diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/clantb.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/clantb.c')
-rw-r--r-- | contrib/libs/clapack/clantb.c | 426 |
1 files changed, 426 insertions, 0 deletions
diff --git a/contrib/libs/clapack/clantb.c b/contrib/libs/clapack/clantb.c new file mode 100644 index 00000000000..98d865714c5 --- /dev/null +++ b/contrib/libs/clapack/clantb.c @@ -0,0 +1,426 @@ +/* clantb.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; + +doublereal clantb_(char *norm, char *uplo, char *diag, integer *n, integer *k, + complex *ab, integer *ldab, real *work) +{ + /* System generated locals */ + integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5; + real ret_val, r__1, r__2; + + /* Builtin functions */ + double c_abs(complex *), sqrt(doublereal); + + /* Local variables */ + integer i__, j, l; + real sum, scale; + logical udiag; + extern logical lsame_(char *, char *); + real value; + extern /* Subroutine */ int classq_(integer *, complex *, integer *, real + *, real *); + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* CLANTB returns the value of the one norm, or the Frobenius norm, or */ +/* the infinity norm, or the element of largest absolute value of an */ +/* n by n triangular band matrix A, with ( k + 1 ) diagonals. */ + +/* Description */ +/* =========== */ + +/* CLANTB returns the value */ + +/* CLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm' */ +/* ( */ +/* ( norm1(A), NORM = '1', 'O' or 'o' */ +/* ( */ +/* ( normI(A), NORM = 'I' or 'i' */ +/* ( */ +/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ + +/* where norm1 denotes the one norm of a matrix (maximum column sum), */ +/* normI denotes the infinity norm of a matrix (maximum row sum) and */ +/* normF denotes the Frobenius norm of a matrix (square root of sum of */ +/* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */ + +/* Arguments */ +/* ========= */ + +/* NORM (input) CHARACTER*1 */ +/* Specifies the value to be returned in CLANTB as described */ +/* above. */ + +/* UPLO (input) CHARACTER*1 */ +/* Specifies whether the matrix A is upper or lower triangular. */ +/* = 'U': Upper triangular */ +/* = 'L': Lower triangular */ + +/* DIAG (input) CHARACTER*1 */ +/* Specifies whether or not the matrix A is unit triangular. */ +/* = 'N': Non-unit triangular */ +/* = 'U': Unit triangular */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. When N = 0, CLANTB is */ +/* set to zero. */ + +/* K (input) INTEGER */ +/* The number of super-diagonals of the matrix A if UPLO = 'U', */ +/* or the number of sub-diagonals of the matrix A if UPLO = 'L'. */ +/* K >= 0. */ + +/* AB (input) COMPLEX array, dimension (LDAB,N) */ +/* The upper or lower triangular band matrix A, stored in the */ +/* first k+1 rows of AB. The j-th column of A is stored */ +/* in the j-th column of the array AB as follows: */ +/* if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; */ +/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). */ +/* Note that when DIAG = 'U', the elements of the array AB */ +/* corresponding to the diagonal elements of the matrix A are */ +/* not referenced, but are assumed to be one. */ + +/* LDAB (input) INTEGER */ +/* The leading dimension of the array AB. LDAB >= K+1. */ + +/* WORK (workspace) REAL array, dimension (MAX(1,LWORK)), */ +/* where LWORK >= N when NORM = 'I'; otherwise, WORK is not */ +/* referenced. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + ab_dim1 = *ldab; + ab_offset = 1 + ab_dim1; + ab -= ab_offset; + --work; + + /* Function Body */ + if (*n == 0) { + value = 0.f; + } else if (lsame_(norm, "M")) { + +/* Find max(abs(A(i,j))). */ + + if (lsame_(diag, "U")) { + value = 1.f; + if (lsame_(uplo, "U")) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MAX */ + i__2 = *k + 2 - j; + i__3 = *k; + for (i__ = max(i__2,1); i__ <= i__3; ++i__) { +/* Computing MAX */ + r__1 = value, r__2 = c_abs(&ab[i__ + j * ab_dim1]); + value = dmax(r__1,r__2); +/* L10: */ + } +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + i__2 = *n + 1 - j, i__4 = *k + 1; + i__3 = min(i__2,i__4); + for (i__ = 2; i__ <= i__3; ++i__) { +/* Computing MAX */ + r__1 = value, r__2 = c_abs(&ab[i__ + j * ab_dim1]); + value = dmax(r__1,r__2); +/* L30: */ + } +/* L40: */ + } + } + } else { + value = 0.f; + if (lsame_(uplo, "U")) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MAX */ + i__3 = *k + 2 - j; + i__2 = *k + 1; + for (i__ = max(i__3,1); i__ <= i__2; ++i__) { +/* Computing MAX */ + r__1 = value, r__2 = c_abs(&ab[i__ + j * ab_dim1]); + value = dmax(r__1,r__2); +/* L50: */ + } +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + i__3 = *n + 1 - j, i__4 = *k + 1; + i__2 = min(i__3,i__4); + for (i__ = 1; i__ <= i__2; ++i__) { +/* Computing MAX */ + r__1 = value, r__2 = c_abs(&ab[i__ + j * ab_dim1]); + value = dmax(r__1,r__2); +/* L70: */ + } +/* L80: */ + } + } + } + } else if (lsame_(norm, "O") || *(unsigned char *) + norm == '1') { + +/* Find norm1(A). */ + + value = 0.f; + udiag = lsame_(diag, "U"); + if (lsame_(uplo, "U")) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (udiag) { + sum = 1.f; +/* Computing MAX */ + i__2 = *k + 2 - j; + i__3 = *k; + for (i__ = max(i__2,1); i__ <= i__3; ++i__) { + sum += c_abs(&ab[i__ + j * ab_dim1]); +/* L90: */ + } + } else { + sum = 0.f; +/* Computing MAX */ + i__3 = *k + 2 - j; + i__2 = *k + 1; + for (i__ = max(i__3,1); i__ <= i__2; ++i__) { + sum += c_abs(&ab[i__ + j * ab_dim1]); +/* L100: */ + } + } + value = dmax(value,sum); +/* L110: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (udiag) { + sum = 1.f; +/* Computing MIN */ + i__3 = *n + 1 - j, i__4 = *k + 1; + i__2 = min(i__3,i__4); + for (i__ = 2; i__ <= i__2; ++i__) { + sum += c_abs(&ab[i__ + j * ab_dim1]); +/* L120: */ + } + } else { + sum = 0.f; +/* Computing MIN */ + i__3 = *n + 1 - j, i__4 = *k + 1; + i__2 = min(i__3,i__4); + for (i__ = 1; i__ <= i__2; ++i__) { + sum += c_abs(&ab[i__ + j * ab_dim1]); +/* L130: */ + } + } + value = dmax(value,sum); +/* L140: */ + } + } + } else if (lsame_(norm, "I")) { + +/* Find normI(A). */ + + value = 0.f; + if (lsame_(uplo, "U")) { + if (lsame_(diag, "U")) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + work[i__] = 1.f; +/* L150: */ + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + l = *k + 1 - j; +/* Computing MAX */ + i__2 = 1, i__3 = j - *k; + i__4 = j - 1; + for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { + work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]); +/* L160: */ + } +/* L170: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + work[i__] = 0.f; +/* L180: */ + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + l = *k + 1 - j; +/* Computing MAX */ + i__4 = 1, i__2 = j - *k; + i__3 = j; + for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { + work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]); +/* L190: */ + } +/* L200: */ + } + } + } else { + if (lsame_(diag, "U")) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + work[i__] = 1.f; +/* L210: */ + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + l = 1 - j; +/* Computing MIN */ + i__4 = *n, i__2 = j + *k; + i__3 = min(i__4,i__2); + for (i__ = j + 1; i__ <= i__3; ++i__) { + work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]); +/* L220: */ + } +/* L230: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + work[i__] = 0.f; +/* L240: */ + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + l = 1 - j; +/* Computing MIN */ + i__4 = *n, i__2 = j + *k; + i__3 = min(i__4,i__2); + for (i__ = j; i__ <= i__3; ++i__) { + work[i__] += c_abs(&ab[l + i__ + j * ab_dim1]); +/* L250: */ + } +/* L260: */ + } + } + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { +/* Computing MAX */ + r__1 = value, r__2 = work[i__]; + value = dmax(r__1,r__2); +/* L270: */ + } + } else if (lsame_(norm, "F") || lsame_(norm, "E")) { + +/* Find normF(A). */ + + if (lsame_(uplo, "U")) { + if (lsame_(diag, "U")) { + scale = 1.f; + sum = (real) (*n); + if (*k > 0) { + i__1 = *n; + for (j = 2; j <= i__1; ++j) { +/* Computing MIN */ + i__4 = j - 1; + i__3 = min(i__4,*k); +/* Computing MAX */ + i__2 = *k + 2 - j; + classq_(&i__3, &ab[max(i__2, 1)+ j * ab_dim1], &c__1, + &scale, &sum); +/* L280: */ + } + } + } else { + scale = 0.f; + sum = 1.f; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + i__4 = j, i__2 = *k + 1; + i__3 = min(i__4,i__2); +/* Computing MAX */ + i__5 = *k + 2 - j; + classq_(&i__3, &ab[max(i__5, 1)+ j * ab_dim1], &c__1, & + scale, &sum); +/* L290: */ + } + } + } else { + if (lsame_(diag, "U")) { + scale = 1.f; + sum = (real) (*n); + if (*k > 0) { + i__1 = *n - 1; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + i__4 = *n - j; + i__3 = min(i__4,*k); + classq_(&i__3, &ab[j * ab_dim1 + 2], &c__1, &scale, & + sum); +/* L300: */ + } + } + } else { + scale = 0.f; + sum = 1.f; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + i__4 = *n - j + 1, i__2 = *k + 1; + i__3 = min(i__4,i__2); + classq_(&i__3, &ab[j * ab_dim1 + 1], &c__1, &scale, &sum); +/* L310: */ + } + } + } + value = scale * sqrt(sum); + } + + ret_val = value; + return ret_val; + +/* End of CLANTB */ + +} /* clantb_ */ |