aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14/lib/Sema/SemaTemplate.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/clang14/lib/Sema/SemaTemplate.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/clang14/lib/Sema/SemaTemplate.cpp')
-rw-r--r--contrib/libs/clang14/lib/Sema/SemaTemplate.cpp11102
1 files changed, 11102 insertions, 0 deletions
diff --git a/contrib/libs/clang14/lib/Sema/SemaTemplate.cpp b/contrib/libs/clang14/lib/Sema/SemaTemplate.cpp
new file mode 100644
index 0000000000..64a0b45feb
--- /dev/null
+++ b/contrib/libs/clang14/lib/Sema/SemaTemplate.cpp
@@ -0,0 +1,11102 @@
+//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for C++ templates.
+//===----------------------------------------------------------------------===//
+
+#include "TreeTransform.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclFriend.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/TypeVisitor.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/Stack.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Overload.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/Template.h"
+#include "clang/Sema/TemplateDeduction.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+
+#include <iterator>
+using namespace clang;
+using namespace sema;
+
+// Exported for use by Parser.
+SourceRange
+clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
+ unsigned N) {
+ if (!N) return SourceRange();
+ return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
+}
+
+unsigned Sema::getTemplateDepth(Scope *S) const {
+ unsigned Depth = 0;
+
+ // Each template parameter scope represents one level of template parameter
+ // depth.
+ for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
+ TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
+ ++Depth;
+ }
+
+ // Note that there are template parameters with the given depth.
+ auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); };
+
+ // Look for parameters of an enclosing generic lambda. We don't create a
+ // template parameter scope for these.
+ for (FunctionScopeInfo *FSI : getFunctionScopes()) {
+ if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) {
+ if (!LSI->TemplateParams.empty()) {
+ ParamsAtDepth(LSI->AutoTemplateParameterDepth);
+ break;
+ }
+ if (LSI->GLTemplateParameterList) {
+ ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
+ break;
+ }
+ }
+ }
+
+ // Look for parameters of an enclosing terse function template. We don't
+ // create a template parameter scope for these either.
+ for (const InventedTemplateParameterInfo &Info :
+ getInventedParameterInfos()) {
+ if (!Info.TemplateParams.empty()) {
+ ParamsAtDepth(Info.AutoTemplateParameterDepth);
+ break;
+ }
+ }
+
+ return Depth;
+}
+
+/// \brief Determine whether the declaration found is acceptable as the name
+/// of a template and, if so, return that template declaration. Otherwise,
+/// returns null.
+///
+/// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
+/// is true. In all other cases it will return a TemplateDecl (or null).
+NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
+ bool AllowFunctionTemplates,
+ bool AllowDependent) {
+ D = D->getUnderlyingDecl();
+
+ if (isa<TemplateDecl>(D)) {
+ if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
+ return nullptr;
+
+ return D;
+ }
+
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
+ // C++ [temp.local]p1:
+ // Like normal (non-template) classes, class templates have an
+ // injected-class-name (Clause 9). The injected-class-name
+ // can be used with or without a template-argument-list. When
+ // it is used without a template-argument-list, it is
+ // equivalent to the injected-class-name followed by the
+ // template-parameters of the class template enclosed in
+ // <>. When it is used with a template-argument-list, it
+ // refers to the specified class template specialization,
+ // which could be the current specialization or another
+ // specialization.
+ if (Record->isInjectedClassName()) {
+ Record = cast<CXXRecordDecl>(Record->getDeclContext());
+ if (Record->getDescribedClassTemplate())
+ return Record->getDescribedClassTemplate();
+
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record))
+ return Spec->getSpecializedTemplate();
+ }
+
+ return nullptr;
+ }
+
+ // 'using Dependent::foo;' can resolve to a template name.
+ // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
+ // injected-class-name).
+ if (AllowDependent && isa<UnresolvedUsingValueDecl>(D))
+ return D;
+
+ return nullptr;
+}
+
+void Sema::FilterAcceptableTemplateNames(LookupResult &R,
+ bool AllowFunctionTemplates,
+ bool AllowDependent) {
+ LookupResult::Filter filter = R.makeFilter();
+ while (filter.hasNext()) {
+ NamedDecl *Orig = filter.next();
+ if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent))
+ filter.erase();
+ }
+ filter.done();
+}
+
+bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
+ bool AllowFunctionTemplates,
+ bool AllowDependent,
+ bool AllowNonTemplateFunctions) {
+ for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
+ if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent))
+ return true;
+ if (AllowNonTemplateFunctions &&
+ isa<FunctionDecl>((*I)->getUnderlyingDecl()))
+ return true;
+ }
+
+ return false;
+}
+
+TemplateNameKind Sema::isTemplateName(Scope *S,
+ CXXScopeSpec &SS,
+ bool hasTemplateKeyword,
+ const UnqualifiedId &Name,
+ ParsedType ObjectTypePtr,
+ bool EnteringContext,
+ TemplateTy &TemplateResult,
+ bool &MemberOfUnknownSpecialization,
+ bool Disambiguation) {
+ assert(getLangOpts().CPlusPlus && "No template names in C!");
+
+ DeclarationName TName;
+ MemberOfUnknownSpecialization = false;
+
+ switch (Name.getKind()) {
+ case UnqualifiedIdKind::IK_Identifier:
+ TName = DeclarationName(Name.Identifier);
+ break;
+
+ case UnqualifiedIdKind::IK_OperatorFunctionId:
+ TName = Context.DeclarationNames.getCXXOperatorName(
+ Name.OperatorFunctionId.Operator);
+ break;
+
+ case UnqualifiedIdKind::IK_LiteralOperatorId:
+ TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
+ break;
+
+ default:
+ return TNK_Non_template;
+ }
+
+ QualType ObjectType = ObjectTypePtr.get();
+
+ AssumedTemplateKind AssumedTemplate;
+ LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
+ if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
+ MemberOfUnknownSpecialization, SourceLocation(),
+ &AssumedTemplate,
+ /*AllowTypoCorrection=*/!Disambiguation))
+ return TNK_Non_template;
+
+ if (AssumedTemplate != AssumedTemplateKind::None) {
+ TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName));
+ // Let the parser know whether we found nothing or found functions; if we
+ // found nothing, we want to more carefully check whether this is actually
+ // a function template name versus some other kind of undeclared identifier.
+ return AssumedTemplate == AssumedTemplateKind::FoundNothing
+ ? TNK_Undeclared_template
+ : TNK_Function_template;
+ }
+
+ if (R.empty())
+ return TNK_Non_template;
+
+ NamedDecl *D = nullptr;
+ if (R.isAmbiguous()) {
+ // If we got an ambiguity involving a non-function template, treat this
+ // as a template name, and pick an arbitrary template for error recovery.
+ bool AnyFunctionTemplates = false;
+ for (NamedDecl *FoundD : R) {
+ if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) {
+ if (isa<FunctionTemplateDecl>(FoundTemplate))
+ AnyFunctionTemplates = true;
+ else {
+ D = FoundTemplate;
+ break;
+ }
+ }
+ }
+
+ // If we didn't find any templates at all, this isn't a template name.
+ // Leave the ambiguity for a later lookup to diagnose.
+ if (!D && !AnyFunctionTemplates) {
+ R.suppressDiagnostics();
+ return TNK_Non_template;
+ }
+
+ // If the only templates were function templates, filter out the rest.
+ // We'll diagnose the ambiguity later.
+ if (!D)
+ FilterAcceptableTemplateNames(R);
+ }
+
+ // At this point, we have either picked a single template name declaration D
+ // or we have a non-empty set of results R containing either one template name
+ // declaration or a set of function templates.
+
+ TemplateName Template;
+ TemplateNameKind TemplateKind;
+
+ unsigned ResultCount = R.end() - R.begin();
+ if (!D && ResultCount > 1) {
+ // We assume that we'll preserve the qualifier from a function
+ // template name in other ways.
+ Template = Context.getOverloadedTemplateName(R.begin(), R.end());
+ TemplateKind = TNK_Function_template;
+
+ // We'll do this lookup again later.
+ R.suppressDiagnostics();
+ } else {
+ if (!D) {
+ D = getAsTemplateNameDecl(*R.begin());
+ assert(D && "unambiguous result is not a template name");
+ }
+
+ if (isa<UnresolvedUsingValueDecl>(D)) {
+ // We don't yet know whether this is a template-name or not.
+ MemberOfUnknownSpecialization = true;
+ return TNK_Non_template;
+ }
+
+ TemplateDecl *TD = cast<TemplateDecl>(D);
+
+ if (SS.isSet() && !SS.isInvalid()) {
+ NestedNameSpecifier *Qualifier = SS.getScopeRep();
+ Template = Context.getQualifiedTemplateName(Qualifier,
+ hasTemplateKeyword, TD);
+ } else {
+ Template = TemplateName(TD);
+ }
+
+ if (isa<FunctionTemplateDecl>(TD)) {
+ TemplateKind = TNK_Function_template;
+
+ // We'll do this lookup again later.
+ R.suppressDiagnostics();
+ } else {
+ assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
+ isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
+ isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
+ TemplateKind =
+ isa<VarTemplateDecl>(TD) ? TNK_Var_template :
+ isa<ConceptDecl>(TD) ? TNK_Concept_template :
+ TNK_Type_template;
+ }
+ }
+
+ TemplateResult = TemplateTy::make(Template);
+ return TemplateKind;
+}
+
+bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
+ SourceLocation NameLoc,
+ ParsedTemplateTy *Template) {
+ CXXScopeSpec SS;
+ bool MemberOfUnknownSpecialization = false;
+
+ // We could use redeclaration lookup here, but we don't need to: the
+ // syntactic form of a deduction guide is enough to identify it even
+ // if we can't look up the template name at all.
+ LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
+ if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
+ /*EnteringContext*/ false,
+ MemberOfUnknownSpecialization))
+ return false;
+
+ if (R.empty()) return false;
+ if (R.isAmbiguous()) {
+ // FIXME: Diagnose an ambiguity if we find at least one template.
+ R.suppressDiagnostics();
+ return false;
+ }
+
+ // We only treat template-names that name type templates as valid deduction
+ // guide names.
+ TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
+ if (!TD || !getAsTypeTemplateDecl(TD))
+ return false;
+
+ if (Template)
+ *Template = TemplateTy::make(TemplateName(TD));
+ return true;
+}
+
+bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
+ SourceLocation IILoc,
+ Scope *S,
+ const CXXScopeSpec *SS,
+ TemplateTy &SuggestedTemplate,
+ TemplateNameKind &SuggestedKind) {
+ // We can't recover unless there's a dependent scope specifier preceding the
+ // template name.
+ // FIXME: Typo correction?
+ if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
+ computeDeclContext(*SS))
+ return false;
+
+ // The code is missing a 'template' keyword prior to the dependent template
+ // name.
+ NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
+ Diag(IILoc, diag::err_template_kw_missing)
+ << Qualifier << II.getName()
+ << FixItHint::CreateInsertion(IILoc, "template ");
+ SuggestedTemplate
+ = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
+ SuggestedKind = TNK_Dependent_template_name;
+ return true;
+}
+
+bool Sema::LookupTemplateName(LookupResult &Found,
+ Scope *S, CXXScopeSpec &SS,
+ QualType ObjectType,
+ bool EnteringContext,
+ bool &MemberOfUnknownSpecialization,
+ RequiredTemplateKind RequiredTemplate,
+ AssumedTemplateKind *ATK,
+ bool AllowTypoCorrection) {
+ if (ATK)
+ *ATK = AssumedTemplateKind::None;
+
+ if (SS.isInvalid())
+ return true;
+
+ Found.setTemplateNameLookup(true);
+
+ // Determine where to perform name lookup
+ MemberOfUnknownSpecialization = false;
+ DeclContext *LookupCtx = nullptr;
+ bool IsDependent = false;
+ if (!ObjectType.isNull()) {
+ // This nested-name-specifier occurs in a member access expression, e.g.,
+ // x->B::f, and we are looking into the type of the object.
+ assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist");
+ LookupCtx = computeDeclContext(ObjectType);
+ IsDependent = !LookupCtx && ObjectType->isDependentType();
+ assert((IsDependent || !ObjectType->isIncompleteType() ||
+ ObjectType->castAs<TagType>()->isBeingDefined()) &&
+ "Caller should have completed object type");
+
+ // Template names cannot appear inside an Objective-C class or object type
+ // or a vector type.
+ //
+ // FIXME: This is wrong. For example:
+ //
+ // template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
+ // Vec<int> vi;
+ // vi.Vec<int>::~Vec<int>();
+ //
+ // ... should be accepted but we will not treat 'Vec' as a template name
+ // here. The right thing to do would be to check if the name is a valid
+ // vector component name, and look up a template name if not. And similarly
+ // for lookups into Objective-C class and object types, where the same
+ // problem can arise.
+ if (ObjectType->isObjCObjectOrInterfaceType() ||
+ ObjectType->isVectorType()) {
+ Found.clear();
+ return false;
+ }
+ } else if (SS.isNotEmpty()) {
+ // This nested-name-specifier occurs after another nested-name-specifier,
+ // so long into the context associated with the prior nested-name-specifier.
+ LookupCtx = computeDeclContext(SS, EnteringContext);
+ IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
+
+ // The declaration context must be complete.
+ if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
+ return true;
+ }
+
+ bool ObjectTypeSearchedInScope = false;
+ bool AllowFunctionTemplatesInLookup = true;
+ if (LookupCtx) {
+ // Perform "qualified" name lookup into the declaration context we
+ // computed, which is either the type of the base of a member access
+ // expression or the declaration context associated with a prior
+ // nested-name-specifier.
+ LookupQualifiedName(Found, LookupCtx);
+
+ // FIXME: The C++ standard does not clearly specify what happens in the
+ // case where the object type is dependent, and implementations vary. In
+ // Clang, we treat a name after a . or -> as a template-name if lookup
+ // finds a non-dependent member or member of the current instantiation that
+ // is a type template, or finds no such members and lookup in the context
+ // of the postfix-expression finds a type template. In the latter case, the
+ // name is nonetheless dependent, and we may resolve it to a member of an
+ // unknown specialization when we come to instantiate the template.
+ IsDependent |= Found.wasNotFoundInCurrentInstantiation();
+ }
+
+ if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
+ // C++ [basic.lookup.classref]p1:
+ // In a class member access expression (5.2.5), if the . or -> token is
+ // immediately followed by an identifier followed by a <, the
+ // identifier must be looked up to determine whether the < is the
+ // beginning of a template argument list (14.2) or a less-than operator.
+ // The identifier is first looked up in the class of the object
+ // expression. If the identifier is not found, it is then looked up in
+ // the context of the entire postfix-expression and shall name a class
+ // template.
+ if (S)
+ LookupName(Found, S);
+
+ if (!ObjectType.isNull()) {
+ // FIXME: We should filter out all non-type templates here, particularly
+ // variable templates and concepts. But the exclusion of alias templates
+ // and template template parameters is a wording defect.
+ AllowFunctionTemplatesInLookup = false;
+ ObjectTypeSearchedInScope = true;
+ }
+
+ IsDependent |= Found.wasNotFoundInCurrentInstantiation();
+ }
+
+ if (Found.isAmbiguous())
+ return false;
+
+ if (ATK && SS.isEmpty() && ObjectType.isNull() &&
+ !RequiredTemplate.hasTemplateKeyword()) {
+ // C++2a [temp.names]p2:
+ // A name is also considered to refer to a template if it is an
+ // unqualified-id followed by a < and name lookup finds either one or more
+ // functions or finds nothing.
+ //
+ // To keep our behavior consistent, we apply the "finds nothing" part in
+ // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
+ // successfully form a call to an undeclared template-id.
+ bool AllFunctions =
+ getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) {
+ return isa<FunctionDecl>(ND->getUnderlyingDecl());
+ });
+ if (AllFunctions || (Found.empty() && !IsDependent)) {
+ // If lookup found any functions, or if this is a name that can only be
+ // used for a function, then strongly assume this is a function
+ // template-id.
+ *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
+ ? AssumedTemplateKind::FoundNothing
+ : AssumedTemplateKind::FoundFunctions;
+ Found.clear();
+ return false;
+ }
+ }
+
+ if (Found.empty() && !IsDependent && AllowTypoCorrection) {
+ // If we did not find any names, and this is not a disambiguation, attempt
+ // to correct any typos.
+ DeclarationName Name = Found.getLookupName();
+ Found.clear();
+ // Simple filter callback that, for keywords, only accepts the C++ *_cast
+ DefaultFilterCCC FilterCCC{};
+ FilterCCC.WantTypeSpecifiers = false;
+ FilterCCC.WantExpressionKeywords = false;
+ FilterCCC.WantRemainingKeywords = false;
+ FilterCCC.WantCXXNamedCasts = true;
+ if (TypoCorrection Corrected =
+ CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S,
+ &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) {
+ if (auto *ND = Corrected.getFoundDecl())
+ Found.addDecl(ND);
+ FilterAcceptableTemplateNames(Found);
+ if (Found.isAmbiguous()) {
+ Found.clear();
+ } else if (!Found.empty()) {
+ Found.setLookupName(Corrected.getCorrection());
+ if (LookupCtx) {
+ std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
+ bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
+ Name.getAsString() == CorrectedStr;
+ diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
+ << Name << LookupCtx << DroppedSpecifier
+ << SS.getRange());
+ } else {
+ diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
+ }
+ }
+ }
+ }
+
+ NamedDecl *ExampleLookupResult =
+ Found.empty() ? nullptr : Found.getRepresentativeDecl();
+ FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
+ if (Found.empty()) {
+ if (IsDependent) {
+ MemberOfUnknownSpecialization = true;
+ return false;
+ }
+
+ // If a 'template' keyword was used, a lookup that finds only non-template
+ // names is an error.
+ if (ExampleLookupResult && RequiredTemplate) {
+ Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
+ << Found.getLookupName() << SS.getRange()
+ << RequiredTemplate.hasTemplateKeyword()
+ << RequiredTemplate.getTemplateKeywordLoc();
+ Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
+ diag::note_template_kw_refers_to_non_template)
+ << Found.getLookupName();
+ return true;
+ }
+
+ return false;
+ }
+
+ if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
+ !getLangOpts().CPlusPlus11) {
+ // C++03 [basic.lookup.classref]p1:
+ // [...] If the lookup in the class of the object expression finds a
+ // template, the name is also looked up in the context of the entire
+ // postfix-expression and [...]
+ //
+ // Note: C++11 does not perform this second lookup.
+ LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
+ LookupOrdinaryName);
+ FoundOuter.setTemplateNameLookup(true);
+ LookupName(FoundOuter, S);
+ // FIXME: We silently accept an ambiguous lookup here, in violation of
+ // [basic.lookup]/1.
+ FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
+
+ NamedDecl *OuterTemplate;
+ if (FoundOuter.empty()) {
+ // - if the name is not found, the name found in the class of the
+ // object expression is used, otherwise
+ } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
+ !(OuterTemplate =
+ getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) {
+ // - if the name is found in the context of the entire
+ // postfix-expression and does not name a class template, the name
+ // found in the class of the object expression is used, otherwise
+ FoundOuter.clear();
+ } else if (!Found.isSuppressingDiagnostics()) {
+ // - if the name found is a class template, it must refer to the same
+ // entity as the one found in the class of the object expression,
+ // otherwise the program is ill-formed.
+ if (!Found.isSingleResult() ||
+ getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() !=
+ OuterTemplate->getCanonicalDecl()) {
+ Diag(Found.getNameLoc(),
+ diag::ext_nested_name_member_ref_lookup_ambiguous)
+ << Found.getLookupName()
+ << ObjectType;
+ Diag(Found.getRepresentativeDecl()->getLocation(),
+ diag::note_ambig_member_ref_object_type)
+ << ObjectType;
+ Diag(FoundOuter.getFoundDecl()->getLocation(),
+ diag::note_ambig_member_ref_scope);
+
+ // Recover by taking the template that we found in the object
+ // expression's type.
+ }
+ }
+ }
+
+ return false;
+}
+
+void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
+ SourceLocation Less,
+ SourceLocation Greater) {
+ if (TemplateName.isInvalid())
+ return;
+
+ DeclarationNameInfo NameInfo;
+ CXXScopeSpec SS;
+ LookupNameKind LookupKind;
+
+ DeclContext *LookupCtx = nullptr;
+ NamedDecl *Found = nullptr;
+ bool MissingTemplateKeyword = false;
+
+ // Figure out what name we looked up.
+ if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) {
+ NameInfo = DRE->getNameInfo();
+ SS.Adopt(DRE->getQualifierLoc());
+ LookupKind = LookupOrdinaryName;
+ Found = DRE->getFoundDecl();
+ } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) {
+ NameInfo = ME->getMemberNameInfo();
+ SS.Adopt(ME->getQualifierLoc());
+ LookupKind = LookupMemberName;
+ LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
+ Found = ME->getMemberDecl();
+ } else if (auto *DSDRE =
+ dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) {
+ NameInfo = DSDRE->getNameInfo();
+ SS.Adopt(DSDRE->getQualifierLoc());
+ MissingTemplateKeyword = true;
+ } else if (auto *DSME =
+ dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) {
+ NameInfo = DSME->getMemberNameInfo();
+ SS.Adopt(DSME->getQualifierLoc());
+ MissingTemplateKeyword = true;
+ } else {
+ llvm_unreachable("unexpected kind of potential template name");
+ }
+
+ // If this is a dependent-scope lookup, diagnose that the 'template' keyword
+ // was missing.
+ if (MissingTemplateKeyword) {
+ Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
+ << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
+ return;
+ }
+
+ // Try to correct the name by looking for templates and C++ named casts.
+ struct TemplateCandidateFilter : CorrectionCandidateCallback {
+ Sema &S;
+ TemplateCandidateFilter(Sema &S) : S(S) {
+ WantTypeSpecifiers = false;
+ WantExpressionKeywords = false;
+ WantRemainingKeywords = false;
+ WantCXXNamedCasts = true;
+ };
+ bool ValidateCandidate(const TypoCorrection &Candidate) override {
+ if (auto *ND = Candidate.getCorrectionDecl())
+ return S.getAsTemplateNameDecl(ND);
+ return Candidate.isKeyword();
+ }
+
+ std::unique_ptr<CorrectionCandidateCallback> clone() override {
+ return std::make_unique<TemplateCandidateFilter>(*this);
+ }
+ };
+
+ DeclarationName Name = NameInfo.getName();
+ TemplateCandidateFilter CCC(*this);
+ if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC,
+ CTK_ErrorRecovery, LookupCtx)) {
+ auto *ND = Corrected.getFoundDecl();
+ if (ND)
+ ND = getAsTemplateNameDecl(ND);
+ if (ND || Corrected.isKeyword()) {
+ if (LookupCtx) {
+ std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
+ bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
+ Name.getAsString() == CorrectedStr;
+ diagnoseTypo(Corrected,
+ PDiag(diag::err_non_template_in_member_template_id_suggest)
+ << Name << LookupCtx << DroppedSpecifier
+ << SS.getRange(), false);
+ } else {
+ diagnoseTypo(Corrected,
+ PDiag(diag::err_non_template_in_template_id_suggest)
+ << Name, false);
+ }
+ if (Found)
+ Diag(Found->getLocation(),
+ diag::note_non_template_in_template_id_found);
+ return;
+ }
+ }
+
+ Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
+ << Name << SourceRange(Less, Greater);
+ if (Found)
+ Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
+}
+
+/// ActOnDependentIdExpression - Handle a dependent id-expression that
+/// was just parsed. This is only possible with an explicit scope
+/// specifier naming a dependent type.
+ExprResult
+Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &NameInfo,
+ bool isAddressOfOperand,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ DeclContext *DC = getFunctionLevelDeclContext();
+
+ // C++11 [expr.prim.general]p12:
+ // An id-expression that denotes a non-static data member or non-static
+ // member function of a class can only be used:
+ // (...)
+ // - if that id-expression denotes a non-static data member and it
+ // appears in an unevaluated operand.
+ //
+ // If this might be the case, form a DependentScopeDeclRefExpr instead of a
+ // CXXDependentScopeMemberExpr. The former can instantiate to either
+ // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
+ // always a MemberExpr.
+ bool MightBeCxx11UnevalField =
+ getLangOpts().CPlusPlus11 && isUnevaluatedContext();
+
+ // Check if the nested name specifier is an enum type.
+ bool IsEnum = false;
+ if (NestedNameSpecifier *NNS = SS.getScopeRep())
+ IsEnum = isa_and_nonnull<EnumType>(NNS->getAsType());
+
+ if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
+ isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
+ QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType();
+
+ // Since the 'this' expression is synthesized, we don't need to
+ // perform the double-lookup check.
+ NamedDecl *FirstQualifierInScope = nullptr;
+
+ return CXXDependentScopeMemberExpr::Create(
+ Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
+ /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
+ FirstQualifierInScope, NameInfo, TemplateArgs);
+ }
+
+ return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
+}
+
+ExprResult
+Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
+ NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
+ if (!QualifierLoc)
+ return ExprError();
+
+ return DependentScopeDeclRefExpr::Create(
+ Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
+}
+
+
+/// Determine whether we would be unable to instantiate this template (because
+/// it either has no definition, or is in the process of being instantiated).
+bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
+ NamedDecl *Instantiation,
+ bool InstantiatedFromMember,
+ const NamedDecl *Pattern,
+ const NamedDecl *PatternDef,
+ TemplateSpecializationKind TSK,
+ bool Complain /*= true*/) {
+ assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
+ isa<VarDecl>(Instantiation));
+
+ bool IsEntityBeingDefined = false;
+ if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef))
+ IsEntityBeingDefined = TD->isBeingDefined();
+
+ if (PatternDef && !IsEntityBeingDefined) {
+ NamedDecl *SuggestedDef = nullptr;
+ if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
+ /*OnlyNeedComplete*/false)) {
+ // If we're allowed to diagnose this and recover, do so.
+ bool Recover = Complain && !isSFINAEContext();
+ if (Complain)
+ diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
+ Sema::MissingImportKind::Definition, Recover);
+ return !Recover;
+ }
+ return false;
+ }
+
+ if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
+ return true;
+
+ llvm::Optional<unsigned> Note;
+ QualType InstantiationTy;
+ if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
+ InstantiationTy = Context.getTypeDeclType(TD);
+ if (PatternDef) {
+ Diag(PointOfInstantiation,
+ diag::err_template_instantiate_within_definition)
+ << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
+ << InstantiationTy;
+ // Not much point in noting the template declaration here, since
+ // we're lexically inside it.
+ Instantiation->setInvalidDecl();
+ } else if (InstantiatedFromMember) {
+ if (isa<FunctionDecl>(Instantiation)) {
+ Diag(PointOfInstantiation,
+ diag::err_explicit_instantiation_undefined_member)
+ << /*member function*/ 1 << Instantiation->getDeclName()
+ << Instantiation->getDeclContext();
+ Note = diag::note_explicit_instantiation_here;
+ } else {
+ assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
+ Diag(PointOfInstantiation,
+ diag::err_implicit_instantiate_member_undefined)
+ << InstantiationTy;
+ Note = diag::note_member_declared_at;
+ }
+ } else {
+ if (isa<FunctionDecl>(Instantiation)) {
+ Diag(PointOfInstantiation,
+ diag::err_explicit_instantiation_undefined_func_template)
+ << Pattern;
+ Note = diag::note_explicit_instantiation_here;
+ } else if (isa<TagDecl>(Instantiation)) {
+ Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
+ << (TSK != TSK_ImplicitInstantiation)
+ << InstantiationTy;
+ Note = diag::note_template_decl_here;
+ } else {
+ assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
+ if (isa<VarTemplateSpecializationDecl>(Instantiation)) {
+ Diag(PointOfInstantiation,
+ diag::err_explicit_instantiation_undefined_var_template)
+ << Instantiation;
+ Instantiation->setInvalidDecl();
+ } else
+ Diag(PointOfInstantiation,
+ diag::err_explicit_instantiation_undefined_member)
+ << /*static data member*/ 2 << Instantiation->getDeclName()
+ << Instantiation->getDeclContext();
+ Note = diag::note_explicit_instantiation_here;
+ }
+ }
+ if (Note) // Diagnostics were emitted.
+ Diag(Pattern->getLocation(), Note.getValue());
+
+ // In general, Instantiation isn't marked invalid to get more than one
+ // error for multiple undefined instantiations. But the code that does
+ // explicit declaration -> explicit definition conversion can't handle
+ // invalid declarations, so mark as invalid in that case.
+ if (TSK == TSK_ExplicitInstantiationDeclaration)
+ Instantiation->setInvalidDecl();
+ return true;
+}
+
+/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
+/// that the template parameter 'PrevDecl' is being shadowed by a new
+/// declaration at location Loc. Returns true to indicate that this is
+/// an error, and false otherwise.
+void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
+ assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
+
+ // C++ [temp.local]p4:
+ // A template-parameter shall not be redeclared within its
+ // scope (including nested scopes).
+ //
+ // Make this a warning when MSVC compatibility is requested.
+ unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
+ : diag::err_template_param_shadow;
+ Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName();
+ Diag(PrevDecl->getLocation(), diag::note_template_param_here);
+}
+
+/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
+/// the parameter D to reference the templated declaration and return a pointer
+/// to the template declaration. Otherwise, do nothing to D and return null.
+TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
+ if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
+ D = Temp->getTemplatedDecl();
+ return Temp;
+ }
+ return nullptr;
+}
+
+ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
+ SourceLocation EllipsisLoc) const {
+ assert(Kind == Template &&
+ "Only template template arguments can be pack expansions here");
+ assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
+ "Template template argument pack expansion without packs");
+ ParsedTemplateArgument Result(*this);
+ Result.EllipsisLoc = EllipsisLoc;
+ return Result;
+}
+
+static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
+ const ParsedTemplateArgument &Arg) {
+
+ switch (Arg.getKind()) {
+ case ParsedTemplateArgument::Type: {
+ TypeSourceInfo *DI;
+ QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
+ if (!DI)
+ DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
+ return TemplateArgumentLoc(TemplateArgument(T), DI);
+ }
+
+ case ParsedTemplateArgument::NonType: {
+ Expr *E = static_cast<Expr *>(Arg.getAsExpr());
+ return TemplateArgumentLoc(TemplateArgument(E), E);
+ }
+
+ case ParsedTemplateArgument::Template: {
+ TemplateName Template = Arg.getAsTemplate().get();
+ TemplateArgument TArg;
+ if (Arg.getEllipsisLoc().isValid())
+ TArg = TemplateArgument(Template, Optional<unsigned int>());
+ else
+ TArg = Template;
+ return TemplateArgumentLoc(
+ SemaRef.Context, TArg,
+ Arg.getScopeSpec().getWithLocInContext(SemaRef.Context),
+ Arg.getLocation(), Arg.getEllipsisLoc());
+ }
+ }
+
+ llvm_unreachable("Unhandled parsed template argument");
+}
+
+/// Translates template arguments as provided by the parser
+/// into template arguments used by semantic analysis.
+void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
+ TemplateArgumentListInfo &TemplateArgs) {
+ for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
+ TemplateArgs.addArgument(translateTemplateArgument(*this,
+ TemplateArgsIn[I]));
+}
+
+static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
+ SourceLocation Loc,
+ IdentifierInfo *Name) {
+ NamedDecl *PrevDecl = SemaRef.LookupSingleName(
+ S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
+ if (PrevDecl && PrevDecl->isTemplateParameter())
+ SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
+}
+
+/// Convert a parsed type into a parsed template argument. This is mostly
+/// trivial, except that we may have parsed a C++17 deduced class template
+/// specialization type, in which case we should form a template template
+/// argument instead of a type template argument.
+ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
+ TypeSourceInfo *TInfo;
+ QualType T = GetTypeFromParser(ParsedType.get(), &TInfo);
+ if (T.isNull())
+ return ParsedTemplateArgument();
+ assert(TInfo && "template argument with no location");
+
+ // If we might have formed a deduced template specialization type, convert
+ // it to a template template argument.
+ if (getLangOpts().CPlusPlus17) {
+ TypeLoc TL = TInfo->getTypeLoc();
+ SourceLocation EllipsisLoc;
+ if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
+ EllipsisLoc = PET.getEllipsisLoc();
+ TL = PET.getPatternLoc();
+ }
+
+ CXXScopeSpec SS;
+ if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
+ SS.Adopt(ET.getQualifierLoc());
+ TL = ET.getNamedTypeLoc();
+ }
+
+ if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
+ TemplateName Name = DTST.getTypePtr()->getTemplateName();
+ if (SS.isSet())
+ Name = Context.getQualifiedTemplateName(SS.getScopeRep(),
+ /*HasTemplateKeyword*/ false,
+ Name.getAsTemplateDecl());
+ ParsedTemplateArgument Result(SS, TemplateTy::make(Name),
+ DTST.getTemplateNameLoc());
+ if (EllipsisLoc.isValid())
+ Result = Result.getTemplatePackExpansion(EllipsisLoc);
+ return Result;
+ }
+ }
+
+ // This is a normal type template argument. Note, if the type template
+ // argument is an injected-class-name for a template, it has a dual nature
+ // and can be used as either a type or a template. We handle that in
+ // convertTypeTemplateArgumentToTemplate.
+ return ParsedTemplateArgument(ParsedTemplateArgument::Type,
+ ParsedType.get().getAsOpaquePtr(),
+ TInfo->getTypeLoc().getBeginLoc());
+}
+
+/// ActOnTypeParameter - Called when a C++ template type parameter
+/// (e.g., "typename T") has been parsed. Typename specifies whether
+/// the keyword "typename" was used to declare the type parameter
+/// (otherwise, "class" was used), and KeyLoc is the location of the
+/// "class" or "typename" keyword. ParamName is the name of the
+/// parameter (NULL indicates an unnamed template parameter) and
+/// ParamNameLoc is the location of the parameter name (if any).
+/// If the type parameter has a default argument, it will be added
+/// later via ActOnTypeParameterDefault.
+NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
+ SourceLocation EllipsisLoc,
+ SourceLocation KeyLoc,
+ IdentifierInfo *ParamName,
+ SourceLocation ParamNameLoc,
+ unsigned Depth, unsigned Position,
+ SourceLocation EqualLoc,
+ ParsedType DefaultArg,
+ bool HasTypeConstraint) {
+ assert(S->isTemplateParamScope() &&
+ "Template type parameter not in template parameter scope!");
+
+ bool IsParameterPack = EllipsisLoc.isValid();
+ TemplateTypeParmDecl *Param
+ = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
+ KeyLoc, ParamNameLoc, Depth, Position,
+ ParamName, Typename, IsParameterPack,
+ HasTypeConstraint);
+ Param->setAccess(AS_public);
+
+ if (Param->isParameterPack())
+ if (auto *LSI = getEnclosingLambda())
+ LSI->LocalPacks.push_back(Param);
+
+ if (ParamName) {
+ maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
+
+ // Add the template parameter into the current scope.
+ S->AddDecl(Param);
+ IdResolver.AddDecl(Param);
+ }
+
+ // C++0x [temp.param]p9:
+ // A default template-argument may be specified for any kind of
+ // template-parameter that is not a template parameter pack.
+ if (DefaultArg && IsParameterPack) {
+ Diag(EqualLoc, diag::err_template_param_pack_default_arg);
+ DefaultArg = nullptr;
+ }
+
+ // Handle the default argument, if provided.
+ if (DefaultArg) {
+ TypeSourceInfo *DefaultTInfo;
+ GetTypeFromParser(DefaultArg, &DefaultTInfo);
+
+ assert(DefaultTInfo && "expected source information for type");
+
+ // Check for unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo,
+ UPPC_DefaultArgument))
+ return Param;
+
+ // Check the template argument itself.
+ if (CheckTemplateArgument(DefaultTInfo)) {
+ Param->setInvalidDecl();
+ return Param;
+ }
+
+ Param->setDefaultArgument(DefaultTInfo);
+ }
+
+ return Param;
+}
+
+/// Convert the parser's template argument list representation into our form.
+static TemplateArgumentListInfo
+makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
+ TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
+ TemplateId.RAngleLoc);
+ ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
+ TemplateId.NumArgs);
+ S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
+ return TemplateArgs;
+}
+
+bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
+ TemplateIdAnnotation *TypeConstr,
+ TemplateTypeParmDecl *ConstrainedParameter,
+ SourceLocation EllipsisLoc) {
+ return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc,
+ false);
+}
+
+bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS,
+ TemplateIdAnnotation *TypeConstr,
+ TemplateTypeParmDecl *ConstrainedParameter,
+ SourceLocation EllipsisLoc,
+ bool AllowUnexpandedPack) {
+ TemplateName TN = TypeConstr->Template.get();
+ ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl());
+
+ // C++2a [temp.param]p4:
+ // [...] The concept designated by a type-constraint shall be a type
+ // concept ([temp.concept]).
+ if (!CD->isTypeConcept()) {
+ Diag(TypeConstr->TemplateNameLoc,
+ diag::err_type_constraint_non_type_concept);
+ return true;
+ }
+
+ bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
+
+ if (!WereArgsSpecified &&
+ CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
+ Diag(TypeConstr->TemplateNameLoc,
+ diag::err_type_constraint_missing_arguments) << CD;
+ return true;
+ }
+
+ DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name),
+ TypeConstr->TemplateNameLoc);
+
+ TemplateArgumentListInfo TemplateArgs;
+ if (TypeConstr->LAngleLoc.isValid()) {
+ TemplateArgs =
+ makeTemplateArgumentListInfo(*this, *TypeConstr);
+
+ if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) {
+ for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) {
+ if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint))
+ return true;
+ }
+ }
+ }
+ return AttachTypeConstraint(
+ SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
+ ConceptName, CD,
+ TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
+ ConstrainedParameter, EllipsisLoc);
+}
+
+template<typename ArgumentLocAppender>
+static ExprResult formImmediatelyDeclaredConstraint(
+ Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
+ ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
+ SourceLocation RAngleLoc, QualType ConstrainedType,
+ SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
+ SourceLocation EllipsisLoc) {
+
+ TemplateArgumentListInfo ConstraintArgs;
+ ConstraintArgs.addArgument(
+ S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType),
+ /*NTTPType=*/QualType(), ParamNameLoc));
+
+ ConstraintArgs.setRAngleLoc(RAngleLoc);
+ ConstraintArgs.setLAngleLoc(LAngleLoc);
+ Appender(ConstraintArgs);
+
+ // C++2a [temp.param]p4:
+ // [...] This constraint-expression E is called the immediately-declared
+ // constraint of T. [...]
+ CXXScopeSpec SS;
+ SS.Adopt(NS);
+ ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
+ SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
+ /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
+ if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
+ return ImmediatelyDeclaredConstraint;
+
+ // C++2a [temp.param]p4:
+ // [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
+ //
+ // We have the following case:
+ //
+ // template<typename T> concept C1 = true;
+ // template<C1... T> struct s1;
+ //
+ // The constraint: (C1<T> && ...)
+ //
+ // Note that the type of C1<T> is known to be 'bool', so we don't need to do
+ // any unqualified lookups for 'operator&&' here.
+ return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr,
+ /*LParenLoc=*/SourceLocation(),
+ ImmediatelyDeclaredConstraint.get(), BO_LAnd,
+ EllipsisLoc, /*RHS=*/nullptr,
+ /*RParenLoc=*/SourceLocation(),
+ /*NumExpansions=*/None);
+}
+
+/// Attach a type-constraint to a template parameter.
+/// \returns true if an error occurred. This can happen if the
+/// immediately-declared constraint could not be formed (e.g. incorrect number
+/// of arguments for the named concept).
+bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
+ DeclarationNameInfo NameInfo,
+ ConceptDecl *NamedConcept,
+ const TemplateArgumentListInfo *TemplateArgs,
+ TemplateTypeParmDecl *ConstrainedParameter,
+ SourceLocation EllipsisLoc) {
+ // C++2a [temp.param]p4:
+ // [...] If Q is of the form C<A1, ..., An>, then let E' be
+ // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
+ const ASTTemplateArgumentListInfo *ArgsAsWritten =
+ TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context,
+ *TemplateArgs) : nullptr;
+
+ QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
+
+ ExprResult ImmediatelyDeclaredConstraint =
+ formImmediatelyDeclaredConstraint(
+ *this, NS, NameInfo, NamedConcept,
+ TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
+ TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
+ ParamAsArgument, ConstrainedParameter->getLocation(),
+ [&] (TemplateArgumentListInfo &ConstraintArgs) {
+ if (TemplateArgs)
+ for (const auto &ArgLoc : TemplateArgs->arguments())
+ ConstraintArgs.addArgument(ArgLoc);
+ }, EllipsisLoc);
+ if (ImmediatelyDeclaredConstraint.isInvalid())
+ return true;
+
+ ConstrainedParameter->setTypeConstraint(NS, NameInfo,
+ /*FoundDecl=*/NamedConcept,
+ NamedConcept, ArgsAsWritten,
+ ImmediatelyDeclaredConstraint.get());
+ return false;
+}
+
+bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP,
+ SourceLocation EllipsisLoc) {
+ if (NTTP->getType() != TL.getType() ||
+ TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
+ Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
+ diag::err_unsupported_placeholder_constraint)
+ << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange();
+ return true;
+ }
+ // FIXME: Concepts: This should be the type of the placeholder, but this is
+ // unclear in the wording right now.
+ DeclRefExpr *Ref =
+ BuildDeclRefExpr(NTTP, NTTP->getType(), VK_PRValue, NTTP->getLocation());
+ if (!Ref)
+ return true;
+ ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint(
+ *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
+ TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
+ BuildDecltypeType(Ref), NTTP->getLocation(),
+ [&](TemplateArgumentListInfo &ConstraintArgs) {
+ for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
+ ConstraintArgs.addArgument(TL.getArgLoc(I));
+ },
+ EllipsisLoc);
+ if (ImmediatelyDeclaredConstraint.isInvalid() ||
+ !ImmediatelyDeclaredConstraint.isUsable())
+ return true;
+
+ NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get());
+ return false;
+}
+
+/// Check that the type of a non-type template parameter is
+/// well-formed.
+///
+/// \returns the (possibly-promoted) parameter type if valid;
+/// otherwise, produces a diagnostic and returns a NULL type.
+QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
+ SourceLocation Loc) {
+ if (TSI->getType()->isUndeducedType()) {
+ // C++17 [temp.dep.expr]p3:
+ // An id-expression is type-dependent if it contains
+ // - an identifier associated by name lookup with a non-type
+ // template-parameter declared with a type that contains a
+ // placeholder type (7.1.7.4),
+ TSI = SubstAutoTypeSourceInfoDependent(TSI);
+ }
+
+ return CheckNonTypeTemplateParameterType(TSI->getType(), Loc);
+}
+
+/// Require the given type to be a structural type, and diagnose if it is not.
+///
+/// \return \c true if an error was produced.
+bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
+ if (T->isDependentType())
+ return false;
+
+ if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
+ return true;
+
+ if (T->isStructuralType())
+ return false;
+
+ // Structural types are required to be object types or lvalue references.
+ if (T->isRValueReferenceType()) {
+ Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
+ return true;
+ }
+
+ // Don't mention structural types in our diagnostic prior to C++20. Also,
+ // there's not much more we can say about non-scalar non-class types --
+ // because we can't see functions or arrays here, those can only be language
+ // extensions.
+ if (!getLangOpts().CPlusPlus20 ||
+ (!T->isScalarType() && !T->isRecordType())) {
+ Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
+ return true;
+ }
+
+ // Structural types are required to be literal types.
+ if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
+ return true;
+
+ Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
+
+ // Drill down into the reason why the class is non-structural.
+ while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
+ // All members are required to be public and non-mutable, and can't be of
+ // rvalue reference type. Check these conditions first to prefer a "local"
+ // reason over a more distant one.
+ for (const FieldDecl *FD : RD->fields()) {
+ if (FD->getAccess() != AS_public) {
+ Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
+ return true;
+ }
+ if (FD->isMutable()) {
+ Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
+ return true;
+ }
+ if (FD->getType()->isRValueReferenceType()) {
+ Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
+ << T;
+ return true;
+ }
+ }
+
+ // All bases are required to be public.
+ for (const auto &BaseSpec : RD->bases()) {
+ if (BaseSpec.getAccessSpecifier() != AS_public) {
+ Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
+ << T << 1;
+ return true;
+ }
+ }
+
+ // All subobjects are required to be of structural types.
+ SourceLocation SubLoc;
+ QualType SubType;
+ int Kind = -1;
+
+ for (const FieldDecl *FD : RD->fields()) {
+ QualType T = Context.getBaseElementType(FD->getType());
+ if (!T->isStructuralType()) {
+ SubLoc = FD->getLocation();
+ SubType = T;
+ Kind = 0;
+ break;
+ }
+ }
+
+ if (Kind == -1) {
+ for (const auto &BaseSpec : RD->bases()) {
+ QualType T = BaseSpec.getType();
+ if (!T->isStructuralType()) {
+ SubLoc = BaseSpec.getBaseTypeLoc();
+ SubType = T;
+ Kind = 1;
+ break;
+ }
+ }
+ }
+
+ assert(Kind != -1 && "couldn't find reason why type is not structural");
+ Diag(SubLoc, diag::note_not_structural_subobject)
+ << T << Kind << SubType;
+ T = SubType;
+ RD = T->getAsCXXRecordDecl();
+ }
+
+ return true;
+}
+
+QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
+ SourceLocation Loc) {
+ // We don't allow variably-modified types as the type of non-type template
+ // parameters.
+ if (T->isVariablyModifiedType()) {
+ Diag(Loc, diag::err_variably_modified_nontype_template_param)
+ << T;
+ return QualType();
+ }
+
+ // C++ [temp.param]p4:
+ //
+ // A non-type template-parameter shall have one of the following
+ // (optionally cv-qualified) types:
+ //
+ // -- integral or enumeration type,
+ if (T->isIntegralOrEnumerationType() ||
+ // -- pointer to object or pointer to function,
+ T->isPointerType() ||
+ // -- lvalue reference to object or lvalue reference to function,
+ T->isLValueReferenceType() ||
+ // -- pointer to member,
+ T->isMemberPointerType() ||
+ // -- std::nullptr_t, or
+ T->isNullPtrType() ||
+ // -- a type that contains a placeholder type.
+ T->isUndeducedType()) {
+ // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
+ // are ignored when determining its type.
+ return T.getUnqualifiedType();
+ }
+
+ // C++ [temp.param]p8:
+ //
+ // A non-type template-parameter of type "array of T" or
+ // "function returning T" is adjusted to be of type "pointer to
+ // T" or "pointer to function returning T", respectively.
+ if (T->isArrayType() || T->isFunctionType())
+ return Context.getDecayedType(T);
+
+ // If T is a dependent type, we can't do the check now, so we
+ // assume that it is well-formed. Note that stripping off the
+ // qualifiers here is not really correct if T turns out to be
+ // an array type, but we'll recompute the type everywhere it's
+ // used during instantiation, so that should be OK. (Using the
+ // qualified type is equally wrong.)
+ if (T->isDependentType())
+ return T.getUnqualifiedType();
+
+ // C++20 [temp.param]p6:
+ // -- a structural type
+ if (RequireStructuralType(T, Loc))
+ return QualType();
+
+ if (!getLangOpts().CPlusPlus20) {
+ // FIXME: Consider allowing structural types as an extension in C++17. (In
+ // earlier language modes, the template argument evaluation rules are too
+ // inflexible.)
+ Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
+ return QualType();
+ }
+
+ Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
+ return T.getUnqualifiedType();
+}
+
+NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
+ unsigned Depth,
+ unsigned Position,
+ SourceLocation EqualLoc,
+ Expr *Default) {
+ TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
+
+ // Check that we have valid decl-specifiers specified.
+ auto CheckValidDeclSpecifiers = [this, &D] {
+ // C++ [temp.param]
+ // p1
+ // template-parameter:
+ // ...
+ // parameter-declaration
+ // p2
+ // ... A storage class shall not be specified in a template-parameter
+ // declaration.
+ // [dcl.typedef]p1:
+ // The typedef specifier [...] shall not be used in the decl-specifier-seq
+ // of a parameter-declaration
+ const DeclSpec &DS = D.getDeclSpec();
+ auto EmitDiag = [this](SourceLocation Loc) {
+ Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
+ << FixItHint::CreateRemoval(Loc);
+ };
+ if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
+ EmitDiag(DS.getStorageClassSpecLoc());
+
+ if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
+ EmitDiag(DS.getThreadStorageClassSpecLoc());
+
+ // [dcl.inline]p1:
+ // The inline specifier can be applied only to the declaration or
+ // definition of a variable or function.
+
+ if (DS.isInlineSpecified())
+ EmitDiag(DS.getInlineSpecLoc());
+
+ // [dcl.constexpr]p1:
+ // The constexpr specifier shall be applied only to the definition of a
+ // variable or variable template or the declaration of a function or
+ // function template.
+
+ if (DS.hasConstexprSpecifier())
+ EmitDiag(DS.getConstexprSpecLoc());
+
+ // [dcl.fct.spec]p1:
+ // Function-specifiers can be used only in function declarations.
+
+ if (DS.isVirtualSpecified())
+ EmitDiag(DS.getVirtualSpecLoc());
+
+ if (DS.hasExplicitSpecifier())
+ EmitDiag(DS.getExplicitSpecLoc());
+
+ if (DS.isNoreturnSpecified())
+ EmitDiag(DS.getNoreturnSpecLoc());
+ };
+
+ CheckValidDeclSpecifiers();
+
+ if (TInfo->getType()->isUndeducedType()) {
+ Diag(D.getIdentifierLoc(),
+ diag::warn_cxx14_compat_template_nontype_parm_auto_type)
+ << QualType(TInfo->getType()->getContainedAutoType(), 0);
+ }
+
+ assert(S->isTemplateParamScope() &&
+ "Non-type template parameter not in template parameter scope!");
+ bool Invalid = false;
+
+ QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc());
+ if (T.isNull()) {
+ T = Context.IntTy; // Recover with an 'int' type.
+ Invalid = true;
+ }
+
+ CheckFunctionOrTemplateParamDeclarator(S, D);
+
+ IdentifierInfo *ParamName = D.getIdentifier();
+ bool IsParameterPack = D.hasEllipsis();
+ NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
+ Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
+ D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
+ TInfo);
+ Param->setAccess(AS_public);
+
+ if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
+ if (TL.isConstrained())
+ if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc()))
+ Invalid = true;
+
+ if (Invalid)
+ Param->setInvalidDecl();
+
+ if (Param->isParameterPack())
+ if (auto *LSI = getEnclosingLambda())
+ LSI->LocalPacks.push_back(Param);
+
+ if (ParamName) {
+ maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
+ ParamName);
+
+ // Add the template parameter into the current scope.
+ S->AddDecl(Param);
+ IdResolver.AddDecl(Param);
+ }
+
+ // C++0x [temp.param]p9:
+ // A default template-argument may be specified for any kind of
+ // template-parameter that is not a template parameter pack.
+ if (Default && IsParameterPack) {
+ Diag(EqualLoc, diag::err_template_param_pack_default_arg);
+ Default = nullptr;
+ }
+
+ // Check the well-formedness of the default template argument, if provided.
+ if (Default) {
+ // Check for unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
+ return Param;
+
+ TemplateArgument Converted;
+ ExprResult DefaultRes =
+ CheckTemplateArgument(Param, Param->getType(), Default, Converted);
+ if (DefaultRes.isInvalid()) {
+ Param->setInvalidDecl();
+ return Param;
+ }
+ Default = DefaultRes.get();
+
+ Param->setDefaultArgument(Default);
+ }
+
+ return Param;
+}
+
+/// ActOnTemplateTemplateParameter - Called when a C++ template template
+/// parameter (e.g. T in template <template \<typename> class T> class array)
+/// has been parsed. S is the current scope.
+NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
+ SourceLocation TmpLoc,
+ TemplateParameterList *Params,
+ SourceLocation EllipsisLoc,
+ IdentifierInfo *Name,
+ SourceLocation NameLoc,
+ unsigned Depth,
+ unsigned Position,
+ SourceLocation EqualLoc,
+ ParsedTemplateArgument Default) {
+ assert(S->isTemplateParamScope() &&
+ "Template template parameter not in template parameter scope!");
+
+ // Construct the parameter object.
+ bool IsParameterPack = EllipsisLoc.isValid();
+ TemplateTemplateParmDecl *Param =
+ TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
+ NameLoc.isInvalid()? TmpLoc : NameLoc,
+ Depth, Position, IsParameterPack,
+ Name, Params);
+ Param->setAccess(AS_public);
+
+ if (Param->isParameterPack())
+ if (auto *LSI = getEnclosingLambda())
+ LSI->LocalPacks.push_back(Param);
+
+ // If the template template parameter has a name, then link the identifier
+ // into the scope and lookup mechanisms.
+ if (Name) {
+ maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
+
+ S->AddDecl(Param);
+ IdResolver.AddDecl(Param);
+ }
+
+ if (Params->size() == 0) {
+ Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
+ << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
+ Param->setInvalidDecl();
+ }
+
+ // C++0x [temp.param]p9:
+ // A default template-argument may be specified for any kind of
+ // template-parameter that is not a template parameter pack.
+ if (IsParameterPack && !Default.isInvalid()) {
+ Diag(EqualLoc, diag::err_template_param_pack_default_arg);
+ Default = ParsedTemplateArgument();
+ }
+
+ if (!Default.isInvalid()) {
+ // Check only that we have a template template argument. We don't want to
+ // try to check well-formedness now, because our template template parameter
+ // might have dependent types in its template parameters, which we wouldn't
+ // be able to match now.
+ //
+ // If none of the template template parameter's template arguments mention
+ // other template parameters, we could actually perform more checking here.
+ // However, it isn't worth doing.
+ TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
+ if (DefaultArg.getArgument().getAsTemplate().isNull()) {
+ Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
+ << DefaultArg.getSourceRange();
+ return Param;
+ }
+
+ // Check for unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
+ DefaultArg.getArgument().getAsTemplate(),
+ UPPC_DefaultArgument))
+ return Param;
+
+ Param->setDefaultArgument(Context, DefaultArg);
+ }
+
+ return Param;
+}
+
+/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
+/// constrained by RequiresClause, that contains the template parameters in
+/// Params.
+TemplateParameterList *
+Sema::ActOnTemplateParameterList(unsigned Depth,
+ SourceLocation ExportLoc,
+ SourceLocation TemplateLoc,
+ SourceLocation LAngleLoc,
+ ArrayRef<NamedDecl *> Params,
+ SourceLocation RAngleLoc,
+ Expr *RequiresClause) {
+ if (ExportLoc.isValid())
+ Diag(ExportLoc, diag::warn_template_export_unsupported);
+
+ for (NamedDecl *P : Params)
+ warnOnReservedIdentifier(P);
+
+ return TemplateParameterList::Create(
+ Context, TemplateLoc, LAngleLoc,
+ llvm::makeArrayRef(Params.data(), Params.size()),
+ RAngleLoc, RequiresClause);
+}
+
+static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
+ const CXXScopeSpec &SS) {
+ if (SS.isSet())
+ T->setQualifierInfo(SS.getWithLocInContext(S.Context));
+}
+
+DeclResult Sema::CheckClassTemplate(
+ Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
+ CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
+ const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
+ AccessSpecifier AS, SourceLocation ModulePrivateLoc,
+ SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
+ TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
+ assert(TemplateParams && TemplateParams->size() > 0 &&
+ "No template parameters");
+ assert(TUK != TUK_Reference && "Can only declare or define class templates");
+ bool Invalid = false;
+
+ // Check that we can declare a template here.
+ if (CheckTemplateDeclScope(S, TemplateParams))
+ return true;
+
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+ assert(Kind != TTK_Enum && "can't build template of enumerated type");
+
+ // There is no such thing as an unnamed class template.
+ if (!Name) {
+ Diag(KWLoc, diag::err_template_unnamed_class);
+ return true;
+ }
+
+ // Find any previous declaration with this name. For a friend with no
+ // scope explicitly specified, we only look for tag declarations (per
+ // C++11 [basic.lookup.elab]p2).
+ DeclContext *SemanticContext;
+ LookupResult Previous(*this, Name, NameLoc,
+ (SS.isEmpty() && TUK == TUK_Friend)
+ ? LookupTagName : LookupOrdinaryName,
+ forRedeclarationInCurContext());
+ if (SS.isNotEmpty() && !SS.isInvalid()) {
+ SemanticContext = computeDeclContext(SS, true);
+ if (!SemanticContext) {
+ // FIXME: Horrible, horrible hack! We can't currently represent this
+ // in the AST, and historically we have just ignored such friend
+ // class templates, so don't complain here.
+ Diag(NameLoc, TUK == TUK_Friend
+ ? diag::warn_template_qualified_friend_ignored
+ : diag::err_template_qualified_declarator_no_match)
+ << SS.getScopeRep() << SS.getRange();
+ return TUK != TUK_Friend;
+ }
+
+ if (RequireCompleteDeclContext(SS, SemanticContext))
+ return true;
+
+ // If we're adding a template to a dependent context, we may need to
+ // rebuilding some of the types used within the template parameter list,
+ // now that we know what the current instantiation is.
+ if (SemanticContext->isDependentContext()) {
+ ContextRAII SavedContext(*this, SemanticContext);
+ if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
+ Invalid = true;
+ } else if (TUK != TUK_Friend && TUK != TUK_Reference)
+ diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false);
+
+ LookupQualifiedName(Previous, SemanticContext);
+ } else {
+ SemanticContext = CurContext;
+
+ // C++14 [class.mem]p14:
+ // If T is the name of a class, then each of the following shall have a
+ // name different from T:
+ // -- every member template of class T
+ if (TUK != TUK_Friend &&
+ DiagnoseClassNameShadow(SemanticContext,
+ DeclarationNameInfo(Name, NameLoc)))
+ return true;
+
+ LookupName(Previous, S);
+ }
+
+ if (Previous.isAmbiguous())
+ return true;
+
+ NamedDecl *PrevDecl = nullptr;
+ if (Previous.begin() != Previous.end())
+ PrevDecl = (*Previous.begin())->getUnderlyingDecl();
+
+ if (PrevDecl && PrevDecl->isTemplateParameter()) {
+ // Maybe we will complain about the shadowed template parameter.
+ DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
+ // Just pretend that we didn't see the previous declaration.
+ PrevDecl = nullptr;
+ }
+
+ // If there is a previous declaration with the same name, check
+ // whether this is a valid redeclaration.
+ ClassTemplateDecl *PrevClassTemplate =
+ dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
+
+ // We may have found the injected-class-name of a class template,
+ // class template partial specialization, or class template specialization.
+ // In these cases, grab the template that is being defined or specialized.
+ if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
+ cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
+ PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
+ PrevClassTemplate
+ = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
+ if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
+ PrevClassTemplate
+ = cast<ClassTemplateSpecializationDecl>(PrevDecl)
+ ->getSpecializedTemplate();
+ }
+ }
+
+ if (TUK == TUK_Friend) {
+ // C++ [namespace.memdef]p3:
+ // [...] When looking for a prior declaration of a class or a function
+ // declared as a friend, and when the name of the friend class or
+ // function is neither a qualified name nor a template-id, scopes outside
+ // the innermost enclosing namespace scope are not considered.
+ if (!SS.isSet()) {
+ DeclContext *OutermostContext = CurContext;
+ while (!OutermostContext->isFileContext())
+ OutermostContext = OutermostContext->getLookupParent();
+
+ if (PrevDecl &&
+ (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
+ OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
+ SemanticContext = PrevDecl->getDeclContext();
+ } else {
+ // Declarations in outer scopes don't matter. However, the outermost
+ // context we computed is the semantic context for our new
+ // declaration.
+ PrevDecl = PrevClassTemplate = nullptr;
+ SemanticContext = OutermostContext;
+
+ // Check that the chosen semantic context doesn't already contain a
+ // declaration of this name as a non-tag type.
+ Previous.clear(LookupOrdinaryName);
+ DeclContext *LookupContext = SemanticContext;
+ while (LookupContext->isTransparentContext())
+ LookupContext = LookupContext->getLookupParent();
+ LookupQualifiedName(Previous, LookupContext);
+
+ if (Previous.isAmbiguous())
+ return true;
+
+ if (Previous.begin() != Previous.end())
+ PrevDecl = (*Previous.begin())->getUnderlyingDecl();
+ }
+ }
+ } else if (PrevDecl &&
+ !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
+ S, SS.isValid()))
+ PrevDecl = PrevClassTemplate = nullptr;
+
+ if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
+ PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
+ if (SS.isEmpty() &&
+ !(PrevClassTemplate &&
+ PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
+ SemanticContext->getRedeclContext()))) {
+ Diag(KWLoc, diag::err_using_decl_conflict_reverse);
+ Diag(Shadow->getTargetDecl()->getLocation(),
+ diag::note_using_decl_target);
+ Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
+ // Recover by ignoring the old declaration.
+ PrevDecl = PrevClassTemplate = nullptr;
+ }
+ }
+
+ if (PrevClassTemplate) {
+ // Ensure that the template parameter lists are compatible. Skip this check
+ // for a friend in a dependent context: the template parameter list itself
+ // could be dependent.
+ if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
+ !TemplateParameterListsAreEqual(TemplateParams,
+ PrevClassTemplate->getTemplateParameters(),
+ /*Complain=*/true,
+ TPL_TemplateMatch))
+ return true;
+
+ // C++ [temp.class]p4:
+ // In a redeclaration, partial specialization, explicit
+ // specialization or explicit instantiation of a class template,
+ // the class-key shall agree in kind with the original class
+ // template declaration (7.1.5.3).
+ RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
+ if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
+ TUK == TUK_Definition, KWLoc, Name)) {
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << Name
+ << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
+ Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
+ Kind = PrevRecordDecl->getTagKind();
+ }
+
+ // Check for redefinition of this class template.
+ if (TUK == TUK_Definition) {
+ if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
+ // If we have a prior definition that is not visible, treat this as
+ // simply making that previous definition visible.
+ NamedDecl *Hidden = nullptr;
+ if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
+ SkipBody->ShouldSkip = true;
+ SkipBody->Previous = Def;
+ auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
+ assert(Tmpl && "original definition of a class template is not a "
+ "class template?");
+ makeMergedDefinitionVisible(Hidden);
+ makeMergedDefinitionVisible(Tmpl);
+ } else {
+ Diag(NameLoc, diag::err_redefinition) << Name;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ // FIXME: Would it make sense to try to "forget" the previous
+ // definition, as part of error recovery?
+ return true;
+ }
+ }
+ }
+ } else if (PrevDecl) {
+ // C++ [temp]p5:
+ // A class template shall not have the same name as any other
+ // template, class, function, object, enumeration, enumerator,
+ // namespace, or type in the same scope (3.3), except as specified
+ // in (14.5.4).
+ Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
+ Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+ return true;
+ }
+
+ // Check the template parameter list of this declaration, possibly
+ // merging in the template parameter list from the previous class
+ // template declaration. Skip this check for a friend in a dependent
+ // context, because the template parameter list might be dependent.
+ if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
+ CheckTemplateParameterList(
+ TemplateParams,
+ PrevClassTemplate
+ ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters()
+ : nullptr,
+ (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
+ SemanticContext->isDependentContext())
+ ? TPC_ClassTemplateMember
+ : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate,
+ SkipBody))
+ Invalid = true;
+
+ if (SS.isSet()) {
+ // If the name of the template was qualified, we must be defining the
+ // template out-of-line.
+ if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
+ Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
+ : diag::err_member_decl_does_not_match)
+ << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
+ Invalid = true;
+ }
+ }
+
+ // If this is a templated friend in a dependent context we should not put it
+ // on the redecl chain. In some cases, the templated friend can be the most
+ // recent declaration tricking the template instantiator to make substitutions
+ // there.
+ // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
+ bool ShouldAddRedecl
+ = !(TUK == TUK_Friend && CurContext->isDependentContext());
+
+ CXXRecordDecl *NewClass =
+ CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
+ PrevClassTemplate && ShouldAddRedecl ?
+ PrevClassTemplate->getTemplatedDecl() : nullptr,
+ /*DelayTypeCreation=*/true);
+ SetNestedNameSpecifier(*this, NewClass, SS);
+ if (NumOuterTemplateParamLists > 0)
+ NewClass->setTemplateParameterListsInfo(
+ Context, llvm::makeArrayRef(OuterTemplateParamLists,
+ NumOuterTemplateParamLists));
+
+ // Add alignment attributes if necessary; these attributes are checked when
+ // the ASTContext lays out the structure.
+ if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
+ AddAlignmentAttributesForRecord(NewClass);
+ AddMsStructLayoutForRecord(NewClass);
+ }
+
+ ClassTemplateDecl *NewTemplate
+ = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
+ DeclarationName(Name), TemplateParams,
+ NewClass);
+
+ if (ShouldAddRedecl)
+ NewTemplate->setPreviousDecl(PrevClassTemplate);
+
+ NewClass->setDescribedClassTemplate(NewTemplate);
+
+ if (ModulePrivateLoc.isValid())
+ NewTemplate->setModulePrivate();
+
+ // Build the type for the class template declaration now.
+ QualType T = NewTemplate->getInjectedClassNameSpecialization();
+ T = Context.getInjectedClassNameType(NewClass, T);
+ assert(T->isDependentType() && "Class template type is not dependent?");
+ (void)T;
+
+ // If we are providing an explicit specialization of a member that is a
+ // class template, make a note of that.
+ if (PrevClassTemplate &&
+ PrevClassTemplate->getInstantiatedFromMemberTemplate())
+ PrevClassTemplate->setMemberSpecialization();
+
+ // Set the access specifier.
+ if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
+ SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
+
+ // Set the lexical context of these templates
+ NewClass->setLexicalDeclContext(CurContext);
+ NewTemplate->setLexicalDeclContext(CurContext);
+
+ if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
+ NewClass->startDefinition();
+
+ ProcessDeclAttributeList(S, NewClass, Attr);
+
+ if (PrevClassTemplate)
+ mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
+
+ AddPushedVisibilityAttribute(NewClass);
+ inferGslOwnerPointerAttribute(NewClass);
+
+ if (TUK != TUK_Friend) {
+ // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
+ Scope *Outer = S;
+ while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
+ Outer = Outer->getParent();
+ PushOnScopeChains(NewTemplate, Outer);
+ } else {
+ if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
+ NewTemplate->setAccess(PrevClassTemplate->getAccess());
+ NewClass->setAccess(PrevClassTemplate->getAccess());
+ }
+
+ NewTemplate->setObjectOfFriendDecl();
+
+ // Friend templates are visible in fairly strange ways.
+ if (!CurContext->isDependentContext()) {
+ DeclContext *DC = SemanticContext->getRedeclContext();
+ DC->makeDeclVisibleInContext(NewTemplate);
+ if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
+ PushOnScopeChains(NewTemplate, EnclosingScope,
+ /* AddToContext = */ false);
+ }
+
+ FriendDecl *Friend = FriendDecl::Create(
+ Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
+ Friend->setAccess(AS_public);
+ CurContext->addDecl(Friend);
+ }
+
+ if (PrevClassTemplate)
+ CheckRedeclarationInModule(NewTemplate, PrevClassTemplate);
+
+ if (Invalid) {
+ NewTemplate->setInvalidDecl();
+ NewClass->setInvalidDecl();
+ }
+
+ ActOnDocumentableDecl(NewTemplate);
+
+ if (SkipBody && SkipBody->ShouldSkip)
+ return SkipBody->Previous;
+
+ return NewTemplate;
+}
+
+namespace {
+/// Tree transform to "extract" a transformed type from a class template's
+/// constructor to a deduction guide.
+class ExtractTypeForDeductionGuide
+ : public TreeTransform<ExtractTypeForDeductionGuide> {
+ llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs;
+
+public:
+ typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
+ ExtractTypeForDeductionGuide(
+ Sema &SemaRef,
+ llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs)
+ : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {}
+
+ TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
+
+ QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
+ ASTContext &Context = SemaRef.getASTContext();
+ TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl();
+ TypedefNameDecl *Decl = OrigDecl;
+ // Transform the underlying type of the typedef and clone the Decl only if
+ // the typedef has a dependent context.
+ if (OrigDecl->getDeclContext()->isDependentContext()) {
+ TypeLocBuilder InnerTLB;
+ QualType Transformed =
+ TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc());
+ TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed);
+ if (isa<TypeAliasDecl>(OrigDecl))
+ Decl = TypeAliasDecl::Create(
+ Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
+ OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
+ else {
+ assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef");
+ Decl = TypedefDecl::Create(
+ Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(),
+ OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI);
+ }
+ MaterializedTypedefs.push_back(Decl);
+ }
+
+ QualType TDTy = Context.getTypedefType(Decl);
+ TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy);
+ TypedefTL.setNameLoc(TL.getNameLoc());
+
+ return TDTy;
+ }
+};
+
+/// Transform to convert portions of a constructor declaration into the
+/// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
+struct ConvertConstructorToDeductionGuideTransform {
+ ConvertConstructorToDeductionGuideTransform(Sema &S,
+ ClassTemplateDecl *Template)
+ : SemaRef(S), Template(Template) {}
+
+ Sema &SemaRef;
+ ClassTemplateDecl *Template;
+
+ DeclContext *DC = Template->getDeclContext();
+ CXXRecordDecl *Primary = Template->getTemplatedDecl();
+ DeclarationName DeductionGuideName =
+ SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
+
+ QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
+
+ // Index adjustment to apply to convert depth-1 template parameters into
+ // depth-0 template parameters.
+ unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
+
+ /// Transform a constructor declaration into a deduction guide.
+ NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
+ CXXConstructorDecl *CD) {
+ SmallVector<TemplateArgument, 16> SubstArgs;
+
+ LocalInstantiationScope Scope(SemaRef);
+
+ // C++ [over.match.class.deduct]p1:
+ // -- For each constructor of the class template designated by the
+ // template-name, a function template with the following properties:
+
+ // -- The template parameters are the template parameters of the class
+ // template followed by the template parameters (including default
+ // template arguments) of the constructor, if any.
+ TemplateParameterList *TemplateParams = Template->getTemplateParameters();
+ if (FTD) {
+ TemplateParameterList *InnerParams = FTD->getTemplateParameters();
+ SmallVector<NamedDecl *, 16> AllParams;
+ AllParams.reserve(TemplateParams->size() + InnerParams->size());
+ AllParams.insert(AllParams.begin(),
+ TemplateParams->begin(), TemplateParams->end());
+ SubstArgs.reserve(InnerParams->size());
+
+ // Later template parameters could refer to earlier ones, so build up
+ // a list of substituted template arguments as we go.
+ for (NamedDecl *Param : *InnerParams) {
+ MultiLevelTemplateArgumentList Args;
+ Args.setKind(TemplateSubstitutionKind::Rewrite);
+ Args.addOuterTemplateArguments(SubstArgs);
+ Args.addOuterRetainedLevel();
+ NamedDecl *NewParam = transformTemplateParameter(Param, Args);
+ if (!NewParam)
+ return nullptr;
+ AllParams.push_back(NewParam);
+ SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
+ SemaRef.Context.getInjectedTemplateArg(NewParam)));
+ }
+ TemplateParams = TemplateParameterList::Create(
+ SemaRef.Context, InnerParams->getTemplateLoc(),
+ InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(),
+ /*FIXME: RequiresClause*/ nullptr);
+ }
+
+ // If we built a new template-parameter-list, track that we need to
+ // substitute references to the old parameters into references to the
+ // new ones.
+ MultiLevelTemplateArgumentList Args;
+ Args.setKind(TemplateSubstitutionKind::Rewrite);
+ if (FTD) {
+ Args.addOuterTemplateArguments(SubstArgs);
+ Args.addOuterRetainedLevel();
+ }
+
+ FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
+ .getAsAdjusted<FunctionProtoTypeLoc>();
+ assert(FPTL && "no prototype for constructor declaration");
+
+ // Transform the type of the function, adjusting the return type and
+ // replacing references to the old parameters with references to the
+ // new ones.
+ TypeLocBuilder TLB;
+ SmallVector<ParmVarDecl*, 8> Params;
+ SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs;
+ QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args,
+ MaterializedTypedefs);
+ if (NewType.isNull())
+ return nullptr;
+ TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType);
+
+ return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(),
+ NewTInfo, CD->getBeginLoc(), CD->getLocation(),
+ CD->getEndLoc(), MaterializedTypedefs);
+ }
+
+ /// Build a deduction guide with the specified parameter types.
+ NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
+ SourceLocation Loc = Template->getLocation();
+
+ // Build the requested type.
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.HasTrailingReturn = true;
+ QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
+ DeductionGuideName, EPI);
+ TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc);
+
+ FunctionProtoTypeLoc FPTL =
+ TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
+
+ // Build the parameters, needed during deduction / substitution.
+ SmallVector<ParmVarDecl*, 4> Params;
+ for (auto T : ParamTypes) {
+ ParmVarDecl *NewParam = ParmVarDecl::Create(
+ SemaRef.Context, DC, Loc, Loc, nullptr, T,
+ SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr);
+ NewParam->setScopeInfo(0, Params.size());
+ FPTL.setParam(Params.size(), NewParam);
+ Params.push_back(NewParam);
+ }
+
+ return buildDeductionGuide(Template->getTemplateParameters(), nullptr,
+ ExplicitSpecifier(), TSI, Loc, Loc, Loc);
+ }
+
+private:
+ /// Transform a constructor template parameter into a deduction guide template
+ /// parameter, rebuilding any internal references to earlier parameters and
+ /// renumbering as we go.
+ NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
+ MultiLevelTemplateArgumentList &Args) {
+ if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) {
+ // TemplateTypeParmDecl's index cannot be changed after creation, so
+ // substitute it directly.
+ auto *NewTTP = TemplateTypeParmDecl::Create(
+ SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(),
+ /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(),
+ TTP->getIdentifier(), TTP->wasDeclaredWithTypename(),
+ TTP->isParameterPack(), TTP->hasTypeConstraint(),
+ TTP->isExpandedParameterPack() ?
+ llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
+ if (const auto *TC = TTP->getTypeConstraint())
+ SemaRef.SubstTypeConstraint(NewTTP, TC, Args);
+ if (TTP->hasDefaultArgument()) {
+ TypeSourceInfo *InstantiatedDefaultArg =
+ SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
+ TTP->getDefaultArgumentLoc(), TTP->getDeclName());
+ if (InstantiatedDefaultArg)
+ NewTTP->setDefaultArgument(InstantiatedDefaultArg);
+ }
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam,
+ NewTTP);
+ return NewTTP;
+ }
+
+ if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam))
+ return transformTemplateParameterImpl(TTP, Args);
+
+ return transformTemplateParameterImpl(
+ cast<NonTypeTemplateParmDecl>(TemplateParam), Args);
+ }
+ template<typename TemplateParmDecl>
+ TemplateParmDecl *
+ transformTemplateParameterImpl(TemplateParmDecl *OldParam,
+ MultiLevelTemplateArgumentList &Args) {
+ // Ask the template instantiator to do the heavy lifting for us, then adjust
+ // the index of the parameter once it's done.
+ auto *NewParam =
+ cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args));
+ assert(NewParam->getDepth() == 0 && "unexpected template param depth");
+ NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
+ return NewParam;
+ }
+
+ QualType transformFunctionProtoType(
+ TypeLocBuilder &TLB, FunctionProtoTypeLoc TL,
+ SmallVectorImpl<ParmVarDecl *> &Params,
+ MultiLevelTemplateArgumentList &Args,
+ SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
+ SmallVector<QualType, 4> ParamTypes;
+ const FunctionProtoType *T = TL.getTypePtr();
+
+ // -- The types of the function parameters are those of the constructor.
+ for (auto *OldParam : TL.getParams()) {
+ ParmVarDecl *NewParam =
+ transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs);
+ if (!NewParam)
+ return QualType();
+ ParamTypes.push_back(NewParam->getType());
+ Params.push_back(NewParam);
+ }
+
+ // -- The return type is the class template specialization designated by
+ // the template-name and template arguments corresponding to the
+ // template parameters obtained from the class template.
+ //
+ // We use the injected-class-name type of the primary template instead.
+ // This has the convenient property that it is different from any type that
+ // the user can write in a deduction-guide (because they cannot enter the
+ // context of the template), so implicit deduction guides can never collide
+ // with explicit ones.
+ QualType ReturnType = DeducedType;
+ TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation());
+
+ // Resolving a wording defect, we also inherit the variadicness of the
+ // constructor.
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.Variadic = T->isVariadic();
+ EPI.HasTrailingReturn = true;
+
+ QualType Result = SemaRef.BuildFunctionType(
+ ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI);
+ if (Result.isNull())
+ return QualType();
+
+ FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result);
+ NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
+ NewTL.setLParenLoc(TL.getLParenLoc());
+ NewTL.setRParenLoc(TL.getRParenLoc());
+ NewTL.setExceptionSpecRange(SourceRange());
+ NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
+ for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
+ NewTL.setParam(I, Params[I]);
+
+ return Result;
+ }
+
+ ParmVarDecl *transformFunctionTypeParam(
+ ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args,
+ llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
+ TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
+ TypeSourceInfo *NewDI;
+ if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
+ // Expand out the one and only element in each inner pack.
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
+ NewDI =
+ SemaRef.SubstType(PackTL.getPatternLoc(), Args,
+ OldParam->getLocation(), OldParam->getDeclName());
+ if (!NewDI) return nullptr;
+ NewDI =
+ SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
+ PackTL.getTypePtr()->getNumExpansions());
+ } else
+ NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
+ OldParam->getDeclName());
+ if (!NewDI)
+ return nullptr;
+
+ // Extract the type. This (for instance) replaces references to typedef
+ // members of the current instantiations with the definitions of those
+ // typedefs, avoiding triggering instantiation of the deduced type during
+ // deduction.
+ NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs)
+ .transform(NewDI);
+
+ // Resolving a wording defect, we also inherit default arguments from the
+ // constructor.
+ ExprResult NewDefArg;
+ if (OldParam->hasDefaultArg()) {
+ // We don't care what the value is (we won't use it); just create a
+ // placeholder to indicate there is a default argument.
+ QualType ParamTy = NewDI->getType();
+ NewDefArg = new (SemaRef.Context)
+ OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
+ ParamTy.getNonLValueExprType(SemaRef.Context),
+ ParamTy->isLValueReferenceType() ? VK_LValue
+ : ParamTy->isRValueReferenceType() ? VK_XValue
+ : VK_PRValue);
+ }
+
+ ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC,
+ OldParam->getInnerLocStart(),
+ OldParam->getLocation(),
+ OldParam->getIdentifier(),
+ NewDI->getType(),
+ NewDI,
+ OldParam->getStorageClass(),
+ NewDefArg.get());
+ NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(),
+ OldParam->getFunctionScopeIndex());
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
+ return NewParam;
+ }
+
+ FunctionTemplateDecl *buildDeductionGuide(
+ TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor,
+ ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart,
+ SourceLocation Loc, SourceLocation LocEnd,
+ llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) {
+ DeclarationNameInfo Name(DeductionGuideName, Loc);
+ ArrayRef<ParmVarDecl *> Params =
+ TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
+
+ // Build the implicit deduction guide template.
+ auto *Guide =
+ CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name,
+ TInfo->getType(), TInfo, LocEnd, Ctor);
+ Guide->setImplicit();
+ Guide->setParams(Params);
+
+ for (auto *Param : Params)
+ Param->setDeclContext(Guide);
+ for (auto *TD : MaterializedTypedefs)
+ TD->setDeclContext(Guide);
+
+ auto *GuideTemplate = FunctionTemplateDecl::Create(
+ SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
+ GuideTemplate->setImplicit();
+ Guide->setDescribedFunctionTemplate(GuideTemplate);
+
+ if (isa<CXXRecordDecl>(DC)) {
+ Guide->setAccess(AS_public);
+ GuideTemplate->setAccess(AS_public);
+ }
+
+ DC->addDecl(GuideTemplate);
+ return GuideTemplate;
+ }
+};
+}
+
+void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
+ SourceLocation Loc) {
+ if (CXXRecordDecl *DefRecord =
+ cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) {
+ TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate();
+ Template = DescribedTemplate ? DescribedTemplate : Template;
+ }
+
+ DeclContext *DC = Template->getDeclContext();
+ if (DC->isDependentContext())
+ return;
+
+ ConvertConstructorToDeductionGuideTransform Transform(
+ *this, cast<ClassTemplateDecl>(Template));
+ if (!isCompleteType(Loc, Transform.DeducedType))
+ return;
+
+ // Check whether we've already declared deduction guides for this template.
+ // FIXME: Consider storing a flag on the template to indicate this.
+ auto Existing = DC->lookup(Transform.DeductionGuideName);
+ for (auto *D : Existing)
+ if (D->isImplicit())
+ return;
+
+ // In case we were expanding a pack when we attempted to declare deduction
+ // guides, turn off pack expansion for everything we're about to do.
+ ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
+ // Create a template instantiation record to track the "instantiation" of
+ // constructors into deduction guides.
+ // FIXME: Add a kind for this to give more meaningful diagnostics. But can
+ // this substitution process actually fail?
+ InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template);
+ if (BuildingDeductionGuides.isInvalid())
+ return;
+
+ // Convert declared constructors into deduction guide templates.
+ // FIXME: Skip constructors for which deduction must necessarily fail (those
+ // for which some class template parameter without a default argument never
+ // appears in a deduced context).
+ bool AddedAny = false;
+ for (NamedDecl *D : LookupConstructors(Transform.Primary)) {
+ D = D->getUnderlyingDecl();
+ if (D->isInvalidDecl() || D->isImplicit())
+ continue;
+ D = cast<NamedDecl>(D->getCanonicalDecl());
+
+ auto *FTD = dyn_cast<FunctionTemplateDecl>(D);
+ auto *CD =
+ dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
+ // Class-scope explicit specializations (MS extension) do not result in
+ // deduction guides.
+ if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
+ continue;
+
+ // Cannot make a deduction guide when unparsed arguments are present.
+ if (std::any_of(CD->param_begin(), CD->param_end(), [](ParmVarDecl *P) {
+ return !P || P->hasUnparsedDefaultArg();
+ }))
+ continue;
+
+ Transform.transformConstructor(FTD, CD);
+ AddedAny = true;
+ }
+
+ // C++17 [over.match.class.deduct]
+ // -- If C is not defined or does not declare any constructors, an
+ // additional function template derived as above from a hypothetical
+ // constructor C().
+ if (!AddedAny)
+ Transform.buildSimpleDeductionGuide(None);
+
+ // -- An additional function template derived as above from a hypothetical
+ // constructor C(C), called the copy deduction candidate.
+ cast<CXXDeductionGuideDecl>(
+ cast<FunctionTemplateDecl>(
+ Transform.buildSimpleDeductionGuide(Transform.DeducedType))
+ ->getTemplatedDecl())
+ ->setIsCopyDeductionCandidate();
+}
+
+/// Diagnose the presence of a default template argument on a
+/// template parameter, which is ill-formed in certain contexts.
+///
+/// \returns true if the default template argument should be dropped.
+static bool DiagnoseDefaultTemplateArgument(Sema &S,
+ Sema::TemplateParamListContext TPC,
+ SourceLocation ParamLoc,
+ SourceRange DefArgRange) {
+ switch (TPC) {
+ case Sema::TPC_ClassTemplate:
+ case Sema::TPC_VarTemplate:
+ case Sema::TPC_TypeAliasTemplate:
+ return false;
+
+ case Sema::TPC_FunctionTemplate:
+ case Sema::TPC_FriendFunctionTemplateDefinition:
+ // C++ [temp.param]p9:
+ // A default template-argument shall not be specified in a
+ // function template declaration or a function template
+ // definition [...]
+ // If a friend function template declaration specifies a default
+ // template-argument, that declaration shall be a definition and shall be
+ // the only declaration of the function template in the translation unit.
+ // (C++98/03 doesn't have this wording; see DR226).
+ S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_template_parameter_default_in_function_template
+ : diag::ext_template_parameter_default_in_function_template)
+ << DefArgRange;
+ return false;
+
+ case Sema::TPC_ClassTemplateMember:
+ // C++0x [temp.param]p9:
+ // A default template-argument shall not be specified in the
+ // template-parameter-lists of the definition of a member of a
+ // class template that appears outside of the member's class.
+ S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
+ << DefArgRange;
+ return true;
+
+ case Sema::TPC_FriendClassTemplate:
+ case Sema::TPC_FriendFunctionTemplate:
+ // C++ [temp.param]p9:
+ // A default template-argument shall not be specified in a
+ // friend template declaration.
+ S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
+ << DefArgRange;
+ return true;
+
+ // FIXME: C++0x [temp.param]p9 allows default template-arguments
+ // for friend function templates if there is only a single
+ // declaration (and it is a definition). Strange!
+ }
+
+ llvm_unreachable("Invalid TemplateParamListContext!");
+}
+
+/// Check for unexpanded parameter packs within the template parameters
+/// of a template template parameter, recursively.
+static bool DiagnoseUnexpandedParameterPacks(Sema &S,
+ TemplateTemplateParmDecl *TTP) {
+ // A template template parameter which is a parameter pack is also a pack
+ // expansion.
+ if (TTP->isParameterPack())
+ return false;
+
+ TemplateParameterList *Params = TTP->getTemplateParameters();
+ for (unsigned I = 0, N = Params->size(); I != N; ++I) {
+ NamedDecl *P = Params->getParam(I);
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) {
+ if (!TTP->isParameterPack())
+ if (const TypeConstraint *TC = TTP->getTypeConstraint())
+ if (TC->hasExplicitTemplateArgs())
+ for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
+ if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
+ Sema::UPPC_TypeConstraint))
+ return true;
+ continue;
+ }
+
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
+ if (!NTTP->isParameterPack() &&
+ S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
+ NTTP->getTypeSourceInfo(),
+ Sema::UPPC_NonTypeTemplateParameterType))
+ return true;
+
+ continue;
+ }
+
+ if (TemplateTemplateParmDecl *InnerTTP
+ = dyn_cast<TemplateTemplateParmDecl>(P))
+ if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
+ return true;
+ }
+
+ return false;
+}
+
+/// Checks the validity of a template parameter list, possibly
+/// considering the template parameter list from a previous
+/// declaration.
+///
+/// If an "old" template parameter list is provided, it must be
+/// equivalent (per TemplateParameterListsAreEqual) to the "new"
+/// template parameter list.
+///
+/// \param NewParams Template parameter list for a new template
+/// declaration. This template parameter list will be updated with any
+/// default arguments that are carried through from the previous
+/// template parameter list.
+///
+/// \param OldParams If provided, template parameter list from a
+/// previous declaration of the same template. Default template
+/// arguments will be merged from the old template parameter list to
+/// the new template parameter list.
+///
+/// \param TPC Describes the context in which we are checking the given
+/// template parameter list.
+///
+/// \param SkipBody If we might have already made a prior merged definition
+/// of this template visible, the corresponding body-skipping information.
+/// Default argument redefinition is not an error when skipping such a body,
+/// because (under the ODR) we can assume the default arguments are the same
+/// as the prior merged definition.
+///
+/// \returns true if an error occurred, false otherwise.
+bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
+ TemplateParameterList *OldParams,
+ TemplateParamListContext TPC,
+ SkipBodyInfo *SkipBody) {
+ bool Invalid = false;
+
+ // C++ [temp.param]p10:
+ // The set of default template-arguments available for use with a
+ // template declaration or definition is obtained by merging the
+ // default arguments from the definition (if in scope) and all
+ // declarations in scope in the same way default function
+ // arguments are (8.3.6).
+ bool SawDefaultArgument = false;
+ SourceLocation PreviousDefaultArgLoc;
+
+ // Dummy initialization to avoid warnings.
+ TemplateParameterList::iterator OldParam = NewParams->end();
+ if (OldParams)
+ OldParam = OldParams->begin();
+
+ bool RemoveDefaultArguments = false;
+ for (TemplateParameterList::iterator NewParam = NewParams->begin(),
+ NewParamEnd = NewParams->end();
+ NewParam != NewParamEnd; ++NewParam) {
+ // Variables used to diagnose redundant default arguments
+ bool RedundantDefaultArg = false;
+ SourceLocation OldDefaultLoc;
+ SourceLocation NewDefaultLoc;
+
+ // Variable used to diagnose missing default arguments
+ bool MissingDefaultArg = false;
+
+ // Variable used to diagnose non-final parameter packs
+ bool SawParameterPack = false;
+
+ if (TemplateTypeParmDecl *NewTypeParm
+ = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
+ // Check the presence of a default argument here.
+ if (NewTypeParm->hasDefaultArgument() &&
+ DiagnoseDefaultTemplateArgument(*this, TPC,
+ NewTypeParm->getLocation(),
+ NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
+ .getSourceRange()))
+ NewTypeParm->removeDefaultArgument();
+
+ // Merge default arguments for template type parameters.
+ TemplateTypeParmDecl *OldTypeParm
+ = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
+ if (NewTypeParm->isParameterPack()) {
+ assert(!NewTypeParm->hasDefaultArgument() &&
+ "Parameter packs can't have a default argument!");
+ SawParameterPack = true;
+ } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
+ NewTypeParm->hasDefaultArgument() &&
+ (!SkipBody || !SkipBody->ShouldSkip)) {
+ OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
+ NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
+ SawDefaultArgument = true;
+ RedundantDefaultArg = true;
+ PreviousDefaultArgLoc = NewDefaultLoc;
+ } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
+ // Merge the default argument from the old declaration to the
+ // new declaration.
+ NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
+ PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
+ } else if (NewTypeParm->hasDefaultArgument()) {
+ SawDefaultArgument = true;
+ PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
+ } else if (SawDefaultArgument)
+ MissingDefaultArg = true;
+ } else if (NonTypeTemplateParmDecl *NewNonTypeParm
+ = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
+ // Check for unexpanded parameter packs.
+ if (!NewNonTypeParm->isParameterPack() &&
+ DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
+ NewNonTypeParm->getTypeSourceInfo(),
+ UPPC_NonTypeTemplateParameterType)) {
+ Invalid = true;
+ continue;
+ }
+
+ // Check the presence of a default argument here.
+ if (NewNonTypeParm->hasDefaultArgument() &&
+ DiagnoseDefaultTemplateArgument(*this, TPC,
+ NewNonTypeParm->getLocation(),
+ NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
+ NewNonTypeParm->removeDefaultArgument();
+ }
+
+ // Merge default arguments for non-type template parameters
+ NonTypeTemplateParmDecl *OldNonTypeParm
+ = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
+ if (NewNonTypeParm->isParameterPack()) {
+ assert(!NewNonTypeParm->hasDefaultArgument() &&
+ "Parameter packs can't have a default argument!");
+ if (!NewNonTypeParm->isPackExpansion())
+ SawParameterPack = true;
+ } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
+ NewNonTypeParm->hasDefaultArgument() &&
+ (!SkipBody || !SkipBody->ShouldSkip)) {
+ OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
+ NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
+ SawDefaultArgument = true;
+ RedundantDefaultArg = true;
+ PreviousDefaultArgLoc = NewDefaultLoc;
+ } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
+ // Merge the default argument from the old declaration to the
+ // new declaration.
+ NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
+ PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
+ } else if (NewNonTypeParm->hasDefaultArgument()) {
+ SawDefaultArgument = true;
+ PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
+ } else if (SawDefaultArgument)
+ MissingDefaultArg = true;
+ } else {
+ TemplateTemplateParmDecl *NewTemplateParm
+ = cast<TemplateTemplateParmDecl>(*NewParam);
+
+ // Check for unexpanded parameter packs, recursively.
+ if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
+ Invalid = true;
+ continue;
+ }
+
+ // Check the presence of a default argument here.
+ if (NewTemplateParm->hasDefaultArgument() &&
+ DiagnoseDefaultTemplateArgument(*this, TPC,
+ NewTemplateParm->getLocation(),
+ NewTemplateParm->getDefaultArgument().getSourceRange()))
+ NewTemplateParm->removeDefaultArgument();
+
+ // Merge default arguments for template template parameters
+ TemplateTemplateParmDecl *OldTemplateParm
+ = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
+ if (NewTemplateParm->isParameterPack()) {
+ assert(!NewTemplateParm->hasDefaultArgument() &&
+ "Parameter packs can't have a default argument!");
+ if (!NewTemplateParm->isPackExpansion())
+ SawParameterPack = true;
+ } else if (OldTemplateParm &&
+ hasVisibleDefaultArgument(OldTemplateParm) &&
+ NewTemplateParm->hasDefaultArgument() &&
+ (!SkipBody || !SkipBody->ShouldSkip)) {
+ OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
+ NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
+ SawDefaultArgument = true;
+ RedundantDefaultArg = true;
+ PreviousDefaultArgLoc = NewDefaultLoc;
+ } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
+ // Merge the default argument from the old declaration to the
+ // new declaration.
+ NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
+ PreviousDefaultArgLoc
+ = OldTemplateParm->getDefaultArgument().getLocation();
+ } else if (NewTemplateParm->hasDefaultArgument()) {
+ SawDefaultArgument = true;
+ PreviousDefaultArgLoc
+ = NewTemplateParm->getDefaultArgument().getLocation();
+ } else if (SawDefaultArgument)
+ MissingDefaultArg = true;
+ }
+
+ // C++11 [temp.param]p11:
+ // If a template parameter of a primary class template or alias template
+ // is a template parameter pack, it shall be the last template parameter.
+ if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
+ (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
+ TPC == TPC_TypeAliasTemplate)) {
+ Diag((*NewParam)->getLocation(),
+ diag::err_template_param_pack_must_be_last_template_parameter);
+ Invalid = true;
+ }
+
+ if (RedundantDefaultArg) {
+ // C++ [temp.param]p12:
+ // A template-parameter shall not be given default arguments
+ // by two different declarations in the same scope.
+ Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
+ Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
+ Invalid = true;
+ } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
+ // C++ [temp.param]p11:
+ // If a template-parameter of a class template has a default
+ // template-argument, each subsequent template-parameter shall either
+ // have a default template-argument supplied or be a template parameter
+ // pack.
+ Diag((*NewParam)->getLocation(),
+ diag::err_template_param_default_arg_missing);
+ Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
+ Invalid = true;
+ RemoveDefaultArguments = true;
+ }
+
+ // If we have an old template parameter list that we're merging
+ // in, move on to the next parameter.
+ if (OldParams)
+ ++OldParam;
+ }
+
+ // We were missing some default arguments at the end of the list, so remove
+ // all of the default arguments.
+ if (RemoveDefaultArguments) {
+ for (TemplateParameterList::iterator NewParam = NewParams->begin(),
+ NewParamEnd = NewParams->end();
+ NewParam != NewParamEnd; ++NewParam) {
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
+ TTP->removeDefaultArgument();
+ else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
+ NTTP->removeDefaultArgument();
+ else
+ cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
+ }
+ }
+
+ return Invalid;
+}
+
+namespace {
+
+/// A class which looks for a use of a certain level of template
+/// parameter.
+struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
+ typedef RecursiveASTVisitor<DependencyChecker> super;
+
+ unsigned Depth;
+
+ // Whether we're looking for a use of a template parameter that makes the
+ // overall construct type-dependent / a dependent type. This is strictly
+ // best-effort for now; we may fail to match at all for a dependent type
+ // in some cases if this is set.
+ bool IgnoreNonTypeDependent;
+
+ bool Match;
+ SourceLocation MatchLoc;
+
+ DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
+ : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
+ Match(false) {}
+
+ DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
+ : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
+ NamedDecl *ND = Params->getParam(0);
+ if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
+ Depth = PD->getDepth();
+ } else if (NonTypeTemplateParmDecl *PD =
+ dyn_cast<NonTypeTemplateParmDecl>(ND)) {
+ Depth = PD->getDepth();
+ } else {
+ Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
+ }
+ }
+
+ bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
+ if (ParmDepth >= Depth) {
+ Match = true;
+ MatchLoc = Loc;
+ return true;
+ }
+ return false;
+ }
+
+ bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
+ // Prune out non-type-dependent expressions if requested. This can
+ // sometimes result in us failing to find a template parameter reference
+ // (if a value-dependent expression creates a dependent type), but this
+ // mode is best-effort only.
+ if (auto *E = dyn_cast_or_null<Expr>(S))
+ if (IgnoreNonTypeDependent && !E->isTypeDependent())
+ return true;
+ return super::TraverseStmt(S, Q);
+ }
+
+ bool TraverseTypeLoc(TypeLoc TL) {
+ if (IgnoreNonTypeDependent && !TL.isNull() &&
+ !TL.getType()->isDependentType())
+ return true;
+ return super::TraverseTypeLoc(TL);
+ }
+
+ bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
+ return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
+ }
+
+ bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
+ // For a best-effort search, keep looking until we find a location.
+ return IgnoreNonTypeDependent || !Matches(T->getDepth());
+ }
+
+ bool TraverseTemplateName(TemplateName N) {
+ if (TemplateTemplateParmDecl *PD =
+ dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
+ if (Matches(PD->getDepth()))
+ return false;
+ return super::TraverseTemplateName(N);
+ }
+
+ bool VisitDeclRefExpr(DeclRefExpr *E) {
+ if (NonTypeTemplateParmDecl *PD =
+ dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
+ if (Matches(PD->getDepth(), E->getExprLoc()))
+ return false;
+ return super::VisitDeclRefExpr(E);
+ }
+
+ bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
+ return TraverseType(T->getReplacementType());
+ }
+
+ bool
+ VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
+ return TraverseTemplateArgument(T->getArgumentPack());
+ }
+
+ bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
+ return TraverseType(T->getInjectedSpecializationType());
+ }
+};
+} // end anonymous namespace
+
+/// Determines whether a given type depends on the given parameter
+/// list.
+static bool
+DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
+ if (!Params->size())
+ return false;
+
+ DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
+ Checker.TraverseType(T);
+ return Checker.Match;
+}
+
+// Find the source range corresponding to the named type in the given
+// nested-name-specifier, if any.
+static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
+ QualType T,
+ const CXXScopeSpec &SS) {
+ NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
+ while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
+ if (const Type *CurType = NNS->getAsType()) {
+ if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
+ return NNSLoc.getTypeLoc().getSourceRange();
+ } else
+ break;
+
+ NNSLoc = NNSLoc.getPrefix();
+ }
+
+ return SourceRange();
+}
+
+/// Match the given template parameter lists to the given scope
+/// specifier, returning the template parameter list that applies to the
+/// name.
+///
+/// \param DeclStartLoc the start of the declaration that has a scope
+/// specifier or a template parameter list.
+///
+/// \param DeclLoc The location of the declaration itself.
+///
+/// \param SS the scope specifier that will be matched to the given template
+/// parameter lists. This scope specifier precedes a qualified name that is
+/// being declared.
+///
+/// \param TemplateId The template-id following the scope specifier, if there
+/// is one. Used to check for a missing 'template<>'.
+///
+/// \param ParamLists the template parameter lists, from the outermost to the
+/// innermost template parameter lists.
+///
+/// \param IsFriend Whether to apply the slightly different rules for
+/// matching template parameters to scope specifiers in friend
+/// declarations.
+///
+/// \param IsMemberSpecialization will be set true if the scope specifier
+/// denotes a fully-specialized type, and therefore this is a declaration of
+/// a member specialization.
+///
+/// \returns the template parameter list, if any, that corresponds to the
+/// name that is preceded by the scope specifier @p SS. This template
+/// parameter list may have template parameters (if we're declaring a
+/// template) or may have no template parameters (if we're declaring a
+/// template specialization), or may be NULL (if what we're declaring isn't
+/// itself a template).
+TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
+ SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
+ TemplateIdAnnotation *TemplateId,
+ ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
+ bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
+ IsMemberSpecialization = false;
+ Invalid = false;
+
+ // The sequence of nested types to which we will match up the template
+ // parameter lists. We first build this list by starting with the type named
+ // by the nested-name-specifier and walking out until we run out of types.
+ SmallVector<QualType, 4> NestedTypes;
+ QualType T;
+ if (SS.getScopeRep()) {
+ if (CXXRecordDecl *Record
+ = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
+ T = Context.getTypeDeclType(Record);
+ else
+ T = QualType(SS.getScopeRep()->getAsType(), 0);
+ }
+
+ // If we found an explicit specialization that prevents us from needing
+ // 'template<>' headers, this will be set to the location of that
+ // explicit specialization.
+ SourceLocation ExplicitSpecLoc;
+
+ while (!T.isNull()) {
+ NestedTypes.push_back(T);
+
+ // Retrieve the parent of a record type.
+ if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
+ // If this type is an explicit specialization, we're done.
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
+ if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
+ Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
+ ExplicitSpecLoc = Spec->getLocation();
+ break;
+ }
+ } else if (Record->getTemplateSpecializationKind()
+ == TSK_ExplicitSpecialization) {
+ ExplicitSpecLoc = Record->getLocation();
+ break;
+ }
+
+ if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
+ T = Context.getTypeDeclType(Parent);
+ else
+ T = QualType();
+ continue;
+ }
+
+ if (const TemplateSpecializationType *TST
+ = T->getAs<TemplateSpecializationType>()) {
+ if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
+ if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
+ T = Context.getTypeDeclType(Parent);
+ else
+ T = QualType();
+ continue;
+ }
+ }
+
+ // Look one step prior in a dependent template specialization type.
+ if (const DependentTemplateSpecializationType *DependentTST
+ = T->getAs<DependentTemplateSpecializationType>()) {
+ if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
+ T = QualType(NNS->getAsType(), 0);
+ else
+ T = QualType();
+ continue;
+ }
+
+ // Look one step prior in a dependent name type.
+ if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
+ if (NestedNameSpecifier *NNS = DependentName->getQualifier())
+ T = QualType(NNS->getAsType(), 0);
+ else
+ T = QualType();
+ continue;
+ }
+
+ // Retrieve the parent of an enumeration type.
+ if (const EnumType *EnumT = T->getAs<EnumType>()) {
+ // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
+ // check here.
+ EnumDecl *Enum = EnumT->getDecl();
+
+ // Get to the parent type.
+ if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
+ T = Context.getTypeDeclType(Parent);
+ else
+ T = QualType();
+ continue;
+ }
+
+ T = QualType();
+ }
+ // Reverse the nested types list, since we want to traverse from the outermost
+ // to the innermost while checking template-parameter-lists.
+ std::reverse(NestedTypes.begin(), NestedTypes.end());
+
+ // C++0x [temp.expl.spec]p17:
+ // A member or a member template may be nested within many
+ // enclosing class templates. In an explicit specialization for
+ // such a member, the member declaration shall be preceded by a
+ // template<> for each enclosing class template that is
+ // explicitly specialized.
+ bool SawNonEmptyTemplateParameterList = false;
+
+ auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
+ if (SawNonEmptyTemplateParameterList) {
+ if (!SuppressDiagnostic)
+ Diag(DeclLoc, diag::err_specialize_member_of_template)
+ << !Recovery << Range;
+ Invalid = true;
+ IsMemberSpecialization = false;
+ return true;
+ }
+
+ return false;
+ };
+
+ auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
+ // Check that we can have an explicit specialization here.
+ if (CheckExplicitSpecialization(Range, true))
+ return true;
+
+ // We don't have a template header, but we should.
+ SourceLocation ExpectedTemplateLoc;
+ if (!ParamLists.empty())
+ ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
+ else
+ ExpectedTemplateLoc = DeclStartLoc;
+
+ if (!SuppressDiagnostic)
+ Diag(DeclLoc, diag::err_template_spec_needs_header)
+ << Range
+ << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
+ return false;
+ };
+
+ unsigned ParamIdx = 0;
+ for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
+ ++TypeIdx) {
+ T = NestedTypes[TypeIdx];
+
+ // Whether we expect a 'template<>' header.
+ bool NeedEmptyTemplateHeader = false;
+
+ // Whether we expect a template header with parameters.
+ bool NeedNonemptyTemplateHeader = false;
+
+ // For a dependent type, the set of template parameters that we
+ // expect to see.
+ TemplateParameterList *ExpectedTemplateParams = nullptr;
+
+ // C++0x [temp.expl.spec]p15:
+ // A member or a member template may be nested within many enclosing
+ // class templates. In an explicit specialization for such a member, the
+ // member declaration shall be preceded by a template<> for each
+ // enclosing class template that is explicitly specialized.
+ if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
+ if (ClassTemplatePartialSpecializationDecl *Partial
+ = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
+ ExpectedTemplateParams = Partial->getTemplateParameters();
+ NeedNonemptyTemplateHeader = true;
+ } else if (Record->isDependentType()) {
+ if (Record->getDescribedClassTemplate()) {
+ ExpectedTemplateParams = Record->getDescribedClassTemplate()
+ ->getTemplateParameters();
+ NeedNonemptyTemplateHeader = true;
+ }
+ } else if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
+ // C++0x [temp.expl.spec]p4:
+ // Members of an explicitly specialized class template are defined
+ // in the same manner as members of normal classes, and not using
+ // the template<> syntax.
+ if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
+ NeedEmptyTemplateHeader = true;
+ else
+ continue;
+ } else if (Record->getTemplateSpecializationKind()) {
+ if (Record->getTemplateSpecializationKind()
+ != TSK_ExplicitSpecialization &&
+ TypeIdx == NumTypes - 1)
+ IsMemberSpecialization = true;
+
+ continue;
+ }
+ } else if (const TemplateSpecializationType *TST
+ = T->getAs<TemplateSpecializationType>()) {
+ if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
+ ExpectedTemplateParams = Template->getTemplateParameters();
+ NeedNonemptyTemplateHeader = true;
+ }
+ } else if (T->getAs<DependentTemplateSpecializationType>()) {
+ // FIXME: We actually could/should check the template arguments here
+ // against the corresponding template parameter list.
+ NeedNonemptyTemplateHeader = false;
+ }
+
+ // C++ [temp.expl.spec]p16:
+ // In an explicit specialization declaration for a member of a class
+ // template or a member template that ap- pears in namespace scope, the
+ // member template and some of its enclosing class templates may remain
+ // unspecialized, except that the declaration shall not explicitly
+ // specialize a class member template if its en- closing class templates
+ // are not explicitly specialized as well.
+ if (ParamIdx < ParamLists.size()) {
+ if (ParamLists[ParamIdx]->size() == 0) {
+ if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
+ false))
+ return nullptr;
+ } else
+ SawNonEmptyTemplateParameterList = true;
+ }
+
+ if (NeedEmptyTemplateHeader) {
+ // If we're on the last of the types, and we need a 'template<>' header
+ // here, then it's a member specialization.
+ if (TypeIdx == NumTypes - 1)
+ IsMemberSpecialization = true;
+
+ if (ParamIdx < ParamLists.size()) {
+ if (ParamLists[ParamIdx]->size() > 0) {
+ // The header has template parameters when it shouldn't. Complain.
+ if (!SuppressDiagnostic)
+ Diag(ParamLists[ParamIdx]->getTemplateLoc(),
+ diag::err_template_param_list_matches_nontemplate)
+ << T
+ << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
+ ParamLists[ParamIdx]->getRAngleLoc())
+ << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
+ Invalid = true;
+ return nullptr;
+ }
+
+ // Consume this template header.
+ ++ParamIdx;
+ continue;
+ }
+
+ if (!IsFriend)
+ if (DiagnoseMissingExplicitSpecialization(
+ getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
+ return nullptr;
+
+ continue;
+ }
+
+ if (NeedNonemptyTemplateHeader) {
+ // In friend declarations we can have template-ids which don't
+ // depend on the corresponding template parameter lists. But
+ // assume that empty parameter lists are supposed to match this
+ // template-id.
+ if (IsFriend && T->isDependentType()) {
+ if (ParamIdx < ParamLists.size() &&
+ DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
+ ExpectedTemplateParams = nullptr;
+ else
+ continue;
+ }
+
+ if (ParamIdx < ParamLists.size()) {
+ // Check the template parameter list, if we can.
+ if (ExpectedTemplateParams &&
+ !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
+ ExpectedTemplateParams,
+ !SuppressDiagnostic, TPL_TemplateMatch))
+ Invalid = true;
+
+ if (!Invalid &&
+ CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
+ TPC_ClassTemplateMember))
+ Invalid = true;
+
+ ++ParamIdx;
+ continue;
+ }
+
+ if (!SuppressDiagnostic)
+ Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
+ << T
+ << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
+ Invalid = true;
+ continue;
+ }
+ }
+
+ // If there were at least as many template-ids as there were template
+ // parameter lists, then there are no template parameter lists remaining for
+ // the declaration itself.
+ if (ParamIdx >= ParamLists.size()) {
+ if (TemplateId && !IsFriend) {
+ // We don't have a template header for the declaration itself, but we
+ // should.
+ DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
+ TemplateId->RAngleLoc));
+
+ // Fabricate an empty template parameter list for the invented header.
+ return TemplateParameterList::Create(Context, SourceLocation(),
+ SourceLocation(), None,
+ SourceLocation(), nullptr);
+ }
+
+ return nullptr;
+ }
+
+ // If there were too many template parameter lists, complain about that now.
+ if (ParamIdx < ParamLists.size() - 1) {
+ bool HasAnyExplicitSpecHeader = false;
+ bool AllExplicitSpecHeaders = true;
+ for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
+ if (ParamLists[I]->size() == 0)
+ HasAnyExplicitSpecHeader = true;
+ else
+ AllExplicitSpecHeaders = false;
+ }
+
+ if (!SuppressDiagnostic)
+ Diag(ParamLists[ParamIdx]->getTemplateLoc(),
+ AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
+ : diag::err_template_spec_extra_headers)
+ << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
+ ParamLists[ParamLists.size() - 2]->getRAngleLoc());
+
+ // If there was a specialization somewhere, such that 'template<>' is
+ // not required, and there were any 'template<>' headers, note where the
+ // specialization occurred.
+ if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
+ !SuppressDiagnostic)
+ Diag(ExplicitSpecLoc,
+ diag::note_explicit_template_spec_does_not_need_header)
+ << NestedTypes.back();
+
+ // We have a template parameter list with no corresponding scope, which
+ // means that the resulting template declaration can't be instantiated
+ // properly (we'll end up with dependent nodes when we shouldn't).
+ if (!AllExplicitSpecHeaders)
+ Invalid = true;
+ }
+
+ // C++ [temp.expl.spec]p16:
+ // In an explicit specialization declaration for a member of a class
+ // template or a member template that ap- pears in namespace scope, the
+ // member template and some of its enclosing class templates may remain
+ // unspecialized, except that the declaration shall not explicitly
+ // specialize a class member template if its en- closing class templates
+ // are not explicitly specialized as well.
+ if (ParamLists.back()->size() == 0 &&
+ CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
+ false))
+ return nullptr;
+
+ // Return the last template parameter list, which corresponds to the
+ // entity being declared.
+ return ParamLists.back();
+}
+
+void Sema::NoteAllFoundTemplates(TemplateName Name) {
+ if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
+ Diag(Template->getLocation(), diag::note_template_declared_here)
+ << (isa<FunctionTemplateDecl>(Template)
+ ? 0
+ : isa<ClassTemplateDecl>(Template)
+ ? 1
+ : isa<VarTemplateDecl>(Template)
+ ? 2
+ : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
+ << Template->getDeclName();
+ return;
+ }
+
+ if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
+ for (OverloadedTemplateStorage::iterator I = OST->begin(),
+ IEnd = OST->end();
+ I != IEnd; ++I)
+ Diag((*I)->getLocation(), diag::note_template_declared_here)
+ << 0 << (*I)->getDeclName();
+
+ return;
+ }
+}
+
+static QualType
+checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
+ const SmallVectorImpl<TemplateArgument> &Converted,
+ SourceLocation TemplateLoc,
+ TemplateArgumentListInfo &TemplateArgs) {
+ ASTContext &Context = SemaRef.getASTContext();
+ switch (BTD->getBuiltinTemplateKind()) {
+ case BTK__make_integer_seq: {
+ // Specializations of __make_integer_seq<S, T, N> are treated like
+ // S<T, 0, ..., N-1>.
+
+ // C++14 [inteseq.intseq]p1:
+ // T shall be an integer type.
+ if (!Converted[1].getAsType()->isIntegralType(Context)) {
+ SemaRef.Diag(TemplateArgs[1].getLocation(),
+ diag::err_integer_sequence_integral_element_type);
+ return QualType();
+ }
+
+ // C++14 [inteseq.make]p1:
+ // If N is negative the program is ill-formed.
+ TemplateArgument NumArgsArg = Converted[2];
+ llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
+ if (NumArgs < 0) {
+ SemaRef.Diag(TemplateArgs[2].getLocation(),
+ diag::err_integer_sequence_negative_length);
+ return QualType();
+ }
+
+ QualType ArgTy = NumArgsArg.getIntegralType();
+ TemplateArgumentListInfo SyntheticTemplateArgs;
+ // The type argument gets reused as the first template argument in the
+ // synthetic template argument list.
+ SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
+ // Expand N into 0 ... N-1.
+ for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
+ I < NumArgs; ++I) {
+ TemplateArgument TA(Context, I, ArgTy);
+ SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
+ TA, ArgTy, TemplateArgs[2].getLocation()));
+ }
+ // The first template argument will be reused as the template decl that
+ // our synthetic template arguments will be applied to.
+ return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
+ TemplateLoc, SyntheticTemplateArgs);
+ }
+
+ case BTK__type_pack_element:
+ // Specializations of
+ // __type_pack_element<Index, T_1, ..., T_N>
+ // are treated like T_Index.
+ assert(Converted.size() == 2 &&
+ "__type_pack_element should be given an index and a parameter pack");
+
+ // If the Index is out of bounds, the program is ill-formed.
+ TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
+ llvm::APSInt Index = IndexArg.getAsIntegral();
+ assert(Index >= 0 && "the index used with __type_pack_element should be of "
+ "type std::size_t, and hence be non-negative");
+ if (Index >= Ts.pack_size()) {
+ SemaRef.Diag(TemplateArgs[0].getLocation(),
+ diag::err_type_pack_element_out_of_bounds);
+ return QualType();
+ }
+
+ // We simply return the type at index `Index`.
+ auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
+ return Nth->getAsType();
+ }
+ llvm_unreachable("unexpected BuiltinTemplateDecl!");
+}
+
+/// Determine whether this alias template is "enable_if_t".
+/// libc++ >=14 uses "__enable_if_t" in C++11 mode.
+static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
+ return AliasTemplate->getName().equals("enable_if_t") ||
+ AliasTemplate->getName().equals("__enable_if_t");
+}
+
+/// Collect all of the separable terms in the given condition, which
+/// might be a conjunction.
+///
+/// FIXME: The right answer is to convert the logical expression into
+/// disjunctive normal form, so we can find the first failed term
+/// within each possible clause.
+static void collectConjunctionTerms(Expr *Clause,
+ SmallVectorImpl<Expr *> &Terms) {
+ if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) {
+ if (BinOp->getOpcode() == BO_LAnd) {
+ collectConjunctionTerms(BinOp->getLHS(), Terms);
+ collectConjunctionTerms(BinOp->getRHS(), Terms);
+ }
+
+ return;
+ }
+
+ Terms.push_back(Clause);
+}
+
+// The ranges-v3 library uses an odd pattern of a top-level "||" with
+// a left-hand side that is value-dependent but never true. Identify
+// the idiom and ignore that term.
+static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
+ // Top-level '||'.
+ auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts());
+ if (!BinOp) return Cond;
+
+ if (BinOp->getOpcode() != BO_LOr) return Cond;
+
+ // With an inner '==' that has a literal on the right-hand side.
+ Expr *LHS = BinOp->getLHS();
+ auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts());
+ if (!InnerBinOp) return Cond;
+
+ if (InnerBinOp->getOpcode() != BO_EQ ||
+ !isa<IntegerLiteral>(InnerBinOp->getRHS()))
+ return Cond;
+
+ // If the inner binary operation came from a macro expansion named
+ // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
+ // of the '||', which is the real, user-provided condition.
+ SourceLocation Loc = InnerBinOp->getExprLoc();
+ if (!Loc.isMacroID()) return Cond;
+
+ StringRef MacroName = PP.getImmediateMacroName(Loc);
+ if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
+ return BinOp->getRHS();
+
+ return Cond;
+}
+
+namespace {
+
+// A PrinterHelper that prints more helpful diagnostics for some sub-expressions
+// within failing boolean expression, such as substituting template parameters
+// for actual types.
+class FailedBooleanConditionPrinterHelper : public PrinterHelper {
+public:
+ explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
+ : Policy(P) {}
+
+ bool handledStmt(Stmt *E, raw_ostream &OS) override {
+ const auto *DR = dyn_cast<DeclRefExpr>(E);
+ if (DR && DR->getQualifier()) {
+ // If this is a qualified name, expand the template arguments in nested
+ // qualifiers.
+ DR->getQualifier()->print(OS, Policy, true);
+ // Then print the decl itself.
+ const ValueDecl *VD = DR->getDecl();
+ OS << VD->getName();
+ if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
+ // This is a template variable, print the expanded template arguments.
+ printTemplateArgumentList(
+ OS, IV->getTemplateArgs().asArray(), Policy,
+ IV->getSpecializedTemplate()->getTemplateParameters());
+ }
+ return true;
+ }
+ return false;
+ }
+
+private:
+ const PrintingPolicy Policy;
+};
+
+} // end anonymous namespace
+
+std::pair<Expr *, std::string>
+Sema::findFailedBooleanCondition(Expr *Cond) {
+ Cond = lookThroughRangesV3Condition(PP, Cond);
+
+ // Separate out all of the terms in a conjunction.
+ SmallVector<Expr *, 4> Terms;
+ collectConjunctionTerms(Cond, Terms);
+
+ // Determine which term failed.
+ Expr *FailedCond = nullptr;
+ for (Expr *Term : Terms) {
+ Expr *TermAsWritten = Term->IgnoreParenImpCasts();
+
+ // Literals are uninteresting.
+ if (isa<CXXBoolLiteralExpr>(TermAsWritten) ||
+ isa<IntegerLiteral>(TermAsWritten))
+ continue;
+
+ // The initialization of the parameter from the argument is
+ // a constant-evaluated context.
+ EnterExpressionEvaluationContext ConstantEvaluated(
+ *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+
+ bool Succeeded;
+ if (Term->EvaluateAsBooleanCondition(Succeeded, Context) &&
+ !Succeeded) {
+ FailedCond = TermAsWritten;
+ break;
+ }
+ }
+ if (!FailedCond)
+ FailedCond = Cond->IgnoreParenImpCasts();
+
+ std::string Description;
+ {
+ llvm::raw_string_ostream Out(Description);
+ PrintingPolicy Policy = getPrintingPolicy();
+ Policy.PrintCanonicalTypes = true;
+ FailedBooleanConditionPrinterHelper Helper(Policy);
+ FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
+ }
+ return { FailedCond, Description };
+}
+
+QualType Sema::CheckTemplateIdType(TemplateName Name,
+ SourceLocation TemplateLoc,
+ TemplateArgumentListInfo &TemplateArgs) {
+ DependentTemplateName *DTN
+ = Name.getUnderlying().getAsDependentTemplateName();
+ if (DTN && DTN->isIdentifier())
+ // When building a template-id where the template-name is dependent,
+ // assume the template is a type template. Either our assumption is
+ // correct, or the code is ill-formed and will be diagnosed when the
+ // dependent name is substituted.
+ return Context.getDependentTemplateSpecializationType(ETK_None,
+ DTN->getQualifier(),
+ DTN->getIdentifier(),
+ TemplateArgs);
+
+ if (Name.getAsAssumedTemplateName() &&
+ resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc))
+ return QualType();
+
+ TemplateDecl *Template = Name.getAsTemplateDecl();
+ if (!Template || isa<FunctionTemplateDecl>(Template) ||
+ isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) {
+ // We might have a substituted template template parameter pack. If so,
+ // build a template specialization type for it.
+ if (Name.getAsSubstTemplateTemplateParmPack())
+ return Context.getTemplateSpecializationType(Name, TemplateArgs);
+
+ Diag(TemplateLoc, diag::err_template_id_not_a_type)
+ << Name;
+ NoteAllFoundTemplates(Name);
+ return QualType();
+ }
+
+ // Check that the template argument list is well-formed for this
+ // template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
+ false, Converted,
+ /*UpdateArgsWithConversions=*/true))
+ return QualType();
+
+ QualType CanonType;
+
+ if (TypeAliasTemplateDecl *AliasTemplate =
+ dyn_cast<TypeAliasTemplateDecl>(Template)) {
+
+ // Find the canonical type for this type alias template specialization.
+ TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
+ if (Pattern->isInvalidDecl())
+ return QualType();
+
+ TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack,
+ Converted);
+
+ // Only substitute for the innermost template argument list.
+ MultiLevelTemplateArgumentList TemplateArgLists;
+ TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs);
+ TemplateArgLists.addOuterRetainedLevels(
+ AliasTemplate->getTemplateParameters()->getDepth());
+
+ LocalInstantiationScope Scope(*this);
+ InstantiatingTemplate Inst(*this, TemplateLoc, Template);
+ if (Inst.isInvalid())
+ return QualType();
+
+ CanonType = SubstType(Pattern->getUnderlyingType(),
+ TemplateArgLists, AliasTemplate->getLocation(),
+ AliasTemplate->getDeclName());
+ if (CanonType.isNull()) {
+ // If this was enable_if and we failed to find the nested type
+ // within enable_if in a SFINAE context, dig out the specific
+ // enable_if condition that failed and present that instead.
+ if (isEnableIfAliasTemplate(AliasTemplate)) {
+ if (auto DeductionInfo = isSFINAEContext()) {
+ if (*DeductionInfo &&
+ (*DeductionInfo)->hasSFINAEDiagnostic() &&
+ (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
+ diag::err_typename_nested_not_found_enable_if &&
+ TemplateArgs[0].getArgument().getKind()
+ == TemplateArgument::Expression) {
+ Expr *FailedCond;
+ std::string FailedDescription;
+ std::tie(FailedCond, FailedDescription) =
+ findFailedBooleanCondition(TemplateArgs[0].getSourceExpression());
+
+ // Remove the old SFINAE diagnostic.
+ PartialDiagnosticAt OldDiag =
+ {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
+ (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag);
+
+ // Add a new SFINAE diagnostic specifying which condition
+ // failed.
+ (*DeductionInfo)->addSFINAEDiagnostic(
+ OldDiag.first,
+ PDiag(diag::err_typename_nested_not_found_requirement)
+ << FailedDescription
+ << FailedCond->getSourceRange());
+ }
+ }
+ }
+
+ return QualType();
+ }
+ } else if (Name.isDependent() ||
+ TemplateSpecializationType::anyDependentTemplateArguments(
+ TemplateArgs, Converted)) {
+ // This class template specialization is a dependent
+ // type. Therefore, its canonical type is another class template
+ // specialization type that contains all of the converted
+ // arguments in canonical form. This ensures that, e.g., A<T> and
+ // A<T, T> have identical types when A is declared as:
+ //
+ // template<typename T, typename U = T> struct A;
+ CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted);
+
+ // This might work out to be a current instantiation, in which
+ // case the canonical type needs to be the InjectedClassNameType.
+ //
+ // TODO: in theory this could be a simple hashtable lookup; most
+ // changes to CurContext don't change the set of current
+ // instantiations.
+ if (isa<ClassTemplateDecl>(Template)) {
+ for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
+ // If we get out to a namespace, we're done.
+ if (Ctx->isFileContext()) break;
+
+ // If this isn't a record, keep looking.
+ CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
+ if (!Record) continue;
+
+ // Look for one of the two cases with InjectedClassNameTypes
+ // and check whether it's the same template.
+ if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
+ !Record->getDescribedClassTemplate())
+ continue;
+
+ // Fetch the injected class name type and check whether its
+ // injected type is equal to the type we just built.
+ QualType ICNT = Context.getTypeDeclType(Record);
+ QualType Injected = cast<InjectedClassNameType>(ICNT)
+ ->getInjectedSpecializationType();
+
+ if (CanonType != Injected->getCanonicalTypeInternal())
+ continue;
+
+ // If so, the canonical type of this TST is the injected
+ // class name type of the record we just found.
+ assert(ICNT.isCanonical());
+ CanonType = ICNT;
+ break;
+ }
+ }
+ } else if (ClassTemplateDecl *ClassTemplate
+ = dyn_cast<ClassTemplateDecl>(Template)) {
+ // Find the class template specialization declaration that
+ // corresponds to these arguments.
+ void *InsertPos = nullptr;
+ ClassTemplateSpecializationDecl *Decl
+ = ClassTemplate->findSpecialization(Converted, InsertPos);
+ if (!Decl) {
+ // This is the first time we have referenced this class template
+ // specialization. Create the canonical declaration and add it to
+ // the set of specializations.
+ Decl = ClassTemplateSpecializationDecl::Create(
+ Context, ClassTemplate->getTemplatedDecl()->getTagKind(),
+ ClassTemplate->getDeclContext(),
+ ClassTemplate->getTemplatedDecl()->getBeginLoc(),
+ ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr);
+ ClassTemplate->AddSpecialization(Decl, InsertPos);
+ if (ClassTemplate->isOutOfLine())
+ Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
+ }
+
+ if (Decl->getSpecializationKind() == TSK_Undeclared &&
+ ClassTemplate->getTemplatedDecl()->hasAttrs()) {
+ InstantiatingTemplate Inst(*this, TemplateLoc, Decl);
+ if (!Inst.isInvalid()) {
+ MultiLevelTemplateArgumentList TemplateArgLists;
+ TemplateArgLists.addOuterTemplateArguments(Converted);
+ InstantiateAttrsForDecl(TemplateArgLists,
+ ClassTemplate->getTemplatedDecl(), Decl);
+ }
+ }
+
+ // Diagnose uses of this specialization.
+ (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
+
+ CanonType = Context.getTypeDeclType(Decl);
+ assert(isa<RecordType>(CanonType) &&
+ "type of non-dependent specialization is not a RecordType");
+ } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
+ CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
+ TemplateArgs);
+ }
+
+ // Build the fully-sugared type for this class template
+ // specialization, which refers back to the class template
+ // specialization we created or found.
+ return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
+}
+
+void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
+ TemplateNameKind &TNK,
+ SourceLocation NameLoc,
+ IdentifierInfo *&II) {
+ assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
+
+ TemplateName Name = ParsedName.get();
+ auto *ATN = Name.getAsAssumedTemplateName();
+ assert(ATN && "not an assumed template name");
+ II = ATN->getDeclName().getAsIdentifierInfo();
+
+ if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
+ // Resolved to a type template name.
+ ParsedName = TemplateTy::make(Name);
+ TNK = TNK_Type_template;
+ }
+}
+
+bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
+ SourceLocation NameLoc,
+ bool Diagnose) {
+ // We assumed this undeclared identifier to be an (ADL-only) function
+ // template name, but it was used in a context where a type was required.
+ // Try to typo-correct it now.
+ AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
+ assert(ATN && "not an assumed template name");
+
+ LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
+ struct CandidateCallback : CorrectionCandidateCallback {
+ bool ValidateCandidate(const TypoCorrection &TC) override {
+ return TC.getCorrectionDecl() &&
+ getAsTypeTemplateDecl(TC.getCorrectionDecl());
+ }
+ std::unique_ptr<CorrectionCandidateCallback> clone() override {
+ return std::make_unique<CandidateCallback>(*this);
+ }
+ } FilterCCC;
+
+ TypoCorrection Corrected =
+ CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
+ FilterCCC, CTK_ErrorRecovery);
+ if (Corrected && Corrected.getFoundDecl()) {
+ diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
+ << ATN->getDeclName());
+ Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
+ return false;
+ }
+
+ if (Diagnose)
+ Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
+ return true;
+}
+
+TypeResult Sema::ActOnTemplateIdType(
+ Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
+ TemplateTy TemplateD, IdentifierInfo *TemplateII,
+ SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
+ bool IsCtorOrDtorName, bool IsClassName) {
+ if (SS.isInvalid())
+ return true;
+
+ if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
+ DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
+
+ // C++ [temp.res]p3:
+ // A qualified-id that refers to a type and in which the
+ // nested-name-specifier depends on a template-parameter (14.6.2)
+ // shall be prefixed by the keyword typename to indicate that the
+ // qualified-id denotes a type, forming an
+ // elaborated-type-specifier (7.1.5.3).
+ if (!LookupCtx && isDependentScopeSpecifier(SS)) {
+ Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
+ << SS.getScopeRep() << TemplateII->getName();
+ // Recover as if 'typename' were specified.
+ // FIXME: This is not quite correct recovery as we don't transform SS
+ // into the corresponding dependent form (and we don't diagnose missing
+ // 'template' keywords within SS as a result).
+ return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc,
+ TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
+ TemplateArgsIn, RAngleLoc);
+ }
+
+ // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
+ // it's not actually allowed to be used as a type in most cases. Because
+ // we annotate it before we know whether it's valid, we have to check for
+ // this case here.
+ auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
+ if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
+ Diag(TemplateIILoc,
+ TemplateKWLoc.isInvalid()
+ ? diag::err_out_of_line_qualified_id_type_names_constructor
+ : diag::ext_out_of_line_qualified_id_type_names_constructor)
+ << TemplateII << 0 /*injected-class-name used as template name*/
+ << 1 /*if any keyword was present, it was 'template'*/;
+ }
+ }
+
+ TemplateName Template = TemplateD.get();
+ if (Template.getAsAssumedTemplateName() &&
+ resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc))
+ return true;
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
+ translateTemplateArguments(TemplateArgsIn, TemplateArgs);
+
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
+ QualType T
+ = Context.getDependentTemplateSpecializationType(ETK_None,
+ DTN->getQualifier(),
+ DTN->getIdentifier(),
+ TemplateArgs);
+ // Build type-source information.
+ TypeLocBuilder TLB;
+ DependentTemplateSpecializationTypeLoc SpecTL
+ = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
+ SpecTL.setElaboratedKeywordLoc(SourceLocation());
+ SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateIILoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
+ SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
+ return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
+ }
+
+ QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
+ if (Result.isNull())
+ return true;
+
+ // Build type-source information.
+ TypeLocBuilder TLB;
+ TemplateSpecializationTypeLoc SpecTL
+ = TLB.push<TemplateSpecializationTypeLoc>(Result);
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateIILoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
+ SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
+
+ // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
+ // constructor or destructor name (in such a case, the scope specifier
+ // will be attached to the enclosing Decl or Expr node).
+ if (SS.isNotEmpty() && !IsCtorOrDtorName) {
+ // Create an elaborated-type-specifier containing the nested-name-specifier.
+ Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
+ ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
+ ElabTL.setElaboratedKeywordLoc(SourceLocation());
+ ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ }
+
+ return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
+}
+
+TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
+ TypeSpecifierType TagSpec,
+ SourceLocation TagLoc,
+ CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ TemplateTy TemplateD,
+ SourceLocation TemplateLoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation RAngleLoc) {
+ if (SS.isInvalid())
+ return TypeResult(true);
+
+ TemplateName Template = TemplateD.get();
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
+ translateTemplateArguments(TemplateArgsIn, TemplateArgs);
+
+ // Determine the tag kind
+ TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+ ElaboratedTypeKeyword Keyword
+ = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
+
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
+ QualType T = Context.getDependentTemplateSpecializationType(Keyword,
+ DTN->getQualifier(),
+ DTN->getIdentifier(),
+ TemplateArgs);
+
+ // Build type-source information.
+ TypeLocBuilder TLB;
+ DependentTemplateSpecializationTypeLoc SpecTL
+ = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
+ SpecTL.setElaboratedKeywordLoc(TagLoc);
+ SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
+ SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
+ return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
+ }
+
+ if (TypeAliasTemplateDecl *TAT =
+ dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
+ // C++0x [dcl.type.elab]p2:
+ // If the identifier resolves to a typedef-name or the simple-template-id
+ // resolves to an alias template specialization, the
+ // elaborated-type-specifier is ill-formed.
+ Diag(TemplateLoc, diag::err_tag_reference_non_tag)
+ << TAT << NTK_TypeAliasTemplate << TagKind;
+ Diag(TAT->getLocation(), diag::note_declared_at);
+ }
+
+ QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
+ if (Result.isNull())
+ return TypeResult(true);
+
+ // Check the tag kind
+ if (const RecordType *RT = Result->getAs<RecordType>()) {
+ RecordDecl *D = RT->getDecl();
+
+ IdentifierInfo *Id = D->getIdentifier();
+ assert(Id && "templated class must have an identifier");
+
+ if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
+ TagLoc, Id)) {
+ Diag(TagLoc, diag::err_use_with_wrong_tag)
+ << Result
+ << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
+ Diag(D->getLocation(), diag::note_previous_use);
+ }
+ }
+
+ // Provide source-location information for the template specialization.
+ TypeLocBuilder TLB;
+ TemplateSpecializationTypeLoc SpecTL
+ = TLB.push<TemplateSpecializationTypeLoc>(Result);
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateLoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
+ SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
+
+ // Construct an elaborated type containing the nested-name-specifier (if any)
+ // and tag keyword.
+ Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
+ ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
+ ElabTL.setElaboratedKeywordLoc(TagLoc);
+ ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
+}
+
+static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
+ NamedDecl *PrevDecl,
+ SourceLocation Loc,
+ bool IsPartialSpecialization);
+
+static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
+
+static bool isTemplateArgumentTemplateParameter(
+ const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ case TemplateArgument::NullPtr:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Declaration:
+ case TemplateArgument::Pack:
+ case TemplateArgument::TemplateExpansion:
+ return false;
+
+ case TemplateArgument::Type: {
+ QualType Type = Arg.getAsType();
+ const TemplateTypeParmType *TPT =
+ Arg.getAsType()->getAs<TemplateTypeParmType>();
+ return TPT && !Type.hasQualifiers() &&
+ TPT->getDepth() == Depth && TPT->getIndex() == Index;
+ }
+
+ case TemplateArgument::Expression: {
+ DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
+ if (!DRE || !DRE->getDecl())
+ return false;
+ const NonTypeTemplateParmDecl *NTTP =
+ dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
+ return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
+ }
+
+ case TemplateArgument::Template:
+ const TemplateTemplateParmDecl *TTP =
+ dyn_cast_or_null<TemplateTemplateParmDecl>(
+ Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
+ return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
+ }
+ llvm_unreachable("unexpected kind of template argument");
+}
+
+static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
+ ArrayRef<TemplateArgument> Args) {
+ if (Params->size() != Args.size())
+ return false;
+
+ unsigned Depth = Params->getDepth();
+
+ for (unsigned I = 0, N = Args.size(); I != N; ++I) {
+ TemplateArgument Arg = Args[I];
+
+ // If the parameter is a pack expansion, the argument must be a pack
+ // whose only element is a pack expansion.
+ if (Params->getParam(I)->isParameterPack()) {
+ if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
+ !Arg.pack_begin()->isPackExpansion())
+ return false;
+ Arg = Arg.pack_begin()->getPackExpansionPattern();
+ }
+
+ if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
+ return false;
+ }
+
+ return true;
+}
+
+template<typename PartialSpecDecl>
+static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
+ if (Partial->getDeclContext()->isDependentContext())
+ return;
+
+ // FIXME: Get the TDK from deduction in order to provide better diagnostics
+ // for non-substitution-failure issues?
+ TemplateDeductionInfo Info(Partial->getLocation());
+ if (S.isMoreSpecializedThanPrimary(Partial, Info))
+ return;
+
+ auto *Template = Partial->getSpecializedTemplate();
+ S.Diag(Partial->getLocation(),
+ diag::ext_partial_spec_not_more_specialized_than_primary)
+ << isa<VarTemplateDecl>(Template);
+
+ if (Info.hasSFINAEDiagnostic()) {
+ PartialDiagnosticAt Diag = {SourceLocation(),
+ PartialDiagnostic::NullDiagnostic()};
+ Info.takeSFINAEDiagnostic(Diag);
+ SmallString<128> SFINAEArgString;
+ Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString);
+ S.Diag(Diag.first,
+ diag::note_partial_spec_not_more_specialized_than_primary)
+ << SFINAEArgString;
+ }
+
+ S.Diag(Template->getLocation(), diag::note_template_decl_here);
+ SmallVector<const Expr *, 3> PartialAC, TemplateAC;
+ Template->getAssociatedConstraints(TemplateAC);
+ Partial->getAssociatedConstraints(PartialAC);
+ S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template,
+ TemplateAC);
+}
+
+static void
+noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
+ const llvm::SmallBitVector &DeducibleParams) {
+ for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
+ if (!DeducibleParams[I]) {
+ NamedDecl *Param = TemplateParams->getParam(I);
+ if (Param->getDeclName())
+ S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
+ << Param->getDeclName();
+ else
+ S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
+ << "(anonymous)";
+ }
+ }
+}
+
+
+template<typename PartialSpecDecl>
+static void checkTemplatePartialSpecialization(Sema &S,
+ PartialSpecDecl *Partial) {
+ // C++1z [temp.class.spec]p8: (DR1495)
+ // - The specialization shall be more specialized than the primary
+ // template (14.5.5.2).
+ checkMoreSpecializedThanPrimary(S, Partial);
+
+ // C++ [temp.class.spec]p8: (DR1315)
+ // - Each template-parameter shall appear at least once in the
+ // template-id outside a non-deduced context.
+ // C++1z [temp.class.spec.match]p3 (P0127R2)
+ // If the template arguments of a partial specialization cannot be
+ // deduced because of the structure of its template-parameter-list
+ // and the template-id, the program is ill-formed.
+ auto *TemplateParams = Partial->getTemplateParameters();
+ llvm::SmallBitVector DeducibleParams(TemplateParams->size());
+ S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
+ TemplateParams->getDepth(), DeducibleParams);
+
+ if (!DeducibleParams.all()) {
+ unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
+ S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
+ << isa<VarTemplatePartialSpecializationDecl>(Partial)
+ << (NumNonDeducible > 1)
+ << SourceRange(Partial->getLocation(),
+ Partial->getTemplateArgsAsWritten()->RAngleLoc);
+ noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
+ }
+}
+
+void Sema::CheckTemplatePartialSpecialization(
+ ClassTemplatePartialSpecializationDecl *Partial) {
+ checkTemplatePartialSpecialization(*this, Partial);
+}
+
+void Sema::CheckTemplatePartialSpecialization(
+ VarTemplatePartialSpecializationDecl *Partial) {
+ checkTemplatePartialSpecialization(*this, Partial);
+}
+
+void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
+ // C++1z [temp.param]p11:
+ // A template parameter of a deduction guide template that does not have a
+ // default-argument shall be deducible from the parameter-type-list of the
+ // deduction guide template.
+ auto *TemplateParams = TD->getTemplateParameters();
+ llvm::SmallBitVector DeducibleParams(TemplateParams->size());
+ MarkDeducedTemplateParameters(TD, DeducibleParams);
+ for (unsigned I = 0; I != TemplateParams->size(); ++I) {
+ // A parameter pack is deducible (to an empty pack).
+ auto *Param = TemplateParams->getParam(I);
+ if (Param->isParameterPack() || hasVisibleDefaultArgument(Param))
+ DeducibleParams[I] = true;
+ }
+
+ if (!DeducibleParams.all()) {
+ unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
+ Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
+ << (NumNonDeducible > 1);
+ noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
+ }
+}
+
+DeclResult Sema::ActOnVarTemplateSpecialization(
+ Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
+ TemplateParameterList *TemplateParams, StorageClass SC,
+ bool IsPartialSpecialization) {
+ // D must be variable template id.
+ assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
+ "Variable template specialization is declared with a template it.");
+
+ TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
+ TemplateArgumentListInfo TemplateArgs =
+ makeTemplateArgumentListInfo(*this, *TemplateId);
+ SourceLocation TemplateNameLoc = D.getIdentifierLoc();
+ SourceLocation LAngleLoc = TemplateId->LAngleLoc;
+ SourceLocation RAngleLoc = TemplateId->RAngleLoc;
+
+ TemplateName Name = TemplateId->Template.get();
+
+ // The template-id must name a variable template.
+ VarTemplateDecl *VarTemplate =
+ dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
+ if (!VarTemplate) {
+ NamedDecl *FnTemplate;
+ if (auto *OTS = Name.getAsOverloadedTemplate())
+ FnTemplate = *OTS->begin();
+ else
+ FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
+ if (FnTemplate)
+ return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
+ << FnTemplate->getDeclName();
+ return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
+ << IsPartialSpecialization;
+ }
+
+ // Check for unexpanded parameter packs in any of the template arguments.
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
+ UPPC_PartialSpecialization))
+ return true;
+
+ // Check that the template argument list is well-formed for this
+ // template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
+ false, Converted,
+ /*UpdateArgsWithConversions=*/true))
+ return true;
+
+ // Find the variable template (partial) specialization declaration that
+ // corresponds to these arguments.
+ if (IsPartialSpecialization) {
+ if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
+ TemplateArgs.size(), Converted))
+ return true;
+
+ // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
+ // also do them during instantiation.
+ if (!Name.isDependent() &&
+ !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
+ Converted)) {
+ Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
+ << VarTemplate->getDeclName();
+ IsPartialSpecialization = false;
+ }
+
+ if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
+ Converted) &&
+ (!Context.getLangOpts().CPlusPlus20 ||
+ !TemplateParams->hasAssociatedConstraints())) {
+ // C++ [temp.class.spec]p9b3:
+ //
+ // -- The argument list of the specialization shall not be identical
+ // to the implicit argument list of the primary template.
+ Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
+ << /*variable template*/ 1
+ << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
+ << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
+ // FIXME: Recover from this by treating the declaration as a redeclaration
+ // of the primary template.
+ return true;
+ }
+ }
+
+ void *InsertPos = nullptr;
+ VarTemplateSpecializationDecl *PrevDecl = nullptr;
+
+ if (IsPartialSpecialization)
+ PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams,
+ InsertPos);
+ else
+ PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
+
+ VarTemplateSpecializationDecl *Specialization = nullptr;
+
+ // Check whether we can declare a variable template specialization in
+ // the current scope.
+ if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
+ TemplateNameLoc,
+ IsPartialSpecialization))
+ return true;
+
+ if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
+ // Since the only prior variable template specialization with these
+ // arguments was referenced but not declared, reuse that
+ // declaration node as our own, updating its source location and
+ // the list of outer template parameters to reflect our new declaration.
+ Specialization = PrevDecl;
+ Specialization->setLocation(TemplateNameLoc);
+ PrevDecl = nullptr;
+ } else if (IsPartialSpecialization) {
+ // Create a new class template partial specialization declaration node.
+ VarTemplatePartialSpecializationDecl *PrevPartial =
+ cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
+ VarTemplatePartialSpecializationDecl *Partial =
+ VarTemplatePartialSpecializationDecl::Create(
+ Context, VarTemplate->getDeclContext(), TemplateKWLoc,
+ TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
+ Converted, TemplateArgs);
+
+ if (!PrevPartial)
+ VarTemplate->AddPartialSpecialization(Partial, InsertPos);
+ Specialization = Partial;
+
+ // If we are providing an explicit specialization of a member variable
+ // template specialization, make a note of that.
+ if (PrevPartial && PrevPartial->getInstantiatedFromMember())
+ PrevPartial->setMemberSpecialization();
+
+ CheckTemplatePartialSpecialization(Partial);
+ } else {
+ // Create a new class template specialization declaration node for
+ // this explicit specialization or friend declaration.
+ Specialization = VarTemplateSpecializationDecl::Create(
+ Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
+ VarTemplate, DI->getType(), DI, SC, Converted);
+ Specialization->setTemplateArgsInfo(TemplateArgs);
+
+ if (!PrevDecl)
+ VarTemplate->AddSpecialization(Specialization, InsertPos);
+ }
+
+ // C++ [temp.expl.spec]p6:
+ // If a template, a member template or the member of a class template is
+ // explicitly specialized then that specialization shall be declared
+ // before the first use of that specialization that would cause an implicit
+ // instantiation to take place, in every translation unit in which such a
+ // use occurs; no diagnostic is required.
+ if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
+ bool Okay = false;
+ for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
+ // Is there any previous explicit specialization declaration?
+ if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
+ Okay = true;
+ break;
+ }
+ }
+
+ if (!Okay) {
+ SourceRange Range(TemplateNameLoc, RAngleLoc);
+ Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
+ << Name << Range;
+
+ Diag(PrevDecl->getPointOfInstantiation(),
+ diag::note_instantiation_required_here)
+ << (PrevDecl->getTemplateSpecializationKind() !=
+ TSK_ImplicitInstantiation);
+ return true;
+ }
+ }
+
+ Specialization->setTemplateKeywordLoc(TemplateKWLoc);
+ Specialization->setLexicalDeclContext(CurContext);
+
+ // Add the specialization into its lexical context, so that it can
+ // be seen when iterating through the list of declarations in that
+ // context. However, specializations are not found by name lookup.
+ CurContext->addDecl(Specialization);
+
+ // Note that this is an explicit specialization.
+ Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
+
+ if (PrevDecl) {
+ // Check that this isn't a redefinition of this specialization,
+ // merging with previous declarations.
+ LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
+ forRedeclarationInCurContext());
+ PrevSpec.addDecl(PrevDecl);
+ D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
+ } else if (Specialization->isStaticDataMember() &&
+ Specialization->isOutOfLine()) {
+ Specialization->setAccess(VarTemplate->getAccess());
+ }
+
+ return Specialization;
+}
+
+namespace {
+/// A partial specialization whose template arguments have matched
+/// a given template-id.
+struct PartialSpecMatchResult {
+ VarTemplatePartialSpecializationDecl *Partial;
+ TemplateArgumentList *Args;
+};
+} // end anonymous namespace
+
+DeclResult
+Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
+ SourceLocation TemplateNameLoc,
+ const TemplateArgumentListInfo &TemplateArgs) {
+ assert(Template && "A variable template id without template?");
+
+ // Check that the template argument list is well-formed for this template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (CheckTemplateArgumentList(
+ Template, TemplateNameLoc,
+ const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
+ Converted, /*UpdateArgsWithConversions=*/true))
+ return true;
+
+ // Produce a placeholder value if the specialization is dependent.
+ if (Template->getDeclContext()->isDependentContext() ||
+ TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
+ Converted))
+ return DeclResult();
+
+ // Find the variable template specialization declaration that
+ // corresponds to these arguments.
+ void *InsertPos = nullptr;
+ if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
+ Converted, InsertPos)) {
+ checkSpecializationVisibility(TemplateNameLoc, Spec);
+ // If we already have a variable template specialization, return it.
+ return Spec;
+ }
+
+ // This is the first time we have referenced this variable template
+ // specialization. Create the canonical declaration and add it to
+ // the set of specializations, based on the closest partial specialization
+ // that it represents. That is,
+ VarDecl *InstantiationPattern = Template->getTemplatedDecl();
+ TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
+ Converted);
+ TemplateArgumentList *InstantiationArgs = &TemplateArgList;
+ bool AmbiguousPartialSpec = false;
+ typedef PartialSpecMatchResult MatchResult;
+ SmallVector<MatchResult, 4> Matched;
+ SourceLocation PointOfInstantiation = TemplateNameLoc;
+ TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
+ /*ForTakingAddress=*/false);
+
+ // 1. Attempt to find the closest partial specialization that this
+ // specializes, if any.
+ // TODO: Unify with InstantiateClassTemplateSpecialization()?
+ // Perhaps better after unification of DeduceTemplateArguments() and
+ // getMoreSpecializedPartialSpecialization().
+ SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
+ Template->getPartialSpecializations(PartialSpecs);
+
+ for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
+ VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
+ TemplateDeductionInfo Info(FailedCandidates.getLocation());
+
+ if (TemplateDeductionResult Result =
+ DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
+ // Store the failed-deduction information for use in diagnostics, later.
+ // TODO: Actually use the failed-deduction info?
+ FailedCandidates.addCandidate().set(
+ DeclAccessPair::make(Template, AS_public), Partial,
+ MakeDeductionFailureInfo(Context, Result, Info));
+ (void)Result;
+ } else {
+ Matched.push_back(PartialSpecMatchResult());
+ Matched.back().Partial = Partial;
+ Matched.back().Args = Info.take();
+ }
+ }
+
+ if (Matched.size() >= 1) {
+ SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
+ if (Matched.size() == 1) {
+ // -- If exactly one matching specialization is found, the
+ // instantiation is generated from that specialization.
+ // We don't need to do anything for this.
+ } else {
+ // -- If more than one matching specialization is found, the
+ // partial order rules (14.5.4.2) are used to determine
+ // whether one of the specializations is more specialized
+ // than the others. If none of the specializations is more
+ // specialized than all of the other matching
+ // specializations, then the use of the variable template is
+ // ambiguous and the program is ill-formed.
+ for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
+ PEnd = Matched.end();
+ P != PEnd; ++P) {
+ if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
+ PointOfInstantiation) ==
+ P->Partial)
+ Best = P;
+ }
+
+ // Determine if the best partial specialization is more specialized than
+ // the others.
+ for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
+ PEnd = Matched.end();
+ P != PEnd; ++P) {
+ if (P != Best && getMoreSpecializedPartialSpecialization(
+ P->Partial, Best->Partial,
+ PointOfInstantiation) != Best->Partial) {
+ AmbiguousPartialSpec = true;
+ break;
+ }
+ }
+ }
+
+ // Instantiate using the best variable template partial specialization.
+ InstantiationPattern = Best->Partial;
+ InstantiationArgs = Best->Args;
+ } else {
+ // -- If no match is found, the instantiation is generated
+ // from the primary template.
+ // InstantiationPattern = Template->getTemplatedDecl();
+ }
+
+ // 2. Create the canonical declaration.
+ // Note that we do not instantiate a definition until we see an odr-use
+ // in DoMarkVarDeclReferenced().
+ // FIXME: LateAttrs et al.?
+ VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
+ Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
+ Converted, TemplateNameLoc /*, LateAttrs, StartingScope*/);
+ if (!Decl)
+ return true;
+
+ if (AmbiguousPartialSpec) {
+ // Partial ordering did not produce a clear winner. Complain.
+ Decl->setInvalidDecl();
+ Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
+ << Decl;
+
+ // Print the matching partial specializations.
+ for (MatchResult P : Matched)
+ Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
+ << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
+ *P.Args);
+ return true;
+ }
+
+ if (VarTemplatePartialSpecializationDecl *D =
+ dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
+ Decl->setInstantiationOf(D, InstantiationArgs);
+
+ checkSpecializationVisibility(TemplateNameLoc, Decl);
+
+ assert(Decl && "No variable template specialization?");
+ return Decl;
+}
+
+ExprResult
+Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
+ const DeclarationNameInfo &NameInfo,
+ VarTemplateDecl *Template, SourceLocation TemplateLoc,
+ const TemplateArgumentListInfo *TemplateArgs) {
+
+ DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
+ *TemplateArgs);
+ if (Decl.isInvalid())
+ return ExprError();
+
+ if (!Decl.get())
+ return ExprResult();
+
+ VarDecl *Var = cast<VarDecl>(Decl.get());
+ if (!Var->getTemplateSpecializationKind())
+ Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
+ NameInfo.getLoc());
+
+ // Build an ordinary singleton decl ref.
+ return BuildDeclarationNameExpr(SS, NameInfo, Var,
+ /*FoundD=*/nullptr, TemplateArgs);
+}
+
+void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
+ SourceLocation Loc) {
+ Diag(Loc, diag::err_template_missing_args)
+ << (int)getTemplateNameKindForDiagnostics(Name) << Name;
+ if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
+ Diag(TD->getLocation(), diag::note_template_decl_here)
+ << TD->getTemplateParameters()->getSourceRange();
+ }
+}
+
+ExprResult
+Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &ConceptNameInfo,
+ NamedDecl *FoundDecl,
+ ConceptDecl *NamedConcept,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ assert(NamedConcept && "A concept template id without a template?");
+
+ llvm::SmallVector<TemplateArgument, 4> Converted;
+ if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(),
+ const_cast<TemplateArgumentListInfo&>(*TemplateArgs),
+ /*PartialTemplateArgs=*/false, Converted,
+ /*UpdateArgsWithConversions=*/false))
+ return ExprError();
+
+ ConstraintSatisfaction Satisfaction;
+ bool AreArgsDependent =
+ TemplateSpecializationType::anyDependentTemplateArguments(*TemplateArgs,
+ Converted);
+ if (!AreArgsDependent &&
+ CheckConstraintSatisfaction(
+ NamedConcept, {NamedConcept->getConstraintExpr()}, Converted,
+ SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(),
+ TemplateArgs->getRAngleLoc()),
+ Satisfaction))
+ return ExprError();
+
+ return ConceptSpecializationExpr::Create(Context,
+ SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
+ TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
+ ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted,
+ AreArgsDependent ? nullptr : &Satisfaction);
+}
+
+ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ LookupResult &R,
+ bool RequiresADL,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ // FIXME: Can we do any checking at this point? I guess we could check the
+ // template arguments that we have against the template name, if the template
+ // name refers to a single template. That's not a terribly common case,
+ // though.
+ // foo<int> could identify a single function unambiguously
+ // This approach does NOT work, since f<int>(1);
+ // gets resolved prior to resorting to overload resolution
+ // i.e., template<class T> void f(double);
+ // vs template<class T, class U> void f(U);
+
+ // These should be filtered out by our callers.
+ assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
+
+ // Non-function templates require a template argument list.
+ if (auto *TD = R.getAsSingle<TemplateDecl>()) {
+ if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) {
+ diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc());
+ return ExprError();
+ }
+ }
+
+ // In C++1y, check variable template ids.
+ if (R.getAsSingle<VarTemplateDecl>()) {
+ ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(),
+ R.getAsSingle<VarTemplateDecl>(),
+ TemplateKWLoc, TemplateArgs);
+ if (Res.isInvalid() || Res.isUsable())
+ return Res;
+ // Result is dependent. Carry on to build an UnresolvedLookupEpxr.
+ }
+
+ if (R.getAsSingle<ConceptDecl>()) {
+ return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(),
+ R.getFoundDecl(),
+ R.getAsSingle<ConceptDecl>(), TemplateArgs);
+ }
+
+ // We don't want lookup warnings at this point.
+ R.suppressDiagnostics();
+
+ UnresolvedLookupExpr *ULE
+ = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
+ SS.getWithLocInContext(Context),
+ TemplateKWLoc,
+ R.getLookupNameInfo(),
+ RequiresADL, TemplateArgs,
+ R.begin(), R.end());
+
+ return ULE;
+}
+
+// We actually only call this from template instantiation.
+ExprResult
+Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ const DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *TemplateArgs) {
+
+ assert(TemplateArgs || TemplateKWLoc.isValid());
+ DeclContext *DC;
+ if (!(DC = computeDeclContext(SS, false)) ||
+ DC->isDependentContext() ||
+ RequireCompleteDeclContext(SS, DC))
+ return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
+
+ bool MemberOfUnknownSpecialization;
+ LookupResult R(*this, NameInfo, LookupOrdinaryName);
+ if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(),
+ /*Entering*/false, MemberOfUnknownSpecialization,
+ TemplateKWLoc))
+ return ExprError();
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ if (R.empty()) {
+ Diag(NameInfo.getLoc(), diag::err_no_member)
+ << NameInfo.getName() << DC << SS.getRange();
+ return ExprError();
+ }
+
+ if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
+ Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
+ << SS.getScopeRep()
+ << NameInfo.getName().getAsString() << SS.getRange();
+ Diag(Temp->getLocation(), diag::note_referenced_class_template);
+ return ExprError();
+ }
+
+ return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
+}
+
+/// Form a template name from a name that is syntactically required to name a
+/// template, either due to use of the 'template' keyword or because a name in
+/// this syntactic context is assumed to name a template (C++ [temp.names]p2-4).
+///
+/// This action forms a template name given the name of the template and its
+/// optional scope specifier. This is used when the 'template' keyword is used
+/// or when the parsing context unambiguously treats a following '<' as
+/// introducing a template argument list. Note that this may produce a
+/// non-dependent template name if we can perform the lookup now and identify
+/// the named template.
+///
+/// For example, given "x.MetaFun::template apply", the scope specifier
+/// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
+/// of the "template" keyword, and "apply" is the \p Name.
+TemplateNameKind Sema::ActOnTemplateName(Scope *S,
+ CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ const UnqualifiedId &Name,
+ ParsedType ObjectType,
+ bool EnteringContext,
+ TemplateTy &Result,
+ bool AllowInjectedClassName) {
+ if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
+ Diag(TemplateKWLoc,
+ getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_template_outside_of_template :
+ diag::ext_template_outside_of_template)
+ << FixItHint::CreateRemoval(TemplateKWLoc);
+
+ if (SS.isInvalid())
+ return TNK_Non_template;
+
+ // Figure out where isTemplateName is going to look.
+ DeclContext *LookupCtx = nullptr;
+ if (SS.isNotEmpty())
+ LookupCtx = computeDeclContext(SS, EnteringContext);
+ else if (ObjectType)
+ LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType));
+
+ // C++0x [temp.names]p5:
+ // If a name prefixed by the keyword template is not the name of
+ // a template, the program is ill-formed. [Note: the keyword
+ // template may not be applied to non-template members of class
+ // templates. -end note ] [ Note: as is the case with the
+ // typename prefix, the template prefix is allowed in cases
+ // where it is not strictly necessary; i.e., when the
+ // nested-name-specifier or the expression on the left of the ->
+ // or . is not dependent on a template-parameter, or the use
+ // does not appear in the scope of a template. -end note]
+ //
+ // Note: C++03 was more strict here, because it banned the use of
+ // the "template" keyword prior to a template-name that was not a
+ // dependent name. C++ DR468 relaxed this requirement (the
+ // "template" keyword is now permitted). We follow the C++0x
+ // rules, even in C++03 mode with a warning, retroactively applying the DR.
+ bool MemberOfUnknownSpecialization;
+ TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
+ ObjectType, EnteringContext, Result,
+ MemberOfUnknownSpecialization);
+ if (TNK != TNK_Non_template) {
+ // We resolved this to a (non-dependent) template name. Return it.
+ auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
+ if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
+ Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
+ Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
+ // C++14 [class.qual]p2:
+ // In a lookup in which function names are not ignored and the
+ // nested-name-specifier nominates a class C, if the name specified
+ // [...] is the injected-class-name of C, [...] the name is instead
+ // considered to name the constructor
+ //
+ // We don't get here if naming the constructor would be valid, so we
+ // just reject immediately and recover by treating the
+ // injected-class-name as naming the template.
+ Diag(Name.getBeginLoc(),
+ diag::ext_out_of_line_qualified_id_type_names_constructor)
+ << Name.Identifier
+ << 0 /*injected-class-name used as template name*/
+ << TemplateKWLoc.isValid();
+ }
+ return TNK;
+ }
+
+ if (!MemberOfUnknownSpecialization) {
+ // Didn't find a template name, and the lookup wasn't dependent.
+ // Do the lookup again to determine if this is a "nothing found" case or
+ // a "not a template" case. FIXME: Refactor isTemplateName so we don't
+ // need to do this.
+ DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
+ LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
+ LookupOrdinaryName);
+ bool MOUS;
+ // Tell LookupTemplateName that we require a template so that it diagnoses
+ // cases where it finds a non-template.
+ RequiredTemplateKind RTK = TemplateKWLoc.isValid()
+ ? RequiredTemplateKind(TemplateKWLoc)
+ : TemplateNameIsRequired;
+ if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS,
+ RTK, nullptr, /*AllowTypoCorrection=*/false) &&
+ !R.isAmbiguous()) {
+ if (LookupCtx)
+ Diag(Name.getBeginLoc(), diag::err_no_member)
+ << DNI.getName() << LookupCtx << SS.getRange();
+ else
+ Diag(Name.getBeginLoc(), diag::err_undeclared_use)
+ << DNI.getName() << SS.getRange();
+ }
+ return TNK_Non_template;
+ }
+
+ NestedNameSpecifier *Qualifier = SS.getScopeRep();
+
+ switch (Name.getKind()) {
+ case UnqualifiedIdKind::IK_Identifier:
+ Result = TemplateTy::make(
+ Context.getDependentTemplateName(Qualifier, Name.Identifier));
+ return TNK_Dependent_template_name;
+
+ case UnqualifiedIdKind::IK_OperatorFunctionId:
+ Result = TemplateTy::make(Context.getDependentTemplateName(
+ Qualifier, Name.OperatorFunctionId.Operator));
+ return TNK_Function_template;
+
+ case UnqualifiedIdKind::IK_LiteralOperatorId:
+ // This is a kind of template name, but can never occur in a dependent
+ // scope (literal operators can only be declared at namespace scope).
+ break;
+
+ default:
+ break;
+ }
+
+ // This name cannot possibly name a dependent template. Diagnose this now
+ // rather than building a dependent template name that can never be valid.
+ Diag(Name.getBeginLoc(),
+ diag::err_template_kw_refers_to_dependent_non_template)
+ << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
+ << TemplateKWLoc.isValid() << TemplateKWLoc;
+ return TNK_Non_template;
+}
+
+bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
+ TemplateArgumentLoc &AL,
+ SmallVectorImpl<TemplateArgument> &Converted) {
+ const TemplateArgument &Arg = AL.getArgument();
+ QualType ArgType;
+ TypeSourceInfo *TSI = nullptr;
+
+ // Check template type parameter.
+ switch(Arg.getKind()) {
+ case TemplateArgument::Type:
+ // C++ [temp.arg.type]p1:
+ // A template-argument for a template-parameter which is a
+ // type shall be a type-id.
+ ArgType = Arg.getAsType();
+ TSI = AL.getTypeSourceInfo();
+ break;
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion: {
+ // We have a template type parameter but the template argument
+ // is a template without any arguments.
+ SourceRange SR = AL.getSourceRange();
+ TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
+ diagnoseMissingTemplateArguments(Name, SR.getEnd());
+ return true;
+ }
+ case TemplateArgument::Expression: {
+ // We have a template type parameter but the template argument is an
+ // expression; see if maybe it is missing the "typename" keyword.
+ CXXScopeSpec SS;
+ DeclarationNameInfo NameInfo;
+
+ if (DependentScopeDeclRefExpr *ArgExpr =
+ dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
+ SS.Adopt(ArgExpr->getQualifierLoc());
+ NameInfo = ArgExpr->getNameInfo();
+ } else if (CXXDependentScopeMemberExpr *ArgExpr =
+ dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
+ if (ArgExpr->isImplicitAccess()) {
+ SS.Adopt(ArgExpr->getQualifierLoc());
+ NameInfo = ArgExpr->getMemberNameInfo();
+ }
+ }
+
+ if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
+ LookupResult Result(*this, NameInfo, LookupOrdinaryName);
+ LookupParsedName(Result, CurScope, &SS);
+
+ if (Result.getAsSingle<TypeDecl>() ||
+ Result.getResultKind() ==
+ LookupResult::NotFoundInCurrentInstantiation) {
+ assert(SS.getScopeRep() && "dependent scope expr must has a scope!");
+ // Suggest that the user add 'typename' before the NNS.
+ SourceLocation Loc = AL.getSourceRange().getBegin();
+ Diag(Loc, getLangOpts().MSVCCompat
+ ? diag::ext_ms_template_type_arg_missing_typename
+ : diag::err_template_arg_must_be_type_suggest)
+ << FixItHint::CreateInsertion(Loc, "typename ");
+ Diag(Param->getLocation(), diag::note_template_param_here);
+
+ // Recover by synthesizing a type using the location information that we
+ // already have.
+ ArgType =
+ Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
+ TypeLocBuilder TLB;
+ DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
+ TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
+ TL.setQualifierLoc(SS.getWithLocInContext(Context));
+ TL.setNameLoc(NameInfo.getLoc());
+ TSI = TLB.getTypeSourceInfo(Context, ArgType);
+
+ // Overwrite our input TemplateArgumentLoc so that we can recover
+ // properly.
+ AL = TemplateArgumentLoc(TemplateArgument(ArgType),
+ TemplateArgumentLocInfo(TSI));
+
+ break;
+ }
+ }
+ // fallthrough
+ LLVM_FALLTHROUGH;
+ }
+ default: {
+ // We have a template type parameter but the template argument
+ // is not a type.
+ SourceRange SR = AL.getSourceRange();
+ Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
+ Diag(Param->getLocation(), diag::note_template_param_here);
+
+ return true;
+ }
+ }
+
+ if (CheckTemplateArgument(TSI))
+ return true;
+
+ // Add the converted template type argument.
+ ArgType = Context.getCanonicalType(ArgType);
+
+ // Objective-C ARC:
+ // If an explicitly-specified template argument type is a lifetime type
+ // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
+ if (getLangOpts().ObjCAutoRefCount &&
+ ArgType->isObjCLifetimeType() &&
+ !ArgType.getObjCLifetime()) {
+ Qualifiers Qs;
+ Qs.setObjCLifetime(Qualifiers::OCL_Strong);
+ ArgType = Context.getQualifiedType(ArgType, Qs);
+ }
+
+ Converted.push_back(TemplateArgument(ArgType));
+ return false;
+}
+
+/// Substitute template arguments into the default template argument for
+/// the given template type parameter.
+///
+/// \param SemaRef the semantic analysis object for which we are performing
+/// the substitution.
+///
+/// \param Template the template that we are synthesizing template arguments
+/// for.
+///
+/// \param TemplateLoc the location of the template name that started the
+/// template-id we are checking.
+///
+/// \param RAngleLoc the location of the right angle bracket ('>') that
+/// terminates the template-id.
+///
+/// \param Param the template template parameter whose default we are
+/// substituting into.
+///
+/// \param Converted the list of template arguments provided for template
+/// parameters that precede \p Param in the template parameter list.
+/// \returns the substituted template argument, or NULL if an error occurred.
+static TypeSourceInfo *
+SubstDefaultTemplateArgument(Sema &SemaRef,
+ TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ TemplateTypeParmDecl *Param,
+ SmallVectorImpl<TemplateArgument> &Converted) {
+ TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
+
+ // If the argument type is dependent, instantiate it now based
+ // on the previously-computed template arguments.
+ if (ArgType->getType()->isInstantiationDependentType()) {
+ Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
+ Param, Template, Converted,
+ SourceRange(TemplateLoc, RAngleLoc));
+ if (Inst.isInvalid())
+ return nullptr;
+
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
+
+ // Only substitute for the innermost template argument list.
+ MultiLevelTemplateArgumentList TemplateArgLists;
+ TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
+ for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
+ TemplateArgLists.addOuterTemplateArguments(None);
+
+ bool ForLambdaCallOperator = false;
+ if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext()))
+ ForLambdaCallOperator = Rec->isLambda();
+ Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(),
+ !ForLambdaCallOperator);
+ ArgType =
+ SemaRef.SubstType(ArgType, TemplateArgLists,
+ Param->getDefaultArgumentLoc(), Param->getDeclName());
+ }
+
+ return ArgType;
+}
+
+/// Substitute template arguments into the default template argument for
+/// the given non-type template parameter.
+///
+/// \param SemaRef the semantic analysis object for which we are performing
+/// the substitution.
+///
+/// \param Template the template that we are synthesizing template arguments
+/// for.
+///
+/// \param TemplateLoc the location of the template name that started the
+/// template-id we are checking.
+///
+/// \param RAngleLoc the location of the right angle bracket ('>') that
+/// terminates the template-id.
+///
+/// \param Param the non-type template parameter whose default we are
+/// substituting into.
+///
+/// \param Converted the list of template arguments provided for template
+/// parameters that precede \p Param in the template parameter list.
+///
+/// \returns the substituted template argument, or NULL if an error occurred.
+static ExprResult
+SubstDefaultTemplateArgument(Sema &SemaRef,
+ TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ NonTypeTemplateParmDecl *Param,
+ SmallVectorImpl<TemplateArgument> &Converted) {
+ Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
+ Param, Template, Converted,
+ SourceRange(TemplateLoc, RAngleLoc));
+ if (Inst.isInvalid())
+ return ExprError();
+
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
+
+ // Only substitute for the innermost template argument list.
+ MultiLevelTemplateArgumentList TemplateArgLists;
+ TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
+ for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
+ TemplateArgLists.addOuterTemplateArguments(None);
+
+ Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
+ EnterExpressionEvaluationContext ConstantEvaluated(
+ SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+ return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
+}
+
+/// Substitute template arguments into the default template argument for
+/// the given template template parameter.
+///
+/// \param SemaRef the semantic analysis object for which we are performing
+/// the substitution.
+///
+/// \param Template the template that we are synthesizing template arguments
+/// for.
+///
+/// \param TemplateLoc the location of the template name that started the
+/// template-id we are checking.
+///
+/// \param RAngleLoc the location of the right angle bracket ('>') that
+/// terminates the template-id.
+///
+/// \param Param the template template parameter whose default we are
+/// substituting into.
+///
+/// \param Converted the list of template arguments provided for template
+/// parameters that precede \p Param in the template parameter list.
+///
+/// \param QualifierLoc Will be set to the nested-name-specifier (with
+/// source-location information) that precedes the template name.
+///
+/// \returns the substituted template argument, or NULL if an error occurred.
+static TemplateName
+SubstDefaultTemplateArgument(Sema &SemaRef,
+ TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ TemplateTemplateParmDecl *Param,
+ SmallVectorImpl<TemplateArgument> &Converted,
+ NestedNameSpecifierLoc &QualifierLoc) {
+ Sema::InstantiatingTemplate Inst(
+ SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
+ SourceRange(TemplateLoc, RAngleLoc));
+ if (Inst.isInvalid())
+ return TemplateName();
+
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
+
+ // Only substitute for the innermost template argument list.
+ MultiLevelTemplateArgumentList TemplateArgLists;
+ TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
+ for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
+ TemplateArgLists.addOuterTemplateArguments(None);
+
+ Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
+ // Substitute into the nested-name-specifier first,
+ QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
+ if (QualifierLoc) {
+ QualifierLoc =
+ SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
+ if (!QualifierLoc)
+ return TemplateName();
+ }
+
+ return SemaRef.SubstTemplateName(
+ QualifierLoc,
+ Param->getDefaultArgument().getArgument().getAsTemplate(),
+ Param->getDefaultArgument().getTemplateNameLoc(),
+ TemplateArgLists);
+}
+
+/// If the given template parameter has a default template
+/// argument, substitute into that default template argument and
+/// return the corresponding template argument.
+TemplateArgumentLoc
+Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ Decl *Param,
+ SmallVectorImpl<TemplateArgument>
+ &Converted,
+ bool &HasDefaultArg) {
+ HasDefaultArg = false;
+
+ if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
+ if (!hasVisibleDefaultArgument(TypeParm))
+ return TemplateArgumentLoc();
+
+ HasDefaultArg = true;
+ TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ TypeParm,
+ Converted);
+ if (DI)
+ return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
+
+ return TemplateArgumentLoc();
+ }
+
+ if (NonTypeTemplateParmDecl *NonTypeParm
+ = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ if (!hasVisibleDefaultArgument(NonTypeParm))
+ return TemplateArgumentLoc();
+
+ HasDefaultArg = true;
+ ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ NonTypeParm,
+ Converted);
+ if (Arg.isInvalid())
+ return TemplateArgumentLoc();
+
+ Expr *ArgE = Arg.getAs<Expr>();
+ return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
+ }
+
+ TemplateTemplateParmDecl *TempTempParm
+ = cast<TemplateTemplateParmDecl>(Param);
+ if (!hasVisibleDefaultArgument(TempTempParm))
+ return TemplateArgumentLoc();
+
+ HasDefaultArg = true;
+ NestedNameSpecifierLoc QualifierLoc;
+ TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ TempTempParm,
+ Converted,
+ QualifierLoc);
+ if (TName.isNull())
+ return TemplateArgumentLoc();
+
+ return TemplateArgumentLoc(
+ Context, TemplateArgument(TName),
+ TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
+ TempTempParm->getDefaultArgument().getTemplateNameLoc());
+}
+
+/// Convert a template-argument that we parsed as a type into a template, if
+/// possible. C++ permits injected-class-names to perform dual service as
+/// template template arguments and as template type arguments.
+static TemplateArgumentLoc
+convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
+ // Extract and step over any surrounding nested-name-specifier.
+ NestedNameSpecifierLoc QualLoc;
+ if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
+ if (ETLoc.getTypePtr()->getKeyword() != ETK_None)
+ return TemplateArgumentLoc();
+
+ QualLoc = ETLoc.getQualifierLoc();
+ TLoc = ETLoc.getNamedTypeLoc();
+ }
+ // If this type was written as an injected-class-name, it can be used as a
+ // template template argument.
+ if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
+ return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
+ QualLoc, InjLoc.getNameLoc());
+
+ // If this type was written as an injected-class-name, it may have been
+ // converted to a RecordType during instantiation. If the RecordType is
+ // *not* wrapped in a TemplateSpecializationType and denotes a class
+ // template specialization, it must have come from an injected-class-name.
+ if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
+ if (auto *CTSD =
+ dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl()))
+ return TemplateArgumentLoc(Context,
+ TemplateName(CTSD->getSpecializedTemplate()),
+ QualLoc, RecLoc.getNameLoc());
+
+ return TemplateArgumentLoc();
+}
+
+/// Check that the given template argument corresponds to the given
+/// template parameter.
+///
+/// \param Param The template parameter against which the argument will be
+/// checked.
+///
+/// \param Arg The template argument, which may be updated due to conversions.
+///
+/// \param Template The template in which the template argument resides.
+///
+/// \param TemplateLoc The location of the template name for the template
+/// whose argument list we're matching.
+///
+/// \param RAngleLoc The location of the right angle bracket ('>') that closes
+/// the template argument list.
+///
+/// \param ArgumentPackIndex The index into the argument pack where this
+/// argument will be placed. Only valid if the parameter is a parameter pack.
+///
+/// \param Converted The checked, converted argument will be added to the
+/// end of this small vector.
+///
+/// \param CTAK Describes how we arrived at this particular template argument:
+/// explicitly written, deduced, etc.
+///
+/// \returns true on error, false otherwise.
+bool Sema::CheckTemplateArgument(NamedDecl *Param,
+ TemplateArgumentLoc &Arg,
+ NamedDecl *Template,
+ SourceLocation TemplateLoc,
+ SourceLocation RAngleLoc,
+ unsigned ArgumentPackIndex,
+ SmallVectorImpl<TemplateArgument> &Converted,
+ CheckTemplateArgumentKind CTAK) {
+ // Check template type parameters.
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
+ return CheckTemplateTypeArgument(TTP, Arg, Converted);
+
+ // Check non-type template parameters.
+ if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ // Do substitution on the type of the non-type template parameter
+ // with the template arguments we've seen thus far. But if the
+ // template has a dependent context then we cannot substitute yet.
+ QualType NTTPType = NTTP->getType();
+ if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
+ NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
+
+ if (NTTPType->isInstantiationDependentType() &&
+ !isa<TemplateTemplateParmDecl>(Template) &&
+ !Template->getDeclContext()->isDependentContext()) {
+ // Do substitution on the type of the non-type template parameter.
+ InstantiatingTemplate Inst(*this, TemplateLoc, Template,
+ NTTP, Converted,
+ SourceRange(TemplateLoc, RAngleLoc));
+ if (Inst.isInvalid())
+ return true;
+
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Converted);
+
+ // If the parameter is a pack expansion, expand this slice of the pack.
+ if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
+ ArgumentPackIndex);
+ NTTPType = SubstType(PET->getPattern(),
+ MultiLevelTemplateArgumentList(TemplateArgs),
+ NTTP->getLocation(),
+ NTTP->getDeclName());
+ } else {
+ NTTPType = SubstType(NTTPType,
+ MultiLevelTemplateArgumentList(TemplateArgs),
+ NTTP->getLocation(),
+ NTTP->getDeclName());
+ }
+
+ // If that worked, check the non-type template parameter type
+ // for validity.
+ if (!NTTPType.isNull())
+ NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
+ NTTP->getLocation());
+ if (NTTPType.isNull())
+ return true;
+ }
+
+ switch (Arg.getArgument().getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Should never see a NULL template argument here");
+
+ case TemplateArgument::Expression: {
+ TemplateArgument Result;
+ unsigned CurSFINAEErrors = NumSFINAEErrors;
+ ExprResult Res =
+ CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
+ Result, CTAK);
+ if (Res.isInvalid())
+ return true;
+ // If the current template argument causes an error, give up now.
+ if (CurSFINAEErrors < NumSFINAEErrors)
+ return true;
+
+ // If the resulting expression is new, then use it in place of the
+ // old expression in the template argument.
+ if (Res.get() != Arg.getArgument().getAsExpr()) {
+ TemplateArgument TA(Res.get());
+ Arg = TemplateArgumentLoc(TA, Res.get());
+ }
+
+ Converted.push_back(Result);
+ break;
+ }
+
+ case TemplateArgument::Declaration:
+ case TemplateArgument::Integral:
+ case TemplateArgument::NullPtr:
+ // We've already checked this template argument, so just copy
+ // it to the list of converted arguments.
+ Converted.push_back(Arg.getArgument());
+ break;
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ // We were given a template template argument. It may not be ill-formed;
+ // see below.
+ if (DependentTemplateName *DTN
+ = Arg.getArgument().getAsTemplateOrTemplatePattern()
+ .getAsDependentTemplateName()) {
+ // We have a template argument such as \c T::template X, which we
+ // parsed as a template template argument. However, since we now
+ // know that we need a non-type template argument, convert this
+ // template name into an expression.
+
+ DeclarationNameInfo NameInfo(DTN->getIdentifier(),
+ Arg.getTemplateNameLoc());
+
+ CXXScopeSpec SS;
+ SS.Adopt(Arg.getTemplateQualifierLoc());
+ // FIXME: the template-template arg was a DependentTemplateName,
+ // so it was provided with a template keyword. However, its source
+ // location is not stored in the template argument structure.
+ SourceLocation TemplateKWLoc;
+ ExprResult E = DependentScopeDeclRefExpr::Create(
+ Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
+ nullptr);
+
+ // If we parsed the template argument as a pack expansion, create a
+ // pack expansion expression.
+ if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
+ E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
+ if (E.isInvalid())
+ return true;
+ }
+
+ TemplateArgument Result;
+ E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
+ if (E.isInvalid())
+ return true;
+
+ Converted.push_back(Result);
+ break;
+ }
+
+ // We have a template argument that actually does refer to a class
+ // template, alias template, or template template parameter, and
+ // therefore cannot be a non-type template argument.
+ Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
+ << Arg.getSourceRange();
+
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+
+ case TemplateArgument::Type: {
+ // We have a non-type template parameter but the template
+ // argument is a type.
+
+ // C++ [temp.arg]p2:
+ // In a template-argument, an ambiguity between a type-id and
+ // an expression is resolved to a type-id, regardless of the
+ // form of the corresponding template-parameter.
+ //
+ // We warn specifically about this case, since it can be rather
+ // confusing for users.
+ QualType T = Arg.getArgument().getAsType();
+ SourceRange SR = Arg.getSourceRange();
+ if (T->isFunctionType())
+ Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
+ else
+ Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ case TemplateArgument::Pack:
+ llvm_unreachable("Caller must expand template argument packs");
+ }
+
+ return false;
+ }
+
+
+ // Check template template parameters.
+ TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
+
+ TemplateParameterList *Params = TempParm->getTemplateParameters();
+ if (TempParm->isExpandedParameterPack())
+ Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex);
+
+ // Substitute into the template parameter list of the template
+ // template parameter, since previously-supplied template arguments
+ // may appear within the template template parameter.
+ //
+ // FIXME: Skip this if the parameters aren't instantiation-dependent.
+ {
+ // Set up a template instantiation context.
+ LocalInstantiationScope Scope(*this);
+ InstantiatingTemplate Inst(*this, TemplateLoc, Template,
+ TempParm, Converted,
+ SourceRange(TemplateLoc, RAngleLoc));
+ if (Inst.isInvalid())
+ return true;
+
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
+ Params = SubstTemplateParams(Params, CurContext,
+ MultiLevelTemplateArgumentList(TemplateArgs));
+ if (!Params)
+ return true;
+ }
+
+ // C++1z [temp.local]p1: (DR1004)
+ // When [the injected-class-name] is used [...] as a template-argument for
+ // a template template-parameter [...] it refers to the class template
+ // itself.
+ if (Arg.getArgument().getKind() == TemplateArgument::Type) {
+ TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
+ Context, Arg.getTypeSourceInfo()->getTypeLoc());
+ if (!ConvertedArg.getArgument().isNull())
+ Arg = ConvertedArg;
+ }
+
+ switch (Arg.getArgument().getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Should never see a NULL template argument here");
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ if (CheckTemplateTemplateArgument(TempParm, Params, Arg))
+ return true;
+
+ Converted.push_back(Arg.getArgument());
+ break;
+
+ case TemplateArgument::Expression:
+ case TemplateArgument::Type:
+ // We have a template template parameter but the template
+ // argument does not refer to a template.
+ Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
+ << getLangOpts().CPlusPlus11;
+ return true;
+
+ case TemplateArgument::Declaration:
+ llvm_unreachable("Declaration argument with template template parameter");
+ case TemplateArgument::Integral:
+ llvm_unreachable("Integral argument with template template parameter");
+ case TemplateArgument::NullPtr:
+ llvm_unreachable("Null pointer argument with template template parameter");
+
+ case TemplateArgument::Pack:
+ llvm_unreachable("Caller must expand template argument packs");
+ }
+
+ return false;
+}
+
+/// Diagnose a missing template argument.
+template<typename TemplateParmDecl>
+static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
+ TemplateDecl *TD,
+ const TemplateParmDecl *D,
+ TemplateArgumentListInfo &Args) {
+ // Dig out the most recent declaration of the template parameter; there may be
+ // declarations of the template that are more recent than TD.
+ D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
+ ->getTemplateParameters()
+ ->getParam(D->getIndex()));
+
+ // If there's a default argument that's not visible, diagnose that we're
+ // missing a module import.
+ llvm::SmallVector<Module*, 8> Modules;
+ if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
+ S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
+ D->getDefaultArgumentLoc(), Modules,
+ Sema::MissingImportKind::DefaultArgument,
+ /*Recover*/true);
+ return true;
+ }
+
+ // FIXME: If there's a more recent default argument that *is* visible,
+ // diagnose that it was declared too late.
+
+ TemplateParameterList *Params = TD->getTemplateParameters();
+
+ S.Diag(Loc, diag::err_template_arg_list_different_arity)
+ << /*not enough args*/0
+ << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
+ << TD;
+ S.Diag(TD->getLocation(), diag::note_template_decl_here)
+ << Params->getSourceRange();
+ return true;
+}
+
+/// Check that the given template argument list is well-formed
+/// for specializing the given template.
+bool Sema::CheckTemplateArgumentList(
+ TemplateDecl *Template, SourceLocation TemplateLoc,
+ TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
+ SmallVectorImpl<TemplateArgument> &Converted,
+ bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
+
+ if (ConstraintsNotSatisfied)
+ *ConstraintsNotSatisfied = false;
+
+ // Make a copy of the template arguments for processing. Only make the
+ // changes at the end when successful in matching the arguments to the
+ // template.
+ TemplateArgumentListInfo NewArgs = TemplateArgs;
+
+ // Make sure we get the template parameter list from the most
+ // recent declaration, since that is the only one that is guaranteed to
+ // have all the default template argument information.
+ TemplateParameterList *Params =
+ cast<TemplateDecl>(Template->getMostRecentDecl())
+ ->getTemplateParameters();
+
+ SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
+
+ // C++ [temp.arg]p1:
+ // [...] The type and form of each template-argument specified in
+ // a template-id shall match the type and form specified for the
+ // corresponding parameter declared by the template in its
+ // template-parameter-list.
+ bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
+ SmallVector<TemplateArgument, 2> ArgumentPack;
+ unsigned ArgIdx = 0, NumArgs = NewArgs.size();
+ LocalInstantiationScope InstScope(*this, true);
+ for (TemplateParameterList::iterator Param = Params->begin(),
+ ParamEnd = Params->end();
+ Param != ParamEnd; /* increment in loop */) {
+ // If we have an expanded parameter pack, make sure we don't have too
+ // many arguments.
+ if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
+ if (*Expansions == ArgumentPack.size()) {
+ // We're done with this parameter pack. Pack up its arguments and add
+ // them to the list.
+ Converted.push_back(
+ TemplateArgument::CreatePackCopy(Context, ArgumentPack));
+ ArgumentPack.clear();
+
+ // This argument is assigned to the next parameter.
+ ++Param;
+ continue;
+ } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
+ // Not enough arguments for this parameter pack.
+ Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
+ << /*not enough args*/0
+ << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
+ << Template;
+ Diag(Template->getLocation(), diag::note_template_decl_here)
+ << Params->getSourceRange();
+ return true;
+ }
+ }
+
+ if (ArgIdx < NumArgs) {
+ // Check the template argument we were given.
+ if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
+ TemplateLoc, RAngleLoc,
+ ArgumentPack.size(), Converted))
+ return true;
+
+ bool PackExpansionIntoNonPack =
+ NewArgs[ArgIdx].getArgument().isPackExpansion() &&
+ (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
+ if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) ||
+ isa<ConceptDecl>(Template))) {
+ // Core issue 1430: we have a pack expansion as an argument to an
+ // alias template, and it's not part of a parameter pack. This
+ // can't be canonicalized, so reject it now.
+ // As for concepts - we cannot normalize constraints where this
+ // situation exists.
+ Diag(NewArgs[ArgIdx].getLocation(),
+ diag::err_template_expansion_into_fixed_list)
+ << (isa<ConceptDecl>(Template) ? 1 : 0)
+ << NewArgs[ArgIdx].getSourceRange();
+ Diag((*Param)->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ // We're now done with this argument.
+ ++ArgIdx;
+
+ if ((*Param)->isTemplateParameterPack()) {
+ // The template parameter was a template parameter pack, so take the
+ // deduced argument and place it on the argument pack. Note that we
+ // stay on the same template parameter so that we can deduce more
+ // arguments.
+ ArgumentPack.push_back(Converted.pop_back_val());
+ } else {
+ // Move to the next template parameter.
+ ++Param;
+ }
+
+ // If we just saw a pack expansion into a non-pack, then directly convert
+ // the remaining arguments, because we don't know what parameters they'll
+ // match up with.
+ if (PackExpansionIntoNonPack) {
+ if (!ArgumentPack.empty()) {
+ // If we were part way through filling in an expanded parameter pack,
+ // fall back to just producing individual arguments.
+ Converted.insert(Converted.end(),
+ ArgumentPack.begin(), ArgumentPack.end());
+ ArgumentPack.clear();
+ }
+
+ while (ArgIdx < NumArgs) {
+ Converted.push_back(NewArgs[ArgIdx].getArgument());
+ ++ArgIdx;
+ }
+
+ return false;
+ }
+
+ continue;
+ }
+
+ // If we're checking a partial template argument list, we're done.
+ if (PartialTemplateArgs) {
+ if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
+ Converted.push_back(
+ TemplateArgument::CreatePackCopy(Context, ArgumentPack));
+ return false;
+ }
+
+ // If we have a template parameter pack with no more corresponding
+ // arguments, just break out now and we'll fill in the argument pack below.
+ if ((*Param)->isTemplateParameterPack()) {
+ assert(!getExpandedPackSize(*Param) &&
+ "Should have dealt with this already");
+
+ // A non-expanded parameter pack before the end of the parameter list
+ // only occurs for an ill-formed template parameter list, unless we've
+ // got a partial argument list for a function template, so just bail out.
+ if (Param + 1 != ParamEnd)
+ return true;
+
+ Converted.push_back(
+ TemplateArgument::CreatePackCopy(Context, ArgumentPack));
+ ArgumentPack.clear();
+
+ ++Param;
+ continue;
+ }
+
+ // Check whether we have a default argument.
+ TemplateArgumentLoc Arg;
+
+ // Retrieve the default template argument from the template
+ // parameter. For each kind of template parameter, we substitute the
+ // template arguments provided thus far and any "outer" template arguments
+ // (when the template parameter was part of a nested template) into
+ // the default argument.
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
+ if (!hasVisibleDefaultArgument(TTP))
+ return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
+ NewArgs);
+
+ TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
+ Template,
+ TemplateLoc,
+ RAngleLoc,
+ TTP,
+ Converted);
+ if (!ArgType)
+ return true;
+
+ Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
+ ArgType);
+ } else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
+ if (!hasVisibleDefaultArgument(NTTP))
+ return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
+ NewArgs);
+
+ ExprResult E = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ NTTP,
+ Converted);
+ if (E.isInvalid())
+ return true;
+
+ Expr *Ex = E.getAs<Expr>();
+ Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
+ } else {
+ TemplateTemplateParmDecl *TempParm
+ = cast<TemplateTemplateParmDecl>(*Param);
+
+ if (!hasVisibleDefaultArgument(TempParm))
+ return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
+ NewArgs);
+
+ NestedNameSpecifierLoc QualifierLoc;
+ TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
+ TemplateLoc,
+ RAngleLoc,
+ TempParm,
+ Converted,
+ QualifierLoc);
+ if (Name.isNull())
+ return true;
+
+ Arg = TemplateArgumentLoc(
+ Context, TemplateArgument(Name), QualifierLoc,
+ TempParm->getDefaultArgument().getTemplateNameLoc());
+ }
+
+ // Introduce an instantiation record that describes where we are using
+ // the default template argument. We're not actually instantiating a
+ // template here, we just create this object to put a note into the
+ // context stack.
+ InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
+ SourceRange(TemplateLoc, RAngleLoc));
+ if (Inst.isInvalid())
+ return true;
+
+ // Check the default template argument.
+ if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
+ RAngleLoc, 0, Converted))
+ return true;
+
+ // Core issue 150 (assumed resolution): if this is a template template
+ // parameter, keep track of the default template arguments from the
+ // template definition.
+ if (isTemplateTemplateParameter)
+ NewArgs.addArgument(Arg);
+
+ // Move to the next template parameter and argument.
+ ++Param;
+ ++ArgIdx;
+ }
+
+ // If we're performing a partial argument substitution, allow any trailing
+ // pack expansions; they might be empty. This can happen even if
+ // PartialTemplateArgs is false (the list of arguments is complete but
+ // still dependent).
+ if (ArgIdx < NumArgs && CurrentInstantiationScope &&
+ CurrentInstantiationScope->getPartiallySubstitutedPack()) {
+ while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
+ Converted.push_back(NewArgs[ArgIdx++].getArgument());
+ }
+
+ // If we have any leftover arguments, then there were too many arguments.
+ // Complain and fail.
+ if (ArgIdx < NumArgs) {
+ Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
+ << /*too many args*/1
+ << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
+ << Template
+ << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
+ Diag(Template->getLocation(), diag::note_template_decl_here)
+ << Params->getSourceRange();
+ return true;
+ }
+
+ // No problems found with the new argument list, propagate changes back
+ // to caller.
+ if (UpdateArgsWithConversions)
+ TemplateArgs = std::move(NewArgs);
+
+ if (!PartialTemplateArgs &&
+ EnsureTemplateArgumentListConstraints(
+ Template, Converted, SourceRange(TemplateLoc,
+ TemplateArgs.getRAngleLoc()))) {
+ if (ConstraintsNotSatisfied)
+ *ConstraintsNotSatisfied = true;
+ return true;
+ }
+
+ return false;
+}
+
+namespace {
+ class UnnamedLocalNoLinkageFinder
+ : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
+ {
+ Sema &S;
+ SourceRange SR;
+
+ typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
+
+ public:
+ UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
+
+ bool Visit(QualType T) {
+ return T.isNull() ? false : inherited::Visit(T.getTypePtr());
+ }
+
+#define TYPE(Class, Parent) \
+ bool Visit##Class##Type(const Class##Type *);
+#define ABSTRACT_TYPE(Class, Parent) \
+ bool Visit##Class##Type(const Class##Type *) { return false; }
+#define NON_CANONICAL_TYPE(Class, Parent) \
+ bool Visit##Class##Type(const Class##Type *) { return false; }
+#include "clang/AST/TypeNodes.inc"
+
+ bool VisitTagDecl(const TagDecl *Tag);
+ bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
+ };
+} // end anonymous namespace
+
+bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
+ return Visit(T->getPointeeType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
+ const BlockPointerType* T) {
+ return Visit(T->getPointeeType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
+ const LValueReferenceType* T) {
+ return Visit(T->getPointeeType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
+ const RValueReferenceType* T) {
+ return Visit(T->getPointeeType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
+ const MemberPointerType* T) {
+ return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
+ const ConstantArrayType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
+ const IncompleteArrayType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
+ const VariableArrayType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
+ const DependentSizedArrayType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
+ const DependentSizedExtVectorType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType(
+ const DependentSizedMatrixType *T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
+ const DependentAddressSpaceType *T) {
+ return Visit(T->getPointeeType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
+ const DependentVectorType *T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType(
+ const ConstantMatrixType *T) {
+ return Visit(T->getElementType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
+ const FunctionProtoType* T) {
+ for (const auto &A : T->param_types()) {
+ if (Visit(A))
+ return true;
+ }
+
+ return Visit(T->getReturnType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
+ const FunctionNoProtoType* T) {
+ return Visit(T->getReturnType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
+ const UnresolvedUsingType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
+ return Visit(T->getUnderlyingType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
+ const UnaryTransformType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
+ return Visit(T->getDeducedType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
+ const DeducedTemplateSpecializationType *T) {
+ return Visit(T->getDeducedType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
+ return VisitTagDecl(T->getDecl());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
+ return VisitTagDecl(T->getDecl());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
+ const TemplateTypeParmType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
+ const SubstTemplateTypeParmPackType *) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
+ const TemplateSpecializationType*) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
+ const InjectedClassNameType* T) {
+ return VisitTagDecl(T->getDecl());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
+ const DependentNameType* T) {
+ return VisitNestedNameSpecifier(T->getQualifier());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
+ const DependentTemplateSpecializationType* T) {
+ if (auto *Q = T->getQualifier())
+ return VisitNestedNameSpecifier(Q);
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
+ const PackExpansionType* T) {
+ return Visit(T->getPattern());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
+ const ObjCInterfaceType *) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
+ const ObjCObjectPointerType *) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
+ return Visit(T->getValueType());
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType(
+ const DependentBitIntType *T) {
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
+ if (Tag->getDeclContext()->isFunctionOrMethod()) {
+ S.Diag(SR.getBegin(),
+ S.getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_template_arg_local_type :
+ diag::ext_template_arg_local_type)
+ << S.Context.getTypeDeclType(Tag) << SR;
+ return true;
+ }
+
+ if (!Tag->hasNameForLinkage()) {
+ S.Diag(SR.getBegin(),
+ S.getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_template_arg_unnamed_type :
+ diag::ext_template_arg_unnamed_type) << SR;
+ S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
+ return true;
+ }
+
+ return false;
+}
+
+bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
+ NestedNameSpecifier *NNS) {
+ assert(NNS);
+ if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
+ return true;
+
+ switch (NNS->getKind()) {
+ case NestedNameSpecifier::Identifier:
+ case NestedNameSpecifier::Namespace:
+ case NestedNameSpecifier::NamespaceAlias:
+ case NestedNameSpecifier::Global:
+ case NestedNameSpecifier::Super:
+ return false;
+
+ case NestedNameSpecifier::TypeSpec:
+ case NestedNameSpecifier::TypeSpecWithTemplate:
+ return Visit(QualType(NNS->getAsType(), 0));
+ }
+ llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
+}
+
+/// Check a template argument against its corresponding
+/// template type parameter.
+///
+/// This routine implements the semantics of C++ [temp.arg.type]. It
+/// returns true if an error occurred, and false otherwise.
+bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) {
+ assert(ArgInfo && "invalid TypeSourceInfo");
+ QualType Arg = ArgInfo->getType();
+ SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
+
+ if (Arg->isVariablyModifiedType()) {
+ return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
+ } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
+ return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
+ }
+
+ // C++03 [temp.arg.type]p2:
+ // A local type, a type with no linkage, an unnamed type or a type
+ // compounded from any of these types shall not be used as a
+ // template-argument for a template type-parameter.
+ //
+ // C++11 allows these, and even in C++03 we allow them as an extension with
+ // a warning.
+ if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) {
+ UnnamedLocalNoLinkageFinder Finder(*this, SR);
+ (void)Finder.Visit(Context.getCanonicalType(Arg));
+ }
+
+ return false;
+}
+
+enum NullPointerValueKind {
+ NPV_NotNullPointer,
+ NPV_NullPointer,
+ NPV_Error
+};
+
+/// Determine whether the given template argument is a null pointer
+/// value of the appropriate type.
+static NullPointerValueKind
+isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
+ QualType ParamType, Expr *Arg,
+ Decl *Entity = nullptr) {
+ if (Arg->isValueDependent() || Arg->isTypeDependent())
+ return NPV_NotNullPointer;
+
+ // dllimport'd entities aren't constant but are available inside of template
+ // arguments.
+ if (Entity && Entity->hasAttr<DLLImportAttr>())
+ return NPV_NotNullPointer;
+
+ if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
+ llvm_unreachable(
+ "Incomplete parameter type in isNullPointerValueTemplateArgument!");
+
+ if (!S.getLangOpts().CPlusPlus11)
+ return NPV_NotNullPointer;
+
+ // Determine whether we have a constant expression.
+ ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
+ if (ArgRV.isInvalid())
+ return NPV_Error;
+ Arg = ArgRV.get();
+
+ Expr::EvalResult EvalResult;
+ SmallVector<PartialDiagnosticAt, 8> Notes;
+ EvalResult.Diag = &Notes;
+ if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
+ EvalResult.HasSideEffects) {
+ SourceLocation DiagLoc = Arg->getExprLoc();
+
+ // If our only note is the usual "invalid subexpression" note, just point
+ // the caret at its location rather than producing an essentially
+ // redundant note.
+ if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
+ diag::note_invalid_subexpr_in_const_expr) {
+ DiagLoc = Notes[0].first;
+ Notes.clear();
+ }
+
+ S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
+ << Arg->getType() << Arg->getSourceRange();
+ for (unsigned I = 0, N = Notes.size(); I != N; ++I)
+ S.Diag(Notes[I].first, Notes[I].second);
+
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return NPV_Error;
+ }
+
+ // C++11 [temp.arg.nontype]p1:
+ // - an address constant expression of type std::nullptr_t
+ if (Arg->getType()->isNullPtrType())
+ return NPV_NullPointer;
+
+ // - a constant expression that evaluates to a null pointer value (4.10); or
+ // - a constant expression that evaluates to a null member pointer value
+ // (4.11); or
+ if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
+ (EvalResult.Val.isMemberPointer() &&
+ !EvalResult.Val.getMemberPointerDecl())) {
+ // If our expression has an appropriate type, we've succeeded.
+ bool ObjCLifetimeConversion;
+ if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
+ S.IsQualificationConversion(Arg->getType(), ParamType, false,
+ ObjCLifetimeConversion))
+ return NPV_NullPointer;
+
+ // The types didn't match, but we know we got a null pointer; complain,
+ // then recover as if the types were correct.
+ S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
+ << Arg->getType() << ParamType << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return NPV_NullPointer;
+ }
+
+ // If we don't have a null pointer value, but we do have a NULL pointer
+ // constant, suggest a cast to the appropriate type.
+ if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
+ std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
+ S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
+ << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
+ << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
+ ")");
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return NPV_NullPointer;
+ }
+
+ // FIXME: If we ever want to support general, address-constant expressions
+ // as non-type template arguments, we should return the ExprResult here to
+ // be interpreted by the caller.
+ return NPV_NotNullPointer;
+}
+
+/// Checks whether the given template argument is compatible with its
+/// template parameter.
+static bool CheckTemplateArgumentIsCompatibleWithParameter(
+ Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
+ Expr *Arg, QualType ArgType) {
+ bool ObjCLifetimeConversion;
+ if (ParamType->isPointerType() &&
+ !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
+ S.IsQualificationConversion(ArgType, ParamType, false,
+ ObjCLifetimeConversion)) {
+ // For pointer-to-object types, qualification conversions are
+ // permitted.
+ } else {
+ if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
+ if (!ParamRef->getPointeeType()->isFunctionType()) {
+ // C++ [temp.arg.nontype]p5b3:
+ // For a non-type template-parameter of type reference to
+ // object, no conversions apply. The type referred to by the
+ // reference may be more cv-qualified than the (otherwise
+ // identical) type of the template- argument. The
+ // template-parameter is bound directly to the
+ // template-argument, which shall be an lvalue.
+
+ // FIXME: Other qualifiers?
+ unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
+ unsigned ArgQuals = ArgType.getCVRQualifiers();
+
+ if ((ParamQuals | ArgQuals) != ParamQuals) {
+ S.Diag(Arg->getBeginLoc(),
+ diag::err_template_arg_ref_bind_ignores_quals)
+ << ParamType << Arg->getType() << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+ }
+ }
+
+ // At this point, the template argument refers to an object or
+ // function with external linkage. We now need to check whether the
+ // argument and parameter types are compatible.
+ if (!S.Context.hasSameUnqualifiedType(ArgType,
+ ParamType.getNonReferenceType())) {
+ // We can't perform this conversion or binding.
+ if (ParamType->isReferenceType())
+ S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
+ << ParamType << ArgIn->getType() << Arg->getSourceRange();
+ else
+ S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
+ << ArgIn->getType() << ParamType << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// Checks whether the given template argument is the address
+/// of an object or function according to C++ [temp.arg.nontype]p1.
+static bool
+CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
+ NonTypeTemplateParmDecl *Param,
+ QualType ParamType,
+ Expr *ArgIn,
+ TemplateArgument &Converted) {
+ bool Invalid = false;
+ Expr *Arg = ArgIn;
+ QualType ArgType = Arg->getType();
+
+ bool AddressTaken = false;
+ SourceLocation AddrOpLoc;
+ if (S.getLangOpts().MicrosoftExt) {
+ // Microsoft Visual C++ strips all casts, allows an arbitrary number of
+ // dereference and address-of operators.
+ Arg = Arg->IgnoreParenCasts();
+
+ bool ExtWarnMSTemplateArg = false;
+ UnaryOperatorKind FirstOpKind;
+ SourceLocation FirstOpLoc;
+ while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
+ UnaryOperatorKind UnOpKind = UnOp->getOpcode();
+ if (UnOpKind == UO_Deref)
+ ExtWarnMSTemplateArg = true;
+ if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
+ Arg = UnOp->getSubExpr()->IgnoreParenCasts();
+ if (!AddrOpLoc.isValid()) {
+ FirstOpKind = UnOpKind;
+ FirstOpLoc = UnOp->getOperatorLoc();
+ }
+ } else
+ break;
+ }
+ if (FirstOpLoc.isValid()) {
+ if (ExtWarnMSTemplateArg)
+ S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
+ << ArgIn->getSourceRange();
+
+ if (FirstOpKind == UO_AddrOf)
+ AddressTaken = true;
+ else if (Arg->getType()->isPointerType()) {
+ // We cannot let pointers get dereferenced here, that is obviously not a
+ // constant expression.
+ assert(FirstOpKind == UO_Deref);
+ S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
+ << Arg->getSourceRange();
+ }
+ }
+ } else {
+ // See through any implicit casts we added to fix the type.
+ Arg = Arg->IgnoreImpCasts();
+
+ // C++ [temp.arg.nontype]p1:
+ //
+ // A template-argument for a non-type, non-template
+ // template-parameter shall be one of: [...]
+ //
+ // -- the address of an object or function with external
+ // linkage, including function templates and function
+ // template-ids but excluding non-static class members,
+ // expressed as & id-expression where the & is optional if
+ // the name refers to a function or array, or if the
+ // corresponding template-parameter is a reference; or
+
+ // In C++98/03 mode, give an extension warning on any extra parentheses.
+ // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
+ bool ExtraParens = false;
+ while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
+ if (!Invalid && !ExtraParens) {
+ S.Diag(Arg->getBeginLoc(),
+ S.getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_template_arg_extra_parens
+ : diag::ext_template_arg_extra_parens)
+ << Arg->getSourceRange();
+ ExtraParens = true;
+ }
+
+ Arg = Parens->getSubExpr();
+ }
+
+ while (SubstNonTypeTemplateParmExpr *subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
+ Arg = subst->getReplacement()->IgnoreImpCasts();
+
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
+ if (UnOp->getOpcode() == UO_AddrOf) {
+ Arg = UnOp->getSubExpr();
+ AddressTaken = true;
+ AddrOpLoc = UnOp->getOperatorLoc();
+ }
+ }
+
+ while (SubstNonTypeTemplateParmExpr *subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
+ Arg = subst->getReplacement()->IgnoreImpCasts();
+ }
+
+ ValueDecl *Entity = nullptr;
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg))
+ Entity = DRE->getDecl();
+ else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg))
+ Entity = CUE->getGuidDecl();
+
+ // If our parameter has pointer type, check for a null template value.
+ if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
+ switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
+ Entity)) {
+ case NPV_NullPointer:
+ S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
+ Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
+ /*isNullPtr=*/true);
+ return false;
+
+ case NPV_Error:
+ return true;
+
+ case NPV_NotNullPointer:
+ break;
+ }
+ }
+
+ // Stop checking the precise nature of the argument if it is value dependent,
+ // it should be checked when instantiated.
+ if (Arg->isValueDependent()) {
+ Converted = TemplateArgument(ArgIn);
+ return false;
+ }
+
+ if (!Entity) {
+ S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
+ << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ // Cannot refer to non-static data members
+ if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
+ S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
+ << Entity << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ // Cannot refer to non-static member functions
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
+ if (!Method->isStatic()) {
+ S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
+ << Method << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+ }
+
+ FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
+ VarDecl *Var = dyn_cast<VarDecl>(Entity);
+ MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity);
+
+ // A non-type template argument must refer to an object or function.
+ if (!Func && !Var && !Guid) {
+ // We found something, but we don't know specifically what it is.
+ S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
+ << Arg->getSourceRange();
+ S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here);
+ return true;
+ }
+
+ // Address / reference template args must have external linkage in C++98.
+ if (Entity->getFormalLinkage() == InternalLinkage) {
+ S.Diag(Arg->getBeginLoc(),
+ S.getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_template_arg_object_internal
+ : diag::ext_template_arg_object_internal)
+ << !Func << Entity << Arg->getSourceRange();
+ S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
+ << !Func;
+ } else if (!Entity->hasLinkage()) {
+ S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
+ << !Func << Entity << Arg->getSourceRange();
+ S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
+ << !Func;
+ return true;
+ }
+
+ if (Var) {
+ // A value of reference type is not an object.
+ if (Var->getType()->isReferenceType()) {
+ S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
+ << Var->getType() << Arg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ // A template argument must have static storage duration.
+ if (Var->getTLSKind()) {
+ S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
+ << Arg->getSourceRange();
+ S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
+ return true;
+ }
+ }
+
+ if (AddressTaken && ParamType->isReferenceType()) {
+ // If we originally had an address-of operator, but the
+ // parameter has reference type, complain and (if things look
+ // like they will work) drop the address-of operator.
+ if (!S.Context.hasSameUnqualifiedType(Entity->getType(),
+ ParamType.getNonReferenceType())) {
+ S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
+ << ParamType;
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
+ << ParamType
+ << FixItHint::CreateRemoval(AddrOpLoc);
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+
+ ArgType = Entity->getType();
+ }
+
+ // If the template parameter has pointer type, either we must have taken the
+ // address or the argument must decay to a pointer.
+ if (!AddressTaken && ParamType->isPointerType()) {
+ if (Func) {
+ // Function-to-pointer decay.
+ ArgType = S.Context.getPointerType(Func->getType());
+ } else if (Entity->getType()->isArrayType()) {
+ // Array-to-pointer decay.
+ ArgType = S.Context.getArrayDecayedType(Entity->getType());
+ } else {
+ // If the template parameter has pointer type but the address of
+ // this object was not taken, complain and (possibly) recover by
+ // taking the address of the entity.
+ ArgType = S.Context.getPointerType(Entity->getType());
+ if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
+ S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
+ << ParamType;
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
+ << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
+
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ }
+ }
+
+ if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
+ Arg, ArgType))
+ return true;
+
+ // Create the template argument.
+ Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
+ S.Context.getCanonicalType(ParamType));
+ S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false);
+ return false;
+}
+
+/// Checks whether the given template argument is a pointer to
+/// member constant according to C++ [temp.arg.nontype]p1.
+static bool CheckTemplateArgumentPointerToMember(Sema &S,
+ NonTypeTemplateParmDecl *Param,
+ QualType ParamType,
+ Expr *&ResultArg,
+ TemplateArgument &Converted) {
+ bool Invalid = false;
+
+ Expr *Arg = ResultArg;
+ bool ObjCLifetimeConversion;
+
+ // C++ [temp.arg.nontype]p1:
+ //
+ // A template-argument for a non-type, non-template
+ // template-parameter shall be one of: [...]
+ //
+ // -- a pointer to member expressed as described in 5.3.1.
+ DeclRefExpr *DRE = nullptr;
+
+ // In C++98/03 mode, give an extension warning on any extra parentheses.
+ // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
+ bool ExtraParens = false;
+ while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
+ if (!Invalid && !ExtraParens) {
+ S.Diag(Arg->getBeginLoc(),
+ S.getLangOpts().CPlusPlus11
+ ? diag::warn_cxx98_compat_template_arg_extra_parens
+ : diag::ext_template_arg_extra_parens)
+ << Arg->getSourceRange();
+ ExtraParens = true;
+ }
+
+ Arg = Parens->getSubExpr();
+ }
+
+ while (SubstNonTypeTemplateParmExpr *subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
+ Arg = subst->getReplacement()->IgnoreImpCasts();
+
+ // A pointer-to-member constant written &Class::member.
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
+ if (UnOp->getOpcode() == UO_AddrOf) {
+ DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
+ if (DRE && !DRE->getQualifier())
+ DRE = nullptr;
+ }
+ }
+ // A constant of pointer-to-member type.
+ else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
+ ValueDecl *VD = DRE->getDecl();
+ if (VD->getType()->isMemberPointerType()) {
+ if (isa<NonTypeTemplateParmDecl>(VD)) {
+ if (Arg->isTypeDependent() || Arg->isValueDependent()) {
+ Converted = TemplateArgument(Arg);
+ } else {
+ VD = cast<ValueDecl>(VD->getCanonicalDecl());
+ Converted = TemplateArgument(VD, ParamType);
+ }
+ return Invalid;
+ }
+ }
+
+ DRE = nullptr;
+ }
+
+ ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
+
+ // Check for a null pointer value.
+ switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
+ Entity)) {
+ case NPV_Error:
+ return true;
+ case NPV_NullPointer:
+ S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
+ Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
+ /*isNullPtr*/true);
+ return false;
+ case NPV_NotNullPointer:
+ break;
+ }
+
+ if (S.IsQualificationConversion(ResultArg->getType(),
+ ParamType.getNonReferenceType(), false,
+ ObjCLifetimeConversion)) {
+ ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp,
+ ResultArg->getValueKind())
+ .get();
+ } else if (!S.Context.hasSameUnqualifiedType(
+ ResultArg->getType(), ParamType.getNonReferenceType())) {
+ // We can't perform this conversion.
+ S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
+ << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
+ S.Diag(Param->getLocation(), diag::note_template_param_here);
+ return true;
+ }
+
+ if (!DRE)
+ return S.Diag(Arg->getBeginLoc(),
+ diag::err_template_arg_not_pointer_to_member_form)
+ << Arg->getSourceRange();
+
+ if (isa<FieldDecl>(DRE->getDecl()) ||
+ isa<IndirectFieldDecl>(DRE->getDecl()) ||
+ isa<CXXMethodDecl>(DRE->getDecl())) {
+ assert((isa<FieldDecl>(DRE->getDecl()) ||
+ isa<IndirectFieldDecl>(DRE->getDecl()) ||
+ !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
+ "Only non-static member pointers can make it here");
+
+ // Okay: this is the address of a non-static member, and therefore
+ // a member pointer constant.
+ if (Arg->isTypeDependent() || Arg->isValueDependent()) {
+ Converted = TemplateArgument(Arg);
+ } else {
+ ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
+ Converted = TemplateArgument(D, S.Context.getCanonicalType(ParamType));
+ }
+ return Invalid;
+ }
+
+ // We found something else, but we don't know specifically what it is.
+ S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
+ << Arg->getSourceRange();
+ S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
+ return true;
+}
+
+/// Check a template argument against its corresponding
+/// non-type template parameter.
+///
+/// This routine implements the semantics of C++ [temp.arg.nontype].
+/// If an error occurred, it returns ExprError(); otherwise, it
+/// returns the converted template argument. \p ParamType is the
+/// type of the non-type template parameter after it has been instantiated.
+ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
+ QualType ParamType, Expr *Arg,
+ TemplateArgument &Converted,
+ CheckTemplateArgumentKind CTAK) {
+ SourceLocation StartLoc = Arg->getBeginLoc();
+
+ // If the parameter type somehow involves auto, deduce the type now.
+ DeducedType *DeducedT = ParamType->getContainedDeducedType();
+ if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) {
+ // During template argument deduction, we allow 'decltype(auto)' to
+ // match an arbitrary dependent argument.
+ // FIXME: The language rules don't say what happens in this case.
+ // FIXME: We get an opaque dependent type out of decltype(auto) if the
+ // expression is merely instantiation-dependent; is this enough?
+ if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
+ auto *AT = dyn_cast<AutoType>(DeducedT);
+ if (AT && AT->isDecltypeAuto()) {
+ Converted = TemplateArgument(Arg);
+ return Arg;
+ }
+ }
+
+ // When checking a deduced template argument, deduce from its type even if
+ // the type is dependent, in order to check the types of non-type template
+ // arguments line up properly in partial ordering.
+ Optional<unsigned> Depth = Param->getDepth() + 1;
+ Expr *DeductionArg = Arg;
+ if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg))
+ DeductionArg = PE->getPattern();
+ TypeSourceInfo *TSI =
+ Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation());
+ if (isa<DeducedTemplateSpecializationType>(DeducedT)) {
+ InitializedEntity Entity =
+ InitializedEntity::InitializeTemplateParameter(ParamType, Param);
+ InitializationKind Kind = InitializationKind::CreateForInit(
+ DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg);
+ Expr *Inits[1] = {DeductionArg};
+ ParamType =
+ DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits);
+ if (ParamType.isNull())
+ return ExprError();
+ } else if (DeduceAutoType(
+ TSI, DeductionArg, ParamType, Depth,
+ // We do not check constraints right now because the
+ // immediately-declared constraint of the auto type is also
+ // an associated constraint, and will be checked along with
+ // the other associated constraints after checking the
+ // template argument list.
+ /*IgnoreConstraints=*/true) == DAR_Failed) {
+ Diag(Arg->getExprLoc(),
+ diag::err_non_type_template_parm_type_deduction_failure)
+ << Param->getDeclName() << Param->getType() << Arg->getType()
+ << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return ExprError();
+ }
+ // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
+ // an error. The error message normally references the parameter
+ // declaration, but here we'll pass the argument location because that's
+ // where the parameter type is deduced.
+ ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
+ if (ParamType.isNull()) {
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return ExprError();
+ }
+ }
+
+ // We should have already dropped all cv-qualifiers by now.
+ assert(!ParamType.hasQualifiers() &&
+ "non-type template parameter type cannot be qualified");
+
+ // FIXME: When Param is a reference, should we check that Arg is an lvalue?
+ if (CTAK == CTAK_Deduced &&
+ (ParamType->isReferenceType()
+ ? !Context.hasSameType(ParamType.getNonReferenceType(),
+ Arg->getType())
+ : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) {
+ // FIXME: If either type is dependent, we skip the check. This isn't
+ // correct, since during deduction we're supposed to have replaced each
+ // template parameter with some unique (non-dependent) placeholder.
+ // FIXME: If the argument type contains 'auto', we carry on and fail the
+ // type check in order to force specific types to be more specialized than
+ // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
+ // work. Similarly for CTAD, when comparing 'A<x>' against 'A'.
+ if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
+ !Arg->getType()->getContainedDeducedType()) {
+ Converted = TemplateArgument(Arg);
+ return Arg;
+ }
+ // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
+ // we should actually be checking the type of the template argument in P,
+ // not the type of the template argument deduced from A, against the
+ // template parameter type.
+ Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
+ << Arg->getType()
+ << ParamType.getUnqualifiedType();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return ExprError();
+ }
+
+ // If either the parameter has a dependent type or the argument is
+ // type-dependent, there's nothing we can check now. The argument only
+ // contains an unexpanded pack during partial ordering, and there's
+ // nothing more we can check in that case.
+ if (ParamType->isDependentType() || Arg->isTypeDependent() ||
+ Arg->containsUnexpandedParameterPack()) {
+ // Force the argument to the type of the parameter to maintain invariants.
+ auto *PE = dyn_cast<PackExpansionExpr>(Arg);
+ if (PE)
+ Arg = PE->getPattern();
+ ExprResult E = ImpCastExprToType(
+ Arg, ParamType.getNonLValueExprType(Context), CK_Dependent,
+ ParamType->isLValueReferenceType() ? VK_LValue
+ : ParamType->isRValueReferenceType() ? VK_XValue
+ : VK_PRValue);
+ if (E.isInvalid())
+ return ExprError();
+ if (PE) {
+ // Recreate a pack expansion if we unwrapped one.
+ E = new (Context)
+ PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
+ PE->getNumExpansions());
+ }
+ Converted = TemplateArgument(E.get());
+ return E;
+ }
+
+ // The initialization of the parameter from the argument is
+ // a constant-evaluated context.
+ EnterExpressionEvaluationContext ConstantEvaluated(
+ *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+
+ if (getLangOpts().CPlusPlus17) {
+ QualType CanonParamType = Context.getCanonicalType(ParamType);
+
+ // Avoid making a copy when initializing a template parameter of class type
+ // from a template parameter object of the same type. This is going beyond
+ // the standard, but is required for soundness: in
+ // template<A a> struct X { X *p; X<a> *q; };
+ // ... we need p and q to have the same type.
+ //
+ // Similarly, don't inject a call to a copy constructor when initializing
+ // from a template parameter of the same type.
+ Expr *InnerArg = Arg->IgnoreParenImpCasts();
+ if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) &&
+ Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) {
+ NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl();
+ if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
+ Converted = TemplateArgument(TPO, CanonParamType);
+ return Arg;
+ }
+ if (isa<NonTypeTemplateParmDecl>(ND)) {
+ Converted = TemplateArgument(Arg);
+ return Arg;
+ }
+ }
+
+ // C++17 [temp.arg.nontype]p1:
+ // A template-argument for a non-type template parameter shall be
+ // a converted constant expression of the type of the template-parameter.
+ APValue Value;
+ ExprResult ArgResult = CheckConvertedConstantExpression(
+ Arg, ParamType, Value, CCEK_TemplateArg, Param);
+ if (ArgResult.isInvalid())
+ return ExprError();
+
+ // For a value-dependent argument, CheckConvertedConstantExpression is
+ // permitted (and expected) to be unable to determine a value.
+ if (ArgResult.get()->isValueDependent()) {
+ Converted = TemplateArgument(ArgResult.get());
+ return ArgResult;
+ }
+
+ // Convert the APValue to a TemplateArgument.
+ switch (Value.getKind()) {
+ case APValue::None:
+ assert(ParamType->isNullPtrType());
+ Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
+ break;
+ case APValue::Indeterminate:
+ llvm_unreachable("result of constant evaluation should be initialized");
+ break;
+ case APValue::Int:
+ assert(ParamType->isIntegralOrEnumerationType());
+ Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
+ break;
+ case APValue::MemberPointer: {
+ assert(ParamType->isMemberPointerType());
+
+ // FIXME: We need TemplateArgument representation and mangling for these.
+ if (!Value.getMemberPointerPath().empty()) {
+ Diag(Arg->getBeginLoc(),
+ diag::err_template_arg_member_ptr_base_derived_not_supported)
+ << Value.getMemberPointerDecl() << ParamType
+ << Arg->getSourceRange();
+ return ExprError();
+ }
+
+ auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
+ Converted = VD ? TemplateArgument(VD, CanonParamType)
+ : TemplateArgument(CanonParamType, /*isNullPtr*/true);
+ break;
+ }
+ case APValue::LValue: {
+ // For a non-type template-parameter of pointer or reference type,
+ // the value of the constant expression shall not refer to
+ assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
+ ParamType->isNullPtrType());
+ // -- a temporary object
+ // -- a string literal
+ // -- the result of a typeid expression, or
+ // -- a predefined __func__ variable
+ APValue::LValueBase Base = Value.getLValueBase();
+ auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
+ if (Base && (!VD || isa<LifetimeExtendedTemporaryDecl>(VD))) {
+ Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
+ << Arg->getSourceRange();
+ return ExprError();
+ }
+ // -- a subobject
+ // FIXME: Until C++20
+ if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
+ VD && VD->getType()->isArrayType() &&
+ Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
+ !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
+ // Per defect report (no number yet):
+ // ... other than a pointer to the first element of a complete array
+ // object.
+ } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
+ Value.isLValueOnePastTheEnd()) {
+ Diag(StartLoc, diag::err_non_type_template_arg_subobject)
+ << Value.getAsString(Context, ParamType);
+ return ExprError();
+ }
+ assert((VD || !ParamType->isReferenceType()) &&
+ "null reference should not be a constant expression");
+ assert((!VD || !ParamType->isNullPtrType()) &&
+ "non-null value of type nullptr_t?");
+ Converted = VD ? TemplateArgument(VD, CanonParamType)
+ : TemplateArgument(CanonParamType, /*isNullPtr*/true);
+ break;
+ }
+ case APValue::Struct:
+ case APValue::Union:
+ // Get or create the corresponding template parameter object.
+ Converted = TemplateArgument(
+ Context.getTemplateParamObjectDecl(CanonParamType, Value),
+ CanonParamType);
+ break;
+ case APValue::AddrLabelDiff:
+ return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
+ case APValue::FixedPoint:
+ case APValue::Float:
+ case APValue::ComplexInt:
+ case APValue::ComplexFloat:
+ case APValue::Vector:
+ case APValue::Array:
+ return Diag(StartLoc, diag::err_non_type_template_arg_unsupported)
+ << ParamType;
+ }
+
+ return ArgResult.get();
+ }
+
+ // C++ [temp.arg.nontype]p5:
+ // The following conversions are performed on each expression used
+ // as a non-type template-argument. If a non-type
+ // template-argument cannot be converted to the type of the
+ // corresponding template-parameter then the program is
+ // ill-formed.
+ if (ParamType->isIntegralOrEnumerationType()) {
+ // C++11:
+ // -- for a non-type template-parameter of integral or
+ // enumeration type, conversions permitted in a converted
+ // constant expression are applied.
+ //
+ // C++98:
+ // -- for a non-type template-parameter of integral or
+ // enumeration type, integral promotions (4.5) and integral
+ // conversions (4.7) are applied.
+
+ if (getLangOpts().CPlusPlus11) {
+ // C++ [temp.arg.nontype]p1:
+ // A template-argument for a non-type, non-template template-parameter
+ // shall be one of:
+ //
+ // -- for a non-type template-parameter of integral or enumeration
+ // type, a converted constant expression of the type of the
+ // template-parameter; or
+ llvm::APSInt Value;
+ ExprResult ArgResult =
+ CheckConvertedConstantExpression(Arg, ParamType, Value,
+ CCEK_TemplateArg);
+ if (ArgResult.isInvalid())
+ return ExprError();
+
+ // We can't check arbitrary value-dependent arguments.
+ if (ArgResult.get()->isValueDependent()) {
+ Converted = TemplateArgument(ArgResult.get());
+ return ArgResult;
+ }
+
+ // Widen the argument value to sizeof(parameter type). This is almost
+ // always a no-op, except when the parameter type is bool. In
+ // that case, this may extend the argument from 1 bit to 8 bits.
+ QualType IntegerType = ParamType;
+ if (const EnumType *Enum = IntegerType->getAs<EnumType>())
+ IntegerType = Enum->getDecl()->getIntegerType();
+ Value = Value.extOrTrunc(IntegerType->isBitIntType()
+ ? Context.getIntWidth(IntegerType)
+ : Context.getTypeSize(IntegerType));
+
+ Converted = TemplateArgument(Context, Value,
+ Context.getCanonicalType(ParamType));
+ return ArgResult;
+ }
+
+ ExprResult ArgResult = DefaultLvalueConversion(Arg);
+ if (ArgResult.isInvalid())
+ return ExprError();
+ Arg = ArgResult.get();
+
+ QualType ArgType = Arg->getType();
+
+ // C++ [temp.arg.nontype]p1:
+ // A template-argument for a non-type, non-template
+ // template-parameter shall be one of:
+ //
+ // -- an integral constant-expression of integral or enumeration
+ // type; or
+ // -- the name of a non-type template-parameter; or
+ llvm::APSInt Value;
+ if (!ArgType->isIntegralOrEnumerationType()) {
+ Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
+ << ArgType << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return ExprError();
+ } else if (!Arg->isValueDependent()) {
+ class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
+ QualType T;
+
+ public:
+ TmplArgICEDiagnoser(QualType T) : T(T) { }
+
+ SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
+ SourceLocation Loc) override {
+ return S.Diag(Loc, diag::err_template_arg_not_ice) << T;
+ }
+ } Diagnoser(ArgType);
+
+ Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get();
+ if (!Arg)
+ return ExprError();
+ }
+
+ // From here on out, all we care about is the unqualified form
+ // of the argument type.
+ ArgType = ArgType.getUnqualifiedType();
+
+ // Try to convert the argument to the parameter's type.
+ if (Context.hasSameType(ParamType, ArgType)) {
+ // Okay: no conversion necessary
+ } else if (ParamType->isBooleanType()) {
+ // This is an integral-to-boolean conversion.
+ Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
+ } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
+ !ParamType->isEnumeralType()) {
+ // This is an integral promotion or conversion.
+ Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
+ } else {
+ // We can't perform this conversion.
+ Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
+ << Arg->getType() << ParamType << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return ExprError();
+ }
+
+ // Add the value of this argument to the list of converted
+ // arguments. We use the bitwidth and signedness of the template
+ // parameter.
+ if (Arg->isValueDependent()) {
+ // The argument is value-dependent. Create a new
+ // TemplateArgument with the converted expression.
+ Converted = TemplateArgument(Arg);
+ return Arg;
+ }
+
+ QualType IntegerType = Context.getCanonicalType(ParamType);
+ if (const EnumType *Enum = IntegerType->getAs<EnumType>())
+ IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
+
+ if (ParamType->isBooleanType()) {
+ // Value must be zero or one.
+ Value = Value != 0;
+ unsigned AllowedBits = Context.getTypeSize(IntegerType);
+ if (Value.getBitWidth() != AllowedBits)
+ Value = Value.extOrTrunc(AllowedBits);
+ Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
+ } else {
+ llvm::APSInt OldValue = Value;
+
+ // Coerce the template argument's value to the value it will have
+ // based on the template parameter's type.
+ unsigned AllowedBits = IntegerType->isBitIntType()
+ ? Context.getIntWidth(IntegerType)
+ : Context.getTypeSize(IntegerType);
+ if (Value.getBitWidth() != AllowedBits)
+ Value = Value.extOrTrunc(AllowedBits);
+ Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
+
+ // Complain if an unsigned parameter received a negative value.
+ if (IntegerType->isUnsignedIntegerOrEnumerationType() &&
+ (OldValue.isSigned() && OldValue.isNegative())) {
+ Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
+ << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
+ << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ }
+
+ // Complain if we overflowed the template parameter's type.
+ unsigned RequiredBits;
+ if (IntegerType->isUnsignedIntegerOrEnumerationType())
+ RequiredBits = OldValue.getActiveBits();
+ else if (OldValue.isUnsigned())
+ RequiredBits = OldValue.getActiveBits() + 1;
+ else
+ RequiredBits = OldValue.getMinSignedBits();
+ if (RequiredBits > AllowedBits) {
+ Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
+ << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
+ << Arg->getSourceRange();
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ }
+ }
+
+ Converted = TemplateArgument(Context, Value,
+ ParamType->isEnumeralType()
+ ? Context.getCanonicalType(ParamType)
+ : IntegerType);
+ return Arg;
+ }
+
+ QualType ArgType = Arg->getType();
+ DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
+
+ // Handle pointer-to-function, reference-to-function, and
+ // pointer-to-member-function all in (roughly) the same way.
+ if (// -- For a non-type template-parameter of type pointer to
+ // function, only the function-to-pointer conversion (4.3) is
+ // applied. If the template-argument represents a set of
+ // overloaded functions (or a pointer to such), the matching
+ // function is selected from the set (13.4).
+ (ParamType->isPointerType() &&
+ ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
+ // -- For a non-type template-parameter of type reference to
+ // function, no conversions apply. If the template-argument
+ // represents a set of overloaded functions, the matching
+ // function is selected from the set (13.4).
+ (ParamType->isReferenceType() &&
+ ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
+ // -- For a non-type template-parameter of type pointer to
+ // member function, no conversions apply. If the
+ // template-argument represents a set of overloaded member
+ // functions, the matching member function is selected from
+ // the set (13.4).
+ (ParamType->isMemberPointerType() &&
+ ParamType->castAs<MemberPointerType>()->getPointeeType()
+ ->isFunctionType())) {
+
+ if (Arg->getType() == Context.OverloadTy) {
+ if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
+ true,
+ FoundResult)) {
+ if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
+ return ExprError();
+
+ Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
+ ArgType = Arg->getType();
+ } else
+ return ExprError();
+ }
+
+ if (!ParamType->isMemberPointerType()) {
+ if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
+ ParamType,
+ Arg, Converted))
+ return ExprError();
+ return Arg;
+ }
+
+ if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
+ Converted))
+ return ExprError();
+ return Arg;
+ }
+
+ if (ParamType->isPointerType()) {
+ // -- for a non-type template-parameter of type pointer to
+ // object, qualification conversions (4.4) and the
+ // array-to-pointer conversion (4.2) are applied.
+ // C++0x also allows a value of std::nullptr_t.
+ assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
+ "Only object pointers allowed here");
+
+ if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
+ ParamType,
+ Arg, Converted))
+ return ExprError();
+ return Arg;
+ }
+
+ if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
+ // -- For a non-type template-parameter of type reference to
+ // object, no conversions apply. The type referred to by the
+ // reference may be more cv-qualified than the (otherwise
+ // identical) type of the template-argument. The
+ // template-parameter is bound directly to the
+ // template-argument, which must be an lvalue.
+ assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
+ "Only object references allowed here");
+
+ if (Arg->getType() == Context.OverloadTy) {
+ if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
+ ParamRefType->getPointeeType(),
+ true,
+ FoundResult)) {
+ if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc()))
+ return ExprError();
+
+ Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
+ ArgType = Arg->getType();
+ } else
+ return ExprError();
+ }
+
+ if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
+ ParamType,
+ Arg, Converted))
+ return ExprError();
+ return Arg;
+ }
+
+ // Deal with parameters of type std::nullptr_t.
+ if (ParamType->isNullPtrType()) {
+ if (Arg->isTypeDependent() || Arg->isValueDependent()) {
+ Converted = TemplateArgument(Arg);
+ return Arg;
+ }
+
+ switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
+ case NPV_NotNullPointer:
+ Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
+ << Arg->getType() << ParamType;
+ Diag(Param->getLocation(), diag::note_template_param_here);
+ return ExprError();
+
+ case NPV_Error:
+ return ExprError();
+
+ case NPV_NullPointer:
+ Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
+ Converted = TemplateArgument(Context.getCanonicalType(ParamType),
+ /*isNullPtr*/true);
+ return Arg;
+ }
+ }
+
+ // -- For a non-type template-parameter of type pointer to data
+ // member, qualification conversions (4.4) are applied.
+ assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
+
+ if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
+ Converted))
+ return ExprError();
+ return Arg;
+}
+
+static void DiagnoseTemplateParameterListArityMismatch(
+ Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
+ Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
+
+/// Check a template argument against its corresponding
+/// template template parameter.
+///
+/// This routine implements the semantics of C++ [temp.arg.template].
+/// It returns true if an error occurred, and false otherwise.
+bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
+ TemplateParameterList *Params,
+ TemplateArgumentLoc &Arg) {
+ TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
+ TemplateDecl *Template = Name.getAsTemplateDecl();
+ if (!Template) {
+ // Any dependent template name is fine.
+ assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
+ return false;
+ }
+
+ if (Template->isInvalidDecl())
+ return true;
+
+ // C++0x [temp.arg.template]p1:
+ // A template-argument for a template template-parameter shall be
+ // the name of a class template or an alias template, expressed as an
+ // id-expression. When the template-argument names a class template, only
+ // primary class templates are considered when matching the
+ // template template argument with the corresponding parameter;
+ // partial specializations are not considered even if their
+ // parameter lists match that of the template template parameter.
+ //
+ // Note that we also allow template template parameters here, which
+ // will happen when we are dealing with, e.g., class template
+ // partial specializations.
+ if (!isa<ClassTemplateDecl>(Template) &&
+ !isa<TemplateTemplateParmDecl>(Template) &&
+ !isa<TypeAliasTemplateDecl>(Template) &&
+ !isa<BuiltinTemplateDecl>(Template)) {
+ assert(isa<FunctionTemplateDecl>(Template) &&
+ "Only function templates are possible here");
+ Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
+ Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
+ << Template;
+ }
+
+ // C++1z [temp.arg.template]p3: (DR 150)
+ // A template-argument matches a template template-parameter P when P
+ // is at least as specialized as the template-argument A.
+ // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
+ // defect report resolution from C++17 and shouldn't be introduced by
+ // concepts.
+ if (getLangOpts().RelaxedTemplateTemplateArgs) {
+ // Quick check for the common case:
+ // If P contains a parameter pack, then A [...] matches P if each of A's
+ // template parameters matches the corresponding template parameter in
+ // the template-parameter-list of P.
+ if (TemplateParameterListsAreEqual(
+ Template->getTemplateParameters(), Params, false,
+ TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) &&
+ // If the argument has no associated constraints, then the parameter is
+ // definitely at least as specialized as the argument.
+ // Otherwise - we need a more thorough check.
+ !Template->hasAssociatedConstraints())
+ return false;
+
+ if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template,
+ Arg.getLocation())) {
+ // C++2a[temp.func.order]p2
+ // [...] If both deductions succeed, the partial ordering selects the
+ // more constrained template as described by the rules in
+ // [temp.constr.order].
+ SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
+ Params->getAssociatedConstraints(ParamsAC);
+ // C++2a[temp.arg.template]p3
+ // [...] In this comparison, if P is unconstrained, the constraints on A
+ // are not considered.
+ if (ParamsAC.empty())
+ return false;
+ Template->getAssociatedConstraints(TemplateAC);
+ bool IsParamAtLeastAsConstrained;
+ if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
+ IsParamAtLeastAsConstrained))
+ return true;
+ if (!IsParamAtLeastAsConstrained) {
+ Diag(Arg.getLocation(),
+ diag::err_template_template_parameter_not_at_least_as_constrained)
+ << Template << Param << Arg.getSourceRange();
+ Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
+ Diag(Template->getLocation(), diag::note_entity_declared_at)
+ << Template;
+ MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
+ TemplateAC);
+ return true;
+ }
+ return false;
+ }
+ // FIXME: Produce better diagnostics for deduction failures.
+ }
+
+ return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
+ Params,
+ true,
+ TPL_TemplateTemplateArgumentMatch,
+ Arg.getLocation());
+}
+
+/// Given a non-type template argument that refers to a
+/// declaration and the type of its corresponding non-type template
+/// parameter, produce an expression that properly refers to that
+/// declaration.
+ExprResult
+Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
+ QualType ParamType,
+ SourceLocation Loc) {
+ // C++ [temp.param]p8:
+ //
+ // A non-type template-parameter of type "array of T" or
+ // "function returning T" is adjusted to be of type "pointer to
+ // T" or "pointer to function returning T", respectively.
+ if (ParamType->isArrayType())
+ ParamType = Context.getArrayDecayedType(ParamType);
+ else if (ParamType->isFunctionType())
+ ParamType = Context.getPointerType(ParamType);
+
+ // For a NULL non-type template argument, return nullptr casted to the
+ // parameter's type.
+ if (Arg.getKind() == TemplateArgument::NullPtr) {
+ return ImpCastExprToType(
+ new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
+ ParamType,
+ ParamType->getAs<MemberPointerType>()
+ ? CK_NullToMemberPointer
+ : CK_NullToPointer);
+ }
+ assert(Arg.getKind() == TemplateArgument::Declaration &&
+ "Only declaration template arguments permitted here");
+
+ ValueDecl *VD = Arg.getAsDecl();
+
+ CXXScopeSpec SS;
+ if (ParamType->isMemberPointerType()) {
+ // If this is a pointer to member, we need to use a qualified name to
+ // form a suitable pointer-to-member constant.
+ assert(VD->getDeclContext()->isRecord() &&
+ (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
+ isa<IndirectFieldDecl>(VD)));
+ QualType ClassType
+ = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
+ NestedNameSpecifier *Qualifier
+ = NestedNameSpecifier::Create(Context, nullptr, false,
+ ClassType.getTypePtr());
+ SS.MakeTrivial(Context, Qualifier, Loc);
+ }
+
+ ExprResult RefExpr = BuildDeclarationNameExpr(
+ SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
+ if (RefExpr.isInvalid())
+ return ExprError();
+
+ // For a pointer, the argument declaration is the pointee. Take its address.
+ QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
+ if (ParamType->isPointerType() && !ElemT.isNull() &&
+ Context.hasSimilarType(ElemT, ParamType->getPointeeType())) {
+ // Decay an array argument if we want a pointer to its first element.
+ RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
+ if (RefExpr.isInvalid())
+ return ExprError();
+ } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
+ // For any other pointer, take the address (or form a pointer-to-member).
+ RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
+ if (RefExpr.isInvalid())
+ return ExprError();
+ } else if (ParamType->isRecordType()) {
+ assert(isa<TemplateParamObjectDecl>(VD) &&
+ "arg for class template param not a template parameter object");
+ // No conversions apply in this case.
+ return RefExpr;
+ } else {
+ assert(ParamType->isReferenceType() &&
+ "unexpected type for decl template argument");
+ }
+
+ // At this point we should have the right value category.
+ assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
+ "value kind mismatch for non-type template argument");
+
+ // The type of the template parameter can differ from the type of the
+ // argument in various ways; convert it now if necessary.
+ QualType DestExprType = ParamType.getNonLValueExprType(Context);
+ if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) {
+ CastKind CK;
+ QualType Ignored;
+ if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) ||
+ IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) {
+ CK = CK_NoOp;
+ } else if (ParamType->isVoidPointerType() &&
+ RefExpr.get()->getType()->isPointerType()) {
+ CK = CK_BitCast;
+ } else {
+ // FIXME: Pointers to members can need conversion derived-to-base or
+ // base-to-derived conversions. We currently don't retain enough
+ // information to convert properly (we need to track a cast path or
+ // subobject number in the template argument).
+ llvm_unreachable(
+ "unexpected conversion required for non-type template argument");
+ }
+ RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK,
+ RefExpr.get()->getValueKind());
+ }
+
+ return RefExpr;
+}
+
+/// Construct a new expression that refers to the given
+/// integral template argument with the given source-location
+/// information.
+///
+/// This routine takes care of the mapping from an integral template
+/// argument (which may have any integral type) to the appropriate
+/// literal value.
+ExprResult
+Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
+ SourceLocation Loc) {
+ assert(Arg.getKind() == TemplateArgument::Integral &&
+ "Operation is only valid for integral template arguments");
+ QualType OrigT = Arg.getIntegralType();
+
+ // If this is an enum type that we're instantiating, we need to use an integer
+ // type the same size as the enumerator. We don't want to build an
+ // IntegerLiteral with enum type. The integer type of an enum type can be of
+ // any integral type with C++11 enum classes, make sure we create the right
+ // type of literal for it.
+ QualType T = OrigT;
+ if (const EnumType *ET = OrigT->getAs<EnumType>())
+ T = ET->getDecl()->getIntegerType();
+
+ Expr *E;
+ if (T->isAnyCharacterType()) {
+ CharacterLiteral::CharacterKind Kind;
+ if (T->isWideCharType())
+ Kind = CharacterLiteral::Wide;
+ else if (T->isChar8Type() && getLangOpts().Char8)
+ Kind = CharacterLiteral::UTF8;
+ else if (T->isChar16Type())
+ Kind = CharacterLiteral::UTF16;
+ else if (T->isChar32Type())
+ Kind = CharacterLiteral::UTF32;
+ else
+ Kind = CharacterLiteral::Ascii;
+
+ E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
+ Kind, T, Loc);
+ } else if (T->isBooleanType()) {
+ E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
+ T, Loc);
+ } else if (T->isNullPtrType()) {
+ E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
+ } else {
+ E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
+ }
+
+ if (OrigT->isEnumeralType()) {
+ // FIXME: This is a hack. We need a better way to handle substituted
+ // non-type template parameters.
+ E = CStyleCastExpr::Create(Context, OrigT, VK_PRValue, CK_IntegralCast, E,
+ nullptr, CurFPFeatureOverrides(),
+ Context.getTrivialTypeSourceInfo(OrigT, Loc),
+ Loc, Loc);
+ }
+
+ return E;
+}
+
+/// Match two template parameters within template parameter lists.
+static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
+ bool Complain,
+ Sema::TemplateParameterListEqualKind Kind,
+ SourceLocation TemplateArgLoc) {
+ // Check the actual kind (type, non-type, template).
+ if (Old->getKind() != New->getKind()) {
+ if (Complain) {
+ unsigned NextDiag = diag::err_template_param_different_kind;
+ if (TemplateArgLoc.isValid()) {
+ S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_param_different_kind;
+ }
+ S.Diag(New->getLocation(), NextDiag)
+ << (Kind != Sema::TPL_TemplateMatch);
+ S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
+ << (Kind != Sema::TPL_TemplateMatch);
+ }
+
+ return false;
+ }
+
+ // Check that both are parameter packs or neither are parameter packs.
+ // However, if we are matching a template template argument to a
+ // template template parameter, the template template parameter can have
+ // a parameter pack where the template template argument does not.
+ if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
+ !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
+ Old->isTemplateParameterPack())) {
+ if (Complain) {
+ unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
+ if (TemplateArgLoc.isValid()) {
+ S.Diag(TemplateArgLoc,
+ diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_parameter_pack_non_pack;
+ }
+
+ unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
+ : isa<NonTypeTemplateParmDecl>(New)? 1
+ : 2;
+ S.Diag(New->getLocation(), NextDiag)
+ << ParamKind << New->isParameterPack();
+ S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
+ << ParamKind << Old->isParameterPack();
+ }
+
+ return false;
+ }
+
+ // For non-type template parameters, check the type of the parameter.
+ if (NonTypeTemplateParmDecl *OldNTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
+ NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
+
+ // If we are matching a template template argument to a template
+ // template parameter and one of the non-type template parameter types
+ // is dependent, then we must wait until template instantiation time
+ // to actually compare the arguments.
+ if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
+ (!OldNTTP->getType()->isDependentType() &&
+ !NewNTTP->getType()->isDependentType()))
+ if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
+ if (Complain) {
+ unsigned NextDiag = diag::err_template_nontype_parm_different_type;
+ if (TemplateArgLoc.isValid()) {
+ S.Diag(TemplateArgLoc,
+ diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_nontype_parm_different_type;
+ }
+ S.Diag(NewNTTP->getLocation(), NextDiag)
+ << NewNTTP->getType()
+ << (Kind != Sema::TPL_TemplateMatch);
+ S.Diag(OldNTTP->getLocation(),
+ diag::note_template_nontype_parm_prev_declaration)
+ << OldNTTP->getType();
+ }
+
+ return false;
+ }
+ }
+ // For template template parameters, check the template parameter types.
+ // The template parameter lists of template template
+ // parameters must agree.
+ else if (TemplateTemplateParmDecl *OldTTP
+ = dyn_cast<TemplateTemplateParmDecl>(Old)) {
+ TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
+ if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
+ OldTTP->getTemplateParameters(),
+ Complain,
+ (Kind == Sema::TPL_TemplateMatch
+ ? Sema::TPL_TemplateTemplateParmMatch
+ : Kind),
+ TemplateArgLoc))
+ return false;
+ } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) {
+ const Expr *NewC = nullptr, *OldC = nullptr;
+ if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint())
+ NewC = TC->getImmediatelyDeclaredConstraint();
+ if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint())
+ OldC = TC->getImmediatelyDeclaredConstraint();
+
+ auto Diagnose = [&] {
+ S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
+ diag::err_template_different_type_constraint);
+ S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
+ diag::note_template_prev_declaration) << /*declaration*/0;
+ };
+
+ if (!NewC != !OldC) {
+ if (Complain)
+ Diagnose();
+ return false;
+ }
+
+ if (NewC) {
+ llvm::FoldingSetNodeID OldCID, NewCID;
+ OldC->Profile(OldCID, S.Context, /*Canonical=*/true);
+ NewC->Profile(NewCID, S.Context, /*Canonical=*/true);
+ if (OldCID != NewCID) {
+ if (Complain)
+ Diagnose();
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+/// Diagnose a known arity mismatch when comparing template argument
+/// lists.
+static
+void DiagnoseTemplateParameterListArityMismatch(Sema &S,
+ TemplateParameterList *New,
+ TemplateParameterList *Old,
+ Sema::TemplateParameterListEqualKind Kind,
+ SourceLocation TemplateArgLoc) {
+ unsigned NextDiag = diag::err_template_param_list_different_arity;
+ if (TemplateArgLoc.isValid()) {
+ S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
+ NextDiag = diag::note_template_param_list_different_arity;
+ }
+ S.Diag(New->getTemplateLoc(), NextDiag)
+ << (New->size() > Old->size())
+ << (Kind != Sema::TPL_TemplateMatch)
+ << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
+ S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
+ << (Kind != Sema::TPL_TemplateMatch)
+ << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
+}
+
+/// Determine whether the given template parameter lists are
+/// equivalent.
+///
+/// \param New The new template parameter list, typically written in the
+/// source code as part of a new template declaration.
+///
+/// \param Old The old template parameter list, typically found via
+/// name lookup of the template declared with this template parameter
+/// list.
+///
+/// \param Complain If true, this routine will produce a diagnostic if
+/// the template parameter lists are not equivalent.
+///
+/// \param Kind describes how we are to match the template parameter lists.
+///
+/// \param TemplateArgLoc If this source location is valid, then we
+/// are actually checking the template parameter list of a template
+/// argument (New) against the template parameter list of its
+/// corresponding template template parameter (Old). We produce
+/// slightly different diagnostics in this scenario.
+///
+/// \returns True if the template parameter lists are equal, false
+/// otherwise.
+bool
+Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
+ TemplateParameterList *Old,
+ bool Complain,
+ TemplateParameterListEqualKind Kind,
+ SourceLocation TemplateArgLoc) {
+ if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
+ if (Complain)
+ DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
+ TemplateArgLoc);
+
+ return false;
+ }
+
+ // C++0x [temp.arg.template]p3:
+ // A template-argument matches a template template-parameter (call it P)
+ // when each of the template parameters in the template-parameter-list of
+ // the template-argument's corresponding class template or alias template
+ // (call it A) matches the corresponding template parameter in the
+ // template-parameter-list of P. [...]
+ TemplateParameterList::iterator NewParm = New->begin();
+ TemplateParameterList::iterator NewParmEnd = New->end();
+ for (TemplateParameterList::iterator OldParm = Old->begin(),
+ OldParmEnd = Old->end();
+ OldParm != OldParmEnd; ++OldParm) {
+ if (Kind != TPL_TemplateTemplateArgumentMatch ||
+ !(*OldParm)->isTemplateParameterPack()) {
+ if (NewParm == NewParmEnd) {
+ if (Complain)
+ DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
+ TemplateArgLoc);
+
+ return false;
+ }
+
+ if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
+ Kind, TemplateArgLoc))
+ return false;
+
+ ++NewParm;
+ continue;
+ }
+
+ // C++0x [temp.arg.template]p3:
+ // [...] When P's template- parameter-list contains a template parameter
+ // pack (14.5.3), the template parameter pack will match zero or more
+ // template parameters or template parameter packs in the
+ // template-parameter-list of A with the same type and form as the
+ // template parameter pack in P (ignoring whether those template
+ // parameters are template parameter packs).
+ for (; NewParm != NewParmEnd; ++NewParm) {
+ if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
+ Kind, TemplateArgLoc))
+ return false;
+ }
+ }
+
+ // Make sure we exhausted all of the arguments.
+ if (NewParm != NewParmEnd) {
+ if (Complain)
+ DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
+ TemplateArgLoc);
+
+ return false;
+ }
+
+ if (Kind != TPL_TemplateTemplateArgumentMatch) {
+ const Expr *NewRC = New->getRequiresClause();
+ const Expr *OldRC = Old->getRequiresClause();
+
+ auto Diagnose = [&] {
+ Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
+ diag::err_template_different_requires_clause);
+ Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
+ diag::note_template_prev_declaration) << /*declaration*/0;
+ };
+
+ if (!NewRC != !OldRC) {
+ if (Complain)
+ Diagnose();
+ return false;
+ }
+
+ if (NewRC) {
+ llvm::FoldingSetNodeID OldRCID, NewRCID;
+ OldRC->Profile(OldRCID, Context, /*Canonical=*/true);
+ NewRC->Profile(NewRCID, Context, /*Canonical=*/true);
+ if (OldRCID != NewRCID) {
+ if (Complain)
+ Diagnose();
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+/// Check whether a template can be declared within this scope.
+///
+/// If the template declaration is valid in this scope, returns
+/// false. Otherwise, issues a diagnostic and returns true.
+bool
+Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
+ if (!S)
+ return false;
+
+ // Find the nearest enclosing declaration scope.
+ while ((S->getFlags() & Scope::DeclScope) == 0 ||
+ (S->getFlags() & Scope::TemplateParamScope) != 0)
+ S = S->getParent();
+
+ // C++ [temp.pre]p6: [P2096]
+ // A template, explicit specialization, or partial specialization shall not
+ // have C linkage.
+ DeclContext *Ctx = S->getEntity();
+ if (Ctx && Ctx->isExternCContext()) {
+ Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
+ << TemplateParams->getSourceRange();
+ if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
+ Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
+ return true;
+ }
+ Ctx = Ctx ? Ctx->getRedeclContext() : nullptr;
+
+ // C++ [temp]p2:
+ // A template-declaration can appear only as a namespace scope or
+ // class scope declaration.
+ // C++ [temp.expl.spec]p3:
+ // An explicit specialization may be declared in any scope in which the
+ // corresponding primary template may be defined.
+ // C++ [temp.class.spec]p6: [P2096]
+ // A partial specialization may be declared in any scope in which the
+ // corresponding primary template may be defined.
+ if (Ctx) {
+ if (Ctx->isFileContext())
+ return false;
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
+ // C++ [temp.mem]p2:
+ // A local class shall not have member templates.
+ if (RD->isLocalClass())
+ return Diag(TemplateParams->getTemplateLoc(),
+ diag::err_template_inside_local_class)
+ << TemplateParams->getSourceRange();
+ else
+ return false;
+ }
+ }
+
+ return Diag(TemplateParams->getTemplateLoc(),
+ diag::err_template_outside_namespace_or_class_scope)
+ << TemplateParams->getSourceRange();
+}
+
+/// Determine what kind of template specialization the given declaration
+/// is.
+static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
+ if (!D)
+ return TSK_Undeclared;
+
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
+ return Record->getTemplateSpecializationKind();
+ if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
+ return Function->getTemplateSpecializationKind();
+ if (VarDecl *Var = dyn_cast<VarDecl>(D))
+ return Var->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+/// Check whether a specialization is well-formed in the current
+/// context.
+///
+/// This routine determines whether a template specialization can be declared
+/// in the current context (C++ [temp.expl.spec]p2).
+///
+/// \param S the semantic analysis object for which this check is being
+/// performed.
+///
+/// \param Specialized the entity being specialized or instantiated, which
+/// may be a kind of template (class template, function template, etc.) or
+/// a member of a class template (member function, static data member,
+/// member class).
+///
+/// \param PrevDecl the previous declaration of this entity, if any.
+///
+/// \param Loc the location of the explicit specialization or instantiation of
+/// this entity.
+///
+/// \param IsPartialSpecialization whether this is a partial specialization of
+/// a class template.
+///
+/// \returns true if there was an error that we cannot recover from, false
+/// otherwise.
+static bool CheckTemplateSpecializationScope(Sema &S,
+ NamedDecl *Specialized,
+ NamedDecl *PrevDecl,
+ SourceLocation Loc,
+ bool IsPartialSpecialization) {
+ // Keep these "kind" numbers in sync with the %select statements in the
+ // various diagnostics emitted by this routine.
+ int EntityKind = 0;
+ if (isa<ClassTemplateDecl>(Specialized))
+ EntityKind = IsPartialSpecialization? 1 : 0;
+ else if (isa<VarTemplateDecl>(Specialized))
+ EntityKind = IsPartialSpecialization ? 3 : 2;
+ else if (isa<FunctionTemplateDecl>(Specialized))
+ EntityKind = 4;
+ else if (isa<CXXMethodDecl>(Specialized))
+ EntityKind = 5;
+ else if (isa<VarDecl>(Specialized))
+ EntityKind = 6;
+ else if (isa<RecordDecl>(Specialized))
+ EntityKind = 7;
+ else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
+ EntityKind = 8;
+ else {
+ S.Diag(Loc, diag::err_template_spec_unknown_kind)
+ << S.getLangOpts().CPlusPlus11;
+ S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
+ return true;
+ }
+
+ // C++ [temp.expl.spec]p2:
+ // An explicit specialization may be declared in any scope in which
+ // the corresponding primary template may be defined.
+ if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
+ S.Diag(Loc, diag::err_template_spec_decl_function_scope)
+ << Specialized;
+ return true;
+ }
+
+ // C++ [temp.class.spec]p6:
+ // A class template partial specialization may be declared in any
+ // scope in which the primary template may be defined.
+ DeclContext *SpecializedContext =
+ Specialized->getDeclContext()->getRedeclContext();
+ DeclContext *DC = S.CurContext->getRedeclContext();
+
+ // Make sure that this redeclaration (or definition) occurs in the same
+ // scope or an enclosing namespace.
+ if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext)
+ : DC->Equals(SpecializedContext))) {
+ if (isa<TranslationUnitDecl>(SpecializedContext))
+ S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
+ << EntityKind << Specialized;
+ else {
+ auto *ND = cast<NamedDecl>(SpecializedContext);
+ int Diag = diag::err_template_spec_redecl_out_of_scope;
+ if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
+ Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
+ S.Diag(Loc, Diag) << EntityKind << Specialized
+ << ND << isa<CXXRecordDecl>(ND);
+ }
+
+ S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
+
+ // Don't allow specializing in the wrong class during error recovery.
+ // Otherwise, things can go horribly wrong.
+ if (DC->isRecord())
+ return true;
+ }
+
+ return false;
+}
+
+static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
+ if (!E->isTypeDependent())
+ return SourceLocation();
+ DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
+ Checker.TraverseStmt(E);
+ if (Checker.MatchLoc.isInvalid())
+ return E->getSourceRange();
+ return Checker.MatchLoc;
+}
+
+static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
+ if (!TL.getType()->isDependentType())
+ return SourceLocation();
+ DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
+ Checker.TraverseTypeLoc(TL);
+ if (Checker.MatchLoc.isInvalid())
+ return TL.getSourceRange();
+ return Checker.MatchLoc;
+}
+
+/// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
+/// that checks non-type template partial specialization arguments.
+static bool CheckNonTypeTemplatePartialSpecializationArgs(
+ Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
+ const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
+ for (unsigned I = 0; I != NumArgs; ++I) {
+ if (Args[I].getKind() == TemplateArgument::Pack) {
+ if (CheckNonTypeTemplatePartialSpecializationArgs(
+ S, TemplateNameLoc, Param, Args[I].pack_begin(),
+ Args[I].pack_size(), IsDefaultArgument))
+ return true;
+
+ continue;
+ }
+
+ if (Args[I].getKind() != TemplateArgument::Expression)
+ continue;
+
+ Expr *ArgExpr = Args[I].getAsExpr();
+
+ // We can have a pack expansion of any of the bullets below.
+ if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
+ ArgExpr = Expansion->getPattern();
+
+ // Strip off any implicit casts we added as part of type checking.
+ while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
+ ArgExpr = ICE->getSubExpr();
+
+ // C++ [temp.class.spec]p8:
+ // A non-type argument is non-specialized if it is the name of a
+ // non-type parameter. All other non-type arguments are
+ // specialized.
+ //
+ // Below, we check the two conditions that only apply to
+ // specialized non-type arguments, so skip any non-specialized
+ // arguments.
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
+ if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
+ continue;
+
+ // C++ [temp.class.spec]p9:
+ // Within the argument list of a class template partial
+ // specialization, the following restrictions apply:
+ // -- A partially specialized non-type argument expression
+ // shall not involve a template parameter of the partial
+ // specialization except when the argument expression is a
+ // simple identifier.
+ // -- The type of a template parameter corresponding to a
+ // specialized non-type argument shall not be dependent on a
+ // parameter of the specialization.
+ // DR1315 removes the first bullet, leaving an incoherent set of rules.
+ // We implement a compromise between the original rules and DR1315:
+ // -- A specialized non-type template argument shall not be
+ // type-dependent and the corresponding template parameter
+ // shall have a non-dependent type.
+ SourceRange ParamUseRange =
+ findTemplateParameterInType(Param->getDepth(), ArgExpr);
+ if (ParamUseRange.isValid()) {
+ if (IsDefaultArgument) {
+ S.Diag(TemplateNameLoc,
+ diag::err_dependent_non_type_arg_in_partial_spec);
+ S.Diag(ParamUseRange.getBegin(),
+ diag::note_dependent_non_type_default_arg_in_partial_spec)
+ << ParamUseRange;
+ } else {
+ S.Diag(ParamUseRange.getBegin(),
+ diag::err_dependent_non_type_arg_in_partial_spec)
+ << ParamUseRange;
+ }
+ return true;
+ }
+
+ ParamUseRange = findTemplateParameter(
+ Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
+ if (ParamUseRange.isValid()) {
+ S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
+ diag::err_dependent_typed_non_type_arg_in_partial_spec)
+ << Param->getType();
+ S.Diag(Param->getLocation(), diag::note_template_param_here)
+ << (IsDefaultArgument ? ParamUseRange : SourceRange())
+ << ParamUseRange;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// Check the non-type template arguments of a class template
+/// partial specialization according to C++ [temp.class.spec]p9.
+///
+/// \param TemplateNameLoc the location of the template name.
+/// \param PrimaryTemplate the template parameters of the primary class
+/// template.
+/// \param NumExplicit the number of explicitly-specified template arguments.
+/// \param TemplateArgs the template arguments of the class template
+/// partial specialization.
+///
+/// \returns \c true if there was an error, \c false otherwise.
+bool Sema::CheckTemplatePartialSpecializationArgs(
+ SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
+ unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
+ // We have to be conservative when checking a template in a dependent
+ // context.
+ if (PrimaryTemplate->getDeclContext()->isDependentContext())
+ return false;
+
+ TemplateParameterList *TemplateParams =
+ PrimaryTemplate->getTemplateParameters();
+ for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
+ NonTypeTemplateParmDecl *Param
+ = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
+ if (!Param)
+ continue;
+
+ if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc,
+ Param, &TemplateArgs[I],
+ 1, I >= NumExplicit))
+ return true;
+ }
+
+ return false;
+}
+
+DeclResult Sema::ActOnClassTemplateSpecialization(
+ Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
+ SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
+ TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
+ MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
+ assert(TUK != TUK_Reference && "References are not specializations");
+
+ // NOTE: KWLoc is the location of the tag keyword. This will instead
+ // store the location of the outermost template keyword in the declaration.
+ SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
+ ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
+ SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
+ SourceLocation LAngleLoc = TemplateId.LAngleLoc;
+ SourceLocation RAngleLoc = TemplateId.RAngleLoc;
+
+ // Find the class template we're specializing
+ TemplateName Name = TemplateId.Template.get();
+ ClassTemplateDecl *ClassTemplate
+ = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
+
+ if (!ClassTemplate) {
+ Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
+ << (Name.getAsTemplateDecl() &&
+ isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
+ return true;
+ }
+
+ bool isMemberSpecialization = false;
+ bool isPartialSpecialization = false;
+
+ // Check the validity of the template headers that introduce this
+ // template.
+ // FIXME: We probably shouldn't complain about these headers for
+ // friend declarations.
+ bool Invalid = false;
+ TemplateParameterList *TemplateParams =
+ MatchTemplateParametersToScopeSpecifier(
+ KWLoc, TemplateNameLoc, SS, &TemplateId,
+ TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization,
+ Invalid);
+ if (Invalid)
+ return true;
+
+ // Check that we can declare a template specialization here.
+ if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams))
+ return true;
+
+ if (TemplateParams && TemplateParams->size() > 0) {
+ isPartialSpecialization = true;
+
+ if (TUK == TUK_Friend) {
+ Diag(KWLoc, diag::err_partial_specialization_friend)
+ << SourceRange(LAngleLoc, RAngleLoc);
+ return true;
+ }
+
+ // C++ [temp.class.spec]p10:
+ // The template parameter list of a specialization shall not
+ // contain default template argument values.
+ for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
+ Decl *Param = TemplateParams->getParam(I);
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
+ if (TTP->hasDefaultArgument()) {
+ Diag(TTP->getDefaultArgumentLoc(),
+ diag::err_default_arg_in_partial_spec);
+ TTP->removeDefaultArgument();
+ }
+ } else if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ if (Expr *DefArg = NTTP->getDefaultArgument()) {
+ Diag(NTTP->getDefaultArgumentLoc(),
+ diag::err_default_arg_in_partial_spec)
+ << DefArg->getSourceRange();
+ NTTP->removeDefaultArgument();
+ }
+ } else {
+ TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
+ if (TTP->hasDefaultArgument()) {
+ Diag(TTP->getDefaultArgument().getLocation(),
+ diag::err_default_arg_in_partial_spec)
+ << TTP->getDefaultArgument().getSourceRange();
+ TTP->removeDefaultArgument();
+ }
+ }
+ }
+ } else if (TemplateParams) {
+ if (TUK == TUK_Friend)
+ Diag(KWLoc, diag::err_template_spec_friend)
+ << FixItHint::CreateRemoval(
+ SourceRange(TemplateParams->getTemplateLoc(),
+ TemplateParams->getRAngleLoc()))
+ << SourceRange(LAngleLoc, RAngleLoc);
+ } else {
+ assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
+ }
+
+ // Check that the specialization uses the same tag kind as the
+ // original template.
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+ assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
+ if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
+ Kind, TUK == TUK_Definition, KWLoc,
+ ClassTemplate->getIdentifier())) {
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << ClassTemplate
+ << FixItHint::CreateReplacement(KWLoc,
+ ClassTemplate->getTemplatedDecl()->getKindName());
+ Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
+ diag::note_previous_use);
+ Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
+ }
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs =
+ makeTemplateArgumentListInfo(*this, TemplateId);
+
+ // Check for unexpanded parameter packs in any of the template arguments.
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
+ UPPC_PartialSpecialization))
+ return true;
+
+ // Check that the template argument list is well-formed for this
+ // template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
+ TemplateArgs, false, Converted,
+ /*UpdateArgsWithConversions=*/true))
+ return true;
+
+ // Find the class template (partial) specialization declaration that
+ // corresponds to these arguments.
+ if (isPartialSpecialization) {
+ if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
+ TemplateArgs.size(), Converted))
+ return true;
+
+ // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
+ // also do it during instantiation.
+ if (!Name.isDependent() &&
+ !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs,
+ Converted)) {
+ Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
+ << ClassTemplate->getDeclName();
+ isPartialSpecialization = false;
+ }
+ }
+
+ void *InsertPos = nullptr;
+ ClassTemplateSpecializationDecl *PrevDecl = nullptr;
+
+ if (isPartialSpecialization)
+ PrevDecl = ClassTemplate->findPartialSpecialization(Converted,
+ TemplateParams,
+ InsertPos);
+ else
+ PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
+
+ ClassTemplateSpecializationDecl *Specialization = nullptr;
+
+ // Check whether we can declare a class template specialization in
+ // the current scope.
+ if (TUK != TUK_Friend &&
+ CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
+ TemplateNameLoc,
+ isPartialSpecialization))
+ return true;
+
+ // The canonical type
+ QualType CanonType;
+ if (isPartialSpecialization) {
+ // Build the canonical type that describes the converted template
+ // arguments of the class template partial specialization.
+ TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
+ CanonType = Context.getTemplateSpecializationType(CanonTemplate,
+ Converted);
+
+ if (Context.hasSameType(CanonType,
+ ClassTemplate->getInjectedClassNameSpecialization()) &&
+ (!Context.getLangOpts().CPlusPlus20 ||
+ !TemplateParams->hasAssociatedConstraints())) {
+ // C++ [temp.class.spec]p9b3:
+ //
+ // -- The argument list of the specialization shall not be identical
+ // to the implicit argument list of the primary template.
+ //
+ // This rule has since been removed, because it's redundant given DR1495,
+ // but we keep it because it produces better diagnostics and recovery.
+ Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
+ << /*class template*/0 << (TUK == TUK_Definition)
+ << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
+ return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
+ ClassTemplate->getIdentifier(),
+ TemplateNameLoc,
+ Attr,
+ TemplateParams,
+ AS_none, /*ModulePrivateLoc=*/SourceLocation(),
+ /*FriendLoc*/SourceLocation(),
+ TemplateParameterLists.size() - 1,
+ TemplateParameterLists.data());
+ }
+
+ // Create a new class template partial specialization declaration node.
+ ClassTemplatePartialSpecializationDecl *PrevPartial
+ = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
+ ClassTemplatePartialSpecializationDecl *Partial
+ = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
+ ClassTemplate->getDeclContext(),
+ KWLoc, TemplateNameLoc,
+ TemplateParams,
+ ClassTemplate,
+ Converted,
+ TemplateArgs,
+ CanonType,
+ PrevPartial);
+ SetNestedNameSpecifier(*this, Partial, SS);
+ if (TemplateParameterLists.size() > 1 && SS.isSet()) {
+ Partial->setTemplateParameterListsInfo(
+ Context, TemplateParameterLists.drop_back(1));
+ }
+
+ if (!PrevPartial)
+ ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
+ Specialization = Partial;
+
+ // If we are providing an explicit specialization of a member class
+ // template specialization, make a note of that.
+ if (PrevPartial && PrevPartial->getInstantiatedFromMember())
+ PrevPartial->setMemberSpecialization();
+
+ CheckTemplatePartialSpecialization(Partial);
+ } else {
+ // Create a new class template specialization declaration node for
+ // this explicit specialization or friend declaration.
+ Specialization
+ = ClassTemplateSpecializationDecl::Create(Context, Kind,
+ ClassTemplate->getDeclContext(),
+ KWLoc, TemplateNameLoc,
+ ClassTemplate,
+ Converted,
+ PrevDecl);
+ SetNestedNameSpecifier(*this, Specialization, SS);
+ if (TemplateParameterLists.size() > 0) {
+ Specialization->setTemplateParameterListsInfo(Context,
+ TemplateParameterLists);
+ }
+
+ if (!PrevDecl)
+ ClassTemplate->AddSpecialization(Specialization, InsertPos);
+
+ if (CurContext->isDependentContext()) {
+ TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
+ CanonType = Context.getTemplateSpecializationType(
+ CanonTemplate, Converted);
+ } else {
+ CanonType = Context.getTypeDeclType(Specialization);
+ }
+ }
+
+ // C++ [temp.expl.spec]p6:
+ // If a template, a member template or the member of a class template is
+ // explicitly specialized then that specialization shall be declared
+ // before the first use of that specialization that would cause an implicit
+ // instantiation to take place, in every translation unit in which such a
+ // use occurs; no diagnostic is required.
+ if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
+ bool Okay = false;
+ for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
+ // Is there any previous explicit specialization declaration?
+ if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
+ Okay = true;
+ break;
+ }
+ }
+
+ if (!Okay) {
+ SourceRange Range(TemplateNameLoc, RAngleLoc);
+ Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
+ << Context.getTypeDeclType(Specialization) << Range;
+
+ Diag(PrevDecl->getPointOfInstantiation(),
+ diag::note_instantiation_required_here)
+ << (PrevDecl->getTemplateSpecializationKind()
+ != TSK_ImplicitInstantiation);
+ return true;
+ }
+ }
+
+ // If this is not a friend, note that this is an explicit specialization.
+ if (TUK != TUK_Friend)
+ Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
+
+ // Check that this isn't a redefinition of this specialization.
+ if (TUK == TUK_Definition) {
+ RecordDecl *Def = Specialization->getDefinition();
+ NamedDecl *Hidden = nullptr;
+ if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
+ SkipBody->ShouldSkip = true;
+ SkipBody->Previous = Def;
+ makeMergedDefinitionVisible(Hidden);
+ } else if (Def) {
+ SourceRange Range(TemplateNameLoc, RAngleLoc);
+ Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
+ Diag(Def->getLocation(), diag::note_previous_definition);
+ Specialization->setInvalidDecl();
+ return true;
+ }
+ }
+
+ ProcessDeclAttributeList(S, Specialization, Attr);
+
+ // Add alignment attributes if necessary; these attributes are checked when
+ // the ASTContext lays out the structure.
+ if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
+ AddAlignmentAttributesForRecord(Specialization);
+ AddMsStructLayoutForRecord(Specialization);
+ }
+
+ if (ModulePrivateLoc.isValid())
+ Diag(Specialization->getLocation(), diag::err_module_private_specialization)
+ << (isPartialSpecialization? 1 : 0)
+ << FixItHint::CreateRemoval(ModulePrivateLoc);
+
+ // Build the fully-sugared type for this class template
+ // specialization as the user wrote in the specialization
+ // itself. This means that we'll pretty-print the type retrieved
+ // from the specialization's declaration the way that the user
+ // actually wrote the specialization, rather than formatting the
+ // name based on the "canonical" representation used to store the
+ // template arguments in the specialization.
+ TypeSourceInfo *WrittenTy
+ = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
+ TemplateArgs, CanonType);
+ if (TUK != TUK_Friend) {
+ Specialization->setTypeAsWritten(WrittenTy);
+ Specialization->setTemplateKeywordLoc(TemplateKWLoc);
+ }
+
+ // C++ [temp.expl.spec]p9:
+ // A template explicit specialization is in the scope of the
+ // namespace in which the template was defined.
+ //
+ // We actually implement this paragraph where we set the semantic
+ // context (in the creation of the ClassTemplateSpecializationDecl),
+ // but we also maintain the lexical context where the actual
+ // definition occurs.
+ Specialization->setLexicalDeclContext(CurContext);
+
+ // We may be starting the definition of this specialization.
+ if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
+ Specialization->startDefinition();
+
+ if (TUK == TUK_Friend) {
+ FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
+ TemplateNameLoc,
+ WrittenTy,
+ /*FIXME:*/KWLoc);
+ Friend->setAccess(AS_public);
+ CurContext->addDecl(Friend);
+ } else {
+ // Add the specialization into its lexical context, so that it can
+ // be seen when iterating through the list of declarations in that
+ // context. However, specializations are not found by name lookup.
+ CurContext->addDecl(Specialization);
+ }
+
+ if (SkipBody && SkipBody->ShouldSkip)
+ return SkipBody->Previous;
+
+ return Specialization;
+}
+
+Decl *Sema::ActOnTemplateDeclarator(Scope *S,
+ MultiTemplateParamsArg TemplateParameterLists,
+ Declarator &D) {
+ Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
+ ActOnDocumentableDecl(NewDecl);
+ return NewDecl;
+}
+
+Decl *Sema::ActOnConceptDefinition(Scope *S,
+ MultiTemplateParamsArg TemplateParameterLists,
+ IdentifierInfo *Name, SourceLocation NameLoc,
+ Expr *ConstraintExpr) {
+ DeclContext *DC = CurContext;
+
+ if (!DC->getRedeclContext()->isFileContext()) {
+ Diag(NameLoc,
+ diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
+ return nullptr;
+ }
+
+ if (TemplateParameterLists.size() > 1) {
+ Diag(NameLoc, diag::err_concept_extra_headers);
+ return nullptr;
+ }
+
+ if (TemplateParameterLists.front()->size() == 0) {
+ Diag(NameLoc, diag::err_concept_no_parameters);
+ return nullptr;
+ }
+
+ if (DiagnoseUnexpandedParameterPack(ConstraintExpr))
+ return nullptr;
+
+ ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name,
+ TemplateParameterLists.front(),
+ ConstraintExpr);
+
+ if (NewDecl->hasAssociatedConstraints()) {
+ // C++2a [temp.concept]p4:
+ // A concept shall not have associated constraints.
+ Diag(NameLoc, diag::err_concept_no_associated_constraints);
+ NewDecl->setInvalidDecl();
+ }
+
+ // Check for conflicting previous declaration.
+ DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
+ LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
+ ForVisibleRedeclaration);
+ LookupName(Previous, S);
+
+ FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false,
+ /*AllowInlineNamespace*/false);
+ if (!Previous.empty()) {
+ auto *Old = Previous.getRepresentativeDecl();
+ Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition :
+ diag::err_redefinition_different_kind) << NewDecl->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ }
+
+ ActOnDocumentableDecl(NewDecl);
+ PushOnScopeChains(NewDecl, S);
+ return NewDecl;
+}
+
+/// \brief Strips various properties off an implicit instantiation
+/// that has just been explicitly specialized.
+static void StripImplicitInstantiation(NamedDecl *D) {
+ D->dropAttr<DLLImportAttr>();
+ D->dropAttr<DLLExportAttr>();
+
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+ FD->setInlineSpecified(false);
+}
+
+/// Compute the diagnostic location for an explicit instantiation
+// declaration or definition.
+static SourceLocation DiagLocForExplicitInstantiation(
+ NamedDecl* D, SourceLocation PointOfInstantiation) {
+ // Explicit instantiations following a specialization have no effect and
+ // hence no PointOfInstantiation. In that case, walk decl backwards
+ // until a valid name loc is found.
+ SourceLocation PrevDiagLoc = PointOfInstantiation;
+ for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
+ Prev = Prev->getPreviousDecl()) {
+ PrevDiagLoc = Prev->getLocation();
+ }
+ assert(PrevDiagLoc.isValid() &&
+ "Explicit instantiation without point of instantiation?");
+ return PrevDiagLoc;
+}
+
+/// Diagnose cases where we have an explicit template specialization
+/// before/after an explicit template instantiation, producing diagnostics
+/// for those cases where they are required and determining whether the
+/// new specialization/instantiation will have any effect.
+///
+/// \param NewLoc the location of the new explicit specialization or
+/// instantiation.
+///
+/// \param NewTSK the kind of the new explicit specialization or instantiation.
+///
+/// \param PrevDecl the previous declaration of the entity.
+///
+/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
+///
+/// \param PrevPointOfInstantiation if valid, indicates where the previous
+/// declaration was instantiated (either implicitly or explicitly).
+///
+/// \param HasNoEffect will be set to true to indicate that the new
+/// specialization or instantiation has no effect and should be ignored.
+///
+/// \returns true if there was an error that should prevent the introduction of
+/// the new declaration into the AST, false otherwise.
+bool
+Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
+ TemplateSpecializationKind NewTSK,
+ NamedDecl *PrevDecl,
+ TemplateSpecializationKind PrevTSK,
+ SourceLocation PrevPointOfInstantiation,
+ bool &HasNoEffect) {
+ HasNoEffect = false;
+
+ switch (NewTSK) {
+ case TSK_Undeclared:
+ case TSK_ImplicitInstantiation:
+ assert(
+ (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
+ "previous declaration must be implicit!");
+ return false;
+
+ case TSK_ExplicitSpecialization:
+ switch (PrevTSK) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ // Okay, we're just specializing something that is either already
+ // explicitly specialized or has merely been mentioned without any
+ // instantiation.
+ return false;
+
+ case TSK_ImplicitInstantiation:
+ if (PrevPointOfInstantiation.isInvalid()) {
+ // The declaration itself has not actually been instantiated, so it is
+ // still okay to specialize it.
+ StripImplicitInstantiation(PrevDecl);
+ return false;
+ }
+ // Fall through
+ LLVM_FALLTHROUGH;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ case TSK_ExplicitInstantiationDefinition:
+ assert((PrevTSK == TSK_ImplicitInstantiation ||
+ PrevPointOfInstantiation.isValid()) &&
+ "Explicit instantiation without point of instantiation?");
+
+ // C++ [temp.expl.spec]p6:
+ // If a template, a member template or the member of a class template
+ // is explicitly specialized then that specialization shall be declared
+ // before the first use of that specialization that would cause an
+ // implicit instantiation to take place, in every translation unit in
+ // which such a use occurs; no diagnostic is required.
+ for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
+ // Is there any previous explicit specialization declaration?
+ if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
+ return false;
+ }
+
+ Diag(NewLoc, diag::err_specialization_after_instantiation)
+ << PrevDecl;
+ Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
+ << (PrevTSK != TSK_ImplicitInstantiation);
+
+ return true;
+ }
+ llvm_unreachable("The switch over PrevTSK must be exhaustive.");
+
+ case TSK_ExplicitInstantiationDeclaration:
+ switch (PrevTSK) {
+ case TSK_ExplicitInstantiationDeclaration:
+ // This explicit instantiation declaration is redundant (that's okay).
+ HasNoEffect = true;
+ return false;
+
+ case TSK_Undeclared:
+ case TSK_ImplicitInstantiation:
+ // We're explicitly instantiating something that may have already been
+ // implicitly instantiated; that's fine.
+ return false;
+
+ case TSK_ExplicitSpecialization:
+ // C++0x [temp.explicit]p4:
+ // For a given set of template parameters, if an explicit instantiation
+ // of a template appears after a declaration of an explicit
+ // specialization for that template, the explicit instantiation has no
+ // effect.
+ HasNoEffect = true;
+ return false;
+
+ case TSK_ExplicitInstantiationDefinition:
+ // C++0x [temp.explicit]p10:
+ // If an entity is the subject of both an explicit instantiation
+ // declaration and an explicit instantiation definition in the same
+ // translation unit, the definition shall follow the declaration.
+ Diag(NewLoc,
+ diag::err_explicit_instantiation_declaration_after_definition);
+
+ // Explicit instantiations following a specialization have no effect and
+ // hence no PrevPointOfInstantiation. In that case, walk decl backwards
+ // until a valid name loc is found.
+ Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
+ diag::note_explicit_instantiation_definition_here);
+ HasNoEffect = true;
+ return false;
+ }
+ llvm_unreachable("Unexpected TemplateSpecializationKind!");
+
+ case TSK_ExplicitInstantiationDefinition:
+ switch (PrevTSK) {
+ case TSK_Undeclared:
+ case TSK_ImplicitInstantiation:
+ // We're explicitly instantiating something that may have already been
+ // implicitly instantiated; that's fine.
+ return false;
+
+ case TSK_ExplicitSpecialization:
+ // C++ DR 259, C++0x [temp.explicit]p4:
+ // For a given set of template parameters, if an explicit
+ // instantiation of a template appears after a declaration of
+ // an explicit specialization for that template, the explicit
+ // instantiation has no effect.
+ Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
+ << PrevDecl;
+ Diag(PrevDecl->getLocation(),
+ diag::note_previous_template_specialization);
+ HasNoEffect = true;
+ return false;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ // We're explicitly instantiating a definition for something for which we
+ // were previously asked to suppress instantiations. That's fine.
+
+ // C++0x [temp.explicit]p4:
+ // For a given set of template parameters, if an explicit instantiation
+ // of a template appears after a declaration of an explicit
+ // specialization for that template, the explicit instantiation has no
+ // effect.
+ for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
+ // Is there any previous explicit specialization declaration?
+ if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
+ HasNoEffect = true;
+ break;
+ }
+ }
+
+ return false;
+
+ case TSK_ExplicitInstantiationDefinition:
+ // C++0x [temp.spec]p5:
+ // For a given template and a given set of template-arguments,
+ // - an explicit instantiation definition shall appear at most once
+ // in a program,
+
+ // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
+ Diag(NewLoc, (getLangOpts().MSVCCompat)
+ ? diag::ext_explicit_instantiation_duplicate
+ : diag::err_explicit_instantiation_duplicate)
+ << PrevDecl;
+ Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
+ diag::note_previous_explicit_instantiation);
+ HasNoEffect = true;
+ return false;
+ }
+ }
+
+ llvm_unreachable("Missing specialization/instantiation case?");
+}
+
+/// Perform semantic analysis for the given dependent function
+/// template specialization.
+///
+/// The only possible way to get a dependent function template specialization
+/// is with a friend declaration, like so:
+///
+/// \code
+/// template \<class T> void foo(T);
+/// template \<class T> class A {
+/// friend void foo<>(T);
+/// };
+/// \endcode
+///
+/// There really isn't any useful analysis we can do here, so we
+/// just store the information.
+bool
+Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
+ const TemplateArgumentListInfo &ExplicitTemplateArgs,
+ LookupResult &Previous) {
+ // Remove anything from Previous that isn't a function template in
+ // the correct context.
+ DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
+ LookupResult::Filter F = Previous.makeFilter();
+ enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
+ SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
+ while (F.hasNext()) {
+ NamedDecl *D = F.next()->getUnderlyingDecl();
+ if (!isa<FunctionTemplateDecl>(D)) {
+ F.erase();
+ DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D));
+ continue;
+ }
+
+ if (!FDLookupContext->InEnclosingNamespaceSetOf(
+ D->getDeclContext()->getRedeclContext())) {
+ F.erase();
+ DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D));
+ continue;
+ }
+ }
+ F.done();
+
+ if (Previous.empty()) {
+ Diag(FD->getLocation(),
+ diag::err_dependent_function_template_spec_no_match);
+ for (auto &P : DiscardedCandidates)
+ Diag(P.second->getLocation(),
+ diag::note_dependent_function_template_spec_discard_reason)
+ << P.first;
+ return true;
+ }
+
+ FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
+ ExplicitTemplateArgs);
+ return false;
+}
+
+/// Perform semantic analysis for the given function template
+/// specialization.
+///
+/// This routine performs all of the semantic analysis required for an
+/// explicit function template specialization. On successful completion,
+/// the function declaration \p FD will become a function template
+/// specialization.
+///
+/// \param FD the function declaration, which will be updated to become a
+/// function template specialization.
+///
+/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
+/// if any. Note that this may be valid info even when 0 arguments are
+/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
+/// as it anyway contains info on the angle brackets locations.
+///
+/// \param Previous the set of declarations that may be specialized by
+/// this function specialization.
+///
+/// \param QualifiedFriend whether this is a lookup for a qualified friend
+/// declaration with no explicit template argument list that might be
+/// befriending a function template specialization.
+bool Sema::CheckFunctionTemplateSpecialization(
+ FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
+ LookupResult &Previous, bool QualifiedFriend) {
+ // The set of function template specializations that could match this
+ // explicit function template specialization.
+ UnresolvedSet<8> Candidates;
+ TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
+ /*ForTakingAddress=*/false);
+
+ llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
+ ConvertedTemplateArgs;
+
+ DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
+ for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
+ I != E; ++I) {
+ NamedDecl *Ovl = (*I)->getUnderlyingDecl();
+ if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
+ // Only consider templates found within the same semantic lookup scope as
+ // FD.
+ if (!FDLookupContext->InEnclosingNamespaceSetOf(
+ Ovl->getDeclContext()->getRedeclContext()))
+ continue;
+
+ // When matching a constexpr member function template specialization
+ // against the primary template, we don't yet know whether the
+ // specialization has an implicit 'const' (because we don't know whether
+ // it will be a static member function until we know which template it
+ // specializes), so adjust it now assuming it specializes this template.
+ QualType FT = FD->getType();
+ if (FD->isConstexpr()) {
+ CXXMethodDecl *OldMD =
+ dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
+ if (OldMD && OldMD->isConst()) {
+ const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.TypeQuals.addConst();
+ FT = Context.getFunctionType(FPT->getReturnType(),
+ FPT->getParamTypes(), EPI);
+ }
+ }
+
+ TemplateArgumentListInfo Args;
+ if (ExplicitTemplateArgs)
+ Args = *ExplicitTemplateArgs;
+
+ // C++ [temp.expl.spec]p11:
+ // A trailing template-argument can be left unspecified in the
+ // template-id naming an explicit function template specialization
+ // provided it can be deduced from the function argument type.
+ // Perform template argument deduction to determine whether we may be
+ // specializing this template.
+ // FIXME: It is somewhat wasteful to build
+ TemplateDeductionInfo Info(FailedCandidates.getLocation());
+ FunctionDecl *Specialization = nullptr;
+ if (TemplateDeductionResult TDK = DeduceTemplateArguments(
+ cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
+ ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
+ Info)) {
+ // Template argument deduction failed; record why it failed, so
+ // that we can provide nifty diagnostics.
+ FailedCandidates.addCandidate().set(
+ I.getPair(), FunTmpl->getTemplatedDecl(),
+ MakeDeductionFailureInfo(Context, TDK, Info));
+ (void)TDK;
+ continue;
+ }
+
+ // Target attributes are part of the cuda function signature, so
+ // the deduced template's cuda target must match that of the
+ // specialization. Given that C++ template deduction does not
+ // take target attributes into account, we reject candidates
+ // here that have a different target.
+ if (LangOpts.CUDA &&
+ IdentifyCUDATarget(Specialization,
+ /* IgnoreImplicitHDAttr = */ true) !=
+ IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) {
+ FailedCandidates.addCandidate().set(
+ I.getPair(), FunTmpl->getTemplatedDecl(),
+ MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
+ continue;
+ }
+
+ // Record this candidate.
+ if (ExplicitTemplateArgs)
+ ConvertedTemplateArgs[Specialization] = std::move(Args);
+ Candidates.addDecl(Specialization, I.getAccess());
+ }
+ }
+
+ // For a qualified friend declaration (with no explicit marker to indicate
+ // that a template specialization was intended), note all (template and
+ // non-template) candidates.
+ if (QualifiedFriend && Candidates.empty()) {
+ Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
+ << FD->getDeclName() << FDLookupContext;
+ // FIXME: We should form a single candidate list and diagnose all
+ // candidates at once, to get proper sorting and limiting.
+ for (auto *OldND : Previous) {
+ if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl()))
+ NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false);
+ }
+ FailedCandidates.NoteCandidates(*this, FD->getLocation());
+ return true;
+ }
+
+ // Find the most specialized function template.
+ UnresolvedSetIterator Result = getMostSpecialized(
+ Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
+ PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
+ PDiag(diag::err_function_template_spec_ambiguous)
+ << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
+ PDiag(diag::note_function_template_spec_matched));
+
+ if (Result == Candidates.end())
+ return true;
+
+ // Ignore access information; it doesn't figure into redeclaration checking.
+ FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
+
+ FunctionTemplateSpecializationInfo *SpecInfo
+ = Specialization->getTemplateSpecializationInfo();
+ assert(SpecInfo && "Function template specialization info missing?");
+
+ // Note: do not overwrite location info if previous template
+ // specialization kind was explicit.
+ TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
+ if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
+ Specialization->setLocation(FD->getLocation());
+ Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
+ // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
+ // function can differ from the template declaration with respect to
+ // the constexpr specifier.
+ // FIXME: We need an update record for this AST mutation.
+ // FIXME: What if there are multiple such prior declarations (for instance,
+ // from different modules)?
+ Specialization->setConstexprKind(FD->getConstexprKind());
+ }
+
+ // FIXME: Check if the prior specialization has a point of instantiation.
+ // If so, we have run afoul of .
+
+ // If this is a friend declaration, then we're not really declaring
+ // an explicit specialization.
+ bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
+
+ // Check the scope of this explicit specialization.
+ if (!isFriend &&
+ CheckTemplateSpecializationScope(*this,
+ Specialization->getPrimaryTemplate(),
+ Specialization, FD->getLocation(),
+ false))
+ return true;
+
+ // C++ [temp.expl.spec]p6:
+ // If a template, a member template or the member of a class template is
+ // explicitly specialized then that specialization shall be declared
+ // before the first use of that specialization that would cause an implicit
+ // instantiation to take place, in every translation unit in which such a
+ // use occurs; no diagnostic is required.
+ bool HasNoEffect = false;
+ if (!isFriend &&
+ CheckSpecializationInstantiationRedecl(FD->getLocation(),
+ TSK_ExplicitSpecialization,
+ Specialization,
+ SpecInfo->getTemplateSpecializationKind(),
+ SpecInfo->getPointOfInstantiation(),
+ HasNoEffect))
+ return true;
+
+ // Mark the prior declaration as an explicit specialization, so that later
+ // clients know that this is an explicit specialization.
+ if (!isFriend) {
+ // Since explicit specializations do not inherit '=delete' from their
+ // primary function template - check if the 'specialization' that was
+ // implicitly generated (during template argument deduction for partial
+ // ordering) from the most specialized of all the function templates that
+ // 'FD' could have been specializing, has a 'deleted' definition. If so,
+ // first check that it was implicitly generated during template argument
+ // deduction by making sure it wasn't referenced, and then reset the deleted
+ // flag to not-deleted, so that we can inherit that information from 'FD'.
+ if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
+ !Specialization->getCanonicalDecl()->isReferenced()) {
+ // FIXME: This assert will not hold in the presence of modules.
+ assert(
+ Specialization->getCanonicalDecl() == Specialization &&
+ "This must be the only existing declaration of this specialization");
+ // FIXME: We need an update record for this AST mutation.
+ Specialization->setDeletedAsWritten(false);
+ }
+ // FIXME: We need an update record for this AST mutation.
+ SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
+ MarkUnusedFileScopedDecl(Specialization);
+ }
+
+ // Turn the given function declaration into a function template
+ // specialization, with the template arguments from the previous
+ // specialization.
+ // Take copies of (semantic and syntactic) template argument lists.
+ const TemplateArgumentList* TemplArgs = new (Context)
+ TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
+ FD->setFunctionTemplateSpecialization(
+ Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
+ SpecInfo->getTemplateSpecializationKind(),
+ ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
+
+ // A function template specialization inherits the target attributes
+ // of its template. (We require the attributes explicitly in the
+ // code to match, but a template may have implicit attributes by
+ // virtue e.g. of being constexpr, and it passes these implicit
+ // attributes on to its specializations.)
+ if (LangOpts.CUDA)
+ inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate());
+
+ // The "previous declaration" for this function template specialization is
+ // the prior function template specialization.
+ Previous.clear();
+ Previous.addDecl(Specialization);
+ return false;
+}
+
+/// Perform semantic analysis for the given non-template member
+/// specialization.
+///
+/// This routine performs all of the semantic analysis required for an
+/// explicit member function specialization. On successful completion,
+/// the function declaration \p FD will become a member function
+/// specialization.
+///
+/// \param Member the member declaration, which will be updated to become a
+/// specialization.
+///
+/// \param Previous the set of declarations, one of which may be specialized
+/// by this function specialization; the set will be modified to contain the
+/// redeclared member.
+bool
+Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
+ assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
+
+ // Try to find the member we are instantiating.
+ NamedDecl *FoundInstantiation = nullptr;
+ NamedDecl *Instantiation = nullptr;
+ NamedDecl *InstantiatedFrom = nullptr;
+ MemberSpecializationInfo *MSInfo = nullptr;
+
+ if (Previous.empty()) {
+ // Nowhere to look anyway.
+ } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
+ for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
+ I != E; ++I) {
+ NamedDecl *D = (*I)->getUnderlyingDecl();
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ QualType Adjusted = Function->getType();
+ if (!hasExplicitCallingConv(Adjusted))
+ Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
+ // This doesn't handle deduced return types, but both function
+ // declarations should be undeduced at this point.
+ if (Context.hasSameType(Adjusted, Method->getType())) {
+ FoundInstantiation = *I;
+ Instantiation = Method;
+ InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
+ MSInfo = Method->getMemberSpecializationInfo();
+ break;
+ }
+ }
+ }
+ } else if (isa<VarDecl>(Member)) {
+ VarDecl *PrevVar;
+ if (Previous.isSingleResult() &&
+ (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
+ if (PrevVar->isStaticDataMember()) {
+ FoundInstantiation = Previous.getRepresentativeDecl();
+ Instantiation = PrevVar;
+ InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
+ MSInfo = PrevVar->getMemberSpecializationInfo();
+ }
+ } else if (isa<RecordDecl>(Member)) {
+ CXXRecordDecl *PrevRecord;
+ if (Previous.isSingleResult() &&
+ (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
+ FoundInstantiation = Previous.getRepresentativeDecl();
+ Instantiation = PrevRecord;
+ InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
+ MSInfo = PrevRecord->getMemberSpecializationInfo();
+ }
+ } else if (isa<EnumDecl>(Member)) {
+ EnumDecl *PrevEnum;
+ if (Previous.isSingleResult() &&
+ (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
+ FoundInstantiation = Previous.getRepresentativeDecl();
+ Instantiation = PrevEnum;
+ InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
+ MSInfo = PrevEnum->getMemberSpecializationInfo();
+ }
+ }
+
+ if (!Instantiation) {
+ // There is no previous declaration that matches. Since member
+ // specializations are always out-of-line, the caller will complain about
+ // this mismatch later.
+ return false;
+ }
+
+ // A member specialization in a friend declaration isn't really declaring
+ // an explicit specialization, just identifying a specific (possibly implicit)
+ // specialization. Don't change the template specialization kind.
+ //
+ // FIXME: Is this really valid? Other compilers reject.
+ if (Member->getFriendObjectKind() != Decl::FOK_None) {
+ // Preserve instantiation information.
+ if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
+ cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
+ cast<CXXMethodDecl>(InstantiatedFrom),
+ cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
+ } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
+ cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
+ cast<CXXRecordDecl>(InstantiatedFrom),
+ cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
+ }
+
+ Previous.clear();
+ Previous.addDecl(FoundInstantiation);
+ return false;
+ }
+
+ // Make sure that this is a specialization of a member.
+ if (!InstantiatedFrom) {
+ Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
+ << Member;
+ Diag(Instantiation->getLocation(), diag::note_specialized_decl);
+ return true;
+ }
+
+ // C++ [temp.expl.spec]p6:
+ // If a template, a member template or the member of a class template is
+ // explicitly specialized then that specialization shall be declared
+ // before the first use of that specialization that would cause an implicit
+ // instantiation to take place, in every translation unit in which such a
+ // use occurs; no diagnostic is required.
+ assert(MSInfo && "Member specialization info missing?");
+
+ bool HasNoEffect = false;
+ if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
+ TSK_ExplicitSpecialization,
+ Instantiation,
+ MSInfo->getTemplateSpecializationKind(),
+ MSInfo->getPointOfInstantiation(),
+ HasNoEffect))
+ return true;
+
+ // Check the scope of this explicit specialization.
+ if (CheckTemplateSpecializationScope(*this,
+ InstantiatedFrom,
+ Instantiation, Member->getLocation(),
+ false))
+ return true;
+
+ // Note that this member specialization is an "instantiation of" the
+ // corresponding member of the original template.
+ if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) {
+ FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
+ if (InstantiationFunction->getTemplateSpecializationKind() ==
+ TSK_ImplicitInstantiation) {
+ // Explicit specializations of member functions of class templates do not
+ // inherit '=delete' from the member function they are specializing.
+ if (InstantiationFunction->isDeleted()) {
+ // FIXME: This assert will not hold in the presence of modules.
+ assert(InstantiationFunction->getCanonicalDecl() ==
+ InstantiationFunction);
+ // FIXME: We need an update record for this AST mutation.
+ InstantiationFunction->setDeletedAsWritten(false);
+ }
+ }
+
+ MemberFunction->setInstantiationOfMemberFunction(
+ cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
+ } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) {
+ MemberVar->setInstantiationOfStaticDataMember(
+ cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
+ } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) {
+ MemberClass->setInstantiationOfMemberClass(
+ cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
+ } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) {
+ MemberEnum->setInstantiationOfMemberEnum(
+ cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
+ } else {
+ llvm_unreachable("unknown member specialization kind");
+ }
+
+ // Save the caller the trouble of having to figure out which declaration
+ // this specialization matches.
+ Previous.clear();
+ Previous.addDecl(FoundInstantiation);
+ return false;
+}
+
+/// Complete the explicit specialization of a member of a class template by
+/// updating the instantiated member to be marked as an explicit specialization.
+///
+/// \param OrigD The member declaration instantiated from the template.
+/// \param Loc The location of the explicit specialization of the member.
+template<typename DeclT>
+static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
+ SourceLocation Loc) {
+ if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
+ return;
+
+ // FIXME: Inform AST mutation listeners of this AST mutation.
+ // FIXME: If there are multiple in-class declarations of the member (from
+ // multiple modules, or a declaration and later definition of a member type),
+ // should we update all of them?
+ OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
+ OrigD->setLocation(Loc);
+}
+
+void Sema::CompleteMemberSpecialization(NamedDecl *Member,
+ LookupResult &Previous) {
+ NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
+ if (Instantiation == Member)
+ return;
+
+ if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
+ completeMemberSpecializationImpl(*this, Function, Member->getLocation());
+ else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
+ completeMemberSpecializationImpl(*this, Var, Member->getLocation());
+ else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
+ completeMemberSpecializationImpl(*this, Record, Member->getLocation());
+ else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
+ completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
+ else
+ llvm_unreachable("unknown member specialization kind");
+}
+
+/// Check the scope of an explicit instantiation.
+///
+/// \returns true if a serious error occurs, false otherwise.
+static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
+ SourceLocation InstLoc,
+ bool WasQualifiedName) {
+ DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
+ DeclContext *CurContext = S.CurContext->getRedeclContext();
+
+ if (CurContext->isRecord()) {
+ S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
+ << D;
+ return true;
+ }
+
+ // C++11 [temp.explicit]p3:
+ // An explicit instantiation shall appear in an enclosing namespace of its
+ // template. If the name declared in the explicit instantiation is an
+ // unqualified name, the explicit instantiation shall appear in the
+ // namespace where its template is declared or, if that namespace is inline
+ // (7.3.1), any namespace from its enclosing namespace set.
+ //
+ // This is DR275, which we do not retroactively apply to C++98/03.
+ if (WasQualifiedName) {
+ if (CurContext->Encloses(OrigContext))
+ return false;
+ } else {
+ if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
+ return false;
+ }
+
+ if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
+ if (WasQualifiedName)
+ S.Diag(InstLoc,
+ S.getLangOpts().CPlusPlus11?
+ diag::err_explicit_instantiation_out_of_scope :
+ diag::warn_explicit_instantiation_out_of_scope_0x)
+ << D << NS;
+ else
+ S.Diag(InstLoc,
+ S.getLangOpts().CPlusPlus11?
+ diag::err_explicit_instantiation_unqualified_wrong_namespace :
+ diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
+ << D << NS;
+ } else
+ S.Diag(InstLoc,
+ S.getLangOpts().CPlusPlus11?
+ diag::err_explicit_instantiation_must_be_global :
+ diag::warn_explicit_instantiation_must_be_global_0x)
+ << D;
+ S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
+ return false;
+}
+
+/// Common checks for whether an explicit instantiation of \p D is valid.
+static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
+ SourceLocation InstLoc,
+ bool WasQualifiedName,
+ TemplateSpecializationKind TSK) {
+ // C++ [temp.explicit]p13:
+ // An explicit instantiation declaration shall not name a specialization of
+ // a template with internal linkage.
+ if (TSK == TSK_ExplicitInstantiationDeclaration &&
+ D->getFormalLinkage() == InternalLinkage) {
+ S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
+ return true;
+ }
+
+ // C++11 [temp.explicit]p3: [DR 275]
+ // An explicit instantiation shall appear in an enclosing namespace of its
+ // template.
+ if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
+ return true;
+
+ return false;
+}
+
+/// Determine whether the given scope specifier has a template-id in it.
+static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
+ if (!SS.isSet())
+ return false;
+
+ // C++11 [temp.explicit]p3:
+ // If the explicit instantiation is for a member function, a member class
+ // or a static data member of a class template specialization, the name of
+ // the class template specialization in the qualified-id for the member
+ // name shall be a simple-template-id.
+ //
+ // C++98 has the same restriction, just worded differently.
+ for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
+ NNS = NNS->getPrefix())
+ if (const Type *T = NNS->getAsType())
+ if (isa<TemplateSpecializationType>(T))
+ return true;
+
+ return false;
+}
+
+/// Make a dllexport or dllimport attr on a class template specialization take
+/// effect.
+static void dllExportImportClassTemplateSpecialization(
+ Sema &S, ClassTemplateSpecializationDecl *Def) {
+ auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def));
+ assert(A && "dllExportImportClassTemplateSpecialization called "
+ "on Def without dllexport or dllimport");
+
+ // We reject explicit instantiations in class scope, so there should
+ // never be any delayed exported classes to worry about.
+ assert(S.DelayedDllExportClasses.empty() &&
+ "delayed exports present at explicit instantiation");
+ S.checkClassLevelDLLAttribute(Def);
+
+ // Propagate attribute to base class templates.
+ for (auto &B : Def->bases()) {
+ if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
+ B.getType()->getAsCXXRecordDecl()))
+ S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
+ }
+
+ S.referenceDLLExportedClassMethods();
+}
+
+// Explicit instantiation of a class template specialization
+DeclResult Sema::ActOnExplicitInstantiation(
+ Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
+ unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
+ TemplateTy TemplateD, SourceLocation TemplateNameLoc,
+ SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
+ // Find the class template we're specializing
+ TemplateName Name = TemplateD.get();
+ TemplateDecl *TD = Name.getAsTemplateDecl();
+ // Check that the specialization uses the same tag kind as the
+ // original template.
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+ assert(Kind != TTK_Enum &&
+ "Invalid enum tag in class template explicit instantiation!");
+
+ ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
+
+ if (!ClassTemplate) {
+ NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
+ Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind;
+ Diag(TD->getLocation(), diag::note_previous_use);
+ return true;
+ }
+
+ if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
+ Kind, /*isDefinition*/false, KWLoc,
+ ClassTemplate->getIdentifier())) {
+ Diag(KWLoc, diag::err_use_with_wrong_tag)
+ << ClassTemplate
+ << FixItHint::CreateReplacement(KWLoc,
+ ClassTemplate->getTemplatedDecl()->getKindName());
+ Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
+ diag::note_previous_use);
+ Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
+ }
+
+ // C++0x [temp.explicit]p2:
+ // There are two forms of explicit instantiation: an explicit instantiation
+ // definition and an explicit instantiation declaration. An explicit
+ // instantiation declaration begins with the extern keyword. [...]
+ TemplateSpecializationKind TSK = ExternLoc.isInvalid()
+ ? TSK_ExplicitInstantiationDefinition
+ : TSK_ExplicitInstantiationDeclaration;
+
+ if (TSK == TSK_ExplicitInstantiationDeclaration &&
+ !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
+ // Check for dllexport class template instantiation declarations,
+ // except for MinGW mode.
+ for (const ParsedAttr &AL : Attr) {
+ if (AL.getKind() == ParsedAttr::AT_DLLExport) {
+ Diag(ExternLoc,
+ diag::warn_attribute_dllexport_explicit_instantiation_decl);
+ Diag(AL.getLoc(), diag::note_attribute);
+ break;
+ }
+ }
+
+ if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
+ Diag(ExternLoc,
+ diag::warn_attribute_dllexport_explicit_instantiation_decl);
+ Diag(A->getLocation(), diag::note_attribute);
+ }
+ }
+
+ // In MSVC mode, dllimported explicit instantiation definitions are treated as
+ // instantiation declarations for most purposes.
+ bool DLLImportExplicitInstantiationDef = false;
+ if (TSK == TSK_ExplicitInstantiationDefinition &&
+ Context.getTargetInfo().getCXXABI().isMicrosoft()) {
+ // Check for dllimport class template instantiation definitions.
+ bool DLLImport =
+ ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
+ for (const ParsedAttr &AL : Attr) {
+ if (AL.getKind() == ParsedAttr::AT_DLLImport)
+ DLLImport = true;
+ if (AL.getKind() == ParsedAttr::AT_DLLExport) {
+ // dllexport trumps dllimport here.
+ DLLImport = false;
+ break;
+ }
+ }
+ if (DLLImport) {
+ TSK = TSK_ExplicitInstantiationDeclaration;
+ DLLImportExplicitInstantiationDef = true;
+ }
+ }
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
+ translateTemplateArguments(TemplateArgsIn, TemplateArgs);
+
+ // Check that the template argument list is well-formed for this
+ // template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
+ TemplateArgs, false, Converted,
+ /*UpdateArgsWithConversions=*/true))
+ return true;
+
+ // Find the class template specialization declaration that
+ // corresponds to these arguments.
+ void *InsertPos = nullptr;
+ ClassTemplateSpecializationDecl *PrevDecl
+ = ClassTemplate->findSpecialization(Converted, InsertPos);
+
+ TemplateSpecializationKind PrevDecl_TSK
+ = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
+
+ if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
+ Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
+ // Check for dllexport class template instantiation definitions in MinGW
+ // mode, if a previous declaration of the instantiation was seen.
+ for (const ParsedAttr &AL : Attr) {
+ if (AL.getKind() == ParsedAttr::AT_DLLExport) {
+ Diag(AL.getLoc(),
+ diag::warn_attribute_dllexport_explicit_instantiation_def);
+ break;
+ }
+ }
+ }
+
+ if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
+ SS.isSet(), TSK))
+ return true;
+
+ ClassTemplateSpecializationDecl *Specialization = nullptr;
+
+ bool HasNoEffect = false;
+ if (PrevDecl) {
+ if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
+ PrevDecl, PrevDecl_TSK,
+ PrevDecl->getPointOfInstantiation(),
+ HasNoEffect))
+ return PrevDecl;
+
+ // Even though HasNoEffect == true means that this explicit instantiation
+ // has no effect on semantics, we go on to put its syntax in the AST.
+
+ if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
+ PrevDecl_TSK == TSK_Undeclared) {
+ // Since the only prior class template specialization with these
+ // arguments was referenced but not declared, reuse that
+ // declaration node as our own, updating the source location
+ // for the template name to reflect our new declaration.
+ // (Other source locations will be updated later.)
+ Specialization = PrevDecl;
+ Specialization->setLocation(TemplateNameLoc);
+ PrevDecl = nullptr;
+ }
+
+ if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
+ DLLImportExplicitInstantiationDef) {
+ // The new specialization might add a dllimport attribute.
+ HasNoEffect = false;
+ }
+ }
+
+ if (!Specialization) {
+ // Create a new class template specialization declaration node for
+ // this explicit specialization.
+ Specialization
+ = ClassTemplateSpecializationDecl::Create(Context, Kind,
+ ClassTemplate->getDeclContext(),
+ KWLoc, TemplateNameLoc,
+ ClassTemplate,
+ Converted,
+ PrevDecl);
+ SetNestedNameSpecifier(*this, Specialization, SS);
+
+ if (!HasNoEffect && !PrevDecl) {
+ // Insert the new specialization.
+ ClassTemplate->AddSpecialization(Specialization, InsertPos);
+ }
+ }
+
+ // Build the fully-sugared type for this explicit instantiation as
+ // the user wrote in the explicit instantiation itself. This means
+ // that we'll pretty-print the type retrieved from the
+ // specialization's declaration the way that the user actually wrote
+ // the explicit instantiation, rather than formatting the name based
+ // on the "canonical" representation used to store the template
+ // arguments in the specialization.
+ TypeSourceInfo *WrittenTy
+ = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
+ TemplateArgs,
+ Context.getTypeDeclType(Specialization));
+ Specialization->setTypeAsWritten(WrittenTy);
+
+ // Set source locations for keywords.
+ Specialization->setExternLoc(ExternLoc);
+ Specialization->setTemplateKeywordLoc(TemplateLoc);
+ Specialization->setBraceRange(SourceRange());
+
+ bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
+ ProcessDeclAttributeList(S, Specialization, Attr);
+
+ // Add the explicit instantiation into its lexical context. However,
+ // since explicit instantiations are never found by name lookup, we
+ // just put it into the declaration context directly.
+ Specialization->setLexicalDeclContext(CurContext);
+ CurContext->addDecl(Specialization);
+
+ // Syntax is now OK, so return if it has no other effect on semantics.
+ if (HasNoEffect) {
+ // Set the template specialization kind.
+ Specialization->setTemplateSpecializationKind(TSK);
+ return Specialization;
+ }
+
+ // C++ [temp.explicit]p3:
+ // A definition of a class template or class member template
+ // shall be in scope at the point of the explicit instantiation of
+ // the class template or class member template.
+ //
+ // This check comes when we actually try to perform the
+ // instantiation.
+ ClassTemplateSpecializationDecl *Def
+ = cast_or_null<ClassTemplateSpecializationDecl>(
+ Specialization->getDefinition());
+ if (!Def)
+ InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
+ else if (TSK == TSK_ExplicitInstantiationDefinition) {
+ MarkVTableUsed(TemplateNameLoc, Specialization, true);
+ Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
+ }
+
+ // Instantiate the members of this class template specialization.
+ Def = cast_or_null<ClassTemplateSpecializationDecl>(
+ Specialization->getDefinition());
+ if (Def) {
+ TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
+ // Fix a TSK_ExplicitInstantiationDeclaration followed by a
+ // TSK_ExplicitInstantiationDefinition
+ if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
+ (TSK == TSK_ExplicitInstantiationDefinition ||
+ DLLImportExplicitInstantiationDef)) {
+ // FIXME: Need to notify the ASTMutationListener that we did this.
+ Def->setTemplateSpecializationKind(TSK);
+
+ if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
+ (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
+ !Context.getTargetInfo().getTriple().isPS4CPU())) {
+ // An explicit instantiation definition can add a dll attribute to a
+ // template with a previous instantiation declaration. MinGW doesn't
+ // allow this.
+ auto *A = cast<InheritableAttr>(
+ getDLLAttr(Specialization)->clone(getASTContext()));
+ A->setInherited(true);
+ Def->addAttr(A);
+ dllExportImportClassTemplateSpecialization(*this, Def);
+ }
+ }
+
+ // Fix a TSK_ImplicitInstantiation followed by a
+ // TSK_ExplicitInstantiationDefinition
+ bool NewlyDLLExported =
+ !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
+ if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
+ (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
+ !Context.getTargetInfo().getTriple().isPS4CPU())) {
+ // An explicit instantiation definition can add a dll attribute to a
+ // template with a previous implicit instantiation. MinGW doesn't allow
+ // this. We limit clang to only adding dllexport, to avoid potentially
+ // strange codegen behavior. For example, if we extend this conditional
+ // to dllimport, and we have a source file calling a method on an
+ // implicitly instantiated template class instance and then declaring a
+ // dllimport explicit instantiation definition for the same template
+ // class, the codegen for the method call will not respect the dllimport,
+ // while it will with cl. The Def will already have the DLL attribute,
+ // since the Def and Specialization will be the same in the case of
+ // Old_TSK == TSK_ImplicitInstantiation, and we already added the
+ // attribute to the Specialization; we just need to make it take effect.
+ assert(Def == Specialization &&
+ "Def and Specialization should match for implicit instantiation");
+ dllExportImportClassTemplateSpecialization(*this, Def);
+ }
+
+ // In MinGW mode, export the template instantiation if the declaration
+ // was marked dllexport.
+ if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
+ Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
+ PrevDecl->hasAttr<DLLExportAttr>()) {
+ dllExportImportClassTemplateSpecialization(*this, Def);
+ }
+
+ if (Def->hasAttr<MSInheritanceAttr>()) {
+ Specialization->addAttr(Def->getAttr<MSInheritanceAttr>());
+ Consumer.AssignInheritanceModel(Specialization);
+ }
+
+ // Set the template specialization kind. Make sure it is set before
+ // instantiating the members which will trigger ASTConsumer callbacks.
+ Specialization->setTemplateSpecializationKind(TSK);
+ InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
+ } else {
+
+ // Set the template specialization kind.
+ Specialization->setTemplateSpecializationKind(TSK);
+ }
+
+ return Specialization;
+}
+
+// Explicit instantiation of a member class of a class template.
+DeclResult
+Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
+ SourceLocation TemplateLoc, unsigned TagSpec,
+ SourceLocation KWLoc, CXXScopeSpec &SS,
+ IdentifierInfo *Name, SourceLocation NameLoc,
+ const ParsedAttributesView &Attr) {
+
+ bool Owned = false;
+ bool IsDependent = false;
+ Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
+ KWLoc, SS, Name, NameLoc, Attr, AS_none,
+ /*ModulePrivateLoc=*/SourceLocation(),
+ MultiTemplateParamsArg(), Owned, IsDependent,
+ SourceLocation(), false, TypeResult(),
+ /*IsTypeSpecifier*/false,
+ /*IsTemplateParamOrArg*/false);
+ assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
+
+ if (!TagD)
+ return true;
+
+ TagDecl *Tag = cast<TagDecl>(TagD);
+ assert(!Tag->isEnum() && "shouldn't see enumerations here");
+
+ if (Tag->isInvalidDecl())
+ return true;
+
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
+ CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
+ if (!Pattern) {
+ Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
+ << Context.getTypeDeclType(Record);
+ Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
+ return true;
+ }
+
+ // C++0x [temp.explicit]p2:
+ // If the explicit instantiation is for a class or member class, the
+ // elaborated-type-specifier in the declaration shall include a
+ // simple-template-id.
+ //
+ // C++98 has the same restriction, just worded differently.
+ if (!ScopeSpecifierHasTemplateId(SS))
+ Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
+ << Record << SS.getRange();
+
+ // C++0x [temp.explicit]p2:
+ // There are two forms of explicit instantiation: an explicit instantiation
+ // definition and an explicit instantiation declaration. An explicit
+ // instantiation declaration begins with the extern keyword. [...]
+ TemplateSpecializationKind TSK
+ = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
+ : TSK_ExplicitInstantiationDeclaration;
+
+ CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
+
+ // Verify that it is okay to explicitly instantiate here.
+ CXXRecordDecl *PrevDecl
+ = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
+ if (!PrevDecl && Record->getDefinition())
+ PrevDecl = Record;
+ if (PrevDecl) {
+ MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
+ bool HasNoEffect = false;
+ assert(MSInfo && "No member specialization information?");
+ if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
+ PrevDecl,
+ MSInfo->getTemplateSpecializationKind(),
+ MSInfo->getPointOfInstantiation(),
+ HasNoEffect))
+ return true;
+ if (HasNoEffect)
+ return TagD;
+ }
+
+ CXXRecordDecl *RecordDef
+ = cast_or_null<CXXRecordDecl>(Record->getDefinition());
+ if (!RecordDef) {
+ // C++ [temp.explicit]p3:
+ // A definition of a member class of a class template shall be in scope
+ // at the point of an explicit instantiation of the member class.
+ CXXRecordDecl *Def
+ = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
+ if (!Def) {
+ Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
+ << 0 << Record->getDeclName() << Record->getDeclContext();
+ Diag(Pattern->getLocation(), diag::note_forward_declaration)
+ << Pattern;
+ return true;
+ } else {
+ if (InstantiateClass(NameLoc, Record, Def,
+ getTemplateInstantiationArgs(Record),
+ TSK))
+ return true;
+
+ RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
+ if (!RecordDef)
+ return true;
+ }
+ }
+
+ // Instantiate all of the members of the class.
+ InstantiateClassMembers(NameLoc, RecordDef,
+ getTemplateInstantiationArgs(Record), TSK);
+
+ if (TSK == TSK_ExplicitInstantiationDefinition)
+ MarkVTableUsed(NameLoc, RecordDef, true);
+
+ // FIXME: We don't have any representation for explicit instantiations of
+ // member classes. Such a representation is not needed for compilation, but it
+ // should be available for clients that want to see all of the declarations in
+ // the source code.
+ return TagD;
+}
+
+DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
+ SourceLocation ExternLoc,
+ SourceLocation TemplateLoc,
+ Declarator &D) {
+ // Explicit instantiations always require a name.
+ // TODO: check if/when DNInfo should replace Name.
+ DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
+ DeclarationName Name = NameInfo.getName();
+ if (!Name) {
+ if (!D.isInvalidType())
+ Diag(D.getDeclSpec().getBeginLoc(),
+ diag::err_explicit_instantiation_requires_name)
+ << D.getDeclSpec().getSourceRange() << D.getSourceRange();
+
+ return true;
+ }
+
+ // The scope passed in may not be a decl scope. Zip up the scope tree until
+ // we find one that is.
+ while ((S->getFlags() & Scope::DeclScope) == 0 ||
+ (S->getFlags() & Scope::TemplateParamScope) != 0)
+ S = S->getParent();
+
+ // Determine the type of the declaration.
+ TypeSourceInfo *T = GetTypeForDeclarator(D, S);
+ QualType R = T->getType();
+ if (R.isNull())
+ return true;
+
+ // C++ [dcl.stc]p1:
+ // A storage-class-specifier shall not be specified in [...] an explicit
+ // instantiation (14.7.2) directive.
+ if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
+ Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
+ << Name;
+ return true;
+ } else if (D.getDeclSpec().getStorageClassSpec()
+ != DeclSpec::SCS_unspecified) {
+ // Complain about then remove the storage class specifier.
+ Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
+
+ D.getMutableDeclSpec().ClearStorageClassSpecs();
+ }
+
+ // C++0x [temp.explicit]p1:
+ // [...] An explicit instantiation of a function template shall not use the
+ // inline or constexpr specifiers.
+ // Presumably, this also applies to member functions of class templates as
+ // well.
+ if (D.getDeclSpec().isInlineSpecified())
+ Diag(D.getDeclSpec().getInlineSpecLoc(),
+ getLangOpts().CPlusPlus11 ?
+ diag::err_explicit_instantiation_inline :
+ diag::warn_explicit_instantiation_inline_0x)
+ << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
+ if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
+ // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
+ // not already specified.
+ Diag(D.getDeclSpec().getConstexprSpecLoc(),
+ diag::err_explicit_instantiation_constexpr);
+
+ // A deduction guide is not on the list of entities that can be explicitly
+ // instantiated.
+ if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
+ Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
+ << /*explicit instantiation*/ 0;
+ return true;
+ }
+
+ // C++0x [temp.explicit]p2:
+ // There are two forms of explicit instantiation: an explicit instantiation
+ // definition and an explicit instantiation declaration. An explicit
+ // instantiation declaration begins with the extern keyword. [...]
+ TemplateSpecializationKind TSK
+ = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
+ : TSK_ExplicitInstantiationDeclaration;
+
+ LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
+ LookupParsedName(Previous, S, &D.getCXXScopeSpec());
+
+ if (!R->isFunctionType()) {
+ // C++ [temp.explicit]p1:
+ // A [...] static data member of a class template can be explicitly
+ // instantiated from the member definition associated with its class
+ // template.
+ // C++1y [temp.explicit]p1:
+ // A [...] variable [...] template specialization can be explicitly
+ // instantiated from its template.
+ if (Previous.isAmbiguous())
+ return true;
+
+ VarDecl *Prev = Previous.getAsSingle<VarDecl>();
+ VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
+
+ if (!PrevTemplate) {
+ if (!Prev || !Prev->isStaticDataMember()) {
+ // We expect to see a static data member here.
+ Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
+ << Name;
+ for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
+ P != PEnd; ++P)
+ Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
+ return true;
+ }
+
+ if (!Prev->getInstantiatedFromStaticDataMember()) {
+ // FIXME: Check for explicit specialization?
+ Diag(D.getIdentifierLoc(),
+ diag::err_explicit_instantiation_data_member_not_instantiated)
+ << Prev;
+ Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
+ // FIXME: Can we provide a note showing where this was declared?
+ return true;
+ }
+ } else {
+ // Explicitly instantiate a variable template.
+
+ // C++1y [dcl.spec.auto]p6:
+ // ... A program that uses auto or decltype(auto) in a context not
+ // explicitly allowed in this section is ill-formed.
+ //
+ // This includes auto-typed variable template instantiations.
+ if (R->isUndeducedType()) {
+ Diag(T->getTypeLoc().getBeginLoc(),
+ diag::err_auto_not_allowed_var_inst);
+ return true;
+ }
+
+ if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
+ // C++1y [temp.explicit]p3:
+ // If the explicit instantiation is for a variable, the unqualified-id
+ // in the declaration shall be a template-id.
+ Diag(D.getIdentifierLoc(),
+ diag::err_explicit_instantiation_without_template_id)
+ << PrevTemplate;
+ Diag(PrevTemplate->getLocation(),
+ diag::note_explicit_instantiation_here);
+ return true;
+ }
+
+ // Translate the parser's template argument list into our AST format.
+ TemplateArgumentListInfo TemplateArgs =
+ makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
+
+ DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
+ D.getIdentifierLoc(), TemplateArgs);
+ if (Res.isInvalid())
+ return true;
+
+ if (!Res.isUsable()) {
+ // We somehow specified dependent template arguments in an explicit
+ // instantiation. This should probably only happen during error
+ // recovery.
+ Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent);
+ return true;
+ }
+
+ // Ignore access control bits, we don't need them for redeclaration
+ // checking.
+ Prev = cast<VarDecl>(Res.get());
+ }
+
+ // C++0x [temp.explicit]p2:
+ // If the explicit instantiation is for a member function, a member class
+ // or a static data member of a class template specialization, the name of
+ // the class template specialization in the qualified-id for the member
+ // name shall be a simple-template-id.
+ //
+ // C++98 has the same restriction, just worded differently.
+ //
+ // This does not apply to variable template specializations, where the
+ // template-id is in the unqualified-id instead.
+ if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
+ Diag(D.getIdentifierLoc(),
+ diag::ext_explicit_instantiation_without_qualified_id)
+ << Prev << D.getCXXScopeSpec().getRange();
+
+ CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
+
+ // Verify that it is okay to explicitly instantiate here.
+ TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
+ SourceLocation POI = Prev->getPointOfInstantiation();
+ bool HasNoEffect = false;
+ if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
+ PrevTSK, POI, HasNoEffect))
+ return true;
+
+ if (!HasNoEffect) {
+ // Instantiate static data member or variable template.
+ Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
+ // Merge attributes.
+ ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
+ if (TSK == TSK_ExplicitInstantiationDefinition)
+ InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
+ }
+
+ // Check the new variable specialization against the parsed input.
+ if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
+ Diag(T->getTypeLoc().getBeginLoc(),
+ diag::err_invalid_var_template_spec_type)
+ << 0 << PrevTemplate << R << Prev->getType();
+ Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
+ << 2 << PrevTemplate->getDeclName();
+ return true;
+ }
+
+ // FIXME: Create an ExplicitInstantiation node?
+ return (Decl*) nullptr;
+ }
+
+ // If the declarator is a template-id, translate the parser's template
+ // argument list into our AST format.
+ bool HasExplicitTemplateArgs = false;
+ TemplateArgumentListInfo TemplateArgs;
+ if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
+ TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
+ HasExplicitTemplateArgs = true;
+ }
+
+ // C++ [temp.explicit]p1:
+ // A [...] function [...] can be explicitly instantiated from its template.
+ // A member function [...] of a class template can be explicitly
+ // instantiated from the member definition associated with its class
+ // template.
+ UnresolvedSet<8> TemplateMatches;
+ FunctionDecl *NonTemplateMatch = nullptr;
+ TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
+ for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
+ P != PEnd; ++P) {
+ NamedDecl *Prev = *P;
+ if (!HasExplicitTemplateArgs) {
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
+ QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(),
+ /*AdjustExceptionSpec*/true);
+ if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
+ if (Method->getPrimaryTemplate()) {
+ TemplateMatches.addDecl(Method, P.getAccess());
+ } else {
+ // FIXME: Can this assert ever happen? Needs a test.
+ assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
+ NonTemplateMatch = Method;
+ }
+ }
+ }
+ }
+
+ FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
+ if (!FunTmpl)
+ continue;
+
+ TemplateDeductionInfo Info(FailedCandidates.getLocation());
+ FunctionDecl *Specialization = nullptr;
+ if (TemplateDeductionResult TDK
+ = DeduceTemplateArguments(FunTmpl,
+ (HasExplicitTemplateArgs ? &TemplateArgs
+ : nullptr),
+ R, Specialization, Info)) {
+ // Keep track of almost-matches.
+ FailedCandidates.addCandidate()
+ .set(P.getPair(), FunTmpl->getTemplatedDecl(),
+ MakeDeductionFailureInfo(Context, TDK, Info));
+ (void)TDK;
+ continue;
+ }
+
+ // Target attributes are part of the cuda function signature, so
+ // the cuda target of the instantiated function must match that of its
+ // template. Given that C++ template deduction does not take
+ // target attributes into account, we reject candidates here that
+ // have a different target.
+ if (LangOpts.CUDA &&
+ IdentifyCUDATarget(Specialization,
+ /* IgnoreImplicitHDAttr = */ true) !=
+ IdentifyCUDATarget(D.getDeclSpec().getAttributes())) {
+ FailedCandidates.addCandidate().set(
+ P.getPair(), FunTmpl->getTemplatedDecl(),
+ MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info));
+ continue;
+ }
+
+ TemplateMatches.addDecl(Specialization, P.getAccess());
+ }
+
+ FunctionDecl *Specialization = NonTemplateMatch;
+ if (!Specialization) {
+ // Find the most specialized function template specialization.
+ UnresolvedSetIterator Result = getMostSpecialized(
+ TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
+ D.getIdentifierLoc(),
+ PDiag(diag::err_explicit_instantiation_not_known) << Name,
+ PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
+ PDiag(diag::note_explicit_instantiation_candidate));
+
+ if (Result == TemplateMatches.end())
+ return true;
+
+ // Ignore access control bits, we don't need them for redeclaration checking.
+ Specialization = cast<FunctionDecl>(*Result);
+ }
+
+ // C++11 [except.spec]p4
+ // In an explicit instantiation an exception-specification may be specified,
+ // but is not required.
+ // If an exception-specification is specified in an explicit instantiation
+ // directive, it shall be compatible with the exception-specifications of
+ // other declarations of that function.
+ if (auto *FPT = R->getAs<FunctionProtoType>())
+ if (FPT->hasExceptionSpec()) {
+ unsigned DiagID =
+ diag::err_mismatched_exception_spec_explicit_instantiation;
+ if (getLangOpts().MicrosoftExt)
+ DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
+ bool Result = CheckEquivalentExceptionSpec(
+ PDiag(DiagID) << Specialization->getType(),
+ PDiag(diag::note_explicit_instantiation_here),
+ Specialization->getType()->getAs<FunctionProtoType>(),
+ Specialization->getLocation(), FPT, D.getBeginLoc());
+ // In Microsoft mode, mismatching exception specifications just cause a
+ // warning.
+ if (!getLangOpts().MicrosoftExt && Result)
+ return true;
+ }
+
+ if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
+ Diag(D.getIdentifierLoc(),
+ diag::err_explicit_instantiation_member_function_not_instantiated)
+ << Specialization
+ << (Specialization->getTemplateSpecializationKind() ==
+ TSK_ExplicitSpecialization);
+ Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
+ return true;
+ }
+
+ FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
+ if (!PrevDecl && Specialization->isThisDeclarationADefinition())
+ PrevDecl = Specialization;
+
+ if (PrevDecl) {
+ bool HasNoEffect = false;
+ if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
+ PrevDecl,
+ PrevDecl->getTemplateSpecializationKind(),
+ PrevDecl->getPointOfInstantiation(),
+ HasNoEffect))
+ return true;
+
+ // FIXME: We may still want to build some representation of this
+ // explicit specialization.
+ if (HasNoEffect)
+ return (Decl*) nullptr;
+ }
+
+ // HACK: libc++ has a bug where it attempts to explicitly instantiate the
+ // functions
+ // valarray<size_t>::valarray(size_t) and
+ // valarray<size_t>::~valarray()
+ // that it declared to have internal linkage with the internal_linkage
+ // attribute. Ignore the explicit instantiation declaration in this case.
+ if (Specialization->hasAttr<InternalLinkageAttr>() &&
+ TSK == TSK_ExplicitInstantiationDeclaration) {
+ if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
+ if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
+ RD->isInStdNamespace())
+ return (Decl*) nullptr;
+ }
+
+ ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
+
+ // In MSVC mode, dllimported explicit instantiation definitions are treated as
+ // instantiation declarations.
+ if (TSK == TSK_ExplicitInstantiationDefinition &&
+ Specialization->hasAttr<DLLImportAttr>() &&
+ Context.getTargetInfo().getCXXABI().isMicrosoft())
+ TSK = TSK_ExplicitInstantiationDeclaration;
+
+ Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
+
+ if (Specialization->isDefined()) {
+ // Let the ASTConsumer know that this function has been explicitly
+ // instantiated now, and its linkage might have changed.
+ Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
+ } else if (TSK == TSK_ExplicitInstantiationDefinition)
+ InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
+
+ // C++0x [temp.explicit]p2:
+ // If the explicit instantiation is for a member function, a member class
+ // or a static data member of a class template specialization, the name of
+ // the class template specialization in the qualified-id for the member
+ // name shall be a simple-template-id.
+ //
+ // C++98 has the same restriction, just worded differently.
+ FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
+ if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
+ D.getCXXScopeSpec().isSet() &&
+ !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
+ Diag(D.getIdentifierLoc(),
+ diag::ext_explicit_instantiation_without_qualified_id)
+ << Specialization << D.getCXXScopeSpec().getRange();
+
+ CheckExplicitInstantiation(
+ *this,
+ FunTmpl ? (NamedDecl *)FunTmpl
+ : Specialization->getInstantiatedFromMemberFunction(),
+ D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
+
+ // FIXME: Create some kind of ExplicitInstantiationDecl here.
+ return (Decl*) nullptr;
+}
+
+TypeResult
+Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
+ const CXXScopeSpec &SS, IdentifierInfo *Name,
+ SourceLocation TagLoc, SourceLocation NameLoc) {
+ // This has to hold, because SS is expected to be defined.
+ assert(Name && "Expected a name in a dependent tag");
+
+ NestedNameSpecifier *NNS = SS.getScopeRep();
+ if (!NNS)
+ return true;
+
+ TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
+
+ if (TUK == TUK_Declaration || TUK == TUK_Definition) {
+ Diag(NameLoc, diag::err_dependent_tag_decl)
+ << (TUK == TUK_Definition) << Kind << SS.getRange();
+ return true;
+ }
+
+ // Create the resulting type.
+ ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
+ QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
+
+ // Create type-source location information for this type.
+ TypeLocBuilder TLB;
+ DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
+ TL.setElaboratedKeywordLoc(TagLoc);
+ TL.setQualifierLoc(SS.getWithLocInContext(Context));
+ TL.setNameLoc(NameLoc);
+ return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
+}
+
+TypeResult
+Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
+ const CXXScopeSpec &SS, const IdentifierInfo &II,
+ SourceLocation IdLoc) {
+ if (SS.isInvalid())
+ return true;
+
+ if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
+ Diag(TypenameLoc,
+ getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_typename_outside_of_template :
+ diag::ext_typename_outside_of_template)
+ << FixItHint::CreateRemoval(TypenameLoc);
+
+ NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
+ TypeSourceInfo *TSI = nullptr;
+ QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
+ TypenameLoc, QualifierLoc, II, IdLoc, &TSI,
+ /*DeducedTSTContext=*/true);
+ if (T.isNull())
+ return true;
+ return CreateParsedType(T, TSI);
+}
+
+TypeResult
+Sema::ActOnTypenameType(Scope *S,
+ SourceLocation TypenameLoc,
+ const CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc,
+ TemplateTy TemplateIn,
+ IdentifierInfo *TemplateII,
+ SourceLocation TemplateIILoc,
+ SourceLocation LAngleLoc,
+ ASTTemplateArgsPtr TemplateArgsIn,
+ SourceLocation RAngleLoc) {
+ if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
+ Diag(TypenameLoc,
+ getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_typename_outside_of_template :
+ diag::ext_typename_outside_of_template)
+ << FixItHint::CreateRemoval(TypenameLoc);
+
+ // Strangely, non-type results are not ignored by this lookup, so the
+ // program is ill-formed if it finds an injected-class-name.
+ if (TypenameLoc.isValid()) {
+ auto *LookupRD =
+ dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false));
+ if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
+ Diag(TemplateIILoc,
+ diag::ext_out_of_line_qualified_id_type_names_constructor)
+ << TemplateII << 0 /*injected-class-name used as template name*/
+ << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
+ }
+ }
+
+ // Translate the parser's template argument list in our AST format.
+ TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
+ translateTemplateArguments(TemplateArgsIn, TemplateArgs);
+
+ TemplateName Template = TemplateIn.get();
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
+ // Construct a dependent template specialization type.
+ assert(DTN && "dependent template has non-dependent name?");
+ assert(DTN->getQualifier() == SS.getScopeRep());
+ QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
+ DTN->getQualifier(),
+ DTN->getIdentifier(),
+ TemplateArgs);
+
+ // Create source-location information for this type.
+ TypeLocBuilder Builder;
+ DependentTemplateSpecializationTypeLoc SpecTL
+ = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
+ SpecTL.setElaboratedKeywordLoc(TypenameLoc);
+ SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateIILoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
+ return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
+ }
+
+ QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs);
+ if (T.isNull())
+ return true;
+
+ // Provide source-location information for the template specialization type.
+ TypeLocBuilder Builder;
+ TemplateSpecializationTypeLoc SpecTL
+ = Builder.push<TemplateSpecializationTypeLoc>(T);
+ SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
+ SpecTL.setTemplateNameLoc(TemplateIILoc);
+ SpecTL.setLAngleLoc(LAngleLoc);
+ SpecTL.setRAngleLoc(RAngleLoc);
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
+
+ T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
+ ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
+ TL.setElaboratedKeywordLoc(TypenameLoc);
+ TL.setQualifierLoc(SS.getWithLocInContext(Context));
+
+ TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
+ return CreateParsedType(T, TSI);
+}
+
+
+/// Determine whether this failed name lookup should be treated as being
+/// disabled by a usage of std::enable_if.
+static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
+ SourceRange &CondRange, Expr *&Cond) {
+ // We must be looking for a ::type...
+ if (!II.isStr("type"))
+ return false;
+
+ // ... within an explicitly-written template specialization...
+ if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
+ return false;
+ TypeLoc EnableIfTy = NNS.getTypeLoc();
+ TemplateSpecializationTypeLoc EnableIfTSTLoc =
+ EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
+ if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
+ return false;
+ const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
+
+ // ... which names a complete class template declaration...
+ const TemplateDecl *EnableIfDecl =
+ EnableIfTST->getTemplateName().getAsTemplateDecl();
+ if (!EnableIfDecl || EnableIfTST->isIncompleteType())
+ return false;
+
+ // ... called "enable_if".
+ const IdentifierInfo *EnableIfII =
+ EnableIfDecl->getDeclName().getAsIdentifierInfo();
+ if (!EnableIfII || !EnableIfII->isStr("enable_if"))
+ return false;
+
+ // Assume the first template argument is the condition.
+ CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
+
+ // Dig out the condition.
+ Cond = nullptr;
+ if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind()
+ != TemplateArgument::Expression)
+ return true;
+
+ Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression();
+
+ // Ignore Boolean literals; they add no value.
+ if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts()))
+ Cond = nullptr;
+
+ return true;
+}
+
+QualType
+Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
+ SourceLocation KeywordLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ const IdentifierInfo &II,
+ SourceLocation IILoc,
+ TypeSourceInfo **TSI,
+ bool DeducedTSTContext) {
+ QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
+ DeducedTSTContext);
+ if (T.isNull())
+ return QualType();
+
+ *TSI = Context.CreateTypeSourceInfo(T);
+ if (isa<DependentNameType>(T)) {
+ DependentNameTypeLoc TL =
+ (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
+ TL.setElaboratedKeywordLoc(KeywordLoc);
+ TL.setQualifierLoc(QualifierLoc);
+ TL.setNameLoc(IILoc);
+ } else {
+ ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
+ TL.setElaboratedKeywordLoc(KeywordLoc);
+ TL.setQualifierLoc(QualifierLoc);
+ TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
+ }
+ return T;
+}
+
+/// Build the type that describes a C++ typename specifier,
+/// e.g., "typename T::type".
+QualType
+Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
+ SourceLocation KeywordLoc,
+ NestedNameSpecifierLoc QualifierLoc,
+ const IdentifierInfo &II,
+ SourceLocation IILoc, bool DeducedTSTContext) {
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+
+ DeclContext *Ctx = nullptr;
+ if (QualifierLoc) {
+ Ctx = computeDeclContext(SS);
+ if (!Ctx) {
+ // If the nested-name-specifier is dependent and couldn't be
+ // resolved to a type, build a typename type.
+ assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
+ return Context.getDependentNameType(Keyword,
+ QualifierLoc.getNestedNameSpecifier(),
+ &II);
+ }
+
+ // If the nested-name-specifier refers to the current instantiation,
+ // the "typename" keyword itself is superfluous. In C++03, the
+ // program is actually ill-formed. However, DR 382 (in C++0x CD1)
+ // allows such extraneous "typename" keywords, and we retroactively
+ // apply this DR to C++03 code with only a warning. In any case we continue.
+
+ if (RequireCompleteDeclContext(SS, Ctx))
+ return QualType();
+ }
+
+ DeclarationName Name(&II);
+ LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
+ if (Ctx)
+ LookupQualifiedName(Result, Ctx, SS);
+ else
+ LookupName(Result, CurScope);
+ unsigned DiagID = 0;
+ Decl *Referenced = nullptr;
+ switch (Result.getResultKind()) {
+ case LookupResult::NotFound: {
+ // If we're looking up 'type' within a template named 'enable_if', produce
+ // a more specific diagnostic.
+ SourceRange CondRange;
+ Expr *Cond = nullptr;
+ if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) {
+ // If we have a condition, narrow it down to the specific failed
+ // condition.
+ if (Cond) {
+ Expr *FailedCond;
+ std::string FailedDescription;
+ std::tie(FailedCond, FailedDescription) =
+ findFailedBooleanCondition(Cond);
+
+ Diag(FailedCond->getExprLoc(),
+ diag::err_typename_nested_not_found_requirement)
+ << FailedDescription
+ << FailedCond->getSourceRange();
+ return QualType();
+ }
+
+ Diag(CondRange.getBegin(),
+ diag::err_typename_nested_not_found_enable_if)
+ << Ctx << CondRange;
+ return QualType();
+ }
+
+ DiagID = Ctx ? diag::err_typename_nested_not_found
+ : diag::err_unknown_typename;
+ break;
+ }
+
+ case LookupResult::FoundUnresolvedValue: {
+ // We found a using declaration that is a value. Most likely, the using
+ // declaration itself is meant to have the 'typename' keyword.
+ SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
+ IILoc);
+ Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
+ << Name << Ctx << FullRange;
+ if (UnresolvedUsingValueDecl *Using
+ = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
+ SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
+ Diag(Loc, diag::note_using_value_decl_missing_typename)
+ << FixItHint::CreateInsertion(Loc, "typename ");
+ }
+ }
+ // Fall through to create a dependent typename type, from which we can recover
+ // better.
+ LLVM_FALLTHROUGH;
+
+ case LookupResult::NotFoundInCurrentInstantiation:
+ // Okay, it's a member of an unknown instantiation.
+ return Context.getDependentNameType(Keyword,
+ QualifierLoc.getNestedNameSpecifier(),
+ &II);
+
+ case LookupResult::Found:
+ if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
+ // C++ [class.qual]p2:
+ // In a lookup in which function names are not ignored and the
+ // nested-name-specifier nominates a class C, if the name specified
+ // after the nested-name-specifier, when looked up in C, is the
+ // injected-class-name of C [...] then the name is instead considered
+ // to name the constructor of class C.
+ //
+ // Unlike in an elaborated-type-specifier, function names are not ignored
+ // in typename-specifier lookup. However, they are ignored in all the
+ // contexts where we form a typename type with no keyword (that is, in
+ // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
+ //
+ // FIXME: That's not strictly true: mem-initializer-id lookup does not
+ // ignore functions, but that appears to be an oversight.
+ auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx);
+ auto *FoundRD = dyn_cast<CXXRecordDecl>(Type);
+ if (Keyword == ETK_Typename && LookupRD && FoundRD &&
+ FoundRD->isInjectedClassName() &&
+ declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
+ Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
+ << &II << 1 << 0 /*'typename' keyword used*/;
+
+ // We found a type. Build an ElaboratedType, since the
+ // typename-specifier was just sugar.
+ MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
+ return Context.getElaboratedType(Keyword,
+ QualifierLoc.getNestedNameSpecifier(),
+ Context.getTypeDeclType(Type));
+ }
+
+ // C++ [dcl.type.simple]p2:
+ // A type-specifier of the form
+ // typename[opt] nested-name-specifier[opt] template-name
+ // is a placeholder for a deduced class type [...].
+ if (getLangOpts().CPlusPlus17) {
+ if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
+ if (!DeducedTSTContext) {
+ QualType T(QualifierLoc
+ ? QualifierLoc.getNestedNameSpecifier()->getAsType()
+ : nullptr, 0);
+ if (!T.isNull())
+ Diag(IILoc, diag::err_dependent_deduced_tst)
+ << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
+ else
+ Diag(IILoc, diag::err_deduced_tst)
+ << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
+ Diag(TD->getLocation(), diag::note_template_decl_here);
+ return QualType();
+ }
+ return Context.getElaboratedType(
+ Keyword, QualifierLoc.getNestedNameSpecifier(),
+ Context.getDeducedTemplateSpecializationType(TemplateName(TD),
+ QualType(), false));
+ }
+ }
+
+ DiagID = Ctx ? diag::err_typename_nested_not_type
+ : diag::err_typename_not_type;
+ Referenced = Result.getFoundDecl();
+ break;
+
+ case LookupResult::FoundOverloaded:
+ DiagID = Ctx ? diag::err_typename_nested_not_type
+ : diag::err_typename_not_type;
+ Referenced = *Result.begin();
+ break;
+
+ case LookupResult::Ambiguous:
+ return QualType();
+ }
+
+ // If we get here, it's because name lookup did not find a
+ // type. Emit an appropriate diagnostic and return an error.
+ SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
+ IILoc);
+ if (Ctx)
+ Diag(IILoc, DiagID) << FullRange << Name << Ctx;
+ else
+ Diag(IILoc, DiagID) << FullRange << Name;
+ if (Referenced)
+ Diag(Referenced->getLocation(),
+ Ctx ? diag::note_typename_member_refers_here
+ : diag::note_typename_refers_here)
+ << Name;
+ return QualType();
+}
+
+namespace {
+ // See Sema::RebuildTypeInCurrentInstantiation
+ class CurrentInstantiationRebuilder
+ : public TreeTransform<CurrentInstantiationRebuilder> {
+ SourceLocation Loc;
+ DeclarationName Entity;
+
+ public:
+ typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
+
+ CurrentInstantiationRebuilder(Sema &SemaRef,
+ SourceLocation Loc,
+ DeclarationName Entity)
+ : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
+ Loc(Loc), Entity(Entity) { }
+
+ /// Determine whether the given type \p T has already been
+ /// transformed.
+ ///
+ /// For the purposes of type reconstruction, a type has already been
+ /// transformed if it is NULL or if it is not dependent.
+ bool AlreadyTransformed(QualType T) {
+ return T.isNull() || !T->isInstantiationDependentType();
+ }
+
+ /// Returns the location of the entity whose type is being
+ /// rebuilt.
+ SourceLocation getBaseLocation() { return Loc; }
+
+ /// Returns the name of the entity whose type is being rebuilt.
+ DeclarationName getBaseEntity() { return Entity; }
+
+ /// Sets the "base" location and entity when that
+ /// information is known based on another transformation.
+ void setBase(SourceLocation Loc, DeclarationName Entity) {
+ this->Loc = Loc;
+ this->Entity = Entity;
+ }
+
+ ExprResult TransformLambdaExpr(LambdaExpr *E) {
+ // Lambdas never need to be transformed.
+ return E;
+ }
+ };
+} // end anonymous namespace
+
+/// Rebuilds a type within the context of the current instantiation.
+///
+/// The type \p T is part of the type of an out-of-line member definition of
+/// a class template (or class template partial specialization) that was parsed
+/// and constructed before we entered the scope of the class template (or
+/// partial specialization thereof). This routine will rebuild that type now
+/// that we have entered the declarator's scope, which may produce different
+/// canonical types, e.g.,
+///
+/// \code
+/// template<typename T>
+/// struct X {
+/// typedef T* pointer;
+/// pointer data();
+/// };
+///
+/// template<typename T>
+/// typename X<T>::pointer X<T>::data() { ... }
+/// \endcode
+///
+/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
+/// since we do not know that we can look into X<T> when we parsed the type.
+/// This function will rebuild the type, performing the lookup of "pointer"
+/// in X<T> and returning an ElaboratedType whose canonical type is the same
+/// as the canonical type of T*, allowing the return types of the out-of-line
+/// definition and the declaration to match.
+TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
+ SourceLocation Loc,
+ DeclarationName Name) {
+ if (!T || !T->getType()->isInstantiationDependentType())
+ return T;
+
+ CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
+ return Rebuilder.TransformType(T);
+}
+
+ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
+ CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
+ DeclarationName());
+ return Rebuilder.TransformExpr(E);
+}
+
+bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
+ if (SS.isInvalid())
+ return true;
+
+ NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
+ CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
+ DeclarationName());
+ NestedNameSpecifierLoc Rebuilt
+ = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
+ if (!Rebuilt)
+ return true;
+
+ SS.Adopt(Rebuilt);
+ return false;
+}
+
+/// Rebuild the template parameters now that we know we're in a current
+/// instantiation.
+bool Sema::RebuildTemplateParamsInCurrentInstantiation(
+ TemplateParameterList *Params) {
+ for (unsigned I = 0, N = Params->size(); I != N; ++I) {
+ Decl *Param = Params->getParam(I);
+
+ // There is nothing to rebuild in a type parameter.
+ if (isa<TemplateTypeParmDecl>(Param))
+ continue;
+
+ // Rebuild the template parameter list of a template template parameter.
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(Param)) {
+ if (RebuildTemplateParamsInCurrentInstantiation(
+ TTP->getTemplateParameters()))
+ return true;
+
+ continue;
+ }
+
+ // Rebuild the type of a non-type template parameter.
+ NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
+ TypeSourceInfo *NewTSI
+ = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
+ NTTP->getLocation(),
+ NTTP->getDeclName());
+ if (!NewTSI)
+ return true;
+
+ if (NewTSI->getType()->isUndeducedType()) {
+ // C++17 [temp.dep.expr]p3:
+ // An id-expression is type-dependent if it contains
+ // - an identifier associated by name lookup with a non-type
+ // template-parameter declared with a type that contains a
+ // placeholder type (7.1.7.4),
+ NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI);
+ }
+
+ if (NewTSI != NTTP->getTypeSourceInfo()) {
+ NTTP->setTypeSourceInfo(NewTSI);
+ NTTP->setType(NewTSI->getType());
+ }
+ }
+
+ return false;
+}
+
+/// Produces a formatted string that describes the binding of
+/// template parameters to template arguments.
+std::string
+Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
+ const TemplateArgumentList &Args) {
+ return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
+}
+
+std::string
+Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
+ const TemplateArgument *Args,
+ unsigned NumArgs) {
+ SmallString<128> Str;
+ llvm::raw_svector_ostream Out(Str);
+
+ if (!Params || Params->size() == 0 || NumArgs == 0)
+ return std::string();
+
+ for (unsigned I = 0, N = Params->size(); I != N; ++I) {
+ if (I >= NumArgs)
+ break;
+
+ if (I == 0)
+ Out << "[with ";
+ else
+ Out << ", ";
+
+ if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
+ Out << Id->getName();
+ } else {
+ Out << '$' << I;
+ }
+
+ Out << " = ";
+ Args[I].print(getPrintingPolicy(), Out,
+ TemplateParameterList::shouldIncludeTypeForArgument(
+ getPrintingPolicy(), Params, I));
+ }
+
+ Out << ']';
+ return std::string(Out.str());
+}
+
+void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
+ CachedTokens &Toks) {
+ if (!FD)
+ return;
+
+ auto LPT = std::make_unique<LateParsedTemplate>();
+
+ // Take tokens to avoid allocations
+ LPT->Toks.swap(Toks);
+ LPT->D = FnD;
+ LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT)));
+
+ FD->setLateTemplateParsed(true);
+}
+
+void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
+ if (!FD)
+ return;
+ FD->setLateTemplateParsed(false);
+}
+
+bool Sema::IsInsideALocalClassWithinATemplateFunction() {
+ DeclContext *DC = CurContext;
+
+ while (DC) {
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
+ const FunctionDecl *FD = RD->isLocalClass();
+ return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
+ } else if (DC->isTranslationUnit() || DC->isNamespace())
+ return false;
+
+ DC = DC->getParent();
+ }
+ return false;
+}
+
+namespace {
+/// Walk the path from which a declaration was instantiated, and check
+/// that every explicit specialization along that path is visible. This enforces
+/// C++ [temp.expl.spec]/6:
+///
+/// If a template, a member template or a member of a class template is
+/// explicitly specialized then that specialization shall be declared before
+/// the first use of that specialization that would cause an implicit
+/// instantiation to take place, in every translation unit in which such a
+/// use occurs; no diagnostic is required.
+///
+/// and also C++ [temp.class.spec]/1:
+///
+/// A partial specialization shall be declared before the first use of a
+/// class template specialization that would make use of the partial
+/// specialization as the result of an implicit or explicit instantiation
+/// in every translation unit in which such a use occurs; no diagnostic is
+/// required.
+class ExplicitSpecializationVisibilityChecker {
+ Sema &S;
+ SourceLocation Loc;
+ llvm::SmallVector<Module *, 8> Modules;
+
+public:
+ ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
+ : S(S), Loc(Loc) {}
+
+ void check(NamedDecl *ND) {
+ if (auto *FD = dyn_cast<FunctionDecl>(ND))
+ return checkImpl(FD);
+ if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
+ return checkImpl(RD);
+ if (auto *VD = dyn_cast<VarDecl>(ND))
+ return checkImpl(VD);
+ if (auto *ED = dyn_cast<EnumDecl>(ND))
+ return checkImpl(ED);
+ }
+
+private:
+ void diagnose(NamedDecl *D, bool IsPartialSpec) {
+ auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
+ : Sema::MissingImportKind::ExplicitSpecialization;
+ const bool Recover = true;
+
+ // If we got a custom set of modules (because only a subset of the
+ // declarations are interesting), use them, otherwise let
+ // diagnoseMissingImport intelligently pick some.
+ if (Modules.empty())
+ S.diagnoseMissingImport(Loc, D, Kind, Recover);
+ else
+ S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
+ }
+
+ // Check a specific declaration. There are three problematic cases:
+ //
+ // 1) The declaration is an explicit specialization of a template
+ // specialization.
+ // 2) The declaration is an explicit specialization of a member of an
+ // templated class.
+ // 3) The declaration is an instantiation of a template, and that template
+ // is an explicit specialization of a member of a templated class.
+ //
+ // We don't need to go any deeper than that, as the instantiation of the
+ // surrounding class / etc is not triggered by whatever triggered this
+ // instantiation, and thus should be checked elsewhere.
+ template<typename SpecDecl>
+ void checkImpl(SpecDecl *Spec) {
+ bool IsHiddenExplicitSpecialization = false;
+ if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
+ IsHiddenExplicitSpecialization =
+ Spec->getMemberSpecializationInfo()
+ ? !S.hasVisibleMemberSpecialization(Spec, &Modules)
+ : !S.hasVisibleExplicitSpecialization(Spec, &Modules);
+ } else {
+ checkInstantiated(Spec);
+ }
+
+ if (IsHiddenExplicitSpecialization)
+ diagnose(Spec->getMostRecentDecl(), false);
+ }
+
+ void checkInstantiated(FunctionDecl *FD) {
+ if (auto *TD = FD->getPrimaryTemplate())
+ checkTemplate(TD);
+ }
+
+ void checkInstantiated(CXXRecordDecl *RD) {
+ auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
+ if (!SD)
+ return;
+
+ auto From = SD->getSpecializedTemplateOrPartial();
+ if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
+ checkTemplate(TD);
+ else if (auto *TD =
+ From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
+ if (!S.hasVisibleDeclaration(TD))
+ diagnose(TD, true);
+ checkTemplate(TD);
+ }
+ }
+
+ void checkInstantiated(VarDecl *RD) {
+ auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
+ if (!SD)
+ return;
+
+ auto From = SD->getSpecializedTemplateOrPartial();
+ if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
+ checkTemplate(TD);
+ else if (auto *TD =
+ From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
+ if (!S.hasVisibleDeclaration(TD))
+ diagnose(TD, true);
+ checkTemplate(TD);
+ }
+ }
+
+ void checkInstantiated(EnumDecl *FD) {}
+
+ template<typename TemplDecl>
+ void checkTemplate(TemplDecl *TD) {
+ if (TD->isMemberSpecialization()) {
+ if (!S.hasVisibleMemberSpecialization(TD, &Modules))
+ diagnose(TD->getMostRecentDecl(), false);
+ }
+ }
+};
+} // end anonymous namespace
+
+void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
+ if (!getLangOpts().Modules)
+ return;
+
+ ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
+}