aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/chbgvd.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/chbgvd.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/chbgvd.c')
-rw-r--r--contrib/libs/clapack/chbgvd.c355
1 files changed, 355 insertions, 0 deletions
diff --git a/contrib/libs/clapack/chbgvd.c b/contrib/libs/clapack/chbgvd.c
new file mode 100644
index 0000000000..780f128dce
--- /dev/null
+++ b/contrib/libs/clapack/chbgvd.c
@@ -0,0 +1,355 @@
+/* chbgvd.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static complex c_b1 = {1.f,0.f};
+static complex c_b2 = {0.f,0.f};
+
+/* Subroutine */ int chbgvd_(char *jobz, char *uplo, integer *n, integer *ka,
+ integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb,
+ real *w, complex *z__, integer *ldz, complex *work, integer *lwork,
+ real *rwork, integer *lrwork, integer *iwork, integer *liwork,
+ integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;
+
+ /* Local variables */
+ integer inde;
+ char vect[1];
+ integer llwk2;
+ extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
+ integer *, complex *, complex *, integer *, complex *, integer *,
+ complex *, complex *, integer *);
+ extern logical lsame_(char *, char *);
+ integer iinfo, lwmin;
+ logical upper;
+ integer llrwk;
+ logical wantz;
+ integer indwk2;
+ extern /* Subroutine */ int cstedc_(char *, integer *, real *, real *,
+ complex *, integer *, complex *, integer *, real *, integer *,
+ integer *, integer *, integer *), chbtrd_(char *, char *,
+ integer *, integer *, complex *, integer *, real *, real *,
+ complex *, integer *, complex *, integer *),
+ chbgst_(char *, char *, integer *, integer *, integer *, complex *
+, integer *, complex *, integer *, complex *, integer *, complex *
+, real *, integer *), clacpy_(char *, integer *,
+ integer *, complex *, integer *, complex *, integer *),
+ xerbla_(char *, integer *), cpbstf_(char *, integer *,
+ integer *, complex *, integer *, integer *);
+ integer indwrk, liwmin;
+ extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *);
+ integer lrwmin;
+ logical lquery;
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CHBGVD computes all the eigenvalues, and optionally, the eigenvectors */
+/* of a complex generalized Hermitian-definite banded eigenproblem, of */
+/* the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian */
+/* and banded, and B is also positive definite. If eigenvectors are */
+/* desired, it uses a divide and conquer algorithm. */
+
+/* The divide and conquer algorithm makes very mild assumptions about */
+/* floating point arithmetic. It will work on machines with a guard */
+/* digit in add/subtract, or on those binary machines without guard */
+/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
+/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */
+/* without guard digits, but we know of none. */
+
+/* Arguments */
+/* ========= */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangles of A and B are stored; */
+/* = 'L': Lower triangles of A and B are stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A and B. N >= 0. */
+
+/* KA (input) INTEGER */
+/* The number of superdiagonals of the matrix A if UPLO = 'U', */
+/* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
+
+/* KB (input) INTEGER */
+/* The number of superdiagonals of the matrix B if UPLO = 'U', */
+/* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */
+
+/* AB (input/output) COMPLEX array, dimension (LDAB, N) */
+/* On entry, the upper or lower triangle of the Hermitian band */
+/* matrix A, stored in the first ka+1 rows of the array. The */
+/* j-th column of A is stored in the j-th column of the array AB */
+/* as follows: */
+/* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
+/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */
+
+/* On exit, the contents of AB are destroyed. */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= KA+1. */
+
+/* BB (input/output) COMPLEX array, dimension (LDBB, N) */
+/* On entry, the upper or lower triangle of the Hermitian band */
+/* matrix B, stored in the first kb+1 rows of the array. The */
+/* j-th column of B is stored in the j-th column of the array BB */
+/* as follows: */
+/* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
+/* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */
+
+/* On exit, the factor S from the split Cholesky factorization */
+/* B = S**H*S, as returned by CPBSTF. */
+
+/* LDBB (input) INTEGER */
+/* The leading dimension of the array BB. LDBB >= KB+1. */
+
+/* W (output) REAL array, dimension (N) */
+/* If INFO = 0, the eigenvalues in ascending order. */
+
+/* Z (output) COMPLEX array, dimension (LDZ, N) */
+/* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
+/* eigenvectors, with the i-th column of Z holding the */
+/* eigenvector associated with W(i). The eigenvectors are */
+/* normalized so that Z**H*B*Z = I. */
+/* If JOBZ = 'N', then Z is not referenced. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1, and if */
+/* JOBZ = 'V', LDZ >= N. */
+
+/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO=0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. */
+/* If N <= 1, LWORK >= 1. */
+/* If JOBZ = 'N' and N > 1, LWORK >= N. */
+/* If JOBZ = 'V' and N > 1, LWORK >= 2*N**2. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal sizes of the WORK, RWORK and */
+/* IWORK arrays, returns these values as the first entries of */
+/* the WORK, RWORK and IWORK arrays, and no error message */
+/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
+
+/* RWORK (workspace/output) REAL array, dimension (MAX(1,LRWORK)) */
+/* On exit, if INFO=0, RWORK(1) returns the optimal LRWORK. */
+
+/* LRWORK (input) INTEGER */
+/* The dimension of array RWORK. */
+/* If N <= 1, LRWORK >= 1. */
+/* If JOBZ = 'N' and N > 1, LRWORK >= N. */
+/* If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. */
+
+/* If LRWORK = -1, then a workspace query is assumed; the */
+/* routine only calculates the optimal sizes of the WORK, RWORK */
+/* and IWORK arrays, returns these values as the first entries */
+/* of the WORK, RWORK and IWORK arrays, and no error message */
+/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
+
+/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
+/* On exit, if INFO=0, IWORK(1) returns the optimal LIWORK. */
+
+/* LIWORK (input) INTEGER */
+/* The dimension of array IWORK. */
+/* If JOBZ = 'N' or N <= 1, LIWORK >= 1. */
+/* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. */
+
+/* If LIWORK = -1, then a workspace query is assumed; the */
+/* routine only calculates the optimal sizes of the WORK, RWORK */
+/* and IWORK arrays, returns these values as the first entries */
+/* of the WORK, RWORK and IWORK arrays, and no error message */
+/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, and i is: */
+/* <= N: the algorithm failed to converge: */
+/* i off-diagonal elements of an intermediate */
+/* tridiagonal form did not converge to zero; */
+/* > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF */
+/* returned INFO = i: B is not positive definite. */
+/* The factorization of B could not be completed and */
+/* no eigenvalues or eigenvectors were computed. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ bb_dim1 = *ldbb;
+ bb_offset = 1 + bb_dim1;
+ bb -= bb_offset;
+ --w;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --work;
+ --rwork;
+ --iwork;
+
+ /* Function Body */
+ wantz = lsame_(jobz, "V");
+ upper = lsame_(uplo, "U");
+ lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
+
+ *info = 0;
+ if (*n <= 1) {
+ lwmin = 1;
+ lrwmin = 1;
+ liwmin = 1;
+ } else if (wantz) {
+/* Computing 2nd power */
+ i__1 = *n;
+ lwmin = i__1 * i__1 << 1;
+/* Computing 2nd power */
+ i__1 = *n;
+ lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1);
+ liwmin = *n * 5 + 3;
+ } else {
+ lwmin = *n;
+ lrwmin = *n;
+ liwmin = 1;
+ }
+ if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -1;
+ } else if (! (upper || lsame_(uplo, "L"))) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*ka < 0) {
+ *info = -4;
+ } else if (*kb < 0 || *kb > *ka) {
+ *info = -5;
+ } else if (*ldab < *ka + 1) {
+ *info = -7;
+ } else if (*ldbb < *kb + 1) {
+ *info = -9;
+ } else if (*ldz < 1 || wantz && *ldz < *n) {
+ *info = -12;
+ }
+
+ if (*info == 0) {
+ work[1].r = (real) lwmin, work[1].i = 0.f;
+ rwork[1] = (real) lrwmin;
+ iwork[1] = liwmin;
+
+ if (*lwork < lwmin && ! lquery) {
+ *info = -14;
+ } else if (*lrwork < lrwmin && ! lquery) {
+ *info = -16;
+ } else if (*liwork < liwmin && ! lquery) {
+ *info = -18;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("CHBGVD", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Form a split Cholesky factorization of B. */
+
+ cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
+ if (*info != 0) {
+ *info = *n + *info;
+ return 0;
+ }
+
+/* Transform problem to standard eigenvalue problem. */
+
+ inde = 1;
+ indwrk = inde + *n;
+ indwk2 = *n * *n + 1;
+ llwk2 = *lwork - indwk2 + 2;
+ llrwk = *lrwork - indwrk + 2;
+ chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb,
+ &z__[z_offset], ldz, &work[1], &rwork[indwrk], &iinfo);
+
+/* Reduce Hermitian band matrix to tridiagonal form. */
+
+ if (wantz) {
+ *(unsigned char *)vect = 'U';
+ } else {
+ *(unsigned char *)vect = 'N';
+ }
+ chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &rwork[inde], &
+ z__[z_offset], ldz, &work[1], &iinfo);
+
+/* For eigenvalues only, call SSTERF. For eigenvectors, call CSTEDC. */
+
+ if (! wantz) {
+ ssterf_(n, &w[1], &rwork[inde], info);
+ } else {
+ cstedc_("I", n, &w[1], &rwork[inde], &work[1], n, &work[indwk2], &
+ llwk2, &rwork[indwrk], &llrwk, &iwork[1], liwork, info);
+ cgemm_("N", "N", n, n, n, &c_b1, &z__[z_offset], ldz, &work[1], n, &
+ c_b2, &work[indwk2], n);
+ clacpy_("A", n, n, &work[indwk2], n, &z__[z_offset], ldz);
+ }
+
+ work[1].r = (real) lwmin, work[1].i = 0.f;
+ rwork[1] = (real) lrwmin;
+ iwork[1] = liwmin;
+ return 0;
+
+/* End of CHBGVD */
+
+} /* chbgvd_ */