diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/clang14/lib/Sema/SemaTemplate.cpp | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/clang14/lib/Sema/SemaTemplate.cpp')
-rw-r--r-- | contrib/libs/clang14/lib/Sema/SemaTemplate.cpp | 11102 |
1 files changed, 11102 insertions, 0 deletions
diff --git a/contrib/libs/clang14/lib/Sema/SemaTemplate.cpp b/contrib/libs/clang14/lib/Sema/SemaTemplate.cpp new file mode 100644 index 0000000000..64a0b45feb --- /dev/null +++ b/contrib/libs/clang14/lib/Sema/SemaTemplate.cpp @@ -0,0 +1,11102 @@ +//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +//===----------------------------------------------------------------------===// +// +// This file implements semantic analysis for C++ templates. +//===----------------------------------------------------------------------===// + +#include "TreeTransform.h" +#include "clang/AST/ASTConsumer.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/DeclFriend.h" +#include "clang/AST/DeclTemplate.h" +#include "clang/AST/Expr.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/RecursiveASTVisitor.h" +#include "clang/AST/TypeVisitor.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/LangOptions.h" +#include "clang/Basic/PartialDiagnostic.h" +#include "clang/Basic/Stack.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/Sema/DeclSpec.h" +#include "clang/Sema/Initialization.h" +#include "clang/Sema/Lookup.h" +#include "clang/Sema/Overload.h" +#include "clang/Sema/ParsedTemplate.h" +#include "clang/Sema/Scope.h" +#include "clang/Sema/SemaInternal.h" +#include "clang/Sema/Template.h" +#include "clang/Sema/TemplateDeduction.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/StringExtras.h" + +#include <iterator> +using namespace clang; +using namespace sema; + +// Exported for use by Parser. +SourceRange +clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, + unsigned N) { + if (!N) return SourceRange(); + return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); +} + +unsigned Sema::getTemplateDepth(Scope *S) const { + unsigned Depth = 0; + + // Each template parameter scope represents one level of template parameter + // depth. + for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope; + TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) { + ++Depth; + } + + // Note that there are template parameters with the given depth. + auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(Depth, D + 1); }; + + // Look for parameters of an enclosing generic lambda. We don't create a + // template parameter scope for these. + for (FunctionScopeInfo *FSI : getFunctionScopes()) { + if (auto *LSI = dyn_cast<LambdaScopeInfo>(FSI)) { + if (!LSI->TemplateParams.empty()) { + ParamsAtDepth(LSI->AutoTemplateParameterDepth); + break; + } + if (LSI->GLTemplateParameterList) { + ParamsAtDepth(LSI->GLTemplateParameterList->getDepth()); + break; + } + } + } + + // Look for parameters of an enclosing terse function template. We don't + // create a template parameter scope for these either. + for (const InventedTemplateParameterInfo &Info : + getInventedParameterInfos()) { + if (!Info.TemplateParams.empty()) { + ParamsAtDepth(Info.AutoTemplateParameterDepth); + break; + } + } + + return Depth; +} + +/// \brief Determine whether the declaration found is acceptable as the name +/// of a template and, if so, return that template declaration. Otherwise, +/// returns null. +/// +/// Note that this may return an UnresolvedUsingValueDecl if AllowDependent +/// is true. In all other cases it will return a TemplateDecl (or null). +NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, + bool AllowFunctionTemplates, + bool AllowDependent) { + D = D->getUnderlyingDecl(); + + if (isa<TemplateDecl>(D)) { + if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D)) + return nullptr; + + return D; + } + + if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) { + // C++ [temp.local]p1: + // Like normal (non-template) classes, class templates have an + // injected-class-name (Clause 9). The injected-class-name + // can be used with or without a template-argument-list. When + // it is used without a template-argument-list, it is + // equivalent to the injected-class-name followed by the + // template-parameters of the class template enclosed in + // <>. When it is used with a template-argument-list, it + // refers to the specified class template specialization, + // which could be the current specialization or another + // specialization. + if (Record->isInjectedClassName()) { + Record = cast<CXXRecordDecl>(Record->getDeclContext()); + if (Record->getDescribedClassTemplate()) + return Record->getDescribedClassTemplate(); + + if (ClassTemplateSpecializationDecl *Spec + = dyn_cast<ClassTemplateSpecializationDecl>(Record)) + return Spec->getSpecializedTemplate(); + } + + return nullptr; + } + + // 'using Dependent::foo;' can resolve to a template name. + // 'using typename Dependent::foo;' cannot (not even if 'foo' is an + // injected-class-name). + if (AllowDependent && isa<UnresolvedUsingValueDecl>(D)) + return D; + + return nullptr; +} + +void Sema::FilterAcceptableTemplateNames(LookupResult &R, + bool AllowFunctionTemplates, + bool AllowDependent) { + LookupResult::Filter filter = R.makeFilter(); + while (filter.hasNext()) { + NamedDecl *Orig = filter.next(); + if (!getAsTemplateNameDecl(Orig, AllowFunctionTemplates, AllowDependent)) + filter.erase(); + } + filter.done(); +} + +bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, + bool AllowFunctionTemplates, + bool AllowDependent, + bool AllowNonTemplateFunctions) { + for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { + if (getAsTemplateNameDecl(*I, AllowFunctionTemplates, AllowDependent)) + return true; + if (AllowNonTemplateFunctions && + isa<FunctionDecl>((*I)->getUnderlyingDecl())) + return true; + } + + return false; +} + +TemplateNameKind Sema::isTemplateName(Scope *S, + CXXScopeSpec &SS, + bool hasTemplateKeyword, + const UnqualifiedId &Name, + ParsedType ObjectTypePtr, + bool EnteringContext, + TemplateTy &TemplateResult, + bool &MemberOfUnknownSpecialization, + bool Disambiguation) { + assert(getLangOpts().CPlusPlus && "No template names in C!"); + + DeclarationName TName; + MemberOfUnknownSpecialization = false; + + switch (Name.getKind()) { + case UnqualifiedIdKind::IK_Identifier: + TName = DeclarationName(Name.Identifier); + break; + + case UnqualifiedIdKind::IK_OperatorFunctionId: + TName = Context.DeclarationNames.getCXXOperatorName( + Name.OperatorFunctionId.Operator); + break; + + case UnqualifiedIdKind::IK_LiteralOperatorId: + TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier); + break; + + default: + return TNK_Non_template; + } + + QualType ObjectType = ObjectTypePtr.get(); + + AssumedTemplateKind AssumedTemplate; + LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); + if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, + MemberOfUnknownSpecialization, SourceLocation(), + &AssumedTemplate, + /*AllowTypoCorrection=*/!Disambiguation)) + return TNK_Non_template; + + if (AssumedTemplate != AssumedTemplateKind::None) { + TemplateResult = TemplateTy::make(Context.getAssumedTemplateName(TName)); + // Let the parser know whether we found nothing or found functions; if we + // found nothing, we want to more carefully check whether this is actually + // a function template name versus some other kind of undeclared identifier. + return AssumedTemplate == AssumedTemplateKind::FoundNothing + ? TNK_Undeclared_template + : TNK_Function_template; + } + + if (R.empty()) + return TNK_Non_template; + + NamedDecl *D = nullptr; + if (R.isAmbiguous()) { + // If we got an ambiguity involving a non-function template, treat this + // as a template name, and pick an arbitrary template for error recovery. + bool AnyFunctionTemplates = false; + for (NamedDecl *FoundD : R) { + if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(FoundD)) { + if (isa<FunctionTemplateDecl>(FoundTemplate)) + AnyFunctionTemplates = true; + else { + D = FoundTemplate; + break; + } + } + } + + // If we didn't find any templates at all, this isn't a template name. + // Leave the ambiguity for a later lookup to diagnose. + if (!D && !AnyFunctionTemplates) { + R.suppressDiagnostics(); + return TNK_Non_template; + } + + // If the only templates were function templates, filter out the rest. + // We'll diagnose the ambiguity later. + if (!D) + FilterAcceptableTemplateNames(R); + } + + // At this point, we have either picked a single template name declaration D + // or we have a non-empty set of results R containing either one template name + // declaration or a set of function templates. + + TemplateName Template; + TemplateNameKind TemplateKind; + + unsigned ResultCount = R.end() - R.begin(); + if (!D && ResultCount > 1) { + // We assume that we'll preserve the qualifier from a function + // template name in other ways. + Template = Context.getOverloadedTemplateName(R.begin(), R.end()); + TemplateKind = TNK_Function_template; + + // We'll do this lookup again later. + R.suppressDiagnostics(); + } else { + if (!D) { + D = getAsTemplateNameDecl(*R.begin()); + assert(D && "unambiguous result is not a template name"); + } + + if (isa<UnresolvedUsingValueDecl>(D)) { + // We don't yet know whether this is a template-name or not. + MemberOfUnknownSpecialization = true; + return TNK_Non_template; + } + + TemplateDecl *TD = cast<TemplateDecl>(D); + + if (SS.isSet() && !SS.isInvalid()) { + NestedNameSpecifier *Qualifier = SS.getScopeRep(); + Template = Context.getQualifiedTemplateName(Qualifier, + hasTemplateKeyword, TD); + } else { + Template = TemplateName(TD); + } + + if (isa<FunctionTemplateDecl>(TD)) { + TemplateKind = TNK_Function_template; + + // We'll do this lookup again later. + R.suppressDiagnostics(); + } else { + assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || + isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || + isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)); + TemplateKind = + isa<VarTemplateDecl>(TD) ? TNK_Var_template : + isa<ConceptDecl>(TD) ? TNK_Concept_template : + TNK_Type_template; + } + } + + TemplateResult = TemplateTy::make(Template); + return TemplateKind; +} + +bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, + SourceLocation NameLoc, + ParsedTemplateTy *Template) { + CXXScopeSpec SS; + bool MemberOfUnknownSpecialization = false; + + // We could use redeclaration lookup here, but we don't need to: the + // syntactic form of a deduction guide is enough to identify it even + // if we can't look up the template name at all. + LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); + if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), + /*EnteringContext*/ false, + MemberOfUnknownSpecialization)) + return false; + + if (R.empty()) return false; + if (R.isAmbiguous()) { + // FIXME: Diagnose an ambiguity if we find at least one template. + R.suppressDiagnostics(); + return false; + } + + // We only treat template-names that name type templates as valid deduction + // guide names. + TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); + if (!TD || !getAsTypeTemplateDecl(TD)) + return false; + + if (Template) + *Template = TemplateTy::make(TemplateName(TD)); + return true; +} + +bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, + SourceLocation IILoc, + Scope *S, + const CXXScopeSpec *SS, + TemplateTy &SuggestedTemplate, + TemplateNameKind &SuggestedKind) { + // We can't recover unless there's a dependent scope specifier preceding the + // template name. + // FIXME: Typo correction? + if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) || + computeDeclContext(*SS)) + return false; + + // The code is missing a 'template' keyword prior to the dependent template + // name. + NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); + Diag(IILoc, diag::err_template_kw_missing) + << Qualifier << II.getName() + << FixItHint::CreateInsertion(IILoc, "template "); + SuggestedTemplate + = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II)); + SuggestedKind = TNK_Dependent_template_name; + return true; +} + +bool Sema::LookupTemplateName(LookupResult &Found, + Scope *S, CXXScopeSpec &SS, + QualType ObjectType, + bool EnteringContext, + bool &MemberOfUnknownSpecialization, + RequiredTemplateKind RequiredTemplate, + AssumedTemplateKind *ATK, + bool AllowTypoCorrection) { + if (ATK) + *ATK = AssumedTemplateKind::None; + + if (SS.isInvalid()) + return true; + + Found.setTemplateNameLookup(true); + + // Determine where to perform name lookup + MemberOfUnknownSpecialization = false; + DeclContext *LookupCtx = nullptr; + bool IsDependent = false; + if (!ObjectType.isNull()) { + // This nested-name-specifier occurs in a member access expression, e.g., + // x->B::f, and we are looking into the type of the object. + assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist"); + LookupCtx = computeDeclContext(ObjectType); + IsDependent = !LookupCtx && ObjectType->isDependentType(); + assert((IsDependent || !ObjectType->isIncompleteType() || + ObjectType->castAs<TagType>()->isBeingDefined()) && + "Caller should have completed object type"); + + // Template names cannot appear inside an Objective-C class or object type + // or a vector type. + // + // FIXME: This is wrong. For example: + // + // template<typename T> using Vec = T __attribute__((ext_vector_type(4))); + // Vec<int> vi; + // vi.Vec<int>::~Vec<int>(); + // + // ... should be accepted but we will not treat 'Vec' as a template name + // here. The right thing to do would be to check if the name is a valid + // vector component name, and look up a template name if not. And similarly + // for lookups into Objective-C class and object types, where the same + // problem can arise. + if (ObjectType->isObjCObjectOrInterfaceType() || + ObjectType->isVectorType()) { + Found.clear(); + return false; + } + } else if (SS.isNotEmpty()) { + // This nested-name-specifier occurs after another nested-name-specifier, + // so long into the context associated with the prior nested-name-specifier. + LookupCtx = computeDeclContext(SS, EnteringContext); + IsDependent = !LookupCtx && isDependentScopeSpecifier(SS); + + // The declaration context must be complete. + if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx)) + return true; + } + + bool ObjectTypeSearchedInScope = false; + bool AllowFunctionTemplatesInLookup = true; + if (LookupCtx) { + // Perform "qualified" name lookup into the declaration context we + // computed, which is either the type of the base of a member access + // expression or the declaration context associated with a prior + // nested-name-specifier. + LookupQualifiedName(Found, LookupCtx); + + // FIXME: The C++ standard does not clearly specify what happens in the + // case where the object type is dependent, and implementations vary. In + // Clang, we treat a name after a . or -> as a template-name if lookup + // finds a non-dependent member or member of the current instantiation that + // is a type template, or finds no such members and lookup in the context + // of the postfix-expression finds a type template. In the latter case, the + // name is nonetheless dependent, and we may resolve it to a member of an + // unknown specialization when we come to instantiate the template. + IsDependent |= Found.wasNotFoundInCurrentInstantiation(); + } + + if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) { + // C++ [basic.lookup.classref]p1: + // In a class member access expression (5.2.5), if the . or -> token is + // immediately followed by an identifier followed by a <, the + // identifier must be looked up to determine whether the < is the + // beginning of a template argument list (14.2) or a less-than operator. + // The identifier is first looked up in the class of the object + // expression. If the identifier is not found, it is then looked up in + // the context of the entire postfix-expression and shall name a class + // template. + if (S) + LookupName(Found, S); + + if (!ObjectType.isNull()) { + // FIXME: We should filter out all non-type templates here, particularly + // variable templates and concepts. But the exclusion of alias templates + // and template template parameters is a wording defect. + AllowFunctionTemplatesInLookup = false; + ObjectTypeSearchedInScope = true; + } + + IsDependent |= Found.wasNotFoundInCurrentInstantiation(); + } + + if (Found.isAmbiguous()) + return false; + + if (ATK && SS.isEmpty() && ObjectType.isNull() && + !RequiredTemplate.hasTemplateKeyword()) { + // C++2a [temp.names]p2: + // A name is also considered to refer to a template if it is an + // unqualified-id followed by a < and name lookup finds either one or more + // functions or finds nothing. + // + // To keep our behavior consistent, we apply the "finds nothing" part in + // all language modes, and diagnose the empty lookup in ActOnCallExpr if we + // successfully form a call to an undeclared template-id. + bool AllFunctions = + getLangOpts().CPlusPlus20 && llvm::all_of(Found, [](NamedDecl *ND) { + return isa<FunctionDecl>(ND->getUnderlyingDecl()); + }); + if (AllFunctions || (Found.empty() && !IsDependent)) { + // If lookup found any functions, or if this is a name that can only be + // used for a function, then strongly assume this is a function + // template-id. + *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) + ? AssumedTemplateKind::FoundNothing + : AssumedTemplateKind::FoundFunctions; + Found.clear(); + return false; + } + } + + if (Found.empty() && !IsDependent && AllowTypoCorrection) { + // If we did not find any names, and this is not a disambiguation, attempt + // to correct any typos. + DeclarationName Name = Found.getLookupName(); + Found.clear(); + // Simple filter callback that, for keywords, only accepts the C++ *_cast + DefaultFilterCCC FilterCCC{}; + FilterCCC.WantTypeSpecifiers = false; + FilterCCC.WantExpressionKeywords = false; + FilterCCC.WantRemainingKeywords = false; + FilterCCC.WantCXXNamedCasts = true; + if (TypoCorrection Corrected = + CorrectTypo(Found.getLookupNameInfo(), Found.getLookupKind(), S, + &SS, FilterCCC, CTK_ErrorRecovery, LookupCtx)) { + if (auto *ND = Corrected.getFoundDecl()) + Found.addDecl(ND); + FilterAcceptableTemplateNames(Found); + if (Found.isAmbiguous()) { + Found.clear(); + } else if (!Found.empty()) { + Found.setLookupName(Corrected.getCorrection()); + if (LookupCtx) { + std::string CorrectedStr(Corrected.getAsString(getLangOpts())); + bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && + Name.getAsString() == CorrectedStr; + diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) + << Name << LookupCtx << DroppedSpecifier + << SS.getRange()); + } else { + diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); + } + } + } + } + + NamedDecl *ExampleLookupResult = + Found.empty() ? nullptr : Found.getRepresentativeDecl(); + FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup); + if (Found.empty()) { + if (IsDependent) { + MemberOfUnknownSpecialization = true; + return false; + } + + // If a 'template' keyword was used, a lookup that finds only non-template + // names is an error. + if (ExampleLookupResult && RequiredTemplate) { + Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) + << Found.getLookupName() << SS.getRange() + << RequiredTemplate.hasTemplateKeyword() + << RequiredTemplate.getTemplateKeywordLoc(); + Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), + diag::note_template_kw_refers_to_non_template) + << Found.getLookupName(); + return true; + } + + return false; + } + + if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && + !getLangOpts().CPlusPlus11) { + // C++03 [basic.lookup.classref]p1: + // [...] If the lookup in the class of the object expression finds a + // template, the name is also looked up in the context of the entire + // postfix-expression and [...] + // + // Note: C++11 does not perform this second lookup. + LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), + LookupOrdinaryName); + FoundOuter.setTemplateNameLookup(true); + LookupName(FoundOuter, S); + // FIXME: We silently accept an ambiguous lookup here, in violation of + // [basic.lookup]/1. + FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false); + + NamedDecl *OuterTemplate; + if (FoundOuter.empty()) { + // - if the name is not found, the name found in the class of the + // object expression is used, otherwise + } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || + !(OuterTemplate = + getAsTemplateNameDecl(FoundOuter.getFoundDecl()))) { + // - if the name is found in the context of the entire + // postfix-expression and does not name a class template, the name + // found in the class of the object expression is used, otherwise + FoundOuter.clear(); + } else if (!Found.isSuppressingDiagnostics()) { + // - if the name found is a class template, it must refer to the same + // entity as the one found in the class of the object expression, + // otherwise the program is ill-formed. + if (!Found.isSingleResult() || + getAsTemplateNameDecl(Found.getFoundDecl())->getCanonicalDecl() != + OuterTemplate->getCanonicalDecl()) { + Diag(Found.getNameLoc(), + diag::ext_nested_name_member_ref_lookup_ambiguous) + << Found.getLookupName() + << ObjectType; + Diag(Found.getRepresentativeDecl()->getLocation(), + diag::note_ambig_member_ref_object_type) + << ObjectType; + Diag(FoundOuter.getFoundDecl()->getLocation(), + diag::note_ambig_member_ref_scope); + + // Recover by taking the template that we found in the object + // expression's type. + } + } + } + + return false; +} + +void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, + SourceLocation Less, + SourceLocation Greater) { + if (TemplateName.isInvalid()) + return; + + DeclarationNameInfo NameInfo; + CXXScopeSpec SS; + LookupNameKind LookupKind; + + DeclContext *LookupCtx = nullptr; + NamedDecl *Found = nullptr; + bool MissingTemplateKeyword = false; + + // Figure out what name we looked up. + if (auto *DRE = dyn_cast<DeclRefExpr>(TemplateName.get())) { + NameInfo = DRE->getNameInfo(); + SS.Adopt(DRE->getQualifierLoc()); + LookupKind = LookupOrdinaryName; + Found = DRE->getFoundDecl(); + } else if (auto *ME = dyn_cast<MemberExpr>(TemplateName.get())) { + NameInfo = ME->getMemberNameInfo(); + SS.Adopt(ME->getQualifierLoc()); + LookupKind = LookupMemberName; + LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); + Found = ME->getMemberDecl(); + } else if (auto *DSDRE = + dyn_cast<DependentScopeDeclRefExpr>(TemplateName.get())) { + NameInfo = DSDRE->getNameInfo(); + SS.Adopt(DSDRE->getQualifierLoc()); + MissingTemplateKeyword = true; + } else if (auto *DSME = + dyn_cast<CXXDependentScopeMemberExpr>(TemplateName.get())) { + NameInfo = DSME->getMemberNameInfo(); + SS.Adopt(DSME->getQualifierLoc()); + MissingTemplateKeyword = true; + } else { + llvm_unreachable("unexpected kind of potential template name"); + } + + // If this is a dependent-scope lookup, diagnose that the 'template' keyword + // was missing. + if (MissingTemplateKeyword) { + Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing) + << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater); + return; + } + + // Try to correct the name by looking for templates and C++ named casts. + struct TemplateCandidateFilter : CorrectionCandidateCallback { + Sema &S; + TemplateCandidateFilter(Sema &S) : S(S) { + WantTypeSpecifiers = false; + WantExpressionKeywords = false; + WantRemainingKeywords = false; + WantCXXNamedCasts = true; + }; + bool ValidateCandidate(const TypoCorrection &Candidate) override { + if (auto *ND = Candidate.getCorrectionDecl()) + return S.getAsTemplateNameDecl(ND); + return Candidate.isKeyword(); + } + + std::unique_ptr<CorrectionCandidateCallback> clone() override { + return std::make_unique<TemplateCandidateFilter>(*this); + } + }; + + DeclarationName Name = NameInfo.getName(); + TemplateCandidateFilter CCC(*this); + if (TypoCorrection Corrected = CorrectTypo(NameInfo, LookupKind, S, &SS, CCC, + CTK_ErrorRecovery, LookupCtx)) { + auto *ND = Corrected.getFoundDecl(); + if (ND) + ND = getAsTemplateNameDecl(ND); + if (ND || Corrected.isKeyword()) { + if (LookupCtx) { + std::string CorrectedStr(Corrected.getAsString(getLangOpts())); + bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && + Name.getAsString() == CorrectedStr; + diagnoseTypo(Corrected, + PDiag(diag::err_non_template_in_member_template_id_suggest) + << Name << LookupCtx << DroppedSpecifier + << SS.getRange(), false); + } else { + diagnoseTypo(Corrected, + PDiag(diag::err_non_template_in_template_id_suggest) + << Name, false); + } + if (Found) + Diag(Found->getLocation(), + diag::note_non_template_in_template_id_found); + return; + } + } + + Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) + << Name << SourceRange(Less, Greater); + if (Found) + Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); +} + +/// ActOnDependentIdExpression - Handle a dependent id-expression that +/// was just parsed. This is only possible with an explicit scope +/// specifier naming a dependent type. +ExprResult +Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, + SourceLocation TemplateKWLoc, + const DeclarationNameInfo &NameInfo, + bool isAddressOfOperand, + const TemplateArgumentListInfo *TemplateArgs) { + DeclContext *DC = getFunctionLevelDeclContext(); + + // C++11 [expr.prim.general]p12: + // An id-expression that denotes a non-static data member or non-static + // member function of a class can only be used: + // (...) + // - if that id-expression denotes a non-static data member and it + // appears in an unevaluated operand. + // + // If this might be the case, form a DependentScopeDeclRefExpr instead of a + // CXXDependentScopeMemberExpr. The former can instantiate to either + // DeclRefExpr or MemberExpr depending on lookup results, while the latter is + // always a MemberExpr. + bool MightBeCxx11UnevalField = + getLangOpts().CPlusPlus11 && isUnevaluatedContext(); + + // Check if the nested name specifier is an enum type. + bool IsEnum = false; + if (NestedNameSpecifier *NNS = SS.getScopeRep()) + IsEnum = isa_and_nonnull<EnumType>(NNS->getAsType()); + + if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum && + isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) { + QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(); + + // Since the 'this' expression is synthesized, we don't need to + // perform the double-lookup check. + NamedDecl *FirstQualifierInScope = nullptr; + + return CXXDependentScopeMemberExpr::Create( + Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true, + /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc, + FirstQualifierInScope, NameInfo, TemplateArgs); + } + + return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); +} + +ExprResult +Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, + SourceLocation TemplateKWLoc, + const DeclarationNameInfo &NameInfo, + const TemplateArgumentListInfo *TemplateArgs) { + // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc + NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); + if (!QualifierLoc) + return ExprError(); + + return DependentScopeDeclRefExpr::Create( + Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs); +} + + +/// Determine whether we would be unable to instantiate this template (because +/// it either has no definition, or is in the process of being instantiated). +bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, + NamedDecl *Instantiation, + bool InstantiatedFromMember, + const NamedDecl *Pattern, + const NamedDecl *PatternDef, + TemplateSpecializationKind TSK, + bool Complain /*= true*/) { + assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || + isa<VarDecl>(Instantiation)); + + bool IsEntityBeingDefined = false; + if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(PatternDef)) + IsEntityBeingDefined = TD->isBeingDefined(); + + if (PatternDef && !IsEntityBeingDefined) { + NamedDecl *SuggestedDef = nullptr; + if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef, + /*OnlyNeedComplete*/false)) { + // If we're allowed to diagnose this and recover, do so. + bool Recover = Complain && !isSFINAEContext(); + if (Complain) + diagnoseMissingImport(PointOfInstantiation, SuggestedDef, + Sema::MissingImportKind::Definition, Recover); + return !Recover; + } + return false; + } + + if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) + return true; + + llvm::Optional<unsigned> Note; + QualType InstantiationTy; + if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation)) + InstantiationTy = Context.getTypeDeclType(TD); + if (PatternDef) { + Diag(PointOfInstantiation, + diag::err_template_instantiate_within_definition) + << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) + << InstantiationTy; + // Not much point in noting the template declaration here, since + // we're lexically inside it. + Instantiation->setInvalidDecl(); + } else if (InstantiatedFromMember) { + if (isa<FunctionDecl>(Instantiation)) { + Diag(PointOfInstantiation, + diag::err_explicit_instantiation_undefined_member) + << /*member function*/ 1 << Instantiation->getDeclName() + << Instantiation->getDeclContext(); + Note = diag::note_explicit_instantiation_here; + } else { + assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!"); + Diag(PointOfInstantiation, + diag::err_implicit_instantiate_member_undefined) + << InstantiationTy; + Note = diag::note_member_declared_at; + } + } else { + if (isa<FunctionDecl>(Instantiation)) { + Diag(PointOfInstantiation, + diag::err_explicit_instantiation_undefined_func_template) + << Pattern; + Note = diag::note_explicit_instantiation_here; + } else if (isa<TagDecl>(Instantiation)) { + Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) + << (TSK != TSK_ImplicitInstantiation) + << InstantiationTy; + Note = diag::note_template_decl_here; + } else { + assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!"); + if (isa<VarTemplateSpecializationDecl>(Instantiation)) { + Diag(PointOfInstantiation, + diag::err_explicit_instantiation_undefined_var_template) + << Instantiation; + Instantiation->setInvalidDecl(); + } else + Diag(PointOfInstantiation, + diag::err_explicit_instantiation_undefined_member) + << /*static data member*/ 2 << Instantiation->getDeclName() + << Instantiation->getDeclContext(); + Note = diag::note_explicit_instantiation_here; + } + } + if (Note) // Diagnostics were emitted. + Diag(Pattern->getLocation(), Note.getValue()); + + // In general, Instantiation isn't marked invalid to get more than one + // error for multiple undefined instantiations. But the code that does + // explicit declaration -> explicit definition conversion can't handle + // invalid declarations, so mark as invalid in that case. + if (TSK == TSK_ExplicitInstantiationDeclaration) + Instantiation->setInvalidDecl(); + return true; +} + +/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining +/// that the template parameter 'PrevDecl' is being shadowed by a new +/// declaration at location Loc. Returns true to indicate that this is +/// an error, and false otherwise. +void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) { + assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); + + // C++ [temp.local]p4: + // A template-parameter shall not be redeclared within its + // scope (including nested scopes). + // + // Make this a warning when MSVC compatibility is requested. + unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow + : diag::err_template_param_shadow; + Diag(Loc, DiagId) << cast<NamedDecl>(PrevDecl)->getDeclName(); + Diag(PrevDecl->getLocation(), diag::note_template_param_here); +} + +/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset +/// the parameter D to reference the templated declaration and return a pointer +/// to the template declaration. Otherwise, do nothing to D and return null. +TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { + if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) { + D = Temp->getTemplatedDecl(); + return Temp; + } + return nullptr; +} + +ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( + SourceLocation EllipsisLoc) const { + assert(Kind == Template && + "Only template template arguments can be pack expansions here"); + assert(getAsTemplate().get().containsUnexpandedParameterPack() && + "Template template argument pack expansion without packs"); + ParsedTemplateArgument Result(*this); + Result.EllipsisLoc = EllipsisLoc; + return Result; +} + +static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, + const ParsedTemplateArgument &Arg) { + + switch (Arg.getKind()) { + case ParsedTemplateArgument::Type: { + TypeSourceInfo *DI; + QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI); + if (!DI) + DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation()); + return TemplateArgumentLoc(TemplateArgument(T), DI); + } + + case ParsedTemplateArgument::NonType: { + Expr *E = static_cast<Expr *>(Arg.getAsExpr()); + return TemplateArgumentLoc(TemplateArgument(E), E); + } + + case ParsedTemplateArgument::Template: { + TemplateName Template = Arg.getAsTemplate().get(); + TemplateArgument TArg; + if (Arg.getEllipsisLoc().isValid()) + TArg = TemplateArgument(Template, Optional<unsigned int>()); + else + TArg = Template; + return TemplateArgumentLoc( + SemaRef.Context, TArg, + Arg.getScopeSpec().getWithLocInContext(SemaRef.Context), + Arg.getLocation(), Arg.getEllipsisLoc()); + } + } + + llvm_unreachable("Unhandled parsed template argument"); +} + +/// Translates template arguments as provided by the parser +/// into template arguments used by semantic analysis. +void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, + TemplateArgumentListInfo &TemplateArgs) { + for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) + TemplateArgs.addArgument(translateTemplateArgument(*this, + TemplateArgsIn[I])); +} + +static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, + SourceLocation Loc, + IdentifierInfo *Name) { + NamedDecl *PrevDecl = SemaRef.LookupSingleName( + S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); + if (PrevDecl && PrevDecl->isTemplateParameter()) + SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); +} + +/// Convert a parsed type into a parsed template argument. This is mostly +/// trivial, except that we may have parsed a C++17 deduced class template +/// specialization type, in which case we should form a template template +/// argument instead of a type template argument. +ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { + TypeSourceInfo *TInfo; + QualType T = GetTypeFromParser(ParsedType.get(), &TInfo); + if (T.isNull()) + return ParsedTemplateArgument(); + assert(TInfo && "template argument with no location"); + + // If we might have formed a deduced template specialization type, convert + // it to a template template argument. + if (getLangOpts().CPlusPlus17) { + TypeLoc TL = TInfo->getTypeLoc(); + SourceLocation EllipsisLoc; + if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { + EllipsisLoc = PET.getEllipsisLoc(); + TL = PET.getPatternLoc(); + } + + CXXScopeSpec SS; + if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { + SS.Adopt(ET.getQualifierLoc()); + TL = ET.getNamedTypeLoc(); + } + + if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { + TemplateName Name = DTST.getTypePtr()->getTemplateName(); + if (SS.isSet()) + Name = Context.getQualifiedTemplateName(SS.getScopeRep(), + /*HasTemplateKeyword*/ false, + Name.getAsTemplateDecl()); + ParsedTemplateArgument Result(SS, TemplateTy::make(Name), + DTST.getTemplateNameLoc()); + if (EllipsisLoc.isValid()) + Result = Result.getTemplatePackExpansion(EllipsisLoc); + return Result; + } + } + + // This is a normal type template argument. Note, if the type template + // argument is an injected-class-name for a template, it has a dual nature + // and can be used as either a type or a template. We handle that in + // convertTypeTemplateArgumentToTemplate. + return ParsedTemplateArgument(ParsedTemplateArgument::Type, + ParsedType.get().getAsOpaquePtr(), + TInfo->getTypeLoc().getBeginLoc()); +} + +/// ActOnTypeParameter - Called when a C++ template type parameter +/// (e.g., "typename T") has been parsed. Typename specifies whether +/// the keyword "typename" was used to declare the type parameter +/// (otherwise, "class" was used), and KeyLoc is the location of the +/// "class" or "typename" keyword. ParamName is the name of the +/// parameter (NULL indicates an unnamed template parameter) and +/// ParamNameLoc is the location of the parameter name (if any). +/// If the type parameter has a default argument, it will be added +/// later via ActOnTypeParameterDefault. +NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, + SourceLocation EllipsisLoc, + SourceLocation KeyLoc, + IdentifierInfo *ParamName, + SourceLocation ParamNameLoc, + unsigned Depth, unsigned Position, + SourceLocation EqualLoc, + ParsedType DefaultArg, + bool HasTypeConstraint) { + assert(S->isTemplateParamScope() && + "Template type parameter not in template parameter scope!"); + + bool IsParameterPack = EllipsisLoc.isValid(); + TemplateTypeParmDecl *Param + = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), + KeyLoc, ParamNameLoc, Depth, Position, + ParamName, Typename, IsParameterPack, + HasTypeConstraint); + Param->setAccess(AS_public); + + if (Param->isParameterPack()) + if (auto *LSI = getEnclosingLambda()) + LSI->LocalPacks.push_back(Param); + + if (ParamName) { + maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName); + + // Add the template parameter into the current scope. + S->AddDecl(Param); + IdResolver.AddDecl(Param); + } + + // C++0x [temp.param]p9: + // A default template-argument may be specified for any kind of + // template-parameter that is not a template parameter pack. + if (DefaultArg && IsParameterPack) { + Diag(EqualLoc, diag::err_template_param_pack_default_arg); + DefaultArg = nullptr; + } + + // Handle the default argument, if provided. + if (DefaultArg) { + TypeSourceInfo *DefaultTInfo; + GetTypeFromParser(DefaultArg, &DefaultTInfo); + + assert(DefaultTInfo && "expected source information for type"); + + // Check for unexpanded parameter packs. + if (DiagnoseUnexpandedParameterPack(ParamNameLoc, DefaultTInfo, + UPPC_DefaultArgument)) + return Param; + + // Check the template argument itself. + if (CheckTemplateArgument(DefaultTInfo)) { + Param->setInvalidDecl(); + return Param; + } + + Param->setDefaultArgument(DefaultTInfo); + } + + return Param; +} + +/// Convert the parser's template argument list representation into our form. +static TemplateArgumentListInfo +makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { + TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, + TemplateId.RAngleLoc); + ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), + TemplateId.NumArgs); + S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs); + return TemplateArgs; +} + +bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS, + TemplateIdAnnotation *TypeConstr, + TemplateTypeParmDecl *ConstrainedParameter, + SourceLocation EllipsisLoc) { + return BuildTypeConstraint(SS, TypeConstr, ConstrainedParameter, EllipsisLoc, + false); +} + +bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS, + TemplateIdAnnotation *TypeConstr, + TemplateTypeParmDecl *ConstrainedParameter, + SourceLocation EllipsisLoc, + bool AllowUnexpandedPack) { + TemplateName TN = TypeConstr->Template.get(); + ConceptDecl *CD = cast<ConceptDecl>(TN.getAsTemplateDecl()); + + // C++2a [temp.param]p4: + // [...] The concept designated by a type-constraint shall be a type + // concept ([temp.concept]). + if (!CD->isTypeConcept()) { + Diag(TypeConstr->TemplateNameLoc, + diag::err_type_constraint_non_type_concept); + return true; + } + + bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid(); + + if (!WereArgsSpecified && + CD->getTemplateParameters()->getMinRequiredArguments() > 1) { + Diag(TypeConstr->TemplateNameLoc, + diag::err_type_constraint_missing_arguments) << CD; + return true; + } + + DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name), + TypeConstr->TemplateNameLoc); + + TemplateArgumentListInfo TemplateArgs; + if (TypeConstr->LAngleLoc.isValid()) { + TemplateArgs = + makeTemplateArgumentListInfo(*this, *TypeConstr); + + if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) { + for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) { + if (DiagnoseUnexpandedParameterPack(Arg, UPPC_TypeConstraint)) + return true; + } + } + } + return AttachTypeConstraint( + SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(), + ConceptName, CD, + TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr, + ConstrainedParameter, EllipsisLoc); +} + +template<typename ArgumentLocAppender> +static ExprResult formImmediatelyDeclaredConstraint( + Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, + ConceptDecl *NamedConcept, SourceLocation LAngleLoc, + SourceLocation RAngleLoc, QualType ConstrainedType, + SourceLocation ParamNameLoc, ArgumentLocAppender Appender, + SourceLocation EllipsisLoc) { + + TemplateArgumentListInfo ConstraintArgs; + ConstraintArgs.addArgument( + S.getTrivialTemplateArgumentLoc(TemplateArgument(ConstrainedType), + /*NTTPType=*/QualType(), ParamNameLoc)); + + ConstraintArgs.setRAngleLoc(RAngleLoc); + ConstraintArgs.setLAngleLoc(LAngleLoc); + Appender(ConstraintArgs); + + // C++2a [temp.param]p4: + // [...] This constraint-expression E is called the immediately-declared + // constraint of T. [...] + CXXScopeSpec SS; + SS.Adopt(NS); + ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId( + SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo, + /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs); + if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid()) + return ImmediatelyDeclaredConstraint; + + // C++2a [temp.param]p4: + // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). + // + // We have the following case: + // + // template<typename T> concept C1 = true; + // template<C1... T> struct s1; + // + // The constraint: (C1<T> && ...) + // + // Note that the type of C1<T> is known to be 'bool', so we don't need to do + // any unqualified lookups for 'operator&&' here. + return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/nullptr, + /*LParenLoc=*/SourceLocation(), + ImmediatelyDeclaredConstraint.get(), BO_LAnd, + EllipsisLoc, /*RHS=*/nullptr, + /*RParenLoc=*/SourceLocation(), + /*NumExpansions=*/None); +} + +/// Attach a type-constraint to a template parameter. +/// \returns true if an error occurred. This can happen if the +/// immediately-declared constraint could not be formed (e.g. incorrect number +/// of arguments for the named concept). +bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS, + DeclarationNameInfo NameInfo, + ConceptDecl *NamedConcept, + const TemplateArgumentListInfo *TemplateArgs, + TemplateTypeParmDecl *ConstrainedParameter, + SourceLocation EllipsisLoc) { + // C++2a [temp.param]p4: + // [...] If Q is of the form C<A1, ..., An>, then let E' be + // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...] + const ASTTemplateArgumentListInfo *ArgsAsWritten = + TemplateArgs ? ASTTemplateArgumentListInfo::Create(Context, + *TemplateArgs) : nullptr; + + QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0); + + ExprResult ImmediatelyDeclaredConstraint = + formImmediatelyDeclaredConstraint( + *this, NS, NameInfo, NamedConcept, + TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(), + TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(), + ParamAsArgument, ConstrainedParameter->getLocation(), + [&] (TemplateArgumentListInfo &ConstraintArgs) { + if (TemplateArgs) + for (const auto &ArgLoc : TemplateArgs->arguments()) + ConstraintArgs.addArgument(ArgLoc); + }, EllipsisLoc); + if (ImmediatelyDeclaredConstraint.isInvalid()) + return true; + + ConstrainedParameter->setTypeConstraint(NS, NameInfo, + /*FoundDecl=*/NamedConcept, + NamedConcept, ArgsAsWritten, + ImmediatelyDeclaredConstraint.get()); + return false; +} + +bool Sema::AttachTypeConstraint(AutoTypeLoc TL, NonTypeTemplateParmDecl *NTTP, + SourceLocation EllipsisLoc) { + if (NTTP->getType() != TL.getType() || + TL.getAutoKeyword() != AutoTypeKeyword::Auto) { + Diag(NTTP->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), + diag::err_unsupported_placeholder_constraint) + << NTTP->getTypeSourceInfo()->getTypeLoc().getSourceRange(); + return true; + } + // FIXME: Concepts: This should be the type of the placeholder, but this is + // unclear in the wording right now. + DeclRefExpr *Ref = + BuildDeclRefExpr(NTTP, NTTP->getType(), VK_PRValue, NTTP->getLocation()); + if (!Ref) + return true; + ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( + *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(), + TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(), + BuildDecltypeType(Ref), NTTP->getLocation(), + [&](TemplateArgumentListInfo &ConstraintArgs) { + for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I) + ConstraintArgs.addArgument(TL.getArgLoc(I)); + }, + EllipsisLoc); + if (ImmediatelyDeclaredConstraint.isInvalid() || + !ImmediatelyDeclaredConstraint.isUsable()) + return true; + + NTTP->setPlaceholderTypeConstraint(ImmediatelyDeclaredConstraint.get()); + return false; +} + +/// Check that the type of a non-type template parameter is +/// well-formed. +/// +/// \returns the (possibly-promoted) parameter type if valid; +/// otherwise, produces a diagnostic and returns a NULL type. +QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, + SourceLocation Loc) { + if (TSI->getType()->isUndeducedType()) { + // C++17 [temp.dep.expr]p3: + // An id-expression is type-dependent if it contains + // - an identifier associated by name lookup with a non-type + // template-parameter declared with a type that contains a + // placeholder type (7.1.7.4), + TSI = SubstAutoTypeSourceInfoDependent(TSI); + } + + return CheckNonTypeTemplateParameterType(TSI->getType(), Loc); +} + +/// Require the given type to be a structural type, and diagnose if it is not. +/// +/// \return \c true if an error was produced. +bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) { + if (T->isDependentType()) + return false; + + if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete)) + return true; + + if (T->isStructuralType()) + return false; + + // Structural types are required to be object types or lvalue references. + if (T->isRValueReferenceType()) { + Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T; + return true; + } + + // Don't mention structural types in our diagnostic prior to C++20. Also, + // there's not much more we can say about non-scalar non-class types -- + // because we can't see functions or arrays here, those can only be language + // extensions. + if (!getLangOpts().CPlusPlus20 || + (!T->isScalarType() && !T->isRecordType())) { + Diag(Loc, diag::err_template_nontype_parm_bad_type) << T; + return true; + } + + // Structural types are required to be literal types. + if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal)) + return true; + + Diag(Loc, diag::err_template_nontype_parm_not_structural) << T; + + // Drill down into the reason why the class is non-structural. + while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { + // All members are required to be public and non-mutable, and can't be of + // rvalue reference type. Check these conditions first to prefer a "local" + // reason over a more distant one. + for (const FieldDecl *FD : RD->fields()) { + if (FD->getAccess() != AS_public) { + Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0; + return true; + } + if (FD->isMutable()) { + Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T; + return true; + } + if (FD->getType()->isRValueReferenceType()) { + Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field) + << T; + return true; + } + } + + // All bases are required to be public. + for (const auto &BaseSpec : RD->bases()) { + if (BaseSpec.getAccessSpecifier() != AS_public) { + Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public) + << T << 1; + return true; + } + } + + // All subobjects are required to be of structural types. + SourceLocation SubLoc; + QualType SubType; + int Kind = -1; + + for (const FieldDecl *FD : RD->fields()) { + QualType T = Context.getBaseElementType(FD->getType()); + if (!T->isStructuralType()) { + SubLoc = FD->getLocation(); + SubType = T; + Kind = 0; + break; + } + } + + if (Kind == -1) { + for (const auto &BaseSpec : RD->bases()) { + QualType T = BaseSpec.getType(); + if (!T->isStructuralType()) { + SubLoc = BaseSpec.getBaseTypeLoc(); + SubType = T; + Kind = 1; + break; + } + } + } + + assert(Kind != -1 && "couldn't find reason why type is not structural"); + Diag(SubLoc, diag::note_not_structural_subobject) + << T << Kind << SubType; + T = SubType; + RD = T->getAsCXXRecordDecl(); + } + + return true; +} + +QualType Sema::CheckNonTypeTemplateParameterType(QualType T, + SourceLocation Loc) { + // We don't allow variably-modified types as the type of non-type template + // parameters. + if (T->isVariablyModifiedType()) { + Diag(Loc, diag::err_variably_modified_nontype_template_param) + << T; + return QualType(); + } + + // C++ [temp.param]p4: + // + // A non-type template-parameter shall have one of the following + // (optionally cv-qualified) types: + // + // -- integral or enumeration type, + if (T->isIntegralOrEnumerationType() || + // -- pointer to object or pointer to function, + T->isPointerType() || + // -- lvalue reference to object or lvalue reference to function, + T->isLValueReferenceType() || + // -- pointer to member, + T->isMemberPointerType() || + // -- std::nullptr_t, or + T->isNullPtrType() || + // -- a type that contains a placeholder type. + T->isUndeducedType()) { + // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter + // are ignored when determining its type. + return T.getUnqualifiedType(); + } + + // C++ [temp.param]p8: + // + // A non-type template-parameter of type "array of T" or + // "function returning T" is adjusted to be of type "pointer to + // T" or "pointer to function returning T", respectively. + if (T->isArrayType() || T->isFunctionType()) + return Context.getDecayedType(T); + + // If T is a dependent type, we can't do the check now, so we + // assume that it is well-formed. Note that stripping off the + // qualifiers here is not really correct if T turns out to be + // an array type, but we'll recompute the type everywhere it's + // used during instantiation, so that should be OK. (Using the + // qualified type is equally wrong.) + if (T->isDependentType()) + return T.getUnqualifiedType(); + + // C++20 [temp.param]p6: + // -- a structural type + if (RequireStructuralType(T, Loc)) + return QualType(); + + if (!getLangOpts().CPlusPlus20) { + // FIXME: Consider allowing structural types as an extension in C++17. (In + // earlier language modes, the template argument evaluation rules are too + // inflexible.) + Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T; + return QualType(); + } + + Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T; + return T.getUnqualifiedType(); +} + +NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, + unsigned Depth, + unsigned Position, + SourceLocation EqualLoc, + Expr *Default) { + TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); + + // Check that we have valid decl-specifiers specified. + auto CheckValidDeclSpecifiers = [this, &D] { + // C++ [temp.param] + // p1 + // template-parameter: + // ... + // parameter-declaration + // p2 + // ... A storage class shall not be specified in a template-parameter + // declaration. + // [dcl.typedef]p1: + // The typedef specifier [...] shall not be used in the decl-specifier-seq + // of a parameter-declaration + const DeclSpec &DS = D.getDeclSpec(); + auto EmitDiag = [this](SourceLocation Loc) { + Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) + << FixItHint::CreateRemoval(Loc); + }; + if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) + EmitDiag(DS.getStorageClassSpecLoc()); + + if (DS.getThreadStorageClassSpec() != TSCS_unspecified) + EmitDiag(DS.getThreadStorageClassSpecLoc()); + + // [dcl.inline]p1: + // The inline specifier can be applied only to the declaration or + // definition of a variable or function. + + if (DS.isInlineSpecified()) + EmitDiag(DS.getInlineSpecLoc()); + + // [dcl.constexpr]p1: + // The constexpr specifier shall be applied only to the definition of a + // variable or variable template or the declaration of a function or + // function template. + + if (DS.hasConstexprSpecifier()) + EmitDiag(DS.getConstexprSpecLoc()); + + // [dcl.fct.spec]p1: + // Function-specifiers can be used only in function declarations. + + if (DS.isVirtualSpecified()) + EmitDiag(DS.getVirtualSpecLoc()); + + if (DS.hasExplicitSpecifier()) + EmitDiag(DS.getExplicitSpecLoc()); + + if (DS.isNoreturnSpecified()) + EmitDiag(DS.getNoreturnSpecLoc()); + }; + + CheckValidDeclSpecifiers(); + + if (TInfo->getType()->isUndeducedType()) { + Diag(D.getIdentifierLoc(), + diag::warn_cxx14_compat_template_nontype_parm_auto_type) + << QualType(TInfo->getType()->getContainedAutoType(), 0); + } + + assert(S->isTemplateParamScope() && + "Non-type template parameter not in template parameter scope!"); + bool Invalid = false; + + QualType T = CheckNonTypeTemplateParameterType(TInfo, D.getIdentifierLoc()); + if (T.isNull()) { + T = Context.IntTy; // Recover with an 'int' type. + Invalid = true; + } + + CheckFunctionOrTemplateParamDeclarator(S, D); + + IdentifierInfo *ParamName = D.getIdentifier(); + bool IsParameterPack = D.hasEllipsis(); + NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( + Context, Context.getTranslationUnitDecl(), D.getBeginLoc(), + D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack, + TInfo); + Param->setAccess(AS_public); + + if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) + if (TL.isConstrained()) + if (AttachTypeConstraint(TL, Param, D.getEllipsisLoc())) + Invalid = true; + + if (Invalid) + Param->setInvalidDecl(); + + if (Param->isParameterPack()) + if (auto *LSI = getEnclosingLambda()) + LSI->LocalPacks.push_back(Param); + + if (ParamName) { + maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(), + ParamName); + + // Add the template parameter into the current scope. + S->AddDecl(Param); + IdResolver.AddDecl(Param); + } + + // C++0x [temp.param]p9: + // A default template-argument may be specified for any kind of + // template-parameter that is not a template parameter pack. + if (Default && IsParameterPack) { + Diag(EqualLoc, diag::err_template_param_pack_default_arg); + Default = nullptr; + } + + // Check the well-formedness of the default template argument, if provided. + if (Default) { + // Check for unexpanded parameter packs. + if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument)) + return Param; + + TemplateArgument Converted; + ExprResult DefaultRes = + CheckTemplateArgument(Param, Param->getType(), Default, Converted); + if (DefaultRes.isInvalid()) { + Param->setInvalidDecl(); + return Param; + } + Default = DefaultRes.get(); + + Param->setDefaultArgument(Default); + } + + return Param; +} + +/// ActOnTemplateTemplateParameter - Called when a C++ template template +/// parameter (e.g. T in template <template \<typename> class T> class array) +/// has been parsed. S is the current scope. +NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S, + SourceLocation TmpLoc, + TemplateParameterList *Params, + SourceLocation EllipsisLoc, + IdentifierInfo *Name, + SourceLocation NameLoc, + unsigned Depth, + unsigned Position, + SourceLocation EqualLoc, + ParsedTemplateArgument Default) { + assert(S->isTemplateParamScope() && + "Template template parameter not in template parameter scope!"); + + // Construct the parameter object. + bool IsParameterPack = EllipsisLoc.isValid(); + TemplateTemplateParmDecl *Param = + TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(), + NameLoc.isInvalid()? TmpLoc : NameLoc, + Depth, Position, IsParameterPack, + Name, Params); + Param->setAccess(AS_public); + + if (Param->isParameterPack()) + if (auto *LSI = getEnclosingLambda()) + LSI->LocalPacks.push_back(Param); + + // If the template template parameter has a name, then link the identifier + // into the scope and lookup mechanisms. + if (Name) { + maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name); + + S->AddDecl(Param); + IdResolver.AddDecl(Param); + } + + if (Params->size() == 0) { + Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) + << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); + Param->setInvalidDecl(); + } + + // C++0x [temp.param]p9: + // A default template-argument may be specified for any kind of + // template-parameter that is not a template parameter pack. + if (IsParameterPack && !Default.isInvalid()) { + Diag(EqualLoc, diag::err_template_param_pack_default_arg); + Default = ParsedTemplateArgument(); + } + + if (!Default.isInvalid()) { + // Check only that we have a template template argument. We don't want to + // try to check well-formedness now, because our template template parameter + // might have dependent types in its template parameters, which we wouldn't + // be able to match now. + // + // If none of the template template parameter's template arguments mention + // other template parameters, we could actually perform more checking here. + // However, it isn't worth doing. + TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default); + if (DefaultArg.getArgument().getAsTemplate().isNull()) { + Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) + << DefaultArg.getSourceRange(); + return Param; + } + + // Check for unexpanded parameter packs. + if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(), + DefaultArg.getArgument().getAsTemplate(), + UPPC_DefaultArgument)) + return Param; + + Param->setDefaultArgument(Context, DefaultArg); + } + + return Param; +} + +/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally +/// constrained by RequiresClause, that contains the template parameters in +/// Params. +TemplateParameterList * +Sema::ActOnTemplateParameterList(unsigned Depth, + SourceLocation ExportLoc, + SourceLocation TemplateLoc, + SourceLocation LAngleLoc, + ArrayRef<NamedDecl *> Params, + SourceLocation RAngleLoc, + Expr *RequiresClause) { + if (ExportLoc.isValid()) + Diag(ExportLoc, diag::warn_template_export_unsupported); + + for (NamedDecl *P : Params) + warnOnReservedIdentifier(P); + + return TemplateParameterList::Create( + Context, TemplateLoc, LAngleLoc, + llvm::makeArrayRef(Params.data(), Params.size()), + RAngleLoc, RequiresClause); +} + +static void SetNestedNameSpecifier(Sema &S, TagDecl *T, + const CXXScopeSpec &SS) { + if (SS.isSet()) + T->setQualifierInfo(SS.getWithLocInContext(S.Context)); +} + +DeclResult Sema::CheckClassTemplate( + Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, + CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, + const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, + AccessSpecifier AS, SourceLocation ModulePrivateLoc, + SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, + TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { + assert(TemplateParams && TemplateParams->size() > 0 && + "No template parameters"); + assert(TUK != TUK_Reference && "Can only declare or define class templates"); + bool Invalid = false; + + // Check that we can declare a template here. + if (CheckTemplateDeclScope(S, TemplateParams)) + return true; + + TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); + assert(Kind != TTK_Enum && "can't build template of enumerated type"); + + // There is no such thing as an unnamed class template. + if (!Name) { + Diag(KWLoc, diag::err_template_unnamed_class); + return true; + } + + // Find any previous declaration with this name. For a friend with no + // scope explicitly specified, we only look for tag declarations (per + // C++11 [basic.lookup.elab]p2). + DeclContext *SemanticContext; + LookupResult Previous(*this, Name, NameLoc, + (SS.isEmpty() && TUK == TUK_Friend) + ? LookupTagName : LookupOrdinaryName, + forRedeclarationInCurContext()); + if (SS.isNotEmpty() && !SS.isInvalid()) { + SemanticContext = computeDeclContext(SS, true); + if (!SemanticContext) { + // FIXME: Horrible, horrible hack! We can't currently represent this + // in the AST, and historically we have just ignored such friend + // class templates, so don't complain here. + Diag(NameLoc, TUK == TUK_Friend + ? diag::warn_template_qualified_friend_ignored + : diag::err_template_qualified_declarator_no_match) + << SS.getScopeRep() << SS.getRange(); + return TUK != TUK_Friend; + } + + if (RequireCompleteDeclContext(SS, SemanticContext)) + return true; + + // If we're adding a template to a dependent context, we may need to + // rebuilding some of the types used within the template parameter list, + // now that we know what the current instantiation is. + if (SemanticContext->isDependentContext()) { + ContextRAII SavedContext(*this, SemanticContext); + if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) + Invalid = true; + } else if (TUK != TUK_Friend && TUK != TUK_Reference) + diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc, false); + + LookupQualifiedName(Previous, SemanticContext); + } else { + SemanticContext = CurContext; + + // C++14 [class.mem]p14: + // If T is the name of a class, then each of the following shall have a + // name different from T: + // -- every member template of class T + if (TUK != TUK_Friend && + DiagnoseClassNameShadow(SemanticContext, + DeclarationNameInfo(Name, NameLoc))) + return true; + + LookupName(Previous, S); + } + + if (Previous.isAmbiguous()) + return true; + + NamedDecl *PrevDecl = nullptr; + if (Previous.begin() != Previous.end()) + PrevDecl = (*Previous.begin())->getUnderlyingDecl(); + + if (PrevDecl && PrevDecl->isTemplateParameter()) { + // Maybe we will complain about the shadowed template parameter. + DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); + // Just pretend that we didn't see the previous declaration. + PrevDecl = nullptr; + } + + // If there is a previous declaration with the same name, check + // whether this is a valid redeclaration. + ClassTemplateDecl *PrevClassTemplate = + dyn_cast_or_null<ClassTemplateDecl>(PrevDecl); + + // We may have found the injected-class-name of a class template, + // class template partial specialization, or class template specialization. + // In these cases, grab the template that is being defined or specialized. + if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) && + cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) { + PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); + PrevClassTemplate + = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate(); + if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) { + PrevClassTemplate + = cast<ClassTemplateSpecializationDecl>(PrevDecl) + ->getSpecializedTemplate(); + } + } + + if (TUK == TUK_Friend) { + // C++ [namespace.memdef]p3: + // [...] When looking for a prior declaration of a class or a function + // declared as a friend, and when the name of the friend class or + // function is neither a qualified name nor a template-id, scopes outside + // the innermost enclosing namespace scope are not considered. + if (!SS.isSet()) { + DeclContext *OutermostContext = CurContext; + while (!OutermostContext->isFileContext()) + OutermostContext = OutermostContext->getLookupParent(); + + if (PrevDecl && + (OutermostContext->Equals(PrevDecl->getDeclContext()) || + OutermostContext->Encloses(PrevDecl->getDeclContext()))) { + SemanticContext = PrevDecl->getDeclContext(); + } else { + // Declarations in outer scopes don't matter. However, the outermost + // context we computed is the semantic context for our new + // declaration. + PrevDecl = PrevClassTemplate = nullptr; + SemanticContext = OutermostContext; + + // Check that the chosen semantic context doesn't already contain a + // declaration of this name as a non-tag type. + Previous.clear(LookupOrdinaryName); + DeclContext *LookupContext = SemanticContext; + while (LookupContext->isTransparentContext()) + LookupContext = LookupContext->getLookupParent(); + LookupQualifiedName(Previous, LookupContext); + + if (Previous.isAmbiguous()) + return true; + + if (Previous.begin() != Previous.end()) + PrevDecl = (*Previous.begin())->getUnderlyingDecl(); + } + } + } else if (PrevDecl && + !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext, + S, SS.isValid())) + PrevDecl = PrevClassTemplate = nullptr; + + if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( + PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { + if (SS.isEmpty() && + !(PrevClassTemplate && + PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( + SemanticContext->getRedeclContext()))) { + Diag(KWLoc, diag::err_using_decl_conflict_reverse); + Diag(Shadow->getTargetDecl()->getLocation(), + diag::note_using_decl_target); + Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0; + // Recover by ignoring the old declaration. + PrevDecl = PrevClassTemplate = nullptr; + } + } + + if (PrevClassTemplate) { + // Ensure that the template parameter lists are compatible. Skip this check + // for a friend in a dependent context: the template parameter list itself + // could be dependent. + if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && + !TemplateParameterListsAreEqual(TemplateParams, + PrevClassTemplate->getTemplateParameters(), + /*Complain=*/true, + TPL_TemplateMatch)) + return true; + + // C++ [temp.class]p4: + // In a redeclaration, partial specialization, explicit + // specialization or explicit instantiation of a class template, + // the class-key shall agree in kind with the original class + // template declaration (7.1.5.3). + RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); + if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, + TUK == TUK_Definition, KWLoc, Name)) { + Diag(KWLoc, diag::err_use_with_wrong_tag) + << Name + << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); + Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); + Kind = PrevRecordDecl->getTagKind(); + } + + // Check for redefinition of this class template. + if (TUK == TUK_Definition) { + if (TagDecl *Def = PrevRecordDecl->getDefinition()) { + // If we have a prior definition that is not visible, treat this as + // simply making that previous definition visible. + NamedDecl *Hidden = nullptr; + if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { + SkipBody->ShouldSkip = true; + SkipBody->Previous = Def; + auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate(); + assert(Tmpl && "original definition of a class template is not a " + "class template?"); + makeMergedDefinitionVisible(Hidden); + makeMergedDefinitionVisible(Tmpl); + } else { + Diag(NameLoc, diag::err_redefinition) << Name; + Diag(Def->getLocation(), diag::note_previous_definition); + // FIXME: Would it make sense to try to "forget" the previous + // definition, as part of error recovery? + return true; + } + } + } + } else if (PrevDecl) { + // C++ [temp]p5: + // A class template shall not have the same name as any other + // template, class, function, object, enumeration, enumerator, + // namespace, or type in the same scope (3.3), except as specified + // in (14.5.4). + Diag(NameLoc, diag::err_redefinition_different_kind) << Name; + Diag(PrevDecl->getLocation(), diag::note_previous_definition); + return true; + } + + // Check the template parameter list of this declaration, possibly + // merging in the template parameter list from the previous class + // template declaration. Skip this check for a friend in a dependent + // context, because the template parameter list might be dependent. + if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && + CheckTemplateParameterList( + TemplateParams, + PrevClassTemplate + ? PrevClassTemplate->getMostRecentDecl()->getTemplateParameters() + : nullptr, + (SS.isSet() && SemanticContext && SemanticContext->isRecord() && + SemanticContext->isDependentContext()) + ? TPC_ClassTemplateMember + : TUK == TUK_Friend ? TPC_FriendClassTemplate : TPC_ClassTemplate, + SkipBody)) + Invalid = true; + + if (SS.isSet()) { + // If the name of the template was qualified, we must be defining the + // template out-of-line. + if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { + Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match + : diag::err_member_decl_does_not_match) + << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); + Invalid = true; + } + } + + // If this is a templated friend in a dependent context we should not put it + // on the redecl chain. In some cases, the templated friend can be the most + // recent declaration tricking the template instantiator to make substitutions + // there. + // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious + bool ShouldAddRedecl + = !(TUK == TUK_Friend && CurContext->isDependentContext()); + + CXXRecordDecl *NewClass = + CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name, + PrevClassTemplate && ShouldAddRedecl ? + PrevClassTemplate->getTemplatedDecl() : nullptr, + /*DelayTypeCreation=*/true); + SetNestedNameSpecifier(*this, NewClass, SS); + if (NumOuterTemplateParamLists > 0) + NewClass->setTemplateParameterListsInfo( + Context, llvm::makeArrayRef(OuterTemplateParamLists, + NumOuterTemplateParamLists)); + + // Add alignment attributes if necessary; these attributes are checked when + // the ASTContext lays out the structure. + if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { + AddAlignmentAttributesForRecord(NewClass); + AddMsStructLayoutForRecord(NewClass); + } + + ClassTemplateDecl *NewTemplate + = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, + DeclarationName(Name), TemplateParams, + NewClass); + + if (ShouldAddRedecl) + NewTemplate->setPreviousDecl(PrevClassTemplate); + + NewClass->setDescribedClassTemplate(NewTemplate); + + if (ModulePrivateLoc.isValid()) + NewTemplate->setModulePrivate(); + + // Build the type for the class template declaration now. + QualType T = NewTemplate->getInjectedClassNameSpecialization(); + T = Context.getInjectedClassNameType(NewClass, T); + assert(T->isDependentType() && "Class template type is not dependent?"); + (void)T; + + // If we are providing an explicit specialization of a member that is a + // class template, make a note of that. + if (PrevClassTemplate && + PrevClassTemplate->getInstantiatedFromMemberTemplate()) + PrevClassTemplate->setMemberSpecialization(); + + // Set the access specifier. + if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) + SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); + + // Set the lexical context of these templates + NewClass->setLexicalDeclContext(CurContext); + NewTemplate->setLexicalDeclContext(CurContext); + + if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) + NewClass->startDefinition(); + + ProcessDeclAttributeList(S, NewClass, Attr); + + if (PrevClassTemplate) + mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); + + AddPushedVisibilityAttribute(NewClass); + inferGslOwnerPointerAttribute(NewClass); + + if (TUK != TUK_Friend) { + // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. + Scope *Outer = S; + while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) + Outer = Outer->getParent(); + PushOnScopeChains(NewTemplate, Outer); + } else { + if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { + NewTemplate->setAccess(PrevClassTemplate->getAccess()); + NewClass->setAccess(PrevClassTemplate->getAccess()); + } + + NewTemplate->setObjectOfFriendDecl(); + + // Friend templates are visible in fairly strange ways. + if (!CurContext->isDependentContext()) { + DeclContext *DC = SemanticContext->getRedeclContext(); + DC->makeDeclVisibleInContext(NewTemplate); + if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) + PushOnScopeChains(NewTemplate, EnclosingScope, + /* AddToContext = */ false); + } + + FriendDecl *Friend = FriendDecl::Create( + Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc); + Friend->setAccess(AS_public); + CurContext->addDecl(Friend); + } + + if (PrevClassTemplate) + CheckRedeclarationInModule(NewTemplate, PrevClassTemplate); + + if (Invalid) { + NewTemplate->setInvalidDecl(); + NewClass->setInvalidDecl(); + } + + ActOnDocumentableDecl(NewTemplate); + + if (SkipBody && SkipBody->ShouldSkip) + return SkipBody->Previous; + + return NewTemplate; +} + +namespace { +/// Tree transform to "extract" a transformed type from a class template's +/// constructor to a deduction guide. +class ExtractTypeForDeductionGuide + : public TreeTransform<ExtractTypeForDeductionGuide> { + llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs; + +public: + typedef TreeTransform<ExtractTypeForDeductionGuide> Base; + ExtractTypeForDeductionGuide( + Sema &SemaRef, + llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) + : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {} + + TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); } + + QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) { + ASTContext &Context = SemaRef.getASTContext(); + TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl(); + TypedefNameDecl *Decl = OrigDecl; + // Transform the underlying type of the typedef and clone the Decl only if + // the typedef has a dependent context. + if (OrigDecl->getDeclContext()->isDependentContext()) { + TypeLocBuilder InnerTLB; + QualType Transformed = + TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc()); + TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, Transformed); + if (isa<TypeAliasDecl>(OrigDecl)) + Decl = TypeAliasDecl::Create( + Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(), + OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI); + else { + assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef"); + Decl = TypedefDecl::Create( + Context, Context.getTranslationUnitDecl(), OrigDecl->getBeginLoc(), + OrigDecl->getLocation(), OrigDecl->getIdentifier(), TSI); + } + MaterializedTypedefs.push_back(Decl); + } + + QualType TDTy = Context.getTypedefType(Decl); + TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(TDTy); + TypedefTL.setNameLoc(TL.getNameLoc()); + + return TDTy; + } +}; + +/// Transform to convert portions of a constructor declaration into the +/// corresponding deduction guide, per C++1z [over.match.class.deduct]p1. +struct ConvertConstructorToDeductionGuideTransform { + ConvertConstructorToDeductionGuideTransform(Sema &S, + ClassTemplateDecl *Template) + : SemaRef(S), Template(Template) {} + + Sema &SemaRef; + ClassTemplateDecl *Template; + + DeclContext *DC = Template->getDeclContext(); + CXXRecordDecl *Primary = Template->getTemplatedDecl(); + DeclarationName DeductionGuideName = + SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template); + + QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary); + + // Index adjustment to apply to convert depth-1 template parameters into + // depth-0 template parameters. + unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size(); + + /// Transform a constructor declaration into a deduction guide. + NamedDecl *transformConstructor(FunctionTemplateDecl *FTD, + CXXConstructorDecl *CD) { + SmallVector<TemplateArgument, 16> SubstArgs; + + LocalInstantiationScope Scope(SemaRef); + + // C++ [over.match.class.deduct]p1: + // -- For each constructor of the class template designated by the + // template-name, a function template with the following properties: + + // -- The template parameters are the template parameters of the class + // template followed by the template parameters (including default + // template arguments) of the constructor, if any. + TemplateParameterList *TemplateParams = Template->getTemplateParameters(); + if (FTD) { + TemplateParameterList *InnerParams = FTD->getTemplateParameters(); + SmallVector<NamedDecl *, 16> AllParams; + AllParams.reserve(TemplateParams->size() + InnerParams->size()); + AllParams.insert(AllParams.begin(), + TemplateParams->begin(), TemplateParams->end()); + SubstArgs.reserve(InnerParams->size()); + + // Later template parameters could refer to earlier ones, so build up + // a list of substituted template arguments as we go. + for (NamedDecl *Param : *InnerParams) { + MultiLevelTemplateArgumentList Args; + Args.setKind(TemplateSubstitutionKind::Rewrite); + Args.addOuterTemplateArguments(SubstArgs); + Args.addOuterRetainedLevel(); + NamedDecl *NewParam = transformTemplateParameter(Param, Args); + if (!NewParam) + return nullptr; + AllParams.push_back(NewParam); + SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument( + SemaRef.Context.getInjectedTemplateArg(NewParam))); + } + TemplateParams = TemplateParameterList::Create( + SemaRef.Context, InnerParams->getTemplateLoc(), + InnerParams->getLAngleLoc(), AllParams, InnerParams->getRAngleLoc(), + /*FIXME: RequiresClause*/ nullptr); + } + + // If we built a new template-parameter-list, track that we need to + // substitute references to the old parameters into references to the + // new ones. + MultiLevelTemplateArgumentList Args; + Args.setKind(TemplateSubstitutionKind::Rewrite); + if (FTD) { + Args.addOuterTemplateArguments(SubstArgs); + Args.addOuterRetainedLevel(); + } + + FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc() + .getAsAdjusted<FunctionProtoTypeLoc>(); + assert(FPTL && "no prototype for constructor declaration"); + + // Transform the type of the function, adjusting the return type and + // replacing references to the old parameters with references to the + // new ones. + TypeLocBuilder TLB; + SmallVector<ParmVarDecl*, 8> Params; + SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs; + QualType NewType = transformFunctionProtoType(TLB, FPTL, Params, Args, + MaterializedTypedefs); + if (NewType.isNull()) + return nullptr; + TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(SemaRef.Context, NewType); + + return buildDeductionGuide(TemplateParams, CD, CD->getExplicitSpecifier(), + NewTInfo, CD->getBeginLoc(), CD->getLocation(), + CD->getEndLoc(), MaterializedTypedefs); + } + + /// Build a deduction guide with the specified parameter types. + NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) { + SourceLocation Loc = Template->getLocation(); + + // Build the requested type. + FunctionProtoType::ExtProtoInfo EPI; + EPI.HasTrailingReturn = true; + QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc, + DeductionGuideName, EPI); + TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(Result, Loc); + + FunctionProtoTypeLoc FPTL = + TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>(); + + // Build the parameters, needed during deduction / substitution. + SmallVector<ParmVarDecl*, 4> Params; + for (auto T : ParamTypes) { + ParmVarDecl *NewParam = ParmVarDecl::Create( + SemaRef.Context, DC, Loc, Loc, nullptr, T, + SemaRef.Context.getTrivialTypeSourceInfo(T, Loc), SC_None, nullptr); + NewParam->setScopeInfo(0, Params.size()); + FPTL.setParam(Params.size(), NewParam); + Params.push_back(NewParam); + } + + return buildDeductionGuide(Template->getTemplateParameters(), nullptr, + ExplicitSpecifier(), TSI, Loc, Loc, Loc); + } + +private: + /// Transform a constructor template parameter into a deduction guide template + /// parameter, rebuilding any internal references to earlier parameters and + /// renumbering as we go. + NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam, + MultiLevelTemplateArgumentList &Args) { + if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(TemplateParam)) { + // TemplateTypeParmDecl's index cannot be changed after creation, so + // substitute it directly. + auto *NewTTP = TemplateTypeParmDecl::Create( + SemaRef.Context, DC, TTP->getBeginLoc(), TTP->getLocation(), + /*Depth*/ 0, Depth1IndexAdjustment + TTP->getIndex(), + TTP->getIdentifier(), TTP->wasDeclaredWithTypename(), + TTP->isParameterPack(), TTP->hasTypeConstraint(), + TTP->isExpandedParameterPack() ? + llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None); + if (const auto *TC = TTP->getTypeConstraint()) + SemaRef.SubstTypeConstraint(NewTTP, TC, Args); + if (TTP->hasDefaultArgument()) { + TypeSourceInfo *InstantiatedDefaultArg = + SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args, + TTP->getDefaultArgumentLoc(), TTP->getDeclName()); + if (InstantiatedDefaultArg) + NewTTP->setDefaultArgument(InstantiatedDefaultArg); + } + SemaRef.CurrentInstantiationScope->InstantiatedLocal(TemplateParam, + NewTTP); + return NewTTP; + } + + if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TemplateParam)) + return transformTemplateParameterImpl(TTP, Args); + + return transformTemplateParameterImpl( + cast<NonTypeTemplateParmDecl>(TemplateParam), Args); + } + template<typename TemplateParmDecl> + TemplateParmDecl * + transformTemplateParameterImpl(TemplateParmDecl *OldParam, + MultiLevelTemplateArgumentList &Args) { + // Ask the template instantiator to do the heavy lifting for us, then adjust + // the index of the parameter once it's done. + auto *NewParam = + cast<TemplateParmDecl>(SemaRef.SubstDecl(OldParam, DC, Args)); + assert(NewParam->getDepth() == 0 && "unexpected template param depth"); + NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment); + return NewParam; + } + + QualType transformFunctionProtoType( + TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, + SmallVectorImpl<ParmVarDecl *> &Params, + MultiLevelTemplateArgumentList &Args, + SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { + SmallVector<QualType, 4> ParamTypes; + const FunctionProtoType *T = TL.getTypePtr(); + + // -- The types of the function parameters are those of the constructor. + for (auto *OldParam : TL.getParams()) { + ParmVarDecl *NewParam = + transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs); + if (!NewParam) + return QualType(); + ParamTypes.push_back(NewParam->getType()); + Params.push_back(NewParam); + } + + // -- The return type is the class template specialization designated by + // the template-name and template arguments corresponding to the + // template parameters obtained from the class template. + // + // We use the injected-class-name type of the primary template instead. + // This has the convenient property that it is different from any type that + // the user can write in a deduction-guide (because they cannot enter the + // context of the template), so implicit deduction guides can never collide + // with explicit ones. + QualType ReturnType = DeducedType; + TLB.pushTypeSpec(ReturnType).setNameLoc(Primary->getLocation()); + + // Resolving a wording defect, we also inherit the variadicness of the + // constructor. + FunctionProtoType::ExtProtoInfo EPI; + EPI.Variadic = T->isVariadic(); + EPI.HasTrailingReturn = true; + + QualType Result = SemaRef.BuildFunctionType( + ReturnType, ParamTypes, TL.getBeginLoc(), DeductionGuideName, EPI); + if (Result.isNull()) + return QualType(); + + FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(Result); + NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); + NewTL.setLParenLoc(TL.getLParenLoc()); + NewTL.setRParenLoc(TL.getRParenLoc()); + NewTL.setExceptionSpecRange(SourceRange()); + NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); + for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I) + NewTL.setParam(I, Params[I]); + + return Result; + } + + ParmVarDecl *transformFunctionTypeParam( + ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args, + llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { + TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo(); + TypeSourceInfo *NewDI; + if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) { + // Expand out the one and only element in each inner pack. + Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0); + NewDI = + SemaRef.SubstType(PackTL.getPatternLoc(), Args, + OldParam->getLocation(), OldParam->getDeclName()); + if (!NewDI) return nullptr; + NewDI = + SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(), + PackTL.getTypePtr()->getNumExpansions()); + } else + NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(), + OldParam->getDeclName()); + if (!NewDI) + return nullptr; + + // Extract the type. This (for instance) replaces references to typedef + // members of the current instantiations with the definitions of those + // typedefs, avoiding triggering instantiation of the deduced type during + // deduction. + NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs) + .transform(NewDI); + + // Resolving a wording defect, we also inherit default arguments from the + // constructor. + ExprResult NewDefArg; + if (OldParam->hasDefaultArg()) { + // We don't care what the value is (we won't use it); just create a + // placeholder to indicate there is a default argument. + QualType ParamTy = NewDI->getType(); + NewDefArg = new (SemaRef.Context) + OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(), + ParamTy.getNonLValueExprType(SemaRef.Context), + ParamTy->isLValueReferenceType() ? VK_LValue + : ParamTy->isRValueReferenceType() ? VK_XValue + : VK_PRValue); + } + + ParmVarDecl *NewParam = ParmVarDecl::Create(SemaRef.Context, DC, + OldParam->getInnerLocStart(), + OldParam->getLocation(), + OldParam->getIdentifier(), + NewDI->getType(), + NewDI, + OldParam->getStorageClass(), + NewDefArg.get()); + NewParam->setScopeInfo(OldParam->getFunctionScopeDepth(), + OldParam->getFunctionScopeIndex()); + SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam); + return NewParam; + } + + FunctionTemplateDecl *buildDeductionGuide( + TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor, + ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart, + SourceLocation Loc, SourceLocation LocEnd, + llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) { + DeclarationNameInfo Name(DeductionGuideName, Loc); + ArrayRef<ParmVarDecl *> Params = + TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(); + + // Build the implicit deduction guide template. + auto *Guide = + CXXDeductionGuideDecl::Create(SemaRef.Context, DC, LocStart, ES, Name, + TInfo->getType(), TInfo, LocEnd, Ctor); + Guide->setImplicit(); + Guide->setParams(Params); + + for (auto *Param : Params) + Param->setDeclContext(Guide); + for (auto *TD : MaterializedTypedefs) + TD->setDeclContext(Guide); + + auto *GuideTemplate = FunctionTemplateDecl::Create( + SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide); + GuideTemplate->setImplicit(); + Guide->setDescribedFunctionTemplate(GuideTemplate); + + if (isa<CXXRecordDecl>(DC)) { + Guide->setAccess(AS_public); + GuideTemplate->setAccess(AS_public); + } + + DC->addDecl(GuideTemplate); + return GuideTemplate; + } +}; +} + +void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template, + SourceLocation Loc) { + if (CXXRecordDecl *DefRecord = + cast<CXXRecordDecl>(Template->getTemplatedDecl())->getDefinition()) { + TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate(); + Template = DescribedTemplate ? DescribedTemplate : Template; + } + + DeclContext *DC = Template->getDeclContext(); + if (DC->isDependentContext()) + return; + + ConvertConstructorToDeductionGuideTransform Transform( + *this, cast<ClassTemplateDecl>(Template)); + if (!isCompleteType(Loc, Transform.DeducedType)) + return; + + // Check whether we've already declared deduction guides for this template. + // FIXME: Consider storing a flag on the template to indicate this. + auto Existing = DC->lookup(Transform.DeductionGuideName); + for (auto *D : Existing) + if (D->isImplicit()) + return; + + // In case we were expanding a pack when we attempted to declare deduction + // guides, turn off pack expansion for everything we're about to do. + ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1); + // Create a template instantiation record to track the "instantiation" of + // constructors into deduction guides. + // FIXME: Add a kind for this to give more meaningful diagnostics. But can + // this substitution process actually fail? + InstantiatingTemplate BuildingDeductionGuides(*this, Loc, Template); + if (BuildingDeductionGuides.isInvalid()) + return; + + // Convert declared constructors into deduction guide templates. + // FIXME: Skip constructors for which deduction must necessarily fail (those + // for which some class template parameter without a default argument never + // appears in a deduced context). + bool AddedAny = false; + for (NamedDecl *D : LookupConstructors(Transform.Primary)) { + D = D->getUnderlyingDecl(); + if (D->isInvalidDecl() || D->isImplicit()) + continue; + D = cast<NamedDecl>(D->getCanonicalDecl()); + + auto *FTD = dyn_cast<FunctionTemplateDecl>(D); + auto *CD = + dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D); + // Class-scope explicit specializations (MS extension) do not result in + // deduction guides. + if (!CD || (!FTD && CD->isFunctionTemplateSpecialization())) + continue; + + // Cannot make a deduction guide when unparsed arguments are present. + if (std::any_of(CD->param_begin(), CD->param_end(), [](ParmVarDecl *P) { + return !P || P->hasUnparsedDefaultArg(); + })) + continue; + + Transform.transformConstructor(FTD, CD); + AddedAny = true; + } + + // C++17 [over.match.class.deduct] + // -- If C is not defined or does not declare any constructors, an + // additional function template derived as above from a hypothetical + // constructor C(). + if (!AddedAny) + Transform.buildSimpleDeductionGuide(None); + + // -- An additional function template derived as above from a hypothetical + // constructor C(C), called the copy deduction candidate. + cast<CXXDeductionGuideDecl>( + cast<FunctionTemplateDecl>( + Transform.buildSimpleDeductionGuide(Transform.DeducedType)) + ->getTemplatedDecl()) + ->setIsCopyDeductionCandidate(); +} + +/// Diagnose the presence of a default template argument on a +/// template parameter, which is ill-formed in certain contexts. +/// +/// \returns true if the default template argument should be dropped. +static bool DiagnoseDefaultTemplateArgument(Sema &S, + Sema::TemplateParamListContext TPC, + SourceLocation ParamLoc, + SourceRange DefArgRange) { + switch (TPC) { + case Sema::TPC_ClassTemplate: + case Sema::TPC_VarTemplate: + case Sema::TPC_TypeAliasTemplate: + return false; + + case Sema::TPC_FunctionTemplate: + case Sema::TPC_FriendFunctionTemplateDefinition: + // C++ [temp.param]p9: + // A default template-argument shall not be specified in a + // function template declaration or a function template + // definition [...] + // If a friend function template declaration specifies a default + // template-argument, that declaration shall be a definition and shall be + // the only declaration of the function template in the translation unit. + // (C++98/03 doesn't have this wording; see DR226). + S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? + diag::warn_cxx98_compat_template_parameter_default_in_function_template + : diag::ext_template_parameter_default_in_function_template) + << DefArgRange; + return false; + + case Sema::TPC_ClassTemplateMember: + // C++0x [temp.param]p9: + // A default template-argument shall not be specified in the + // template-parameter-lists of the definition of a member of a + // class template that appears outside of the member's class. + S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) + << DefArgRange; + return true; + + case Sema::TPC_FriendClassTemplate: + case Sema::TPC_FriendFunctionTemplate: + // C++ [temp.param]p9: + // A default template-argument shall not be specified in a + // friend template declaration. + S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) + << DefArgRange; + return true; + + // FIXME: C++0x [temp.param]p9 allows default template-arguments + // for friend function templates if there is only a single + // declaration (and it is a definition). Strange! + } + + llvm_unreachable("Invalid TemplateParamListContext!"); +} + +/// Check for unexpanded parameter packs within the template parameters +/// of a template template parameter, recursively. +static bool DiagnoseUnexpandedParameterPacks(Sema &S, + TemplateTemplateParmDecl *TTP) { + // A template template parameter which is a parameter pack is also a pack + // expansion. + if (TTP->isParameterPack()) + return false; + + TemplateParameterList *Params = TTP->getTemplateParameters(); + for (unsigned I = 0, N = Params->size(); I != N; ++I) { + NamedDecl *P = Params->getParam(I); + if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(P)) { + if (!TTP->isParameterPack()) + if (const TypeConstraint *TC = TTP->getTypeConstraint()) + if (TC->hasExplicitTemplateArgs()) + for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) + if (S.DiagnoseUnexpandedParameterPack(ArgLoc, + Sema::UPPC_TypeConstraint)) + return true; + continue; + } + + if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { + if (!NTTP->isParameterPack() && + S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), + NTTP->getTypeSourceInfo(), + Sema::UPPC_NonTypeTemplateParameterType)) + return true; + + continue; + } + + if (TemplateTemplateParmDecl *InnerTTP + = dyn_cast<TemplateTemplateParmDecl>(P)) + if (DiagnoseUnexpandedParameterPacks(S, InnerTTP)) + return true; + } + + return false; +} + +/// Checks the validity of a template parameter list, possibly +/// considering the template parameter list from a previous +/// declaration. +/// +/// If an "old" template parameter list is provided, it must be +/// equivalent (per TemplateParameterListsAreEqual) to the "new" +/// template parameter list. +/// +/// \param NewParams Template parameter list for a new template +/// declaration. This template parameter list will be updated with any +/// default arguments that are carried through from the previous +/// template parameter list. +/// +/// \param OldParams If provided, template parameter list from a +/// previous declaration of the same template. Default template +/// arguments will be merged from the old template parameter list to +/// the new template parameter list. +/// +/// \param TPC Describes the context in which we are checking the given +/// template parameter list. +/// +/// \param SkipBody If we might have already made a prior merged definition +/// of this template visible, the corresponding body-skipping information. +/// Default argument redefinition is not an error when skipping such a body, +/// because (under the ODR) we can assume the default arguments are the same +/// as the prior merged definition. +/// +/// \returns true if an error occurred, false otherwise. +bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, + TemplateParameterList *OldParams, + TemplateParamListContext TPC, + SkipBodyInfo *SkipBody) { + bool Invalid = false; + + // C++ [temp.param]p10: + // The set of default template-arguments available for use with a + // template declaration or definition is obtained by merging the + // default arguments from the definition (if in scope) and all + // declarations in scope in the same way default function + // arguments are (8.3.6). + bool SawDefaultArgument = false; + SourceLocation PreviousDefaultArgLoc; + + // Dummy initialization to avoid warnings. + TemplateParameterList::iterator OldParam = NewParams->end(); + if (OldParams) + OldParam = OldParams->begin(); + + bool RemoveDefaultArguments = false; + for (TemplateParameterList::iterator NewParam = NewParams->begin(), + NewParamEnd = NewParams->end(); + NewParam != NewParamEnd; ++NewParam) { + // Variables used to diagnose redundant default arguments + bool RedundantDefaultArg = false; + SourceLocation OldDefaultLoc; + SourceLocation NewDefaultLoc; + + // Variable used to diagnose missing default arguments + bool MissingDefaultArg = false; + + // Variable used to diagnose non-final parameter packs + bool SawParameterPack = false; + + if (TemplateTypeParmDecl *NewTypeParm + = dyn_cast<TemplateTypeParmDecl>(*NewParam)) { + // Check the presence of a default argument here. + if (NewTypeParm->hasDefaultArgument() && + DiagnoseDefaultTemplateArgument(*this, TPC, + NewTypeParm->getLocation(), + NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() + .getSourceRange())) + NewTypeParm->removeDefaultArgument(); + + // Merge default arguments for template type parameters. + TemplateTypeParmDecl *OldTypeParm + = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr; + if (NewTypeParm->isParameterPack()) { + assert(!NewTypeParm->hasDefaultArgument() && + "Parameter packs can't have a default argument!"); + SawParameterPack = true; + } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && + NewTypeParm->hasDefaultArgument() && + (!SkipBody || !SkipBody->ShouldSkip)) { + OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); + NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); + SawDefaultArgument = true; + RedundantDefaultArg = true; + PreviousDefaultArgLoc = NewDefaultLoc; + } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { + // Merge the default argument from the old declaration to the + // new declaration. + NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm); + PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); + } else if (NewTypeParm->hasDefaultArgument()) { + SawDefaultArgument = true; + PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); + } else if (SawDefaultArgument) + MissingDefaultArg = true; + } else if (NonTypeTemplateParmDecl *NewNonTypeParm + = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) { + // Check for unexpanded parameter packs. + if (!NewNonTypeParm->isParameterPack() && + DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), + NewNonTypeParm->getTypeSourceInfo(), + UPPC_NonTypeTemplateParameterType)) { + Invalid = true; + continue; + } + + // Check the presence of a default argument here. + if (NewNonTypeParm->hasDefaultArgument() && + DiagnoseDefaultTemplateArgument(*this, TPC, + NewNonTypeParm->getLocation(), + NewNonTypeParm->getDefaultArgument()->getSourceRange())) { + NewNonTypeParm->removeDefaultArgument(); + } + + // Merge default arguments for non-type template parameters + NonTypeTemplateParmDecl *OldNonTypeParm + = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr; + if (NewNonTypeParm->isParameterPack()) { + assert(!NewNonTypeParm->hasDefaultArgument() && + "Parameter packs can't have a default argument!"); + if (!NewNonTypeParm->isPackExpansion()) + SawParameterPack = true; + } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && + NewNonTypeParm->hasDefaultArgument() && + (!SkipBody || !SkipBody->ShouldSkip)) { + OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); + NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); + SawDefaultArgument = true; + RedundantDefaultArg = true; + PreviousDefaultArgLoc = NewDefaultLoc; + } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { + // Merge the default argument from the old declaration to the + // new declaration. + NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm); + PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); + } else if (NewNonTypeParm->hasDefaultArgument()) { + SawDefaultArgument = true; + PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); + } else if (SawDefaultArgument) + MissingDefaultArg = true; + } else { + TemplateTemplateParmDecl *NewTemplateParm + = cast<TemplateTemplateParmDecl>(*NewParam); + + // Check for unexpanded parameter packs, recursively. + if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) { + Invalid = true; + continue; + } + + // Check the presence of a default argument here. + if (NewTemplateParm->hasDefaultArgument() && + DiagnoseDefaultTemplateArgument(*this, TPC, + NewTemplateParm->getLocation(), + NewTemplateParm->getDefaultArgument().getSourceRange())) + NewTemplateParm->removeDefaultArgument(); + + // Merge default arguments for template template parameters + TemplateTemplateParmDecl *OldTemplateParm + = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr; + if (NewTemplateParm->isParameterPack()) { + assert(!NewTemplateParm->hasDefaultArgument() && + "Parameter packs can't have a default argument!"); + if (!NewTemplateParm->isPackExpansion()) + SawParameterPack = true; + } else if (OldTemplateParm && + hasVisibleDefaultArgument(OldTemplateParm) && + NewTemplateParm->hasDefaultArgument() && + (!SkipBody || !SkipBody->ShouldSkip)) { + OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); + NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); + SawDefaultArgument = true; + RedundantDefaultArg = true; + PreviousDefaultArgLoc = NewDefaultLoc; + } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { + // Merge the default argument from the old declaration to the + // new declaration. + NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm); + PreviousDefaultArgLoc + = OldTemplateParm->getDefaultArgument().getLocation(); + } else if (NewTemplateParm->hasDefaultArgument()) { + SawDefaultArgument = true; + PreviousDefaultArgLoc + = NewTemplateParm->getDefaultArgument().getLocation(); + } else if (SawDefaultArgument) + MissingDefaultArg = true; + } + + // C++11 [temp.param]p11: + // If a template parameter of a primary class template or alias template + // is a template parameter pack, it shall be the last template parameter. + if (SawParameterPack && (NewParam + 1) != NewParamEnd && + (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || + TPC == TPC_TypeAliasTemplate)) { + Diag((*NewParam)->getLocation(), + diag::err_template_param_pack_must_be_last_template_parameter); + Invalid = true; + } + + if (RedundantDefaultArg) { + // C++ [temp.param]p12: + // A template-parameter shall not be given default arguments + // by two different declarations in the same scope. + Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); + Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); + Invalid = true; + } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) { + // C++ [temp.param]p11: + // If a template-parameter of a class template has a default + // template-argument, each subsequent template-parameter shall either + // have a default template-argument supplied or be a template parameter + // pack. + Diag((*NewParam)->getLocation(), + diag::err_template_param_default_arg_missing); + Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); + Invalid = true; + RemoveDefaultArguments = true; + } + + // If we have an old template parameter list that we're merging + // in, move on to the next parameter. + if (OldParams) + ++OldParam; + } + + // We were missing some default arguments at the end of the list, so remove + // all of the default arguments. + if (RemoveDefaultArguments) { + for (TemplateParameterList::iterator NewParam = NewParams->begin(), + NewParamEnd = NewParams->end(); + NewParam != NewParamEnd; ++NewParam) { + if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam)) + TTP->removeDefaultArgument(); + else if (NonTypeTemplateParmDecl *NTTP + = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) + NTTP->removeDefaultArgument(); + else + cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument(); + } + } + + return Invalid; +} + +namespace { + +/// A class which looks for a use of a certain level of template +/// parameter. +struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { + typedef RecursiveASTVisitor<DependencyChecker> super; + + unsigned Depth; + + // Whether we're looking for a use of a template parameter that makes the + // overall construct type-dependent / a dependent type. This is strictly + // best-effort for now; we may fail to match at all for a dependent type + // in some cases if this is set. + bool IgnoreNonTypeDependent; + + bool Match; + SourceLocation MatchLoc; + + DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) + : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), + Match(false) {} + + DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) + : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { + NamedDecl *ND = Params->getParam(0); + if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) { + Depth = PD->getDepth(); + } else if (NonTypeTemplateParmDecl *PD = + dyn_cast<NonTypeTemplateParmDecl>(ND)) { + Depth = PD->getDepth(); + } else { + Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth(); + } + } + + bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { + if (ParmDepth >= Depth) { + Match = true; + MatchLoc = Loc; + return true; + } + return false; + } + + bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) { + // Prune out non-type-dependent expressions if requested. This can + // sometimes result in us failing to find a template parameter reference + // (if a value-dependent expression creates a dependent type), but this + // mode is best-effort only. + if (auto *E = dyn_cast_or_null<Expr>(S)) + if (IgnoreNonTypeDependent && !E->isTypeDependent()) + return true; + return super::TraverseStmt(S, Q); + } + + bool TraverseTypeLoc(TypeLoc TL) { + if (IgnoreNonTypeDependent && !TL.isNull() && + !TL.getType()->isDependentType()) + return true; + return super::TraverseTypeLoc(TL); + } + + bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { + return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc()); + } + + bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { + // For a best-effort search, keep looking until we find a location. + return IgnoreNonTypeDependent || !Matches(T->getDepth()); + } + + bool TraverseTemplateName(TemplateName N) { + if (TemplateTemplateParmDecl *PD = + dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl())) + if (Matches(PD->getDepth())) + return false; + return super::TraverseTemplateName(N); + } + + bool VisitDeclRefExpr(DeclRefExpr *E) { + if (NonTypeTemplateParmDecl *PD = + dyn_cast<NonTypeTemplateParmDecl>(E->getDecl())) + if (Matches(PD->getDepth(), E->getExprLoc())) + return false; + return super::VisitDeclRefExpr(E); + } + + bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { + return TraverseType(T->getReplacementType()); + } + + bool + VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { + return TraverseTemplateArgument(T->getArgumentPack()); + } + + bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { + return TraverseType(T->getInjectedSpecializationType()); + } +}; +} // end anonymous namespace + +/// Determines whether a given type depends on the given parameter +/// list. +static bool +DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { + if (!Params->size()) + return false; + + DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); + Checker.TraverseType(T); + return Checker.Match; +} + +// Find the source range corresponding to the named type in the given +// nested-name-specifier, if any. +static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, + QualType T, + const CXXScopeSpec &SS) { + NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); + while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { + if (const Type *CurType = NNS->getAsType()) { + if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0))) + return NNSLoc.getTypeLoc().getSourceRange(); + } else + break; + + NNSLoc = NNSLoc.getPrefix(); + } + + return SourceRange(); +} + +/// Match the given template parameter lists to the given scope +/// specifier, returning the template parameter list that applies to the +/// name. +/// +/// \param DeclStartLoc the start of the declaration that has a scope +/// specifier or a template parameter list. +/// +/// \param DeclLoc The location of the declaration itself. +/// +/// \param SS the scope specifier that will be matched to the given template +/// parameter lists. This scope specifier precedes a qualified name that is +/// being declared. +/// +/// \param TemplateId The template-id following the scope specifier, if there +/// is one. Used to check for a missing 'template<>'. +/// +/// \param ParamLists the template parameter lists, from the outermost to the +/// innermost template parameter lists. +/// +/// \param IsFriend Whether to apply the slightly different rules for +/// matching template parameters to scope specifiers in friend +/// declarations. +/// +/// \param IsMemberSpecialization will be set true if the scope specifier +/// denotes a fully-specialized type, and therefore this is a declaration of +/// a member specialization. +/// +/// \returns the template parameter list, if any, that corresponds to the +/// name that is preceded by the scope specifier @p SS. This template +/// parameter list may have template parameters (if we're declaring a +/// template) or may have no template parameters (if we're declaring a +/// template specialization), or may be NULL (if what we're declaring isn't +/// itself a template). +TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( + SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, + TemplateIdAnnotation *TemplateId, + ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, + bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) { + IsMemberSpecialization = false; + Invalid = false; + + // The sequence of nested types to which we will match up the template + // parameter lists. We first build this list by starting with the type named + // by the nested-name-specifier and walking out until we run out of types. + SmallVector<QualType, 4> NestedTypes; + QualType T; + if (SS.getScopeRep()) { + if (CXXRecordDecl *Record + = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true))) + T = Context.getTypeDeclType(Record); + else + T = QualType(SS.getScopeRep()->getAsType(), 0); + } + + // If we found an explicit specialization that prevents us from needing + // 'template<>' headers, this will be set to the location of that + // explicit specialization. + SourceLocation ExplicitSpecLoc; + + while (!T.isNull()) { + NestedTypes.push_back(T); + + // Retrieve the parent of a record type. + if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { + // If this type is an explicit specialization, we're done. + if (ClassTemplateSpecializationDecl *Spec + = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { + if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) && + Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { + ExplicitSpecLoc = Spec->getLocation(); + break; + } + } else if (Record->getTemplateSpecializationKind() + == TSK_ExplicitSpecialization) { + ExplicitSpecLoc = Record->getLocation(); + break; + } + + if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) + T = Context.getTypeDeclType(Parent); + else + T = QualType(); + continue; + } + + if (const TemplateSpecializationType *TST + = T->getAs<TemplateSpecializationType>()) { + if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { + if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) + T = Context.getTypeDeclType(Parent); + else + T = QualType(); + continue; + } + } + + // Look one step prior in a dependent template specialization type. + if (const DependentTemplateSpecializationType *DependentTST + = T->getAs<DependentTemplateSpecializationType>()) { + if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) + T = QualType(NNS->getAsType(), 0); + else + T = QualType(); + continue; + } + + // Look one step prior in a dependent name type. + if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ + if (NestedNameSpecifier *NNS = DependentName->getQualifier()) + T = QualType(NNS->getAsType(), 0); + else + T = QualType(); + continue; + } + + // Retrieve the parent of an enumeration type. + if (const EnumType *EnumT = T->getAs<EnumType>()) { + // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization + // check here. + EnumDecl *Enum = EnumT->getDecl(); + + // Get to the parent type. + if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) + T = Context.getTypeDeclType(Parent); + else + T = QualType(); + continue; + } + + T = QualType(); + } + // Reverse the nested types list, since we want to traverse from the outermost + // to the innermost while checking template-parameter-lists. + std::reverse(NestedTypes.begin(), NestedTypes.end()); + + // C++0x [temp.expl.spec]p17: + // A member or a member template may be nested within many + // enclosing class templates. In an explicit specialization for + // such a member, the member declaration shall be preceded by a + // template<> for each enclosing class template that is + // explicitly specialized. + bool SawNonEmptyTemplateParameterList = false; + + auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { + if (SawNonEmptyTemplateParameterList) { + if (!SuppressDiagnostic) + Diag(DeclLoc, diag::err_specialize_member_of_template) + << !Recovery << Range; + Invalid = true; + IsMemberSpecialization = false; + return true; + } + + return false; + }; + + auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { + // Check that we can have an explicit specialization here. + if (CheckExplicitSpecialization(Range, true)) + return true; + + // We don't have a template header, but we should. + SourceLocation ExpectedTemplateLoc; + if (!ParamLists.empty()) + ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); + else + ExpectedTemplateLoc = DeclStartLoc; + + if (!SuppressDiagnostic) + Diag(DeclLoc, diag::err_template_spec_needs_header) + << Range + << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); + return false; + }; + + unsigned ParamIdx = 0; + for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; + ++TypeIdx) { + T = NestedTypes[TypeIdx]; + + // Whether we expect a 'template<>' header. + bool NeedEmptyTemplateHeader = false; + + // Whether we expect a template header with parameters. + bool NeedNonemptyTemplateHeader = false; + + // For a dependent type, the set of template parameters that we + // expect to see. + TemplateParameterList *ExpectedTemplateParams = nullptr; + + // C++0x [temp.expl.spec]p15: + // A member or a member template may be nested within many enclosing + // class templates. In an explicit specialization for such a member, the + // member declaration shall be preceded by a template<> for each + // enclosing class template that is explicitly specialized. + if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { + if (ClassTemplatePartialSpecializationDecl *Partial + = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) { + ExpectedTemplateParams = Partial->getTemplateParameters(); + NeedNonemptyTemplateHeader = true; + } else if (Record->isDependentType()) { + if (Record->getDescribedClassTemplate()) { + ExpectedTemplateParams = Record->getDescribedClassTemplate() + ->getTemplateParameters(); + NeedNonemptyTemplateHeader = true; + } + } else if (ClassTemplateSpecializationDecl *Spec + = dyn_cast<ClassTemplateSpecializationDecl>(Record)) { + // C++0x [temp.expl.spec]p4: + // Members of an explicitly specialized class template are defined + // in the same manner as members of normal classes, and not using + // the template<> syntax. + if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) + NeedEmptyTemplateHeader = true; + else + continue; + } else if (Record->getTemplateSpecializationKind()) { + if (Record->getTemplateSpecializationKind() + != TSK_ExplicitSpecialization && + TypeIdx == NumTypes - 1) + IsMemberSpecialization = true; + + continue; + } + } else if (const TemplateSpecializationType *TST + = T->getAs<TemplateSpecializationType>()) { + if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { + ExpectedTemplateParams = Template->getTemplateParameters(); + NeedNonemptyTemplateHeader = true; + } + } else if (T->getAs<DependentTemplateSpecializationType>()) { + // FIXME: We actually could/should check the template arguments here + // against the corresponding template parameter list. + NeedNonemptyTemplateHeader = false; + } + + // C++ [temp.expl.spec]p16: + // In an explicit specialization declaration for a member of a class + // template or a member template that ap- pears in namespace scope, the + // member template and some of its enclosing class templates may remain + // unspecialized, except that the declaration shall not explicitly + // specialize a class member template if its en- closing class templates + // are not explicitly specialized as well. + if (ParamIdx < ParamLists.size()) { + if (ParamLists[ParamIdx]->size() == 0) { + if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), + false)) + return nullptr; + } else + SawNonEmptyTemplateParameterList = true; + } + + if (NeedEmptyTemplateHeader) { + // If we're on the last of the types, and we need a 'template<>' header + // here, then it's a member specialization. + if (TypeIdx == NumTypes - 1) + IsMemberSpecialization = true; + + if (ParamIdx < ParamLists.size()) { + if (ParamLists[ParamIdx]->size() > 0) { + // The header has template parameters when it shouldn't. Complain. + if (!SuppressDiagnostic) + Diag(ParamLists[ParamIdx]->getTemplateLoc(), + diag::err_template_param_list_matches_nontemplate) + << T + << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), + ParamLists[ParamIdx]->getRAngleLoc()) + << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); + Invalid = true; + return nullptr; + } + + // Consume this template header. + ++ParamIdx; + continue; + } + + if (!IsFriend) + if (DiagnoseMissingExplicitSpecialization( + getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) + return nullptr; + + continue; + } + + if (NeedNonemptyTemplateHeader) { + // In friend declarations we can have template-ids which don't + // depend on the corresponding template parameter lists. But + // assume that empty parameter lists are supposed to match this + // template-id. + if (IsFriend && T->isDependentType()) { + if (ParamIdx < ParamLists.size() && + DependsOnTemplateParameters(T, ParamLists[ParamIdx])) + ExpectedTemplateParams = nullptr; + else + continue; + } + + if (ParamIdx < ParamLists.size()) { + // Check the template parameter list, if we can. + if (ExpectedTemplateParams && + !TemplateParameterListsAreEqual(ParamLists[ParamIdx], + ExpectedTemplateParams, + !SuppressDiagnostic, TPL_TemplateMatch)) + Invalid = true; + + if (!Invalid && + CheckTemplateParameterList(ParamLists[ParamIdx], nullptr, + TPC_ClassTemplateMember)) + Invalid = true; + + ++ParamIdx; + continue; + } + + if (!SuppressDiagnostic) + Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) + << T + << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); + Invalid = true; + continue; + } + } + + // If there were at least as many template-ids as there were template + // parameter lists, then there are no template parameter lists remaining for + // the declaration itself. + if (ParamIdx >= ParamLists.size()) { + if (TemplateId && !IsFriend) { + // We don't have a template header for the declaration itself, but we + // should. + DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, + TemplateId->RAngleLoc)); + + // Fabricate an empty template parameter list for the invented header. + return TemplateParameterList::Create(Context, SourceLocation(), + SourceLocation(), None, + SourceLocation(), nullptr); + } + + return nullptr; + } + + // If there were too many template parameter lists, complain about that now. + if (ParamIdx < ParamLists.size() - 1) { + bool HasAnyExplicitSpecHeader = false; + bool AllExplicitSpecHeaders = true; + for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { + if (ParamLists[I]->size() == 0) + HasAnyExplicitSpecHeader = true; + else + AllExplicitSpecHeaders = false; + } + + if (!SuppressDiagnostic) + Diag(ParamLists[ParamIdx]->getTemplateLoc(), + AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers + : diag::err_template_spec_extra_headers) + << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), + ParamLists[ParamLists.size() - 2]->getRAngleLoc()); + + // If there was a specialization somewhere, such that 'template<>' is + // not required, and there were any 'template<>' headers, note where the + // specialization occurred. + if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader && + !SuppressDiagnostic) + Diag(ExplicitSpecLoc, + diag::note_explicit_template_spec_does_not_need_header) + << NestedTypes.back(); + + // We have a template parameter list with no corresponding scope, which + // means that the resulting template declaration can't be instantiated + // properly (we'll end up with dependent nodes when we shouldn't). + if (!AllExplicitSpecHeaders) + Invalid = true; + } + + // C++ [temp.expl.spec]p16: + // In an explicit specialization declaration for a member of a class + // template or a member template that ap- pears in namespace scope, the + // member template and some of its enclosing class templates may remain + // unspecialized, except that the declaration shall not explicitly + // specialize a class member template if its en- closing class templates + // are not explicitly specialized as well. + if (ParamLists.back()->size() == 0 && + CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), + false)) + return nullptr; + + // Return the last template parameter list, which corresponds to the + // entity being declared. + return ParamLists.back(); +} + +void Sema::NoteAllFoundTemplates(TemplateName Name) { + if (TemplateDecl *Template = Name.getAsTemplateDecl()) { + Diag(Template->getLocation(), diag::note_template_declared_here) + << (isa<FunctionTemplateDecl>(Template) + ? 0 + : isa<ClassTemplateDecl>(Template) + ? 1 + : isa<VarTemplateDecl>(Template) + ? 2 + : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) + << Template->getDeclName(); + return; + } + + if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { + for (OverloadedTemplateStorage::iterator I = OST->begin(), + IEnd = OST->end(); + I != IEnd; ++I) + Diag((*I)->getLocation(), diag::note_template_declared_here) + << 0 << (*I)->getDeclName(); + + return; + } +} + +static QualType +checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, + const SmallVectorImpl<TemplateArgument> &Converted, + SourceLocation TemplateLoc, + TemplateArgumentListInfo &TemplateArgs) { + ASTContext &Context = SemaRef.getASTContext(); + switch (BTD->getBuiltinTemplateKind()) { + case BTK__make_integer_seq: { + // Specializations of __make_integer_seq<S, T, N> are treated like + // S<T, 0, ..., N-1>. + + // C++14 [inteseq.intseq]p1: + // T shall be an integer type. + if (!Converted[1].getAsType()->isIntegralType(Context)) { + SemaRef.Diag(TemplateArgs[1].getLocation(), + diag::err_integer_sequence_integral_element_type); + return QualType(); + } + + // C++14 [inteseq.make]p1: + // If N is negative the program is ill-formed. + TemplateArgument NumArgsArg = Converted[2]; + llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); + if (NumArgs < 0) { + SemaRef.Diag(TemplateArgs[2].getLocation(), + diag::err_integer_sequence_negative_length); + return QualType(); + } + + QualType ArgTy = NumArgsArg.getIntegralType(); + TemplateArgumentListInfo SyntheticTemplateArgs; + // The type argument gets reused as the first template argument in the + // synthetic template argument list. + SyntheticTemplateArgs.addArgument(TemplateArgs[1]); + // Expand N into 0 ... N-1. + for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); + I < NumArgs; ++I) { + TemplateArgument TA(Context, I, ArgTy); + SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc( + TA, ArgTy, TemplateArgs[2].getLocation())); + } + // The first template argument will be reused as the template decl that + // our synthetic template arguments will be applied to. + return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(), + TemplateLoc, SyntheticTemplateArgs); + } + + case BTK__type_pack_element: + // Specializations of + // __type_pack_element<Index, T_1, ..., T_N> + // are treated like T_Index. + assert(Converted.size() == 2 && + "__type_pack_element should be given an index and a parameter pack"); + + // If the Index is out of bounds, the program is ill-formed. + TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; + llvm::APSInt Index = IndexArg.getAsIntegral(); + assert(Index >= 0 && "the index used with __type_pack_element should be of " + "type std::size_t, and hence be non-negative"); + if (Index >= Ts.pack_size()) { + SemaRef.Diag(TemplateArgs[0].getLocation(), + diag::err_type_pack_element_out_of_bounds); + return QualType(); + } + + // We simply return the type at index `Index`. + auto Nth = std::next(Ts.pack_begin(), Index.getExtValue()); + return Nth->getAsType(); + } + llvm_unreachable("unexpected BuiltinTemplateDecl!"); +} + +/// Determine whether this alias template is "enable_if_t". +/// libc++ >=14 uses "__enable_if_t" in C++11 mode. +static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { + return AliasTemplate->getName().equals("enable_if_t") || + AliasTemplate->getName().equals("__enable_if_t"); +} + +/// Collect all of the separable terms in the given condition, which +/// might be a conjunction. +/// +/// FIXME: The right answer is to convert the logical expression into +/// disjunctive normal form, so we can find the first failed term +/// within each possible clause. +static void collectConjunctionTerms(Expr *Clause, + SmallVectorImpl<Expr *> &Terms) { + if (auto BinOp = dyn_cast<BinaryOperator>(Clause->IgnoreParenImpCasts())) { + if (BinOp->getOpcode() == BO_LAnd) { + collectConjunctionTerms(BinOp->getLHS(), Terms); + collectConjunctionTerms(BinOp->getRHS(), Terms); + } + + return; + } + + Terms.push_back(Clause); +} + +// The ranges-v3 library uses an odd pattern of a top-level "||" with +// a left-hand side that is value-dependent but never true. Identify +// the idiom and ignore that term. +static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { + // Top-level '||'. + auto *BinOp = dyn_cast<BinaryOperator>(Cond->IgnoreParenImpCasts()); + if (!BinOp) return Cond; + + if (BinOp->getOpcode() != BO_LOr) return Cond; + + // With an inner '==' that has a literal on the right-hand side. + Expr *LHS = BinOp->getLHS(); + auto *InnerBinOp = dyn_cast<BinaryOperator>(LHS->IgnoreParenImpCasts()); + if (!InnerBinOp) return Cond; + + if (InnerBinOp->getOpcode() != BO_EQ || + !isa<IntegerLiteral>(InnerBinOp->getRHS())) + return Cond; + + // If the inner binary operation came from a macro expansion named + // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side + // of the '||', which is the real, user-provided condition. + SourceLocation Loc = InnerBinOp->getExprLoc(); + if (!Loc.isMacroID()) return Cond; + + StringRef MacroName = PP.getImmediateMacroName(Loc); + if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_") + return BinOp->getRHS(); + + return Cond; +} + +namespace { + +// A PrinterHelper that prints more helpful diagnostics for some sub-expressions +// within failing boolean expression, such as substituting template parameters +// for actual types. +class FailedBooleanConditionPrinterHelper : public PrinterHelper { +public: + explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P) + : Policy(P) {} + + bool handledStmt(Stmt *E, raw_ostream &OS) override { + const auto *DR = dyn_cast<DeclRefExpr>(E); + if (DR && DR->getQualifier()) { + // If this is a qualified name, expand the template arguments in nested + // qualifiers. + DR->getQualifier()->print(OS, Policy, true); + // Then print the decl itself. + const ValueDecl *VD = DR->getDecl(); + OS << VD->getName(); + if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(VD)) { + // This is a template variable, print the expanded template arguments. + printTemplateArgumentList( + OS, IV->getTemplateArgs().asArray(), Policy, + IV->getSpecializedTemplate()->getTemplateParameters()); + } + return true; + } + return false; + } + +private: + const PrintingPolicy Policy; +}; + +} // end anonymous namespace + +std::pair<Expr *, std::string> +Sema::findFailedBooleanCondition(Expr *Cond) { + Cond = lookThroughRangesV3Condition(PP, Cond); + + // Separate out all of the terms in a conjunction. + SmallVector<Expr *, 4> Terms; + collectConjunctionTerms(Cond, Terms); + + // Determine which term failed. + Expr *FailedCond = nullptr; + for (Expr *Term : Terms) { + Expr *TermAsWritten = Term->IgnoreParenImpCasts(); + + // Literals are uninteresting. + if (isa<CXXBoolLiteralExpr>(TermAsWritten) || + isa<IntegerLiteral>(TermAsWritten)) + continue; + + // The initialization of the parameter from the argument is + // a constant-evaluated context. + EnterExpressionEvaluationContext ConstantEvaluated( + *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); + + bool Succeeded; + if (Term->EvaluateAsBooleanCondition(Succeeded, Context) && + !Succeeded) { + FailedCond = TermAsWritten; + break; + } + } + if (!FailedCond) + FailedCond = Cond->IgnoreParenImpCasts(); + + std::string Description; + { + llvm::raw_string_ostream Out(Description); + PrintingPolicy Policy = getPrintingPolicy(); + Policy.PrintCanonicalTypes = true; + FailedBooleanConditionPrinterHelper Helper(Policy); + FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr); + } + return { FailedCond, Description }; +} + +QualType Sema::CheckTemplateIdType(TemplateName Name, + SourceLocation TemplateLoc, + TemplateArgumentListInfo &TemplateArgs) { + DependentTemplateName *DTN + = Name.getUnderlying().getAsDependentTemplateName(); + if (DTN && DTN->isIdentifier()) + // When building a template-id where the template-name is dependent, + // assume the template is a type template. Either our assumption is + // correct, or the code is ill-formed and will be diagnosed when the + // dependent name is substituted. + return Context.getDependentTemplateSpecializationType(ETK_None, + DTN->getQualifier(), + DTN->getIdentifier(), + TemplateArgs); + + if (Name.getAsAssumedTemplateName() && + resolveAssumedTemplateNameAsType(/*Scope*/nullptr, Name, TemplateLoc)) + return QualType(); + + TemplateDecl *Template = Name.getAsTemplateDecl(); + if (!Template || isa<FunctionTemplateDecl>(Template) || + isa<VarTemplateDecl>(Template) || isa<ConceptDecl>(Template)) { + // We might have a substituted template template parameter pack. If so, + // build a template specialization type for it. + if (Name.getAsSubstTemplateTemplateParmPack()) + return Context.getTemplateSpecializationType(Name, TemplateArgs); + + Diag(TemplateLoc, diag::err_template_id_not_a_type) + << Name; + NoteAllFoundTemplates(Name); + return QualType(); + } + + // Check that the template argument list is well-formed for this + // template. + SmallVector<TemplateArgument, 4> Converted; + if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, + false, Converted, + /*UpdateArgsWithConversions=*/true)) + return QualType(); + + QualType CanonType; + + if (TypeAliasTemplateDecl *AliasTemplate = + dyn_cast<TypeAliasTemplateDecl>(Template)) { + + // Find the canonical type for this type alias template specialization. + TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); + if (Pattern->isInvalidDecl()) + return QualType(); + + TemplateArgumentList StackTemplateArgs(TemplateArgumentList::OnStack, + Converted); + + // Only substitute for the innermost template argument list. + MultiLevelTemplateArgumentList TemplateArgLists; + TemplateArgLists.addOuterTemplateArguments(&StackTemplateArgs); + TemplateArgLists.addOuterRetainedLevels( + AliasTemplate->getTemplateParameters()->getDepth()); + + LocalInstantiationScope Scope(*this); + InstantiatingTemplate Inst(*this, TemplateLoc, Template); + if (Inst.isInvalid()) + return QualType(); + + CanonType = SubstType(Pattern->getUnderlyingType(), + TemplateArgLists, AliasTemplate->getLocation(), + AliasTemplate->getDeclName()); + if (CanonType.isNull()) { + // If this was enable_if and we failed to find the nested type + // within enable_if in a SFINAE context, dig out the specific + // enable_if condition that failed and present that instead. + if (isEnableIfAliasTemplate(AliasTemplate)) { + if (auto DeductionInfo = isSFINAEContext()) { + if (*DeductionInfo && + (*DeductionInfo)->hasSFINAEDiagnostic() && + (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == + diag::err_typename_nested_not_found_enable_if && + TemplateArgs[0].getArgument().getKind() + == TemplateArgument::Expression) { + Expr *FailedCond; + std::string FailedDescription; + std::tie(FailedCond, FailedDescription) = + findFailedBooleanCondition(TemplateArgs[0].getSourceExpression()); + + // Remove the old SFINAE diagnostic. + PartialDiagnosticAt OldDiag = + {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; + (*DeductionInfo)->takeSFINAEDiagnostic(OldDiag); + + // Add a new SFINAE diagnostic specifying which condition + // failed. + (*DeductionInfo)->addSFINAEDiagnostic( + OldDiag.first, + PDiag(diag::err_typename_nested_not_found_requirement) + << FailedDescription + << FailedCond->getSourceRange()); + } + } + } + + return QualType(); + } + } else if (Name.isDependent() || + TemplateSpecializationType::anyDependentTemplateArguments( + TemplateArgs, Converted)) { + // This class template specialization is a dependent + // type. Therefore, its canonical type is another class template + // specialization type that contains all of the converted + // arguments in canonical form. This ensures that, e.g., A<T> and + // A<T, T> have identical types when A is declared as: + // + // template<typename T, typename U = T> struct A; + CanonType = Context.getCanonicalTemplateSpecializationType(Name, Converted); + + // This might work out to be a current instantiation, in which + // case the canonical type needs to be the InjectedClassNameType. + // + // TODO: in theory this could be a simple hashtable lookup; most + // changes to CurContext don't change the set of current + // instantiations. + if (isa<ClassTemplateDecl>(Template)) { + for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { + // If we get out to a namespace, we're done. + if (Ctx->isFileContext()) break; + + // If this isn't a record, keep looking. + CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx); + if (!Record) continue; + + // Look for one of the two cases with InjectedClassNameTypes + // and check whether it's the same template. + if (!isa<ClassTemplatePartialSpecializationDecl>(Record) && + !Record->getDescribedClassTemplate()) + continue; + + // Fetch the injected class name type and check whether its + // injected type is equal to the type we just built. + QualType ICNT = Context.getTypeDeclType(Record); + QualType Injected = cast<InjectedClassNameType>(ICNT) + ->getInjectedSpecializationType(); + + if (CanonType != Injected->getCanonicalTypeInternal()) + continue; + + // If so, the canonical type of this TST is the injected + // class name type of the record we just found. + assert(ICNT.isCanonical()); + CanonType = ICNT; + break; + } + } + } else if (ClassTemplateDecl *ClassTemplate + = dyn_cast<ClassTemplateDecl>(Template)) { + // Find the class template specialization declaration that + // corresponds to these arguments. + void *InsertPos = nullptr; + ClassTemplateSpecializationDecl *Decl + = ClassTemplate->findSpecialization(Converted, InsertPos); + if (!Decl) { + // This is the first time we have referenced this class template + // specialization. Create the canonical declaration and add it to + // the set of specializations. + Decl = ClassTemplateSpecializationDecl::Create( + Context, ClassTemplate->getTemplatedDecl()->getTagKind(), + ClassTemplate->getDeclContext(), + ClassTemplate->getTemplatedDecl()->getBeginLoc(), + ClassTemplate->getLocation(), ClassTemplate, Converted, nullptr); + ClassTemplate->AddSpecialization(Decl, InsertPos); + if (ClassTemplate->isOutOfLine()) + Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); + } + + if (Decl->getSpecializationKind() == TSK_Undeclared && + ClassTemplate->getTemplatedDecl()->hasAttrs()) { + InstantiatingTemplate Inst(*this, TemplateLoc, Decl); + if (!Inst.isInvalid()) { + MultiLevelTemplateArgumentList TemplateArgLists; + TemplateArgLists.addOuterTemplateArguments(Converted); + InstantiateAttrsForDecl(TemplateArgLists, + ClassTemplate->getTemplatedDecl(), Decl); + } + } + + // Diagnose uses of this specialization. + (void)DiagnoseUseOfDecl(Decl, TemplateLoc); + + CanonType = Context.getTypeDeclType(Decl); + assert(isa<RecordType>(CanonType) && + "type of non-dependent specialization is not a RecordType"); + } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) { + CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc, + TemplateArgs); + } + + // Build the fully-sugared type for this class template + // specialization, which refers back to the class template + // specialization we created or found. + return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType); +} + +void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName, + TemplateNameKind &TNK, + SourceLocation NameLoc, + IdentifierInfo *&II) { + assert(TNK == TNK_Undeclared_template && "not an undeclared template name"); + + TemplateName Name = ParsedName.get(); + auto *ATN = Name.getAsAssumedTemplateName(); + assert(ATN && "not an assumed template name"); + II = ATN->getDeclName().getAsIdentifierInfo(); + + if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) { + // Resolved to a type template name. + ParsedName = TemplateTy::make(Name); + TNK = TNK_Type_template; + } +} + +bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, + SourceLocation NameLoc, + bool Diagnose) { + // We assumed this undeclared identifier to be an (ADL-only) function + // template name, but it was used in a context where a type was required. + // Try to typo-correct it now. + AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName(); + assert(ATN && "not an assumed template name"); + + LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName); + struct CandidateCallback : CorrectionCandidateCallback { + bool ValidateCandidate(const TypoCorrection &TC) override { + return TC.getCorrectionDecl() && + getAsTypeTemplateDecl(TC.getCorrectionDecl()); + } + std::unique_ptr<CorrectionCandidateCallback> clone() override { + return std::make_unique<CandidateCallback>(*this); + } + } FilterCCC; + + TypoCorrection Corrected = + CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr, + FilterCCC, CTK_ErrorRecovery); + if (Corrected && Corrected.getFoundDecl()) { + diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) + << ATN->getDeclName()); + Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>()); + return false; + } + + if (Diagnose) + Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName(); + return true; +} + +TypeResult Sema::ActOnTemplateIdType( + Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, + TemplateTy TemplateD, IdentifierInfo *TemplateII, + SourceLocation TemplateIILoc, SourceLocation LAngleLoc, + ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc, + bool IsCtorOrDtorName, bool IsClassName) { + if (SS.isInvalid()) + return true; + + if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { + DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); + + // C++ [temp.res]p3: + // A qualified-id that refers to a type and in which the + // nested-name-specifier depends on a template-parameter (14.6.2) + // shall be prefixed by the keyword typename to indicate that the + // qualified-id denotes a type, forming an + // elaborated-type-specifier (7.1.5.3). + if (!LookupCtx && isDependentScopeSpecifier(SS)) { + Diag(SS.getBeginLoc(), diag::err_typename_missing_template) + << SS.getScopeRep() << TemplateII->getName(); + // Recover as if 'typename' were specified. + // FIXME: This is not quite correct recovery as we don't transform SS + // into the corresponding dependent form (and we don't diagnose missing + // 'template' keywords within SS as a result). + return ActOnTypenameType(nullptr, SourceLocation(), SS, TemplateKWLoc, + TemplateD, TemplateII, TemplateIILoc, LAngleLoc, + TemplateArgsIn, RAngleLoc); + } + + // Per C++ [class.qual]p2, if the template-id was an injected-class-name, + // it's not actually allowed to be used as a type in most cases. Because + // we annotate it before we know whether it's valid, we have to check for + // this case here. + auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); + if (LookupRD && LookupRD->getIdentifier() == TemplateII) { + Diag(TemplateIILoc, + TemplateKWLoc.isInvalid() + ? diag::err_out_of_line_qualified_id_type_names_constructor + : diag::ext_out_of_line_qualified_id_type_names_constructor) + << TemplateII << 0 /*injected-class-name used as template name*/ + << 1 /*if any keyword was present, it was 'template'*/; + } + } + + TemplateName Template = TemplateD.get(); + if (Template.getAsAssumedTemplateName() && + resolveAssumedTemplateNameAsType(S, Template, TemplateIILoc)) + return true; + + // Translate the parser's template argument list in our AST format. + TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); + translateTemplateArguments(TemplateArgsIn, TemplateArgs); + + if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { + QualType T + = Context.getDependentTemplateSpecializationType(ETK_None, + DTN->getQualifier(), + DTN->getIdentifier(), + TemplateArgs); + // Build type-source information. + TypeLocBuilder TLB; + DependentTemplateSpecializationTypeLoc SpecTL + = TLB.push<DependentTemplateSpecializationTypeLoc>(T); + SpecTL.setElaboratedKeywordLoc(SourceLocation()); + SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); + SpecTL.setTemplateKeywordLoc(TemplateKWLoc); + SpecTL.setTemplateNameLoc(TemplateIILoc); + SpecTL.setLAngleLoc(LAngleLoc); + SpecTL.setRAngleLoc(RAngleLoc); + for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) + SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); + return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); + } + + QualType Result = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); + if (Result.isNull()) + return true; + + // Build type-source information. + TypeLocBuilder TLB; + TemplateSpecializationTypeLoc SpecTL + = TLB.push<TemplateSpecializationTypeLoc>(Result); + SpecTL.setTemplateKeywordLoc(TemplateKWLoc); + SpecTL.setTemplateNameLoc(TemplateIILoc); + SpecTL.setLAngleLoc(LAngleLoc); + SpecTL.setRAngleLoc(RAngleLoc); + for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) + SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); + + // NOTE: avoid constructing an ElaboratedTypeLoc if this is a + // constructor or destructor name (in such a case, the scope specifier + // will be attached to the enclosing Decl or Expr node). + if (SS.isNotEmpty() && !IsCtorOrDtorName) { + // Create an elaborated-type-specifier containing the nested-name-specifier. + Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result); + ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); + ElabTL.setElaboratedKeywordLoc(SourceLocation()); + ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); + } + + return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); +} + +TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, + TypeSpecifierType TagSpec, + SourceLocation TagLoc, + CXXScopeSpec &SS, + SourceLocation TemplateKWLoc, + TemplateTy TemplateD, + SourceLocation TemplateLoc, + SourceLocation LAngleLoc, + ASTTemplateArgsPtr TemplateArgsIn, + SourceLocation RAngleLoc) { + if (SS.isInvalid()) + return TypeResult(true); + + TemplateName Template = TemplateD.get(); + + // Translate the parser's template argument list in our AST format. + TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); + translateTemplateArguments(TemplateArgsIn, TemplateArgs); + + // Determine the tag kind + TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); + ElaboratedTypeKeyword Keyword + = TypeWithKeyword::getKeywordForTagTypeKind(TagKind); + + if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { + QualType T = Context.getDependentTemplateSpecializationType(Keyword, + DTN->getQualifier(), + DTN->getIdentifier(), + TemplateArgs); + + // Build type-source information. + TypeLocBuilder TLB; + DependentTemplateSpecializationTypeLoc SpecTL + = TLB.push<DependentTemplateSpecializationTypeLoc>(T); + SpecTL.setElaboratedKeywordLoc(TagLoc); + SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); + SpecTL.setTemplateKeywordLoc(TemplateKWLoc); + SpecTL.setTemplateNameLoc(TemplateLoc); + SpecTL.setLAngleLoc(LAngleLoc); + SpecTL.setRAngleLoc(RAngleLoc); + for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) + SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); + return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); + } + + if (TypeAliasTemplateDecl *TAT = + dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) { + // C++0x [dcl.type.elab]p2: + // If the identifier resolves to a typedef-name or the simple-template-id + // resolves to an alias template specialization, the + // elaborated-type-specifier is ill-formed. + Diag(TemplateLoc, diag::err_tag_reference_non_tag) + << TAT << NTK_TypeAliasTemplate << TagKind; + Diag(TAT->getLocation(), diag::note_declared_at); + } + + QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs); + if (Result.isNull()) + return TypeResult(true); + + // Check the tag kind + if (const RecordType *RT = Result->getAs<RecordType>()) { + RecordDecl *D = RT->getDecl(); + + IdentifierInfo *Id = D->getIdentifier(); + assert(Id && "templated class must have an identifier"); + + if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, + TagLoc, Id)) { + Diag(TagLoc, diag::err_use_with_wrong_tag) + << Result + << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); + Diag(D->getLocation(), diag::note_previous_use); + } + } + + // Provide source-location information for the template specialization. + TypeLocBuilder TLB; + TemplateSpecializationTypeLoc SpecTL + = TLB.push<TemplateSpecializationTypeLoc>(Result); + SpecTL.setTemplateKeywordLoc(TemplateKWLoc); + SpecTL.setTemplateNameLoc(TemplateLoc); + SpecTL.setLAngleLoc(LAngleLoc); + SpecTL.setRAngleLoc(RAngleLoc); + for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) + SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo()); + + // Construct an elaborated type containing the nested-name-specifier (if any) + // and tag keyword. + Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result); + ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result); + ElabTL.setElaboratedKeywordLoc(TagLoc); + ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); + return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); +} + +static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, + NamedDecl *PrevDecl, + SourceLocation Loc, + bool IsPartialSpecialization); + +static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); + +static bool isTemplateArgumentTemplateParameter( + const TemplateArgument &Arg, unsigned Depth, unsigned Index) { + switch (Arg.getKind()) { + case TemplateArgument::Null: + case TemplateArgument::NullPtr: + case TemplateArgument::Integral: + case TemplateArgument::Declaration: + case TemplateArgument::Pack: + case TemplateArgument::TemplateExpansion: + return false; + + case TemplateArgument::Type: { + QualType Type = Arg.getAsType(); + const TemplateTypeParmType *TPT = + Arg.getAsType()->getAs<TemplateTypeParmType>(); + return TPT && !Type.hasQualifiers() && + TPT->getDepth() == Depth && TPT->getIndex() == Index; + } + + case TemplateArgument::Expression: { + DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr()); + if (!DRE || !DRE->getDecl()) + return false; + const NonTypeTemplateParmDecl *NTTP = + dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); + return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; + } + + case TemplateArgument::Template: + const TemplateTemplateParmDecl *TTP = + dyn_cast_or_null<TemplateTemplateParmDecl>( + Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); + return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; + } + llvm_unreachable("unexpected kind of template argument"); +} + +static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, + ArrayRef<TemplateArgument> Args) { + if (Params->size() != Args.size()) + return false; + + unsigned Depth = Params->getDepth(); + + for (unsigned I = 0, N = Args.size(); I != N; ++I) { + TemplateArgument Arg = Args[I]; + + // If the parameter is a pack expansion, the argument must be a pack + // whose only element is a pack expansion. + if (Params->getParam(I)->isParameterPack()) { + if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || + !Arg.pack_begin()->isPackExpansion()) + return false; + Arg = Arg.pack_begin()->getPackExpansionPattern(); + } + + if (!isTemplateArgumentTemplateParameter(Arg, Depth, I)) + return false; + } + + return true; +} + +template<typename PartialSpecDecl> +static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { + if (Partial->getDeclContext()->isDependentContext()) + return; + + // FIXME: Get the TDK from deduction in order to provide better diagnostics + // for non-substitution-failure issues? + TemplateDeductionInfo Info(Partial->getLocation()); + if (S.isMoreSpecializedThanPrimary(Partial, Info)) + return; + + auto *Template = Partial->getSpecializedTemplate(); + S.Diag(Partial->getLocation(), + diag::ext_partial_spec_not_more_specialized_than_primary) + << isa<VarTemplateDecl>(Template); + + if (Info.hasSFINAEDiagnostic()) { + PartialDiagnosticAt Diag = {SourceLocation(), + PartialDiagnostic::NullDiagnostic()}; + Info.takeSFINAEDiagnostic(Diag); + SmallString<128> SFINAEArgString; + Diag.second.EmitToString(S.getDiagnostics(), SFINAEArgString); + S.Diag(Diag.first, + diag::note_partial_spec_not_more_specialized_than_primary) + << SFINAEArgString; + } + + S.Diag(Template->getLocation(), diag::note_template_decl_here); + SmallVector<const Expr *, 3> PartialAC, TemplateAC; + Template->getAssociatedConstraints(TemplateAC); + Partial->getAssociatedConstraints(PartialAC); + S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Partial, PartialAC, Template, + TemplateAC); +} + +static void +noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, + const llvm::SmallBitVector &DeducibleParams) { + for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { + if (!DeducibleParams[I]) { + NamedDecl *Param = TemplateParams->getParam(I); + if (Param->getDeclName()) + S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) + << Param->getDeclName(); + else + S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) + << "(anonymous)"; + } + } +} + + +template<typename PartialSpecDecl> +static void checkTemplatePartialSpecialization(Sema &S, + PartialSpecDecl *Partial) { + // C++1z [temp.class.spec]p8: (DR1495) + // - The specialization shall be more specialized than the primary + // template (14.5.5.2). + checkMoreSpecializedThanPrimary(S, Partial); + + // C++ [temp.class.spec]p8: (DR1315) + // - Each template-parameter shall appear at least once in the + // template-id outside a non-deduced context. + // C++1z [temp.class.spec.match]p3 (P0127R2) + // If the template arguments of a partial specialization cannot be + // deduced because of the structure of its template-parameter-list + // and the template-id, the program is ill-formed. + auto *TemplateParams = Partial->getTemplateParameters(); + llvm::SmallBitVector DeducibleParams(TemplateParams->size()); + S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, + TemplateParams->getDepth(), DeducibleParams); + + if (!DeducibleParams.all()) { + unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); + S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) + << isa<VarTemplatePartialSpecializationDecl>(Partial) + << (NumNonDeducible > 1) + << SourceRange(Partial->getLocation(), + Partial->getTemplateArgsAsWritten()->RAngleLoc); + noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); + } +} + +void Sema::CheckTemplatePartialSpecialization( + ClassTemplatePartialSpecializationDecl *Partial) { + checkTemplatePartialSpecialization(*this, Partial); +} + +void Sema::CheckTemplatePartialSpecialization( + VarTemplatePartialSpecializationDecl *Partial) { + checkTemplatePartialSpecialization(*this, Partial); +} + +void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { + // C++1z [temp.param]p11: + // A template parameter of a deduction guide template that does not have a + // default-argument shall be deducible from the parameter-type-list of the + // deduction guide template. + auto *TemplateParams = TD->getTemplateParameters(); + llvm::SmallBitVector DeducibleParams(TemplateParams->size()); + MarkDeducedTemplateParameters(TD, DeducibleParams); + for (unsigned I = 0; I != TemplateParams->size(); ++I) { + // A parameter pack is deducible (to an empty pack). + auto *Param = TemplateParams->getParam(I); + if (Param->isParameterPack() || hasVisibleDefaultArgument(Param)) + DeducibleParams[I] = true; + } + + if (!DeducibleParams.all()) { + unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); + Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) + << (NumNonDeducible > 1); + noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); + } +} + +DeclResult Sema::ActOnVarTemplateSpecialization( + Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc, + TemplateParameterList *TemplateParams, StorageClass SC, + bool IsPartialSpecialization) { + // D must be variable template id. + assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && + "Variable template specialization is declared with a template it."); + + TemplateIdAnnotation *TemplateId = D.getName().TemplateId; + TemplateArgumentListInfo TemplateArgs = + makeTemplateArgumentListInfo(*this, *TemplateId); + SourceLocation TemplateNameLoc = D.getIdentifierLoc(); + SourceLocation LAngleLoc = TemplateId->LAngleLoc; + SourceLocation RAngleLoc = TemplateId->RAngleLoc; + + TemplateName Name = TemplateId->Template.get(); + + // The template-id must name a variable template. + VarTemplateDecl *VarTemplate = + dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl()); + if (!VarTemplate) { + NamedDecl *FnTemplate; + if (auto *OTS = Name.getAsOverloadedTemplate()) + FnTemplate = *OTS->begin(); + else + FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl()); + if (FnTemplate) + return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) + << FnTemplate->getDeclName(); + return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) + << IsPartialSpecialization; + } + + // Check for unexpanded parameter packs in any of the template arguments. + for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) + if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], + UPPC_PartialSpecialization)) + return true; + + // Check that the template argument list is well-formed for this + // template. + SmallVector<TemplateArgument, 4> Converted; + if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, + false, Converted, + /*UpdateArgsWithConversions=*/true)) + return true; + + // Find the variable template (partial) specialization declaration that + // corresponds to these arguments. + if (IsPartialSpecialization) { + if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, + TemplateArgs.size(), Converted)) + return true; + + // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we + // also do them during instantiation. + if (!Name.isDependent() && + !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs, + Converted)) { + Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) + << VarTemplate->getDeclName(); + IsPartialSpecialization = false; + } + + if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), + Converted) && + (!Context.getLangOpts().CPlusPlus20 || + !TemplateParams->hasAssociatedConstraints())) { + // C++ [temp.class.spec]p9b3: + // + // -- The argument list of the specialization shall not be identical + // to the implicit argument list of the primary template. + Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) + << /*variable template*/ 1 + << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) + << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); + // FIXME: Recover from this by treating the declaration as a redeclaration + // of the primary template. + return true; + } + } + + void *InsertPos = nullptr; + VarTemplateSpecializationDecl *PrevDecl = nullptr; + + if (IsPartialSpecialization) + PrevDecl = VarTemplate->findPartialSpecialization(Converted, TemplateParams, + InsertPos); + else + PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos); + + VarTemplateSpecializationDecl *Specialization = nullptr; + + // Check whether we can declare a variable template specialization in + // the current scope. + if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, + TemplateNameLoc, + IsPartialSpecialization)) + return true; + + if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { + // Since the only prior variable template specialization with these + // arguments was referenced but not declared, reuse that + // declaration node as our own, updating its source location and + // the list of outer template parameters to reflect our new declaration. + Specialization = PrevDecl; + Specialization->setLocation(TemplateNameLoc); + PrevDecl = nullptr; + } else if (IsPartialSpecialization) { + // Create a new class template partial specialization declaration node. + VarTemplatePartialSpecializationDecl *PrevPartial = + cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl); + VarTemplatePartialSpecializationDecl *Partial = + VarTemplatePartialSpecializationDecl::Create( + Context, VarTemplate->getDeclContext(), TemplateKWLoc, + TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC, + Converted, TemplateArgs); + + if (!PrevPartial) + VarTemplate->AddPartialSpecialization(Partial, InsertPos); + Specialization = Partial; + + // If we are providing an explicit specialization of a member variable + // template specialization, make a note of that. + if (PrevPartial && PrevPartial->getInstantiatedFromMember()) + PrevPartial->setMemberSpecialization(); + + CheckTemplatePartialSpecialization(Partial); + } else { + // Create a new class template specialization declaration node for + // this explicit specialization or friend declaration. + Specialization = VarTemplateSpecializationDecl::Create( + Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc, + VarTemplate, DI->getType(), DI, SC, Converted); + Specialization->setTemplateArgsInfo(TemplateArgs); + + if (!PrevDecl) + VarTemplate->AddSpecialization(Specialization, InsertPos); + } + + // C++ [temp.expl.spec]p6: + // If a template, a member template or the member of a class template is + // explicitly specialized then that specialization shall be declared + // before the first use of that specialization that would cause an implicit + // instantiation to take place, in every translation unit in which such a + // use occurs; no diagnostic is required. + if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { + bool Okay = false; + for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { + // Is there any previous explicit specialization declaration? + if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { + Okay = true; + break; + } + } + + if (!Okay) { + SourceRange Range(TemplateNameLoc, RAngleLoc); + Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) + << Name << Range; + + Diag(PrevDecl->getPointOfInstantiation(), + diag::note_instantiation_required_here) + << (PrevDecl->getTemplateSpecializationKind() != + TSK_ImplicitInstantiation); + return true; + } + } + + Specialization->setTemplateKeywordLoc(TemplateKWLoc); + Specialization->setLexicalDeclContext(CurContext); + + // Add the specialization into its lexical context, so that it can + // be seen when iterating through the list of declarations in that + // context. However, specializations are not found by name lookup. + CurContext->addDecl(Specialization); + + // Note that this is an explicit specialization. + Specialization->setSpecializationKind(TSK_ExplicitSpecialization); + + if (PrevDecl) { + // Check that this isn't a redefinition of this specialization, + // merging with previous declarations. + LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName, + forRedeclarationInCurContext()); + PrevSpec.addDecl(PrevDecl); + D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec)); + } else if (Specialization->isStaticDataMember() && + Specialization->isOutOfLine()) { + Specialization->setAccess(VarTemplate->getAccess()); + } + + return Specialization; +} + +namespace { +/// A partial specialization whose template arguments have matched +/// a given template-id. +struct PartialSpecMatchResult { + VarTemplatePartialSpecializationDecl *Partial; + TemplateArgumentList *Args; +}; +} // end anonymous namespace + +DeclResult +Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, + SourceLocation TemplateNameLoc, + const TemplateArgumentListInfo &TemplateArgs) { + assert(Template && "A variable template id without template?"); + + // Check that the template argument list is well-formed for this template. + SmallVector<TemplateArgument, 4> Converted; + if (CheckTemplateArgumentList( + Template, TemplateNameLoc, + const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, + Converted, /*UpdateArgsWithConversions=*/true)) + return true; + + // Produce a placeholder value if the specialization is dependent. + if (Template->getDeclContext()->isDependentContext() || + TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs, + Converted)) + return DeclResult(); + + // Find the variable template specialization declaration that + // corresponds to these arguments. + void *InsertPos = nullptr; + if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization( + Converted, InsertPos)) { + checkSpecializationVisibility(TemplateNameLoc, Spec); + // If we already have a variable template specialization, return it. + return Spec; + } + + // This is the first time we have referenced this variable template + // specialization. Create the canonical declaration and add it to + // the set of specializations, based on the closest partial specialization + // that it represents. That is, + VarDecl *InstantiationPattern = Template->getTemplatedDecl(); + TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack, + Converted); + TemplateArgumentList *InstantiationArgs = &TemplateArgList; + bool AmbiguousPartialSpec = false; + typedef PartialSpecMatchResult MatchResult; + SmallVector<MatchResult, 4> Matched; + SourceLocation PointOfInstantiation = TemplateNameLoc; + TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, + /*ForTakingAddress=*/false); + + // 1. Attempt to find the closest partial specialization that this + // specializes, if any. + // TODO: Unify with InstantiateClassTemplateSpecialization()? + // Perhaps better after unification of DeduceTemplateArguments() and + // getMoreSpecializedPartialSpecialization(). + SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; + Template->getPartialSpecializations(PartialSpecs); + + for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { + VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; + TemplateDeductionInfo Info(FailedCandidates.getLocation()); + + if (TemplateDeductionResult Result = + DeduceTemplateArguments(Partial, TemplateArgList, Info)) { + // Store the failed-deduction information for use in diagnostics, later. + // TODO: Actually use the failed-deduction info? + FailedCandidates.addCandidate().set( + DeclAccessPair::make(Template, AS_public), Partial, + MakeDeductionFailureInfo(Context, Result, Info)); + (void)Result; + } else { + Matched.push_back(PartialSpecMatchResult()); + Matched.back().Partial = Partial; + Matched.back().Args = Info.take(); + } + } + + if (Matched.size() >= 1) { + SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); + if (Matched.size() == 1) { + // -- If exactly one matching specialization is found, the + // instantiation is generated from that specialization. + // We don't need to do anything for this. + } else { + // -- If more than one matching specialization is found, the + // partial order rules (14.5.4.2) are used to determine + // whether one of the specializations is more specialized + // than the others. If none of the specializations is more + // specialized than all of the other matching + // specializations, then the use of the variable template is + // ambiguous and the program is ill-formed. + for (SmallVector<MatchResult, 4>::iterator P = Best + 1, + PEnd = Matched.end(); + P != PEnd; ++P) { + if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial, + PointOfInstantiation) == + P->Partial) + Best = P; + } + + // Determine if the best partial specialization is more specialized than + // the others. + for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), + PEnd = Matched.end(); + P != PEnd; ++P) { + if (P != Best && getMoreSpecializedPartialSpecialization( + P->Partial, Best->Partial, + PointOfInstantiation) != Best->Partial) { + AmbiguousPartialSpec = true; + break; + } + } + } + + // Instantiate using the best variable template partial specialization. + InstantiationPattern = Best->Partial; + InstantiationArgs = Best->Args; + } else { + // -- If no match is found, the instantiation is generated + // from the primary template. + // InstantiationPattern = Template->getTemplatedDecl(); + } + + // 2. Create the canonical declaration. + // Note that we do not instantiate a definition until we see an odr-use + // in DoMarkVarDeclReferenced(). + // FIXME: LateAttrs et al.? + VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( + Template, InstantiationPattern, *InstantiationArgs, TemplateArgs, + Converted, TemplateNameLoc /*, LateAttrs, StartingScope*/); + if (!Decl) + return true; + + if (AmbiguousPartialSpec) { + // Partial ordering did not produce a clear winner. Complain. + Decl->setInvalidDecl(); + Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) + << Decl; + + // Print the matching partial specializations. + for (MatchResult P : Matched) + Diag(P.Partial->getLocation(), diag::note_partial_spec_match) + << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), + *P.Args); + return true; + } + + if (VarTemplatePartialSpecializationDecl *D = + dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern)) + Decl->setInstantiationOf(D, InstantiationArgs); + + checkSpecializationVisibility(TemplateNameLoc, Decl); + + assert(Decl && "No variable template specialization?"); + return Decl; +} + +ExprResult +Sema::CheckVarTemplateId(const CXXScopeSpec &SS, + const DeclarationNameInfo &NameInfo, + VarTemplateDecl *Template, SourceLocation TemplateLoc, + const TemplateArgumentListInfo *TemplateArgs) { + + DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(), + *TemplateArgs); + if (Decl.isInvalid()) + return ExprError(); + + if (!Decl.get()) + return ExprResult(); + + VarDecl *Var = cast<VarDecl>(Decl.get()); + if (!Var->getTemplateSpecializationKind()) + Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, + NameInfo.getLoc()); + + // Build an ordinary singleton decl ref. + return BuildDeclarationNameExpr(SS, NameInfo, Var, + /*FoundD=*/nullptr, TemplateArgs); +} + +void Sema::diagnoseMissingTemplateArguments(TemplateName Name, + SourceLocation Loc) { + Diag(Loc, diag::err_template_missing_args) + << (int)getTemplateNameKindForDiagnostics(Name) << Name; + if (TemplateDecl *TD = Name.getAsTemplateDecl()) { + Diag(TD->getLocation(), diag::note_template_decl_here) + << TD->getTemplateParameters()->getSourceRange(); + } +} + +ExprResult +Sema::CheckConceptTemplateId(const CXXScopeSpec &SS, + SourceLocation TemplateKWLoc, + const DeclarationNameInfo &ConceptNameInfo, + NamedDecl *FoundDecl, + ConceptDecl *NamedConcept, + const TemplateArgumentListInfo *TemplateArgs) { + assert(NamedConcept && "A concept template id without a template?"); + + llvm::SmallVector<TemplateArgument, 4> Converted; + if (CheckTemplateArgumentList(NamedConcept, ConceptNameInfo.getLoc(), + const_cast<TemplateArgumentListInfo&>(*TemplateArgs), + /*PartialTemplateArgs=*/false, Converted, + /*UpdateArgsWithConversions=*/false)) + return ExprError(); + + ConstraintSatisfaction Satisfaction; + bool AreArgsDependent = + TemplateSpecializationType::anyDependentTemplateArguments(*TemplateArgs, + Converted); + if (!AreArgsDependent && + CheckConstraintSatisfaction( + NamedConcept, {NamedConcept->getConstraintExpr()}, Converted, + SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(), + TemplateArgs->getRAngleLoc()), + Satisfaction)) + return ExprError(); + + return ConceptSpecializationExpr::Create(Context, + SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{}, + TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept, + ASTTemplateArgumentListInfo::Create(Context, *TemplateArgs), Converted, + AreArgsDependent ? nullptr : &Satisfaction); +} + +ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, + SourceLocation TemplateKWLoc, + LookupResult &R, + bool RequiresADL, + const TemplateArgumentListInfo *TemplateArgs) { + // FIXME: Can we do any checking at this point? I guess we could check the + // template arguments that we have against the template name, if the template + // name refers to a single template. That's not a terribly common case, + // though. + // foo<int> could identify a single function unambiguously + // This approach does NOT work, since f<int>(1); + // gets resolved prior to resorting to overload resolution + // i.e., template<class T> void f(double); + // vs template<class T, class U> void f(U); + + // These should be filtered out by our callers. + assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); + + // Non-function templates require a template argument list. + if (auto *TD = R.getAsSingle<TemplateDecl>()) { + if (!TemplateArgs && !isa<FunctionTemplateDecl>(TD)) { + diagnoseMissingTemplateArguments(TemplateName(TD), R.getNameLoc()); + return ExprError(); + } + } + + // In C++1y, check variable template ids. + if (R.getAsSingle<VarTemplateDecl>()) { + ExprResult Res = CheckVarTemplateId(SS, R.getLookupNameInfo(), + R.getAsSingle<VarTemplateDecl>(), + TemplateKWLoc, TemplateArgs); + if (Res.isInvalid() || Res.isUsable()) + return Res; + // Result is dependent. Carry on to build an UnresolvedLookupEpxr. + } + + if (R.getAsSingle<ConceptDecl>()) { + return CheckConceptTemplateId(SS, TemplateKWLoc, R.getLookupNameInfo(), + R.getFoundDecl(), + R.getAsSingle<ConceptDecl>(), TemplateArgs); + } + + // We don't want lookup warnings at this point. + R.suppressDiagnostics(); + + UnresolvedLookupExpr *ULE + = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), + SS.getWithLocInContext(Context), + TemplateKWLoc, + R.getLookupNameInfo(), + RequiresADL, TemplateArgs, + R.begin(), R.end()); + + return ULE; +} + +// We actually only call this from template instantiation. +ExprResult +Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, + SourceLocation TemplateKWLoc, + const DeclarationNameInfo &NameInfo, + const TemplateArgumentListInfo *TemplateArgs) { + + assert(TemplateArgs || TemplateKWLoc.isValid()); + DeclContext *DC; + if (!(DC = computeDeclContext(SS, false)) || + DC->isDependentContext() || + RequireCompleteDeclContext(SS, DC)) + return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); + + bool MemberOfUnknownSpecialization; + LookupResult R(*this, NameInfo, LookupOrdinaryName); + if (LookupTemplateName(R, (Scope *)nullptr, SS, QualType(), + /*Entering*/false, MemberOfUnknownSpecialization, + TemplateKWLoc)) + return ExprError(); + + if (R.isAmbiguous()) + return ExprError(); + + if (R.empty()) { + Diag(NameInfo.getLoc(), diag::err_no_member) + << NameInfo.getName() << DC << SS.getRange(); + return ExprError(); + } + + if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) { + Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template) + << SS.getScopeRep() + << NameInfo.getName().getAsString() << SS.getRange(); + Diag(Temp->getLocation(), diag::note_referenced_class_template); + return ExprError(); + } + + return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs); +} + +/// Form a template name from a name that is syntactically required to name a +/// template, either due to use of the 'template' keyword or because a name in +/// this syntactic context is assumed to name a template (C++ [temp.names]p2-4). +/// +/// This action forms a template name given the name of the template and its +/// optional scope specifier. This is used when the 'template' keyword is used +/// or when the parsing context unambiguously treats a following '<' as +/// introducing a template argument list. Note that this may produce a +/// non-dependent template name if we can perform the lookup now and identify +/// the named template. +/// +/// For example, given "x.MetaFun::template apply", the scope specifier +/// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location +/// of the "template" keyword, and "apply" is the \p Name. +TemplateNameKind Sema::ActOnTemplateName(Scope *S, + CXXScopeSpec &SS, + SourceLocation TemplateKWLoc, + const UnqualifiedId &Name, + ParsedType ObjectType, + bool EnteringContext, + TemplateTy &Result, + bool AllowInjectedClassName) { + if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) + Diag(TemplateKWLoc, + getLangOpts().CPlusPlus11 ? + diag::warn_cxx98_compat_template_outside_of_template : + diag::ext_template_outside_of_template) + << FixItHint::CreateRemoval(TemplateKWLoc); + + if (SS.isInvalid()) + return TNK_Non_template; + + // Figure out where isTemplateName is going to look. + DeclContext *LookupCtx = nullptr; + if (SS.isNotEmpty()) + LookupCtx = computeDeclContext(SS, EnteringContext); + else if (ObjectType) + LookupCtx = computeDeclContext(GetTypeFromParser(ObjectType)); + + // C++0x [temp.names]p5: + // If a name prefixed by the keyword template is not the name of + // a template, the program is ill-formed. [Note: the keyword + // template may not be applied to non-template members of class + // templates. -end note ] [ Note: as is the case with the + // typename prefix, the template prefix is allowed in cases + // where it is not strictly necessary; i.e., when the + // nested-name-specifier or the expression on the left of the -> + // or . is not dependent on a template-parameter, or the use + // does not appear in the scope of a template. -end note] + // + // Note: C++03 was more strict here, because it banned the use of + // the "template" keyword prior to a template-name that was not a + // dependent name. C++ DR468 relaxed this requirement (the + // "template" keyword is now permitted). We follow the C++0x + // rules, even in C++03 mode with a warning, retroactively applying the DR. + bool MemberOfUnknownSpecialization; + TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name, + ObjectType, EnteringContext, Result, + MemberOfUnknownSpecialization); + if (TNK != TNK_Non_template) { + // We resolved this to a (non-dependent) template name. Return it. + auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); + if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD && + Name.getKind() == UnqualifiedIdKind::IK_Identifier && + Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { + // C++14 [class.qual]p2: + // In a lookup in which function names are not ignored and the + // nested-name-specifier nominates a class C, if the name specified + // [...] is the injected-class-name of C, [...] the name is instead + // considered to name the constructor + // + // We don't get here if naming the constructor would be valid, so we + // just reject immediately and recover by treating the + // injected-class-name as naming the template. + Diag(Name.getBeginLoc(), + diag::ext_out_of_line_qualified_id_type_names_constructor) + << Name.Identifier + << 0 /*injected-class-name used as template name*/ + << TemplateKWLoc.isValid(); + } + return TNK; + } + + if (!MemberOfUnknownSpecialization) { + // Didn't find a template name, and the lookup wasn't dependent. + // Do the lookup again to determine if this is a "nothing found" case or + // a "not a template" case. FIXME: Refactor isTemplateName so we don't + // need to do this. + DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); + LookupResult R(*this, DNI.getName(), Name.getBeginLoc(), + LookupOrdinaryName); + bool MOUS; + // Tell LookupTemplateName that we require a template so that it diagnoses + // cases where it finds a non-template. + RequiredTemplateKind RTK = TemplateKWLoc.isValid() + ? RequiredTemplateKind(TemplateKWLoc) + : TemplateNameIsRequired; + if (!LookupTemplateName(R, S, SS, ObjectType.get(), EnteringContext, MOUS, + RTK, nullptr, /*AllowTypoCorrection=*/false) && + !R.isAmbiguous()) { + if (LookupCtx) + Diag(Name.getBeginLoc(), diag::err_no_member) + << DNI.getName() << LookupCtx << SS.getRange(); + else + Diag(Name.getBeginLoc(), diag::err_undeclared_use) + << DNI.getName() << SS.getRange(); + } + return TNK_Non_template; + } + + NestedNameSpecifier *Qualifier = SS.getScopeRep(); + + switch (Name.getKind()) { + case UnqualifiedIdKind::IK_Identifier: + Result = TemplateTy::make( + Context.getDependentTemplateName(Qualifier, Name.Identifier)); + return TNK_Dependent_template_name; + + case UnqualifiedIdKind::IK_OperatorFunctionId: + Result = TemplateTy::make(Context.getDependentTemplateName( + Qualifier, Name.OperatorFunctionId.Operator)); + return TNK_Function_template; + + case UnqualifiedIdKind::IK_LiteralOperatorId: + // This is a kind of template name, but can never occur in a dependent + // scope (literal operators can only be declared at namespace scope). + break; + + default: + break; + } + + // This name cannot possibly name a dependent template. Diagnose this now + // rather than building a dependent template name that can never be valid. + Diag(Name.getBeginLoc(), + diag::err_template_kw_refers_to_dependent_non_template) + << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange() + << TemplateKWLoc.isValid() << TemplateKWLoc; + return TNK_Non_template; +} + +bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param, + TemplateArgumentLoc &AL, + SmallVectorImpl<TemplateArgument> &Converted) { + const TemplateArgument &Arg = AL.getArgument(); + QualType ArgType; + TypeSourceInfo *TSI = nullptr; + + // Check template type parameter. + switch(Arg.getKind()) { + case TemplateArgument::Type: + // C++ [temp.arg.type]p1: + // A template-argument for a template-parameter which is a + // type shall be a type-id. + ArgType = Arg.getAsType(); + TSI = AL.getTypeSourceInfo(); + break; + case TemplateArgument::Template: + case TemplateArgument::TemplateExpansion: { + // We have a template type parameter but the template argument + // is a template without any arguments. + SourceRange SR = AL.getSourceRange(); + TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); + diagnoseMissingTemplateArguments(Name, SR.getEnd()); + return true; + } + case TemplateArgument::Expression: { + // We have a template type parameter but the template argument is an + // expression; see if maybe it is missing the "typename" keyword. + CXXScopeSpec SS; + DeclarationNameInfo NameInfo; + + if (DependentScopeDeclRefExpr *ArgExpr = + dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) { + SS.Adopt(ArgExpr->getQualifierLoc()); + NameInfo = ArgExpr->getNameInfo(); + } else if (CXXDependentScopeMemberExpr *ArgExpr = + dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) { + if (ArgExpr->isImplicitAccess()) { + SS.Adopt(ArgExpr->getQualifierLoc()); + NameInfo = ArgExpr->getMemberNameInfo(); + } + } + + if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { + LookupResult Result(*this, NameInfo, LookupOrdinaryName); + LookupParsedName(Result, CurScope, &SS); + + if (Result.getAsSingle<TypeDecl>() || + Result.getResultKind() == + LookupResult::NotFoundInCurrentInstantiation) { + assert(SS.getScopeRep() && "dependent scope expr must has a scope!"); + // Suggest that the user add 'typename' before the NNS. + SourceLocation Loc = AL.getSourceRange().getBegin(); + Diag(Loc, getLangOpts().MSVCCompat + ? diag::ext_ms_template_type_arg_missing_typename + : diag::err_template_arg_must_be_type_suggest) + << FixItHint::CreateInsertion(Loc, "typename "); + Diag(Param->getLocation(), diag::note_template_param_here); + + // Recover by synthesizing a type using the location information that we + // already have. + ArgType = + Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II); + TypeLocBuilder TLB; + DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType); + TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); + TL.setQualifierLoc(SS.getWithLocInContext(Context)); + TL.setNameLoc(NameInfo.getLoc()); + TSI = TLB.getTypeSourceInfo(Context, ArgType); + + // Overwrite our input TemplateArgumentLoc so that we can recover + // properly. + AL = TemplateArgumentLoc(TemplateArgument(ArgType), + TemplateArgumentLocInfo(TSI)); + + break; + } + } + // fallthrough + LLVM_FALLTHROUGH; + } + default: { + // We have a template type parameter but the template argument + // is not a type. + SourceRange SR = AL.getSourceRange(); + Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; + Diag(Param->getLocation(), diag::note_template_param_here); + + return true; + } + } + + if (CheckTemplateArgument(TSI)) + return true; + + // Add the converted template type argument. + ArgType = Context.getCanonicalType(ArgType); + + // Objective-C ARC: + // If an explicitly-specified template argument type is a lifetime type + // with no lifetime qualifier, the __strong lifetime qualifier is inferred. + if (getLangOpts().ObjCAutoRefCount && + ArgType->isObjCLifetimeType() && + !ArgType.getObjCLifetime()) { + Qualifiers Qs; + Qs.setObjCLifetime(Qualifiers::OCL_Strong); + ArgType = Context.getQualifiedType(ArgType, Qs); + } + + Converted.push_back(TemplateArgument(ArgType)); + return false; +} + +/// Substitute template arguments into the default template argument for +/// the given template type parameter. +/// +/// \param SemaRef the semantic analysis object for which we are performing +/// the substitution. +/// +/// \param Template the template that we are synthesizing template arguments +/// for. +/// +/// \param TemplateLoc the location of the template name that started the +/// template-id we are checking. +/// +/// \param RAngleLoc the location of the right angle bracket ('>') that +/// terminates the template-id. +/// +/// \param Param the template template parameter whose default we are +/// substituting into. +/// +/// \param Converted the list of template arguments provided for template +/// parameters that precede \p Param in the template parameter list. +/// \returns the substituted template argument, or NULL if an error occurred. +static TypeSourceInfo * +SubstDefaultTemplateArgument(Sema &SemaRef, + TemplateDecl *Template, + SourceLocation TemplateLoc, + SourceLocation RAngleLoc, + TemplateTypeParmDecl *Param, + SmallVectorImpl<TemplateArgument> &Converted) { + TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); + + // If the argument type is dependent, instantiate it now based + // on the previously-computed template arguments. + if (ArgType->getType()->isInstantiationDependentType()) { + Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, + Param, Template, Converted, + SourceRange(TemplateLoc, RAngleLoc)); + if (Inst.isInvalid()) + return nullptr; + + TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); + + // Only substitute for the innermost template argument list. + MultiLevelTemplateArgumentList TemplateArgLists; + TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); + for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) + TemplateArgLists.addOuterTemplateArguments(None); + + bool ForLambdaCallOperator = false; + if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext())) + ForLambdaCallOperator = Rec->isLambda(); + Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(), + !ForLambdaCallOperator); + ArgType = + SemaRef.SubstType(ArgType, TemplateArgLists, + Param->getDefaultArgumentLoc(), Param->getDeclName()); + } + + return ArgType; +} + +/// Substitute template arguments into the default template argument for +/// the given non-type template parameter. +/// +/// \param SemaRef the semantic analysis object for which we are performing +/// the substitution. +/// +/// \param Template the template that we are synthesizing template arguments +/// for. +/// +/// \param TemplateLoc the location of the template name that started the +/// template-id we are checking. +/// +/// \param RAngleLoc the location of the right angle bracket ('>') that +/// terminates the template-id. +/// +/// \param Param the non-type template parameter whose default we are +/// substituting into. +/// +/// \param Converted the list of template arguments provided for template +/// parameters that precede \p Param in the template parameter list. +/// +/// \returns the substituted template argument, or NULL if an error occurred. +static ExprResult +SubstDefaultTemplateArgument(Sema &SemaRef, + TemplateDecl *Template, + SourceLocation TemplateLoc, + SourceLocation RAngleLoc, + NonTypeTemplateParmDecl *Param, + SmallVectorImpl<TemplateArgument> &Converted) { + Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, + Param, Template, Converted, + SourceRange(TemplateLoc, RAngleLoc)); + if (Inst.isInvalid()) + return ExprError(); + + TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); + + // Only substitute for the innermost template argument list. + MultiLevelTemplateArgumentList TemplateArgLists; + TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); + for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) + TemplateArgLists.addOuterTemplateArguments(None); + + Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); + EnterExpressionEvaluationContext ConstantEvaluated( + SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); + return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists); +} + +/// Substitute template arguments into the default template argument for +/// the given template template parameter. +/// +/// \param SemaRef the semantic analysis object for which we are performing +/// the substitution. +/// +/// \param Template the template that we are synthesizing template arguments +/// for. +/// +/// \param TemplateLoc the location of the template name that started the +/// template-id we are checking. +/// +/// \param RAngleLoc the location of the right angle bracket ('>') that +/// terminates the template-id. +/// +/// \param Param the template template parameter whose default we are +/// substituting into. +/// +/// \param Converted the list of template arguments provided for template +/// parameters that precede \p Param in the template parameter list. +/// +/// \param QualifierLoc Will be set to the nested-name-specifier (with +/// source-location information) that precedes the template name. +/// +/// \returns the substituted template argument, or NULL if an error occurred. +static TemplateName +SubstDefaultTemplateArgument(Sema &SemaRef, + TemplateDecl *Template, + SourceLocation TemplateLoc, + SourceLocation RAngleLoc, + TemplateTemplateParmDecl *Param, + SmallVectorImpl<TemplateArgument> &Converted, + NestedNameSpecifierLoc &QualifierLoc) { + Sema::InstantiatingTemplate Inst( + SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted, + SourceRange(TemplateLoc, RAngleLoc)); + if (Inst.isInvalid()) + return TemplateName(); + + TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); + + // Only substitute for the innermost template argument list. + MultiLevelTemplateArgumentList TemplateArgLists; + TemplateArgLists.addOuterTemplateArguments(&TemplateArgs); + for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) + TemplateArgLists.addOuterTemplateArguments(None); + + Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); + // Substitute into the nested-name-specifier first, + QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); + if (QualifierLoc) { + QualifierLoc = + SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists); + if (!QualifierLoc) + return TemplateName(); + } + + return SemaRef.SubstTemplateName( + QualifierLoc, + Param->getDefaultArgument().getArgument().getAsTemplate(), + Param->getDefaultArgument().getTemplateNameLoc(), + TemplateArgLists); +} + +/// If the given template parameter has a default template +/// argument, substitute into that default template argument and +/// return the corresponding template argument. +TemplateArgumentLoc +Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template, + SourceLocation TemplateLoc, + SourceLocation RAngleLoc, + Decl *Param, + SmallVectorImpl<TemplateArgument> + &Converted, + bool &HasDefaultArg) { + HasDefaultArg = false; + + if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) { + if (!hasVisibleDefaultArgument(TypeParm)) + return TemplateArgumentLoc(); + + HasDefaultArg = true; + TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template, + TemplateLoc, + RAngleLoc, + TypeParm, + Converted); + if (DI) + return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); + + return TemplateArgumentLoc(); + } + + if (NonTypeTemplateParmDecl *NonTypeParm + = dyn_cast<NonTypeTemplateParmDecl>(Param)) { + if (!hasVisibleDefaultArgument(NonTypeParm)) + return TemplateArgumentLoc(); + + HasDefaultArg = true; + ExprResult Arg = SubstDefaultTemplateArgument(*this, Template, + TemplateLoc, + RAngleLoc, + NonTypeParm, + Converted); + if (Arg.isInvalid()) + return TemplateArgumentLoc(); + + Expr *ArgE = Arg.getAs<Expr>(); + return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); + } + + TemplateTemplateParmDecl *TempTempParm + = cast<TemplateTemplateParmDecl>(Param); + if (!hasVisibleDefaultArgument(TempTempParm)) + return TemplateArgumentLoc(); + + HasDefaultArg = true; + NestedNameSpecifierLoc QualifierLoc; + TemplateName TName = SubstDefaultTemplateArgument(*this, Template, + TemplateLoc, + RAngleLoc, + TempTempParm, + Converted, + QualifierLoc); + if (TName.isNull()) + return TemplateArgumentLoc(); + + return TemplateArgumentLoc( + Context, TemplateArgument(TName), + TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), + TempTempParm->getDefaultArgument().getTemplateNameLoc()); +} + +/// Convert a template-argument that we parsed as a type into a template, if +/// possible. C++ permits injected-class-names to perform dual service as +/// template template arguments and as template type arguments. +static TemplateArgumentLoc +convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) { + // Extract and step over any surrounding nested-name-specifier. + NestedNameSpecifierLoc QualLoc; + if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { + if (ETLoc.getTypePtr()->getKeyword() != ETK_None) + return TemplateArgumentLoc(); + + QualLoc = ETLoc.getQualifierLoc(); + TLoc = ETLoc.getNamedTypeLoc(); + } + // If this type was written as an injected-class-name, it can be used as a + // template template argument. + if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) + return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(), + QualLoc, InjLoc.getNameLoc()); + + // If this type was written as an injected-class-name, it may have been + // converted to a RecordType during instantiation. If the RecordType is + // *not* wrapped in a TemplateSpecializationType and denotes a class + // template specialization, it must have come from an injected-class-name. + if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) + if (auto *CTSD = + dyn_cast<ClassTemplateSpecializationDecl>(RecLoc.getDecl())) + return TemplateArgumentLoc(Context, + TemplateName(CTSD->getSpecializedTemplate()), + QualLoc, RecLoc.getNameLoc()); + + return TemplateArgumentLoc(); +} + +/// Check that the given template argument corresponds to the given +/// template parameter. +/// +/// \param Param The template parameter against which the argument will be +/// checked. +/// +/// \param Arg The template argument, which may be updated due to conversions. +/// +/// \param Template The template in which the template argument resides. +/// +/// \param TemplateLoc The location of the template name for the template +/// whose argument list we're matching. +/// +/// \param RAngleLoc The location of the right angle bracket ('>') that closes +/// the template argument list. +/// +/// \param ArgumentPackIndex The index into the argument pack where this +/// argument will be placed. Only valid if the parameter is a parameter pack. +/// +/// \param Converted The checked, converted argument will be added to the +/// end of this small vector. +/// +/// \param CTAK Describes how we arrived at this particular template argument: +/// explicitly written, deduced, etc. +/// +/// \returns true on error, false otherwise. +bool Sema::CheckTemplateArgument(NamedDecl *Param, + TemplateArgumentLoc &Arg, + NamedDecl *Template, + SourceLocation TemplateLoc, + SourceLocation RAngleLoc, + unsigned ArgumentPackIndex, + SmallVectorImpl<TemplateArgument> &Converted, + CheckTemplateArgumentKind CTAK) { + // Check template type parameters. + if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) + return CheckTemplateTypeArgument(TTP, Arg, Converted); + + // Check non-type template parameters. + if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) { + // Do substitution on the type of the non-type template parameter + // with the template arguments we've seen thus far. But if the + // template has a dependent context then we cannot substitute yet. + QualType NTTPType = NTTP->getType(); + if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) + NTTPType = NTTP->getExpansionType(ArgumentPackIndex); + + if (NTTPType->isInstantiationDependentType() && + !isa<TemplateTemplateParmDecl>(Template) && + !Template->getDeclContext()->isDependentContext()) { + // Do substitution on the type of the non-type template parameter. + InstantiatingTemplate Inst(*this, TemplateLoc, Template, + NTTP, Converted, + SourceRange(TemplateLoc, RAngleLoc)); + if (Inst.isInvalid()) + return true; + + TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, + Converted); + + // If the parameter is a pack expansion, expand this slice of the pack. + if (auto *PET = NTTPType->getAs<PackExpansionType>()) { + Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, + ArgumentPackIndex); + NTTPType = SubstType(PET->getPattern(), + MultiLevelTemplateArgumentList(TemplateArgs), + NTTP->getLocation(), + NTTP->getDeclName()); + } else { + NTTPType = SubstType(NTTPType, + MultiLevelTemplateArgumentList(TemplateArgs), + NTTP->getLocation(), + NTTP->getDeclName()); + } + + // If that worked, check the non-type template parameter type + // for validity. + if (!NTTPType.isNull()) + NTTPType = CheckNonTypeTemplateParameterType(NTTPType, + NTTP->getLocation()); + if (NTTPType.isNull()) + return true; + } + + switch (Arg.getArgument().getKind()) { + case TemplateArgument::Null: + llvm_unreachable("Should never see a NULL template argument here"); + + case TemplateArgument::Expression: { + TemplateArgument Result; + unsigned CurSFINAEErrors = NumSFINAEErrors; + ExprResult Res = + CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(), + Result, CTAK); + if (Res.isInvalid()) + return true; + // If the current template argument causes an error, give up now. + if (CurSFINAEErrors < NumSFINAEErrors) + return true; + + // If the resulting expression is new, then use it in place of the + // old expression in the template argument. + if (Res.get() != Arg.getArgument().getAsExpr()) { + TemplateArgument TA(Res.get()); + Arg = TemplateArgumentLoc(TA, Res.get()); + } + + Converted.push_back(Result); + break; + } + + case TemplateArgument::Declaration: + case TemplateArgument::Integral: + case TemplateArgument::NullPtr: + // We've already checked this template argument, so just copy + // it to the list of converted arguments. + Converted.push_back(Arg.getArgument()); + break; + + case TemplateArgument::Template: + case TemplateArgument::TemplateExpansion: + // We were given a template template argument. It may not be ill-formed; + // see below. + if (DependentTemplateName *DTN + = Arg.getArgument().getAsTemplateOrTemplatePattern() + .getAsDependentTemplateName()) { + // We have a template argument such as \c T::template X, which we + // parsed as a template template argument. However, since we now + // know that we need a non-type template argument, convert this + // template name into an expression. + + DeclarationNameInfo NameInfo(DTN->getIdentifier(), + Arg.getTemplateNameLoc()); + + CXXScopeSpec SS; + SS.Adopt(Arg.getTemplateQualifierLoc()); + // FIXME: the template-template arg was a DependentTemplateName, + // so it was provided with a template keyword. However, its source + // location is not stored in the template argument structure. + SourceLocation TemplateKWLoc; + ExprResult E = DependentScopeDeclRefExpr::Create( + Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, + nullptr); + + // If we parsed the template argument as a pack expansion, create a + // pack expansion expression. + if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ + E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc()); + if (E.isInvalid()) + return true; + } + + TemplateArgument Result; + E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result); + if (E.isInvalid()) + return true; + + Converted.push_back(Result); + break; + } + + // We have a template argument that actually does refer to a class + // template, alias template, or template template parameter, and + // therefore cannot be a non-type template argument. + Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) + << Arg.getSourceRange(); + + Diag(Param->getLocation(), diag::note_template_param_here); + return true; + + case TemplateArgument::Type: { + // We have a non-type template parameter but the template + // argument is a type. + + // C++ [temp.arg]p2: + // In a template-argument, an ambiguity between a type-id and + // an expression is resolved to a type-id, regardless of the + // form of the corresponding template-parameter. + // + // We warn specifically about this case, since it can be rather + // confusing for users. + QualType T = Arg.getArgument().getAsType(); + SourceRange SR = Arg.getSourceRange(); + if (T->isFunctionType()) + Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; + else + Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; + Diag(Param->getLocation(), diag::note_template_param_here); + return true; + } + + case TemplateArgument::Pack: + llvm_unreachable("Caller must expand template argument packs"); + } + + return false; + } + + + // Check template template parameters. + TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param); + + TemplateParameterList *Params = TempParm->getTemplateParameters(); + if (TempParm->isExpandedParameterPack()) + Params = TempParm->getExpansionTemplateParameters(ArgumentPackIndex); + + // Substitute into the template parameter list of the template + // template parameter, since previously-supplied template arguments + // may appear within the template template parameter. + // + // FIXME: Skip this if the parameters aren't instantiation-dependent. + { + // Set up a template instantiation context. + LocalInstantiationScope Scope(*this); + InstantiatingTemplate Inst(*this, TemplateLoc, Template, + TempParm, Converted, + SourceRange(TemplateLoc, RAngleLoc)); + if (Inst.isInvalid()) + return true; + + TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted); + Params = SubstTemplateParams(Params, CurContext, + MultiLevelTemplateArgumentList(TemplateArgs)); + if (!Params) + return true; + } + + // C++1z [temp.local]p1: (DR1004) + // When [the injected-class-name] is used [...] as a template-argument for + // a template template-parameter [...] it refers to the class template + // itself. + if (Arg.getArgument().getKind() == TemplateArgument::Type) { + TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( + Context, Arg.getTypeSourceInfo()->getTypeLoc()); + if (!ConvertedArg.getArgument().isNull()) + Arg = ConvertedArg; + } + + switch (Arg.getArgument().getKind()) { + case TemplateArgument::Null: + llvm_unreachable("Should never see a NULL template argument here"); + + case TemplateArgument::Template: + case TemplateArgument::TemplateExpansion: + if (CheckTemplateTemplateArgument(TempParm, Params, Arg)) + return true; + + Converted.push_back(Arg.getArgument()); + break; + + case TemplateArgument::Expression: + case TemplateArgument::Type: + // We have a template template parameter but the template + // argument does not refer to a template. + Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) + << getLangOpts().CPlusPlus11; + return true; + + case TemplateArgument::Declaration: + llvm_unreachable("Declaration argument with template template parameter"); + case TemplateArgument::Integral: + llvm_unreachable("Integral argument with template template parameter"); + case TemplateArgument::NullPtr: + llvm_unreachable("Null pointer argument with template template parameter"); + + case TemplateArgument::Pack: + llvm_unreachable("Caller must expand template argument packs"); + } + + return false; +} + +/// Diagnose a missing template argument. +template<typename TemplateParmDecl> +static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, + TemplateDecl *TD, + const TemplateParmDecl *D, + TemplateArgumentListInfo &Args) { + // Dig out the most recent declaration of the template parameter; there may be + // declarations of the template that are more recent than TD. + D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) + ->getTemplateParameters() + ->getParam(D->getIndex())); + + // If there's a default argument that's not visible, diagnose that we're + // missing a module import. + llvm::SmallVector<Module*, 8> Modules; + if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) { + S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD), + D->getDefaultArgumentLoc(), Modules, + Sema::MissingImportKind::DefaultArgument, + /*Recover*/true); + return true; + } + + // FIXME: If there's a more recent default argument that *is* visible, + // diagnose that it was declared too late. + + TemplateParameterList *Params = TD->getTemplateParameters(); + + S.Diag(Loc, diag::err_template_arg_list_different_arity) + << /*not enough args*/0 + << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) + << TD; + S.Diag(TD->getLocation(), diag::note_template_decl_here) + << Params->getSourceRange(); + return true; +} + +/// Check that the given template argument list is well-formed +/// for specializing the given template. +bool Sema::CheckTemplateArgumentList( + TemplateDecl *Template, SourceLocation TemplateLoc, + TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, + SmallVectorImpl<TemplateArgument> &Converted, + bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) { + + if (ConstraintsNotSatisfied) + *ConstraintsNotSatisfied = false; + + // Make a copy of the template arguments for processing. Only make the + // changes at the end when successful in matching the arguments to the + // template. + TemplateArgumentListInfo NewArgs = TemplateArgs; + + // Make sure we get the template parameter list from the most + // recent declaration, since that is the only one that is guaranteed to + // have all the default template argument information. + TemplateParameterList *Params = + cast<TemplateDecl>(Template->getMostRecentDecl()) + ->getTemplateParameters(); + + SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); + + // C++ [temp.arg]p1: + // [...] The type and form of each template-argument specified in + // a template-id shall match the type and form specified for the + // corresponding parameter declared by the template in its + // template-parameter-list. + bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template); + SmallVector<TemplateArgument, 2> ArgumentPack; + unsigned ArgIdx = 0, NumArgs = NewArgs.size(); + LocalInstantiationScope InstScope(*this, true); + for (TemplateParameterList::iterator Param = Params->begin(), + ParamEnd = Params->end(); + Param != ParamEnd; /* increment in loop */) { + // If we have an expanded parameter pack, make sure we don't have too + // many arguments. + if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) { + if (*Expansions == ArgumentPack.size()) { + // We're done with this parameter pack. Pack up its arguments and add + // them to the list. + Converted.push_back( + TemplateArgument::CreatePackCopy(Context, ArgumentPack)); + ArgumentPack.clear(); + + // This argument is assigned to the next parameter. + ++Param; + continue; + } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { + // Not enough arguments for this parameter pack. + Diag(TemplateLoc, diag::err_template_arg_list_different_arity) + << /*not enough args*/0 + << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) + << Template; + Diag(Template->getLocation(), diag::note_template_decl_here) + << Params->getSourceRange(); + return true; + } + } + + if (ArgIdx < NumArgs) { + // Check the template argument we were given. + if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, + TemplateLoc, RAngleLoc, + ArgumentPack.size(), Converted)) + return true; + + bool PackExpansionIntoNonPack = + NewArgs[ArgIdx].getArgument().isPackExpansion() && + (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param)); + if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Template) || + isa<ConceptDecl>(Template))) { + // Core issue 1430: we have a pack expansion as an argument to an + // alias template, and it's not part of a parameter pack. This + // can't be canonicalized, so reject it now. + // As for concepts - we cannot normalize constraints where this + // situation exists. + Diag(NewArgs[ArgIdx].getLocation(), + diag::err_template_expansion_into_fixed_list) + << (isa<ConceptDecl>(Template) ? 1 : 0) + << NewArgs[ArgIdx].getSourceRange(); + Diag((*Param)->getLocation(), diag::note_template_param_here); + return true; + } + + // We're now done with this argument. + ++ArgIdx; + + if ((*Param)->isTemplateParameterPack()) { + // The template parameter was a template parameter pack, so take the + // deduced argument and place it on the argument pack. Note that we + // stay on the same template parameter so that we can deduce more + // arguments. + ArgumentPack.push_back(Converted.pop_back_val()); + } else { + // Move to the next template parameter. + ++Param; + } + + // If we just saw a pack expansion into a non-pack, then directly convert + // the remaining arguments, because we don't know what parameters they'll + // match up with. + if (PackExpansionIntoNonPack) { + if (!ArgumentPack.empty()) { + // If we were part way through filling in an expanded parameter pack, + // fall back to just producing individual arguments. + Converted.insert(Converted.end(), + ArgumentPack.begin(), ArgumentPack.end()); + ArgumentPack.clear(); + } + + while (ArgIdx < NumArgs) { + Converted.push_back(NewArgs[ArgIdx].getArgument()); + ++ArgIdx; + } + + return false; + } + + continue; + } + + // If we're checking a partial template argument list, we're done. + if (PartialTemplateArgs) { + if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty()) + Converted.push_back( + TemplateArgument::CreatePackCopy(Context, ArgumentPack)); + return false; + } + + // If we have a template parameter pack with no more corresponding + // arguments, just break out now and we'll fill in the argument pack below. + if ((*Param)->isTemplateParameterPack()) { + assert(!getExpandedPackSize(*Param) && + "Should have dealt with this already"); + + // A non-expanded parameter pack before the end of the parameter list + // only occurs for an ill-formed template parameter list, unless we've + // got a partial argument list for a function template, so just bail out. + if (Param + 1 != ParamEnd) + return true; + + Converted.push_back( + TemplateArgument::CreatePackCopy(Context, ArgumentPack)); + ArgumentPack.clear(); + + ++Param; + continue; + } + + // Check whether we have a default argument. + TemplateArgumentLoc Arg; + + // Retrieve the default template argument from the template + // parameter. For each kind of template parameter, we substitute the + // template arguments provided thus far and any "outer" template arguments + // (when the template parameter was part of a nested template) into + // the default argument. + if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) { + if (!hasVisibleDefaultArgument(TTP)) + return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP, + NewArgs); + + TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this, + Template, + TemplateLoc, + RAngleLoc, + TTP, + Converted); + if (!ArgType) + return true; + + Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), + ArgType); + } else if (NonTypeTemplateParmDecl *NTTP + = dyn_cast<NonTypeTemplateParmDecl>(*Param)) { + if (!hasVisibleDefaultArgument(NTTP)) + return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP, + NewArgs); + + ExprResult E = SubstDefaultTemplateArgument(*this, Template, + TemplateLoc, + RAngleLoc, + NTTP, + Converted); + if (E.isInvalid()) + return true; + + Expr *Ex = E.getAs<Expr>(); + Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); + } else { + TemplateTemplateParmDecl *TempParm + = cast<TemplateTemplateParmDecl>(*Param); + + if (!hasVisibleDefaultArgument(TempParm)) + return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm, + NewArgs); + + NestedNameSpecifierLoc QualifierLoc; + TemplateName Name = SubstDefaultTemplateArgument(*this, Template, + TemplateLoc, + RAngleLoc, + TempParm, + Converted, + QualifierLoc); + if (Name.isNull()) + return true; + + Arg = TemplateArgumentLoc( + Context, TemplateArgument(Name), QualifierLoc, + TempParm->getDefaultArgument().getTemplateNameLoc()); + } + + // Introduce an instantiation record that describes where we are using + // the default template argument. We're not actually instantiating a + // template here, we just create this object to put a note into the + // context stack. + InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted, + SourceRange(TemplateLoc, RAngleLoc)); + if (Inst.isInvalid()) + return true; + + // Check the default template argument. + if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, + RAngleLoc, 0, Converted)) + return true; + + // Core issue 150 (assumed resolution): if this is a template template + // parameter, keep track of the default template arguments from the + // template definition. + if (isTemplateTemplateParameter) + NewArgs.addArgument(Arg); + + // Move to the next template parameter and argument. + ++Param; + ++ArgIdx; + } + + // If we're performing a partial argument substitution, allow any trailing + // pack expansions; they might be empty. This can happen even if + // PartialTemplateArgs is false (the list of arguments is complete but + // still dependent). + if (ArgIdx < NumArgs && CurrentInstantiationScope && + CurrentInstantiationScope->getPartiallySubstitutedPack()) { + while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion()) + Converted.push_back(NewArgs[ArgIdx++].getArgument()); + } + + // If we have any leftover arguments, then there were too many arguments. + // Complain and fail. + if (ArgIdx < NumArgs) { + Diag(TemplateLoc, diag::err_template_arg_list_different_arity) + << /*too many args*/1 + << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) + << Template + << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); + Diag(Template->getLocation(), diag::note_template_decl_here) + << Params->getSourceRange(); + return true; + } + + // No problems found with the new argument list, propagate changes back + // to caller. + if (UpdateArgsWithConversions) + TemplateArgs = std::move(NewArgs); + + if (!PartialTemplateArgs && + EnsureTemplateArgumentListConstraints( + Template, Converted, SourceRange(TemplateLoc, + TemplateArgs.getRAngleLoc()))) { + if (ConstraintsNotSatisfied) + *ConstraintsNotSatisfied = true; + return true; + } + + return false; +} + +namespace { + class UnnamedLocalNoLinkageFinder + : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> + { + Sema &S; + SourceRange SR; + + typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; + + public: + UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } + + bool Visit(QualType T) { + return T.isNull() ? false : inherited::Visit(T.getTypePtr()); + } + +#define TYPE(Class, Parent) \ + bool Visit##Class##Type(const Class##Type *); +#define ABSTRACT_TYPE(Class, Parent) \ + bool Visit##Class##Type(const Class##Type *) { return false; } +#define NON_CANONICAL_TYPE(Class, Parent) \ + bool Visit##Class##Type(const Class##Type *) { return false; } +#include "clang/AST/TypeNodes.inc" + + bool VisitTagDecl(const TagDecl *Tag); + bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); + }; +} // end anonymous namespace + +bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { + return Visit(T->getElementType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { + return Visit(T->getPointeeType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( + const BlockPointerType* T) { + return Visit(T->getPointeeType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( + const LValueReferenceType* T) { + return Visit(T->getPointeeType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( + const RValueReferenceType* T) { + return Visit(T->getPointeeType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( + const MemberPointerType* T) { + return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0)); +} + +bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( + const ConstantArrayType* T) { + return Visit(T->getElementType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( + const IncompleteArrayType* T) { + return Visit(T->getElementType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( + const VariableArrayType* T) { + return Visit(T->getElementType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( + const DependentSizedArrayType* T) { + return Visit(T->getElementType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( + const DependentSizedExtVectorType* T) { + return Visit(T->getElementType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType( + const DependentSizedMatrixType *T) { + return Visit(T->getElementType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( + const DependentAddressSpaceType *T) { + return Visit(T->getPointeeType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { + return Visit(T->getElementType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( + const DependentVectorType *T) { + return Visit(T->getElementType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { + return Visit(T->getElementType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType( + const ConstantMatrixType *T) { + return Visit(T->getElementType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( + const FunctionProtoType* T) { + for (const auto &A : T->param_types()) { + if (Visit(A)) + return true; + } + + return Visit(T->getReturnType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( + const FunctionNoProtoType* T) { + return Visit(T->getReturnType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( + const UnresolvedUsingType*) { + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { + return Visit(T->getUnderlyingType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( + const UnaryTransformType*) { + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { + return Visit(T->getDeducedType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( + const DeducedTemplateSpecializationType *T) { + return Visit(T->getDeducedType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { + return VisitTagDecl(T->getDecl()); +} + +bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { + return VisitTagDecl(T->getDecl()); +} + +bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( + const TemplateTypeParmType*) { + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( + const SubstTemplateTypeParmPackType *) { + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( + const TemplateSpecializationType*) { + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( + const InjectedClassNameType* T) { + return VisitTagDecl(T->getDecl()); +} + +bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( + const DependentNameType* T) { + return VisitNestedNameSpecifier(T->getQualifier()); +} + +bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( + const DependentTemplateSpecializationType* T) { + if (auto *Q = T->getQualifier()) + return VisitNestedNameSpecifier(Q); + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( + const PackExpansionType* T) { + return Visit(T->getPattern()); +} + +bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( + const ObjCInterfaceType *) { + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( + const ObjCObjectPointerType *) { + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { + return Visit(T->getValueType()); +} + +bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) { + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType( + const DependentBitIntType *T) { + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { + if (Tag->getDeclContext()->isFunctionOrMethod()) { + S.Diag(SR.getBegin(), + S.getLangOpts().CPlusPlus11 ? + diag::warn_cxx98_compat_template_arg_local_type : + diag::ext_template_arg_local_type) + << S.Context.getTypeDeclType(Tag) << SR; + return true; + } + + if (!Tag->hasNameForLinkage()) { + S.Diag(SR.getBegin(), + S.getLangOpts().CPlusPlus11 ? + diag::warn_cxx98_compat_template_arg_unnamed_type : + diag::ext_template_arg_unnamed_type) << SR; + S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); + return true; + } + + return false; +} + +bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( + NestedNameSpecifier *NNS) { + assert(NNS); + if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix())) + return true; + + switch (NNS->getKind()) { + case NestedNameSpecifier::Identifier: + case NestedNameSpecifier::Namespace: + case NestedNameSpecifier::NamespaceAlias: + case NestedNameSpecifier::Global: + case NestedNameSpecifier::Super: + return false; + + case NestedNameSpecifier::TypeSpec: + case NestedNameSpecifier::TypeSpecWithTemplate: + return Visit(QualType(NNS->getAsType(), 0)); + } + llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); +} + +/// Check a template argument against its corresponding +/// template type parameter. +/// +/// This routine implements the semantics of C++ [temp.arg.type]. It +/// returns true if an error occurred, and false otherwise. +bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) { + assert(ArgInfo && "invalid TypeSourceInfo"); + QualType Arg = ArgInfo->getType(); + SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); + + if (Arg->isVariablyModifiedType()) { + return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; + } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) { + return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; + } + + // C++03 [temp.arg.type]p2: + // A local type, a type with no linkage, an unnamed type or a type + // compounded from any of these types shall not be used as a + // template-argument for a template type-parameter. + // + // C++11 allows these, and even in C++03 we allow them as an extension with + // a warning. + if (LangOpts.CPlusPlus11 || Arg->hasUnnamedOrLocalType()) { + UnnamedLocalNoLinkageFinder Finder(*this, SR); + (void)Finder.Visit(Context.getCanonicalType(Arg)); + } + + return false; +} + +enum NullPointerValueKind { + NPV_NotNullPointer, + NPV_NullPointer, + NPV_Error +}; + +/// Determine whether the given template argument is a null pointer +/// value of the appropriate type. +static NullPointerValueKind +isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, + QualType ParamType, Expr *Arg, + Decl *Entity = nullptr) { + if (Arg->isValueDependent() || Arg->isTypeDependent()) + return NPV_NotNullPointer; + + // dllimport'd entities aren't constant but are available inside of template + // arguments. + if (Entity && Entity->hasAttr<DLLImportAttr>()) + return NPV_NotNullPointer; + + if (!S.isCompleteType(Arg->getExprLoc(), ParamType)) + llvm_unreachable( + "Incomplete parameter type in isNullPointerValueTemplateArgument!"); + + if (!S.getLangOpts().CPlusPlus11) + return NPV_NotNullPointer; + + // Determine whether we have a constant expression. + ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg); + if (ArgRV.isInvalid()) + return NPV_Error; + Arg = ArgRV.get(); + + Expr::EvalResult EvalResult; + SmallVector<PartialDiagnosticAt, 8> Notes; + EvalResult.Diag = &Notes; + if (!Arg->EvaluateAsRValue(EvalResult, S.Context) || + EvalResult.HasSideEffects) { + SourceLocation DiagLoc = Arg->getExprLoc(); + + // If our only note is the usual "invalid subexpression" note, just point + // the caret at its location rather than producing an essentially + // redundant note. + if (Notes.size() == 1 && Notes[0].second.getDiagID() == + diag::note_invalid_subexpr_in_const_expr) { + DiagLoc = Notes[0].first; + Notes.clear(); + } + + S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) + << Arg->getType() << Arg->getSourceRange(); + for (unsigned I = 0, N = Notes.size(); I != N; ++I) + S.Diag(Notes[I].first, Notes[I].second); + + S.Diag(Param->getLocation(), diag::note_template_param_here); + return NPV_Error; + } + + // C++11 [temp.arg.nontype]p1: + // - an address constant expression of type std::nullptr_t + if (Arg->getType()->isNullPtrType()) + return NPV_NullPointer; + + // - a constant expression that evaluates to a null pointer value (4.10); or + // - a constant expression that evaluates to a null member pointer value + // (4.11); or + if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) || + (EvalResult.Val.isMemberPointer() && + !EvalResult.Val.getMemberPointerDecl())) { + // If our expression has an appropriate type, we've succeeded. + bool ObjCLifetimeConversion; + if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) || + S.IsQualificationConversion(Arg->getType(), ParamType, false, + ObjCLifetimeConversion)) + return NPV_NullPointer; + + // The types didn't match, but we know we got a null pointer; complain, + // then recover as if the types were correct. + S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) + << Arg->getType() << ParamType << Arg->getSourceRange(); + S.Diag(Param->getLocation(), diag::note_template_param_here); + return NPV_NullPointer; + } + + // If we don't have a null pointer value, but we do have a NULL pointer + // constant, suggest a cast to the appropriate type. + if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) { + std::string Code = "static_cast<" + ParamType.getAsString() + ">("; + S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) + << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code) + << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()), + ")"); + S.Diag(Param->getLocation(), diag::note_template_param_here); + return NPV_NullPointer; + } + + // FIXME: If we ever want to support general, address-constant expressions + // as non-type template arguments, we should return the ExprResult here to + // be interpreted by the caller. + return NPV_NotNullPointer; +} + +/// Checks whether the given template argument is compatible with its +/// template parameter. +static bool CheckTemplateArgumentIsCompatibleWithParameter( + Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, + Expr *Arg, QualType ArgType) { + bool ObjCLifetimeConversion; + if (ParamType->isPointerType() && + !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() && + S.IsQualificationConversion(ArgType, ParamType, false, + ObjCLifetimeConversion)) { + // For pointer-to-object types, qualification conversions are + // permitted. + } else { + if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { + if (!ParamRef->getPointeeType()->isFunctionType()) { + // C++ [temp.arg.nontype]p5b3: + // For a non-type template-parameter of type reference to + // object, no conversions apply. The type referred to by the + // reference may be more cv-qualified than the (otherwise + // identical) type of the template- argument. The + // template-parameter is bound directly to the + // template-argument, which shall be an lvalue. + + // FIXME: Other qualifiers? + unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); + unsigned ArgQuals = ArgType.getCVRQualifiers(); + + if ((ParamQuals | ArgQuals) != ParamQuals) { + S.Diag(Arg->getBeginLoc(), + diag::err_template_arg_ref_bind_ignores_quals) + << ParamType << Arg->getType() << Arg->getSourceRange(); + S.Diag(Param->getLocation(), diag::note_template_param_here); + return true; + } + } + } + + // At this point, the template argument refers to an object or + // function with external linkage. We now need to check whether the + // argument and parameter types are compatible. + if (!S.Context.hasSameUnqualifiedType(ArgType, + ParamType.getNonReferenceType())) { + // We can't perform this conversion or binding. + if (ParamType->isReferenceType()) + S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind) + << ParamType << ArgIn->getType() << Arg->getSourceRange(); + else + S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) + << ArgIn->getType() << ParamType << Arg->getSourceRange(); + S.Diag(Param->getLocation(), diag::note_template_param_here); + return true; + } + } + + return false; +} + +/// Checks whether the given template argument is the address +/// of an object or function according to C++ [temp.arg.nontype]p1. +static bool +CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S, + NonTypeTemplateParmDecl *Param, + QualType ParamType, + Expr *ArgIn, + TemplateArgument &Converted) { + bool Invalid = false; + Expr *Arg = ArgIn; + QualType ArgType = Arg->getType(); + + bool AddressTaken = false; + SourceLocation AddrOpLoc; + if (S.getLangOpts().MicrosoftExt) { + // Microsoft Visual C++ strips all casts, allows an arbitrary number of + // dereference and address-of operators. + Arg = Arg->IgnoreParenCasts(); + + bool ExtWarnMSTemplateArg = false; + UnaryOperatorKind FirstOpKind; + SourceLocation FirstOpLoc; + while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { + UnaryOperatorKind UnOpKind = UnOp->getOpcode(); + if (UnOpKind == UO_Deref) + ExtWarnMSTemplateArg = true; + if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { + Arg = UnOp->getSubExpr()->IgnoreParenCasts(); + if (!AddrOpLoc.isValid()) { + FirstOpKind = UnOpKind; + FirstOpLoc = UnOp->getOperatorLoc(); + } + } else + break; + } + if (FirstOpLoc.isValid()) { + if (ExtWarnMSTemplateArg) + S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument) + << ArgIn->getSourceRange(); + + if (FirstOpKind == UO_AddrOf) + AddressTaken = true; + else if (Arg->getType()->isPointerType()) { + // We cannot let pointers get dereferenced here, that is obviously not a + // constant expression. + assert(FirstOpKind == UO_Deref); + S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) + << Arg->getSourceRange(); + } + } + } else { + // See through any implicit casts we added to fix the type. + Arg = Arg->IgnoreImpCasts(); + + // C++ [temp.arg.nontype]p1: + // + // A template-argument for a non-type, non-template + // template-parameter shall be one of: [...] + // + // -- the address of an object or function with external + // linkage, including function templates and function + // template-ids but excluding non-static class members, + // expressed as & id-expression where the & is optional if + // the name refers to a function or array, or if the + // corresponding template-parameter is a reference; or + + // In C++98/03 mode, give an extension warning on any extra parentheses. + // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 + bool ExtraParens = false; + while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { + if (!Invalid && !ExtraParens) { + S.Diag(Arg->getBeginLoc(), + S.getLangOpts().CPlusPlus11 + ? diag::warn_cxx98_compat_template_arg_extra_parens + : diag::ext_template_arg_extra_parens) + << Arg->getSourceRange(); + ExtraParens = true; + } + + Arg = Parens->getSubExpr(); + } + + while (SubstNonTypeTemplateParmExpr *subst = + dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) + Arg = subst->getReplacement()->IgnoreImpCasts(); + + if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { + if (UnOp->getOpcode() == UO_AddrOf) { + Arg = UnOp->getSubExpr(); + AddressTaken = true; + AddrOpLoc = UnOp->getOperatorLoc(); + } + } + + while (SubstNonTypeTemplateParmExpr *subst = + dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) + Arg = subst->getReplacement()->IgnoreImpCasts(); + } + + ValueDecl *Entity = nullptr; + if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg)) + Entity = DRE->getDecl(); + else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Arg)) + Entity = CUE->getGuidDecl(); + + // If our parameter has pointer type, check for a null template value. + if (ParamType->isPointerType() || ParamType->isNullPtrType()) { + switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, + Entity)) { + case NPV_NullPointer: + S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); + Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), + /*isNullPtr=*/true); + return false; + + case NPV_Error: + return true; + + case NPV_NotNullPointer: + break; + } + } + + // Stop checking the precise nature of the argument if it is value dependent, + // it should be checked when instantiated. + if (Arg->isValueDependent()) { + Converted = TemplateArgument(ArgIn); + return false; + } + + if (!Entity) { + S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) + << Arg->getSourceRange(); + S.Diag(Param->getLocation(), diag::note_template_param_here); + return true; + } + + // Cannot refer to non-static data members + if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) { + S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field) + << Entity << Arg->getSourceRange(); + S.Diag(Param->getLocation(), diag::note_template_param_here); + return true; + } + + // Cannot refer to non-static member functions + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) { + if (!Method->isStatic()) { + S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method) + << Method << Arg->getSourceRange(); + S.Diag(Param->getLocation(), diag::note_template_param_here); + return true; + } + } + + FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity); + VarDecl *Var = dyn_cast<VarDecl>(Entity); + MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Entity); + + // A non-type template argument must refer to an object or function. + if (!Func && !Var && !Guid) { + // We found something, but we don't know specifically what it is. + S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func) + << Arg->getSourceRange(); + S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here); + return true; + } + + // Address / reference template args must have external linkage in C++98. + if (Entity->getFormalLinkage() == InternalLinkage) { + S.Diag(Arg->getBeginLoc(), + S.getLangOpts().CPlusPlus11 + ? diag::warn_cxx98_compat_template_arg_object_internal + : diag::ext_template_arg_object_internal) + << !Func << Entity << Arg->getSourceRange(); + S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) + << !Func; + } else if (!Entity->hasLinkage()) { + S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage) + << !Func << Entity << Arg->getSourceRange(); + S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) + << !Func; + return true; + } + + if (Var) { + // A value of reference type is not an object. + if (Var->getType()->isReferenceType()) { + S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var) + << Var->getType() << Arg->getSourceRange(); + S.Diag(Param->getLocation(), diag::note_template_param_here); + return true; + } + + // A template argument must have static storage duration. + if (Var->getTLSKind()) { + S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local) + << Arg->getSourceRange(); + S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); + return true; + } + } + + if (AddressTaken && ParamType->isReferenceType()) { + // If we originally had an address-of operator, but the + // parameter has reference type, complain and (if things look + // like they will work) drop the address-of operator. + if (!S.Context.hasSameUnqualifiedType(Entity->getType(), + ParamType.getNonReferenceType())) { + S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) + << ParamType; + S.Diag(Param->getLocation(), diag::note_template_param_here); + return true; + } + + S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) + << ParamType + << FixItHint::CreateRemoval(AddrOpLoc); + S.Diag(Param->getLocation(), diag::note_template_param_here); + + ArgType = Entity->getType(); + } + + // If the template parameter has pointer type, either we must have taken the + // address or the argument must decay to a pointer. + if (!AddressTaken && ParamType->isPointerType()) { + if (Func) { + // Function-to-pointer decay. + ArgType = S.Context.getPointerType(Func->getType()); + } else if (Entity->getType()->isArrayType()) { + // Array-to-pointer decay. + ArgType = S.Context.getArrayDecayedType(Entity->getType()); + } else { + // If the template parameter has pointer type but the address of + // this object was not taken, complain and (possibly) recover by + // taking the address of the entity. + ArgType = S.Context.getPointerType(Entity->getType()); + if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) { + S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) + << ParamType; + S.Diag(Param->getLocation(), diag::note_template_param_here); + return true; + } + + S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) + << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&"); + + S.Diag(Param->getLocation(), diag::note_template_param_here); + } + } + + if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, + Arg, ArgType)) + return true; + + // Create the template argument. + Converted = TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), + S.Context.getCanonicalType(ParamType)); + S.MarkAnyDeclReferenced(Arg->getBeginLoc(), Entity, false); + return false; +} + +/// Checks whether the given template argument is a pointer to +/// member constant according to C++ [temp.arg.nontype]p1. +static bool CheckTemplateArgumentPointerToMember(Sema &S, + NonTypeTemplateParmDecl *Param, + QualType ParamType, + Expr *&ResultArg, + TemplateArgument &Converted) { + bool Invalid = false; + + Expr *Arg = ResultArg; + bool ObjCLifetimeConversion; + + // C++ [temp.arg.nontype]p1: + // + // A template-argument for a non-type, non-template + // template-parameter shall be one of: [...] + // + // -- a pointer to member expressed as described in 5.3.1. + DeclRefExpr *DRE = nullptr; + + // In C++98/03 mode, give an extension warning on any extra parentheses. + // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 + bool ExtraParens = false; + while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) { + if (!Invalid && !ExtraParens) { + S.Diag(Arg->getBeginLoc(), + S.getLangOpts().CPlusPlus11 + ? diag::warn_cxx98_compat_template_arg_extra_parens + : diag::ext_template_arg_extra_parens) + << Arg->getSourceRange(); + ExtraParens = true; + } + + Arg = Parens->getSubExpr(); + } + + while (SubstNonTypeTemplateParmExpr *subst = + dyn_cast<SubstNonTypeTemplateParmExpr>(Arg)) + Arg = subst->getReplacement()->IgnoreImpCasts(); + + // A pointer-to-member constant written &Class::member. + if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) { + if (UnOp->getOpcode() == UO_AddrOf) { + DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr()); + if (DRE && !DRE->getQualifier()) + DRE = nullptr; + } + } + // A constant of pointer-to-member type. + else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) { + ValueDecl *VD = DRE->getDecl(); + if (VD->getType()->isMemberPointerType()) { + if (isa<NonTypeTemplateParmDecl>(VD)) { + if (Arg->isTypeDependent() || Arg->isValueDependent()) { + Converted = TemplateArgument(Arg); + } else { + VD = cast<ValueDecl>(VD->getCanonicalDecl()); + Converted = TemplateArgument(VD, ParamType); + } + return Invalid; + } + } + + DRE = nullptr; + } + + ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; + + // Check for a null pointer value. + switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, + Entity)) { + case NPV_Error: + return true; + case NPV_NullPointer: + S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); + Converted = TemplateArgument(S.Context.getCanonicalType(ParamType), + /*isNullPtr*/true); + return false; + case NPV_NotNullPointer: + break; + } + + if (S.IsQualificationConversion(ResultArg->getType(), + ParamType.getNonReferenceType(), false, + ObjCLifetimeConversion)) { + ResultArg = S.ImpCastExprToType(ResultArg, ParamType, CK_NoOp, + ResultArg->getValueKind()) + .get(); + } else if (!S.Context.hasSameUnqualifiedType( + ResultArg->getType(), ParamType.getNonReferenceType())) { + // We can't perform this conversion. + S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible) + << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); + S.Diag(Param->getLocation(), diag::note_template_param_here); + return true; + } + + if (!DRE) + return S.Diag(Arg->getBeginLoc(), + diag::err_template_arg_not_pointer_to_member_form) + << Arg->getSourceRange(); + + if (isa<FieldDecl>(DRE->getDecl()) || + isa<IndirectFieldDecl>(DRE->getDecl()) || + isa<CXXMethodDecl>(DRE->getDecl())) { + assert((isa<FieldDecl>(DRE->getDecl()) || + isa<IndirectFieldDecl>(DRE->getDecl()) || + !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) && + "Only non-static member pointers can make it here"); + + // Okay: this is the address of a non-static member, and therefore + // a member pointer constant. + if (Arg->isTypeDependent() || Arg->isValueDependent()) { + Converted = TemplateArgument(Arg); + } else { + ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl()); + Converted = TemplateArgument(D, S.Context.getCanonicalType(ParamType)); + } + return Invalid; + } + + // We found something else, but we don't know specifically what it is. + S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form) + << Arg->getSourceRange(); + S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); + return true; +} + +/// Check a template argument against its corresponding +/// non-type template parameter. +/// +/// This routine implements the semantics of C++ [temp.arg.nontype]. +/// If an error occurred, it returns ExprError(); otherwise, it +/// returns the converted template argument. \p ParamType is the +/// type of the non-type template parameter after it has been instantiated. +ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, + QualType ParamType, Expr *Arg, + TemplateArgument &Converted, + CheckTemplateArgumentKind CTAK) { + SourceLocation StartLoc = Arg->getBeginLoc(); + + // If the parameter type somehow involves auto, deduce the type now. + DeducedType *DeducedT = ParamType->getContainedDeducedType(); + if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) { + // During template argument deduction, we allow 'decltype(auto)' to + // match an arbitrary dependent argument. + // FIXME: The language rules don't say what happens in this case. + // FIXME: We get an opaque dependent type out of decltype(auto) if the + // expression is merely instantiation-dependent; is this enough? + if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) { + auto *AT = dyn_cast<AutoType>(DeducedT); + if (AT && AT->isDecltypeAuto()) { + Converted = TemplateArgument(Arg); + return Arg; + } + } + + // When checking a deduced template argument, deduce from its type even if + // the type is dependent, in order to check the types of non-type template + // arguments line up properly in partial ordering. + Optional<unsigned> Depth = Param->getDepth() + 1; + Expr *DeductionArg = Arg; + if (auto *PE = dyn_cast<PackExpansionExpr>(DeductionArg)) + DeductionArg = PE->getPattern(); + TypeSourceInfo *TSI = + Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()); + if (isa<DeducedTemplateSpecializationType>(DeducedT)) { + InitializedEntity Entity = + InitializedEntity::InitializeTemplateParameter(ParamType, Param); + InitializationKind Kind = InitializationKind::CreateForInit( + DeductionArg->getBeginLoc(), /*DirectInit*/false, DeductionArg); + Expr *Inits[1] = {DeductionArg}; + ParamType = + DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, Inits); + if (ParamType.isNull()) + return ExprError(); + } else if (DeduceAutoType( + TSI, DeductionArg, ParamType, Depth, + // We do not check constraints right now because the + // immediately-declared constraint of the auto type is also + // an associated constraint, and will be checked along with + // the other associated constraints after checking the + // template argument list. + /*IgnoreConstraints=*/true) == DAR_Failed) { + Diag(Arg->getExprLoc(), + diag::err_non_type_template_parm_type_deduction_failure) + << Param->getDeclName() << Param->getType() << Arg->getType() + << Arg->getSourceRange(); + Diag(Param->getLocation(), diag::note_template_param_here); + return ExprError(); + } + // CheckNonTypeTemplateParameterType will produce a diagnostic if there's + // an error. The error message normally references the parameter + // declaration, but here we'll pass the argument location because that's + // where the parameter type is deduced. + ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc()); + if (ParamType.isNull()) { + Diag(Param->getLocation(), diag::note_template_param_here); + return ExprError(); + } + } + + // We should have already dropped all cv-qualifiers by now. + assert(!ParamType.hasQualifiers() && + "non-type template parameter type cannot be qualified"); + + // FIXME: When Param is a reference, should we check that Arg is an lvalue? + if (CTAK == CTAK_Deduced && + (ParamType->isReferenceType() + ? !Context.hasSameType(ParamType.getNonReferenceType(), + Arg->getType()) + : !Context.hasSameUnqualifiedType(ParamType, Arg->getType()))) { + // FIXME: If either type is dependent, we skip the check. This isn't + // correct, since during deduction we're supposed to have replaced each + // template parameter with some unique (non-dependent) placeholder. + // FIXME: If the argument type contains 'auto', we carry on and fail the + // type check in order to force specific types to be more specialized than + // 'auto'. It's not clear how partial ordering with 'auto' is supposed to + // work. Similarly for CTAD, when comparing 'A<x>' against 'A'. + if ((ParamType->isDependentType() || Arg->isTypeDependent()) && + !Arg->getType()->getContainedDeducedType()) { + Converted = TemplateArgument(Arg); + return Arg; + } + // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, + // we should actually be checking the type of the template argument in P, + // not the type of the template argument deduced from A, against the + // template parameter type. + Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) + << Arg->getType() + << ParamType.getUnqualifiedType(); + Diag(Param->getLocation(), diag::note_template_param_here); + return ExprError(); + } + + // If either the parameter has a dependent type or the argument is + // type-dependent, there's nothing we can check now. The argument only + // contains an unexpanded pack during partial ordering, and there's + // nothing more we can check in that case. + if (ParamType->isDependentType() || Arg->isTypeDependent() || + Arg->containsUnexpandedParameterPack()) { + // Force the argument to the type of the parameter to maintain invariants. + auto *PE = dyn_cast<PackExpansionExpr>(Arg); + if (PE) + Arg = PE->getPattern(); + ExprResult E = ImpCastExprToType( + Arg, ParamType.getNonLValueExprType(Context), CK_Dependent, + ParamType->isLValueReferenceType() ? VK_LValue + : ParamType->isRValueReferenceType() ? VK_XValue + : VK_PRValue); + if (E.isInvalid()) + return ExprError(); + if (PE) { + // Recreate a pack expansion if we unwrapped one. + E = new (Context) + PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(), + PE->getNumExpansions()); + } + Converted = TemplateArgument(E.get()); + return E; + } + + // The initialization of the parameter from the argument is + // a constant-evaluated context. + EnterExpressionEvaluationContext ConstantEvaluated( + *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); + + if (getLangOpts().CPlusPlus17) { + QualType CanonParamType = Context.getCanonicalType(ParamType); + + // Avoid making a copy when initializing a template parameter of class type + // from a template parameter object of the same type. This is going beyond + // the standard, but is required for soundness: in + // template<A a> struct X { X *p; X<a> *q; }; + // ... we need p and q to have the same type. + // + // Similarly, don't inject a call to a copy constructor when initializing + // from a template parameter of the same type. + Expr *InnerArg = Arg->IgnoreParenImpCasts(); + if (ParamType->isRecordType() && isa<DeclRefExpr>(InnerArg) && + Context.hasSameUnqualifiedType(ParamType, InnerArg->getType())) { + NamedDecl *ND = cast<DeclRefExpr>(InnerArg)->getDecl(); + if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { + Converted = TemplateArgument(TPO, CanonParamType); + return Arg; + } + if (isa<NonTypeTemplateParmDecl>(ND)) { + Converted = TemplateArgument(Arg); + return Arg; + } + } + + // C++17 [temp.arg.nontype]p1: + // A template-argument for a non-type template parameter shall be + // a converted constant expression of the type of the template-parameter. + APValue Value; + ExprResult ArgResult = CheckConvertedConstantExpression( + Arg, ParamType, Value, CCEK_TemplateArg, Param); + if (ArgResult.isInvalid()) + return ExprError(); + + // For a value-dependent argument, CheckConvertedConstantExpression is + // permitted (and expected) to be unable to determine a value. + if (ArgResult.get()->isValueDependent()) { + Converted = TemplateArgument(ArgResult.get()); + return ArgResult; + } + + // Convert the APValue to a TemplateArgument. + switch (Value.getKind()) { + case APValue::None: + assert(ParamType->isNullPtrType()); + Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true); + break; + case APValue::Indeterminate: + llvm_unreachable("result of constant evaluation should be initialized"); + break; + case APValue::Int: + assert(ParamType->isIntegralOrEnumerationType()); + Converted = TemplateArgument(Context, Value.getInt(), CanonParamType); + break; + case APValue::MemberPointer: { + assert(ParamType->isMemberPointerType()); + + // FIXME: We need TemplateArgument representation and mangling for these. + if (!Value.getMemberPointerPath().empty()) { + Diag(Arg->getBeginLoc(), + diag::err_template_arg_member_ptr_base_derived_not_supported) + << Value.getMemberPointerDecl() << ParamType + << Arg->getSourceRange(); + return ExprError(); + } + + auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl()); + Converted = VD ? TemplateArgument(VD, CanonParamType) + : TemplateArgument(CanonParamType, /*isNullPtr*/true); + break; + } + case APValue::LValue: { + // For a non-type template-parameter of pointer or reference type, + // the value of the constant expression shall not refer to + assert(ParamType->isPointerType() || ParamType->isReferenceType() || + ParamType->isNullPtrType()); + // -- a temporary object + // -- a string literal + // -- the result of a typeid expression, or + // -- a predefined __func__ variable + APValue::LValueBase Base = Value.getLValueBase(); + auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>()); + if (Base && (!VD || isa<LifetimeExtendedTemporaryDecl>(VD))) { + Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) + << Arg->getSourceRange(); + return ExprError(); + } + // -- a subobject + // FIXME: Until C++20 + if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && + VD && VD->getType()->isArrayType() && + Value.getLValuePath()[0].getAsArrayIndex() == 0 && + !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { + // Per defect report (no number yet): + // ... other than a pointer to the first element of a complete array + // object. + } else if (!Value.hasLValuePath() || Value.getLValuePath().size() || + Value.isLValueOnePastTheEnd()) { + Diag(StartLoc, diag::err_non_type_template_arg_subobject) + << Value.getAsString(Context, ParamType); + return ExprError(); + } + assert((VD || !ParamType->isReferenceType()) && + "null reference should not be a constant expression"); + assert((!VD || !ParamType->isNullPtrType()) && + "non-null value of type nullptr_t?"); + Converted = VD ? TemplateArgument(VD, CanonParamType) + : TemplateArgument(CanonParamType, /*isNullPtr*/true); + break; + } + case APValue::Struct: + case APValue::Union: + // Get or create the corresponding template parameter object. + Converted = TemplateArgument( + Context.getTemplateParamObjectDecl(CanonParamType, Value), + CanonParamType); + break; + case APValue::AddrLabelDiff: + return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); + case APValue::FixedPoint: + case APValue::Float: + case APValue::ComplexInt: + case APValue::ComplexFloat: + case APValue::Vector: + case APValue::Array: + return Diag(StartLoc, diag::err_non_type_template_arg_unsupported) + << ParamType; + } + + return ArgResult.get(); + } + + // C++ [temp.arg.nontype]p5: + // The following conversions are performed on each expression used + // as a non-type template-argument. If a non-type + // template-argument cannot be converted to the type of the + // corresponding template-parameter then the program is + // ill-formed. + if (ParamType->isIntegralOrEnumerationType()) { + // C++11: + // -- for a non-type template-parameter of integral or + // enumeration type, conversions permitted in a converted + // constant expression are applied. + // + // C++98: + // -- for a non-type template-parameter of integral or + // enumeration type, integral promotions (4.5) and integral + // conversions (4.7) are applied. + + if (getLangOpts().CPlusPlus11) { + // C++ [temp.arg.nontype]p1: + // A template-argument for a non-type, non-template template-parameter + // shall be one of: + // + // -- for a non-type template-parameter of integral or enumeration + // type, a converted constant expression of the type of the + // template-parameter; or + llvm::APSInt Value; + ExprResult ArgResult = + CheckConvertedConstantExpression(Arg, ParamType, Value, + CCEK_TemplateArg); + if (ArgResult.isInvalid()) + return ExprError(); + + // We can't check arbitrary value-dependent arguments. + if (ArgResult.get()->isValueDependent()) { + Converted = TemplateArgument(ArgResult.get()); + return ArgResult; + } + + // Widen the argument value to sizeof(parameter type). This is almost + // always a no-op, except when the parameter type is bool. In + // that case, this may extend the argument from 1 bit to 8 bits. + QualType IntegerType = ParamType; + if (const EnumType *Enum = IntegerType->getAs<EnumType>()) + IntegerType = Enum->getDecl()->getIntegerType(); + Value = Value.extOrTrunc(IntegerType->isBitIntType() + ? Context.getIntWidth(IntegerType) + : Context.getTypeSize(IntegerType)); + + Converted = TemplateArgument(Context, Value, + Context.getCanonicalType(ParamType)); + return ArgResult; + } + + ExprResult ArgResult = DefaultLvalueConversion(Arg); + if (ArgResult.isInvalid()) + return ExprError(); + Arg = ArgResult.get(); + + QualType ArgType = Arg->getType(); + + // C++ [temp.arg.nontype]p1: + // A template-argument for a non-type, non-template + // template-parameter shall be one of: + // + // -- an integral constant-expression of integral or enumeration + // type; or + // -- the name of a non-type template-parameter; or + llvm::APSInt Value; + if (!ArgType->isIntegralOrEnumerationType()) { + Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral) + << ArgType << Arg->getSourceRange(); + Diag(Param->getLocation(), diag::note_template_param_here); + return ExprError(); + } else if (!Arg->isValueDependent()) { + class TmplArgICEDiagnoser : public VerifyICEDiagnoser { + QualType T; + + public: + TmplArgICEDiagnoser(QualType T) : T(T) { } + + SemaDiagnosticBuilder diagnoseNotICE(Sema &S, + SourceLocation Loc) override { + return S.Diag(Loc, diag::err_template_arg_not_ice) << T; + } + } Diagnoser(ArgType); + + Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get(); + if (!Arg) + return ExprError(); + } + + // From here on out, all we care about is the unqualified form + // of the argument type. + ArgType = ArgType.getUnqualifiedType(); + + // Try to convert the argument to the parameter's type. + if (Context.hasSameType(ParamType, ArgType)) { + // Okay: no conversion necessary + } else if (ParamType->isBooleanType()) { + // This is an integral-to-boolean conversion. + Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get(); + } else if (IsIntegralPromotion(Arg, ArgType, ParamType) || + !ParamType->isEnumeralType()) { + // This is an integral promotion or conversion. + Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get(); + } else { + // We can't perform this conversion. + Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) + << Arg->getType() << ParamType << Arg->getSourceRange(); + Diag(Param->getLocation(), diag::note_template_param_here); + return ExprError(); + } + + // Add the value of this argument to the list of converted + // arguments. We use the bitwidth and signedness of the template + // parameter. + if (Arg->isValueDependent()) { + // The argument is value-dependent. Create a new + // TemplateArgument with the converted expression. + Converted = TemplateArgument(Arg); + return Arg; + } + + QualType IntegerType = Context.getCanonicalType(ParamType); + if (const EnumType *Enum = IntegerType->getAs<EnumType>()) + IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType()); + + if (ParamType->isBooleanType()) { + // Value must be zero or one. + Value = Value != 0; + unsigned AllowedBits = Context.getTypeSize(IntegerType); + if (Value.getBitWidth() != AllowedBits) + Value = Value.extOrTrunc(AllowedBits); + Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); + } else { + llvm::APSInt OldValue = Value; + + // Coerce the template argument's value to the value it will have + // based on the template parameter's type. + unsigned AllowedBits = IntegerType->isBitIntType() + ? Context.getIntWidth(IntegerType) + : Context.getTypeSize(IntegerType); + if (Value.getBitWidth() != AllowedBits) + Value = Value.extOrTrunc(AllowedBits); + Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); + + // Complain if an unsigned parameter received a negative value. + if (IntegerType->isUnsignedIntegerOrEnumerationType() && + (OldValue.isSigned() && OldValue.isNegative())) { + Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative) + << toString(OldValue, 10) << toString(Value, 10) << Param->getType() + << Arg->getSourceRange(); + Diag(Param->getLocation(), diag::note_template_param_here); + } + + // Complain if we overflowed the template parameter's type. + unsigned RequiredBits; + if (IntegerType->isUnsignedIntegerOrEnumerationType()) + RequiredBits = OldValue.getActiveBits(); + else if (OldValue.isUnsigned()) + RequiredBits = OldValue.getActiveBits() + 1; + else + RequiredBits = OldValue.getMinSignedBits(); + if (RequiredBits > AllowedBits) { + Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large) + << toString(OldValue, 10) << toString(Value, 10) << Param->getType() + << Arg->getSourceRange(); + Diag(Param->getLocation(), diag::note_template_param_here); + } + } + + Converted = TemplateArgument(Context, Value, + ParamType->isEnumeralType() + ? Context.getCanonicalType(ParamType) + : IntegerType); + return Arg; + } + + QualType ArgType = Arg->getType(); + DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction + + // Handle pointer-to-function, reference-to-function, and + // pointer-to-member-function all in (roughly) the same way. + if (// -- For a non-type template-parameter of type pointer to + // function, only the function-to-pointer conversion (4.3) is + // applied. If the template-argument represents a set of + // overloaded functions (or a pointer to such), the matching + // function is selected from the set (13.4). + (ParamType->isPointerType() && + ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) || + // -- For a non-type template-parameter of type reference to + // function, no conversions apply. If the template-argument + // represents a set of overloaded functions, the matching + // function is selected from the set (13.4). + (ParamType->isReferenceType() && + ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) || + // -- For a non-type template-parameter of type pointer to + // member function, no conversions apply. If the + // template-argument represents a set of overloaded member + // functions, the matching member function is selected from + // the set (13.4). + (ParamType->isMemberPointerType() && + ParamType->castAs<MemberPointerType>()->getPointeeType() + ->isFunctionType())) { + + if (Arg->getType() == Context.OverloadTy) { + if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType, + true, + FoundResult)) { + if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) + return ExprError(); + + Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); + ArgType = Arg->getType(); + } else + return ExprError(); + } + + if (!ParamType->isMemberPointerType()) { + if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, + ParamType, + Arg, Converted)) + return ExprError(); + return Arg; + } + + if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, + Converted)) + return ExprError(); + return Arg; + } + + if (ParamType->isPointerType()) { + // -- for a non-type template-parameter of type pointer to + // object, qualification conversions (4.4) and the + // array-to-pointer conversion (4.2) are applied. + // C++0x also allows a value of std::nullptr_t. + assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && + "Only object pointers allowed here"); + + if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, + ParamType, + Arg, Converted)) + return ExprError(); + return Arg; + } + + if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { + // -- For a non-type template-parameter of type reference to + // object, no conversions apply. The type referred to by the + // reference may be more cv-qualified than the (otherwise + // identical) type of the template-argument. The + // template-parameter is bound directly to the + // template-argument, which must be an lvalue. + assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && + "Only object references allowed here"); + + if (Arg->getType() == Context.OverloadTy) { + if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, + ParamRefType->getPointeeType(), + true, + FoundResult)) { + if (DiagnoseUseOfDecl(Fn, Arg->getBeginLoc())) + return ExprError(); + + Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn); + ArgType = Arg->getType(); + } else + return ExprError(); + } + + if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param, + ParamType, + Arg, Converted)) + return ExprError(); + return Arg; + } + + // Deal with parameters of type std::nullptr_t. + if (ParamType->isNullPtrType()) { + if (Arg->isTypeDependent() || Arg->isValueDependent()) { + Converted = TemplateArgument(Arg); + return Arg; + } + + switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) { + case NPV_NotNullPointer: + Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) + << Arg->getType() << ParamType; + Diag(Param->getLocation(), diag::note_template_param_here); + return ExprError(); + + case NPV_Error: + return ExprError(); + + case NPV_NullPointer: + Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); + Converted = TemplateArgument(Context.getCanonicalType(ParamType), + /*isNullPtr*/true); + return Arg; + } + } + + // -- For a non-type template-parameter of type pointer to data + // member, qualification conversions (4.4) are applied. + assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); + + if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg, + Converted)) + return ExprError(); + return Arg; +} + +static void DiagnoseTemplateParameterListArityMismatch( + Sema &S, TemplateParameterList *New, TemplateParameterList *Old, + Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); + +/// Check a template argument against its corresponding +/// template template parameter. +/// +/// This routine implements the semantics of C++ [temp.arg.template]. +/// It returns true if an error occurred, and false otherwise. +bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param, + TemplateParameterList *Params, + TemplateArgumentLoc &Arg) { + TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); + TemplateDecl *Template = Name.getAsTemplateDecl(); + if (!Template) { + // Any dependent template name is fine. + assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); + return false; + } + + if (Template->isInvalidDecl()) + return true; + + // C++0x [temp.arg.template]p1: + // A template-argument for a template template-parameter shall be + // the name of a class template or an alias template, expressed as an + // id-expression. When the template-argument names a class template, only + // primary class templates are considered when matching the + // template template argument with the corresponding parameter; + // partial specializations are not considered even if their + // parameter lists match that of the template template parameter. + // + // Note that we also allow template template parameters here, which + // will happen when we are dealing with, e.g., class template + // partial specializations. + if (!isa<ClassTemplateDecl>(Template) && + !isa<TemplateTemplateParmDecl>(Template) && + !isa<TypeAliasTemplateDecl>(Template) && + !isa<BuiltinTemplateDecl>(Template)) { + assert(isa<FunctionTemplateDecl>(Template) && + "Only function templates are possible here"); + Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); + Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) + << Template; + } + + // C++1z [temp.arg.template]p3: (DR 150) + // A template-argument matches a template template-parameter P when P + // is at least as specialized as the template-argument A. + // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a + // defect report resolution from C++17 and shouldn't be introduced by + // concepts. + if (getLangOpts().RelaxedTemplateTemplateArgs) { + // Quick check for the common case: + // If P contains a parameter pack, then A [...] matches P if each of A's + // template parameters matches the corresponding template parameter in + // the template-parameter-list of P. + if (TemplateParameterListsAreEqual( + Template->getTemplateParameters(), Params, false, + TPL_TemplateTemplateArgumentMatch, Arg.getLocation()) && + // If the argument has no associated constraints, then the parameter is + // definitely at least as specialized as the argument. + // Otherwise - we need a more thorough check. + !Template->hasAssociatedConstraints()) + return false; + + if (isTemplateTemplateParameterAtLeastAsSpecializedAs(Params, Template, + Arg.getLocation())) { + // C++2a[temp.func.order]p2 + // [...] If both deductions succeed, the partial ordering selects the + // more constrained template as described by the rules in + // [temp.constr.order]. + SmallVector<const Expr *, 3> ParamsAC, TemplateAC; + Params->getAssociatedConstraints(ParamsAC); + // C++2a[temp.arg.template]p3 + // [...] In this comparison, if P is unconstrained, the constraints on A + // are not considered. + if (ParamsAC.empty()) + return false; + Template->getAssociatedConstraints(TemplateAC); + bool IsParamAtLeastAsConstrained; + if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC, + IsParamAtLeastAsConstrained)) + return true; + if (!IsParamAtLeastAsConstrained) { + Diag(Arg.getLocation(), + diag::err_template_template_parameter_not_at_least_as_constrained) + << Template << Param << Arg.getSourceRange(); + Diag(Param->getLocation(), diag::note_entity_declared_at) << Param; + Diag(Template->getLocation(), diag::note_entity_declared_at) + << Template; + MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template, + TemplateAC); + return true; + } + return false; + } + // FIXME: Produce better diagnostics for deduction failures. + } + + return !TemplateParameterListsAreEqual(Template->getTemplateParameters(), + Params, + true, + TPL_TemplateTemplateArgumentMatch, + Arg.getLocation()); +} + +/// Given a non-type template argument that refers to a +/// declaration and the type of its corresponding non-type template +/// parameter, produce an expression that properly refers to that +/// declaration. +ExprResult +Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, + QualType ParamType, + SourceLocation Loc) { + // C++ [temp.param]p8: + // + // A non-type template-parameter of type "array of T" or + // "function returning T" is adjusted to be of type "pointer to + // T" or "pointer to function returning T", respectively. + if (ParamType->isArrayType()) + ParamType = Context.getArrayDecayedType(ParamType); + else if (ParamType->isFunctionType()) + ParamType = Context.getPointerType(ParamType); + + // For a NULL non-type template argument, return nullptr casted to the + // parameter's type. + if (Arg.getKind() == TemplateArgument::NullPtr) { + return ImpCastExprToType( + new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), + ParamType, + ParamType->getAs<MemberPointerType>() + ? CK_NullToMemberPointer + : CK_NullToPointer); + } + assert(Arg.getKind() == TemplateArgument::Declaration && + "Only declaration template arguments permitted here"); + + ValueDecl *VD = Arg.getAsDecl(); + + CXXScopeSpec SS; + if (ParamType->isMemberPointerType()) { + // If this is a pointer to member, we need to use a qualified name to + // form a suitable pointer-to-member constant. + assert(VD->getDeclContext()->isRecord() && + (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || + isa<IndirectFieldDecl>(VD))); + QualType ClassType + = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext())); + NestedNameSpecifier *Qualifier + = NestedNameSpecifier::Create(Context, nullptr, false, + ClassType.getTypePtr()); + SS.MakeTrivial(Context, Qualifier, Loc); + } + + ExprResult RefExpr = BuildDeclarationNameExpr( + SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD); + if (RefExpr.isInvalid()) + return ExprError(); + + // For a pointer, the argument declaration is the pointee. Take its address. + QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0); + if (ParamType->isPointerType() && !ElemT.isNull() && + Context.hasSimilarType(ElemT, ParamType->getPointeeType())) { + // Decay an array argument if we want a pointer to its first element. + RefExpr = DefaultFunctionArrayConversion(RefExpr.get()); + if (RefExpr.isInvalid()) + return ExprError(); + } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { + // For any other pointer, take the address (or form a pointer-to-member). + RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get()); + if (RefExpr.isInvalid()) + return ExprError(); + } else if (ParamType->isRecordType()) { + assert(isa<TemplateParamObjectDecl>(VD) && + "arg for class template param not a template parameter object"); + // No conversions apply in this case. + return RefExpr; + } else { + assert(ParamType->isReferenceType() && + "unexpected type for decl template argument"); + } + + // At this point we should have the right value category. + assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() && + "value kind mismatch for non-type template argument"); + + // The type of the template parameter can differ from the type of the + // argument in various ways; convert it now if necessary. + QualType DestExprType = ParamType.getNonLValueExprType(Context); + if (!Context.hasSameType(RefExpr.get()->getType(), DestExprType)) { + CastKind CK; + QualType Ignored; + if (Context.hasSimilarType(RefExpr.get()->getType(), DestExprType) || + IsFunctionConversion(RefExpr.get()->getType(), DestExprType, Ignored)) { + CK = CK_NoOp; + } else if (ParamType->isVoidPointerType() && + RefExpr.get()->getType()->isPointerType()) { + CK = CK_BitCast; + } else { + // FIXME: Pointers to members can need conversion derived-to-base or + // base-to-derived conversions. We currently don't retain enough + // information to convert properly (we need to track a cast path or + // subobject number in the template argument). + llvm_unreachable( + "unexpected conversion required for non-type template argument"); + } + RefExpr = ImpCastExprToType(RefExpr.get(), DestExprType, CK, + RefExpr.get()->getValueKind()); + } + + return RefExpr; +} + +/// Construct a new expression that refers to the given +/// integral template argument with the given source-location +/// information. +/// +/// This routine takes care of the mapping from an integral template +/// argument (which may have any integral type) to the appropriate +/// literal value. +ExprResult +Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg, + SourceLocation Loc) { + assert(Arg.getKind() == TemplateArgument::Integral && + "Operation is only valid for integral template arguments"); + QualType OrigT = Arg.getIntegralType(); + + // If this is an enum type that we're instantiating, we need to use an integer + // type the same size as the enumerator. We don't want to build an + // IntegerLiteral with enum type. The integer type of an enum type can be of + // any integral type with C++11 enum classes, make sure we create the right + // type of literal for it. + QualType T = OrigT; + if (const EnumType *ET = OrigT->getAs<EnumType>()) + T = ET->getDecl()->getIntegerType(); + + Expr *E; + if (T->isAnyCharacterType()) { + CharacterLiteral::CharacterKind Kind; + if (T->isWideCharType()) + Kind = CharacterLiteral::Wide; + else if (T->isChar8Type() && getLangOpts().Char8) + Kind = CharacterLiteral::UTF8; + else if (T->isChar16Type()) + Kind = CharacterLiteral::UTF16; + else if (T->isChar32Type()) + Kind = CharacterLiteral::UTF32; + else + Kind = CharacterLiteral::Ascii; + + E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(), + Kind, T, Loc); + } else if (T->isBooleanType()) { + E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(), + T, Loc); + } else if (T->isNullPtrType()) { + E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); + } else { + E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc); + } + + if (OrigT->isEnumeralType()) { + // FIXME: This is a hack. We need a better way to handle substituted + // non-type template parameters. + E = CStyleCastExpr::Create(Context, OrigT, VK_PRValue, CK_IntegralCast, E, + nullptr, CurFPFeatureOverrides(), + Context.getTrivialTypeSourceInfo(OrigT, Loc), + Loc, Loc); + } + + return E; +} + +/// Match two template parameters within template parameter lists. +static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old, + bool Complain, + Sema::TemplateParameterListEqualKind Kind, + SourceLocation TemplateArgLoc) { + // Check the actual kind (type, non-type, template). + if (Old->getKind() != New->getKind()) { + if (Complain) { + unsigned NextDiag = diag::err_template_param_different_kind; + if (TemplateArgLoc.isValid()) { + S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); + NextDiag = diag::note_template_param_different_kind; + } + S.Diag(New->getLocation(), NextDiag) + << (Kind != Sema::TPL_TemplateMatch); + S.Diag(Old->getLocation(), diag::note_template_prev_declaration) + << (Kind != Sema::TPL_TemplateMatch); + } + + return false; + } + + // Check that both are parameter packs or neither are parameter packs. + // However, if we are matching a template template argument to a + // template template parameter, the template template parameter can have + // a parameter pack where the template template argument does not. + if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && + !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && + Old->isTemplateParameterPack())) { + if (Complain) { + unsigned NextDiag = diag::err_template_parameter_pack_non_pack; + if (TemplateArgLoc.isValid()) { + S.Diag(TemplateArgLoc, + diag::err_template_arg_template_params_mismatch); + NextDiag = diag::note_template_parameter_pack_non_pack; + } + + unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0 + : isa<NonTypeTemplateParmDecl>(New)? 1 + : 2; + S.Diag(New->getLocation(), NextDiag) + << ParamKind << New->isParameterPack(); + S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) + << ParamKind << Old->isParameterPack(); + } + + return false; + } + + // For non-type template parameters, check the type of the parameter. + if (NonTypeTemplateParmDecl *OldNTTP + = dyn_cast<NonTypeTemplateParmDecl>(Old)) { + NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New); + + // If we are matching a template template argument to a template + // template parameter and one of the non-type template parameter types + // is dependent, then we must wait until template instantiation time + // to actually compare the arguments. + if (Kind != Sema::TPL_TemplateTemplateArgumentMatch || + (!OldNTTP->getType()->isDependentType() && + !NewNTTP->getType()->isDependentType())) + if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) { + if (Complain) { + unsigned NextDiag = diag::err_template_nontype_parm_different_type; + if (TemplateArgLoc.isValid()) { + S.Diag(TemplateArgLoc, + diag::err_template_arg_template_params_mismatch); + NextDiag = diag::note_template_nontype_parm_different_type; + } + S.Diag(NewNTTP->getLocation(), NextDiag) + << NewNTTP->getType() + << (Kind != Sema::TPL_TemplateMatch); + S.Diag(OldNTTP->getLocation(), + diag::note_template_nontype_parm_prev_declaration) + << OldNTTP->getType(); + } + + return false; + } + } + // For template template parameters, check the template parameter types. + // The template parameter lists of template template + // parameters must agree. + else if (TemplateTemplateParmDecl *OldTTP + = dyn_cast<TemplateTemplateParmDecl>(Old)) { + TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New); + if (!S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(), + OldTTP->getTemplateParameters(), + Complain, + (Kind == Sema::TPL_TemplateMatch + ? Sema::TPL_TemplateTemplateParmMatch + : Kind), + TemplateArgLoc)) + return false; + } else if (Kind != Sema::TPL_TemplateTemplateArgumentMatch) { + const Expr *NewC = nullptr, *OldC = nullptr; + if (const auto *TC = cast<TemplateTypeParmDecl>(New)->getTypeConstraint()) + NewC = TC->getImmediatelyDeclaredConstraint(); + if (const auto *TC = cast<TemplateTypeParmDecl>(Old)->getTypeConstraint()) + OldC = TC->getImmediatelyDeclaredConstraint(); + + auto Diagnose = [&] { + S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(), + diag::err_template_different_type_constraint); + S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(), + diag::note_template_prev_declaration) << /*declaration*/0; + }; + + if (!NewC != !OldC) { + if (Complain) + Diagnose(); + return false; + } + + if (NewC) { + llvm::FoldingSetNodeID OldCID, NewCID; + OldC->Profile(OldCID, S.Context, /*Canonical=*/true); + NewC->Profile(NewCID, S.Context, /*Canonical=*/true); + if (OldCID != NewCID) { + if (Complain) + Diagnose(); + return false; + } + } + } + + return true; +} + +/// Diagnose a known arity mismatch when comparing template argument +/// lists. +static +void DiagnoseTemplateParameterListArityMismatch(Sema &S, + TemplateParameterList *New, + TemplateParameterList *Old, + Sema::TemplateParameterListEqualKind Kind, + SourceLocation TemplateArgLoc) { + unsigned NextDiag = diag::err_template_param_list_different_arity; + if (TemplateArgLoc.isValid()) { + S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); + NextDiag = diag::note_template_param_list_different_arity; + } + S.Diag(New->getTemplateLoc(), NextDiag) + << (New->size() > Old->size()) + << (Kind != Sema::TPL_TemplateMatch) + << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); + S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) + << (Kind != Sema::TPL_TemplateMatch) + << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); +} + +/// Determine whether the given template parameter lists are +/// equivalent. +/// +/// \param New The new template parameter list, typically written in the +/// source code as part of a new template declaration. +/// +/// \param Old The old template parameter list, typically found via +/// name lookup of the template declared with this template parameter +/// list. +/// +/// \param Complain If true, this routine will produce a diagnostic if +/// the template parameter lists are not equivalent. +/// +/// \param Kind describes how we are to match the template parameter lists. +/// +/// \param TemplateArgLoc If this source location is valid, then we +/// are actually checking the template parameter list of a template +/// argument (New) against the template parameter list of its +/// corresponding template template parameter (Old). We produce +/// slightly different diagnostics in this scenario. +/// +/// \returns True if the template parameter lists are equal, false +/// otherwise. +bool +Sema::TemplateParameterListsAreEqual(TemplateParameterList *New, + TemplateParameterList *Old, + bool Complain, + TemplateParameterListEqualKind Kind, + SourceLocation TemplateArgLoc) { + if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { + if (Complain) + DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, + TemplateArgLoc); + + return false; + } + + // C++0x [temp.arg.template]p3: + // A template-argument matches a template template-parameter (call it P) + // when each of the template parameters in the template-parameter-list of + // the template-argument's corresponding class template or alias template + // (call it A) matches the corresponding template parameter in the + // template-parameter-list of P. [...] + TemplateParameterList::iterator NewParm = New->begin(); + TemplateParameterList::iterator NewParmEnd = New->end(); + for (TemplateParameterList::iterator OldParm = Old->begin(), + OldParmEnd = Old->end(); + OldParm != OldParmEnd; ++OldParm) { + if (Kind != TPL_TemplateTemplateArgumentMatch || + !(*OldParm)->isTemplateParameterPack()) { + if (NewParm == NewParmEnd) { + if (Complain) + DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, + TemplateArgLoc); + + return false; + } + + if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, + Kind, TemplateArgLoc)) + return false; + + ++NewParm; + continue; + } + + // C++0x [temp.arg.template]p3: + // [...] When P's template- parameter-list contains a template parameter + // pack (14.5.3), the template parameter pack will match zero or more + // template parameters or template parameter packs in the + // template-parameter-list of A with the same type and form as the + // template parameter pack in P (ignoring whether those template + // parameters are template parameter packs). + for (; NewParm != NewParmEnd; ++NewParm) { + if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain, + Kind, TemplateArgLoc)) + return false; + } + } + + // Make sure we exhausted all of the arguments. + if (NewParm != NewParmEnd) { + if (Complain) + DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind, + TemplateArgLoc); + + return false; + } + + if (Kind != TPL_TemplateTemplateArgumentMatch) { + const Expr *NewRC = New->getRequiresClause(); + const Expr *OldRC = Old->getRequiresClause(); + + auto Diagnose = [&] { + Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(), + diag::err_template_different_requires_clause); + Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(), + diag::note_template_prev_declaration) << /*declaration*/0; + }; + + if (!NewRC != !OldRC) { + if (Complain) + Diagnose(); + return false; + } + + if (NewRC) { + llvm::FoldingSetNodeID OldRCID, NewRCID; + OldRC->Profile(OldRCID, Context, /*Canonical=*/true); + NewRC->Profile(NewRCID, Context, /*Canonical=*/true); + if (OldRCID != NewRCID) { + if (Complain) + Diagnose(); + return false; + } + } + } + + return true; +} + +/// Check whether a template can be declared within this scope. +/// +/// If the template declaration is valid in this scope, returns +/// false. Otherwise, issues a diagnostic and returns true. +bool +Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { + if (!S) + return false; + + // Find the nearest enclosing declaration scope. + while ((S->getFlags() & Scope::DeclScope) == 0 || + (S->getFlags() & Scope::TemplateParamScope) != 0) + S = S->getParent(); + + // C++ [temp.pre]p6: [P2096] + // A template, explicit specialization, or partial specialization shall not + // have C linkage. + DeclContext *Ctx = S->getEntity(); + if (Ctx && Ctx->isExternCContext()) { + Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) + << TemplateParams->getSourceRange(); + if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) + Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); + return true; + } + Ctx = Ctx ? Ctx->getRedeclContext() : nullptr; + + // C++ [temp]p2: + // A template-declaration can appear only as a namespace scope or + // class scope declaration. + // C++ [temp.expl.spec]p3: + // An explicit specialization may be declared in any scope in which the + // corresponding primary template may be defined. + // C++ [temp.class.spec]p6: [P2096] + // A partial specialization may be declared in any scope in which the + // corresponding primary template may be defined. + if (Ctx) { + if (Ctx->isFileContext()) + return false; + if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) { + // C++ [temp.mem]p2: + // A local class shall not have member templates. + if (RD->isLocalClass()) + return Diag(TemplateParams->getTemplateLoc(), + diag::err_template_inside_local_class) + << TemplateParams->getSourceRange(); + else + return false; + } + } + + return Diag(TemplateParams->getTemplateLoc(), + diag::err_template_outside_namespace_or_class_scope) + << TemplateParams->getSourceRange(); +} + +/// Determine what kind of template specialization the given declaration +/// is. +static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { + if (!D) + return TSK_Undeclared; + + if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) + return Record->getTemplateSpecializationKind(); + if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) + return Function->getTemplateSpecializationKind(); + if (VarDecl *Var = dyn_cast<VarDecl>(D)) + return Var->getTemplateSpecializationKind(); + + return TSK_Undeclared; +} + +/// Check whether a specialization is well-formed in the current +/// context. +/// +/// This routine determines whether a template specialization can be declared +/// in the current context (C++ [temp.expl.spec]p2). +/// +/// \param S the semantic analysis object for which this check is being +/// performed. +/// +/// \param Specialized the entity being specialized or instantiated, which +/// may be a kind of template (class template, function template, etc.) or +/// a member of a class template (member function, static data member, +/// member class). +/// +/// \param PrevDecl the previous declaration of this entity, if any. +/// +/// \param Loc the location of the explicit specialization or instantiation of +/// this entity. +/// +/// \param IsPartialSpecialization whether this is a partial specialization of +/// a class template. +/// +/// \returns true if there was an error that we cannot recover from, false +/// otherwise. +static bool CheckTemplateSpecializationScope(Sema &S, + NamedDecl *Specialized, + NamedDecl *PrevDecl, + SourceLocation Loc, + bool IsPartialSpecialization) { + // Keep these "kind" numbers in sync with the %select statements in the + // various diagnostics emitted by this routine. + int EntityKind = 0; + if (isa<ClassTemplateDecl>(Specialized)) + EntityKind = IsPartialSpecialization? 1 : 0; + else if (isa<VarTemplateDecl>(Specialized)) + EntityKind = IsPartialSpecialization ? 3 : 2; + else if (isa<FunctionTemplateDecl>(Specialized)) + EntityKind = 4; + else if (isa<CXXMethodDecl>(Specialized)) + EntityKind = 5; + else if (isa<VarDecl>(Specialized)) + EntityKind = 6; + else if (isa<RecordDecl>(Specialized)) + EntityKind = 7; + else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11) + EntityKind = 8; + else { + S.Diag(Loc, diag::err_template_spec_unknown_kind) + << S.getLangOpts().CPlusPlus11; + S.Diag(Specialized->getLocation(), diag::note_specialized_entity); + return true; + } + + // C++ [temp.expl.spec]p2: + // An explicit specialization may be declared in any scope in which + // the corresponding primary template may be defined. + if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { + S.Diag(Loc, diag::err_template_spec_decl_function_scope) + << Specialized; + return true; + } + + // C++ [temp.class.spec]p6: + // A class template partial specialization may be declared in any + // scope in which the primary template may be defined. + DeclContext *SpecializedContext = + Specialized->getDeclContext()->getRedeclContext(); + DeclContext *DC = S.CurContext->getRedeclContext(); + + // Make sure that this redeclaration (or definition) occurs in the same + // scope or an enclosing namespace. + if (!(DC->isFileContext() ? DC->Encloses(SpecializedContext) + : DC->Equals(SpecializedContext))) { + if (isa<TranslationUnitDecl>(SpecializedContext)) + S.Diag(Loc, diag::err_template_spec_redecl_global_scope) + << EntityKind << Specialized; + else { + auto *ND = cast<NamedDecl>(SpecializedContext); + int Diag = diag::err_template_spec_redecl_out_of_scope; + if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) + Diag = diag::ext_ms_template_spec_redecl_out_of_scope; + S.Diag(Loc, Diag) << EntityKind << Specialized + << ND << isa<CXXRecordDecl>(ND); + } + + S.Diag(Specialized->getLocation(), diag::note_specialized_entity); + + // Don't allow specializing in the wrong class during error recovery. + // Otherwise, things can go horribly wrong. + if (DC->isRecord()) + return true; + } + + return false; +} + +static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { + if (!E->isTypeDependent()) + return SourceLocation(); + DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); + Checker.TraverseStmt(E); + if (Checker.MatchLoc.isInvalid()) + return E->getSourceRange(); + return Checker.MatchLoc; +} + +static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { + if (!TL.getType()->isDependentType()) + return SourceLocation(); + DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); + Checker.TraverseTypeLoc(TL); + if (Checker.MatchLoc.isInvalid()) + return TL.getSourceRange(); + return Checker.MatchLoc; +} + +/// Subroutine of Sema::CheckTemplatePartialSpecializationArgs +/// that checks non-type template partial specialization arguments. +static bool CheckNonTypeTemplatePartialSpecializationArgs( + Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, + const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { + for (unsigned I = 0; I != NumArgs; ++I) { + if (Args[I].getKind() == TemplateArgument::Pack) { + if (CheckNonTypeTemplatePartialSpecializationArgs( + S, TemplateNameLoc, Param, Args[I].pack_begin(), + Args[I].pack_size(), IsDefaultArgument)) + return true; + + continue; + } + + if (Args[I].getKind() != TemplateArgument::Expression) + continue; + + Expr *ArgExpr = Args[I].getAsExpr(); + + // We can have a pack expansion of any of the bullets below. + if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr)) + ArgExpr = Expansion->getPattern(); + + // Strip off any implicit casts we added as part of type checking. + while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) + ArgExpr = ICE->getSubExpr(); + + // C++ [temp.class.spec]p8: + // A non-type argument is non-specialized if it is the name of a + // non-type parameter. All other non-type arguments are + // specialized. + // + // Below, we check the two conditions that only apply to + // specialized non-type arguments, so skip any non-specialized + // arguments. + if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr)) + if (isa<NonTypeTemplateParmDecl>(DRE->getDecl())) + continue; + + // C++ [temp.class.spec]p9: + // Within the argument list of a class template partial + // specialization, the following restrictions apply: + // -- A partially specialized non-type argument expression + // shall not involve a template parameter of the partial + // specialization except when the argument expression is a + // simple identifier. + // -- The type of a template parameter corresponding to a + // specialized non-type argument shall not be dependent on a + // parameter of the specialization. + // DR1315 removes the first bullet, leaving an incoherent set of rules. + // We implement a compromise between the original rules and DR1315: + // -- A specialized non-type template argument shall not be + // type-dependent and the corresponding template parameter + // shall have a non-dependent type. + SourceRange ParamUseRange = + findTemplateParameterInType(Param->getDepth(), ArgExpr); + if (ParamUseRange.isValid()) { + if (IsDefaultArgument) { + S.Diag(TemplateNameLoc, + diag::err_dependent_non_type_arg_in_partial_spec); + S.Diag(ParamUseRange.getBegin(), + diag::note_dependent_non_type_default_arg_in_partial_spec) + << ParamUseRange; + } else { + S.Diag(ParamUseRange.getBegin(), + diag::err_dependent_non_type_arg_in_partial_spec) + << ParamUseRange; + } + return true; + } + + ParamUseRange = findTemplateParameter( + Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); + if (ParamUseRange.isValid()) { + S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(), + diag::err_dependent_typed_non_type_arg_in_partial_spec) + << Param->getType(); + S.Diag(Param->getLocation(), diag::note_template_param_here) + << (IsDefaultArgument ? ParamUseRange : SourceRange()) + << ParamUseRange; + return true; + } + } + + return false; +} + +/// Check the non-type template arguments of a class template +/// partial specialization according to C++ [temp.class.spec]p9. +/// +/// \param TemplateNameLoc the location of the template name. +/// \param PrimaryTemplate the template parameters of the primary class +/// template. +/// \param NumExplicit the number of explicitly-specified template arguments. +/// \param TemplateArgs the template arguments of the class template +/// partial specialization. +/// +/// \returns \c true if there was an error, \c false otherwise. +bool Sema::CheckTemplatePartialSpecializationArgs( + SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, + unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { + // We have to be conservative when checking a template in a dependent + // context. + if (PrimaryTemplate->getDeclContext()->isDependentContext()) + return false; + + TemplateParameterList *TemplateParams = + PrimaryTemplate->getTemplateParameters(); + for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { + NonTypeTemplateParmDecl *Param + = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I)); + if (!Param) + continue; + + if (CheckNonTypeTemplatePartialSpecializationArgs(*this, TemplateNameLoc, + Param, &TemplateArgs[I], + 1, I >= NumExplicit)) + return true; + } + + return false; +} + +DeclResult Sema::ActOnClassTemplateSpecialization( + Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, + SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, + TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, + MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { + assert(TUK != TUK_Reference && "References are not specializations"); + + // NOTE: KWLoc is the location of the tag keyword. This will instead + // store the location of the outermost template keyword in the declaration. + SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 + ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc; + SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; + SourceLocation LAngleLoc = TemplateId.LAngleLoc; + SourceLocation RAngleLoc = TemplateId.RAngleLoc; + + // Find the class template we're specializing + TemplateName Name = TemplateId.Template.get(); + ClassTemplateDecl *ClassTemplate + = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl()); + + if (!ClassTemplate) { + Diag(TemplateNameLoc, diag::err_not_class_template_specialization) + << (Name.getAsTemplateDecl() && + isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); + return true; + } + + bool isMemberSpecialization = false; + bool isPartialSpecialization = false; + + // Check the validity of the template headers that introduce this + // template. + // FIXME: We probably shouldn't complain about these headers for + // friend declarations. + bool Invalid = false; + TemplateParameterList *TemplateParams = + MatchTemplateParametersToScopeSpecifier( + KWLoc, TemplateNameLoc, SS, &TemplateId, + TemplateParameterLists, TUK == TUK_Friend, isMemberSpecialization, + Invalid); + if (Invalid) + return true; + + // Check that we can declare a template specialization here. + if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams)) + return true; + + if (TemplateParams && TemplateParams->size() > 0) { + isPartialSpecialization = true; + + if (TUK == TUK_Friend) { + Diag(KWLoc, diag::err_partial_specialization_friend) + << SourceRange(LAngleLoc, RAngleLoc); + return true; + } + + // C++ [temp.class.spec]p10: + // The template parameter list of a specialization shall not + // contain default template argument values. + for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { + Decl *Param = TemplateParams->getParam(I); + if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { + if (TTP->hasDefaultArgument()) { + Diag(TTP->getDefaultArgumentLoc(), + diag::err_default_arg_in_partial_spec); + TTP->removeDefaultArgument(); + } + } else if (NonTypeTemplateParmDecl *NTTP + = dyn_cast<NonTypeTemplateParmDecl>(Param)) { + if (Expr *DefArg = NTTP->getDefaultArgument()) { + Diag(NTTP->getDefaultArgumentLoc(), + diag::err_default_arg_in_partial_spec) + << DefArg->getSourceRange(); + NTTP->removeDefaultArgument(); + } + } else { + TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param); + if (TTP->hasDefaultArgument()) { + Diag(TTP->getDefaultArgument().getLocation(), + diag::err_default_arg_in_partial_spec) + << TTP->getDefaultArgument().getSourceRange(); + TTP->removeDefaultArgument(); + } + } + } + } else if (TemplateParams) { + if (TUK == TUK_Friend) + Diag(KWLoc, diag::err_template_spec_friend) + << FixItHint::CreateRemoval( + SourceRange(TemplateParams->getTemplateLoc(), + TemplateParams->getRAngleLoc())) + << SourceRange(LAngleLoc, RAngleLoc); + } else { + assert(TUK == TUK_Friend && "should have a 'template<>' for this decl"); + } + + // Check that the specialization uses the same tag kind as the + // original template. + TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); + assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!"); + if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), + Kind, TUK == TUK_Definition, KWLoc, + ClassTemplate->getIdentifier())) { + Diag(KWLoc, diag::err_use_with_wrong_tag) + << ClassTemplate + << FixItHint::CreateReplacement(KWLoc, + ClassTemplate->getTemplatedDecl()->getKindName()); + Diag(ClassTemplate->getTemplatedDecl()->getLocation(), + diag::note_previous_use); + Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); + } + + // Translate the parser's template argument list in our AST format. + TemplateArgumentListInfo TemplateArgs = + makeTemplateArgumentListInfo(*this, TemplateId); + + // Check for unexpanded parameter packs in any of the template arguments. + for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) + if (DiagnoseUnexpandedParameterPack(TemplateArgs[I], + UPPC_PartialSpecialization)) + return true; + + // Check that the template argument list is well-formed for this + // template. + SmallVector<TemplateArgument, 4> Converted; + if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, + TemplateArgs, false, Converted, + /*UpdateArgsWithConversions=*/true)) + return true; + + // Find the class template (partial) specialization declaration that + // corresponds to these arguments. + if (isPartialSpecialization) { + if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, + TemplateArgs.size(), Converted)) + return true; + + // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we + // also do it during instantiation. + if (!Name.isDependent() && + !TemplateSpecializationType::anyDependentTemplateArguments(TemplateArgs, + Converted)) { + Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) + << ClassTemplate->getDeclName(); + isPartialSpecialization = false; + } + } + + void *InsertPos = nullptr; + ClassTemplateSpecializationDecl *PrevDecl = nullptr; + + if (isPartialSpecialization) + PrevDecl = ClassTemplate->findPartialSpecialization(Converted, + TemplateParams, + InsertPos); + else + PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos); + + ClassTemplateSpecializationDecl *Specialization = nullptr; + + // Check whether we can declare a class template specialization in + // the current scope. + if (TUK != TUK_Friend && + CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, + TemplateNameLoc, + isPartialSpecialization)) + return true; + + // The canonical type + QualType CanonType; + if (isPartialSpecialization) { + // Build the canonical type that describes the converted template + // arguments of the class template partial specialization. + TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); + CanonType = Context.getTemplateSpecializationType(CanonTemplate, + Converted); + + if (Context.hasSameType(CanonType, + ClassTemplate->getInjectedClassNameSpecialization()) && + (!Context.getLangOpts().CPlusPlus20 || + !TemplateParams->hasAssociatedConstraints())) { + // C++ [temp.class.spec]p9b3: + // + // -- The argument list of the specialization shall not be identical + // to the implicit argument list of the primary template. + // + // This rule has since been removed, because it's redundant given DR1495, + // but we keep it because it produces better diagnostics and recovery. + Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) + << /*class template*/0 << (TUK == TUK_Definition) + << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); + return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, + ClassTemplate->getIdentifier(), + TemplateNameLoc, + Attr, + TemplateParams, + AS_none, /*ModulePrivateLoc=*/SourceLocation(), + /*FriendLoc*/SourceLocation(), + TemplateParameterLists.size() - 1, + TemplateParameterLists.data()); + } + + // Create a new class template partial specialization declaration node. + ClassTemplatePartialSpecializationDecl *PrevPartial + = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl); + ClassTemplatePartialSpecializationDecl *Partial + = ClassTemplatePartialSpecializationDecl::Create(Context, Kind, + ClassTemplate->getDeclContext(), + KWLoc, TemplateNameLoc, + TemplateParams, + ClassTemplate, + Converted, + TemplateArgs, + CanonType, + PrevPartial); + SetNestedNameSpecifier(*this, Partial, SS); + if (TemplateParameterLists.size() > 1 && SS.isSet()) { + Partial->setTemplateParameterListsInfo( + Context, TemplateParameterLists.drop_back(1)); + } + + if (!PrevPartial) + ClassTemplate->AddPartialSpecialization(Partial, InsertPos); + Specialization = Partial; + + // If we are providing an explicit specialization of a member class + // template specialization, make a note of that. + if (PrevPartial && PrevPartial->getInstantiatedFromMember()) + PrevPartial->setMemberSpecialization(); + + CheckTemplatePartialSpecialization(Partial); + } else { + // Create a new class template specialization declaration node for + // this explicit specialization or friend declaration. + Specialization + = ClassTemplateSpecializationDecl::Create(Context, Kind, + ClassTemplate->getDeclContext(), + KWLoc, TemplateNameLoc, + ClassTemplate, + Converted, + PrevDecl); + SetNestedNameSpecifier(*this, Specialization, SS); + if (TemplateParameterLists.size() > 0) { + Specialization->setTemplateParameterListsInfo(Context, + TemplateParameterLists); + } + + if (!PrevDecl) + ClassTemplate->AddSpecialization(Specialization, InsertPos); + + if (CurContext->isDependentContext()) { + TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); + CanonType = Context.getTemplateSpecializationType( + CanonTemplate, Converted); + } else { + CanonType = Context.getTypeDeclType(Specialization); + } + } + + // C++ [temp.expl.spec]p6: + // If a template, a member template or the member of a class template is + // explicitly specialized then that specialization shall be declared + // before the first use of that specialization that would cause an implicit + // instantiation to take place, in every translation unit in which such a + // use occurs; no diagnostic is required. + if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { + bool Okay = false; + for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { + // Is there any previous explicit specialization declaration? + if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { + Okay = true; + break; + } + } + + if (!Okay) { + SourceRange Range(TemplateNameLoc, RAngleLoc); + Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) + << Context.getTypeDeclType(Specialization) << Range; + + Diag(PrevDecl->getPointOfInstantiation(), + diag::note_instantiation_required_here) + << (PrevDecl->getTemplateSpecializationKind() + != TSK_ImplicitInstantiation); + return true; + } + } + + // If this is not a friend, note that this is an explicit specialization. + if (TUK != TUK_Friend) + Specialization->setSpecializationKind(TSK_ExplicitSpecialization); + + // Check that this isn't a redefinition of this specialization. + if (TUK == TUK_Definition) { + RecordDecl *Def = Specialization->getDefinition(); + NamedDecl *Hidden = nullptr; + if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { + SkipBody->ShouldSkip = true; + SkipBody->Previous = Def; + makeMergedDefinitionVisible(Hidden); + } else if (Def) { + SourceRange Range(TemplateNameLoc, RAngleLoc); + Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; + Diag(Def->getLocation(), diag::note_previous_definition); + Specialization->setInvalidDecl(); + return true; + } + } + + ProcessDeclAttributeList(S, Specialization, Attr); + + // Add alignment attributes if necessary; these attributes are checked when + // the ASTContext lays out the structure. + if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { + AddAlignmentAttributesForRecord(Specialization); + AddMsStructLayoutForRecord(Specialization); + } + + if (ModulePrivateLoc.isValid()) + Diag(Specialization->getLocation(), diag::err_module_private_specialization) + << (isPartialSpecialization? 1 : 0) + << FixItHint::CreateRemoval(ModulePrivateLoc); + + // Build the fully-sugared type for this class template + // specialization as the user wrote in the specialization + // itself. This means that we'll pretty-print the type retrieved + // from the specialization's declaration the way that the user + // actually wrote the specialization, rather than formatting the + // name based on the "canonical" representation used to store the + // template arguments in the specialization. + TypeSourceInfo *WrittenTy + = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, + TemplateArgs, CanonType); + if (TUK != TUK_Friend) { + Specialization->setTypeAsWritten(WrittenTy); + Specialization->setTemplateKeywordLoc(TemplateKWLoc); + } + + // C++ [temp.expl.spec]p9: + // A template explicit specialization is in the scope of the + // namespace in which the template was defined. + // + // We actually implement this paragraph where we set the semantic + // context (in the creation of the ClassTemplateSpecializationDecl), + // but we also maintain the lexical context where the actual + // definition occurs. + Specialization->setLexicalDeclContext(CurContext); + + // We may be starting the definition of this specialization. + if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) + Specialization->startDefinition(); + + if (TUK == TUK_Friend) { + FriendDecl *Friend = FriendDecl::Create(Context, CurContext, + TemplateNameLoc, + WrittenTy, + /*FIXME:*/KWLoc); + Friend->setAccess(AS_public); + CurContext->addDecl(Friend); + } else { + // Add the specialization into its lexical context, so that it can + // be seen when iterating through the list of declarations in that + // context. However, specializations are not found by name lookup. + CurContext->addDecl(Specialization); + } + + if (SkipBody && SkipBody->ShouldSkip) + return SkipBody->Previous; + + return Specialization; +} + +Decl *Sema::ActOnTemplateDeclarator(Scope *S, + MultiTemplateParamsArg TemplateParameterLists, + Declarator &D) { + Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); + ActOnDocumentableDecl(NewDecl); + return NewDecl; +} + +Decl *Sema::ActOnConceptDefinition(Scope *S, + MultiTemplateParamsArg TemplateParameterLists, + IdentifierInfo *Name, SourceLocation NameLoc, + Expr *ConstraintExpr) { + DeclContext *DC = CurContext; + + if (!DC->getRedeclContext()->isFileContext()) { + Diag(NameLoc, + diag::err_concept_decls_may_only_appear_in_global_namespace_scope); + return nullptr; + } + + if (TemplateParameterLists.size() > 1) { + Diag(NameLoc, diag::err_concept_extra_headers); + return nullptr; + } + + if (TemplateParameterLists.front()->size() == 0) { + Diag(NameLoc, diag::err_concept_no_parameters); + return nullptr; + } + + if (DiagnoseUnexpandedParameterPack(ConstraintExpr)) + return nullptr; + + ConceptDecl *NewDecl = ConceptDecl::Create(Context, DC, NameLoc, Name, + TemplateParameterLists.front(), + ConstraintExpr); + + if (NewDecl->hasAssociatedConstraints()) { + // C++2a [temp.concept]p4: + // A concept shall not have associated constraints. + Diag(NameLoc, diag::err_concept_no_associated_constraints); + NewDecl->setInvalidDecl(); + } + + // Check for conflicting previous declaration. + DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc); + LookupResult Previous(*this, NameInfo, LookupOrdinaryName, + ForVisibleRedeclaration); + LookupName(Previous, S); + + FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage=*/false, + /*AllowInlineNamespace*/false); + if (!Previous.empty()) { + auto *Old = Previous.getRepresentativeDecl(); + Diag(NameLoc, isa<ConceptDecl>(Old) ? diag::err_redefinition : + diag::err_redefinition_different_kind) << NewDecl->getDeclName(); + Diag(Old->getLocation(), diag::note_previous_definition); + } + + ActOnDocumentableDecl(NewDecl); + PushOnScopeChains(NewDecl, S); + return NewDecl; +} + +/// \brief Strips various properties off an implicit instantiation +/// that has just been explicitly specialized. +static void StripImplicitInstantiation(NamedDecl *D) { + D->dropAttr<DLLImportAttr>(); + D->dropAttr<DLLExportAttr>(); + + if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) + FD->setInlineSpecified(false); +} + +/// Compute the diagnostic location for an explicit instantiation +// declaration or definition. +static SourceLocation DiagLocForExplicitInstantiation( + NamedDecl* D, SourceLocation PointOfInstantiation) { + // Explicit instantiations following a specialization have no effect and + // hence no PointOfInstantiation. In that case, walk decl backwards + // until a valid name loc is found. + SourceLocation PrevDiagLoc = PointOfInstantiation; + for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); + Prev = Prev->getPreviousDecl()) { + PrevDiagLoc = Prev->getLocation(); + } + assert(PrevDiagLoc.isValid() && + "Explicit instantiation without point of instantiation?"); + return PrevDiagLoc; +} + +/// Diagnose cases where we have an explicit template specialization +/// before/after an explicit template instantiation, producing diagnostics +/// for those cases where they are required and determining whether the +/// new specialization/instantiation will have any effect. +/// +/// \param NewLoc the location of the new explicit specialization or +/// instantiation. +/// +/// \param NewTSK the kind of the new explicit specialization or instantiation. +/// +/// \param PrevDecl the previous declaration of the entity. +/// +/// \param PrevTSK the kind of the old explicit specialization or instantiatin. +/// +/// \param PrevPointOfInstantiation if valid, indicates where the previous +/// declaration was instantiated (either implicitly or explicitly). +/// +/// \param HasNoEffect will be set to true to indicate that the new +/// specialization or instantiation has no effect and should be ignored. +/// +/// \returns true if there was an error that should prevent the introduction of +/// the new declaration into the AST, false otherwise. +bool +Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, + TemplateSpecializationKind NewTSK, + NamedDecl *PrevDecl, + TemplateSpecializationKind PrevTSK, + SourceLocation PrevPointOfInstantiation, + bool &HasNoEffect) { + HasNoEffect = false; + + switch (NewTSK) { + case TSK_Undeclared: + case TSK_ImplicitInstantiation: + assert( + (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && + "previous declaration must be implicit!"); + return false; + + case TSK_ExplicitSpecialization: + switch (PrevTSK) { + case TSK_Undeclared: + case TSK_ExplicitSpecialization: + // Okay, we're just specializing something that is either already + // explicitly specialized or has merely been mentioned without any + // instantiation. + return false; + + case TSK_ImplicitInstantiation: + if (PrevPointOfInstantiation.isInvalid()) { + // The declaration itself has not actually been instantiated, so it is + // still okay to specialize it. + StripImplicitInstantiation(PrevDecl); + return false; + } + // Fall through + LLVM_FALLTHROUGH; + + case TSK_ExplicitInstantiationDeclaration: + case TSK_ExplicitInstantiationDefinition: + assert((PrevTSK == TSK_ImplicitInstantiation || + PrevPointOfInstantiation.isValid()) && + "Explicit instantiation without point of instantiation?"); + + // C++ [temp.expl.spec]p6: + // If a template, a member template or the member of a class template + // is explicitly specialized then that specialization shall be declared + // before the first use of that specialization that would cause an + // implicit instantiation to take place, in every translation unit in + // which such a use occurs; no diagnostic is required. + for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { + // Is there any previous explicit specialization declaration? + if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) + return false; + } + + Diag(NewLoc, diag::err_specialization_after_instantiation) + << PrevDecl; + Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) + << (PrevTSK != TSK_ImplicitInstantiation); + + return true; + } + llvm_unreachable("The switch over PrevTSK must be exhaustive."); + + case TSK_ExplicitInstantiationDeclaration: + switch (PrevTSK) { + case TSK_ExplicitInstantiationDeclaration: + // This explicit instantiation declaration is redundant (that's okay). + HasNoEffect = true; + return false; + + case TSK_Undeclared: + case TSK_ImplicitInstantiation: + // We're explicitly instantiating something that may have already been + // implicitly instantiated; that's fine. + return false; + + case TSK_ExplicitSpecialization: + // C++0x [temp.explicit]p4: + // For a given set of template parameters, if an explicit instantiation + // of a template appears after a declaration of an explicit + // specialization for that template, the explicit instantiation has no + // effect. + HasNoEffect = true; + return false; + + case TSK_ExplicitInstantiationDefinition: + // C++0x [temp.explicit]p10: + // If an entity is the subject of both an explicit instantiation + // declaration and an explicit instantiation definition in the same + // translation unit, the definition shall follow the declaration. + Diag(NewLoc, + diag::err_explicit_instantiation_declaration_after_definition); + + // Explicit instantiations following a specialization have no effect and + // hence no PrevPointOfInstantiation. In that case, walk decl backwards + // until a valid name loc is found. + Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), + diag::note_explicit_instantiation_definition_here); + HasNoEffect = true; + return false; + } + llvm_unreachable("Unexpected TemplateSpecializationKind!"); + + case TSK_ExplicitInstantiationDefinition: + switch (PrevTSK) { + case TSK_Undeclared: + case TSK_ImplicitInstantiation: + // We're explicitly instantiating something that may have already been + // implicitly instantiated; that's fine. + return false; + + case TSK_ExplicitSpecialization: + // C++ DR 259, C++0x [temp.explicit]p4: + // For a given set of template parameters, if an explicit + // instantiation of a template appears after a declaration of + // an explicit specialization for that template, the explicit + // instantiation has no effect. + Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) + << PrevDecl; + Diag(PrevDecl->getLocation(), + diag::note_previous_template_specialization); + HasNoEffect = true; + return false; + + case TSK_ExplicitInstantiationDeclaration: + // We're explicitly instantiating a definition for something for which we + // were previously asked to suppress instantiations. That's fine. + + // C++0x [temp.explicit]p4: + // For a given set of template parameters, if an explicit instantiation + // of a template appears after a declaration of an explicit + // specialization for that template, the explicit instantiation has no + // effect. + for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { + // Is there any previous explicit specialization declaration? + if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) { + HasNoEffect = true; + break; + } + } + + return false; + + case TSK_ExplicitInstantiationDefinition: + // C++0x [temp.spec]p5: + // For a given template and a given set of template-arguments, + // - an explicit instantiation definition shall appear at most once + // in a program, + + // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. + Diag(NewLoc, (getLangOpts().MSVCCompat) + ? diag::ext_explicit_instantiation_duplicate + : diag::err_explicit_instantiation_duplicate) + << PrevDecl; + Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), + diag::note_previous_explicit_instantiation); + HasNoEffect = true; + return false; + } + } + + llvm_unreachable("Missing specialization/instantiation case?"); +} + +/// Perform semantic analysis for the given dependent function +/// template specialization. +/// +/// The only possible way to get a dependent function template specialization +/// is with a friend declaration, like so: +/// +/// \code +/// template \<class T> void foo(T); +/// template \<class T> class A { +/// friend void foo<>(T); +/// }; +/// \endcode +/// +/// There really isn't any useful analysis we can do here, so we +/// just store the information. +bool +Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD, + const TemplateArgumentListInfo &ExplicitTemplateArgs, + LookupResult &Previous) { + // Remove anything from Previous that isn't a function template in + // the correct context. + DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); + LookupResult::Filter F = Previous.makeFilter(); + enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; + SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; + while (F.hasNext()) { + NamedDecl *D = F.next()->getUnderlyingDecl(); + if (!isa<FunctionTemplateDecl>(D)) { + F.erase(); + DiscardedCandidates.push_back(std::make_pair(NotAFunctionTemplate, D)); + continue; + } + + if (!FDLookupContext->InEnclosingNamespaceSetOf( + D->getDeclContext()->getRedeclContext())) { + F.erase(); + DiscardedCandidates.push_back(std::make_pair(NotAMemberOfEnclosing, D)); + continue; + } + } + F.done(); + + if (Previous.empty()) { + Diag(FD->getLocation(), + diag::err_dependent_function_template_spec_no_match); + for (auto &P : DiscardedCandidates) + Diag(P.second->getLocation(), + diag::note_dependent_function_template_spec_discard_reason) + << P.first; + return true; + } + + FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(), + ExplicitTemplateArgs); + return false; +} + +/// Perform semantic analysis for the given function template +/// specialization. +/// +/// This routine performs all of the semantic analysis required for an +/// explicit function template specialization. On successful completion, +/// the function declaration \p FD will become a function template +/// specialization. +/// +/// \param FD the function declaration, which will be updated to become a +/// function template specialization. +/// +/// \param ExplicitTemplateArgs the explicitly-provided template arguments, +/// if any. Note that this may be valid info even when 0 arguments are +/// explicitly provided as in, e.g., \c void sort<>(char*, char*); +/// as it anyway contains info on the angle brackets locations. +/// +/// \param Previous the set of declarations that may be specialized by +/// this function specialization. +/// +/// \param QualifiedFriend whether this is a lookup for a qualified friend +/// declaration with no explicit template argument list that might be +/// befriending a function template specialization. +bool Sema::CheckFunctionTemplateSpecialization( + FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, + LookupResult &Previous, bool QualifiedFriend) { + // The set of function template specializations that could match this + // explicit function template specialization. + UnresolvedSet<8> Candidates; + TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), + /*ForTakingAddress=*/false); + + llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> + ConvertedTemplateArgs; + + DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); + for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); + I != E; ++I) { + NamedDecl *Ovl = (*I)->getUnderlyingDecl(); + if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) { + // Only consider templates found within the same semantic lookup scope as + // FD. + if (!FDLookupContext->InEnclosingNamespaceSetOf( + Ovl->getDeclContext()->getRedeclContext())) + continue; + + // When matching a constexpr member function template specialization + // against the primary template, we don't yet know whether the + // specialization has an implicit 'const' (because we don't know whether + // it will be a static member function until we know which template it + // specializes), so adjust it now assuming it specializes this template. + QualType FT = FD->getType(); + if (FD->isConstexpr()) { + CXXMethodDecl *OldMD = + dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl()); + if (OldMD && OldMD->isConst()) { + const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); + FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); + EPI.TypeQuals.addConst(); + FT = Context.getFunctionType(FPT->getReturnType(), + FPT->getParamTypes(), EPI); + } + } + + TemplateArgumentListInfo Args; + if (ExplicitTemplateArgs) + Args = *ExplicitTemplateArgs; + + // C++ [temp.expl.spec]p11: + // A trailing template-argument can be left unspecified in the + // template-id naming an explicit function template specialization + // provided it can be deduced from the function argument type. + // Perform template argument deduction to determine whether we may be + // specializing this template. + // FIXME: It is somewhat wasteful to build + TemplateDeductionInfo Info(FailedCandidates.getLocation()); + FunctionDecl *Specialization = nullptr; + if (TemplateDeductionResult TDK = DeduceTemplateArguments( + cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), + ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, + Info)) { + // Template argument deduction failed; record why it failed, so + // that we can provide nifty diagnostics. + FailedCandidates.addCandidate().set( + I.getPair(), FunTmpl->getTemplatedDecl(), + MakeDeductionFailureInfo(Context, TDK, Info)); + (void)TDK; + continue; + } + + // Target attributes are part of the cuda function signature, so + // the deduced template's cuda target must match that of the + // specialization. Given that C++ template deduction does not + // take target attributes into account, we reject candidates + // here that have a different target. + if (LangOpts.CUDA && + IdentifyCUDATarget(Specialization, + /* IgnoreImplicitHDAttr = */ true) != + IdentifyCUDATarget(FD, /* IgnoreImplicitHDAttr = */ true)) { + FailedCandidates.addCandidate().set( + I.getPair(), FunTmpl->getTemplatedDecl(), + MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); + continue; + } + + // Record this candidate. + if (ExplicitTemplateArgs) + ConvertedTemplateArgs[Specialization] = std::move(Args); + Candidates.addDecl(Specialization, I.getAccess()); + } + } + + // For a qualified friend declaration (with no explicit marker to indicate + // that a template specialization was intended), note all (template and + // non-template) candidates. + if (QualifiedFriend && Candidates.empty()) { + Diag(FD->getLocation(), diag::err_qualified_friend_no_match) + << FD->getDeclName() << FDLookupContext; + // FIXME: We should form a single candidate list and diagnose all + // candidates at once, to get proper sorting and limiting. + for (auto *OldND : Previous) { + if (auto *OldFD = dyn_cast<FunctionDecl>(OldND->getUnderlyingDecl())) + NoteOverloadCandidate(OldND, OldFD, CRK_None, FD->getType(), false); + } + FailedCandidates.NoteCandidates(*this, FD->getLocation()); + return true; + } + + // Find the most specialized function template. + UnresolvedSetIterator Result = getMostSpecialized( + Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(), + PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), + PDiag(diag::err_function_template_spec_ambiguous) + << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), + PDiag(diag::note_function_template_spec_matched)); + + if (Result == Candidates.end()) + return true; + + // Ignore access information; it doesn't figure into redeclaration checking. + FunctionDecl *Specialization = cast<FunctionDecl>(*Result); + + FunctionTemplateSpecializationInfo *SpecInfo + = Specialization->getTemplateSpecializationInfo(); + assert(SpecInfo && "Function template specialization info missing?"); + + // Note: do not overwrite location info if previous template + // specialization kind was explicit. + TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); + if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { + Specialization->setLocation(FD->getLocation()); + Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); + // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr + // function can differ from the template declaration with respect to + // the constexpr specifier. + // FIXME: We need an update record for this AST mutation. + // FIXME: What if there are multiple such prior declarations (for instance, + // from different modules)? + Specialization->setConstexprKind(FD->getConstexprKind()); + } + + // FIXME: Check if the prior specialization has a point of instantiation. + // If so, we have run afoul of . + + // If this is a friend declaration, then we're not really declaring + // an explicit specialization. + bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); + + // Check the scope of this explicit specialization. + if (!isFriend && + CheckTemplateSpecializationScope(*this, + Specialization->getPrimaryTemplate(), + Specialization, FD->getLocation(), + false)) + return true; + + // C++ [temp.expl.spec]p6: + // If a template, a member template or the member of a class template is + // explicitly specialized then that specialization shall be declared + // before the first use of that specialization that would cause an implicit + // instantiation to take place, in every translation unit in which such a + // use occurs; no diagnostic is required. + bool HasNoEffect = false; + if (!isFriend && + CheckSpecializationInstantiationRedecl(FD->getLocation(), + TSK_ExplicitSpecialization, + Specialization, + SpecInfo->getTemplateSpecializationKind(), + SpecInfo->getPointOfInstantiation(), + HasNoEffect)) + return true; + + // Mark the prior declaration as an explicit specialization, so that later + // clients know that this is an explicit specialization. + if (!isFriend) { + // Since explicit specializations do not inherit '=delete' from their + // primary function template - check if the 'specialization' that was + // implicitly generated (during template argument deduction for partial + // ordering) from the most specialized of all the function templates that + // 'FD' could have been specializing, has a 'deleted' definition. If so, + // first check that it was implicitly generated during template argument + // deduction by making sure it wasn't referenced, and then reset the deleted + // flag to not-deleted, so that we can inherit that information from 'FD'. + if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && + !Specialization->getCanonicalDecl()->isReferenced()) { + // FIXME: This assert will not hold in the presence of modules. + assert( + Specialization->getCanonicalDecl() == Specialization && + "This must be the only existing declaration of this specialization"); + // FIXME: We need an update record for this AST mutation. + Specialization->setDeletedAsWritten(false); + } + // FIXME: We need an update record for this AST mutation. + SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); + MarkUnusedFileScopedDecl(Specialization); + } + + // Turn the given function declaration into a function template + // specialization, with the template arguments from the previous + // specialization. + // Take copies of (semantic and syntactic) template argument lists. + const TemplateArgumentList* TemplArgs = new (Context) + TemplateArgumentList(Specialization->getTemplateSpecializationArgs()); + FD->setFunctionTemplateSpecialization( + Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr, + SpecInfo->getTemplateSpecializationKind(), + ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); + + // A function template specialization inherits the target attributes + // of its template. (We require the attributes explicitly in the + // code to match, but a template may have implicit attributes by + // virtue e.g. of being constexpr, and it passes these implicit + // attributes on to its specializations.) + if (LangOpts.CUDA) + inheritCUDATargetAttrs(FD, *Specialization->getPrimaryTemplate()); + + // The "previous declaration" for this function template specialization is + // the prior function template specialization. + Previous.clear(); + Previous.addDecl(Specialization); + return false; +} + +/// Perform semantic analysis for the given non-template member +/// specialization. +/// +/// This routine performs all of the semantic analysis required for an +/// explicit member function specialization. On successful completion, +/// the function declaration \p FD will become a member function +/// specialization. +/// +/// \param Member the member declaration, which will be updated to become a +/// specialization. +/// +/// \param Previous the set of declarations, one of which may be specialized +/// by this function specialization; the set will be modified to contain the +/// redeclared member. +bool +Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { + assert(!isa<TemplateDecl>(Member) && "Only for non-template members"); + + // Try to find the member we are instantiating. + NamedDecl *FoundInstantiation = nullptr; + NamedDecl *Instantiation = nullptr; + NamedDecl *InstantiatedFrom = nullptr; + MemberSpecializationInfo *MSInfo = nullptr; + + if (Previous.empty()) { + // Nowhere to look anyway. + } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) { + for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); + I != E; ++I) { + NamedDecl *D = (*I)->getUnderlyingDecl(); + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { + QualType Adjusted = Function->getType(); + if (!hasExplicitCallingConv(Adjusted)) + Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType()); + // This doesn't handle deduced return types, but both function + // declarations should be undeduced at this point. + if (Context.hasSameType(Adjusted, Method->getType())) { + FoundInstantiation = *I; + Instantiation = Method; + InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); + MSInfo = Method->getMemberSpecializationInfo(); + break; + } + } + } + } else if (isa<VarDecl>(Member)) { + VarDecl *PrevVar; + if (Previous.isSingleResult() && + (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl()))) + if (PrevVar->isStaticDataMember()) { + FoundInstantiation = Previous.getRepresentativeDecl(); + Instantiation = PrevVar; + InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); + MSInfo = PrevVar->getMemberSpecializationInfo(); + } + } else if (isa<RecordDecl>(Member)) { + CXXRecordDecl *PrevRecord; + if (Previous.isSingleResult() && + (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) { + FoundInstantiation = Previous.getRepresentativeDecl(); + Instantiation = PrevRecord; + InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); + MSInfo = PrevRecord->getMemberSpecializationInfo(); + } + } else if (isa<EnumDecl>(Member)) { + EnumDecl *PrevEnum; + if (Previous.isSingleResult() && + (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) { + FoundInstantiation = Previous.getRepresentativeDecl(); + Instantiation = PrevEnum; + InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); + MSInfo = PrevEnum->getMemberSpecializationInfo(); + } + } + + if (!Instantiation) { + // There is no previous declaration that matches. Since member + // specializations are always out-of-line, the caller will complain about + // this mismatch later. + return false; + } + + // A member specialization in a friend declaration isn't really declaring + // an explicit specialization, just identifying a specific (possibly implicit) + // specialization. Don't change the template specialization kind. + // + // FIXME: Is this really valid? Other compilers reject. + if (Member->getFriendObjectKind() != Decl::FOK_None) { + // Preserve instantiation information. + if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) { + cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction( + cast<CXXMethodDecl>(InstantiatedFrom), + cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind()); + } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) { + cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass( + cast<CXXRecordDecl>(InstantiatedFrom), + cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind()); + } + + Previous.clear(); + Previous.addDecl(FoundInstantiation); + return false; + } + + // Make sure that this is a specialization of a member. + if (!InstantiatedFrom) { + Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) + << Member; + Diag(Instantiation->getLocation(), diag::note_specialized_decl); + return true; + } + + // C++ [temp.expl.spec]p6: + // If a template, a member template or the member of a class template is + // explicitly specialized then that specialization shall be declared + // before the first use of that specialization that would cause an implicit + // instantiation to take place, in every translation unit in which such a + // use occurs; no diagnostic is required. + assert(MSInfo && "Member specialization info missing?"); + + bool HasNoEffect = false; + if (CheckSpecializationInstantiationRedecl(Member->getLocation(), + TSK_ExplicitSpecialization, + Instantiation, + MSInfo->getTemplateSpecializationKind(), + MSInfo->getPointOfInstantiation(), + HasNoEffect)) + return true; + + // Check the scope of this explicit specialization. + if (CheckTemplateSpecializationScope(*this, + InstantiatedFrom, + Instantiation, Member->getLocation(), + false)) + return true; + + // Note that this member specialization is an "instantiation of" the + // corresponding member of the original template. + if (auto *MemberFunction = dyn_cast<FunctionDecl>(Member)) { + FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation); + if (InstantiationFunction->getTemplateSpecializationKind() == + TSK_ImplicitInstantiation) { + // Explicit specializations of member functions of class templates do not + // inherit '=delete' from the member function they are specializing. + if (InstantiationFunction->isDeleted()) { + // FIXME: This assert will not hold in the presence of modules. + assert(InstantiationFunction->getCanonicalDecl() == + InstantiationFunction); + // FIXME: We need an update record for this AST mutation. + InstantiationFunction->setDeletedAsWritten(false); + } + } + + MemberFunction->setInstantiationOfMemberFunction( + cast<CXXMethodDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); + } else if (auto *MemberVar = dyn_cast<VarDecl>(Member)) { + MemberVar->setInstantiationOfStaticDataMember( + cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); + } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Member)) { + MemberClass->setInstantiationOfMemberClass( + cast<CXXRecordDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); + } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Member)) { + MemberEnum->setInstantiationOfMemberEnum( + cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization); + } else { + llvm_unreachable("unknown member specialization kind"); + } + + // Save the caller the trouble of having to figure out which declaration + // this specialization matches. + Previous.clear(); + Previous.addDecl(FoundInstantiation); + return false; +} + +/// Complete the explicit specialization of a member of a class template by +/// updating the instantiated member to be marked as an explicit specialization. +/// +/// \param OrigD The member declaration instantiated from the template. +/// \param Loc The location of the explicit specialization of the member. +template<typename DeclT> +static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, + SourceLocation Loc) { + if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) + return; + + // FIXME: Inform AST mutation listeners of this AST mutation. + // FIXME: If there are multiple in-class declarations of the member (from + // multiple modules, or a declaration and later definition of a member type), + // should we update all of them? + OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); + OrigD->setLocation(Loc); +} + +void Sema::CompleteMemberSpecialization(NamedDecl *Member, + LookupResult &Previous) { + NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); + if (Instantiation == Member) + return; + + if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) + completeMemberSpecializationImpl(*this, Function, Member->getLocation()); + else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) + completeMemberSpecializationImpl(*this, Var, Member->getLocation()); + else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) + completeMemberSpecializationImpl(*this, Record, Member->getLocation()); + else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) + completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); + else + llvm_unreachable("unknown member specialization kind"); +} + +/// Check the scope of an explicit instantiation. +/// +/// \returns true if a serious error occurs, false otherwise. +static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, + SourceLocation InstLoc, + bool WasQualifiedName) { + DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); + DeclContext *CurContext = S.CurContext->getRedeclContext(); + + if (CurContext->isRecord()) { + S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) + << D; + return true; + } + + // C++11 [temp.explicit]p3: + // An explicit instantiation shall appear in an enclosing namespace of its + // template. If the name declared in the explicit instantiation is an + // unqualified name, the explicit instantiation shall appear in the + // namespace where its template is declared or, if that namespace is inline + // (7.3.1), any namespace from its enclosing namespace set. + // + // This is DR275, which we do not retroactively apply to C++98/03. + if (WasQualifiedName) { + if (CurContext->Encloses(OrigContext)) + return false; + } else { + if (CurContext->InEnclosingNamespaceSetOf(OrigContext)) + return false; + } + + if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) { + if (WasQualifiedName) + S.Diag(InstLoc, + S.getLangOpts().CPlusPlus11? + diag::err_explicit_instantiation_out_of_scope : + diag::warn_explicit_instantiation_out_of_scope_0x) + << D << NS; + else + S.Diag(InstLoc, + S.getLangOpts().CPlusPlus11? + diag::err_explicit_instantiation_unqualified_wrong_namespace : + diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) + << D << NS; + } else + S.Diag(InstLoc, + S.getLangOpts().CPlusPlus11? + diag::err_explicit_instantiation_must_be_global : + diag::warn_explicit_instantiation_must_be_global_0x) + << D; + S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); + return false; +} + +/// Common checks for whether an explicit instantiation of \p D is valid. +static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D, + SourceLocation InstLoc, + bool WasQualifiedName, + TemplateSpecializationKind TSK) { + // C++ [temp.explicit]p13: + // An explicit instantiation declaration shall not name a specialization of + // a template with internal linkage. + if (TSK == TSK_ExplicitInstantiationDeclaration && + D->getFormalLinkage() == InternalLinkage) { + S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D; + return true; + } + + // C++11 [temp.explicit]p3: [DR 275] + // An explicit instantiation shall appear in an enclosing namespace of its + // template. + if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName)) + return true; + + return false; +} + +/// Determine whether the given scope specifier has a template-id in it. +static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { + if (!SS.isSet()) + return false; + + // C++11 [temp.explicit]p3: + // If the explicit instantiation is for a member function, a member class + // or a static data member of a class template specialization, the name of + // the class template specialization in the qualified-id for the member + // name shall be a simple-template-id. + // + // C++98 has the same restriction, just worded differently. + for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; + NNS = NNS->getPrefix()) + if (const Type *T = NNS->getAsType()) + if (isa<TemplateSpecializationType>(T)) + return true; + + return false; +} + +/// Make a dllexport or dllimport attr on a class template specialization take +/// effect. +static void dllExportImportClassTemplateSpecialization( + Sema &S, ClassTemplateSpecializationDecl *Def) { + auto *A = cast_or_null<InheritableAttr>(getDLLAttr(Def)); + assert(A && "dllExportImportClassTemplateSpecialization called " + "on Def without dllexport or dllimport"); + + // We reject explicit instantiations in class scope, so there should + // never be any delayed exported classes to worry about. + assert(S.DelayedDllExportClasses.empty() && + "delayed exports present at explicit instantiation"); + S.checkClassLevelDLLAttribute(Def); + + // Propagate attribute to base class templates. + for (auto &B : Def->bases()) { + if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( + B.getType()->getAsCXXRecordDecl())) + S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc()); + } + + S.referenceDLLExportedClassMethods(); +} + +// Explicit instantiation of a class template specialization +DeclResult Sema::ActOnExplicitInstantiation( + Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, + unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, + TemplateTy TemplateD, SourceLocation TemplateNameLoc, + SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, + SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { + // Find the class template we're specializing + TemplateName Name = TemplateD.get(); + TemplateDecl *TD = Name.getAsTemplateDecl(); + // Check that the specialization uses the same tag kind as the + // original template. + TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); + assert(Kind != TTK_Enum && + "Invalid enum tag in class template explicit instantiation!"); + + ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD); + + if (!ClassTemplate) { + NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); + Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind; + Diag(TD->getLocation(), diag::note_previous_use); + return true; + } + + if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(), + Kind, /*isDefinition*/false, KWLoc, + ClassTemplate->getIdentifier())) { + Diag(KWLoc, diag::err_use_with_wrong_tag) + << ClassTemplate + << FixItHint::CreateReplacement(KWLoc, + ClassTemplate->getTemplatedDecl()->getKindName()); + Diag(ClassTemplate->getTemplatedDecl()->getLocation(), + diag::note_previous_use); + Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); + } + + // C++0x [temp.explicit]p2: + // There are two forms of explicit instantiation: an explicit instantiation + // definition and an explicit instantiation declaration. An explicit + // instantiation declaration begins with the extern keyword. [...] + TemplateSpecializationKind TSK = ExternLoc.isInvalid() + ? TSK_ExplicitInstantiationDefinition + : TSK_ExplicitInstantiationDeclaration; + + if (TSK == TSK_ExplicitInstantiationDeclaration && + !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { + // Check for dllexport class template instantiation declarations, + // except for MinGW mode. + for (const ParsedAttr &AL : Attr) { + if (AL.getKind() == ParsedAttr::AT_DLLExport) { + Diag(ExternLoc, + diag::warn_attribute_dllexport_explicit_instantiation_decl); + Diag(AL.getLoc(), diag::note_attribute); + break; + } + } + + if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { + Diag(ExternLoc, + diag::warn_attribute_dllexport_explicit_instantiation_decl); + Diag(A->getLocation(), diag::note_attribute); + } + } + + // In MSVC mode, dllimported explicit instantiation definitions are treated as + // instantiation declarations for most purposes. + bool DLLImportExplicitInstantiationDef = false; + if (TSK == TSK_ExplicitInstantiationDefinition && + Context.getTargetInfo().getCXXABI().isMicrosoft()) { + // Check for dllimport class template instantiation definitions. + bool DLLImport = + ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); + for (const ParsedAttr &AL : Attr) { + if (AL.getKind() == ParsedAttr::AT_DLLImport) + DLLImport = true; + if (AL.getKind() == ParsedAttr::AT_DLLExport) { + // dllexport trumps dllimport here. + DLLImport = false; + break; + } + } + if (DLLImport) { + TSK = TSK_ExplicitInstantiationDeclaration; + DLLImportExplicitInstantiationDef = true; + } + } + + // Translate the parser's template argument list in our AST format. + TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); + translateTemplateArguments(TemplateArgsIn, TemplateArgs); + + // Check that the template argument list is well-formed for this + // template. + SmallVector<TemplateArgument, 4> Converted; + if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, + TemplateArgs, false, Converted, + /*UpdateArgsWithConversions=*/true)) + return true; + + // Find the class template specialization declaration that + // corresponds to these arguments. + void *InsertPos = nullptr; + ClassTemplateSpecializationDecl *PrevDecl + = ClassTemplate->findSpecialization(Converted, InsertPos); + + TemplateSpecializationKind PrevDecl_TSK + = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; + + if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr && + Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { + // Check for dllexport class template instantiation definitions in MinGW + // mode, if a previous declaration of the instantiation was seen. + for (const ParsedAttr &AL : Attr) { + if (AL.getKind() == ParsedAttr::AT_DLLExport) { + Diag(AL.getLoc(), + diag::warn_attribute_dllexport_explicit_instantiation_def); + break; + } + } + } + + if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc, + SS.isSet(), TSK)) + return true; + + ClassTemplateSpecializationDecl *Specialization = nullptr; + + bool HasNoEffect = false; + if (PrevDecl) { + if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, + PrevDecl, PrevDecl_TSK, + PrevDecl->getPointOfInstantiation(), + HasNoEffect)) + return PrevDecl; + + // Even though HasNoEffect == true means that this explicit instantiation + // has no effect on semantics, we go on to put its syntax in the AST. + + if (PrevDecl_TSK == TSK_ImplicitInstantiation || + PrevDecl_TSK == TSK_Undeclared) { + // Since the only prior class template specialization with these + // arguments was referenced but not declared, reuse that + // declaration node as our own, updating the source location + // for the template name to reflect our new declaration. + // (Other source locations will be updated later.) + Specialization = PrevDecl; + Specialization->setLocation(TemplateNameLoc); + PrevDecl = nullptr; + } + + if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && + DLLImportExplicitInstantiationDef) { + // The new specialization might add a dllimport attribute. + HasNoEffect = false; + } + } + + if (!Specialization) { + // Create a new class template specialization declaration node for + // this explicit specialization. + Specialization + = ClassTemplateSpecializationDecl::Create(Context, Kind, + ClassTemplate->getDeclContext(), + KWLoc, TemplateNameLoc, + ClassTemplate, + Converted, + PrevDecl); + SetNestedNameSpecifier(*this, Specialization, SS); + + if (!HasNoEffect && !PrevDecl) { + // Insert the new specialization. + ClassTemplate->AddSpecialization(Specialization, InsertPos); + } + } + + // Build the fully-sugared type for this explicit instantiation as + // the user wrote in the explicit instantiation itself. This means + // that we'll pretty-print the type retrieved from the + // specialization's declaration the way that the user actually wrote + // the explicit instantiation, rather than formatting the name based + // on the "canonical" representation used to store the template + // arguments in the specialization. + TypeSourceInfo *WrittenTy + = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc, + TemplateArgs, + Context.getTypeDeclType(Specialization)); + Specialization->setTypeAsWritten(WrittenTy); + + // Set source locations for keywords. + Specialization->setExternLoc(ExternLoc); + Specialization->setTemplateKeywordLoc(TemplateLoc); + Specialization->setBraceRange(SourceRange()); + + bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); + ProcessDeclAttributeList(S, Specialization, Attr); + + // Add the explicit instantiation into its lexical context. However, + // since explicit instantiations are never found by name lookup, we + // just put it into the declaration context directly. + Specialization->setLexicalDeclContext(CurContext); + CurContext->addDecl(Specialization); + + // Syntax is now OK, so return if it has no other effect on semantics. + if (HasNoEffect) { + // Set the template specialization kind. + Specialization->setTemplateSpecializationKind(TSK); + return Specialization; + } + + // C++ [temp.explicit]p3: + // A definition of a class template or class member template + // shall be in scope at the point of the explicit instantiation of + // the class template or class member template. + // + // This check comes when we actually try to perform the + // instantiation. + ClassTemplateSpecializationDecl *Def + = cast_or_null<ClassTemplateSpecializationDecl>( + Specialization->getDefinition()); + if (!Def) + InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK); + else if (TSK == TSK_ExplicitInstantiationDefinition) { + MarkVTableUsed(TemplateNameLoc, Specialization, true); + Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); + } + + // Instantiate the members of this class template specialization. + Def = cast_or_null<ClassTemplateSpecializationDecl>( + Specialization->getDefinition()); + if (Def) { + TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); + // Fix a TSK_ExplicitInstantiationDeclaration followed by a + // TSK_ExplicitInstantiationDefinition + if (Old_TSK == TSK_ExplicitInstantiationDeclaration && + (TSK == TSK_ExplicitInstantiationDefinition || + DLLImportExplicitInstantiationDef)) { + // FIXME: Need to notify the ASTMutationListener that we did this. + Def->setTemplateSpecializationKind(TSK); + + if (!getDLLAttr(Def) && getDLLAttr(Specialization) && + (Context.getTargetInfo().shouldDLLImportComdatSymbols() && + !Context.getTargetInfo().getTriple().isPS4CPU())) { + // An explicit instantiation definition can add a dll attribute to a + // template with a previous instantiation declaration. MinGW doesn't + // allow this. + auto *A = cast<InheritableAttr>( + getDLLAttr(Specialization)->clone(getASTContext())); + A->setInherited(true); + Def->addAttr(A); + dllExportImportClassTemplateSpecialization(*this, Def); + } + } + + // Fix a TSK_ImplicitInstantiation followed by a + // TSK_ExplicitInstantiationDefinition + bool NewlyDLLExported = + !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); + if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && + (Context.getTargetInfo().shouldDLLImportComdatSymbols() && + !Context.getTargetInfo().getTriple().isPS4CPU())) { + // An explicit instantiation definition can add a dll attribute to a + // template with a previous implicit instantiation. MinGW doesn't allow + // this. We limit clang to only adding dllexport, to avoid potentially + // strange codegen behavior. For example, if we extend this conditional + // to dllimport, and we have a source file calling a method on an + // implicitly instantiated template class instance and then declaring a + // dllimport explicit instantiation definition for the same template + // class, the codegen for the method call will not respect the dllimport, + // while it will with cl. The Def will already have the DLL attribute, + // since the Def and Specialization will be the same in the case of + // Old_TSK == TSK_ImplicitInstantiation, and we already added the + // attribute to the Specialization; we just need to make it take effect. + assert(Def == Specialization && + "Def and Specialization should match for implicit instantiation"); + dllExportImportClassTemplateSpecialization(*this, Def); + } + + // In MinGW mode, export the template instantiation if the declaration + // was marked dllexport. + if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && + Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() && + PrevDecl->hasAttr<DLLExportAttr>()) { + dllExportImportClassTemplateSpecialization(*this, Def); + } + + if (Def->hasAttr<MSInheritanceAttr>()) { + Specialization->addAttr(Def->getAttr<MSInheritanceAttr>()); + Consumer.AssignInheritanceModel(Specialization); + } + + // Set the template specialization kind. Make sure it is set before + // instantiating the members which will trigger ASTConsumer callbacks. + Specialization->setTemplateSpecializationKind(TSK); + InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK); + } else { + + // Set the template specialization kind. + Specialization->setTemplateSpecializationKind(TSK); + } + + return Specialization; +} + +// Explicit instantiation of a member class of a class template. +DeclResult +Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, + SourceLocation TemplateLoc, unsigned TagSpec, + SourceLocation KWLoc, CXXScopeSpec &SS, + IdentifierInfo *Name, SourceLocation NameLoc, + const ParsedAttributesView &Attr) { + + bool Owned = false; + bool IsDependent = false; + Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference, + KWLoc, SS, Name, NameLoc, Attr, AS_none, + /*ModulePrivateLoc=*/SourceLocation(), + MultiTemplateParamsArg(), Owned, IsDependent, + SourceLocation(), false, TypeResult(), + /*IsTypeSpecifier*/false, + /*IsTemplateParamOrArg*/false); + assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); + + if (!TagD) + return true; + + TagDecl *Tag = cast<TagDecl>(TagD); + assert(!Tag->isEnum() && "shouldn't see enumerations here"); + + if (Tag->isInvalidDecl()) + return true; + + CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag); + CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); + if (!Pattern) { + Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) + << Context.getTypeDeclType(Record); + Diag(Record->getLocation(), diag::note_nontemplate_decl_here); + return true; + } + + // C++0x [temp.explicit]p2: + // If the explicit instantiation is for a class or member class, the + // elaborated-type-specifier in the declaration shall include a + // simple-template-id. + // + // C++98 has the same restriction, just worded differently. + if (!ScopeSpecifierHasTemplateId(SS)) + Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) + << Record << SS.getRange(); + + // C++0x [temp.explicit]p2: + // There are two forms of explicit instantiation: an explicit instantiation + // definition and an explicit instantiation declaration. An explicit + // instantiation declaration begins with the extern keyword. [...] + TemplateSpecializationKind TSK + = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition + : TSK_ExplicitInstantiationDeclaration; + + CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK); + + // Verify that it is okay to explicitly instantiate here. + CXXRecordDecl *PrevDecl + = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl()); + if (!PrevDecl && Record->getDefinition()) + PrevDecl = Record; + if (PrevDecl) { + MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); + bool HasNoEffect = false; + assert(MSInfo && "No member specialization information?"); + if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, + PrevDecl, + MSInfo->getTemplateSpecializationKind(), + MSInfo->getPointOfInstantiation(), + HasNoEffect)) + return true; + if (HasNoEffect) + return TagD; + } + + CXXRecordDecl *RecordDef + = cast_or_null<CXXRecordDecl>(Record->getDefinition()); + if (!RecordDef) { + // C++ [temp.explicit]p3: + // A definition of a member class of a class template shall be in scope + // at the point of an explicit instantiation of the member class. + CXXRecordDecl *Def + = cast_or_null<CXXRecordDecl>(Pattern->getDefinition()); + if (!Def) { + Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) + << 0 << Record->getDeclName() << Record->getDeclContext(); + Diag(Pattern->getLocation(), diag::note_forward_declaration) + << Pattern; + return true; + } else { + if (InstantiateClass(NameLoc, Record, Def, + getTemplateInstantiationArgs(Record), + TSK)) + return true; + + RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition()); + if (!RecordDef) + return true; + } + } + + // Instantiate all of the members of the class. + InstantiateClassMembers(NameLoc, RecordDef, + getTemplateInstantiationArgs(Record), TSK); + + if (TSK == TSK_ExplicitInstantiationDefinition) + MarkVTableUsed(NameLoc, RecordDef, true); + + // FIXME: We don't have any representation for explicit instantiations of + // member classes. Such a representation is not needed for compilation, but it + // should be available for clients that want to see all of the declarations in + // the source code. + return TagD; +} + +DeclResult Sema::ActOnExplicitInstantiation(Scope *S, + SourceLocation ExternLoc, + SourceLocation TemplateLoc, + Declarator &D) { + // Explicit instantiations always require a name. + // TODO: check if/when DNInfo should replace Name. + DeclarationNameInfo NameInfo = GetNameForDeclarator(D); + DeclarationName Name = NameInfo.getName(); + if (!Name) { + if (!D.isInvalidType()) + Diag(D.getDeclSpec().getBeginLoc(), + diag::err_explicit_instantiation_requires_name) + << D.getDeclSpec().getSourceRange() << D.getSourceRange(); + + return true; + } + + // The scope passed in may not be a decl scope. Zip up the scope tree until + // we find one that is. + while ((S->getFlags() & Scope::DeclScope) == 0 || + (S->getFlags() & Scope::TemplateParamScope) != 0) + S = S->getParent(); + + // Determine the type of the declaration. + TypeSourceInfo *T = GetTypeForDeclarator(D, S); + QualType R = T->getType(); + if (R.isNull()) + return true; + + // C++ [dcl.stc]p1: + // A storage-class-specifier shall not be specified in [...] an explicit + // instantiation (14.7.2) directive. + if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { + Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) + << Name; + return true; + } else if (D.getDeclSpec().getStorageClassSpec() + != DeclSpec::SCS_unspecified) { + // Complain about then remove the storage class specifier. + Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) + << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); + + D.getMutableDeclSpec().ClearStorageClassSpecs(); + } + + // C++0x [temp.explicit]p1: + // [...] An explicit instantiation of a function template shall not use the + // inline or constexpr specifiers. + // Presumably, this also applies to member functions of class templates as + // well. + if (D.getDeclSpec().isInlineSpecified()) + Diag(D.getDeclSpec().getInlineSpecLoc(), + getLangOpts().CPlusPlus11 ? + diag::err_explicit_instantiation_inline : + diag::warn_explicit_instantiation_inline_0x) + << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); + if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType()) + // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is + // not already specified. + Diag(D.getDeclSpec().getConstexprSpecLoc(), + diag::err_explicit_instantiation_constexpr); + + // A deduction guide is not on the list of entities that can be explicitly + // instantiated. + if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { + Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized) + << /*explicit instantiation*/ 0; + return true; + } + + // C++0x [temp.explicit]p2: + // There are two forms of explicit instantiation: an explicit instantiation + // definition and an explicit instantiation declaration. An explicit + // instantiation declaration begins with the extern keyword. [...] + TemplateSpecializationKind TSK + = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition + : TSK_ExplicitInstantiationDeclaration; + + LookupResult Previous(*this, NameInfo, LookupOrdinaryName); + LookupParsedName(Previous, S, &D.getCXXScopeSpec()); + + if (!R->isFunctionType()) { + // C++ [temp.explicit]p1: + // A [...] static data member of a class template can be explicitly + // instantiated from the member definition associated with its class + // template. + // C++1y [temp.explicit]p1: + // A [...] variable [...] template specialization can be explicitly + // instantiated from its template. + if (Previous.isAmbiguous()) + return true; + + VarDecl *Prev = Previous.getAsSingle<VarDecl>(); + VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); + + if (!PrevTemplate) { + if (!Prev || !Prev->isStaticDataMember()) { + // We expect to see a static data member here. + Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) + << Name; + for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); + P != PEnd; ++P) + Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); + return true; + } + + if (!Prev->getInstantiatedFromStaticDataMember()) { + // FIXME: Check for explicit specialization? + Diag(D.getIdentifierLoc(), + diag::err_explicit_instantiation_data_member_not_instantiated) + << Prev; + Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); + // FIXME: Can we provide a note showing where this was declared? + return true; + } + } else { + // Explicitly instantiate a variable template. + + // C++1y [dcl.spec.auto]p6: + // ... A program that uses auto or decltype(auto) in a context not + // explicitly allowed in this section is ill-formed. + // + // This includes auto-typed variable template instantiations. + if (R->isUndeducedType()) { + Diag(T->getTypeLoc().getBeginLoc(), + diag::err_auto_not_allowed_var_inst); + return true; + } + + if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { + // C++1y [temp.explicit]p3: + // If the explicit instantiation is for a variable, the unqualified-id + // in the declaration shall be a template-id. + Diag(D.getIdentifierLoc(), + diag::err_explicit_instantiation_without_template_id) + << PrevTemplate; + Diag(PrevTemplate->getLocation(), + diag::note_explicit_instantiation_here); + return true; + } + + // Translate the parser's template argument list into our AST format. + TemplateArgumentListInfo TemplateArgs = + makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); + + DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc, + D.getIdentifierLoc(), TemplateArgs); + if (Res.isInvalid()) + return true; + + if (!Res.isUsable()) { + // We somehow specified dependent template arguments in an explicit + // instantiation. This should probably only happen during error + // recovery. + Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent); + return true; + } + + // Ignore access control bits, we don't need them for redeclaration + // checking. + Prev = cast<VarDecl>(Res.get()); + } + + // C++0x [temp.explicit]p2: + // If the explicit instantiation is for a member function, a member class + // or a static data member of a class template specialization, the name of + // the class template specialization in the qualified-id for the member + // name shall be a simple-template-id. + // + // C++98 has the same restriction, just worded differently. + // + // This does not apply to variable template specializations, where the + // template-id is in the unqualified-id instead. + if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) + Diag(D.getIdentifierLoc(), + diag::ext_explicit_instantiation_without_qualified_id) + << Prev << D.getCXXScopeSpec().getRange(); + + CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK); + + // Verify that it is okay to explicitly instantiate here. + TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); + SourceLocation POI = Prev->getPointOfInstantiation(); + bool HasNoEffect = false; + if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, + PrevTSK, POI, HasNoEffect)) + return true; + + if (!HasNoEffect) { + // Instantiate static data member or variable template. + Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); + // Merge attributes. + ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); + if (TSK == TSK_ExplicitInstantiationDefinition) + InstantiateVariableDefinition(D.getIdentifierLoc(), Prev); + } + + // Check the new variable specialization against the parsed input. + if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) { + Diag(T->getTypeLoc().getBeginLoc(), + diag::err_invalid_var_template_spec_type) + << 0 << PrevTemplate << R << Prev->getType(); + Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) + << 2 << PrevTemplate->getDeclName(); + return true; + } + + // FIXME: Create an ExplicitInstantiation node? + return (Decl*) nullptr; + } + + // If the declarator is a template-id, translate the parser's template + // argument list into our AST format. + bool HasExplicitTemplateArgs = false; + TemplateArgumentListInfo TemplateArgs; + if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { + TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId); + HasExplicitTemplateArgs = true; + } + + // C++ [temp.explicit]p1: + // A [...] function [...] can be explicitly instantiated from its template. + // A member function [...] of a class template can be explicitly + // instantiated from the member definition associated with its class + // template. + UnresolvedSet<8> TemplateMatches; + FunctionDecl *NonTemplateMatch = nullptr; + TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); + for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); + P != PEnd; ++P) { + NamedDecl *Prev = *P; + if (!HasExplicitTemplateArgs) { + if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) { + QualType Adjusted = adjustCCAndNoReturn(R, Method->getType(), + /*AdjustExceptionSpec*/true); + if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) { + if (Method->getPrimaryTemplate()) { + TemplateMatches.addDecl(Method, P.getAccess()); + } else { + // FIXME: Can this assert ever happen? Needs a test. + assert(!NonTemplateMatch && "Multiple NonTemplateMatches"); + NonTemplateMatch = Method; + } + } + } + } + + FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev); + if (!FunTmpl) + continue; + + TemplateDeductionInfo Info(FailedCandidates.getLocation()); + FunctionDecl *Specialization = nullptr; + if (TemplateDeductionResult TDK + = DeduceTemplateArguments(FunTmpl, + (HasExplicitTemplateArgs ? &TemplateArgs + : nullptr), + R, Specialization, Info)) { + // Keep track of almost-matches. + FailedCandidates.addCandidate() + .set(P.getPair(), FunTmpl->getTemplatedDecl(), + MakeDeductionFailureInfo(Context, TDK, Info)); + (void)TDK; + continue; + } + + // Target attributes are part of the cuda function signature, so + // the cuda target of the instantiated function must match that of its + // template. Given that C++ template deduction does not take + // target attributes into account, we reject candidates here that + // have a different target. + if (LangOpts.CUDA && + IdentifyCUDATarget(Specialization, + /* IgnoreImplicitHDAttr = */ true) != + IdentifyCUDATarget(D.getDeclSpec().getAttributes())) { + FailedCandidates.addCandidate().set( + P.getPair(), FunTmpl->getTemplatedDecl(), + MakeDeductionFailureInfo(Context, TDK_CUDATargetMismatch, Info)); + continue; + } + + TemplateMatches.addDecl(Specialization, P.getAccess()); + } + + FunctionDecl *Specialization = NonTemplateMatch; + if (!Specialization) { + // Find the most specialized function template specialization. + UnresolvedSetIterator Result = getMostSpecialized( + TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates, + D.getIdentifierLoc(), + PDiag(diag::err_explicit_instantiation_not_known) << Name, + PDiag(diag::err_explicit_instantiation_ambiguous) << Name, + PDiag(diag::note_explicit_instantiation_candidate)); + + if (Result == TemplateMatches.end()) + return true; + + // Ignore access control bits, we don't need them for redeclaration checking. + Specialization = cast<FunctionDecl>(*Result); + } + + // C++11 [except.spec]p4 + // In an explicit instantiation an exception-specification may be specified, + // but is not required. + // If an exception-specification is specified in an explicit instantiation + // directive, it shall be compatible with the exception-specifications of + // other declarations of that function. + if (auto *FPT = R->getAs<FunctionProtoType>()) + if (FPT->hasExceptionSpec()) { + unsigned DiagID = + diag::err_mismatched_exception_spec_explicit_instantiation; + if (getLangOpts().MicrosoftExt) + DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; + bool Result = CheckEquivalentExceptionSpec( + PDiag(DiagID) << Specialization->getType(), + PDiag(diag::note_explicit_instantiation_here), + Specialization->getType()->getAs<FunctionProtoType>(), + Specialization->getLocation(), FPT, D.getBeginLoc()); + // In Microsoft mode, mismatching exception specifications just cause a + // warning. + if (!getLangOpts().MicrosoftExt && Result) + return true; + } + + if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { + Diag(D.getIdentifierLoc(), + diag::err_explicit_instantiation_member_function_not_instantiated) + << Specialization + << (Specialization->getTemplateSpecializationKind() == + TSK_ExplicitSpecialization); + Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); + return true; + } + + FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); + if (!PrevDecl && Specialization->isThisDeclarationADefinition()) + PrevDecl = Specialization; + + if (PrevDecl) { + bool HasNoEffect = false; + if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, + PrevDecl, + PrevDecl->getTemplateSpecializationKind(), + PrevDecl->getPointOfInstantiation(), + HasNoEffect)) + return true; + + // FIXME: We may still want to build some representation of this + // explicit specialization. + if (HasNoEffect) + return (Decl*) nullptr; + } + + // HACK: libc++ has a bug where it attempts to explicitly instantiate the + // functions + // valarray<size_t>::valarray(size_t) and + // valarray<size_t>::~valarray() + // that it declared to have internal linkage with the internal_linkage + // attribute. Ignore the explicit instantiation declaration in this case. + if (Specialization->hasAttr<InternalLinkageAttr>() && + TSK == TSK_ExplicitInstantiationDeclaration) { + if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext())) + if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") && + RD->isInStdNamespace()) + return (Decl*) nullptr; + } + + ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); + + // In MSVC mode, dllimported explicit instantiation definitions are treated as + // instantiation declarations. + if (TSK == TSK_ExplicitInstantiationDefinition && + Specialization->hasAttr<DLLImportAttr>() && + Context.getTargetInfo().getCXXABI().isMicrosoft()) + TSK = TSK_ExplicitInstantiationDeclaration; + + Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc()); + + if (Specialization->isDefined()) { + // Let the ASTConsumer know that this function has been explicitly + // instantiated now, and its linkage might have changed. + Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization)); + } else if (TSK == TSK_ExplicitInstantiationDefinition) + InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization); + + // C++0x [temp.explicit]p2: + // If the explicit instantiation is for a member function, a member class + // or a static data member of a class template specialization, the name of + // the class template specialization in the qualified-id for the member + // name shall be a simple-template-id. + // + // C++98 has the same restriction, just worded differently. + FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); + if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && + D.getCXXScopeSpec().isSet() && + !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) + Diag(D.getIdentifierLoc(), + diag::ext_explicit_instantiation_without_qualified_id) + << Specialization << D.getCXXScopeSpec().getRange(); + + CheckExplicitInstantiation( + *this, + FunTmpl ? (NamedDecl *)FunTmpl + : Specialization->getInstantiatedFromMemberFunction(), + D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK); + + // FIXME: Create some kind of ExplicitInstantiationDecl here. + return (Decl*) nullptr; +} + +TypeResult +Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, + const CXXScopeSpec &SS, IdentifierInfo *Name, + SourceLocation TagLoc, SourceLocation NameLoc) { + // This has to hold, because SS is expected to be defined. + assert(Name && "Expected a name in a dependent tag"); + + NestedNameSpecifier *NNS = SS.getScopeRep(); + if (!NNS) + return true; + + TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); + + if (TUK == TUK_Declaration || TUK == TUK_Definition) { + Diag(NameLoc, diag::err_dependent_tag_decl) + << (TUK == TUK_Definition) << Kind << SS.getRange(); + return true; + } + + // Create the resulting type. + ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind); + QualType Result = Context.getDependentNameType(Kwd, NNS, Name); + + // Create type-source location information for this type. + TypeLocBuilder TLB; + DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result); + TL.setElaboratedKeywordLoc(TagLoc); + TL.setQualifierLoc(SS.getWithLocInContext(Context)); + TL.setNameLoc(NameLoc); + return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result)); +} + +TypeResult +Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, + const CXXScopeSpec &SS, const IdentifierInfo &II, + SourceLocation IdLoc) { + if (SS.isInvalid()) + return true; + + if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) + Diag(TypenameLoc, + getLangOpts().CPlusPlus11 ? + diag::warn_cxx98_compat_typename_outside_of_template : + diag::ext_typename_outside_of_template) + << FixItHint::CreateRemoval(TypenameLoc); + + NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); + TypeSourceInfo *TSI = nullptr; + QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None, + TypenameLoc, QualifierLoc, II, IdLoc, &TSI, + /*DeducedTSTContext=*/true); + if (T.isNull()) + return true; + return CreateParsedType(T, TSI); +} + +TypeResult +Sema::ActOnTypenameType(Scope *S, + SourceLocation TypenameLoc, + const CXXScopeSpec &SS, + SourceLocation TemplateKWLoc, + TemplateTy TemplateIn, + IdentifierInfo *TemplateII, + SourceLocation TemplateIILoc, + SourceLocation LAngleLoc, + ASTTemplateArgsPtr TemplateArgsIn, + SourceLocation RAngleLoc) { + if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) + Diag(TypenameLoc, + getLangOpts().CPlusPlus11 ? + diag::warn_cxx98_compat_typename_outside_of_template : + diag::ext_typename_outside_of_template) + << FixItHint::CreateRemoval(TypenameLoc); + + // Strangely, non-type results are not ignored by this lookup, so the + // program is ill-formed if it finds an injected-class-name. + if (TypenameLoc.isValid()) { + auto *LookupRD = + dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, false)); + if (LookupRD && LookupRD->getIdentifier() == TemplateII) { + Diag(TemplateIILoc, + diag::ext_out_of_line_qualified_id_type_names_constructor) + << TemplateII << 0 /*injected-class-name used as template name*/ + << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); + } + } + + // Translate the parser's template argument list in our AST format. + TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); + translateTemplateArguments(TemplateArgsIn, TemplateArgs); + + TemplateName Template = TemplateIn.get(); + if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { + // Construct a dependent template specialization type. + assert(DTN && "dependent template has non-dependent name?"); + assert(DTN->getQualifier() == SS.getScopeRep()); + QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename, + DTN->getQualifier(), + DTN->getIdentifier(), + TemplateArgs); + + // Create source-location information for this type. + TypeLocBuilder Builder; + DependentTemplateSpecializationTypeLoc SpecTL + = Builder.push<DependentTemplateSpecializationTypeLoc>(T); + SpecTL.setElaboratedKeywordLoc(TypenameLoc); + SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); + SpecTL.setTemplateKeywordLoc(TemplateKWLoc); + SpecTL.setTemplateNameLoc(TemplateIILoc); + SpecTL.setLAngleLoc(LAngleLoc); + SpecTL.setRAngleLoc(RAngleLoc); + for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) + SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); + return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); + } + + QualType T = CheckTemplateIdType(Template, TemplateIILoc, TemplateArgs); + if (T.isNull()) + return true; + + // Provide source-location information for the template specialization type. + TypeLocBuilder Builder; + TemplateSpecializationTypeLoc SpecTL + = Builder.push<TemplateSpecializationTypeLoc>(T); + SpecTL.setTemplateKeywordLoc(TemplateKWLoc); + SpecTL.setTemplateNameLoc(TemplateIILoc); + SpecTL.setLAngleLoc(LAngleLoc); + SpecTL.setRAngleLoc(RAngleLoc); + for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) + SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo()); + + T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T); + ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); + TL.setElaboratedKeywordLoc(TypenameLoc); + TL.setQualifierLoc(SS.getWithLocInContext(Context)); + + TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); + return CreateParsedType(T, TSI); +} + + +/// Determine whether this failed name lookup should be treated as being +/// disabled by a usage of std::enable_if. +static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, + SourceRange &CondRange, Expr *&Cond) { + // We must be looking for a ::type... + if (!II.isStr("type")) + return false; + + // ... within an explicitly-written template specialization... + if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) + return false; + TypeLoc EnableIfTy = NNS.getTypeLoc(); + TemplateSpecializationTypeLoc EnableIfTSTLoc = + EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); + if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) + return false; + const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); + + // ... which names a complete class template declaration... + const TemplateDecl *EnableIfDecl = + EnableIfTST->getTemplateName().getAsTemplateDecl(); + if (!EnableIfDecl || EnableIfTST->isIncompleteType()) + return false; + + // ... called "enable_if". + const IdentifierInfo *EnableIfII = + EnableIfDecl->getDeclName().getAsIdentifierInfo(); + if (!EnableIfII || !EnableIfII->isStr("enable_if")) + return false; + + // Assume the first template argument is the condition. + CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange(); + + // Dig out the condition. + Cond = nullptr; + if (EnableIfTSTLoc.getArgLoc(0).getArgument().getKind() + != TemplateArgument::Expression) + return true; + + Cond = EnableIfTSTLoc.getArgLoc(0).getSourceExpression(); + + // Ignore Boolean literals; they add no value. + if (isa<CXXBoolLiteralExpr>(Cond->IgnoreParenCasts())) + Cond = nullptr; + + return true; +} + +QualType +Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, + SourceLocation KeywordLoc, + NestedNameSpecifierLoc QualifierLoc, + const IdentifierInfo &II, + SourceLocation IILoc, + TypeSourceInfo **TSI, + bool DeducedTSTContext) { + QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc, + DeducedTSTContext); + if (T.isNull()) + return QualType(); + + *TSI = Context.CreateTypeSourceInfo(T); + if (isa<DependentNameType>(T)) { + DependentNameTypeLoc TL = + (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>(); + TL.setElaboratedKeywordLoc(KeywordLoc); + TL.setQualifierLoc(QualifierLoc); + TL.setNameLoc(IILoc); + } else { + ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>(); + TL.setElaboratedKeywordLoc(KeywordLoc); + TL.setQualifierLoc(QualifierLoc); + TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc); + } + return T; +} + +/// Build the type that describes a C++ typename specifier, +/// e.g., "typename T::type". +QualType +Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, + SourceLocation KeywordLoc, + NestedNameSpecifierLoc QualifierLoc, + const IdentifierInfo &II, + SourceLocation IILoc, bool DeducedTSTContext) { + CXXScopeSpec SS; + SS.Adopt(QualifierLoc); + + DeclContext *Ctx = nullptr; + if (QualifierLoc) { + Ctx = computeDeclContext(SS); + if (!Ctx) { + // If the nested-name-specifier is dependent and couldn't be + // resolved to a type, build a typename type. + assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); + return Context.getDependentNameType(Keyword, + QualifierLoc.getNestedNameSpecifier(), + &II); + } + + // If the nested-name-specifier refers to the current instantiation, + // the "typename" keyword itself is superfluous. In C++03, the + // program is actually ill-formed. However, DR 382 (in C++0x CD1) + // allows such extraneous "typename" keywords, and we retroactively + // apply this DR to C++03 code with only a warning. In any case we continue. + + if (RequireCompleteDeclContext(SS, Ctx)) + return QualType(); + } + + DeclarationName Name(&II); + LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); + if (Ctx) + LookupQualifiedName(Result, Ctx, SS); + else + LookupName(Result, CurScope); + unsigned DiagID = 0; + Decl *Referenced = nullptr; + switch (Result.getResultKind()) { + case LookupResult::NotFound: { + // If we're looking up 'type' within a template named 'enable_if', produce + // a more specific diagnostic. + SourceRange CondRange; + Expr *Cond = nullptr; + if (Ctx && isEnableIf(QualifierLoc, II, CondRange, Cond)) { + // If we have a condition, narrow it down to the specific failed + // condition. + if (Cond) { + Expr *FailedCond; + std::string FailedDescription; + std::tie(FailedCond, FailedDescription) = + findFailedBooleanCondition(Cond); + + Diag(FailedCond->getExprLoc(), + diag::err_typename_nested_not_found_requirement) + << FailedDescription + << FailedCond->getSourceRange(); + return QualType(); + } + + Diag(CondRange.getBegin(), + diag::err_typename_nested_not_found_enable_if) + << Ctx << CondRange; + return QualType(); + } + + DiagID = Ctx ? diag::err_typename_nested_not_found + : diag::err_unknown_typename; + break; + } + + case LookupResult::FoundUnresolvedValue: { + // We found a using declaration that is a value. Most likely, the using + // declaration itself is meant to have the 'typename' keyword. + SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), + IILoc); + Diag(IILoc, diag::err_typename_refers_to_using_value_decl) + << Name << Ctx << FullRange; + if (UnresolvedUsingValueDecl *Using + = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){ + SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); + Diag(Loc, diag::note_using_value_decl_missing_typename) + << FixItHint::CreateInsertion(Loc, "typename "); + } + } + // Fall through to create a dependent typename type, from which we can recover + // better. + LLVM_FALLTHROUGH; + + case LookupResult::NotFoundInCurrentInstantiation: + // Okay, it's a member of an unknown instantiation. + return Context.getDependentNameType(Keyword, + QualifierLoc.getNestedNameSpecifier(), + &II); + + case LookupResult::Found: + if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) { + // C++ [class.qual]p2: + // In a lookup in which function names are not ignored and the + // nested-name-specifier nominates a class C, if the name specified + // after the nested-name-specifier, when looked up in C, is the + // injected-class-name of C [...] then the name is instead considered + // to name the constructor of class C. + // + // Unlike in an elaborated-type-specifier, function names are not ignored + // in typename-specifier lookup. However, they are ignored in all the + // contexts where we form a typename type with no keyword (that is, in + // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). + // + // FIXME: That's not strictly true: mem-initializer-id lookup does not + // ignore functions, but that appears to be an oversight. + auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Ctx); + auto *FoundRD = dyn_cast<CXXRecordDecl>(Type); + if (Keyword == ETK_Typename && LookupRD && FoundRD && + FoundRD->isInjectedClassName() && + declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) + Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor) + << &II << 1 << 0 /*'typename' keyword used*/; + + // We found a type. Build an ElaboratedType, since the + // typename-specifier was just sugar. + MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); + return Context.getElaboratedType(Keyword, + QualifierLoc.getNestedNameSpecifier(), + Context.getTypeDeclType(Type)); + } + + // C++ [dcl.type.simple]p2: + // A type-specifier of the form + // typename[opt] nested-name-specifier[opt] template-name + // is a placeholder for a deduced class type [...]. + if (getLangOpts().CPlusPlus17) { + if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { + if (!DeducedTSTContext) { + QualType T(QualifierLoc + ? QualifierLoc.getNestedNameSpecifier()->getAsType() + : nullptr, 0); + if (!T.isNull()) + Diag(IILoc, diag::err_dependent_deduced_tst) + << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T; + else + Diag(IILoc, diag::err_deduced_tst) + << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)); + Diag(TD->getLocation(), diag::note_template_decl_here); + return QualType(); + } + return Context.getElaboratedType( + Keyword, QualifierLoc.getNestedNameSpecifier(), + Context.getDeducedTemplateSpecializationType(TemplateName(TD), + QualType(), false)); + } + } + + DiagID = Ctx ? diag::err_typename_nested_not_type + : diag::err_typename_not_type; + Referenced = Result.getFoundDecl(); + break; + + case LookupResult::FoundOverloaded: + DiagID = Ctx ? diag::err_typename_nested_not_type + : diag::err_typename_not_type; + Referenced = *Result.begin(); + break; + + case LookupResult::Ambiguous: + return QualType(); + } + + // If we get here, it's because name lookup did not find a + // type. Emit an appropriate diagnostic and return an error. + SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), + IILoc); + if (Ctx) + Diag(IILoc, DiagID) << FullRange << Name << Ctx; + else + Diag(IILoc, DiagID) << FullRange << Name; + if (Referenced) + Diag(Referenced->getLocation(), + Ctx ? diag::note_typename_member_refers_here + : diag::note_typename_refers_here) + << Name; + return QualType(); +} + +namespace { + // See Sema::RebuildTypeInCurrentInstantiation + class CurrentInstantiationRebuilder + : public TreeTransform<CurrentInstantiationRebuilder> { + SourceLocation Loc; + DeclarationName Entity; + + public: + typedef TreeTransform<CurrentInstantiationRebuilder> inherited; + + CurrentInstantiationRebuilder(Sema &SemaRef, + SourceLocation Loc, + DeclarationName Entity) + : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), + Loc(Loc), Entity(Entity) { } + + /// Determine whether the given type \p T has already been + /// transformed. + /// + /// For the purposes of type reconstruction, a type has already been + /// transformed if it is NULL or if it is not dependent. + bool AlreadyTransformed(QualType T) { + return T.isNull() || !T->isInstantiationDependentType(); + } + + /// Returns the location of the entity whose type is being + /// rebuilt. + SourceLocation getBaseLocation() { return Loc; } + + /// Returns the name of the entity whose type is being rebuilt. + DeclarationName getBaseEntity() { return Entity; } + + /// Sets the "base" location and entity when that + /// information is known based on another transformation. + void setBase(SourceLocation Loc, DeclarationName Entity) { + this->Loc = Loc; + this->Entity = Entity; + } + + ExprResult TransformLambdaExpr(LambdaExpr *E) { + // Lambdas never need to be transformed. + return E; + } + }; +} // end anonymous namespace + +/// Rebuilds a type within the context of the current instantiation. +/// +/// The type \p T is part of the type of an out-of-line member definition of +/// a class template (or class template partial specialization) that was parsed +/// and constructed before we entered the scope of the class template (or +/// partial specialization thereof). This routine will rebuild that type now +/// that we have entered the declarator's scope, which may produce different +/// canonical types, e.g., +/// +/// \code +/// template<typename T> +/// struct X { +/// typedef T* pointer; +/// pointer data(); +/// }; +/// +/// template<typename T> +/// typename X<T>::pointer X<T>::data() { ... } +/// \endcode +/// +/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, +/// since we do not know that we can look into X<T> when we parsed the type. +/// This function will rebuild the type, performing the lookup of "pointer" +/// in X<T> and returning an ElaboratedType whose canonical type is the same +/// as the canonical type of T*, allowing the return types of the out-of-line +/// definition and the declaration to match. +TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, + SourceLocation Loc, + DeclarationName Name) { + if (!T || !T->getType()->isInstantiationDependentType()) + return T; + + CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); + return Rebuilder.TransformType(T); +} + +ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { + CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), + DeclarationName()); + return Rebuilder.TransformExpr(E); +} + +bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { + if (SS.isInvalid()) + return true; + + NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); + CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), + DeclarationName()); + NestedNameSpecifierLoc Rebuilt + = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); + if (!Rebuilt) + return true; + + SS.Adopt(Rebuilt); + return false; +} + +/// Rebuild the template parameters now that we know we're in a current +/// instantiation. +bool Sema::RebuildTemplateParamsInCurrentInstantiation( + TemplateParameterList *Params) { + for (unsigned I = 0, N = Params->size(); I != N; ++I) { + Decl *Param = Params->getParam(I); + + // There is nothing to rebuild in a type parameter. + if (isa<TemplateTypeParmDecl>(Param)) + continue; + + // Rebuild the template parameter list of a template template parameter. + if (TemplateTemplateParmDecl *TTP + = dyn_cast<TemplateTemplateParmDecl>(Param)) { + if (RebuildTemplateParamsInCurrentInstantiation( + TTP->getTemplateParameters())) + return true; + + continue; + } + + // Rebuild the type of a non-type template parameter. + NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param); + TypeSourceInfo *NewTSI + = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(), + NTTP->getLocation(), + NTTP->getDeclName()); + if (!NewTSI) + return true; + + if (NewTSI->getType()->isUndeducedType()) { + // C++17 [temp.dep.expr]p3: + // An id-expression is type-dependent if it contains + // - an identifier associated by name lookup with a non-type + // template-parameter declared with a type that contains a + // placeholder type (7.1.7.4), + NewTSI = SubstAutoTypeSourceInfoDependent(NewTSI); + } + + if (NewTSI != NTTP->getTypeSourceInfo()) { + NTTP->setTypeSourceInfo(NewTSI); + NTTP->setType(NewTSI->getType()); + } + } + + return false; +} + +/// Produces a formatted string that describes the binding of +/// template parameters to template arguments. +std::string +Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, + const TemplateArgumentList &Args) { + return getTemplateArgumentBindingsText(Params, Args.data(), Args.size()); +} + +std::string +Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, + const TemplateArgument *Args, + unsigned NumArgs) { + SmallString<128> Str; + llvm::raw_svector_ostream Out(Str); + + if (!Params || Params->size() == 0 || NumArgs == 0) + return std::string(); + + for (unsigned I = 0, N = Params->size(); I != N; ++I) { + if (I >= NumArgs) + break; + + if (I == 0) + Out << "[with "; + else + Out << ", "; + + if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) { + Out << Id->getName(); + } else { + Out << '$' << I; + } + + Out << " = "; + Args[I].print(getPrintingPolicy(), Out, + TemplateParameterList::shouldIncludeTypeForArgument( + getPrintingPolicy(), Params, I)); + } + + Out << ']'; + return std::string(Out.str()); +} + +void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, + CachedTokens &Toks) { + if (!FD) + return; + + auto LPT = std::make_unique<LateParsedTemplate>(); + + // Take tokens to avoid allocations + LPT->Toks.swap(Toks); + LPT->D = FnD; + LateParsedTemplateMap.insert(std::make_pair(FD, std::move(LPT))); + + FD->setLateTemplateParsed(true); +} + +void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { + if (!FD) + return; + FD->setLateTemplateParsed(false); +} + +bool Sema::IsInsideALocalClassWithinATemplateFunction() { + DeclContext *DC = CurContext; + + while (DC) { + if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) { + const FunctionDecl *FD = RD->isLocalClass(); + return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); + } else if (DC->isTranslationUnit() || DC->isNamespace()) + return false; + + DC = DC->getParent(); + } + return false; +} + +namespace { +/// Walk the path from which a declaration was instantiated, and check +/// that every explicit specialization along that path is visible. This enforces +/// C++ [temp.expl.spec]/6: +/// +/// If a template, a member template or a member of a class template is +/// explicitly specialized then that specialization shall be declared before +/// the first use of that specialization that would cause an implicit +/// instantiation to take place, in every translation unit in which such a +/// use occurs; no diagnostic is required. +/// +/// and also C++ [temp.class.spec]/1: +/// +/// A partial specialization shall be declared before the first use of a +/// class template specialization that would make use of the partial +/// specialization as the result of an implicit or explicit instantiation +/// in every translation unit in which such a use occurs; no diagnostic is +/// required. +class ExplicitSpecializationVisibilityChecker { + Sema &S; + SourceLocation Loc; + llvm::SmallVector<Module *, 8> Modules; + +public: + ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc) + : S(S), Loc(Loc) {} + + void check(NamedDecl *ND) { + if (auto *FD = dyn_cast<FunctionDecl>(ND)) + return checkImpl(FD); + if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) + return checkImpl(RD); + if (auto *VD = dyn_cast<VarDecl>(ND)) + return checkImpl(VD); + if (auto *ED = dyn_cast<EnumDecl>(ND)) + return checkImpl(ED); + } + +private: + void diagnose(NamedDecl *D, bool IsPartialSpec) { + auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization + : Sema::MissingImportKind::ExplicitSpecialization; + const bool Recover = true; + + // If we got a custom set of modules (because only a subset of the + // declarations are interesting), use them, otherwise let + // diagnoseMissingImport intelligently pick some. + if (Modules.empty()) + S.diagnoseMissingImport(Loc, D, Kind, Recover); + else + S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); + } + + // Check a specific declaration. There are three problematic cases: + // + // 1) The declaration is an explicit specialization of a template + // specialization. + // 2) The declaration is an explicit specialization of a member of an + // templated class. + // 3) The declaration is an instantiation of a template, and that template + // is an explicit specialization of a member of a templated class. + // + // We don't need to go any deeper than that, as the instantiation of the + // surrounding class / etc is not triggered by whatever triggered this + // instantiation, and thus should be checked elsewhere. + template<typename SpecDecl> + void checkImpl(SpecDecl *Spec) { + bool IsHiddenExplicitSpecialization = false; + if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { + IsHiddenExplicitSpecialization = + Spec->getMemberSpecializationInfo() + ? !S.hasVisibleMemberSpecialization(Spec, &Modules) + : !S.hasVisibleExplicitSpecialization(Spec, &Modules); + } else { + checkInstantiated(Spec); + } + + if (IsHiddenExplicitSpecialization) + diagnose(Spec->getMostRecentDecl(), false); + } + + void checkInstantiated(FunctionDecl *FD) { + if (auto *TD = FD->getPrimaryTemplate()) + checkTemplate(TD); + } + + void checkInstantiated(CXXRecordDecl *RD) { + auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD); + if (!SD) + return; + + auto From = SD->getSpecializedTemplateOrPartial(); + if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) + checkTemplate(TD); + else if (auto *TD = + From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { + if (!S.hasVisibleDeclaration(TD)) + diagnose(TD, true); + checkTemplate(TD); + } + } + + void checkInstantiated(VarDecl *RD) { + auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD); + if (!SD) + return; + + auto From = SD->getSpecializedTemplateOrPartial(); + if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) + checkTemplate(TD); + else if (auto *TD = + From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { + if (!S.hasVisibleDeclaration(TD)) + diagnose(TD, true); + checkTemplate(TD); + } + } + + void checkInstantiated(EnumDecl *FD) {} + + template<typename TemplDecl> + void checkTemplate(TemplDecl *TD) { + if (TD->isMemberSpecialization()) { + if (!S.hasVisibleMemberSpecialization(TD, &Modules)) + diagnose(TD->getMostRecentDecl(), false); + } + } +}; +} // end anonymous namespace + +void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { + if (!getLangOpts().Modules) + return; + + ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec); +} |