summaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/chegvd.c
diff options
context:
space:
mode:
authorshmel1k <[email protected]>2022-09-02 12:44:59 +0300
committershmel1k <[email protected]>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/chegvd.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/chegvd.c')
-rw-r--r--contrib/libs/clapack/chegvd.c364
1 files changed, 364 insertions, 0 deletions
diff --git a/contrib/libs/clapack/chegvd.c b/contrib/libs/clapack/chegvd.c
new file mode 100644
index 00000000000..5f19c37e1bb
--- /dev/null
+++ b/contrib/libs/clapack/chegvd.c
@@ -0,0 +1,364 @@
+/* chegvd.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static complex c_b1 = {1.f,0.f};
+
+/* Subroutine */ int chegvd_(integer *itype, char *jobz, char *uplo, integer *
+ n, complex *a, integer *lda, complex *b, integer *ldb, real *w,
+ complex *work, integer *lwork, real *rwork, integer *lrwork, integer *
+ iwork, integer *liwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1;
+ real r__1, r__2;
+
+ /* Local variables */
+ integer lopt;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int ctrmm_(char *, char *, char *, char *,
+ integer *, integer *, complex *, complex *, integer *, complex *,
+ integer *);
+ integer lwmin;
+ char trans[1];
+ integer liopt;
+ extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *,
+ integer *, integer *, complex *, complex *, integer *, complex *,
+ integer *);
+ logical upper;
+ integer lropt;
+ logical wantz;
+ extern /* Subroutine */ int cheevd_(char *, char *, integer *, complex *,
+ integer *, real *, complex *, integer *, real *, integer *,
+ integer *, integer *, integer *), chegst_(integer
+ *, char *, integer *, complex *, integer *, complex *, integer *,
+ integer *), xerbla_(char *, integer *), cpotrf_(
+ char *, integer *, complex *, integer *, integer *);
+ integer liwmin, lrwmin;
+ logical lquery;
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CHEGVD computes all the eigenvalues, and optionally, the eigenvectors */
+/* of a complex generalized Hermitian-definite eigenproblem, of the form */
+/* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and */
+/* B are assumed to be Hermitian and B is also positive definite. */
+/* If eigenvectors are desired, it uses a divide and conquer algorithm. */
+
+/* The divide and conquer algorithm makes very mild assumptions about */
+/* floating point arithmetic. It will work on machines with a guard */
+/* digit in add/subtract, or on those binary machines without guard */
+/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
+/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */
+/* without guard digits, but we know of none. */
+
+/* Arguments */
+/* ========= */
+
+/* ITYPE (input) INTEGER */
+/* Specifies the problem type to be solved: */
+/* = 1: A*x = (lambda)*B*x */
+/* = 2: A*B*x = (lambda)*x */
+/* = 3: B*A*x = (lambda)*x */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangles of A and B are stored; */
+/* = 'L': Lower triangles of A and B are stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A and B. N >= 0. */
+
+/* A (input/output) COMPLEX array, dimension (LDA, N) */
+/* On entry, the Hermitian matrix A. If UPLO = 'U', the */
+/* leading N-by-N upper triangular part of A contains the */
+/* upper triangular part of the matrix A. If UPLO = 'L', */
+/* the leading N-by-N lower triangular part of A contains */
+/* the lower triangular part of the matrix A. */
+
+/* On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
+/* matrix Z of eigenvectors. The eigenvectors are normalized */
+/* as follows: */
+/* if ITYPE = 1 or 2, Z**H*B*Z = I; */
+/* if ITYPE = 3, Z**H*inv(B)*Z = I. */
+/* If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') */
+/* or the lower triangle (if UPLO='L') of A, including the */
+/* diagonal, is destroyed. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* B (input/output) COMPLEX array, dimension (LDB, N) */
+/* On entry, the Hermitian matrix B. If UPLO = 'U', the */
+/* leading N-by-N upper triangular part of B contains the */
+/* upper triangular part of the matrix B. If UPLO = 'L', */
+/* the leading N-by-N lower triangular part of B contains */
+/* the lower triangular part of the matrix B. */
+
+/* On exit, if INFO <= N, the part of B containing the matrix is */
+/* overwritten by the triangular factor U or L from the Cholesky */
+/* factorization B = U**H*U or B = L*L**H. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* W (output) REAL array, dimension (N) */
+/* If INFO = 0, the eigenvalues in ascending order. */
+
+/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The length of the array WORK. */
+/* If N <= 1, LWORK >= 1. */
+/* If JOBZ = 'N' and N > 1, LWORK >= N + 1. */
+/* If JOBZ = 'V' and N > 1, LWORK >= 2*N + N**2. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal sizes of the WORK, RWORK and */
+/* IWORK arrays, returns these values as the first entries of */
+/* the WORK, RWORK and IWORK arrays, and no error message */
+/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
+
+/* RWORK (workspace/output) REAL array, dimension (MAX(1,LRWORK)) */
+/* On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
+
+/* LRWORK (input) INTEGER */
+/* The dimension of the array RWORK. */
+/* If N <= 1, LRWORK >= 1. */
+/* If JOBZ = 'N' and N > 1, LRWORK >= N. */
+/* If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. */
+
+/* If LRWORK = -1, then a workspace query is assumed; the */
+/* routine only calculates the optimal sizes of the WORK, RWORK */
+/* and IWORK arrays, returns these values as the first entries */
+/* of the WORK, RWORK and IWORK arrays, and no error message */
+/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
+
+/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
+/* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
+
+/* LIWORK (input) INTEGER */
+/* The dimension of the array IWORK. */
+/* If N <= 1, LIWORK >= 1. */
+/* If JOBZ = 'N' and N > 1, LIWORK >= 1. */
+/* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. */
+
+/* If LIWORK = -1, then a workspace query is assumed; the */
+/* routine only calculates the optimal sizes of the WORK, RWORK */
+/* and IWORK arrays, returns these values as the first entries */
+/* of the WORK, RWORK and IWORK arrays, and no error message */
+/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: CPOTRF or CHEEVD returned an error code: */
+/* <= N: if INFO = i and JOBZ = 'N', then the algorithm */
+/* failed to converge; i off-diagonal elements of an */
+/* intermediate tridiagonal form did not converge to */
+/* zero; */
+/* if INFO = i and JOBZ = 'V', then the algorithm */
+/* failed to compute an eigenvalue while working on */
+/* the submatrix lying in rows and columns INFO/(N+1) */
+/* through mod(INFO,N+1); */
+/* > N: if INFO = N + i, for 1 <= i <= N, then the leading */
+/* minor of order i of B is not positive definite. */
+/* The factorization of B could not be completed and */
+/* no eigenvalues or eigenvectors were computed. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
+
+/* Modified so that no backsubstitution is performed if CHEEVD fails to */
+/* converge (NEIG in old code could be greater than N causing out of */
+/* bounds reference to A - reported by Ralf Meyer). Also corrected the */
+/* description of INFO and the test on ITYPE. Sven, 16 Feb 05. */
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ --w;
+ --work;
+ --rwork;
+ --iwork;
+
+ /* Function Body */
+ wantz = lsame_(jobz, "V");
+ upper = lsame_(uplo, "U");
+ lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
+
+ *info = 0;
+ if (*n <= 1) {
+ lwmin = 1;
+ lrwmin = 1;
+ liwmin = 1;
+ } else if (wantz) {
+ lwmin = (*n << 1) + *n * *n;
+ lrwmin = *n * 5 + 1 + (*n << 1) * *n;
+ liwmin = *n * 5 + 3;
+ } else {
+ lwmin = *n + 1;
+ lrwmin = *n;
+ liwmin = 1;
+ }
+ lopt = lwmin;
+ lropt = lrwmin;
+ liopt = liwmin;
+ if (*itype < 1 || *itype > 3) {
+ *info = -1;
+ } else if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -2;
+ } else if (! (upper || lsame_(uplo, "L"))) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*lda < max(1,*n)) {
+ *info = -6;
+ } else if (*ldb < max(1,*n)) {
+ *info = -8;
+ }
+
+ if (*info == 0) {
+ work[1].r = (real) lopt, work[1].i = 0.f;
+ rwork[1] = (real) lropt;
+ iwork[1] = liopt;
+
+ if (*lwork < lwmin && ! lquery) {
+ *info = -11;
+ } else if (*lrwork < lrwmin && ! lquery) {
+ *info = -13;
+ } else if (*liwork < liwmin && ! lquery) {
+ *info = -15;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CHEGVD", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Form a Cholesky factorization of B. */
+
+ cpotrf_(uplo, n, &b[b_offset], ldb, info);
+ if (*info != 0) {
+ *info = *n + *info;
+ return 0;
+ }
+
+/* Transform problem to standard eigenvalue problem and solve. */
+
+ chegst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
+ cheevd_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, &rwork[
+ 1], lrwork, &iwork[1], liwork, info);
+/* Computing MAX */
+ r__1 = (real) lopt, r__2 = work[1].r;
+ lopt = dmax(r__1,r__2);
+/* Computing MAX */
+ r__1 = (real) lropt;
+ lropt = dmax(r__1,rwork[1]);
+/* Computing MAX */
+ r__1 = (real) liopt, r__2 = (real) iwork[1];
+ liopt = dmax(r__1,r__2);
+
+ if (wantz && *info == 0) {
+
+/* Backtransform eigenvectors to the original problem. */
+
+ if (*itype == 1 || *itype == 2) {
+
+/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
+/* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
+
+ if (upper) {
+ *(unsigned char *)trans = 'N';
+ } else {
+ *(unsigned char *)trans = 'C';
+ }
+
+ ctrsm_("Left", uplo, trans, "Non-unit", n, n, &c_b1, &b[b_offset],
+ ldb, &a[a_offset], lda);
+
+ } else if (*itype == 3) {
+
+/* For B*A*x=(lambda)*x; */
+/* backtransform eigenvectors: x = L*y or U'*y */
+
+ if (upper) {
+ *(unsigned char *)trans = 'C';
+ } else {
+ *(unsigned char *)trans = 'N';
+ }
+
+ ctrmm_("Left", uplo, trans, "Non-unit", n, n, &c_b1, &b[b_offset],
+ ldb, &a[a_offset], lda);
+ }
+ }
+
+ work[1].r = (real) lopt, work[1].i = 0.f;
+ rwork[1] = (real) lropt;
+ iwork[1] = liopt;
+
+ return 0;
+
+/* End of CHEGVD */
+
+} /* chegvd_ */