subroutine */ int clatdf_(integer *ijob, integer *n, complex *z__, integer + *ldz, complex *rhs, real *rdsum, real *rdscal, integer *ipiv, integer + *jpiv) +{ + /* System generated locals */ + integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5; + complex q__1, q__2, q__3; + + /* Builtin functions */ + void c_div(complex *, complex *, complex *); + double c_abs(complex *); + void c_sqrt(complex *, complex *); + + /* Local variables */ + integer i__, j, k; + complex bm, bp, xm[2], xp[2]; + integer info; + complex temp, work[8]; + extern /* Subroutine */ int cscal_(integer *, complex *, complex *, + integer *); + real scale; + extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer + *, complex *, integer *); + extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, + complex *, integer *); + complex pmone; + extern /* Subroutine */ int caxpy_(integer *, complex *, complex *, + integer *, complex *, integer *); + real rtemp, sminu, rwork[2], splus; + extern /* Subroutine */ int cgesc2_(integer *, complex *, integer *, + complex *, integer *, integer *, real *), cgecon_(char *, integer + *, complex *, integer *, real *, real *, complex *, real *, + integer *), classq_(integer *, complex *, integer *, real + *, real *), claswp_(integer *, complex *, integer *, integer *, + integer *, integer *, integer *); + extern doublereal scasum_(integer *, complex *, integer *); + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CLATDF computes the contribution to the reciprocal Dif-estimate */ +/* by solving for x in Z * x = b, where b is chosen such that the norm */ +/* of x is as large as possible. It is assumed that LU decomposition */ +/* of Z has been computed by CGETC2. On entry RHS = f holds the */ +/* contribution from earlier solved sub-systems, and on return RHS = x. */ + +/* The factorization of Z returned by CGETC2 has the form */ +/* Z = P * L * U * Q, where P and Q are permutation matrices. L is lower */ +/* triangular with unit diagonal elements and U is upper triangular. */ + +/* Arguments */ +/* ========= */ + +/* IJOB (input) INTEGER */ +/* IJOB = 2: First compute an approximative null-vector e */ +/* of Z using CGECON, e is normalized and solve for */ +/* Zx = +-e - f with the sign giving the greater value of */ +/* 2-norm(x). About 5 times as expensive as Default. */ +/* IJOB .ne. 2: Local look ahead strategy where */ +/* all entries of the r.h.s. b is choosen as either +1 or */ +/* -1. Default. */ + +/* N (input) INTEGER */ +/* The number of columns of the matrix Z. */ + +/* Z (input) REAL array, dimension (LDZ, N) */ +/* On entry, the LU part of the factorization of the n-by-n */ +/* matrix Z computed by CGETC2: Z = P * L * U * Q */ + +/* LDZ (input) INTEGER */ +/* The leading dimension of the array Z. LDA >= max(1, N). */ + +/* RHS (input/output) REAL array, dimension (N). */ +/* On entry, RHS contains contributions from other subsystems. */ +/* On exit, RHS contains the solution of the subsystem with */ +/* entries according to the value of IJOB (see above). */ + +/* RDSUM (input/output) REAL */ +/* On entry, the sum of squares of computed contributions to */ +/* the Dif-estimate under computation by CTGSYL, where the */ +/* scaling factor RDSCAL (see below) has been factored out. */ +/* On exit, the corresponding sum of squares updated with the */ +/* contributions from the current sub-system. */ +/* If TRANS = 'T' RDSUM is not touched. */ +/* NOTE: RDSUM only makes sense when CTGSY2 is called by CTGSYL. */ + +/* RDSCAL (input/output) REAL */ +/* On entry, scaling factor used to prevent overflow in RDSUM. */ +/* On exit, RDSCAL is updated w.r.t. the current contributions */ +/* in RDSUM. */ +/* If TRANS = 'T', RDSCAL is not touched. */ +/* NOTE: RDSCAL only makes sense when CTGSY2 is called by */ +/* CTGSYL. */ + +/* IPIV (input) INTEGER array, dimension (N). */ +/* The pivot indices; for 1 <= i <= N, row i of the */ +/* matrix has been interchanged with row IPIV(i). */ + +/* JPIV (input) INTEGER array, dimension (N). */ +/* The pivot indices; for 1 <= j <= N, column j of the */ +/* matrix has been interchanged with column JPIV(j). */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */ +/* Umea University, S-901 87 Umea, Sweden. */ + +/* This routine is a further developed implementation of algorithm */ +/* BSOLVE in [1] using complete pivoting in the LU factorization. */ + +/* [1] Bo Kagstrom and Lars Westin, */ +/* Generalized Schur Methods with Condition Estimators for */ +/* Solving the Generalized Sylvester Equation, IEEE Transactions */ +/* on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */ + +/* [2] Peter Poromaa, */ +/* On Efficient and Robust Estimators for the Separation */ +/* between two Regular Matrix Pairs with Applications in */ +/* Condition Estimation. Report UMINF-95.05, Department of */ +/* Computing Science, Umea University, S-901 87 Umea, Sweden, */ +/* 1995. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --rhs; + --ipiv; + --jpiv; + + /* Function Body */ + if (*ijob != 2) { + +/* Apply permutations IPIV to RHS */ + + i__1 = *n - 1; + claswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1); + +/* Solve for L-part choosing RHS either to +1 or -1. */ + + q__1.r = -1.f, q__1.i = -0.f; + pmone.r = q__1.r, pmone.i = q__1.i; + i__1 = *n - 1; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + q__1.r = rhs[i__2].r + 1.f, q__1.i = rhs[i__2].i + 0.f; + bp.r = q__1.r, bp.i = q__1.i; + i__2 = j; + q__1.r = rhs[i__2].r - 1.f, q__1.i = rhs[i__2].i - 0.f; + bm.r = q__1.r, bm.i = q__1.i; + splus = 1.f; + +/* Lockahead for L- part RHS(1:N-1) = +-1 */ +/* SPLUS and SMIN computed more efficiently than in BSOLVE[1]. */ + + i__2 = *n - j; + cdotc_(&q__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1 + + j * z_dim1], &c__1); + splus += q__1.r; + i__2 = *n - j; + cdotc_(&q__1, &i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], + &c__1); + sminu = q__1.r; + i__2 = j; + splus *= rhs[i__2].r; + if (splus > sminu) { + i__2 = j; + rhs[i__2].r = bp.r, rhs[i__2].i = bp.i; + } else if (sminu > splus) { + i__2 = j; + rhs[i__2].r = bm.r, rhs[i__2].i = bm.i; + } else { + +/* In this case the updating sums are equal and we can */ +/* choose RHS(J) +1 or -1. The first time this happens we */ +/* choose -1, thereafter +1. This is a simple way to get */ +/* good estimates of matrices like Byers well-known example */ +/* (see [1]). (Not done in BSOLVE.) */ + + i__2 = j; + i__3 = j; + q__1.r = rhs[i__3].r + pmone.r, q__1.i = rhs[i__3].i + + pmone.i; + rhs[i__2].r = q__1.r, rhs[i__2].i = q__1.i; + pmone.r = 1.f, pmone.i = 0.f; + } + +/* Compute the remaining r.h.s. */ + + i__2 = j; + q__1.r = -rhs[i__2].r, q__1.i = -rhs[i__2].i; + temp.r = q__1.r, temp.i = q__1.i; + i__2 = *n - j; + caxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], + &c__1); +/* L10: */ + } + +/* Solve for U- part, lockahead for RHS(N) = +-1. This is not done */ +/* In BSOLVE and will hopefully give us a better estimate because */ +/* any ill-conditioning of the original matrix is transfered to U */ +/* and not to L. U(N, N) is an approximation to sigma_min(LU). */ + + i__1 = *n - 1; + ccopy_(&i__1, &rhs[1], &c__1, work, &c__1); + i__1 = *n - 1; + i__2 = *n; + q__1.r = rhs[i__2].r + 1.f, q__1.i = rhs[i__2].i + 0.f; + work[i__1].r = q__1.r, work[i__1].i = q__1.i; + i__1 = *n; + i__2 = *n; + q__1.r = rhs[i__2].r - 1.f, q__1.i = rhs[i__2].i - 0.f; + rhs[i__1].r = q__1.r, rhs[i__1].i = q__1.i; + splus = 0.f; + sminu = 0.f; + for (i__ = *n; i__ >= 1; --i__) { + c_div(&q__1, &c_b1, &z__[i__ + i__ * z_dim1]); + temp.r = q__1.r, temp.i = q__1.i; + i__1 = i__ - 1; + i__2 = i__ - 1; + q__1.r = work[i__2].r * temp.r - work[i__2].i * temp.i, q__1.i = + work[i__2].r * temp.i + work[i__2].i * temp.r; + work[i__1].r = q__1.r, work[i__1].i = q__1.i; + i__1 = i__; + i__2 = i__; + q__1.r = rhs[i__2].r * temp.r - rhs[i__2].i * temp.i, q__1.i = + rhs[i__2].r * temp.i + rhs[i__2].i * temp.r; + rhs[i__1].r = q__1.r, rhs[i__1].i = q__1.i; + i__1 = *n; + for (k = i__ + 1; k <= i__1; ++k) { + i__2 = i__ - 1; + i__3 = i__ - 1; + i__4 = k - 1; + i__5 = i__ + k * z_dim1; + q__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, q__3.i = + z__[i__5].r * temp.i + z__[i__5].i * temp.r; + q__2.r = work[i__4].r * q__3.r - work[i__4].i * q__3.i, + q__2.i = work[i__4].r * q__3.i + work[i__4].i * + q__3.r; + q__1.r = work[i__3].r - q__2.r, q__1.i = work[i__3].i - + q__2.i; + work[i__2].r = q__1.r, work[i__2].i = q__1.i; + i__2 = i__; + i__3 = i__; + i__4 = k; + i__5 = i__ + k * z_dim1; + q__3.r = z__[i__5].r * temp.r - z__[i__5].i * temp.i, q__3.i = + z__[i__5].r * temp.i + z__[i__5].i * temp.r; + q__2.r = rhs[i__4].r * q__3.r - rhs[i__4].i * q__3.i, q__2.i = + rhs[i__4].r * q__3.i + rhs[i__4].i * q__3.r; + q__1.r = rhs[i__3].r - q__2.r, q__1.i = rhs[i__3].i - q__2.i; + rhs[i__2].r = q__1.r, rhs[i__2].i = q__1.i; +/* L20: */ + } + splus += c_abs(&work[i__ - 1]); + sminu += c_abs(&rhs[i__]); +/* L30: */ + } + if (splus > sminu) { + ccopy_(n, work, &c__1, &rhs[1], &c__1); + } + +/* Apply the permutations JPIV to the computed solution (RHS) */ + + i__1 = *n - 1; + claswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1); + +/* Compute the sum of squares */ + + classq_(n, &rhs[1], &c__1, rdscal, rdsum); + return 0; + } + +/* ENTRY IJOB = 2 */ + +/* Compute approximate nullvector XM of Z */ + + cgecon_("I", n, &z__[z_offset], ldz, &c_b24, &rtemp, work, rwork, &info); + ccopy_(n, &work[*n], &c__1, xm, &c__1); + +/* Compute RHS */ + + i__1 = *n - 1; + claswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1); + cdotc_(&q__3, n, xm, &c__1, xm, &c__1); + c_sqrt(&q__2, &q__3); + c_div(&q__1, &c_b1, &q__2); + temp.r = q__1.r, temp.i = q__1.i; + cscal_(n, &temp, xm, &c__1); + ccopy_(n, xm, &c__1, xp, &c__1); + caxpy_(n, &c_b1, &rhs[1], &c__1, xp, &c__1); + q__1.r = -1.f, q__1.i = -0.f; + caxpy_(n, &q__1, xm, &c__1, &rhs[1], &c__1); + cgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &scale); + cgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &scale); + if (scasum_(n, xp, &c__1) > scasum_(n, &rhs[1], &c__1)) { + ccopy_(n, xp, &c__1, &rhs[1], &c__1); + } + +/* Compute the sum of squares */ + + classq_(n, &rhs[1], &c__1, rdscal, rdsum); + return 0; + +/* End of CLATDF */ + +} /* clatdf_ */ |