aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/claic1.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/claic1.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/claic1.c')
-rw-r--r--contrib/libs/clapack/claic1.c448
1 files changed, 448 insertions, 0 deletions
diff --git a/contrib/libs/clapack/claic1.c b/contrib/libs/clapack/claic1.c
new file mode 100644
index 00000000000..06e41da3a28
--- /dev/null
+++ b/contrib/libs/clapack/claic1.c
@@ -0,0 +1,448 @@
+/* claic1.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int claic1_(integer *job, integer *j, complex *x, real *sest,
+ complex *w, complex *gamma, real *sestpr, complex *s, complex *c__)
+{
+ /* System generated locals */
+ real r__1, r__2;
+ complex q__1, q__2, q__3, q__4, q__5, q__6;
+
+ /* Builtin functions */
+ double c_abs(complex *);
+ void r_cnjg(complex *, complex *), c_sqrt(complex *, complex *);
+ double sqrt(doublereal);
+ void c_div(complex *, complex *, complex *);
+
+ /* Local variables */
+ real b, t, s1, s2, scl, eps, tmp;
+ complex sine;
+ real test, zeta1, zeta2;
+ complex alpha;
+ extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
+ *, complex *, integer *);
+ real norma, absgam, absalp;
+ extern doublereal slamch_(char *);
+ complex cosine;
+ real absest;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CLAIC1 applies one step of incremental condition estimation in */
+/* its simplest version: */
+
+/* Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j */
+/* lower triangular matrix L, such that */
+/* twonorm(L*x) = sest */
+/* Then CLAIC1 computes sestpr, s, c such that */
+/* the vector */
+/* [ s*x ] */
+/* xhat = [ c ] */
+/* is an approximate singular vector of */
+/* [ L 0 ] */
+/* Lhat = [ w' gamma ] */
+/* in the sense that */
+/* twonorm(Lhat*xhat) = sestpr. */
+
+/* Depending on JOB, an estimate for the largest or smallest singular */
+/* value is computed. */
+
+/* Note that [s c]' and sestpr**2 is an eigenpair of the system */
+
+/* diag(sest*sest, 0) + [alpha gamma] * [ conjg(alpha) ] */
+/* [ conjg(gamma) ] */
+
+/* where alpha = conjg(x)'*w. */
+
+/* Arguments */
+/* ========= */
+
+/* JOB (input) INTEGER */
+/* = 1: an estimate for the largest singular value is computed. */
+/* = 2: an estimate for the smallest singular value is computed. */
+
+/* J (input) INTEGER */
+/* Length of X and W */
+
+/* X (input) COMPLEX array, dimension (J) */
+/* The j-vector x. */
+
+/* SEST (input) REAL */
+/* Estimated singular value of j by j matrix L */
+
+/* W (input) COMPLEX array, dimension (J) */
+/* The j-vector w. */
+
+/* GAMMA (input) COMPLEX */
+/* The diagonal element gamma. */
+
+/* SESTPR (output) REAL */
+/* Estimated singular value of (j+1) by (j+1) matrix Lhat. */
+
+/* S (output) COMPLEX */
+/* Sine needed in forming xhat. */
+
+/* C (output) COMPLEX */
+/* Cosine needed in forming xhat. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ --w;
+ --x;
+
+ /* Function Body */
+ eps = slamch_("Epsilon");
+ cdotc_(&q__1, j, &x[1], &c__1, &w[1], &c__1);
+ alpha.r = q__1.r, alpha.i = q__1.i;
+
+ absalp = c_abs(&alpha);
+ absgam = c_abs(gamma);
+ absest = dabs(*sest);
+
+ if (*job == 1) {
+
+/* Estimating largest singular value */
+
+/* special cases */
+
+ if (*sest == 0.f) {
+ s1 = dmax(absgam,absalp);
+ if (s1 == 0.f) {
+ s->r = 0.f, s->i = 0.f;
+ c__->r = 1.f, c__->i = 0.f;
+ *sestpr = 0.f;
+ } else {
+ q__1.r = alpha.r / s1, q__1.i = alpha.i / s1;
+ s->r = q__1.r, s->i = q__1.i;
+ q__1.r = gamma->r / s1, q__1.i = gamma->i / s1;
+ c__->r = q__1.r, c__->i = q__1.i;
+ r_cnjg(&q__4, s);
+ q__3.r = s->r * q__4.r - s->i * q__4.i, q__3.i = s->r *
+ q__4.i + s->i * q__4.r;
+ r_cnjg(&q__6, c__);
+ q__5.r = c__->r * q__6.r - c__->i * q__6.i, q__5.i = c__->r *
+ q__6.i + c__->i * q__6.r;
+ q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
+ c_sqrt(&q__1, &q__2);
+ tmp = q__1.r;
+ q__1.r = s->r / tmp, q__1.i = s->i / tmp;
+ s->r = q__1.r, s->i = q__1.i;
+ q__1.r = c__->r / tmp, q__1.i = c__->i / tmp;
+ c__->r = q__1.r, c__->i = q__1.i;
+ *sestpr = s1 * tmp;
+ }
+ return 0;
+ } else if (absgam <= eps * absest) {
+ s->r = 1.f, s->i = 0.f;
+ c__->r = 0.f, c__->i = 0.f;
+ tmp = dmax(absest,absalp);
+ s1 = absest / tmp;
+ s2 = absalp / tmp;
+ *sestpr = tmp * sqrt(s1 * s1 + s2 * s2);
+ return 0;
+ } else if (absalp <= eps * absest) {
+ s1 = absgam;
+ s2 = absest;
+ if (s1 <= s2) {
+ s->r = 1.f, s->i = 0.f;
+ c__->r = 0.f, c__->i = 0.f;
+ *sestpr = s2;
+ } else {
+ s->r = 0.f, s->i = 0.f;
+ c__->r = 1.f, c__->i = 0.f;
+ *sestpr = s1;
+ }
+ return 0;
+ } else if (absest <= eps * absalp || absest <= eps * absgam) {
+ s1 = absgam;
+ s2 = absalp;
+ if (s1 <= s2) {
+ tmp = s1 / s2;
+ scl = sqrt(tmp * tmp + 1.f);
+ *sestpr = s2 * scl;
+ q__2.r = alpha.r / s2, q__2.i = alpha.i / s2;
+ q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
+ s->r = q__1.r, s->i = q__1.i;
+ q__2.r = gamma->r / s2, q__2.i = gamma->i / s2;
+ q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
+ c__->r = q__1.r, c__->i = q__1.i;
+ } else {
+ tmp = s2 / s1;
+ scl = sqrt(tmp * tmp + 1.f);
+ *sestpr = s1 * scl;
+ q__2.r = alpha.r / s1, q__2.i = alpha.i / s1;
+ q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
+ s->r = q__1.r, s->i = q__1.i;
+ q__2.r = gamma->r / s1, q__2.i = gamma->i / s1;
+ q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
+ c__->r = q__1.r, c__->i = q__1.i;
+ }
+ return 0;
+ } else {
+
+/* normal case */
+
+ zeta1 = absalp / absest;
+ zeta2 = absgam / absest;
+
+ b = (1.f - zeta1 * zeta1 - zeta2 * zeta2) * .5f;
+ r__1 = zeta1 * zeta1;
+ c__->r = r__1, c__->i = 0.f;
+ if (b > 0.f) {
+ r__1 = b * b;
+ q__4.r = r__1 + c__->r, q__4.i = c__->i;
+ c_sqrt(&q__3, &q__4);
+ q__2.r = b + q__3.r, q__2.i = q__3.i;
+ c_div(&q__1, c__, &q__2);
+ t = q__1.r;
+ } else {
+ r__1 = b * b;
+ q__3.r = r__1 + c__->r, q__3.i = c__->i;
+ c_sqrt(&q__2, &q__3);
+ q__1.r = q__2.r - b, q__1.i = q__2.i;
+ t = q__1.r;
+ }
+
+ q__3.r = alpha.r / absest, q__3.i = alpha.i / absest;
+ q__2.r = -q__3.r, q__2.i = -q__3.i;
+ q__1.r = q__2.r / t, q__1.i = q__2.i / t;
+ sine.r = q__1.r, sine.i = q__1.i;
+ q__3.r = gamma->r / absest, q__3.i = gamma->i / absest;
+ q__2.r = -q__3.r, q__2.i = -q__3.i;
+ r__1 = t + 1.f;
+ q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
+ cosine.r = q__1.r, cosine.i = q__1.i;
+ r_cnjg(&q__4, &sine);
+ q__3.r = sine.r * q__4.r - sine.i * q__4.i, q__3.i = sine.r *
+ q__4.i + sine.i * q__4.r;
+ r_cnjg(&q__6, &cosine);
+ q__5.r = cosine.r * q__6.r - cosine.i * q__6.i, q__5.i = cosine.r
+ * q__6.i + cosine.i * q__6.r;
+ q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
+ c_sqrt(&q__1, &q__2);
+ tmp = q__1.r;
+ q__1.r = sine.r / tmp, q__1.i = sine.i / tmp;
+ s->r = q__1.r, s->i = q__1.i;
+ q__1.r = cosine.r / tmp, q__1.i = cosine.i / tmp;
+ c__->r = q__1.r, c__->i = q__1.i;
+ *sestpr = sqrt(t + 1.f) * absest;
+ return 0;
+ }
+
+ } else if (*job == 2) {
+
+/* Estimating smallest singular value */
+
+/* special cases */
+
+ if (*sest == 0.f) {
+ *sestpr = 0.f;
+ if (dmax(absgam,absalp) == 0.f) {
+ sine.r = 1.f, sine.i = 0.f;
+ cosine.r = 0.f, cosine.i = 0.f;
+ } else {
+ r_cnjg(&q__2, gamma);
+ q__1.r = -q__2.r, q__1.i = -q__2.i;
+ sine.r = q__1.r, sine.i = q__1.i;
+ r_cnjg(&q__1, &alpha);
+ cosine.r = q__1.r, cosine.i = q__1.i;
+ }
+/* Computing MAX */
+ r__1 = c_abs(&sine), r__2 = c_abs(&cosine);
+ s1 = dmax(r__1,r__2);
+ q__1.r = sine.r / s1, q__1.i = sine.i / s1;
+ s->r = q__1.r, s->i = q__1.i;
+ q__1.r = cosine.r / s1, q__1.i = cosine.i / s1;
+ c__->r = q__1.r, c__->i = q__1.i;
+ r_cnjg(&q__4, s);
+ q__3.r = s->r * q__4.r - s->i * q__4.i, q__3.i = s->r * q__4.i +
+ s->i * q__4.r;
+ r_cnjg(&q__6, c__);
+ q__5.r = c__->r * q__6.r - c__->i * q__6.i, q__5.i = c__->r *
+ q__6.i + c__->i * q__6.r;
+ q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
+ c_sqrt(&q__1, &q__2);
+ tmp = q__1.r;
+ q__1.r = s->r / tmp, q__1.i = s->i / tmp;
+ s->r = q__1.r, s->i = q__1.i;
+ q__1.r = c__->r / tmp, q__1.i = c__->i / tmp;
+ c__->r = q__1.r, c__->i = q__1.i;
+ return 0;
+ } else if (absgam <= eps * absest) {
+ s->r = 0.f, s->i = 0.f;
+ c__->r = 1.f, c__->i = 0.f;
+ *sestpr = absgam;
+ return 0;
+ } else if (absalp <= eps * absest) {
+ s1 = absgam;
+ s2 = absest;
+ if (s1 <= s2) {
+ s->r = 0.f, s->i = 0.f;
+ c__->r = 1.f, c__->i = 0.f;
+ *sestpr = s1;
+ } else {
+ s->r = 1.f, s->i = 0.f;
+ c__->r = 0.f, c__->i = 0.f;
+ *sestpr = s2;
+ }
+ return 0;
+ } else if (absest <= eps * absalp || absest <= eps * absgam) {
+ s1 = absgam;
+ s2 = absalp;
+ if (s1 <= s2) {
+ tmp = s1 / s2;
+ scl = sqrt(tmp * tmp + 1.f);
+ *sestpr = absest * (tmp / scl);
+ r_cnjg(&q__4, gamma);
+ q__3.r = q__4.r / s2, q__3.i = q__4.i / s2;
+ q__2.r = -q__3.r, q__2.i = -q__3.i;
+ q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
+ s->r = q__1.r, s->i = q__1.i;
+ r_cnjg(&q__3, &alpha);
+ q__2.r = q__3.r / s2, q__2.i = q__3.i / s2;
+ q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
+ c__->r = q__1.r, c__->i = q__1.i;
+ } else {
+ tmp = s2 / s1;
+ scl = sqrt(tmp * tmp + 1.f);
+ *sestpr = absest / scl;
+ r_cnjg(&q__4, gamma);
+ q__3.r = q__4.r / s1, q__3.i = q__4.i / s1;
+ q__2.r = -q__3.r, q__2.i = -q__3.i;
+ q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
+ s->r = q__1.r, s->i = q__1.i;
+ r_cnjg(&q__3, &alpha);
+ q__2.r = q__3.r / s1, q__2.i = q__3.i / s1;
+ q__1.r = q__2.r / scl, q__1.i = q__2.i / scl;
+ c__->r = q__1.r, c__->i = q__1.i;
+ }
+ return 0;
+ } else {
+
+/* normal case */
+
+ zeta1 = absalp / absest;
+ zeta2 = absgam / absest;
+
+/* Computing MAX */
+ r__1 = zeta1 * zeta1 + 1.f + zeta1 * zeta2, r__2 = zeta1 * zeta2
+ + zeta2 * zeta2;
+ norma = dmax(r__1,r__2);
+
+/* See if root is closer to zero or to ONE */
+
+ test = (zeta1 - zeta2) * 2.f * (zeta1 + zeta2) + 1.f;
+ if (test >= 0.f) {
+
+/* root is close to zero, compute directly */
+
+ b = (zeta1 * zeta1 + zeta2 * zeta2 + 1.f) * .5f;
+ r__1 = zeta2 * zeta2;
+ c__->r = r__1, c__->i = 0.f;
+ r__2 = b * b;
+ q__2.r = r__2 - c__->r, q__2.i = -c__->i;
+ r__1 = b + sqrt(c_abs(&q__2));
+ q__1.r = c__->r / r__1, q__1.i = c__->i / r__1;
+ t = q__1.r;
+ q__2.r = alpha.r / absest, q__2.i = alpha.i / absest;
+ r__1 = 1.f - t;
+ q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
+ sine.r = q__1.r, sine.i = q__1.i;
+ q__3.r = gamma->r / absest, q__3.i = gamma->i / absest;
+ q__2.r = -q__3.r, q__2.i = -q__3.i;
+ q__1.r = q__2.r / t, q__1.i = q__2.i / t;
+ cosine.r = q__1.r, cosine.i = q__1.i;
+ *sestpr = sqrt(t + eps * 4.f * eps * norma) * absest;
+ } else {
+
+/* root is closer to ONE, shift by that amount */
+
+ b = (zeta2 * zeta2 + zeta1 * zeta1 - 1.f) * .5f;
+ r__1 = zeta1 * zeta1;
+ c__->r = r__1, c__->i = 0.f;
+ if (b >= 0.f) {
+ q__2.r = -c__->r, q__2.i = -c__->i;
+ r__1 = b * b;
+ q__5.r = r__1 + c__->r, q__5.i = c__->i;
+ c_sqrt(&q__4, &q__5);
+ q__3.r = b + q__4.r, q__3.i = q__4.i;
+ c_div(&q__1, &q__2, &q__3);
+ t = q__1.r;
+ } else {
+ r__1 = b * b;
+ q__3.r = r__1 + c__->r, q__3.i = c__->i;
+ c_sqrt(&q__2, &q__3);
+ q__1.r = b - q__2.r, q__1.i = -q__2.i;
+ t = q__1.r;
+ }
+ q__3.r = alpha.r / absest, q__3.i = alpha.i / absest;
+ q__2.r = -q__3.r, q__2.i = -q__3.i;
+ q__1.r = q__2.r / t, q__1.i = q__2.i / t;
+ sine.r = q__1.r, sine.i = q__1.i;
+ q__3.r = gamma->r / absest, q__3.i = gamma->i / absest;
+ q__2.r = -q__3.r, q__2.i = -q__3.i;
+ r__1 = t + 1.f;
+ q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
+ cosine.r = q__1.r, cosine.i = q__1.i;
+ *sestpr = sqrt(t + 1.f + eps * 4.f * eps * norma) * absest;
+ }
+ r_cnjg(&q__4, &sine);
+ q__3.r = sine.r * q__4.r - sine.i * q__4.i, q__3.i = sine.r *
+ q__4.i + sine.i * q__4.r;
+ r_cnjg(&q__6, &cosine);
+ q__5.r = cosine.r * q__6.r - cosine.i * q__6.i, q__5.i = cosine.r
+ * q__6.i + cosine.i * q__6.r;
+ q__2.r = q__3.r + q__5.r, q__2.i = q__3.i + q__5.i;
+ c_sqrt(&q__1, &q__2);
+ tmp = q__1.r;
+ q__1.r = sine.r / tmp, q__1.i = sine.i / tmp;
+ s->r = q__1.r, s->i = q__1.i;
+ q__1.r = cosine.r / tmp, q__1.i = cosine.i / tmp;
+ c__->r = q__1.r, c__->i = q__1.i;
+ return 0;
+
+ }
+ }
+ return 0;
+
+/* End of CLAIC1 */
+
+} /* claic1_ */