aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14/lib/Sema/SemaExpr.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/clang14/lib/Sema/SemaExpr.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/clang14/lib/Sema/SemaExpr.cpp')
-rw-r--r--contrib/libs/clang14/lib/Sema/SemaExpr.cpp19984
1 files changed, 19984 insertions, 0 deletions
diff --git a/contrib/libs/clang14/lib/Sema/SemaExpr.cpp b/contrib/libs/clang14/lib/Sema/SemaExpr.cpp
new file mode 100644
index 0000000000..85553eccde
--- /dev/null
+++ b/contrib/libs/clang14/lib/Sema/SemaExpr.cpp
@@ -0,0 +1,19984 @@
+//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "TreeTransform.h"
+#include "UsedDeclVisitor.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/EvaluatedExprVisitor.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/ExprOpenMP.h"
+#include "clang/AST/OperationKinds.h"
+#include "clang/AST/ParentMapContext.h"
+#include "clang/AST/RecursiveASTVisitor.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/DiagnosticSema.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/LiteralSupport.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Sema/AnalysisBasedWarnings.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/DelayedDiagnostic.h"
+#include "clang/Sema/Designator.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Overload.h"
+#include "clang/Sema/ParsedTemplate.h"
+#include "clang/Sema/Scope.h"
+#include "clang/Sema/ScopeInfo.h"
+#include "clang/Sema/SemaFixItUtils.h"
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/Template.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/ConvertUTF.h"
+#include "llvm/Support/SaveAndRestore.h"
+
+using namespace clang;
+using namespace sema;
+
+/// Determine whether the use of this declaration is valid, without
+/// emitting diagnostics.
+bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
+ // See if this is an auto-typed variable whose initializer we are parsing.
+ if (ParsingInitForAutoVars.count(D))
+ return false;
+
+ // See if this is a deleted function.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ if (FD->isDeleted())
+ return false;
+
+ // If the function has a deduced return type, and we can't deduce it,
+ // then we can't use it either.
+ if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
+ DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
+ return false;
+
+ // See if this is an aligned allocation/deallocation function that is
+ // unavailable.
+ if (TreatUnavailableAsInvalid &&
+ isUnavailableAlignedAllocationFunction(*FD))
+ return false;
+ }
+
+ // See if this function is unavailable.
+ if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
+ cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
+ return false;
+
+ if (isa<UnresolvedUsingIfExistsDecl>(D))
+ return false;
+
+ return true;
+}
+
+static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
+ // Warn if this is used but marked unused.
+ if (const auto *A = D->getAttr<UnusedAttr>()) {
+ // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
+ // should diagnose them.
+ if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
+ A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
+ const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
+ if (DC && !DC->hasAttr<UnusedAttr>())
+ S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
+ }
+ }
+}
+
+/// Emit a note explaining that this function is deleted.
+void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
+ assert(Decl && Decl->isDeleted());
+
+ if (Decl->isDefaulted()) {
+ // If the method was explicitly defaulted, point at that declaration.
+ if (!Decl->isImplicit())
+ Diag(Decl->getLocation(), diag::note_implicitly_deleted);
+
+ // Try to diagnose why this special member function was implicitly
+ // deleted. This might fail, if that reason no longer applies.
+ DiagnoseDeletedDefaultedFunction(Decl);
+ return;
+ }
+
+ auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
+ if (Ctor && Ctor->isInheritingConstructor())
+ return NoteDeletedInheritingConstructor(Ctor);
+
+ Diag(Decl->getLocation(), diag::note_availability_specified_here)
+ << Decl << 1;
+}
+
+/// Determine whether a FunctionDecl was ever declared with an
+/// explicit storage class.
+static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
+ for (auto I : D->redecls()) {
+ if (I->getStorageClass() != SC_None)
+ return true;
+ }
+ return false;
+}
+
+/// Check whether we're in an extern inline function and referring to a
+/// variable or function with internal linkage (C11 6.7.4p3).
+///
+/// This is only a warning because we used to silently accept this code, but
+/// in many cases it will not behave correctly. This is not enabled in C++ mode
+/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
+/// and so while there may still be user mistakes, most of the time we can't
+/// prove that there are errors.
+static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
+ const NamedDecl *D,
+ SourceLocation Loc) {
+ // This is disabled under C++; there are too many ways for this to fire in
+ // contexts where the warning is a false positive, or where it is technically
+ // correct but benign.
+ if (S.getLangOpts().CPlusPlus)
+ return;
+
+ // Check if this is an inlined function or method.
+ FunctionDecl *Current = S.getCurFunctionDecl();
+ if (!Current)
+ return;
+ if (!Current->isInlined())
+ return;
+ if (!Current->isExternallyVisible())
+ return;
+
+ // Check if the decl has internal linkage.
+ if (D->getFormalLinkage() != InternalLinkage)
+ return;
+
+ // Downgrade from ExtWarn to Extension if
+ // (1) the supposedly external inline function is in the main file,
+ // and probably won't be included anywhere else.
+ // (2) the thing we're referencing is a pure function.
+ // (3) the thing we're referencing is another inline function.
+ // This last can give us false negatives, but it's better than warning on
+ // wrappers for simple C library functions.
+ const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
+ bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
+ if (!DowngradeWarning && UsedFn)
+ DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
+
+ S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
+ : diag::ext_internal_in_extern_inline)
+ << /*IsVar=*/!UsedFn << D;
+
+ S.MaybeSuggestAddingStaticToDecl(Current);
+
+ S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
+ << D;
+}
+
+void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
+ const FunctionDecl *First = Cur->getFirstDecl();
+
+ // Suggest "static" on the function, if possible.
+ if (!hasAnyExplicitStorageClass(First)) {
+ SourceLocation DeclBegin = First->getSourceRange().getBegin();
+ Diag(DeclBegin, diag::note_convert_inline_to_static)
+ << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
+ }
+}
+
+/// Determine whether the use of this declaration is valid, and
+/// emit any corresponding diagnostics.
+///
+/// This routine diagnoses various problems with referencing
+/// declarations that can occur when using a declaration. For example,
+/// it might warn if a deprecated or unavailable declaration is being
+/// used, or produce an error (and return true) if a C++0x deleted
+/// function is being used.
+///
+/// \returns true if there was an error (this declaration cannot be
+/// referenced), false otherwise.
+///
+bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
+ const ObjCInterfaceDecl *UnknownObjCClass,
+ bool ObjCPropertyAccess,
+ bool AvoidPartialAvailabilityChecks,
+ ObjCInterfaceDecl *ClassReceiver) {
+ SourceLocation Loc = Locs.front();
+ if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
+ // If there were any diagnostics suppressed by template argument deduction,
+ // emit them now.
+ auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
+ if (Pos != SuppressedDiagnostics.end()) {
+ for (const PartialDiagnosticAt &Suppressed : Pos->second)
+ Diag(Suppressed.first, Suppressed.second);
+
+ // Clear out the list of suppressed diagnostics, so that we don't emit
+ // them again for this specialization. However, we don't obsolete this
+ // entry from the table, because we want to avoid ever emitting these
+ // diagnostics again.
+ Pos->second.clear();
+ }
+
+ // C++ [basic.start.main]p3:
+ // The function 'main' shall not be used within a program.
+ if (cast<FunctionDecl>(D)->isMain())
+ Diag(Loc, diag::ext_main_used);
+
+ diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
+ }
+
+ // See if this is an auto-typed variable whose initializer we are parsing.
+ if (ParsingInitForAutoVars.count(D)) {
+ if (isa<BindingDecl>(D)) {
+ Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
+ << D->getDeclName();
+ } else {
+ Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
+ << D->getDeclName() << cast<VarDecl>(D)->getType();
+ }
+ return true;
+ }
+
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ // See if this is a deleted function.
+ if (FD->isDeleted()) {
+ auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
+ if (Ctor && Ctor->isInheritingConstructor())
+ Diag(Loc, diag::err_deleted_inherited_ctor_use)
+ << Ctor->getParent()
+ << Ctor->getInheritedConstructor().getConstructor()->getParent();
+ else
+ Diag(Loc, diag::err_deleted_function_use);
+ NoteDeletedFunction(FD);
+ return true;
+ }
+
+ // [expr.prim.id]p4
+ // A program that refers explicitly or implicitly to a function with a
+ // trailing requires-clause whose constraint-expression is not satisfied,
+ // other than to declare it, is ill-formed. [...]
+ //
+ // See if this is a function with constraints that need to be satisfied.
+ // Check this before deducing the return type, as it might instantiate the
+ // definition.
+ if (FD->getTrailingRequiresClause()) {
+ ConstraintSatisfaction Satisfaction;
+ if (CheckFunctionConstraints(FD, Satisfaction, Loc))
+ // A diagnostic will have already been generated (non-constant
+ // constraint expression, for example)
+ return true;
+ if (!Satisfaction.IsSatisfied) {
+ Diag(Loc,
+ diag::err_reference_to_function_with_unsatisfied_constraints)
+ << D;
+ DiagnoseUnsatisfiedConstraint(Satisfaction);
+ return true;
+ }
+ }
+
+ // If the function has a deduced return type, and we can't deduce it,
+ // then we can't use it either.
+ if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
+ DeduceReturnType(FD, Loc))
+ return true;
+
+ if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
+ return true;
+
+ if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
+ return true;
+ }
+
+ if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
+ // Lambdas are only default-constructible or assignable in C++2a onwards.
+ if (MD->getParent()->isLambda() &&
+ ((isa<CXXConstructorDecl>(MD) &&
+ cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
+ MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
+ Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
+ << !isa<CXXConstructorDecl>(MD);
+ }
+ }
+
+ auto getReferencedObjCProp = [](const NamedDecl *D) ->
+ const ObjCPropertyDecl * {
+ if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
+ return MD->findPropertyDecl();
+ return nullptr;
+ };
+ if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
+ if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
+ return true;
+ } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
+ return true;
+ }
+
+ // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
+ // Only the variables omp_in and omp_out are allowed in the combiner.
+ // Only the variables omp_priv and omp_orig are allowed in the
+ // initializer-clause.
+ auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
+ if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
+ isa<VarDecl>(D)) {
+ Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
+ << getCurFunction()->HasOMPDeclareReductionCombiner;
+ Diag(D->getLocation(), diag::note_entity_declared_at) << D;
+ return true;
+ }
+
+ // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
+ // List-items in map clauses on this construct may only refer to the declared
+ // variable var and entities that could be referenced by a procedure defined
+ // at the same location
+ if (LangOpts.OpenMP && isa<VarDecl>(D) &&
+ !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
+ Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
+ << getOpenMPDeclareMapperVarName();
+ Diag(D->getLocation(), diag::note_entity_declared_at) << D;
+ return true;
+ }
+
+ if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
+ Diag(Loc, diag::err_use_of_empty_using_if_exists);
+ Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
+ return true;
+ }
+
+ DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
+ AvoidPartialAvailabilityChecks, ClassReceiver);
+
+ DiagnoseUnusedOfDecl(*this, D, Loc);
+
+ diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
+
+ if (auto *VD = dyn_cast<ValueDecl>(D))
+ checkTypeSupport(VD->getType(), Loc, VD);
+
+ if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
+ if (!Context.getTargetInfo().isTLSSupported())
+ if (const auto *VD = dyn_cast<VarDecl>(D))
+ if (VD->getTLSKind() != VarDecl::TLS_None)
+ targetDiag(*Locs.begin(), diag::err_thread_unsupported);
+ }
+
+ if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
+ !isUnevaluatedContext()) {
+ // C++ [expr.prim.req.nested] p3
+ // A local parameter shall only appear as an unevaluated operand
+ // (Clause 8) within the constraint-expression.
+ Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
+ << D;
+ Diag(D->getLocation(), diag::note_entity_declared_at) << D;
+ return true;
+ }
+
+ return false;
+}
+
+/// DiagnoseSentinelCalls - This routine checks whether a call or
+/// message-send is to a declaration with the sentinel attribute, and
+/// if so, it checks that the requirements of the sentinel are
+/// satisfied.
+void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
+ ArrayRef<Expr *> Args) {
+ const SentinelAttr *attr = D->getAttr<SentinelAttr>();
+ if (!attr)
+ return;
+
+ // The number of formal parameters of the declaration.
+ unsigned numFormalParams;
+
+ // The kind of declaration. This is also an index into a %select in
+ // the diagnostic.
+ enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
+
+ if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
+ numFormalParams = MD->param_size();
+ calleeType = CT_Method;
+ } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
+ numFormalParams = FD->param_size();
+ calleeType = CT_Function;
+ } else if (isa<VarDecl>(D)) {
+ QualType type = cast<ValueDecl>(D)->getType();
+ const FunctionType *fn = nullptr;
+ if (const PointerType *ptr = type->getAs<PointerType>()) {
+ fn = ptr->getPointeeType()->getAs<FunctionType>();
+ if (!fn) return;
+ calleeType = CT_Function;
+ } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
+ fn = ptr->getPointeeType()->castAs<FunctionType>();
+ calleeType = CT_Block;
+ } else {
+ return;
+ }
+
+ if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
+ numFormalParams = proto->getNumParams();
+ } else {
+ numFormalParams = 0;
+ }
+ } else {
+ return;
+ }
+
+ // "nullPos" is the number of formal parameters at the end which
+ // effectively count as part of the variadic arguments. This is
+ // useful if you would prefer to not have *any* formal parameters,
+ // but the language forces you to have at least one.
+ unsigned nullPos = attr->getNullPos();
+ assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
+ numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
+
+ // The number of arguments which should follow the sentinel.
+ unsigned numArgsAfterSentinel = attr->getSentinel();
+
+ // If there aren't enough arguments for all the formal parameters,
+ // the sentinel, and the args after the sentinel, complain.
+ if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
+ Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
+ Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
+ return;
+ }
+
+ // Otherwise, find the sentinel expression.
+ Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
+ if (!sentinelExpr) return;
+ if (sentinelExpr->isValueDependent()) return;
+ if (Context.isSentinelNullExpr(sentinelExpr)) return;
+
+ // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
+ // or 'NULL' if those are actually defined in the context. Only use
+ // 'nil' for ObjC methods, where it's much more likely that the
+ // variadic arguments form a list of object pointers.
+ SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
+ std::string NullValue;
+ if (calleeType == CT_Method && PP.isMacroDefined("nil"))
+ NullValue = "nil";
+ else if (getLangOpts().CPlusPlus11)
+ NullValue = "nullptr";
+ else if (PP.isMacroDefined("NULL"))
+ NullValue = "NULL";
+ else
+ NullValue = "(void*) 0";
+
+ if (MissingNilLoc.isInvalid())
+ Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
+ else
+ Diag(MissingNilLoc, diag::warn_missing_sentinel)
+ << int(calleeType)
+ << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
+ Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
+}
+
+SourceRange Sema::getExprRange(Expr *E) const {
+ return E ? E->getSourceRange() : SourceRange();
+}
+
+//===----------------------------------------------------------------------===//
+// Standard Promotions and Conversions
+//===----------------------------------------------------------------------===//
+
+/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
+ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
+ // Handle any placeholder expressions which made it here.
+ if (E->hasPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return ExprError();
+ E = result.get();
+ }
+
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
+
+ if (Ty->isFunctionType()) {
+ if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
+ if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
+ if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
+ return ExprError();
+
+ E = ImpCastExprToType(E, Context.getPointerType(Ty),
+ CK_FunctionToPointerDecay).get();
+ } else if (Ty->isArrayType()) {
+ // In C90 mode, arrays only promote to pointers if the array expression is
+ // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
+ // type 'array of type' is converted to an expression that has type 'pointer
+ // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
+ // that has type 'array of type' ...". The relevant change is "an lvalue"
+ // (C90) to "an expression" (C99).
+ //
+ // C++ 4.2p1:
+ // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
+ // T" can be converted to an rvalue of type "pointer to T".
+ //
+ if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
+ ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
+ CK_ArrayToPointerDecay);
+ if (Res.isInvalid())
+ return ExprError();
+ E = Res.get();
+ }
+ }
+ return E;
+}
+
+static void CheckForNullPointerDereference(Sema &S, Expr *E) {
+ // Check to see if we are dereferencing a null pointer. If so,
+ // and if not volatile-qualified, this is undefined behavior that the
+ // optimizer will delete, so warn about it. People sometimes try to use this
+ // to get a deterministic trap and are surprised by clang's behavior. This
+ // only handles the pattern "*null", which is a very syntactic check.
+ const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
+ if (UO && UO->getOpcode() == UO_Deref &&
+ UO->getSubExpr()->getType()->isPointerType()) {
+ const LangAS AS =
+ UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
+ if ((!isTargetAddressSpace(AS) ||
+ (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
+ UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
+ S.Context, Expr::NPC_ValueDependentIsNotNull) &&
+ !UO->getType().isVolatileQualified()) {
+ S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
+ S.PDiag(diag::warn_indirection_through_null)
+ << UO->getSubExpr()->getSourceRange());
+ S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
+ S.PDiag(diag::note_indirection_through_null));
+ }
+ }
+}
+
+static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
+ SourceLocation AssignLoc,
+ const Expr* RHS) {
+ const ObjCIvarDecl *IV = OIRE->getDecl();
+ if (!IV)
+ return;
+
+ DeclarationName MemberName = IV->getDeclName();
+ IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+ if (!Member || !Member->isStr("isa"))
+ return;
+
+ const Expr *Base = OIRE->getBase();
+ QualType BaseType = Base->getType();
+ if (OIRE->isArrow())
+ BaseType = BaseType->getPointeeType();
+ if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
+ if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
+ ObjCInterfaceDecl *ClassDeclared = nullptr;
+ ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
+ if (!ClassDeclared->getSuperClass()
+ && (*ClassDeclared->ivar_begin()) == IV) {
+ if (RHS) {
+ NamedDecl *ObjectSetClass =
+ S.LookupSingleName(S.TUScope,
+ &S.Context.Idents.get("object_setClass"),
+ SourceLocation(), S.LookupOrdinaryName);
+ if (ObjectSetClass) {
+ SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
+ S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
+ << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
+ "object_setClass(")
+ << FixItHint::CreateReplacement(
+ SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
+ << FixItHint::CreateInsertion(RHSLocEnd, ")");
+ }
+ else
+ S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
+ } else {
+ NamedDecl *ObjectGetClass =
+ S.LookupSingleName(S.TUScope,
+ &S.Context.Idents.get("object_getClass"),
+ SourceLocation(), S.LookupOrdinaryName);
+ if (ObjectGetClass)
+ S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
+ << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
+ "object_getClass(")
+ << FixItHint::CreateReplacement(
+ SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
+ else
+ S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
+ }
+ S.Diag(IV->getLocation(), diag::note_ivar_decl);
+ }
+ }
+}
+
+ExprResult Sema::DefaultLvalueConversion(Expr *E) {
+ // Handle any placeholder expressions which made it here.
+ if (E->hasPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return ExprError();
+ E = result.get();
+ }
+
+ // C++ [conv.lval]p1:
+ // A glvalue of a non-function, non-array type T can be
+ // converted to a prvalue.
+ if (!E->isGLValue()) return E;
+
+ QualType T = E->getType();
+ assert(!T.isNull() && "r-value conversion on typeless expression?");
+
+ // lvalue-to-rvalue conversion cannot be applied to function or array types.
+ if (T->isFunctionType() || T->isArrayType())
+ return E;
+
+ // We don't want to throw lvalue-to-rvalue casts on top of
+ // expressions of certain types in C++.
+ if (getLangOpts().CPlusPlus &&
+ (E->getType() == Context.OverloadTy ||
+ T->isDependentType() ||
+ T->isRecordType()))
+ return E;
+
+ // The C standard is actually really unclear on this point, and
+ // DR106 tells us what the result should be but not why. It's
+ // generally best to say that void types just doesn't undergo
+ // lvalue-to-rvalue at all. Note that expressions of unqualified
+ // 'void' type are never l-values, but qualified void can be.
+ if (T->isVoidType())
+ return E;
+
+ // OpenCL usually rejects direct accesses to values of 'half' type.
+ if (getLangOpts().OpenCL &&
+ !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
+ T->isHalfType()) {
+ Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
+ << 0 << T;
+ return ExprError();
+ }
+
+ CheckForNullPointerDereference(*this, E);
+ if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
+ NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
+ &Context.Idents.get("object_getClass"),
+ SourceLocation(), LookupOrdinaryName);
+ if (ObjectGetClass)
+ Diag(E->getExprLoc(), diag::warn_objc_isa_use)
+ << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
+ << FixItHint::CreateReplacement(
+ SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
+ else
+ Diag(E->getExprLoc(), diag::warn_objc_isa_use);
+ }
+ else if (const ObjCIvarRefExpr *OIRE =
+ dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
+ DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
+
+ // C++ [conv.lval]p1:
+ // [...] If T is a non-class type, the type of the prvalue is the
+ // cv-unqualified version of T. Otherwise, the type of the
+ // rvalue is T.
+ //
+ // C99 6.3.2.1p2:
+ // If the lvalue has qualified type, the value has the unqualified
+ // version of the type of the lvalue; otherwise, the value has the
+ // type of the lvalue.
+ if (T.hasQualifiers())
+ T = T.getUnqualifiedType();
+
+ // Under the MS ABI, lock down the inheritance model now.
+ if (T->isMemberPointerType() &&
+ Context.getTargetInfo().getCXXABI().isMicrosoft())
+ (void)isCompleteType(E->getExprLoc(), T);
+
+ ExprResult Res = CheckLValueToRValueConversionOperand(E);
+ if (Res.isInvalid())
+ return Res;
+ E = Res.get();
+
+ // Loading a __weak object implicitly retains the value, so we need a cleanup to
+ // balance that.
+ if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
+ Cleanup.setExprNeedsCleanups(true);
+
+ if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
+ Cleanup.setExprNeedsCleanups(true);
+
+ // C++ [conv.lval]p3:
+ // If T is cv std::nullptr_t, the result is a null pointer constant.
+ CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
+ Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
+ CurFPFeatureOverrides());
+
+ // C11 6.3.2.1p2:
+ // ... if the lvalue has atomic type, the value has the non-atomic version
+ // of the type of the lvalue ...
+ if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
+ T = Atomic->getValueType().getUnqualifiedType();
+ Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
+ nullptr, VK_PRValue, FPOptionsOverride());
+ }
+
+ return Res;
+}
+
+ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
+ ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
+ if (Res.isInvalid())
+ return ExprError();
+ Res = DefaultLvalueConversion(Res.get());
+ if (Res.isInvalid())
+ return ExprError();
+ return Res;
+}
+
+/// CallExprUnaryConversions - a special case of an unary conversion
+/// performed on a function designator of a call expression.
+ExprResult Sema::CallExprUnaryConversions(Expr *E) {
+ QualType Ty = E->getType();
+ ExprResult Res = E;
+ // Only do implicit cast for a function type, but not for a pointer
+ // to function type.
+ if (Ty->isFunctionType()) {
+ Res = ImpCastExprToType(E, Context.getPointerType(Ty),
+ CK_FunctionToPointerDecay);
+ if (Res.isInvalid())
+ return ExprError();
+ }
+ Res = DefaultLvalueConversion(Res.get());
+ if (Res.isInvalid())
+ return ExprError();
+ return Res.get();
+}
+
+/// UsualUnaryConversions - Performs various conversions that are common to most
+/// operators (C99 6.3). The conversions of array and function types are
+/// sometimes suppressed. For example, the array->pointer conversion doesn't
+/// apply if the array is an argument to the sizeof or address (&) operators.
+/// In these instances, this routine should *not* be called.
+ExprResult Sema::UsualUnaryConversions(Expr *E) {
+ // First, convert to an r-value.
+ ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
+ if (Res.isInvalid())
+ return ExprError();
+ E = Res.get();
+
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
+
+ // Half FP have to be promoted to float unless it is natively supported
+ if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
+ return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
+
+ // Try to perform integral promotions if the object has a theoretically
+ // promotable type.
+ if (Ty->isIntegralOrUnscopedEnumerationType()) {
+ // C99 6.3.1.1p2:
+ //
+ // The following may be used in an expression wherever an int or
+ // unsigned int may be used:
+ // - an object or expression with an integer type whose integer
+ // conversion rank is less than or equal to the rank of int
+ // and unsigned int.
+ // - A bit-field of type _Bool, int, signed int, or unsigned int.
+ //
+ // If an int can represent all values of the original type, the
+ // value is converted to an int; otherwise, it is converted to an
+ // unsigned int. These are called the integer promotions. All
+ // other types are unchanged by the integer promotions.
+
+ QualType PTy = Context.isPromotableBitField(E);
+ if (!PTy.isNull()) {
+ E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
+ return E;
+ }
+ if (Ty->isPromotableIntegerType()) {
+ QualType PT = Context.getPromotedIntegerType(Ty);
+ E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
+ return E;
+ }
+ }
+ return E;
+}
+
+/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
+/// do not have a prototype. Arguments that have type float or __fp16
+/// are promoted to double. All other argument types are converted by
+/// UsualUnaryConversions().
+ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
+ QualType Ty = E->getType();
+ assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
+
+ ExprResult Res = UsualUnaryConversions(E);
+ if (Res.isInvalid())
+ return ExprError();
+ E = Res.get();
+
+ // If this is a 'float' or '__fp16' (CVR qualified or typedef)
+ // promote to double.
+ // Note that default argument promotion applies only to float (and
+ // half/fp16); it does not apply to _Float16.
+ const BuiltinType *BTy = Ty->getAs<BuiltinType>();
+ if (BTy && (BTy->getKind() == BuiltinType::Half ||
+ BTy->getKind() == BuiltinType::Float)) {
+ if (getLangOpts().OpenCL &&
+ !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
+ if (BTy->getKind() == BuiltinType::Half) {
+ E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
+ }
+ } else {
+ E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
+ }
+ }
+ if (BTy &&
+ getLangOpts().getExtendIntArgs() ==
+ LangOptions::ExtendArgsKind::ExtendTo64 &&
+ Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
+ Context.getTypeSizeInChars(BTy) <
+ Context.getTypeSizeInChars(Context.LongLongTy)) {
+ E = (Ty->isUnsignedIntegerType())
+ ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
+ .get()
+ : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
+ assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
+ "Unexpected typesize for LongLongTy");
+ }
+
+ // C++ performs lvalue-to-rvalue conversion as a default argument
+ // promotion, even on class types, but note:
+ // C++11 [conv.lval]p2:
+ // When an lvalue-to-rvalue conversion occurs in an unevaluated
+ // operand or a subexpression thereof the value contained in the
+ // referenced object is not accessed. Otherwise, if the glvalue
+ // has a class type, the conversion copy-initializes a temporary
+ // of type T from the glvalue and the result of the conversion
+ // is a prvalue for the temporary.
+ // FIXME: add some way to gate this entire thing for correctness in
+ // potentially potentially evaluated contexts.
+ if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
+ ExprResult Temp = PerformCopyInitialization(
+ InitializedEntity::InitializeTemporary(E->getType()),
+ E->getExprLoc(), E);
+ if (Temp.isInvalid())
+ return ExprError();
+ E = Temp.get();
+ }
+
+ return E;
+}
+
+/// Determine the degree of POD-ness for an expression.
+/// Incomplete types are considered POD, since this check can be performed
+/// when we're in an unevaluated context.
+Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
+ if (Ty->isIncompleteType()) {
+ // C++11 [expr.call]p7:
+ // After these conversions, if the argument does not have arithmetic,
+ // enumeration, pointer, pointer to member, or class type, the program
+ // is ill-formed.
+ //
+ // Since we've already performed array-to-pointer and function-to-pointer
+ // decay, the only such type in C++ is cv void. This also handles
+ // initializer lists as variadic arguments.
+ if (Ty->isVoidType())
+ return VAK_Invalid;
+
+ if (Ty->isObjCObjectType())
+ return VAK_Invalid;
+ return VAK_Valid;
+ }
+
+ if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
+ return VAK_Invalid;
+
+ if (Ty.isCXX98PODType(Context))
+ return VAK_Valid;
+
+ // C++11 [expr.call]p7:
+ // Passing a potentially-evaluated argument of class type (Clause 9)
+ // having a non-trivial copy constructor, a non-trivial move constructor,
+ // or a non-trivial destructor, with no corresponding parameter,
+ // is conditionally-supported with implementation-defined semantics.
+ if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
+ if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
+ if (!Record->hasNonTrivialCopyConstructor() &&
+ !Record->hasNonTrivialMoveConstructor() &&
+ !Record->hasNonTrivialDestructor())
+ return VAK_ValidInCXX11;
+
+ if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
+ return VAK_Valid;
+
+ if (Ty->isObjCObjectType())
+ return VAK_Invalid;
+
+ if (getLangOpts().MSVCCompat)
+ return VAK_MSVCUndefined;
+
+ // FIXME: In C++11, these cases are conditionally-supported, meaning we're
+ // permitted to reject them. We should consider doing so.
+ return VAK_Undefined;
+}
+
+void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
+ // Don't allow one to pass an Objective-C interface to a vararg.
+ const QualType &Ty = E->getType();
+ VarArgKind VAK = isValidVarArgType(Ty);
+
+ // Complain about passing non-POD types through varargs.
+ switch (VAK) {
+ case VAK_ValidInCXX11:
+ DiagRuntimeBehavior(
+ E->getBeginLoc(), nullptr,
+ PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
+ LLVM_FALLTHROUGH;
+ case VAK_Valid:
+ if (Ty->isRecordType()) {
+ // This is unlikely to be what the user intended. If the class has a
+ // 'c_str' member function, the user probably meant to call that.
+ DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
+ PDiag(diag::warn_pass_class_arg_to_vararg)
+ << Ty << CT << hasCStrMethod(E) << ".c_str()");
+ }
+ break;
+
+ case VAK_Undefined:
+ case VAK_MSVCUndefined:
+ DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
+ PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
+ << getLangOpts().CPlusPlus11 << Ty << CT);
+ break;
+
+ case VAK_Invalid:
+ if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
+ Diag(E->getBeginLoc(),
+ diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
+ << Ty << CT;
+ else if (Ty->isObjCObjectType())
+ DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
+ PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
+ << Ty << CT);
+ else
+ Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
+ << isa<InitListExpr>(E) << Ty << CT;
+ break;
+ }
+}
+
+/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
+/// will create a trap if the resulting type is not a POD type.
+ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
+ FunctionDecl *FDecl) {
+ if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
+ // Strip the unbridged-cast placeholder expression off, if applicable.
+ if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
+ (CT == VariadicMethod ||
+ (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
+ E = stripARCUnbridgedCast(E);
+
+ // Otherwise, do normal placeholder checking.
+ } else {
+ ExprResult ExprRes = CheckPlaceholderExpr(E);
+ if (ExprRes.isInvalid())
+ return ExprError();
+ E = ExprRes.get();
+ }
+ }
+
+ ExprResult ExprRes = DefaultArgumentPromotion(E);
+ if (ExprRes.isInvalid())
+ return ExprError();
+
+ // Copy blocks to the heap.
+ if (ExprRes.get()->getType()->isBlockPointerType())
+ maybeExtendBlockObject(ExprRes);
+
+ E = ExprRes.get();
+
+ // Diagnostics regarding non-POD argument types are
+ // emitted along with format string checking in Sema::CheckFunctionCall().
+ if (isValidVarArgType(E->getType()) == VAK_Undefined) {
+ // Turn this into a trap.
+ CXXScopeSpec SS;
+ SourceLocation TemplateKWLoc;
+ UnqualifiedId Name;
+ Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
+ E->getBeginLoc());
+ ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
+ /*HasTrailingLParen=*/true,
+ /*IsAddressOfOperand=*/false);
+ if (TrapFn.isInvalid())
+ return ExprError();
+
+ ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
+ None, E->getEndLoc());
+ if (Call.isInvalid())
+ return ExprError();
+
+ ExprResult Comma =
+ ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
+ if (Comma.isInvalid())
+ return ExprError();
+ return Comma.get();
+ }
+
+ if (!getLangOpts().CPlusPlus &&
+ RequireCompleteType(E->getExprLoc(), E->getType(),
+ diag::err_call_incomplete_argument))
+ return ExprError();
+
+ return E;
+}
+
+/// Converts an integer to complex float type. Helper function of
+/// UsualArithmeticConversions()
+///
+/// \return false if the integer expression is an integer type and is
+/// successfully converted to the complex type.
+static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
+ ExprResult &ComplexExpr,
+ QualType IntTy,
+ QualType ComplexTy,
+ bool SkipCast) {
+ if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
+ if (SkipCast) return false;
+ if (IntTy->isIntegerType()) {
+ QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
+ IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
+ IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
+ CK_FloatingRealToComplex);
+ } else {
+ assert(IntTy->isComplexIntegerType());
+ IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
+ CK_IntegralComplexToFloatingComplex);
+ }
+ return false;
+}
+
+/// Handle arithmetic conversion with complex types. Helper function of
+/// UsualArithmeticConversions()
+static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType,
+ bool IsCompAssign) {
+ // if we have an integer operand, the result is the complex type.
+ if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
+ /*skipCast*/false))
+ return LHSType;
+ if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
+ /*skipCast*/IsCompAssign))
+ return RHSType;
+
+ // This handles complex/complex, complex/float, or float/complex.
+ // When both operands are complex, the shorter operand is converted to the
+ // type of the longer, and that is the type of the result. This corresponds
+ // to what is done when combining two real floating-point operands.
+ // The fun begins when size promotion occur across type domains.
+ // From H&S 6.3.4: When one operand is complex and the other is a real
+ // floating-point type, the less precise type is converted, within it's
+ // real or complex domain, to the precision of the other type. For example,
+ // when combining a "long double" with a "double _Complex", the
+ // "double _Complex" is promoted to "long double _Complex".
+
+ // Compute the rank of the two types, regardless of whether they are complex.
+ int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
+
+ auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
+ auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
+ QualType LHSElementType =
+ LHSComplexType ? LHSComplexType->getElementType() : LHSType;
+ QualType RHSElementType =
+ RHSComplexType ? RHSComplexType->getElementType() : RHSType;
+
+ QualType ResultType = S.Context.getComplexType(LHSElementType);
+ if (Order < 0) {
+ // Promote the precision of the LHS if not an assignment.
+ ResultType = S.Context.getComplexType(RHSElementType);
+ if (!IsCompAssign) {
+ if (LHSComplexType)
+ LHS =
+ S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
+ else
+ LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
+ }
+ } else if (Order > 0) {
+ // Promote the precision of the RHS.
+ if (RHSComplexType)
+ RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
+ else
+ RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
+ }
+ return ResultType;
+}
+
+/// Handle arithmetic conversion from integer to float. Helper function
+/// of UsualArithmeticConversions()
+static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
+ ExprResult &IntExpr,
+ QualType FloatTy, QualType IntTy,
+ bool ConvertFloat, bool ConvertInt) {
+ if (IntTy->isIntegerType()) {
+ if (ConvertInt)
+ // Convert intExpr to the lhs floating point type.
+ IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
+ CK_IntegralToFloating);
+ return FloatTy;
+ }
+
+ // Convert both sides to the appropriate complex float.
+ assert(IntTy->isComplexIntegerType());
+ QualType result = S.Context.getComplexType(FloatTy);
+
+ // _Complex int -> _Complex float
+ if (ConvertInt)
+ IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
+ CK_IntegralComplexToFloatingComplex);
+
+ // float -> _Complex float
+ if (ConvertFloat)
+ FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
+ CK_FloatingRealToComplex);
+
+ return result;
+}
+
+/// Handle arithmethic conversion with floating point types. Helper
+/// function of UsualArithmeticConversions()
+static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType, bool IsCompAssign) {
+ bool LHSFloat = LHSType->isRealFloatingType();
+ bool RHSFloat = RHSType->isRealFloatingType();
+
+ // N1169 4.1.4: If one of the operands has a floating type and the other
+ // operand has a fixed-point type, the fixed-point operand
+ // is converted to the floating type [...]
+ if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
+ if (LHSFloat)
+ RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
+ else if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
+ return LHSFloat ? LHSType : RHSType;
+ }
+
+ // If we have two real floating types, convert the smaller operand
+ // to the bigger result.
+ if (LHSFloat && RHSFloat) {
+ int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
+ if (order > 0) {
+ RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
+ return LHSType;
+ }
+
+ assert(order < 0 && "illegal float comparison");
+ if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
+ return RHSType;
+ }
+
+ if (LHSFloat) {
+ // Half FP has to be promoted to float unless it is natively supported
+ if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
+ LHSType = S.Context.FloatTy;
+
+ return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
+ /*ConvertFloat=*/!IsCompAssign,
+ /*ConvertInt=*/ true);
+ }
+ assert(RHSFloat);
+ return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
+ /*ConvertFloat=*/ true,
+ /*ConvertInt=*/!IsCompAssign);
+}
+
+/// Diagnose attempts to convert between __float128, __ibm128 and
+/// long double if there is no support for such conversion.
+/// Helper function of UsualArithmeticConversions().
+static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
+ QualType RHSType) {
+ // No issue if either is not a floating point type.
+ if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
+ return false;
+
+ // No issue if both have the same 128-bit float semantics.
+ auto *LHSComplex = LHSType->getAs<ComplexType>();
+ auto *RHSComplex = RHSType->getAs<ComplexType>();
+
+ QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
+ QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
+
+ const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
+ const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
+
+ if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
+ &RHSSem != &llvm::APFloat::IEEEquad()) &&
+ (&LHSSem != &llvm::APFloat::IEEEquad() ||
+ &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
+ return false;
+
+ return true;
+}
+
+typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
+
+namespace {
+/// These helper callbacks are placed in an anonymous namespace to
+/// permit their use as function template parameters.
+ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
+ return S.ImpCastExprToType(op, toType, CK_IntegralCast);
+}
+
+ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
+ return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
+ CK_IntegralComplexCast);
+}
+}
+
+/// Handle integer arithmetic conversions. Helper function of
+/// UsualArithmeticConversions()
+template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
+static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType, bool IsCompAssign) {
+ // The rules for this case are in C99 6.3.1.8
+ int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
+ bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
+ bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
+ if (LHSSigned == RHSSigned) {
+ // Same signedness; use the higher-ranked type
+ if (order >= 0) {
+ RHS = (*doRHSCast)(S, RHS.get(), LHSType);
+ return LHSType;
+ } else if (!IsCompAssign)
+ LHS = (*doLHSCast)(S, LHS.get(), RHSType);
+ return RHSType;
+ } else if (order != (LHSSigned ? 1 : -1)) {
+ // The unsigned type has greater than or equal rank to the
+ // signed type, so use the unsigned type
+ if (RHSSigned) {
+ RHS = (*doRHSCast)(S, RHS.get(), LHSType);
+ return LHSType;
+ } else if (!IsCompAssign)
+ LHS = (*doLHSCast)(S, LHS.get(), RHSType);
+ return RHSType;
+ } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
+ // The two types are different widths; if we are here, that
+ // means the signed type is larger than the unsigned type, so
+ // use the signed type.
+ if (LHSSigned) {
+ RHS = (*doRHSCast)(S, RHS.get(), LHSType);
+ return LHSType;
+ } else if (!IsCompAssign)
+ LHS = (*doLHSCast)(S, LHS.get(), RHSType);
+ return RHSType;
+ } else {
+ // The signed type is higher-ranked than the unsigned type,
+ // but isn't actually any bigger (like unsigned int and long
+ // on most 32-bit systems). Use the unsigned type corresponding
+ // to the signed type.
+ QualType result =
+ S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
+ RHS = (*doRHSCast)(S, RHS.get(), result);
+ if (!IsCompAssign)
+ LHS = (*doLHSCast)(S, LHS.get(), result);
+ return result;
+ }
+}
+
+/// Handle conversions with GCC complex int extension. Helper function
+/// of UsualArithmeticConversions()
+static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, QualType LHSType,
+ QualType RHSType,
+ bool IsCompAssign) {
+ const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
+ const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
+
+ if (LHSComplexInt && RHSComplexInt) {
+ QualType LHSEltType = LHSComplexInt->getElementType();
+ QualType RHSEltType = RHSComplexInt->getElementType();
+ QualType ScalarType =
+ handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
+ (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
+
+ return S.Context.getComplexType(ScalarType);
+ }
+
+ if (LHSComplexInt) {
+ QualType LHSEltType = LHSComplexInt->getElementType();
+ QualType ScalarType =
+ handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
+ (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
+ QualType ComplexType = S.Context.getComplexType(ScalarType);
+ RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
+ CK_IntegralRealToComplex);
+
+ return ComplexType;
+ }
+
+ assert(RHSComplexInt);
+
+ QualType RHSEltType = RHSComplexInt->getElementType();
+ QualType ScalarType =
+ handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
+ (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
+ QualType ComplexType = S.Context.getComplexType(ScalarType);
+
+ if (!IsCompAssign)
+ LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
+ CK_IntegralRealToComplex);
+ return ComplexType;
+}
+
+/// Return the rank of a given fixed point or integer type. The value itself
+/// doesn't matter, but the values must be increasing with proper increasing
+/// rank as described in N1169 4.1.1.
+static unsigned GetFixedPointRank(QualType Ty) {
+ const auto *BTy = Ty->getAs<BuiltinType>();
+ assert(BTy && "Expected a builtin type.");
+
+ switch (BTy->getKind()) {
+ case BuiltinType::ShortFract:
+ case BuiltinType::UShortFract:
+ case BuiltinType::SatShortFract:
+ case BuiltinType::SatUShortFract:
+ return 1;
+ case BuiltinType::Fract:
+ case BuiltinType::UFract:
+ case BuiltinType::SatFract:
+ case BuiltinType::SatUFract:
+ return 2;
+ case BuiltinType::LongFract:
+ case BuiltinType::ULongFract:
+ case BuiltinType::SatLongFract:
+ case BuiltinType::SatULongFract:
+ return 3;
+ case BuiltinType::ShortAccum:
+ case BuiltinType::UShortAccum:
+ case BuiltinType::SatShortAccum:
+ case BuiltinType::SatUShortAccum:
+ return 4;
+ case BuiltinType::Accum:
+ case BuiltinType::UAccum:
+ case BuiltinType::SatAccum:
+ case BuiltinType::SatUAccum:
+ return 5;
+ case BuiltinType::LongAccum:
+ case BuiltinType::ULongAccum:
+ case BuiltinType::SatLongAccum:
+ case BuiltinType::SatULongAccum:
+ return 6;
+ default:
+ if (BTy->isInteger())
+ return 0;
+ llvm_unreachable("Unexpected fixed point or integer type");
+ }
+}
+
+/// handleFixedPointConversion - Fixed point operations between fixed
+/// point types and integers or other fixed point types do not fall under
+/// usual arithmetic conversion since these conversions could result in loss
+/// of precsision (N1169 4.1.4). These operations should be calculated with
+/// the full precision of their result type (N1169 4.1.6.2.1).
+static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
+ QualType RHSTy) {
+ assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
+ "Expected at least one of the operands to be a fixed point type");
+ assert((LHSTy->isFixedPointOrIntegerType() ||
+ RHSTy->isFixedPointOrIntegerType()) &&
+ "Special fixed point arithmetic operation conversions are only "
+ "applied to ints or other fixed point types");
+
+ // If one operand has signed fixed-point type and the other operand has
+ // unsigned fixed-point type, then the unsigned fixed-point operand is
+ // converted to its corresponding signed fixed-point type and the resulting
+ // type is the type of the converted operand.
+ if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
+ LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
+ else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
+ RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
+
+ // The result type is the type with the highest rank, whereby a fixed-point
+ // conversion rank is always greater than an integer conversion rank; if the
+ // type of either of the operands is a saturating fixedpoint type, the result
+ // type shall be the saturating fixed-point type corresponding to the type
+ // with the highest rank; the resulting value is converted (taking into
+ // account rounding and overflow) to the precision of the resulting type.
+ // Same ranks between signed and unsigned types are resolved earlier, so both
+ // types are either signed or both unsigned at this point.
+ unsigned LHSTyRank = GetFixedPointRank(LHSTy);
+ unsigned RHSTyRank = GetFixedPointRank(RHSTy);
+
+ QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
+
+ if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
+ ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
+
+ return ResultTy;
+}
+
+/// Check that the usual arithmetic conversions can be performed on this pair of
+/// expressions that might be of enumeration type.
+static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
+ SourceLocation Loc,
+ Sema::ArithConvKind ACK) {
+ // C++2a [expr.arith.conv]p1:
+ // If one operand is of enumeration type and the other operand is of a
+ // different enumeration type or a floating-point type, this behavior is
+ // deprecated ([depr.arith.conv.enum]).
+ //
+ // Warn on this in all language modes. Produce a deprecation warning in C++20.
+ // Eventually we will presumably reject these cases (in C++23 onwards?).
+ QualType L = LHS->getType(), R = RHS->getType();
+ bool LEnum = L->isUnscopedEnumerationType(),
+ REnum = R->isUnscopedEnumerationType();
+ bool IsCompAssign = ACK == Sema::ACK_CompAssign;
+ if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
+ (REnum && L->isFloatingType())) {
+ S.Diag(Loc, S.getLangOpts().CPlusPlus20
+ ? diag::warn_arith_conv_enum_float_cxx20
+ : diag::warn_arith_conv_enum_float)
+ << LHS->getSourceRange() << RHS->getSourceRange()
+ << (int)ACK << LEnum << L << R;
+ } else if (!IsCompAssign && LEnum && REnum &&
+ !S.Context.hasSameUnqualifiedType(L, R)) {
+ unsigned DiagID;
+ if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
+ !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
+ // If either enumeration type is unnamed, it's less likely that the
+ // user cares about this, but this situation is still deprecated in
+ // C++2a. Use a different warning group.
+ DiagID = S.getLangOpts().CPlusPlus20
+ ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
+ : diag::warn_arith_conv_mixed_anon_enum_types;
+ } else if (ACK == Sema::ACK_Conditional) {
+ // Conditional expressions are separated out because they have
+ // historically had a different warning flag.
+ DiagID = S.getLangOpts().CPlusPlus20
+ ? diag::warn_conditional_mixed_enum_types_cxx20
+ : diag::warn_conditional_mixed_enum_types;
+ } else if (ACK == Sema::ACK_Comparison) {
+ // Comparison expressions are separated out because they have
+ // historically had a different warning flag.
+ DiagID = S.getLangOpts().CPlusPlus20
+ ? diag::warn_comparison_mixed_enum_types_cxx20
+ : diag::warn_comparison_mixed_enum_types;
+ } else {
+ DiagID = S.getLangOpts().CPlusPlus20
+ ? diag::warn_arith_conv_mixed_enum_types_cxx20
+ : diag::warn_arith_conv_mixed_enum_types;
+ }
+ S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
+ << (int)ACK << L << R;
+ }
+}
+
+/// UsualArithmeticConversions - Performs various conversions that are common to
+/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
+/// routine returns the first non-arithmetic type found. The client is
+/// responsible for emitting appropriate error diagnostics.
+QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ ArithConvKind ACK) {
+ checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
+
+ if (ACK != ACK_CompAssign) {
+ LHS = UsualUnaryConversions(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+ }
+
+ RHS = UsualUnaryConversions(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType LHSType =
+ Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
+ QualType RHSType =
+ Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
+
+ // For conversion purposes, we ignore any atomic qualifier on the LHS.
+ if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
+ LHSType = AtomicLHS->getValueType();
+
+ // If both types are identical, no conversion is needed.
+ if (LHSType == RHSType)
+ return LHSType;
+
+ // If either side is a non-arithmetic type (e.g. a pointer), we are done.
+ // The caller can deal with this (e.g. pointer + int).
+ if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
+ return QualType();
+
+ // Apply unary and bitfield promotions to the LHS's type.
+ QualType LHSUnpromotedType = LHSType;
+ if (LHSType->isPromotableIntegerType())
+ LHSType = Context.getPromotedIntegerType(LHSType);
+ QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
+ if (!LHSBitfieldPromoteTy.isNull())
+ LHSType = LHSBitfieldPromoteTy;
+ if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
+ LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
+
+ // If both types are identical, no conversion is needed.
+ if (LHSType == RHSType)
+ return LHSType;
+
+ // At this point, we have two different arithmetic types.
+
+ // Diagnose attempts to convert between __ibm128, __float128 and long double
+ // where such conversions currently can't be handled.
+ if (unsupportedTypeConversion(*this, LHSType, RHSType))
+ return QualType();
+
+ // Handle complex types first (C99 6.3.1.8p1).
+ if (LHSType->isComplexType() || RHSType->isComplexType())
+ return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
+ ACK == ACK_CompAssign);
+
+ // Now handle "real" floating types (i.e. float, double, long double).
+ if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
+ return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
+ ACK == ACK_CompAssign);
+
+ // Handle GCC complex int extension.
+ if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
+ return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
+ ACK == ACK_CompAssign);
+
+ if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
+ return handleFixedPointConversion(*this, LHSType, RHSType);
+
+ // Finally, we have two differing integer types.
+ return handleIntegerConversion<doIntegralCast, doIntegralCast>
+ (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
+}
+
+//===----------------------------------------------------------------------===//
+// Semantic Analysis for various Expression Types
+//===----------------------------------------------------------------------===//
+
+
+ExprResult
+Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
+ SourceLocation DefaultLoc,
+ SourceLocation RParenLoc,
+ Expr *ControllingExpr,
+ ArrayRef<ParsedType> ArgTypes,
+ ArrayRef<Expr *> ArgExprs) {
+ unsigned NumAssocs = ArgTypes.size();
+ assert(NumAssocs == ArgExprs.size());
+
+ TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
+ for (unsigned i = 0; i < NumAssocs; ++i) {
+ if (ArgTypes[i])
+ (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
+ else
+ Types[i] = nullptr;
+ }
+
+ ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
+ ControllingExpr,
+ llvm::makeArrayRef(Types, NumAssocs),
+ ArgExprs);
+ delete [] Types;
+ return ER;
+}
+
+ExprResult
+Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
+ SourceLocation DefaultLoc,
+ SourceLocation RParenLoc,
+ Expr *ControllingExpr,
+ ArrayRef<TypeSourceInfo *> Types,
+ ArrayRef<Expr *> Exprs) {
+ unsigned NumAssocs = Types.size();
+ assert(NumAssocs == Exprs.size());
+
+ // Decay and strip qualifiers for the controlling expression type, and handle
+ // placeholder type replacement. See committee discussion from WG14 DR423.
+ {
+ EnterExpressionEvaluationContext Unevaluated(
+ *this, Sema::ExpressionEvaluationContext::Unevaluated);
+ ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
+ if (R.isInvalid())
+ return ExprError();
+ ControllingExpr = R.get();
+ }
+
+ // The controlling expression is an unevaluated operand, so side effects are
+ // likely unintended.
+ if (!inTemplateInstantiation() &&
+ ControllingExpr->HasSideEffects(Context, false))
+ Diag(ControllingExpr->getExprLoc(),
+ diag::warn_side_effects_unevaluated_context);
+
+ bool TypeErrorFound = false,
+ IsResultDependent = ControllingExpr->isTypeDependent(),
+ ContainsUnexpandedParameterPack
+ = ControllingExpr->containsUnexpandedParameterPack();
+
+ for (unsigned i = 0; i < NumAssocs; ++i) {
+ if (Exprs[i]->containsUnexpandedParameterPack())
+ ContainsUnexpandedParameterPack = true;
+
+ if (Types[i]) {
+ if (Types[i]->getType()->containsUnexpandedParameterPack())
+ ContainsUnexpandedParameterPack = true;
+
+ if (Types[i]->getType()->isDependentType()) {
+ IsResultDependent = true;
+ } else {
+ // C11 6.5.1.1p2 "The type name in a generic association shall specify a
+ // complete object type other than a variably modified type."
+ unsigned D = 0;
+ if (Types[i]->getType()->isIncompleteType())
+ D = diag::err_assoc_type_incomplete;
+ else if (!Types[i]->getType()->isObjectType())
+ D = diag::err_assoc_type_nonobject;
+ else if (Types[i]->getType()->isVariablyModifiedType())
+ D = diag::err_assoc_type_variably_modified;
+
+ if (D != 0) {
+ Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
+ << Types[i]->getTypeLoc().getSourceRange()
+ << Types[i]->getType();
+ TypeErrorFound = true;
+ }
+
+ // C11 6.5.1.1p2 "No two generic associations in the same generic
+ // selection shall specify compatible types."
+ for (unsigned j = i+1; j < NumAssocs; ++j)
+ if (Types[j] && !Types[j]->getType()->isDependentType() &&
+ Context.typesAreCompatible(Types[i]->getType(),
+ Types[j]->getType())) {
+ Diag(Types[j]->getTypeLoc().getBeginLoc(),
+ diag::err_assoc_compatible_types)
+ << Types[j]->getTypeLoc().getSourceRange()
+ << Types[j]->getType()
+ << Types[i]->getType();
+ Diag(Types[i]->getTypeLoc().getBeginLoc(),
+ diag::note_compat_assoc)
+ << Types[i]->getTypeLoc().getSourceRange()
+ << Types[i]->getType();
+ TypeErrorFound = true;
+ }
+ }
+ }
+ }
+ if (TypeErrorFound)
+ return ExprError();
+
+ // If we determined that the generic selection is result-dependent, don't
+ // try to compute the result expression.
+ if (IsResultDependent)
+ return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
+ Exprs, DefaultLoc, RParenLoc,
+ ContainsUnexpandedParameterPack);
+
+ SmallVector<unsigned, 1> CompatIndices;
+ unsigned DefaultIndex = -1U;
+ for (unsigned i = 0; i < NumAssocs; ++i) {
+ if (!Types[i])
+ DefaultIndex = i;
+ else if (Context.typesAreCompatible(ControllingExpr->getType(),
+ Types[i]->getType()))
+ CompatIndices.push_back(i);
+ }
+
+ // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
+ // type compatible with at most one of the types named in its generic
+ // association list."
+ if (CompatIndices.size() > 1) {
+ // We strip parens here because the controlling expression is typically
+ // parenthesized in macro definitions.
+ ControllingExpr = ControllingExpr->IgnoreParens();
+ Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
+ << ControllingExpr->getSourceRange() << ControllingExpr->getType()
+ << (unsigned)CompatIndices.size();
+ for (unsigned I : CompatIndices) {
+ Diag(Types[I]->getTypeLoc().getBeginLoc(),
+ diag::note_compat_assoc)
+ << Types[I]->getTypeLoc().getSourceRange()
+ << Types[I]->getType();
+ }
+ return ExprError();
+ }
+
+ // C11 6.5.1.1p2 "If a generic selection has no default generic association,
+ // its controlling expression shall have type compatible with exactly one of
+ // the types named in its generic association list."
+ if (DefaultIndex == -1U && CompatIndices.size() == 0) {
+ // We strip parens here because the controlling expression is typically
+ // parenthesized in macro definitions.
+ ControllingExpr = ControllingExpr->IgnoreParens();
+ Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
+ << ControllingExpr->getSourceRange() << ControllingExpr->getType();
+ return ExprError();
+ }
+
+ // C11 6.5.1.1p3 "If a generic selection has a generic association with a
+ // type name that is compatible with the type of the controlling expression,
+ // then the result expression of the generic selection is the expression
+ // in that generic association. Otherwise, the result expression of the
+ // generic selection is the expression in the default generic association."
+ unsigned ResultIndex =
+ CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
+
+ return GenericSelectionExpr::Create(
+ Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
+ ContainsUnexpandedParameterPack, ResultIndex);
+}
+
+/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
+/// location of the token and the offset of the ud-suffix within it.
+static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
+ unsigned Offset) {
+ return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
+ S.getLangOpts());
+}
+
+/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
+/// the corresponding cooked (non-raw) literal operator, and build a call to it.
+static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
+ IdentifierInfo *UDSuffix,
+ SourceLocation UDSuffixLoc,
+ ArrayRef<Expr*> Args,
+ SourceLocation LitEndLoc) {
+ assert(Args.size() <= 2 && "too many arguments for literal operator");
+
+ QualType ArgTy[2];
+ for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
+ ArgTy[ArgIdx] = Args[ArgIdx]->getType();
+ if (ArgTy[ArgIdx]->isArrayType())
+ ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
+ }
+
+ DeclarationName OpName =
+ S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
+ DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
+ OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
+
+ LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
+ if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
+ /*AllowRaw*/ false, /*AllowTemplate*/ false,
+ /*AllowStringTemplatePack*/ false,
+ /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
+ return ExprError();
+
+ return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
+}
+
+/// ActOnStringLiteral - The specified tokens were lexed as pasted string
+/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
+/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
+/// multiple tokens. However, the common case is that StringToks points to one
+/// string.
+///
+ExprResult
+Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
+ assert(!StringToks.empty() && "Must have at least one string!");
+
+ StringLiteralParser Literal(StringToks, PP);
+ if (Literal.hadError)
+ return ExprError();
+
+ SmallVector<SourceLocation, 4> StringTokLocs;
+ for (const Token &Tok : StringToks)
+ StringTokLocs.push_back(Tok.getLocation());
+
+ QualType CharTy = Context.CharTy;
+ StringLiteral::StringKind Kind = StringLiteral::Ascii;
+ if (Literal.isWide()) {
+ CharTy = Context.getWideCharType();
+ Kind = StringLiteral::Wide;
+ } else if (Literal.isUTF8()) {
+ if (getLangOpts().Char8)
+ CharTy = Context.Char8Ty;
+ Kind = StringLiteral::UTF8;
+ } else if (Literal.isUTF16()) {
+ CharTy = Context.Char16Ty;
+ Kind = StringLiteral::UTF16;
+ } else if (Literal.isUTF32()) {
+ CharTy = Context.Char32Ty;
+ Kind = StringLiteral::UTF32;
+ } else if (Literal.isPascal()) {
+ CharTy = Context.UnsignedCharTy;
+ }
+
+ // Warn on initializing an array of char from a u8 string literal; this
+ // becomes ill-formed in C++2a.
+ if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
+ !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
+ Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
+
+ // Create removals for all 'u8' prefixes in the string literal(s). This
+ // ensures C++2a compatibility (but may change the program behavior when
+ // built by non-Clang compilers for which the execution character set is
+ // not always UTF-8).
+ auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
+ SourceLocation RemovalDiagLoc;
+ for (const Token &Tok : StringToks) {
+ if (Tok.getKind() == tok::utf8_string_literal) {
+ if (RemovalDiagLoc.isInvalid())
+ RemovalDiagLoc = Tok.getLocation();
+ RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
+ Tok.getLocation(),
+ Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
+ getSourceManager(), getLangOpts())));
+ }
+ }
+ Diag(RemovalDiagLoc, RemovalDiag);
+ }
+
+ QualType StrTy =
+ Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
+
+ // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
+ StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
+ Kind, Literal.Pascal, StrTy,
+ &StringTokLocs[0],
+ StringTokLocs.size());
+ if (Literal.getUDSuffix().empty())
+ return Lit;
+
+ // We're building a user-defined literal.
+ IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
+ SourceLocation UDSuffixLoc =
+ getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
+ Literal.getUDSuffixOffset());
+
+ // Make sure we're allowed user-defined literals here.
+ if (!UDLScope)
+ return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
+
+ // C++11 [lex.ext]p5: The literal L is treated as a call of the form
+ // operator "" X (str, len)
+ QualType SizeType = Context.getSizeType();
+
+ DeclarationName OpName =
+ Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
+ DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
+ OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
+
+ QualType ArgTy[] = {
+ Context.getArrayDecayedType(StrTy), SizeType
+ };
+
+ LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
+ switch (LookupLiteralOperator(UDLScope, R, ArgTy,
+ /*AllowRaw*/ false, /*AllowTemplate*/ true,
+ /*AllowStringTemplatePack*/ true,
+ /*DiagnoseMissing*/ true, Lit)) {
+
+ case LOLR_Cooked: {
+ llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
+ IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
+ StringTokLocs[0]);
+ Expr *Args[] = { Lit, LenArg };
+
+ return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
+ }
+
+ case LOLR_Template: {
+ TemplateArgumentListInfo ExplicitArgs;
+ TemplateArgument Arg(Lit);
+ TemplateArgumentLocInfo ArgInfo(Lit);
+ ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
+ return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
+ &ExplicitArgs);
+ }
+
+ case LOLR_StringTemplatePack: {
+ TemplateArgumentListInfo ExplicitArgs;
+
+ unsigned CharBits = Context.getIntWidth(CharTy);
+ bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
+ llvm::APSInt Value(CharBits, CharIsUnsigned);
+
+ TemplateArgument TypeArg(CharTy);
+ TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
+ ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
+
+ for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
+ Value = Lit->getCodeUnit(I);
+ TemplateArgument Arg(Context, Value, CharTy);
+ TemplateArgumentLocInfo ArgInfo;
+ ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
+ }
+ return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
+ &ExplicitArgs);
+ }
+ case LOLR_Raw:
+ case LOLR_ErrorNoDiagnostic:
+ llvm_unreachable("unexpected literal operator lookup result");
+ case LOLR_Error:
+ return ExprError();
+ }
+ llvm_unreachable("unexpected literal operator lookup result");
+}
+
+DeclRefExpr *
+Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
+ SourceLocation Loc,
+ const CXXScopeSpec *SS) {
+ DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
+ return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
+}
+
+DeclRefExpr *
+Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
+ const DeclarationNameInfo &NameInfo,
+ const CXXScopeSpec *SS, NamedDecl *FoundD,
+ SourceLocation TemplateKWLoc,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ NestedNameSpecifierLoc NNS =
+ SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
+ return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
+ TemplateArgs);
+}
+
+// CUDA/HIP: Check whether a captured reference variable is referencing a
+// host variable in a device or host device lambda.
+static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
+ VarDecl *VD) {
+ if (!S.getLangOpts().CUDA || !VD->hasInit())
+ return false;
+ assert(VD->getType()->isReferenceType());
+
+ // Check whether the reference variable is referencing a host variable.
+ auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
+ if (!DRE)
+ return false;
+ auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
+ if (!Referee || !Referee->hasGlobalStorage() ||
+ Referee->hasAttr<CUDADeviceAttr>())
+ return false;
+
+ // Check whether the current function is a device or host device lambda.
+ // Check whether the reference variable is a capture by getDeclContext()
+ // since refersToEnclosingVariableOrCapture() is not ready at this point.
+ auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
+ if (MD && MD->getParent()->isLambda() &&
+ MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
+ VD->getDeclContext() != MD)
+ return true;
+
+ return false;
+}
+
+NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
+ // A declaration named in an unevaluated operand never constitutes an odr-use.
+ if (isUnevaluatedContext())
+ return NOUR_Unevaluated;
+
+ // C++2a [basic.def.odr]p4:
+ // A variable x whose name appears as a potentially-evaluated expression e
+ // is odr-used by e unless [...] x is a reference that is usable in
+ // constant expressions.
+ // CUDA/HIP:
+ // If a reference variable referencing a host variable is captured in a
+ // device or host device lambda, the value of the referee must be copied
+ // to the capture and the reference variable must be treated as odr-use
+ // since the value of the referee is not known at compile time and must
+ // be loaded from the captured.
+ if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
+ if (VD->getType()->isReferenceType() &&
+ !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
+ !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
+ VD->isUsableInConstantExpressions(Context))
+ return NOUR_Constant;
+ }
+
+ // All remaining non-variable cases constitute an odr-use. For variables, we
+ // need to wait and see how the expression is used.
+ return NOUR_None;
+}
+
+/// BuildDeclRefExpr - Build an expression that references a
+/// declaration that does not require a closure capture.
+DeclRefExpr *
+Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
+ const DeclarationNameInfo &NameInfo,
+ NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
+ SourceLocation TemplateKWLoc,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ bool RefersToCapturedVariable =
+ isa<VarDecl>(D) &&
+ NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
+
+ DeclRefExpr *E = DeclRefExpr::Create(
+ Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
+ VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
+ MarkDeclRefReferenced(E);
+
+ // C++ [except.spec]p17:
+ // An exception-specification is considered to be needed when:
+ // - in an expression, the function is the unique lookup result or
+ // the selected member of a set of overloaded functions.
+ //
+ // We delay doing this until after we've built the function reference and
+ // marked it as used so that:
+ // a) if the function is defaulted, we get errors from defining it before /
+ // instead of errors from computing its exception specification, and
+ // b) if the function is a defaulted comparison, we can use the body we
+ // build when defining it as input to the exception specification
+ // computation rather than computing a new body.
+ if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
+ if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
+ if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
+ E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
+ }
+ }
+
+ if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
+ Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
+ !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
+ getCurFunction()->recordUseOfWeak(E);
+
+ FieldDecl *FD = dyn_cast<FieldDecl>(D);
+ if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
+ FD = IFD->getAnonField();
+ if (FD) {
+ UnusedPrivateFields.remove(FD);
+ // Just in case we're building an illegal pointer-to-member.
+ if (FD->isBitField())
+ E->setObjectKind(OK_BitField);
+ }
+
+ // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
+ // designates a bit-field.
+ if (auto *BD = dyn_cast<BindingDecl>(D))
+ if (auto *BE = BD->getBinding())
+ E->setObjectKind(BE->getObjectKind());
+
+ return E;
+}
+
+/// Decomposes the given name into a DeclarationNameInfo, its location, and
+/// possibly a list of template arguments.
+///
+/// If this produces template arguments, it is permitted to call
+/// DecomposeTemplateName.
+///
+/// This actually loses a lot of source location information for
+/// non-standard name kinds; we should consider preserving that in
+/// some way.
+void
+Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
+ TemplateArgumentListInfo &Buffer,
+ DeclarationNameInfo &NameInfo,
+ const TemplateArgumentListInfo *&TemplateArgs) {
+ if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
+ Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
+ Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
+
+ ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
+ Id.TemplateId->NumArgs);
+ translateTemplateArguments(TemplateArgsPtr, Buffer);
+
+ TemplateName TName = Id.TemplateId->Template.get();
+ SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
+ NameInfo = Context.getNameForTemplate(TName, TNameLoc);
+ TemplateArgs = &Buffer;
+ } else {
+ NameInfo = GetNameFromUnqualifiedId(Id);
+ TemplateArgs = nullptr;
+ }
+}
+
+static void emitEmptyLookupTypoDiagnostic(
+ const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
+ DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
+ unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
+ DeclContext *Ctx =
+ SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
+ if (!TC) {
+ // Emit a special diagnostic for failed member lookups.
+ // FIXME: computing the declaration context might fail here (?)
+ if (Ctx)
+ SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
+ << SS.getRange();
+ else
+ SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
+ return;
+ }
+
+ std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
+ bool DroppedSpecifier =
+ TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
+ unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
+ ? diag::note_implicit_param_decl
+ : diag::note_previous_decl;
+ if (!Ctx)
+ SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
+ SemaRef.PDiag(NoteID));
+ else
+ SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
+ << Typo << Ctx << DroppedSpecifier
+ << SS.getRange(),
+ SemaRef.PDiag(NoteID));
+}
+
+/// Diagnose a lookup that found results in an enclosing class during error
+/// recovery. This usually indicates that the results were found in a dependent
+/// base class that could not be searched as part of a template definition.
+/// Always issues a diagnostic (though this may be only a warning in MS
+/// compatibility mode).
+///
+/// Return \c true if the error is unrecoverable, or \c false if the caller
+/// should attempt to recover using these lookup results.
+bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) {
+ // During a default argument instantiation the CurContext points
+ // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
+ // function parameter list, hence add an explicit check.
+ bool isDefaultArgument =
+ !CodeSynthesisContexts.empty() &&
+ CodeSynthesisContexts.back().Kind ==
+ CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
+ CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
+ bool isInstance = CurMethod && CurMethod->isInstance() &&
+ R.getNamingClass() == CurMethod->getParent() &&
+ !isDefaultArgument;
+
+ // There are two ways we can find a class-scope declaration during template
+ // instantiation that we did not find in the template definition: if it is a
+ // member of a dependent base class, or if it is declared after the point of
+ // use in the same class. Distinguish these by comparing the class in which
+ // the member was found to the naming class of the lookup.
+ unsigned DiagID = diag::err_found_in_dependent_base;
+ unsigned NoteID = diag::note_member_declared_at;
+ if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
+ DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
+ : diag::err_found_later_in_class;
+ } else if (getLangOpts().MSVCCompat) {
+ DiagID = diag::ext_found_in_dependent_base;
+ NoteID = diag::note_dependent_member_use;
+ }
+
+ if (isInstance) {
+ // Give a code modification hint to insert 'this->'.
+ Diag(R.getNameLoc(), DiagID)
+ << R.getLookupName()
+ << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
+ CheckCXXThisCapture(R.getNameLoc());
+ } else {
+ // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
+ // they're not shadowed).
+ Diag(R.getNameLoc(), DiagID) << R.getLookupName();
+ }
+
+ for (NamedDecl *D : R)
+ Diag(D->getLocation(), NoteID);
+
+ // Return true if we are inside a default argument instantiation
+ // and the found name refers to an instance member function, otherwise
+ // the caller will try to create an implicit member call and this is wrong
+ // for default arguments.
+ //
+ // FIXME: Is this special case necessary? We could allow the caller to
+ // diagnose this.
+ if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
+ Diag(R.getNameLoc(), diag::err_member_call_without_object);
+ return true;
+ }
+
+ // Tell the callee to try to recover.
+ return false;
+}
+
+/// Diagnose an empty lookup.
+///
+/// \return false if new lookup candidates were found
+bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
+ CorrectionCandidateCallback &CCC,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ ArrayRef<Expr *> Args, TypoExpr **Out) {
+ DeclarationName Name = R.getLookupName();
+
+ unsigned diagnostic = diag::err_undeclared_var_use;
+ unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
+ if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
+ Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
+ Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
+ diagnostic = diag::err_undeclared_use;
+ diagnostic_suggest = diag::err_undeclared_use_suggest;
+ }
+
+ // If the original lookup was an unqualified lookup, fake an
+ // unqualified lookup. This is useful when (for example) the
+ // original lookup would not have found something because it was a
+ // dependent name.
+ DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
+ while (DC) {
+ if (isa<CXXRecordDecl>(DC)) {
+ LookupQualifiedName(R, DC);
+
+ if (!R.empty()) {
+ // Don't give errors about ambiguities in this lookup.
+ R.suppressDiagnostics();
+
+ // If there's a best viable function among the results, only mention
+ // that one in the notes.
+ OverloadCandidateSet Candidates(R.getNameLoc(),
+ OverloadCandidateSet::CSK_Normal);
+ AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
+ OverloadCandidateSet::iterator Best;
+ if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
+ OR_Success) {
+ R.clear();
+ R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
+ R.resolveKind();
+ }
+
+ return DiagnoseDependentMemberLookup(R);
+ }
+
+ R.clear();
+ }
+
+ DC = DC->getLookupParent();
+ }
+
+ // We didn't find anything, so try to correct for a typo.
+ TypoCorrection Corrected;
+ if (S && Out) {
+ SourceLocation TypoLoc = R.getNameLoc();
+ assert(!ExplicitTemplateArgs &&
+ "Diagnosing an empty lookup with explicit template args!");
+ *Out = CorrectTypoDelayed(
+ R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
+ [=](const TypoCorrection &TC) {
+ emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
+ diagnostic, diagnostic_suggest);
+ },
+ nullptr, CTK_ErrorRecovery);
+ if (*Out)
+ return true;
+ } else if (S &&
+ (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
+ S, &SS, CCC, CTK_ErrorRecovery))) {
+ std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
+ bool DroppedSpecifier =
+ Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
+ R.setLookupName(Corrected.getCorrection());
+
+ bool AcceptableWithRecovery = false;
+ bool AcceptableWithoutRecovery = false;
+ NamedDecl *ND = Corrected.getFoundDecl();
+ if (ND) {
+ if (Corrected.isOverloaded()) {
+ OverloadCandidateSet OCS(R.getNameLoc(),
+ OverloadCandidateSet::CSK_Normal);
+ OverloadCandidateSet::iterator Best;
+ for (NamedDecl *CD : Corrected) {
+ if (FunctionTemplateDecl *FTD =
+ dyn_cast<FunctionTemplateDecl>(CD))
+ AddTemplateOverloadCandidate(
+ FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
+ Args, OCS);
+ else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
+ if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
+ AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
+ Args, OCS);
+ }
+ switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
+ case OR_Success:
+ ND = Best->FoundDecl;
+ Corrected.setCorrectionDecl(ND);
+ break;
+ default:
+ // FIXME: Arbitrarily pick the first declaration for the note.
+ Corrected.setCorrectionDecl(ND);
+ break;
+ }
+ }
+ R.addDecl(ND);
+ if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
+ CXXRecordDecl *Record = nullptr;
+ if (Corrected.getCorrectionSpecifier()) {
+ const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
+ Record = Ty->getAsCXXRecordDecl();
+ }
+ if (!Record)
+ Record = cast<CXXRecordDecl>(
+ ND->getDeclContext()->getRedeclContext());
+ R.setNamingClass(Record);
+ }
+
+ auto *UnderlyingND = ND->getUnderlyingDecl();
+ AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
+ isa<FunctionTemplateDecl>(UnderlyingND);
+ // FIXME: If we ended up with a typo for a type name or
+ // Objective-C class name, we're in trouble because the parser
+ // is in the wrong place to recover. Suggest the typo
+ // correction, but don't make it a fix-it since we're not going
+ // to recover well anyway.
+ AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
+ getAsTypeTemplateDecl(UnderlyingND) ||
+ isa<ObjCInterfaceDecl>(UnderlyingND);
+ } else {
+ // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
+ // because we aren't able to recover.
+ AcceptableWithoutRecovery = true;
+ }
+
+ if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
+ unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
+ ? diag::note_implicit_param_decl
+ : diag::note_previous_decl;
+ if (SS.isEmpty())
+ diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
+ PDiag(NoteID), AcceptableWithRecovery);
+ else
+ diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
+ << Name << computeDeclContext(SS, false)
+ << DroppedSpecifier << SS.getRange(),
+ PDiag(NoteID), AcceptableWithRecovery);
+
+ // Tell the callee whether to try to recover.
+ return !AcceptableWithRecovery;
+ }
+ }
+ R.clear();
+
+ // Emit a special diagnostic for failed member lookups.
+ // FIXME: computing the declaration context might fail here (?)
+ if (!SS.isEmpty()) {
+ Diag(R.getNameLoc(), diag::err_no_member)
+ << Name << computeDeclContext(SS, false)
+ << SS.getRange();
+ return true;
+ }
+
+ // Give up, we can't recover.
+ Diag(R.getNameLoc(), diagnostic) << Name;
+ return true;
+}
+
+/// In Microsoft mode, if we are inside a template class whose parent class has
+/// dependent base classes, and we can't resolve an unqualified identifier, then
+/// assume the identifier is a member of a dependent base class. We can only
+/// recover successfully in static methods, instance methods, and other contexts
+/// where 'this' is available. This doesn't precisely match MSVC's
+/// instantiation model, but it's close enough.
+static Expr *
+recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
+ DeclarationNameInfo &NameInfo,
+ SourceLocation TemplateKWLoc,
+ const TemplateArgumentListInfo *TemplateArgs) {
+ // Only try to recover from lookup into dependent bases in static methods or
+ // contexts where 'this' is available.
+ QualType ThisType = S.getCurrentThisType();
+ const CXXRecordDecl *RD = nullptr;
+ if (!ThisType.isNull())
+ RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
+ else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
+ RD = MD->getParent();
+ if (!RD || !RD->hasAnyDependentBases())
+ return nullptr;
+
+ // Diagnose this as unqualified lookup into a dependent base class. If 'this'
+ // is available, suggest inserting 'this->' as a fixit.
+ SourceLocation Loc = NameInfo.getLoc();
+ auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
+ DB << NameInfo.getName() << RD;
+
+ if (!ThisType.isNull()) {
+ DB << FixItHint::CreateInsertion(Loc, "this->");
+ return CXXDependentScopeMemberExpr::Create(
+ Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
+ /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
+ /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
+ }
+
+ // Synthesize a fake NNS that points to the derived class. This will
+ // perform name lookup during template instantiation.
+ CXXScopeSpec SS;
+ auto *NNS =
+ NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
+ SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
+ return DependentScopeDeclRefExpr::Create(
+ Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
+ TemplateArgs);
+}
+
+ExprResult
+Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
+ SourceLocation TemplateKWLoc, UnqualifiedId &Id,
+ bool HasTrailingLParen, bool IsAddressOfOperand,
+ CorrectionCandidateCallback *CCC,
+ bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
+ assert(!(IsAddressOfOperand && HasTrailingLParen) &&
+ "cannot be direct & operand and have a trailing lparen");
+ if (SS.isInvalid())
+ return ExprError();
+
+ TemplateArgumentListInfo TemplateArgsBuffer;
+
+ // Decompose the UnqualifiedId into the following data.
+ DeclarationNameInfo NameInfo;
+ const TemplateArgumentListInfo *TemplateArgs;
+ DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
+
+ DeclarationName Name = NameInfo.getName();
+ IdentifierInfo *II = Name.getAsIdentifierInfo();
+ SourceLocation NameLoc = NameInfo.getLoc();
+
+ if (II && II->isEditorPlaceholder()) {
+ // FIXME: When typed placeholders are supported we can create a typed
+ // placeholder expression node.
+ return ExprError();
+ }
+
+ // C++ [temp.dep.expr]p3:
+ // An id-expression is type-dependent if it contains:
+ // -- an identifier that was declared with a dependent type,
+ // (note: handled after lookup)
+ // -- a template-id that is dependent,
+ // (note: handled in BuildTemplateIdExpr)
+ // -- a conversion-function-id that specifies a dependent type,
+ // -- a nested-name-specifier that contains a class-name that
+ // names a dependent type.
+ // Determine whether this is a member of an unknown specialization;
+ // we need to handle these differently.
+ bool DependentID = false;
+ if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
+ Name.getCXXNameType()->isDependentType()) {
+ DependentID = true;
+ } else if (SS.isSet()) {
+ if (DeclContext *DC = computeDeclContext(SS, false)) {
+ if (RequireCompleteDeclContext(SS, DC))
+ return ExprError();
+ } else {
+ DependentID = true;
+ }
+ }
+
+ if (DependentID)
+ return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
+ IsAddressOfOperand, TemplateArgs);
+
+ // Perform the required lookup.
+ LookupResult R(*this, NameInfo,
+ (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
+ ? LookupObjCImplicitSelfParam
+ : LookupOrdinaryName);
+ if (TemplateKWLoc.isValid() || TemplateArgs) {
+ // Lookup the template name again to correctly establish the context in
+ // which it was found. This is really unfortunate as we already did the
+ // lookup to determine that it was a template name in the first place. If
+ // this becomes a performance hit, we can work harder to preserve those
+ // results until we get here but it's likely not worth it.
+ bool MemberOfUnknownSpecialization;
+ AssumedTemplateKind AssumedTemplate;
+ if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
+ MemberOfUnknownSpecialization, TemplateKWLoc,
+ &AssumedTemplate))
+ return ExprError();
+
+ if (MemberOfUnknownSpecialization ||
+ (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
+ return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
+ IsAddressOfOperand, TemplateArgs);
+ } else {
+ bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
+ LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
+
+ // If the result might be in a dependent base class, this is a dependent
+ // id-expression.
+ if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
+ return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
+ IsAddressOfOperand, TemplateArgs);
+
+ // If this reference is in an Objective-C method, then we need to do
+ // some special Objective-C lookup, too.
+ if (IvarLookupFollowUp) {
+ ExprResult E(LookupInObjCMethod(R, S, II, true));
+ if (E.isInvalid())
+ return ExprError();
+
+ if (Expr *Ex = E.getAs<Expr>())
+ return Ex;
+ }
+ }
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ // This could be an implicitly declared function reference (legal in C90,
+ // extension in C99, forbidden in C++).
+ if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
+ NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
+ if (D) R.addDecl(D);
+ }
+
+ // Determine whether this name might be a candidate for
+ // argument-dependent lookup.
+ bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
+
+ if (R.empty() && !ADL) {
+ if (SS.isEmpty() && getLangOpts().MSVCCompat) {
+ if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
+ TemplateKWLoc, TemplateArgs))
+ return E;
+ }
+
+ // Don't diagnose an empty lookup for inline assembly.
+ if (IsInlineAsmIdentifier)
+ return ExprError();
+
+ // If this name wasn't predeclared and if this is not a function
+ // call, diagnose the problem.
+ TypoExpr *TE = nullptr;
+ DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
+ : nullptr);
+ DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
+ assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
+ "Typo correction callback misconfigured");
+ if (CCC) {
+ // Make sure the callback knows what the typo being diagnosed is.
+ CCC->setTypoName(II);
+ if (SS.isValid())
+ CCC->setTypoNNS(SS.getScopeRep());
+ }
+ // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
+ // a template name, but we happen to have always already looked up the name
+ // before we get here if it must be a template name.
+ if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
+ None, &TE)) {
+ if (TE && KeywordReplacement) {
+ auto &State = getTypoExprState(TE);
+ auto BestTC = State.Consumer->getNextCorrection();
+ if (BestTC.isKeyword()) {
+ auto *II = BestTC.getCorrectionAsIdentifierInfo();
+ if (State.DiagHandler)
+ State.DiagHandler(BestTC);
+ KeywordReplacement->startToken();
+ KeywordReplacement->setKind(II->getTokenID());
+ KeywordReplacement->setIdentifierInfo(II);
+ KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
+ // Clean up the state associated with the TypoExpr, since it has
+ // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
+ clearDelayedTypo(TE);
+ // Signal that a correction to a keyword was performed by returning a
+ // valid-but-null ExprResult.
+ return (Expr*)nullptr;
+ }
+ State.Consumer->resetCorrectionStream();
+ }
+ return TE ? TE : ExprError();
+ }
+
+ assert(!R.empty() &&
+ "DiagnoseEmptyLookup returned false but added no results");
+
+ // If we found an Objective-C instance variable, let
+ // LookupInObjCMethod build the appropriate expression to
+ // reference the ivar.
+ if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
+ R.clear();
+ ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
+ // In a hopelessly buggy code, Objective-C instance variable
+ // lookup fails and no expression will be built to reference it.
+ if (!E.isInvalid() && !E.get())
+ return ExprError();
+ return E;
+ }
+ }
+
+ // This is guaranteed from this point on.
+ assert(!R.empty() || ADL);
+
+ // Check whether this might be a C++ implicit instance member access.
+ // C++ [class.mfct.non-static]p3:
+ // When an id-expression that is not part of a class member access
+ // syntax and not used to form a pointer to member is used in the
+ // body of a non-static member function of class X, if name lookup
+ // resolves the name in the id-expression to a non-static non-type
+ // member of some class C, the id-expression is transformed into a
+ // class member access expression using (*this) as the
+ // postfix-expression to the left of the . operator.
+ //
+ // But we don't actually need to do this for '&' operands if R
+ // resolved to a function or overloaded function set, because the
+ // expression is ill-formed if it actually works out to be a
+ // non-static member function:
+ //
+ // C++ [expr.ref]p4:
+ // Otherwise, if E1.E2 refers to a non-static member function. . .
+ // [t]he expression can be used only as the left-hand operand of a
+ // member function call.
+ //
+ // There are other safeguards against such uses, but it's important
+ // to get this right here so that we don't end up making a
+ // spuriously dependent expression if we're inside a dependent
+ // instance method.
+ if (!R.empty() && (*R.begin())->isCXXClassMember()) {
+ bool MightBeImplicitMember;
+ if (!IsAddressOfOperand)
+ MightBeImplicitMember = true;
+ else if (!SS.isEmpty())
+ MightBeImplicitMember = false;
+ else if (R.isOverloadedResult())
+ MightBeImplicitMember = false;
+ else if (R.isUnresolvableResult())
+ MightBeImplicitMember = true;
+ else
+ MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
+ isa<IndirectFieldDecl>(R.getFoundDecl()) ||
+ isa<MSPropertyDecl>(R.getFoundDecl());
+
+ if (MightBeImplicitMember)
+ return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
+ R, TemplateArgs, S);
+ }
+
+ if (TemplateArgs || TemplateKWLoc.isValid()) {
+
+ // In C++1y, if this is a variable template id, then check it
+ // in BuildTemplateIdExpr().
+ // The single lookup result must be a variable template declaration.
+ if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
+ Id.TemplateId->Kind == TNK_Var_template) {
+ assert(R.getAsSingle<VarTemplateDecl>() &&
+ "There should only be one declaration found.");
+ }
+
+ return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
+ }
+
+ return BuildDeclarationNameExpr(SS, R, ADL);
+}
+
+/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
+/// declaration name, generally during template instantiation.
+/// There's a large number of things which don't need to be done along
+/// this path.
+ExprResult Sema::BuildQualifiedDeclarationNameExpr(
+ CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
+ bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
+ DeclContext *DC = computeDeclContext(SS, false);
+ if (!DC)
+ return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
+ NameInfo, /*TemplateArgs=*/nullptr);
+
+ if (RequireCompleteDeclContext(SS, DC))
+ return ExprError();
+
+ LookupResult R(*this, NameInfo, LookupOrdinaryName);
+ LookupQualifiedName(R, DC);
+
+ if (R.isAmbiguous())
+ return ExprError();
+
+ if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
+ return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
+ NameInfo, /*TemplateArgs=*/nullptr);
+
+ if (R.empty()) {
+ // Don't diagnose problems with invalid record decl, the secondary no_member
+ // diagnostic during template instantiation is likely bogus, e.g. if a class
+ // is invalid because it's derived from an invalid base class, then missing
+ // members were likely supposed to be inherited.
+ if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
+ if (CD->isInvalidDecl())
+ return ExprError();
+ Diag(NameInfo.getLoc(), diag::err_no_member)
+ << NameInfo.getName() << DC << SS.getRange();
+ return ExprError();
+ }
+
+ if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
+ // Diagnose a missing typename if this resolved unambiguously to a type in
+ // a dependent context. If we can recover with a type, downgrade this to
+ // a warning in Microsoft compatibility mode.
+ unsigned DiagID = diag::err_typename_missing;
+ if (RecoveryTSI && getLangOpts().MSVCCompat)
+ DiagID = diag::ext_typename_missing;
+ SourceLocation Loc = SS.getBeginLoc();
+ auto D = Diag(Loc, DiagID);
+ D << SS.getScopeRep() << NameInfo.getName().getAsString()
+ << SourceRange(Loc, NameInfo.getEndLoc());
+
+ // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
+ // context.
+ if (!RecoveryTSI)
+ return ExprError();
+
+ // Only issue the fixit if we're prepared to recover.
+ D << FixItHint::CreateInsertion(Loc, "typename ");
+
+ // Recover by pretending this was an elaborated type.
+ QualType Ty = Context.getTypeDeclType(TD);
+ TypeLocBuilder TLB;
+ TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
+
+ QualType ET = getElaboratedType(ETK_None, SS, Ty);
+ ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
+ QTL.setElaboratedKeywordLoc(SourceLocation());
+ QTL.setQualifierLoc(SS.getWithLocInContext(Context));
+
+ *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
+
+ return ExprEmpty();
+ }
+
+ // Defend against this resolving to an implicit member access. We usually
+ // won't get here if this might be a legitimate a class member (we end up in
+ // BuildMemberReferenceExpr instead), but this can be valid if we're forming
+ // a pointer-to-member or in an unevaluated context in C++11.
+ if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
+ return BuildPossibleImplicitMemberExpr(SS,
+ /*TemplateKWLoc=*/SourceLocation(),
+ R, /*TemplateArgs=*/nullptr, S);
+
+ return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
+}
+
+/// The parser has read a name in, and Sema has detected that we're currently
+/// inside an ObjC method. Perform some additional checks and determine if we
+/// should form a reference to an ivar.
+///
+/// Ideally, most of this would be done by lookup, but there's
+/// actually quite a lot of extra work involved.
+DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
+ IdentifierInfo *II) {
+ SourceLocation Loc = Lookup.getNameLoc();
+ ObjCMethodDecl *CurMethod = getCurMethodDecl();
+
+ // Check for error condition which is already reported.
+ if (!CurMethod)
+ return DeclResult(true);
+
+ // There are two cases to handle here. 1) scoped lookup could have failed,
+ // in which case we should look for an ivar. 2) scoped lookup could have
+ // found a decl, but that decl is outside the current instance method (i.e.
+ // a global variable). In these two cases, we do a lookup for an ivar with
+ // this name, if the lookup sucedes, we replace it our current decl.
+
+ // If we're in a class method, we don't normally want to look for
+ // ivars. But if we don't find anything else, and there's an
+ // ivar, that's an error.
+ bool IsClassMethod = CurMethod->isClassMethod();
+
+ bool LookForIvars;
+ if (Lookup.empty())
+ LookForIvars = true;
+ else if (IsClassMethod)
+ LookForIvars = false;
+ else
+ LookForIvars = (Lookup.isSingleResult() &&
+ Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
+ ObjCInterfaceDecl *IFace = nullptr;
+ if (LookForIvars) {
+ IFace = CurMethod->getClassInterface();
+ ObjCInterfaceDecl *ClassDeclared;
+ ObjCIvarDecl *IV = nullptr;
+ if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
+ // Diagnose using an ivar in a class method.
+ if (IsClassMethod) {
+ Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
+ return DeclResult(true);
+ }
+
+ // Diagnose the use of an ivar outside of the declaring class.
+ if (IV->getAccessControl() == ObjCIvarDecl::Private &&
+ !declaresSameEntity(ClassDeclared, IFace) &&
+ !getLangOpts().DebuggerSupport)
+ Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
+
+ // Success.
+ return IV;
+ }
+ } else if (CurMethod->isInstanceMethod()) {
+ // We should warn if a local variable hides an ivar.
+ if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
+ ObjCInterfaceDecl *ClassDeclared;
+ if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
+ if (IV->getAccessControl() != ObjCIvarDecl::Private ||
+ declaresSameEntity(IFace, ClassDeclared))
+ Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
+ }
+ }
+ } else if (Lookup.isSingleResult() &&
+ Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
+ // If accessing a stand-alone ivar in a class method, this is an error.
+ if (const ObjCIvarDecl *IV =
+ dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
+ Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
+ return DeclResult(true);
+ }
+ }
+
+ // Didn't encounter an error, didn't find an ivar.
+ return DeclResult(false);
+}
+
+ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
+ ObjCIvarDecl *IV) {
+ ObjCMethodDecl *CurMethod = getCurMethodDecl();
+ assert(CurMethod && CurMethod->isInstanceMethod() &&
+ "should not reference ivar from this context");
+
+ ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
+ assert(IFace && "should not reference ivar from this context");
+
+ // If we're referencing an invalid decl, just return this as a silent
+ // error node. The error diagnostic was already emitted on the decl.
+ if (IV->isInvalidDecl())
+ return ExprError();
+
+ // Check if referencing a field with __attribute__((deprecated)).
+ if (DiagnoseUseOfDecl(IV, Loc))
+ return ExprError();
+
+ // FIXME: This should use a new expr for a direct reference, don't
+ // turn this into Self->ivar, just return a BareIVarExpr or something.
+ IdentifierInfo &II = Context.Idents.get("self");
+ UnqualifiedId SelfName;
+ SelfName.setImplicitSelfParam(&II);
+ CXXScopeSpec SelfScopeSpec;
+ SourceLocation TemplateKWLoc;
+ ExprResult SelfExpr =
+ ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
+ /*HasTrailingLParen=*/false,
+ /*IsAddressOfOperand=*/false);
+ if (SelfExpr.isInvalid())
+ return ExprError();
+
+ SelfExpr = DefaultLvalueConversion(SelfExpr.get());
+ if (SelfExpr.isInvalid())
+ return ExprError();
+
+ MarkAnyDeclReferenced(Loc, IV, true);
+
+ ObjCMethodFamily MF = CurMethod->getMethodFamily();
+ if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
+ !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
+ Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
+
+ ObjCIvarRefExpr *Result = new (Context)
+ ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
+ IV->getLocation(), SelfExpr.get(), true, true);
+
+ if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
+ if (!isUnevaluatedContext() &&
+ !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
+ getCurFunction()->recordUseOfWeak(Result);
+ }
+ if (getLangOpts().ObjCAutoRefCount)
+ if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
+ ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
+
+ return Result;
+}
+
+/// The parser has read a name in, and Sema has detected that we're currently
+/// inside an ObjC method. Perform some additional checks and determine if we
+/// should form a reference to an ivar. If so, build an expression referencing
+/// that ivar.
+ExprResult
+Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
+ IdentifierInfo *II, bool AllowBuiltinCreation) {
+ // FIXME: Integrate this lookup step into LookupParsedName.
+ DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
+ if (Ivar.isInvalid())
+ return ExprError();
+ if (Ivar.isUsable())
+ return BuildIvarRefExpr(S, Lookup.getNameLoc(),
+ cast<ObjCIvarDecl>(Ivar.get()));
+
+ if (Lookup.empty() && II && AllowBuiltinCreation)
+ LookupBuiltin(Lookup);
+
+ // Sentinel value saying that we didn't do anything special.
+ return ExprResult(false);
+}
+
+/// Cast a base object to a member's actual type.
+///
+/// There are two relevant checks:
+///
+/// C++ [class.access.base]p7:
+///
+/// If a class member access operator [...] is used to access a non-static
+/// data member or non-static member function, the reference is ill-formed if
+/// the left operand [...] cannot be implicitly converted to a pointer to the
+/// naming class of the right operand.
+///
+/// C++ [expr.ref]p7:
+///
+/// If E2 is a non-static data member or a non-static member function, the
+/// program is ill-formed if the class of which E2 is directly a member is an
+/// ambiguous base (11.8) of the naming class (11.9.3) of E2.
+///
+/// Note that the latter check does not consider access; the access of the
+/// "real" base class is checked as appropriate when checking the access of the
+/// member name.
+ExprResult
+Sema::PerformObjectMemberConversion(Expr *From,
+ NestedNameSpecifier *Qualifier,
+ NamedDecl *FoundDecl,
+ NamedDecl *Member) {
+ CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
+ if (!RD)
+ return From;
+
+ QualType DestRecordType;
+ QualType DestType;
+ QualType FromRecordType;
+ QualType FromType = From->getType();
+ bool PointerConversions = false;
+ if (isa<FieldDecl>(Member)) {
+ DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
+ auto FromPtrType = FromType->getAs<PointerType>();
+ DestRecordType = Context.getAddrSpaceQualType(
+ DestRecordType, FromPtrType
+ ? FromType->getPointeeType().getAddressSpace()
+ : FromType.getAddressSpace());
+
+ if (FromPtrType) {
+ DestType = Context.getPointerType(DestRecordType);
+ FromRecordType = FromPtrType->getPointeeType();
+ PointerConversions = true;
+ } else {
+ DestType = DestRecordType;
+ FromRecordType = FromType;
+ }
+ } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
+ if (Method->isStatic())
+ return From;
+
+ DestType = Method->getThisType();
+ DestRecordType = DestType->getPointeeType();
+
+ if (FromType->getAs<PointerType>()) {
+ FromRecordType = FromType->getPointeeType();
+ PointerConversions = true;
+ } else {
+ FromRecordType = FromType;
+ DestType = DestRecordType;
+ }
+
+ LangAS FromAS = FromRecordType.getAddressSpace();
+ LangAS DestAS = DestRecordType.getAddressSpace();
+ if (FromAS != DestAS) {
+ QualType FromRecordTypeWithoutAS =
+ Context.removeAddrSpaceQualType(FromRecordType);
+ QualType FromTypeWithDestAS =
+ Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
+ if (PointerConversions)
+ FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
+ From = ImpCastExprToType(From, FromTypeWithDestAS,
+ CK_AddressSpaceConversion, From->getValueKind())
+ .get();
+ }
+ } else {
+ // No conversion necessary.
+ return From;
+ }
+
+ if (DestType->isDependentType() || FromType->isDependentType())
+ return From;
+
+ // If the unqualified types are the same, no conversion is necessary.
+ if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
+ return From;
+
+ SourceRange FromRange = From->getSourceRange();
+ SourceLocation FromLoc = FromRange.getBegin();
+
+ ExprValueKind VK = From->getValueKind();
+
+ // C++ [class.member.lookup]p8:
+ // [...] Ambiguities can often be resolved by qualifying a name with its
+ // class name.
+ //
+ // If the member was a qualified name and the qualified referred to a
+ // specific base subobject type, we'll cast to that intermediate type
+ // first and then to the object in which the member is declared. That allows
+ // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
+ //
+ // class Base { public: int x; };
+ // class Derived1 : public Base { };
+ // class Derived2 : public Base { };
+ // class VeryDerived : public Derived1, public Derived2 { void f(); };
+ //
+ // void VeryDerived::f() {
+ // x = 17; // error: ambiguous base subobjects
+ // Derived1::x = 17; // okay, pick the Base subobject of Derived1
+ // }
+ if (Qualifier && Qualifier->getAsType()) {
+ QualType QType = QualType(Qualifier->getAsType(), 0);
+ assert(QType->isRecordType() && "lookup done with non-record type");
+
+ QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
+
+ // In C++98, the qualifier type doesn't actually have to be a base
+ // type of the object type, in which case we just ignore it.
+ // Otherwise build the appropriate casts.
+ if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
+ CXXCastPath BasePath;
+ if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
+ FromLoc, FromRange, &BasePath))
+ return ExprError();
+
+ if (PointerConversions)
+ QType = Context.getPointerType(QType);
+ From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
+ VK, &BasePath).get();
+
+ FromType = QType;
+ FromRecordType = QRecordType;
+
+ // If the qualifier type was the same as the destination type,
+ // we're done.
+ if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
+ return From;
+ }
+ }
+
+ CXXCastPath BasePath;
+ if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
+ FromLoc, FromRange, &BasePath,
+ /*IgnoreAccess=*/true))
+ return ExprError();
+
+ return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
+ VK, &BasePath);
+}
+
+bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
+ const LookupResult &R,
+ bool HasTrailingLParen) {
+ // Only when used directly as the postfix-expression of a call.
+ if (!HasTrailingLParen)
+ return false;
+
+ // Never if a scope specifier was provided.
+ if (SS.isSet())
+ return false;
+
+ // Only in C++ or ObjC++.
+ if (!getLangOpts().CPlusPlus)
+ return false;
+
+ // Turn off ADL when we find certain kinds of declarations during
+ // normal lookup:
+ for (NamedDecl *D : R) {
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a declaration of a class member
+ // Since using decls preserve this property, we check this on the
+ // original decl.
+ if (D->isCXXClassMember())
+ return false;
+
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a block-scope function declaration that is not a
+ // using-declaration
+ // NOTE: we also trigger this for function templates (in fact, we
+ // don't check the decl type at all, since all other decl types
+ // turn off ADL anyway).
+ if (isa<UsingShadowDecl>(D))
+ D = cast<UsingShadowDecl>(D)->getTargetDecl();
+ else if (D->getLexicalDeclContext()->isFunctionOrMethod())
+ return false;
+
+ // C++0x [basic.lookup.argdep]p3:
+ // -- a declaration that is neither a function or a function
+ // template
+ // And also for builtin functions.
+ if (isa<FunctionDecl>(D)) {
+ FunctionDecl *FDecl = cast<FunctionDecl>(D);
+
+ // But also builtin functions.
+ if (FDecl->getBuiltinID() && FDecl->isImplicit())
+ return false;
+ } else if (!isa<FunctionTemplateDecl>(D))
+ return false;
+ }
+
+ return true;
+}
+
+
+/// Diagnoses obvious problems with the use of the given declaration
+/// as an expression. This is only actually called for lookups that
+/// were not overloaded, and it doesn't promise that the declaration
+/// will in fact be used.
+static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
+ if (D->isInvalidDecl())
+ return true;
+
+ if (isa<TypedefNameDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
+ return true;
+ }
+
+ if (isa<ObjCInterfaceDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
+ return true;
+ }
+
+ if (isa<NamespaceDecl>(D)) {
+ S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
+ return true;
+ }
+
+ return false;
+}
+
+// Certain multiversion types should be treated as overloaded even when there is
+// only one result.
+static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
+ assert(R.isSingleResult() && "Expected only a single result");
+ const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
+ return FD &&
+ (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
+}
+
+ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
+ LookupResult &R, bool NeedsADL,
+ bool AcceptInvalidDecl) {
+ // If this is a single, fully-resolved result and we don't need ADL,
+ // just build an ordinary singleton decl ref.
+ if (!NeedsADL && R.isSingleResult() &&
+ !R.getAsSingle<FunctionTemplateDecl>() &&
+ !ShouldLookupResultBeMultiVersionOverload(R))
+ return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
+ R.getRepresentativeDecl(), nullptr,
+ AcceptInvalidDecl);
+
+ // We only need to check the declaration if there's exactly one
+ // result, because in the overloaded case the results can only be
+ // functions and function templates.
+ if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
+ CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
+ return ExprError();
+
+ // Otherwise, just build an unresolved lookup expression. Suppress
+ // any lookup-related diagnostics; we'll hash these out later, when
+ // we've picked a target.
+ R.suppressDiagnostics();
+
+ UnresolvedLookupExpr *ULE
+ = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
+ SS.getWithLocInContext(Context),
+ R.getLookupNameInfo(),
+ NeedsADL, R.isOverloadedResult(),
+ R.begin(), R.end());
+
+ return ULE;
+}
+
+static void diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
+ ValueDecl *var);
+
+/// Complete semantic analysis for a reference to the given declaration.
+ExprResult Sema::BuildDeclarationNameExpr(
+ const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
+ NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
+ bool AcceptInvalidDecl) {
+ assert(D && "Cannot refer to a NULL declaration");
+ assert(!isa<FunctionTemplateDecl>(D) &&
+ "Cannot refer unambiguously to a function template");
+
+ SourceLocation Loc = NameInfo.getLoc();
+ if (CheckDeclInExpr(*this, Loc, D))
+ return ExprError();
+
+ if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
+ // Specifically diagnose references to class templates that are missing
+ // a template argument list.
+ diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
+ return ExprError();
+ }
+
+ // Make sure that we're referring to a value.
+ if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
+ Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
+ Diag(D->getLocation(), diag::note_declared_at);
+ return ExprError();
+ }
+
+ // Check whether this declaration can be used. Note that we suppress
+ // this check when we're going to perform argument-dependent lookup
+ // on this function name, because this might not be the function
+ // that overload resolution actually selects.
+ if (DiagnoseUseOfDecl(D, Loc))
+ return ExprError();
+
+ auto *VD = cast<ValueDecl>(D);
+
+ // Only create DeclRefExpr's for valid Decl's.
+ if (VD->isInvalidDecl() && !AcceptInvalidDecl)
+ return ExprError();
+
+ // Handle members of anonymous structs and unions. If we got here,
+ // and the reference is to a class member indirect field, then this
+ // must be the subject of a pointer-to-member expression.
+ if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
+ if (!indirectField->isCXXClassMember())
+ return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
+ indirectField);
+
+ QualType type = VD->getType();
+ if (type.isNull())
+ return ExprError();
+ ExprValueKind valueKind = VK_PRValue;
+
+ // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
+ // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
+ // is expanded by some outer '...' in the context of the use.
+ type = type.getNonPackExpansionType();
+
+ switch (D->getKind()) {
+ // Ignore all the non-ValueDecl kinds.
+#define ABSTRACT_DECL(kind)
+#define VALUE(type, base)
+#define DECL(type, base) case Decl::type:
+#include "clang/AST/DeclNodes.inc"
+ llvm_unreachable("invalid value decl kind");
+
+ // These shouldn't make it here.
+ case Decl::ObjCAtDefsField:
+ llvm_unreachable("forming non-member reference to ivar?");
+
+ // Enum constants are always r-values and never references.
+ // Unresolved using declarations are dependent.
+ case Decl::EnumConstant:
+ case Decl::UnresolvedUsingValue:
+ case Decl::OMPDeclareReduction:
+ case Decl::OMPDeclareMapper:
+ valueKind = VK_PRValue;
+ break;
+
+ // Fields and indirect fields that got here must be for
+ // pointer-to-member expressions; we just call them l-values for
+ // internal consistency, because this subexpression doesn't really
+ // exist in the high-level semantics.
+ case Decl::Field:
+ case Decl::IndirectField:
+ case Decl::ObjCIvar:
+ assert(getLangOpts().CPlusPlus && "building reference to field in C?");
+
+ // These can't have reference type in well-formed programs, but
+ // for internal consistency we do this anyway.
+ type = type.getNonReferenceType();
+ valueKind = VK_LValue;
+ break;
+
+ // Non-type template parameters are either l-values or r-values
+ // depending on the type.
+ case Decl::NonTypeTemplateParm: {
+ if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
+ type = reftype->getPointeeType();
+ valueKind = VK_LValue; // even if the parameter is an r-value reference
+ break;
+ }
+
+ // [expr.prim.id.unqual]p2:
+ // If the entity is a template parameter object for a template
+ // parameter of type T, the type of the expression is const T.
+ // [...] The expression is an lvalue if the entity is a [...] template
+ // parameter object.
+ if (type->isRecordType()) {
+ type = type.getUnqualifiedType().withConst();
+ valueKind = VK_LValue;
+ break;
+ }
+
+ // For non-references, we need to strip qualifiers just in case
+ // the template parameter was declared as 'const int' or whatever.
+ valueKind = VK_PRValue;
+ type = type.getUnqualifiedType();
+ break;
+ }
+
+ case Decl::Var:
+ case Decl::VarTemplateSpecialization:
+ case Decl::VarTemplatePartialSpecialization:
+ case Decl::Decomposition:
+ case Decl::OMPCapturedExpr:
+ // In C, "extern void blah;" is valid and is an r-value.
+ if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
+ type->isVoidType()) {
+ valueKind = VK_PRValue;
+ break;
+ }
+ LLVM_FALLTHROUGH;
+
+ case Decl::ImplicitParam:
+ case Decl::ParmVar: {
+ // These are always l-values.
+ valueKind = VK_LValue;
+ type = type.getNonReferenceType();
+
+ // FIXME: Does the addition of const really only apply in
+ // potentially-evaluated contexts? Since the variable isn't actually
+ // captured in an unevaluated context, it seems that the answer is no.
+ if (!isUnevaluatedContext()) {
+ QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
+ if (!CapturedType.isNull())
+ type = CapturedType;
+ }
+
+ break;
+ }
+
+ case Decl::Binding: {
+ // These are always lvalues.
+ valueKind = VK_LValue;
+ type = type.getNonReferenceType();
+ // FIXME: Support lambda-capture of BindingDecls, once CWG actually
+ // decides how that's supposed to work.
+ auto *BD = cast<BindingDecl>(VD);
+ if (BD->getDeclContext() != CurContext) {
+ auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
+ if (DD && DD->hasLocalStorage())
+ diagnoseUncapturableValueReference(*this, Loc, BD);
+ }
+ break;
+ }
+
+ case Decl::Function: {
+ if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
+ if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
+ type = Context.BuiltinFnTy;
+ valueKind = VK_PRValue;
+ break;
+ }
+ }
+
+ const FunctionType *fty = type->castAs<FunctionType>();
+
+ // If we're referring to a function with an __unknown_anytype
+ // result type, make the entire expression __unknown_anytype.
+ if (fty->getReturnType() == Context.UnknownAnyTy) {
+ type = Context.UnknownAnyTy;
+ valueKind = VK_PRValue;
+ break;
+ }
+
+ // Functions are l-values in C++.
+ if (getLangOpts().CPlusPlus) {
+ valueKind = VK_LValue;
+ break;
+ }
+
+ // C99 DR 316 says that, if a function type comes from a
+ // function definition (without a prototype), that type is only
+ // used for checking compatibility. Therefore, when referencing
+ // the function, we pretend that we don't have the full function
+ // type.
+ if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
+ type = Context.getFunctionNoProtoType(fty->getReturnType(),
+ fty->getExtInfo());
+
+ // Functions are r-values in C.
+ valueKind = VK_PRValue;
+ break;
+ }
+
+ case Decl::CXXDeductionGuide:
+ llvm_unreachable("building reference to deduction guide");
+
+ case Decl::MSProperty:
+ case Decl::MSGuid:
+ case Decl::TemplateParamObject:
+ // FIXME: Should MSGuidDecl and template parameter objects be subject to
+ // capture in OpenMP, or duplicated between host and device?
+ valueKind = VK_LValue;
+ break;
+
+ case Decl::CXXMethod:
+ // If we're referring to a method with an __unknown_anytype
+ // result type, make the entire expression __unknown_anytype.
+ // This should only be possible with a type written directly.
+ if (const FunctionProtoType *proto =
+ dyn_cast<FunctionProtoType>(VD->getType()))
+ if (proto->getReturnType() == Context.UnknownAnyTy) {
+ type = Context.UnknownAnyTy;
+ valueKind = VK_PRValue;
+ break;
+ }
+
+ // C++ methods are l-values if static, r-values if non-static.
+ if (cast<CXXMethodDecl>(VD)->isStatic()) {
+ valueKind = VK_LValue;
+ break;
+ }
+ LLVM_FALLTHROUGH;
+
+ case Decl::CXXConversion:
+ case Decl::CXXDestructor:
+ case Decl::CXXConstructor:
+ valueKind = VK_PRValue;
+ break;
+ }
+
+ return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
+ /*FIXME: TemplateKWLoc*/ SourceLocation(),
+ TemplateArgs);
+}
+
+static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
+ SmallString<32> &Target) {
+ Target.resize(CharByteWidth * (Source.size() + 1));
+ char *ResultPtr = &Target[0];
+ const llvm::UTF8 *ErrorPtr;
+ bool success =
+ llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
+ (void)success;
+ assert(success);
+ Target.resize(ResultPtr - &Target[0]);
+}
+
+ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
+ PredefinedExpr::IdentKind IK) {
+ // Pick the current block, lambda, captured statement or function.
+ Decl *currentDecl = nullptr;
+ if (const BlockScopeInfo *BSI = getCurBlock())
+ currentDecl = BSI->TheDecl;
+ else if (const LambdaScopeInfo *LSI = getCurLambda())
+ currentDecl = LSI->CallOperator;
+ else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
+ currentDecl = CSI->TheCapturedDecl;
+ else
+ currentDecl = getCurFunctionOrMethodDecl();
+
+ if (!currentDecl) {
+ Diag(Loc, diag::ext_predef_outside_function);
+ currentDecl = Context.getTranslationUnitDecl();
+ }
+
+ QualType ResTy;
+ StringLiteral *SL = nullptr;
+ if (cast<DeclContext>(currentDecl)->isDependentContext())
+ ResTy = Context.DependentTy;
+ else {
+ // Pre-defined identifiers are of type char[x], where x is the length of
+ // the string.
+ auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
+ unsigned Length = Str.length();
+
+ llvm::APInt LengthI(32, Length + 1);
+ if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
+ ResTy =
+ Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
+ SmallString<32> RawChars;
+ ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
+ Str, RawChars);
+ ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
+ ArrayType::Normal,
+ /*IndexTypeQuals*/ 0);
+ SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
+ /*Pascal*/ false, ResTy, Loc);
+ } else {
+ ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
+ ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
+ ArrayType::Normal,
+ /*IndexTypeQuals*/ 0);
+ SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
+ /*Pascal*/ false, ResTy, Loc);
+ }
+ }
+
+ return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
+}
+
+ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
+ SourceLocation LParen,
+ SourceLocation RParen,
+ TypeSourceInfo *TSI) {
+ return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
+}
+
+ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
+ SourceLocation LParen,
+ SourceLocation RParen,
+ ParsedType ParsedTy) {
+ TypeSourceInfo *TSI = nullptr;
+ QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
+
+ if (Ty.isNull())
+ return ExprError();
+ if (!TSI)
+ TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
+
+ return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
+}
+
+ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
+ PredefinedExpr::IdentKind IK;
+
+ switch (Kind) {
+ default: llvm_unreachable("Unknown simple primary expr!");
+ case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
+ case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
+ case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
+ case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
+ case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
+ case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
+ case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
+ }
+
+ return BuildPredefinedExpr(Loc, IK);
+}
+
+ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
+ SmallString<16> CharBuffer;
+ bool Invalid = false;
+ StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
+ if (Invalid)
+ return ExprError();
+
+ CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
+ PP, Tok.getKind());
+ if (Literal.hadError())
+ return ExprError();
+
+ QualType Ty;
+ if (Literal.isWide())
+ Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
+ else if (Literal.isUTF8() && getLangOpts().Char8)
+ Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
+ else if (Literal.isUTF16())
+ Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
+ else if (Literal.isUTF32())
+ Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
+ else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
+ Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
+ else
+ Ty = Context.CharTy; // 'x' -> char in C++
+
+ CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
+ if (Literal.isWide())
+ Kind = CharacterLiteral::Wide;
+ else if (Literal.isUTF16())
+ Kind = CharacterLiteral::UTF16;
+ else if (Literal.isUTF32())
+ Kind = CharacterLiteral::UTF32;
+ else if (Literal.isUTF8())
+ Kind = CharacterLiteral::UTF8;
+
+ Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
+ Tok.getLocation());
+
+ if (Literal.getUDSuffix().empty())
+ return Lit;
+
+ // We're building a user-defined literal.
+ IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
+ SourceLocation UDSuffixLoc =
+ getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
+
+ // Make sure we're allowed user-defined literals here.
+ if (!UDLScope)
+ return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
+
+ // C++11 [lex.ext]p6: The literal L is treated as a call of the form
+ // operator "" X (ch)
+ return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
+ Lit, Tok.getLocation());
+}
+
+ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
+ unsigned IntSize = Context.getTargetInfo().getIntWidth();
+ return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
+ Context.IntTy, Loc);
+}
+
+static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
+ QualType Ty, SourceLocation Loc) {
+ const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
+
+ using llvm::APFloat;
+ APFloat Val(Format);
+
+ APFloat::opStatus result = Literal.GetFloatValue(Val);
+
+ // Overflow is always an error, but underflow is only an error if
+ // we underflowed to zero (APFloat reports denormals as underflow).
+ if ((result & APFloat::opOverflow) ||
+ ((result & APFloat::opUnderflow) && Val.isZero())) {
+ unsigned diagnostic;
+ SmallString<20> buffer;
+ if (result & APFloat::opOverflow) {
+ diagnostic = diag::warn_float_overflow;
+ APFloat::getLargest(Format).toString(buffer);
+ } else {
+ diagnostic = diag::warn_float_underflow;
+ APFloat::getSmallest(Format).toString(buffer);
+ }
+
+ S.Diag(Loc, diagnostic)
+ << Ty
+ << StringRef(buffer.data(), buffer.size());
+ }
+
+ bool isExact = (result == APFloat::opOK);
+ return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
+}
+
+bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
+ assert(E && "Invalid expression");
+
+ if (E->isValueDependent())
+ return false;
+
+ QualType QT = E->getType();
+ if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
+ Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
+ return true;
+ }
+
+ llvm::APSInt ValueAPS;
+ ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
+
+ if (R.isInvalid())
+ return true;
+
+ bool ValueIsPositive = ValueAPS.isStrictlyPositive();
+ if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
+ Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
+ << toString(ValueAPS, 10) << ValueIsPositive;
+ return true;
+ }
+
+ return false;
+}
+
+ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
+ // Fast path for a single digit (which is quite common). A single digit
+ // cannot have a trigraph, escaped newline, radix prefix, or suffix.
+ if (Tok.getLength() == 1) {
+ const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
+ return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
+ }
+
+ SmallString<128> SpellingBuffer;
+ // NumericLiteralParser wants to overread by one character. Add padding to
+ // the buffer in case the token is copied to the buffer. If getSpelling()
+ // returns a StringRef to the memory buffer, it should have a null char at
+ // the EOF, so it is also safe.
+ SpellingBuffer.resize(Tok.getLength() + 1);
+
+ // Get the spelling of the token, which eliminates trigraphs, etc.
+ bool Invalid = false;
+ StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
+ if (Invalid)
+ return ExprError();
+
+ NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
+ PP.getSourceManager(), PP.getLangOpts(),
+ PP.getTargetInfo(), PP.getDiagnostics());
+ if (Literal.hadError)
+ return ExprError();
+
+ if (Literal.hasUDSuffix()) {
+ // We're building a user-defined literal.
+ IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
+ SourceLocation UDSuffixLoc =
+ getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
+
+ // Make sure we're allowed user-defined literals here.
+ if (!UDLScope)
+ return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
+
+ QualType CookedTy;
+ if (Literal.isFloatingLiteral()) {
+ // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
+ // long double, the literal is treated as a call of the form
+ // operator "" X (f L)
+ CookedTy = Context.LongDoubleTy;
+ } else {
+ // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
+ // unsigned long long, the literal is treated as a call of the form
+ // operator "" X (n ULL)
+ CookedTy = Context.UnsignedLongLongTy;
+ }
+
+ DeclarationName OpName =
+ Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
+ DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
+ OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
+
+ SourceLocation TokLoc = Tok.getLocation();
+
+ // Perform literal operator lookup to determine if we're building a raw
+ // literal or a cooked one.
+ LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
+ switch (LookupLiteralOperator(UDLScope, R, CookedTy,
+ /*AllowRaw*/ true, /*AllowTemplate*/ true,
+ /*AllowStringTemplatePack*/ false,
+ /*DiagnoseMissing*/ !Literal.isImaginary)) {
+ case LOLR_ErrorNoDiagnostic:
+ // Lookup failure for imaginary constants isn't fatal, there's still the
+ // GNU extension producing _Complex types.
+ break;
+ case LOLR_Error:
+ return ExprError();
+ case LOLR_Cooked: {
+ Expr *Lit;
+ if (Literal.isFloatingLiteral()) {
+ Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
+ } else {
+ llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
+ if (Literal.GetIntegerValue(ResultVal))
+ Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
+ << /* Unsigned */ 1;
+ Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
+ Tok.getLocation());
+ }
+ return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
+ }
+
+ case LOLR_Raw: {
+ // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
+ // literal is treated as a call of the form
+ // operator "" X ("n")
+ unsigned Length = Literal.getUDSuffixOffset();
+ QualType StrTy = Context.getConstantArrayType(
+ Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
+ llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
+ Expr *Lit = StringLiteral::Create(
+ Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
+ /*Pascal*/false, StrTy, &TokLoc, 1);
+ return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
+ }
+
+ case LOLR_Template: {
+ // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
+ // template), L is treated as a call fo the form
+ // operator "" X <'c1', 'c2', ... 'ck'>()
+ // where n is the source character sequence c1 c2 ... ck.
+ TemplateArgumentListInfo ExplicitArgs;
+ unsigned CharBits = Context.getIntWidth(Context.CharTy);
+ bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
+ llvm::APSInt Value(CharBits, CharIsUnsigned);
+ for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
+ Value = TokSpelling[I];
+ TemplateArgument Arg(Context, Value, Context.CharTy);
+ TemplateArgumentLocInfo ArgInfo;
+ ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
+ }
+ return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
+ &ExplicitArgs);
+ }
+ case LOLR_StringTemplatePack:
+ llvm_unreachable("unexpected literal operator lookup result");
+ }
+ }
+
+ Expr *Res;
+
+ if (Literal.isFixedPointLiteral()) {
+ QualType Ty;
+
+ if (Literal.isAccum) {
+ if (Literal.isHalf) {
+ Ty = Context.ShortAccumTy;
+ } else if (Literal.isLong) {
+ Ty = Context.LongAccumTy;
+ } else {
+ Ty = Context.AccumTy;
+ }
+ } else if (Literal.isFract) {
+ if (Literal.isHalf) {
+ Ty = Context.ShortFractTy;
+ } else if (Literal.isLong) {
+ Ty = Context.LongFractTy;
+ } else {
+ Ty = Context.FractTy;
+ }
+ }
+
+ if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
+
+ bool isSigned = !Literal.isUnsigned;
+ unsigned scale = Context.getFixedPointScale(Ty);
+ unsigned bit_width = Context.getTypeInfo(Ty).Width;
+
+ llvm::APInt Val(bit_width, 0, isSigned);
+ bool Overflowed = Literal.GetFixedPointValue(Val, scale);
+ bool ValIsZero = Val.isZero() && !Overflowed;
+
+ auto MaxVal = Context.getFixedPointMax(Ty).getValue();
+ if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
+ // Clause 6.4.4 - The value of a constant shall be in the range of
+ // representable values for its type, with exception for constants of a
+ // fract type with a value of exactly 1; such a constant shall denote
+ // the maximal value for the type.
+ --Val;
+ else if (Val.ugt(MaxVal) || Overflowed)
+ Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
+
+ Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
+ Tok.getLocation(), scale);
+ } else if (Literal.isFloatingLiteral()) {
+ QualType Ty;
+ if (Literal.isHalf){
+ if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
+ Ty = Context.HalfTy;
+ else {
+ Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
+ return ExprError();
+ }
+ } else if (Literal.isFloat)
+ Ty = Context.FloatTy;
+ else if (Literal.isLong)
+ Ty = Context.LongDoubleTy;
+ else if (Literal.isFloat16)
+ Ty = Context.Float16Ty;
+ else if (Literal.isFloat128)
+ Ty = Context.Float128Ty;
+ else
+ Ty = Context.DoubleTy;
+
+ Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
+
+ if (Ty == Context.DoubleTy) {
+ if (getLangOpts().SinglePrecisionConstants) {
+ if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
+ Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
+ }
+ } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
+ "cl_khr_fp64", getLangOpts())) {
+ // Impose single-precision float type when cl_khr_fp64 is not enabled.
+ Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
+ << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
+ Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
+ }
+ }
+ } else if (!Literal.isIntegerLiteral()) {
+ return ExprError();
+ } else {
+ QualType Ty;
+
+ // 'long long' is a C99 or C++11 feature.
+ if (!getLangOpts().C99 && Literal.isLongLong) {
+ if (getLangOpts().CPlusPlus)
+ Diag(Tok.getLocation(),
+ getLangOpts().CPlusPlus11 ?
+ diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
+ else
+ Diag(Tok.getLocation(), diag::ext_c99_longlong);
+ }
+
+ // 'z/uz' literals are a C++2b feature.
+ if (Literal.isSizeT)
+ Diag(Tok.getLocation(), getLangOpts().CPlusPlus
+ ? getLangOpts().CPlusPlus2b
+ ? diag::warn_cxx20_compat_size_t_suffix
+ : diag::ext_cxx2b_size_t_suffix
+ : diag::err_cxx2b_size_t_suffix);
+
+ // Get the value in the widest-possible width.
+ unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
+ llvm::APInt ResultVal(MaxWidth, 0);
+
+ if (Literal.GetIntegerValue(ResultVal)) {
+ // If this value didn't fit into uintmax_t, error and force to ull.
+ Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
+ << /* Unsigned */ 1;
+ Ty = Context.UnsignedLongLongTy;
+ assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
+ "long long is not intmax_t?");
+ } else {
+ // If this value fits into a ULL, try to figure out what else it fits into
+ // according to the rules of C99 6.4.4.1p5.
+
+ // Octal, Hexadecimal, and integers with a U suffix are allowed to
+ // be an unsigned int.
+ bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
+
+ // Check from smallest to largest, picking the smallest type we can.
+ unsigned Width = 0;
+
+ // Microsoft specific integer suffixes are explicitly sized.
+ if (Literal.MicrosoftInteger) {
+ if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
+ Width = 8;
+ Ty = Context.CharTy;
+ } else {
+ Width = Literal.MicrosoftInteger;
+ Ty = Context.getIntTypeForBitwidth(Width,
+ /*Signed=*/!Literal.isUnsigned);
+ }
+ }
+
+ // Check C++2b size_t literals.
+ if (Literal.isSizeT) {
+ assert(!Literal.MicrosoftInteger &&
+ "size_t literals can't be Microsoft literals");
+ unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
+ Context.getTargetInfo().getSizeType());
+
+ // Does it fit in size_t?
+ if (ResultVal.isIntN(SizeTSize)) {
+ // Does it fit in ssize_t?
+ if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
+ Ty = Context.getSignedSizeType();
+ else if (AllowUnsigned)
+ Ty = Context.getSizeType();
+ Width = SizeTSize;
+ }
+ }
+
+ if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
+ !Literal.isSizeT) {
+ // Are int/unsigned possibilities?
+ unsigned IntSize = Context.getTargetInfo().getIntWidth();
+
+ // Does it fit in a unsigned int?
+ if (ResultVal.isIntN(IntSize)) {
+ // Does it fit in a signed int?
+ if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
+ Ty = Context.IntTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedIntTy;
+ Width = IntSize;
+ }
+ }
+
+ // Are long/unsigned long possibilities?
+ if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
+ unsigned LongSize = Context.getTargetInfo().getLongWidth();
+
+ // Does it fit in a unsigned long?
+ if (ResultVal.isIntN(LongSize)) {
+ // Does it fit in a signed long?
+ if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
+ Ty = Context.LongTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedLongTy;
+ // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
+ // is compatible.
+ else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
+ const unsigned LongLongSize =
+ Context.getTargetInfo().getLongLongWidth();
+ Diag(Tok.getLocation(),
+ getLangOpts().CPlusPlus
+ ? Literal.isLong
+ ? diag::warn_old_implicitly_unsigned_long_cxx
+ : /*C++98 UB*/ diag::
+ ext_old_implicitly_unsigned_long_cxx
+ : diag::warn_old_implicitly_unsigned_long)
+ << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
+ : /*will be ill-formed*/ 1);
+ Ty = Context.UnsignedLongTy;
+ }
+ Width = LongSize;
+ }
+ }
+
+ // Check long long if needed.
+ if (Ty.isNull() && !Literal.isSizeT) {
+ unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
+
+ // Does it fit in a unsigned long long?
+ if (ResultVal.isIntN(LongLongSize)) {
+ // Does it fit in a signed long long?
+ // To be compatible with MSVC, hex integer literals ending with the
+ // LL or i64 suffix are always signed in Microsoft mode.
+ if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
+ (getLangOpts().MSVCCompat && Literal.isLongLong)))
+ Ty = Context.LongLongTy;
+ else if (AllowUnsigned)
+ Ty = Context.UnsignedLongLongTy;
+ Width = LongLongSize;
+ }
+ }
+
+ // If we still couldn't decide a type, we either have 'size_t' literal
+ // that is out of range, or a decimal literal that does not fit in a
+ // signed long long and has no U suffix.
+ if (Ty.isNull()) {
+ if (Literal.isSizeT)
+ Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
+ << Literal.isUnsigned;
+ else
+ Diag(Tok.getLocation(),
+ diag::ext_integer_literal_too_large_for_signed);
+ Ty = Context.UnsignedLongLongTy;
+ Width = Context.getTargetInfo().getLongLongWidth();
+ }
+
+ if (ResultVal.getBitWidth() != Width)
+ ResultVal = ResultVal.trunc(Width);
+ }
+ Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
+ }
+
+ // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
+ if (Literal.isImaginary) {
+ Res = new (Context) ImaginaryLiteral(Res,
+ Context.getComplexType(Res->getType()));
+
+ Diag(Tok.getLocation(), diag::ext_imaginary_constant);
+ }
+ return Res;
+}
+
+ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
+ assert(E && "ActOnParenExpr() missing expr");
+ QualType ExprTy = E->getType();
+ if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
+ !E->isLValue() && ExprTy->hasFloatingRepresentation())
+ return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
+ return new (Context) ParenExpr(L, R, E);
+}
+
+static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
+ SourceLocation Loc,
+ SourceRange ArgRange) {
+ // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
+ // scalar or vector data type argument..."
+ // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
+ // type (C99 6.2.5p18) or void.
+ if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
+ S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
+ << T << ArgRange;
+ return true;
+ }
+
+ assert((T->isVoidType() || !T->isIncompleteType()) &&
+ "Scalar types should always be complete");
+ return false;
+}
+
+static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
+ SourceLocation Loc,
+ SourceRange ArgRange,
+ UnaryExprOrTypeTrait TraitKind) {
+ // Invalid types must be hard errors for SFINAE in C++.
+ if (S.LangOpts.CPlusPlus)
+ return true;
+
+ // C99 6.5.3.4p1:
+ if (T->isFunctionType() &&
+ (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
+ TraitKind == UETT_PreferredAlignOf)) {
+ // sizeof(function)/alignof(function) is allowed as an extension.
+ S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
+ << getTraitSpelling(TraitKind) << ArgRange;
+ return false;
+ }
+
+ // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
+ // this is an error (OpenCL v1.1 s6.3.k)
+ if (T->isVoidType()) {
+ unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
+ : diag::ext_sizeof_alignof_void_type;
+ S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
+ return false;
+ }
+
+ return true;
+}
+
+static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
+ SourceLocation Loc,
+ SourceRange ArgRange,
+ UnaryExprOrTypeTrait TraitKind) {
+ // Reject sizeof(interface) and sizeof(interface<proto>) if the
+ // runtime doesn't allow it.
+ if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
+ S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
+ << T << (TraitKind == UETT_SizeOf)
+ << ArgRange;
+ return true;
+ }
+
+ return false;
+}
+
+/// Check whether E is a pointer from a decayed array type (the decayed
+/// pointer type is equal to T) and emit a warning if it is.
+static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
+ Expr *E) {
+ // Don't warn if the operation changed the type.
+ if (T != E->getType())
+ return;
+
+ // Now look for array decays.
+ ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
+ if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
+ return;
+
+ S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
+ << ICE->getType()
+ << ICE->getSubExpr()->getType();
+}
+
+/// Check the constraints on expression operands to unary type expression
+/// and type traits.
+///
+/// Completes any types necessary and validates the constraints on the operand
+/// expression. The logic mostly mirrors the type-based overload, but may modify
+/// the expression as it completes the type for that expression through template
+/// instantiation, etc.
+bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
+ UnaryExprOrTypeTrait ExprKind) {
+ QualType ExprTy = E->getType();
+ assert(!ExprTy->isReferenceType());
+
+ bool IsUnevaluatedOperand =
+ (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
+ ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep);
+ if (IsUnevaluatedOperand) {
+ ExprResult Result = CheckUnevaluatedOperand(E);
+ if (Result.isInvalid())
+ return true;
+ E = Result.get();
+ }
+
+ // The operand for sizeof and alignof is in an unevaluated expression context,
+ // so side effects could result in unintended consequences.
+ // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
+ // used to build SFINAE gadgets.
+ // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
+ if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
+ !E->isInstantiationDependent() &&
+ E->HasSideEffects(Context, false))
+ Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
+
+ if (ExprKind == UETT_VecStep)
+ return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
+ E->getSourceRange());
+
+ // Explicitly list some types as extensions.
+ if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
+ E->getSourceRange(), ExprKind))
+ return false;
+
+ // 'alignof' applied to an expression only requires the base element type of
+ // the expression to be complete. 'sizeof' requires the expression's type to
+ // be complete (and will attempt to complete it if it's an array of unknown
+ // bound).
+ if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
+ if (RequireCompleteSizedType(
+ E->getExprLoc(), Context.getBaseElementType(E->getType()),
+ diag::err_sizeof_alignof_incomplete_or_sizeless_type,
+ getTraitSpelling(ExprKind), E->getSourceRange()))
+ return true;
+ } else {
+ if (RequireCompleteSizedExprType(
+ E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
+ getTraitSpelling(ExprKind), E->getSourceRange()))
+ return true;
+ }
+
+ // Completing the expression's type may have changed it.
+ ExprTy = E->getType();
+ assert(!ExprTy->isReferenceType());
+
+ if (ExprTy->isFunctionType()) {
+ Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
+ << getTraitSpelling(ExprKind) << E->getSourceRange();
+ return true;
+ }
+
+ if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
+ E->getSourceRange(), ExprKind))
+ return true;
+
+ if (ExprKind == UETT_SizeOf) {
+ if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
+ if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
+ QualType OType = PVD->getOriginalType();
+ QualType Type = PVD->getType();
+ if (Type->isPointerType() && OType->isArrayType()) {
+ Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
+ << Type << OType;
+ Diag(PVD->getLocation(), diag::note_declared_at);
+ }
+ }
+ }
+
+ // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
+ // decays into a pointer and returns an unintended result. This is most
+ // likely a typo for "sizeof(array) op x".
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
+ warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
+ BO->getLHS());
+ warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
+ BO->getRHS());
+ }
+ }
+
+ return false;
+}
+
+/// Check the constraints on operands to unary expression and type
+/// traits.
+///
+/// This will complete any types necessary, and validate the various constraints
+/// on those operands.
+///
+/// The UsualUnaryConversions() function is *not* called by this routine.
+/// C99 6.3.2.1p[2-4] all state:
+/// Except when it is the operand of the sizeof operator ...
+///
+/// C++ [expr.sizeof]p4
+/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
+/// standard conversions are not applied to the operand of sizeof.
+///
+/// This policy is followed for all of the unary trait expressions.
+bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
+ SourceLocation OpLoc,
+ SourceRange ExprRange,
+ UnaryExprOrTypeTrait ExprKind) {
+ if (ExprType->isDependentType())
+ return false;
+
+ // C++ [expr.sizeof]p2:
+ // When applied to a reference or a reference type, the result
+ // is the size of the referenced type.
+ // C++11 [expr.alignof]p3:
+ // When alignof is applied to a reference type, the result
+ // shall be the alignment of the referenced type.
+ if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
+ ExprType = Ref->getPointeeType();
+
+ // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
+ // When alignof or _Alignof is applied to an array type, the result
+ // is the alignment of the element type.
+ if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
+ ExprKind == UETT_OpenMPRequiredSimdAlign)
+ ExprType = Context.getBaseElementType(ExprType);
+
+ if (ExprKind == UETT_VecStep)
+ return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
+
+ // Explicitly list some types as extensions.
+ if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
+ ExprKind))
+ return false;
+
+ if (RequireCompleteSizedType(
+ OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
+ getTraitSpelling(ExprKind), ExprRange))
+ return true;
+
+ if (ExprType->isFunctionType()) {
+ Diag(OpLoc, diag::err_sizeof_alignof_function_type)
+ << getTraitSpelling(ExprKind) << ExprRange;
+ return true;
+ }
+
+ if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
+ ExprKind))
+ return true;
+
+ return false;
+}
+
+static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
+ // Cannot know anything else if the expression is dependent.
+ if (E->isTypeDependent())
+ return false;
+
+ if (E->getObjectKind() == OK_BitField) {
+ S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
+ << 1 << E->getSourceRange();
+ return true;
+ }
+
+ ValueDecl *D = nullptr;
+ Expr *Inner = E->IgnoreParens();
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
+ D = DRE->getDecl();
+ } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
+ D = ME->getMemberDecl();
+ }
+
+ // If it's a field, require the containing struct to have a
+ // complete definition so that we can compute the layout.
+ //
+ // This can happen in C++11 onwards, either by naming the member
+ // in a way that is not transformed into a member access expression
+ // (in an unevaluated operand, for instance), or by naming the member
+ // in a trailing-return-type.
+ //
+ // For the record, since __alignof__ on expressions is a GCC
+ // extension, GCC seems to permit this but always gives the
+ // nonsensical answer 0.
+ //
+ // We don't really need the layout here --- we could instead just
+ // directly check for all the appropriate alignment-lowing
+ // attributes --- but that would require duplicating a lot of
+ // logic that just isn't worth duplicating for such a marginal
+ // use-case.
+ if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
+ // Fast path this check, since we at least know the record has a
+ // definition if we can find a member of it.
+ if (!FD->getParent()->isCompleteDefinition()) {
+ S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
+ << E->getSourceRange();
+ return true;
+ }
+
+ // Otherwise, if it's a field, and the field doesn't have
+ // reference type, then it must have a complete type (or be a
+ // flexible array member, which we explicitly want to
+ // white-list anyway), which makes the following checks trivial.
+ if (!FD->getType()->isReferenceType())
+ return false;
+ }
+
+ return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
+}
+
+bool Sema::CheckVecStepExpr(Expr *E) {
+ E = E->IgnoreParens();
+
+ // Cannot know anything else if the expression is dependent.
+ if (E->isTypeDependent())
+ return false;
+
+ return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
+}
+
+static void captureVariablyModifiedType(ASTContext &Context, QualType T,
+ CapturingScopeInfo *CSI) {
+ assert(T->isVariablyModifiedType());
+ assert(CSI != nullptr);
+
+ // We're going to walk down into the type and look for VLA expressions.
+ do {
+ const Type *Ty = T.getTypePtr();
+ switch (Ty->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
+#include "clang/AST/TypeNodes.inc"
+ T = QualType();
+ break;
+ // These types are never variably-modified.
+ case Type::Builtin:
+ case Type::Complex:
+ case Type::Vector:
+ case Type::ExtVector:
+ case Type::ConstantMatrix:
+ case Type::Record:
+ case Type::Enum:
+ case Type::Elaborated:
+ case Type::TemplateSpecialization:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer:
+ case Type::ObjCTypeParam:
+ case Type::Pipe:
+ case Type::BitInt:
+ llvm_unreachable("type class is never variably-modified!");
+ case Type::Adjusted:
+ T = cast<AdjustedType>(Ty)->getOriginalType();
+ break;
+ case Type::Decayed:
+ T = cast<DecayedType>(Ty)->getPointeeType();
+ break;
+ case Type::Pointer:
+ T = cast<PointerType>(Ty)->getPointeeType();
+ break;
+ case Type::BlockPointer:
+ T = cast<BlockPointerType>(Ty)->getPointeeType();
+ break;
+ case Type::LValueReference:
+ case Type::RValueReference:
+ T = cast<ReferenceType>(Ty)->getPointeeType();
+ break;
+ case Type::MemberPointer:
+ T = cast<MemberPointerType>(Ty)->getPointeeType();
+ break;
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ // Losing element qualification here is fine.
+ T = cast<ArrayType>(Ty)->getElementType();
+ break;
+ case Type::VariableArray: {
+ // Losing element qualification here is fine.
+ const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
+
+ // Unknown size indication requires no size computation.
+ // Otherwise, evaluate and record it.
+ auto Size = VAT->getSizeExpr();
+ if (Size && !CSI->isVLATypeCaptured(VAT) &&
+ (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
+ CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
+
+ T = VAT->getElementType();
+ break;
+ }
+ case Type::FunctionProto:
+ case Type::FunctionNoProto:
+ T = cast<FunctionType>(Ty)->getReturnType();
+ break;
+ case Type::Paren:
+ case Type::TypeOf:
+ case Type::UnaryTransform:
+ case Type::Attributed:
+ case Type::SubstTemplateTypeParm:
+ case Type::MacroQualified:
+ // Keep walking after single level desugaring.
+ T = T.getSingleStepDesugaredType(Context);
+ break;
+ case Type::Typedef:
+ T = cast<TypedefType>(Ty)->desugar();
+ break;
+ case Type::Decltype:
+ T = cast<DecltypeType>(Ty)->desugar();
+ break;
+ case Type::Using:
+ T = cast<UsingType>(Ty)->desugar();
+ break;
+ case Type::Auto:
+ case Type::DeducedTemplateSpecialization:
+ T = cast<DeducedType>(Ty)->getDeducedType();
+ break;
+ case Type::TypeOfExpr:
+ T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
+ break;
+ case Type::Atomic:
+ T = cast<AtomicType>(Ty)->getValueType();
+ break;
+ }
+ } while (!T.isNull() && T->isVariablyModifiedType());
+}
+
+/// Build a sizeof or alignof expression given a type operand.
+ExprResult
+Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
+ SourceLocation OpLoc,
+ UnaryExprOrTypeTrait ExprKind,
+ SourceRange R) {
+ if (!TInfo)
+ return ExprError();
+
+ QualType T = TInfo->getType();
+
+ if (!T->isDependentType() &&
+ CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
+ return ExprError();
+
+ if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
+ if (auto *TT = T->getAs<TypedefType>()) {
+ for (auto I = FunctionScopes.rbegin(),
+ E = std::prev(FunctionScopes.rend());
+ I != E; ++I) {
+ auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
+ if (CSI == nullptr)
+ break;
+ DeclContext *DC = nullptr;
+ if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
+ DC = LSI->CallOperator;
+ else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
+ DC = CRSI->TheCapturedDecl;
+ else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
+ DC = BSI->TheDecl;
+ if (DC) {
+ if (DC->containsDecl(TT->getDecl()))
+ break;
+ captureVariablyModifiedType(Context, T, CSI);
+ }
+ }
+ }
+ }
+
+ // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
+ if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
+ TInfo->getType()->isVariablyModifiedType())
+ TInfo = TransformToPotentiallyEvaluated(TInfo);
+
+ return new (Context) UnaryExprOrTypeTraitExpr(
+ ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
+}
+
+/// Build a sizeof or alignof expression given an expression
+/// operand.
+ExprResult
+Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
+ UnaryExprOrTypeTrait ExprKind) {
+ ExprResult PE = CheckPlaceholderExpr(E);
+ if (PE.isInvalid())
+ return ExprError();
+
+ E = PE.get();
+
+ // Verify that the operand is valid.
+ bool isInvalid = false;
+ if (E->isTypeDependent()) {
+ // Delay type-checking for type-dependent expressions.
+ } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
+ isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
+ } else if (ExprKind == UETT_VecStep) {
+ isInvalid = CheckVecStepExpr(E);
+ } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
+ Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
+ isInvalid = true;
+ } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
+ Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
+ isInvalid = true;
+ } else {
+ isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
+ }
+
+ if (isInvalid)
+ return ExprError();
+
+ if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
+ PE = TransformToPotentiallyEvaluated(E);
+ if (PE.isInvalid()) return ExprError();
+ E = PE.get();
+ }
+
+ // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
+ return new (Context) UnaryExprOrTypeTraitExpr(
+ ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
+}
+
+/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
+/// expr and the same for @c alignof and @c __alignof
+/// Note that the ArgRange is invalid if isType is false.
+ExprResult
+Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
+ UnaryExprOrTypeTrait ExprKind, bool IsType,
+ void *TyOrEx, SourceRange ArgRange) {
+ // If error parsing type, ignore.
+ if (!TyOrEx) return ExprError();
+
+ if (IsType) {
+ TypeSourceInfo *TInfo;
+ (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
+ return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
+ }
+
+ Expr *ArgEx = (Expr *)TyOrEx;
+ ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
+ return Result;
+}
+
+static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
+ bool IsReal) {
+ if (V.get()->isTypeDependent())
+ return S.Context.DependentTy;
+
+ // _Real and _Imag are only l-values for normal l-values.
+ if (V.get()->getObjectKind() != OK_Ordinary) {
+ V = S.DefaultLvalueConversion(V.get());
+ if (V.isInvalid())
+ return QualType();
+ }
+
+ // These operators return the element type of a complex type.
+ if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
+ return CT->getElementType();
+
+ // Otherwise they pass through real integer and floating point types here.
+ if (V.get()->getType()->isArithmeticType())
+ return V.get()->getType();
+
+ // Test for placeholders.
+ ExprResult PR = S.CheckPlaceholderExpr(V.get());
+ if (PR.isInvalid()) return QualType();
+ if (PR.get() != V.get()) {
+ V = PR;
+ return CheckRealImagOperand(S, V, Loc, IsReal);
+ }
+
+ // Reject anything else.
+ S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
+ << (IsReal ? "__real" : "__imag");
+ return QualType();
+}
+
+
+
+ExprResult
+Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
+ tok::TokenKind Kind, Expr *Input) {
+ UnaryOperatorKind Opc;
+ switch (Kind) {
+ default: llvm_unreachable("Unknown unary op!");
+ case tok::plusplus: Opc = UO_PostInc; break;
+ case tok::minusminus: Opc = UO_PostDec; break;
+ }
+
+ // Since this might is a postfix expression, get rid of ParenListExprs.
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
+ if (Result.isInvalid()) return ExprError();
+ Input = Result.get();
+
+ return BuildUnaryOp(S, OpLoc, Opc, Input);
+}
+
+/// Diagnose if arithmetic on the given ObjC pointer is illegal.
+///
+/// \return true on error
+static bool checkArithmeticOnObjCPointer(Sema &S,
+ SourceLocation opLoc,
+ Expr *op) {
+ assert(op->getType()->isObjCObjectPointerType());
+ if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
+ !S.LangOpts.ObjCSubscriptingLegacyRuntime)
+ return false;
+
+ S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
+ << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
+ << op->getSourceRange();
+ return true;
+}
+
+static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
+ auto *BaseNoParens = Base->IgnoreParens();
+ if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
+ return MSProp->getPropertyDecl()->getType()->isArrayType();
+ return isa<MSPropertySubscriptExpr>(BaseNoParens);
+}
+
+// Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
+// Typically this is DependentTy, but can sometimes be more precise.
+//
+// There are cases when we could determine a non-dependent type:
+// - LHS and RHS may have non-dependent types despite being type-dependent
+// (e.g. unbounded array static members of the current instantiation)
+// - one may be a dependent-sized array with known element type
+// - one may be a dependent-typed valid index (enum in current instantiation)
+//
+// We *always* return a dependent type, in such cases it is DependentTy.
+// This avoids creating type-dependent expressions with non-dependent types.
+// FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
+static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
+ const ASTContext &Ctx) {
+ assert(LHS->isTypeDependent() || RHS->isTypeDependent());
+ QualType LTy = LHS->getType(), RTy = RHS->getType();
+ QualType Result = Ctx.DependentTy;
+ if (RTy->isIntegralOrUnscopedEnumerationType()) {
+ if (const PointerType *PT = LTy->getAs<PointerType>())
+ Result = PT->getPointeeType();
+ else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
+ Result = AT->getElementType();
+ } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
+ if (const PointerType *PT = RTy->getAs<PointerType>())
+ Result = PT->getPointeeType();
+ else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
+ Result = AT->getElementType();
+ }
+ // Ensure we return a dependent type.
+ return Result->isDependentType() ? Result : Ctx.DependentTy;
+}
+
+ExprResult
+Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
+ Expr *idx, SourceLocation rbLoc) {
+ if (base && !base->getType().isNull() &&
+ base->hasPlaceholderType(BuiltinType::OMPArraySection))
+ return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
+ SourceLocation(), /*Length*/ nullptr,
+ /*Stride=*/nullptr, rbLoc);
+
+ // Since this might be a postfix expression, get rid of ParenListExprs.
+ if (isa<ParenListExpr>(base)) {
+ ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
+ if (result.isInvalid()) return ExprError();
+ base = result.get();
+ }
+
+ // Check if base and idx form a MatrixSubscriptExpr.
+ //
+ // Helper to check for comma expressions, which are not allowed as indices for
+ // matrix subscript expressions.
+ auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
+ if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
+ Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
+ << SourceRange(base->getBeginLoc(), rbLoc);
+ return true;
+ }
+ return false;
+ };
+ // The matrix subscript operator ([][])is considered a single operator.
+ // Separating the index expressions by parenthesis is not allowed.
+ if (base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
+ !isa<MatrixSubscriptExpr>(base)) {
+ Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
+ << SourceRange(base->getBeginLoc(), rbLoc);
+ return ExprError();
+ }
+ // If the base is a MatrixSubscriptExpr, try to create a new
+ // MatrixSubscriptExpr.
+ auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
+ if (matSubscriptE) {
+ if (CheckAndReportCommaError(idx))
+ return ExprError();
+
+ assert(matSubscriptE->isIncomplete() &&
+ "base has to be an incomplete matrix subscript");
+ return CreateBuiltinMatrixSubscriptExpr(
+ matSubscriptE->getBase(), matSubscriptE->getRowIdx(), idx, rbLoc);
+ }
+
+ // Handle any non-overload placeholder types in the base and index
+ // expressions. We can't handle overloads here because the other
+ // operand might be an overloadable type, in which case the overload
+ // resolution for the operator overload should get the first crack
+ // at the overload.
+ bool IsMSPropertySubscript = false;
+ if (base->getType()->isNonOverloadPlaceholderType()) {
+ IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
+ if (!IsMSPropertySubscript) {
+ ExprResult result = CheckPlaceholderExpr(base);
+ if (result.isInvalid())
+ return ExprError();
+ base = result.get();
+ }
+ }
+
+ // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
+ if (base->getType()->isMatrixType()) {
+ if (CheckAndReportCommaError(idx))
+ return ExprError();
+
+ return CreateBuiltinMatrixSubscriptExpr(base, idx, nullptr, rbLoc);
+ }
+
+ // A comma-expression as the index is deprecated in C++2a onwards.
+ if (getLangOpts().CPlusPlus20 &&
+ ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
+ (isa<CXXOperatorCallExpr>(idx) &&
+ cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) {
+ Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
+ << SourceRange(base->getBeginLoc(), rbLoc);
+ }
+
+ if (idx->getType()->isNonOverloadPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(idx);
+ if (result.isInvalid()) return ExprError();
+ idx = result.get();
+ }
+
+ // Build an unanalyzed expression if either operand is type-dependent.
+ if (getLangOpts().CPlusPlus &&
+ (base->isTypeDependent() || idx->isTypeDependent())) {
+ return new (Context) ArraySubscriptExpr(
+ base, idx, getDependentArraySubscriptType(base, idx, getASTContext()),
+ VK_LValue, OK_Ordinary, rbLoc);
+ }
+
+ // MSDN, property (C++)
+ // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
+ // This attribute can also be used in the declaration of an empty array in a
+ // class or structure definition. For example:
+ // __declspec(property(get=GetX, put=PutX)) int x[];
+ // The above statement indicates that x[] can be used with one or more array
+ // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
+ // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
+ if (IsMSPropertySubscript) {
+ // Build MS property subscript expression if base is MS property reference
+ // or MS property subscript.
+ return new (Context) MSPropertySubscriptExpr(
+ base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
+ }
+
+ // Use C++ overloaded-operator rules if either operand has record
+ // type. The spec says to do this if either type is *overloadable*,
+ // but enum types can't declare subscript operators or conversion
+ // operators, so there's nothing interesting for overload resolution
+ // to do if there aren't any record types involved.
+ //
+ // ObjC pointers have their own subscripting logic that is not tied
+ // to overload resolution and so should not take this path.
+ if (getLangOpts().CPlusPlus &&
+ (base->getType()->isRecordType() ||
+ (!base->getType()->isObjCObjectPointerType() &&
+ idx->getType()->isRecordType()))) {
+ return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
+ }
+
+ ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
+
+ if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
+ CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
+
+ return Res;
+}
+
+ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
+ InitializationKind Kind =
+ InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
+ InitializationSequence InitSeq(*this, Entity, Kind, E);
+ return InitSeq.Perform(*this, Entity, Kind, E);
+}
+
+ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
+ Expr *ColumnIdx,
+ SourceLocation RBLoc) {
+ ExprResult BaseR = CheckPlaceholderExpr(Base);
+ if (BaseR.isInvalid())
+ return BaseR;
+ Base = BaseR.get();
+
+ ExprResult RowR = CheckPlaceholderExpr(RowIdx);
+ if (RowR.isInvalid())
+ return RowR;
+ RowIdx = RowR.get();
+
+ if (!ColumnIdx)
+ return new (Context) MatrixSubscriptExpr(
+ Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
+
+ // Build an unanalyzed expression if any of the operands is type-dependent.
+ if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
+ ColumnIdx->isTypeDependent())
+ return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
+ Context.DependentTy, RBLoc);
+
+ ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
+ if (ColumnR.isInvalid())
+ return ColumnR;
+ ColumnIdx = ColumnR.get();
+
+ // Check that IndexExpr is an integer expression. If it is a constant
+ // expression, check that it is less than Dim (= the number of elements in the
+ // corresponding dimension).
+ auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
+ bool IsColumnIdx) -> Expr * {
+ if (!IndexExpr->getType()->isIntegerType() &&
+ !IndexExpr->isTypeDependent()) {
+ Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
+ << IsColumnIdx;
+ return nullptr;
+ }
+
+ if (Optional<llvm::APSInt> Idx =
+ IndexExpr->getIntegerConstantExpr(Context)) {
+ if ((*Idx < 0 || *Idx >= Dim)) {
+ Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
+ << IsColumnIdx << Dim;
+ return nullptr;
+ }
+ }
+
+ ExprResult ConvExpr =
+ tryConvertExprToType(IndexExpr, Context.getSizeType());
+ assert(!ConvExpr.isInvalid() &&
+ "should be able to convert any integer type to size type");
+ return ConvExpr.get();
+ };
+
+ auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
+ RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
+ ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
+ if (!RowIdx || !ColumnIdx)
+ return ExprError();
+
+ return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
+ MTy->getElementType(), RBLoc);
+}
+
+void Sema::CheckAddressOfNoDeref(const Expr *E) {
+ ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
+ const Expr *StrippedExpr = E->IgnoreParenImpCasts();
+
+ // For expressions like `&(*s).b`, the base is recorded and what should be
+ // checked.
+ const MemberExpr *Member = nullptr;
+ while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
+ StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
+
+ LastRecord.PossibleDerefs.erase(StrippedExpr);
+}
+
+void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
+ if (isUnevaluatedContext())
+ return;
+
+ QualType ResultTy = E->getType();
+ ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
+
+ // Bail if the element is an array since it is not memory access.
+ if (isa<ArrayType>(ResultTy))
+ return;
+
+ if (ResultTy->hasAttr(attr::NoDeref)) {
+ LastRecord.PossibleDerefs.insert(E);
+ return;
+ }
+
+ // Check if the base type is a pointer to a member access of a struct
+ // marked with noderef.
+ const Expr *Base = E->getBase();
+ QualType BaseTy = Base->getType();
+ if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
+ // Not a pointer access
+ return;
+
+ const MemberExpr *Member = nullptr;
+ while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
+ Member->isArrow())
+ Base = Member->getBase();
+
+ if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
+ if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
+ LastRecord.PossibleDerefs.insert(E);
+ }
+}
+
+ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
+ Expr *LowerBound,
+ SourceLocation ColonLocFirst,
+ SourceLocation ColonLocSecond,
+ Expr *Length, Expr *Stride,
+ SourceLocation RBLoc) {
+ if (Base->hasPlaceholderType() &&
+ !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
+ ExprResult Result = CheckPlaceholderExpr(Base);
+ if (Result.isInvalid())
+ return ExprError();
+ Base = Result.get();
+ }
+ if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
+ ExprResult Result = CheckPlaceholderExpr(LowerBound);
+ if (Result.isInvalid())
+ return ExprError();
+ Result = DefaultLvalueConversion(Result.get());
+ if (Result.isInvalid())
+ return ExprError();
+ LowerBound = Result.get();
+ }
+ if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
+ ExprResult Result = CheckPlaceholderExpr(Length);
+ if (Result.isInvalid())
+ return ExprError();
+ Result = DefaultLvalueConversion(Result.get());
+ if (Result.isInvalid())
+ return ExprError();
+ Length = Result.get();
+ }
+ if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
+ ExprResult Result = CheckPlaceholderExpr(Stride);
+ if (Result.isInvalid())
+ return ExprError();
+ Result = DefaultLvalueConversion(Result.get());
+ if (Result.isInvalid())
+ return ExprError();
+ Stride = Result.get();
+ }
+
+ // Build an unanalyzed expression if either operand is type-dependent.
+ if (Base->isTypeDependent() ||
+ (LowerBound &&
+ (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
+ (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
+ (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
+ return new (Context) OMPArraySectionExpr(
+ Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
+ OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
+ }
+
+ // Perform default conversions.
+ QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
+ QualType ResultTy;
+ if (OriginalTy->isAnyPointerType()) {
+ ResultTy = OriginalTy->getPointeeType();
+ } else if (OriginalTy->isArrayType()) {
+ ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
+ } else {
+ return ExprError(
+ Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
+ << Base->getSourceRange());
+ }
+ // C99 6.5.2.1p1
+ if (LowerBound) {
+ auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
+ LowerBound);
+ if (Res.isInvalid())
+ return ExprError(Diag(LowerBound->getExprLoc(),
+ diag::err_omp_typecheck_section_not_integer)
+ << 0 << LowerBound->getSourceRange());
+ LowerBound = Res.get();
+
+ if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
+ LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
+ Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
+ << 0 << LowerBound->getSourceRange();
+ }
+ if (Length) {
+ auto Res =
+ PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
+ if (Res.isInvalid())
+ return ExprError(Diag(Length->getExprLoc(),
+ diag::err_omp_typecheck_section_not_integer)
+ << 1 << Length->getSourceRange());
+ Length = Res.get();
+
+ if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
+ Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
+ Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
+ << 1 << Length->getSourceRange();
+ }
+ if (Stride) {
+ ExprResult Res =
+ PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
+ if (Res.isInvalid())
+ return ExprError(Diag(Stride->getExprLoc(),
+ diag::err_omp_typecheck_section_not_integer)
+ << 1 << Stride->getSourceRange());
+ Stride = Res.get();
+
+ if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
+ Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
+ Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
+ << 1 << Stride->getSourceRange();
+ }
+
+ // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
+ // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
+ // type. Note that functions are not objects, and that (in C99 parlance)
+ // incomplete types are not object types.
+ if (ResultTy->isFunctionType()) {
+ Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
+ << ResultTy << Base->getSourceRange();
+ return ExprError();
+ }
+
+ if (RequireCompleteType(Base->getExprLoc(), ResultTy,
+ diag::err_omp_section_incomplete_type, Base))
+ return ExprError();
+
+ if (LowerBound && !OriginalTy->isAnyPointerType()) {
+ Expr::EvalResult Result;
+ if (LowerBound->EvaluateAsInt(Result, Context)) {
+ // OpenMP 5.0, [2.1.5 Array Sections]
+ // The array section must be a subset of the original array.
+ llvm::APSInt LowerBoundValue = Result.Val.getInt();
+ if (LowerBoundValue.isNegative()) {
+ Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
+ << LowerBound->getSourceRange();
+ return ExprError();
+ }
+ }
+ }
+
+ if (Length) {
+ Expr::EvalResult Result;
+ if (Length->EvaluateAsInt(Result, Context)) {
+ // OpenMP 5.0, [2.1.5 Array Sections]
+ // The length must evaluate to non-negative integers.
+ llvm::APSInt LengthValue = Result.Val.getInt();
+ if (LengthValue.isNegative()) {
+ Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
+ << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
+ << Length->getSourceRange();
+ return ExprError();
+ }
+ }
+ } else if (ColonLocFirst.isValid() &&
+ (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
+ !OriginalTy->isVariableArrayType()))) {
+ // OpenMP 5.0, [2.1.5 Array Sections]
+ // When the size of the array dimension is not known, the length must be
+ // specified explicitly.
+ Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
+ << (!OriginalTy.isNull() && OriginalTy->isArrayType());
+ return ExprError();
+ }
+
+ if (Stride) {
+ Expr::EvalResult Result;
+ if (Stride->EvaluateAsInt(Result, Context)) {
+ // OpenMP 5.0, [2.1.5 Array Sections]
+ // The stride must evaluate to a positive integer.
+ llvm::APSInt StrideValue = Result.Val.getInt();
+ if (!StrideValue.isStrictlyPositive()) {
+ Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
+ << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
+ << Stride->getSourceRange();
+ return ExprError();
+ }
+ }
+ }
+
+ if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
+ ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
+ if (Result.isInvalid())
+ return ExprError();
+ Base = Result.get();
+ }
+ return new (Context) OMPArraySectionExpr(
+ Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
+ OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
+}
+
+ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
+ SourceLocation RParenLoc,
+ ArrayRef<Expr *> Dims,
+ ArrayRef<SourceRange> Brackets) {
+ if (Base->hasPlaceholderType()) {
+ ExprResult Result = CheckPlaceholderExpr(Base);
+ if (Result.isInvalid())
+ return ExprError();
+ Result = DefaultLvalueConversion(Result.get());
+ if (Result.isInvalid())
+ return ExprError();
+ Base = Result.get();
+ }
+ QualType BaseTy = Base->getType();
+ // Delay analysis of the types/expressions if instantiation/specialization is
+ // required.
+ if (!BaseTy->isPointerType() && Base->isTypeDependent())
+ return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
+ LParenLoc, RParenLoc, Dims, Brackets);
+ if (!BaseTy->isPointerType() ||
+ (!Base->isTypeDependent() &&
+ BaseTy->getPointeeType()->isIncompleteType()))
+ return ExprError(Diag(Base->getExprLoc(),
+ diag::err_omp_non_pointer_type_array_shaping_base)
+ << Base->getSourceRange());
+
+ SmallVector<Expr *, 4> NewDims;
+ bool ErrorFound = false;
+ for (Expr *Dim : Dims) {
+ if (Dim->hasPlaceholderType()) {
+ ExprResult Result = CheckPlaceholderExpr(Dim);
+ if (Result.isInvalid()) {
+ ErrorFound = true;
+ continue;
+ }
+ Result = DefaultLvalueConversion(Result.get());
+ if (Result.isInvalid()) {
+ ErrorFound = true;
+ continue;
+ }
+ Dim = Result.get();
+ }
+ if (!Dim->isTypeDependent()) {
+ ExprResult Result =
+ PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
+ if (Result.isInvalid()) {
+ ErrorFound = true;
+ Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
+ << Dim->getSourceRange();
+ continue;
+ }
+ Dim = Result.get();
+ Expr::EvalResult EvResult;
+ if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
+ // OpenMP 5.0, [2.1.4 Array Shaping]
+ // Each si is an integral type expression that must evaluate to a
+ // positive integer.
+ llvm::APSInt Value = EvResult.Val.getInt();
+ if (!Value.isStrictlyPositive()) {
+ Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
+ << toString(Value, /*Radix=*/10, /*Signed=*/true)
+ << Dim->getSourceRange();
+ ErrorFound = true;
+ continue;
+ }
+ }
+ }
+ NewDims.push_back(Dim);
+ }
+ if (ErrorFound)
+ return ExprError();
+ return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
+ LParenLoc, RParenLoc, NewDims, Brackets);
+}
+
+ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
+ SourceLocation LLoc, SourceLocation RLoc,
+ ArrayRef<OMPIteratorData> Data) {
+ SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
+ bool IsCorrect = true;
+ for (const OMPIteratorData &D : Data) {
+ TypeSourceInfo *TInfo = nullptr;
+ SourceLocation StartLoc;
+ QualType DeclTy;
+ if (!D.Type.getAsOpaquePtr()) {
+ // OpenMP 5.0, 2.1.6 Iterators
+ // In an iterator-specifier, if the iterator-type is not specified then
+ // the type of that iterator is of int type.
+ DeclTy = Context.IntTy;
+ StartLoc = D.DeclIdentLoc;
+ } else {
+ DeclTy = GetTypeFromParser(D.Type, &TInfo);
+ StartLoc = TInfo->getTypeLoc().getBeginLoc();
+ }
+
+ bool IsDeclTyDependent = DeclTy->isDependentType() ||
+ DeclTy->containsUnexpandedParameterPack() ||
+ DeclTy->isInstantiationDependentType();
+ if (!IsDeclTyDependent) {
+ if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
+ // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
+ // The iterator-type must be an integral or pointer type.
+ Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
+ << DeclTy;
+ IsCorrect = false;
+ continue;
+ }
+ if (DeclTy.isConstant(Context)) {
+ // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
+ // The iterator-type must not be const qualified.
+ Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
+ << DeclTy;
+ IsCorrect = false;
+ continue;
+ }
+ }
+
+ // Iterator declaration.
+ assert(D.DeclIdent && "Identifier expected.");
+ // Always try to create iterator declarator to avoid extra error messages
+ // about unknown declarations use.
+ auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
+ D.DeclIdent, DeclTy, TInfo, SC_None);
+ VD->setImplicit();
+ if (S) {
+ // Check for conflicting previous declaration.
+ DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
+ LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
+ ForVisibleRedeclaration);
+ Previous.suppressDiagnostics();
+ LookupName(Previous, S);
+
+ FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
+ /*AllowInlineNamespace=*/false);
+ if (!Previous.empty()) {
+ NamedDecl *Old = Previous.getRepresentativeDecl();
+ Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
+ Diag(Old->getLocation(), diag::note_previous_definition);
+ } else {
+ PushOnScopeChains(VD, S);
+ }
+ } else {
+ CurContext->addDecl(VD);
+ }
+ Expr *Begin = D.Range.Begin;
+ if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
+ ExprResult BeginRes =
+ PerformImplicitConversion(Begin, DeclTy, AA_Converting);
+ Begin = BeginRes.get();
+ }
+ Expr *End = D.Range.End;
+ if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
+ ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
+ End = EndRes.get();
+ }
+ Expr *Step = D.Range.Step;
+ if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
+ if (!Step->getType()->isIntegralType(Context)) {
+ Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
+ << Step << Step->getSourceRange();
+ IsCorrect = false;
+ continue;
+ }
+ Optional<llvm::APSInt> Result = Step->getIntegerConstantExpr(Context);
+ // OpenMP 5.0, 2.1.6 Iterators, Restrictions
+ // If the step expression of a range-specification equals zero, the
+ // behavior is unspecified.
+ if (Result && Result->isZero()) {
+ Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
+ << Step << Step->getSourceRange();
+ IsCorrect = false;
+ continue;
+ }
+ }
+ if (!Begin || !End || !IsCorrect) {
+ IsCorrect = false;
+ continue;
+ }
+ OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
+ IDElem.IteratorDecl = VD;
+ IDElem.AssignmentLoc = D.AssignLoc;
+ IDElem.Range.Begin = Begin;
+ IDElem.Range.End = End;
+ IDElem.Range.Step = Step;
+ IDElem.ColonLoc = D.ColonLoc;
+ IDElem.SecondColonLoc = D.SecColonLoc;
+ }
+ if (!IsCorrect) {
+ // Invalidate all created iterator declarations if error is found.
+ for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
+ if (Decl *ID = D.IteratorDecl)
+ ID->setInvalidDecl();
+ }
+ return ExprError();
+ }
+ SmallVector<OMPIteratorHelperData, 4> Helpers;
+ if (!CurContext->isDependentContext()) {
+ // Build number of ityeration for each iteration range.
+ // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
+ // ((Begini-Stepi-1-Endi) / -Stepi);
+ for (OMPIteratorExpr::IteratorDefinition &D : ID) {
+ // (Endi - Begini)
+ ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
+ D.Range.Begin);
+ if(!Res.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ ExprResult St, St1;
+ if (D.Range.Step) {
+ St = D.Range.Step;
+ // (Endi - Begini) + Stepi
+ Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
+ if (!Res.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ // (Endi - Begini) + Stepi - 1
+ Res =
+ CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
+ ActOnIntegerConstant(D.AssignmentLoc, 1).get());
+ if (!Res.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ // ((Endi - Begini) + Stepi - 1) / Stepi
+ Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
+ if (!Res.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
+ // (Begini - Endi)
+ ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
+ D.Range.Begin, D.Range.End);
+ if (!Res1.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ // (Begini - Endi) - Stepi
+ Res1 =
+ CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
+ if (!Res1.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ // (Begini - Endi) - Stepi - 1
+ Res1 =
+ CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
+ ActOnIntegerConstant(D.AssignmentLoc, 1).get());
+ if (!Res1.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ // ((Begini - Endi) - Stepi - 1) / (-Stepi)
+ Res1 =
+ CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
+ if (!Res1.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ // Stepi > 0.
+ ExprResult CmpRes =
+ CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
+ ActOnIntegerConstant(D.AssignmentLoc, 0).get());
+ if (!CmpRes.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
+ Res.get(), Res1.get());
+ if (!Res.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ }
+ Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
+ if (!Res.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+
+ // Build counter update.
+ // Build counter.
+ auto *CounterVD =
+ VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
+ D.IteratorDecl->getBeginLoc(), nullptr,
+ Res.get()->getType(), nullptr, SC_None);
+ CounterVD->setImplicit();
+ ExprResult RefRes =
+ BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
+ D.IteratorDecl->getBeginLoc());
+ // Build counter update.
+ // I = Begini + counter * Stepi;
+ ExprResult UpdateRes;
+ if (D.Range.Step) {
+ UpdateRes = CreateBuiltinBinOp(
+ D.AssignmentLoc, BO_Mul,
+ DefaultLvalueConversion(RefRes.get()).get(), St.get());
+ } else {
+ UpdateRes = DefaultLvalueConversion(RefRes.get());
+ }
+ if (!UpdateRes.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
+ UpdateRes.get());
+ if (!UpdateRes.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ ExprResult VDRes =
+ BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
+ cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
+ D.IteratorDecl->getBeginLoc());
+ UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
+ UpdateRes.get());
+ if (!UpdateRes.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ UpdateRes =
+ ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
+ if (!UpdateRes.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ ExprResult CounterUpdateRes =
+ CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
+ if (!CounterUpdateRes.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ CounterUpdateRes =
+ ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
+ if (!CounterUpdateRes.isUsable()) {
+ IsCorrect = false;
+ continue;
+ }
+ OMPIteratorHelperData &HD = Helpers.emplace_back();
+ HD.CounterVD = CounterVD;
+ HD.Upper = Res.get();
+ HD.Update = UpdateRes.get();
+ HD.CounterUpdate = CounterUpdateRes.get();
+ }
+ } else {
+ Helpers.assign(ID.size(), {});
+ }
+ if (!IsCorrect) {
+ // Invalidate all created iterator declarations if error is found.
+ for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
+ if (Decl *ID = D.IteratorDecl)
+ ID->setInvalidDecl();
+ }
+ return ExprError();
+ }
+ return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
+ LLoc, RLoc, ID, Helpers);
+}
+
+ExprResult
+Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
+ Expr *Idx, SourceLocation RLoc) {
+ Expr *LHSExp = Base;
+ Expr *RHSExp = Idx;
+
+ ExprValueKind VK = VK_LValue;
+ ExprObjectKind OK = OK_Ordinary;
+
+ // Per C++ core issue 1213, the result is an xvalue if either operand is
+ // a non-lvalue array, and an lvalue otherwise.
+ if (getLangOpts().CPlusPlus11) {
+ for (auto *Op : {LHSExp, RHSExp}) {
+ Op = Op->IgnoreImplicit();
+ if (Op->getType()->isArrayType() && !Op->isLValue())
+ VK = VK_XValue;
+ }
+ }
+
+ // Perform default conversions.
+ if (!LHSExp->getType()->getAs<VectorType>()) {
+ ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
+ if (Result.isInvalid())
+ return ExprError();
+ LHSExp = Result.get();
+ }
+ ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
+ if (Result.isInvalid())
+ return ExprError();
+ RHSExp = Result.get();
+
+ QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
+
+ // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
+ // to the expression *((e1)+(e2)). This means the array "Base" may actually be
+ // in the subscript position. As a result, we need to derive the array base
+ // and index from the expression types.
+ Expr *BaseExpr, *IndexExpr;
+ QualType ResultType;
+ if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType =
+ getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
+ } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const ObjCObjectPointerType *PTy =
+ LHSTy->getAs<ObjCObjectPointerType>()) {
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+
+ // Use custom logic if this should be the pseudo-object subscript
+ // expression.
+ if (!LangOpts.isSubscriptPointerArithmetic())
+ return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
+ nullptr);
+
+ ResultType = PTy->getPointeeType();
+ } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
+ // Handle the uncommon case of "123[Ptr]".
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = PTy->getPointeeType();
+ } else if (const ObjCObjectPointerType *PTy =
+ RHSTy->getAs<ObjCObjectPointerType>()) {
+ // Handle the uncommon case of "123[Ptr]".
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = PTy->getPointeeType();
+ if (!LangOpts.isSubscriptPointerArithmetic()) {
+ Diag(LLoc, diag::err_subscript_nonfragile_interface)
+ << ResultType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+ } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
+ BaseExpr = LHSExp; // vectors: V[123]
+ IndexExpr = RHSExp;
+ // We apply C++ DR1213 to vector subscripting too.
+ if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
+ ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
+ if (Materialized.isInvalid())
+ return ExprError();
+ LHSExp = Materialized.get();
+ }
+ VK = LHSExp->getValueKind();
+ if (VK != VK_PRValue)
+ OK = OK_VectorComponent;
+
+ ResultType = VTy->getElementType();
+ QualType BaseType = BaseExpr->getType();
+ Qualifiers BaseQuals = BaseType.getQualifiers();
+ Qualifiers MemberQuals = ResultType.getQualifiers();
+ Qualifiers Combined = BaseQuals + MemberQuals;
+ if (Combined != MemberQuals)
+ ResultType = Context.getQualifiedType(ResultType, Combined);
+ } else if (LHSTy->isArrayType()) {
+ // If we see an array that wasn't promoted by
+ // DefaultFunctionArrayLvalueConversion, it must be an array that
+ // wasn't promoted because of the C90 rule that doesn't
+ // allow promoting non-lvalue arrays. Warn, then
+ // force the promotion here.
+ Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
+ << LHSExp->getSourceRange();
+ LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
+ CK_ArrayToPointerDecay).get();
+ LHSTy = LHSExp->getType();
+
+ BaseExpr = LHSExp;
+ IndexExpr = RHSExp;
+ ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
+ } else if (RHSTy->isArrayType()) {
+ // Same as previous, except for 123[f().a] case
+ Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
+ << RHSExp->getSourceRange();
+ RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
+ CK_ArrayToPointerDecay).get();
+ RHSTy = RHSExp->getType();
+
+ BaseExpr = RHSExp;
+ IndexExpr = LHSExp;
+ ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
+ } else {
+ return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
+ << LHSExp->getSourceRange() << RHSExp->getSourceRange());
+ }
+ // C99 6.5.2.1p1
+ if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
+ return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
+ << IndexExpr->getSourceRange());
+
+ if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
+ IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
+ && !IndexExpr->isTypeDependent())
+ Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
+
+ // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
+ // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
+ // type. Note that Functions are not objects, and that (in C99 parlance)
+ // incomplete types are not object types.
+ if (ResultType->isFunctionType()) {
+ Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
+ << ResultType << BaseExpr->getSourceRange();
+ return ExprError();
+ }
+
+ if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
+ // GNU extension: subscripting on pointer to void
+ Diag(LLoc, diag::ext_gnu_subscript_void_type)
+ << BaseExpr->getSourceRange();
+
+ // C forbids expressions of unqualified void type from being l-values.
+ // See IsCForbiddenLValueType.
+ if (!ResultType.hasQualifiers())
+ VK = VK_PRValue;
+ } else if (!ResultType->isDependentType() &&
+ RequireCompleteSizedType(
+ LLoc, ResultType,
+ diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
+ return ExprError();
+
+ assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
+ !ResultType.isCForbiddenLValueType());
+
+ if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
+ FunctionScopes.size() > 1) {
+ if (auto *TT =
+ LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
+ for (auto I = FunctionScopes.rbegin(),
+ E = std::prev(FunctionScopes.rend());
+ I != E; ++I) {
+ auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
+ if (CSI == nullptr)
+ break;
+ DeclContext *DC = nullptr;
+ if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
+ DC = LSI->CallOperator;
+ else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
+ DC = CRSI->TheCapturedDecl;
+ else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
+ DC = BSI->TheDecl;
+ if (DC) {
+ if (DC->containsDecl(TT->getDecl()))
+ break;
+ captureVariablyModifiedType(
+ Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
+ }
+ }
+ }
+ }
+
+ return new (Context)
+ ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
+}
+
+bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
+ ParmVarDecl *Param) {
+ if (Param->hasUnparsedDefaultArg()) {
+ // If we've already cleared out the location for the default argument,
+ // that means we're parsing it right now.
+ if (!UnparsedDefaultArgLocs.count(Param)) {
+ Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
+ Diag(CallLoc, diag::note_recursive_default_argument_used_here);
+ Param->setInvalidDecl();
+ return true;
+ }
+
+ Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
+ << FD << cast<CXXRecordDecl>(FD->getDeclContext());
+ Diag(UnparsedDefaultArgLocs[Param],
+ diag::note_default_argument_declared_here);
+ return true;
+ }
+
+ if (Param->hasUninstantiatedDefaultArg() &&
+ InstantiateDefaultArgument(CallLoc, FD, Param))
+ return true;
+
+ assert(Param->hasInit() && "default argument but no initializer?");
+
+ // If the default expression creates temporaries, we need to
+ // push them to the current stack of expression temporaries so they'll
+ // be properly destroyed.
+ // FIXME: We should really be rebuilding the default argument with new
+ // bound temporaries; see the comment in PR5810.
+ // We don't need to do that with block decls, though, because
+ // blocks in default argument expression can never capture anything.
+ if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
+ // Set the "needs cleanups" bit regardless of whether there are
+ // any explicit objects.
+ Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
+
+ // Append all the objects to the cleanup list. Right now, this
+ // should always be a no-op, because blocks in default argument
+ // expressions should never be able to capture anything.
+ assert(!Init->getNumObjects() &&
+ "default argument expression has capturing blocks?");
+ }
+
+ // We already type-checked the argument, so we know it works.
+ // Just mark all of the declarations in this potentially-evaluated expression
+ // as being "referenced".
+ EnterExpressionEvaluationContext EvalContext(
+ *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
+ MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
+ /*SkipLocalVariables=*/true);
+ return false;
+}
+
+ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
+ FunctionDecl *FD, ParmVarDecl *Param) {
+ assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
+ if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
+ return ExprError();
+ return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
+}
+
+Sema::VariadicCallType
+Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
+ Expr *Fn) {
+ if (Proto && Proto->isVariadic()) {
+ if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
+ return VariadicConstructor;
+ else if (Fn && Fn->getType()->isBlockPointerType())
+ return VariadicBlock;
+ else if (FDecl) {
+ if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
+ if (Method->isInstance())
+ return VariadicMethod;
+ } else if (Fn && Fn->getType() == Context.BoundMemberTy)
+ return VariadicMethod;
+ return VariadicFunction;
+ }
+ return VariadicDoesNotApply;
+}
+
+namespace {
+class FunctionCallCCC final : public FunctionCallFilterCCC {
+public:
+ FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
+ unsigned NumArgs, MemberExpr *ME)
+ : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
+ FunctionName(FuncName) {}
+
+ bool ValidateCandidate(const TypoCorrection &candidate) override {
+ if (!candidate.getCorrectionSpecifier() ||
+ candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
+ return false;
+ }
+
+ return FunctionCallFilterCCC::ValidateCandidate(candidate);
+ }
+
+ std::unique_ptr<CorrectionCandidateCallback> clone() override {
+ return std::make_unique<FunctionCallCCC>(*this);
+ }
+
+private:
+ const IdentifierInfo *const FunctionName;
+};
+}
+
+static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
+ FunctionDecl *FDecl,
+ ArrayRef<Expr *> Args) {
+ MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
+ DeclarationName FuncName = FDecl->getDeclName();
+ SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
+
+ FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
+ if (TypoCorrection Corrected = S.CorrectTypo(
+ DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
+ S.getScopeForContext(S.CurContext), nullptr, CCC,
+ Sema::CTK_ErrorRecovery)) {
+ if (NamedDecl *ND = Corrected.getFoundDecl()) {
+ if (Corrected.isOverloaded()) {
+ OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
+ OverloadCandidateSet::iterator Best;
+ for (NamedDecl *CD : Corrected) {
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
+ S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
+ OCS);
+ }
+ switch (OCS.BestViableFunction(S, NameLoc, Best)) {
+ case OR_Success:
+ ND = Best->FoundDecl;
+ Corrected.setCorrectionDecl(ND);
+ break;
+ default:
+ break;
+ }
+ }
+ ND = ND->getUnderlyingDecl();
+ if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
+ return Corrected;
+ }
+ }
+ return TypoCorrection();
+}
+
+/// ConvertArgumentsForCall - Converts the arguments specified in
+/// Args/NumArgs to the parameter types of the function FDecl with
+/// function prototype Proto. Call is the call expression itself, and
+/// Fn is the function expression. For a C++ member function, this
+/// routine does not attempt to convert the object argument. Returns
+/// true if the call is ill-formed.
+bool
+Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
+ FunctionDecl *FDecl,
+ const FunctionProtoType *Proto,
+ ArrayRef<Expr *> Args,
+ SourceLocation RParenLoc,
+ bool IsExecConfig) {
+ // Bail out early if calling a builtin with custom typechecking.
+ if (FDecl)
+ if (unsigned ID = FDecl->getBuiltinID())
+ if (Context.BuiltinInfo.hasCustomTypechecking(ID))
+ return false;
+
+ // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
+ // assignment, to the types of the corresponding parameter, ...
+ unsigned NumParams = Proto->getNumParams();
+ bool Invalid = false;
+ unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
+ unsigned FnKind = Fn->getType()->isBlockPointerType()
+ ? 1 /* block */
+ : (IsExecConfig ? 3 /* kernel function (exec config) */
+ : 0 /* function */);
+
+ // If too few arguments are available (and we don't have default
+ // arguments for the remaining parameters), don't make the call.
+ if (Args.size() < NumParams) {
+ if (Args.size() < MinArgs) {
+ TypoCorrection TC;
+ if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
+ unsigned diag_id =
+ MinArgs == NumParams && !Proto->isVariadic()
+ ? diag::err_typecheck_call_too_few_args_suggest
+ : diag::err_typecheck_call_too_few_args_at_least_suggest;
+ diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
+ << static_cast<unsigned>(Args.size())
+ << TC.getCorrectionRange());
+ } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
+ Diag(RParenLoc,
+ MinArgs == NumParams && !Proto->isVariadic()
+ ? diag::err_typecheck_call_too_few_args_one
+ : diag::err_typecheck_call_too_few_args_at_least_one)
+ << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
+ else
+ Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
+ ? diag::err_typecheck_call_too_few_args
+ : diag::err_typecheck_call_too_few_args_at_least)
+ << FnKind << MinArgs << static_cast<unsigned>(Args.size())
+ << Fn->getSourceRange();
+
+ // Emit the location of the prototype.
+ if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
+ Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
+
+ return true;
+ }
+ // We reserve space for the default arguments when we create
+ // the call expression, before calling ConvertArgumentsForCall.
+ assert((Call->getNumArgs() == NumParams) &&
+ "We should have reserved space for the default arguments before!");
+ }
+
+ // If too many are passed and not variadic, error on the extras and drop
+ // them.
+ if (Args.size() > NumParams) {
+ if (!Proto->isVariadic()) {
+ TypoCorrection TC;
+ if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
+ unsigned diag_id =
+ MinArgs == NumParams && !Proto->isVariadic()
+ ? diag::err_typecheck_call_too_many_args_suggest
+ : diag::err_typecheck_call_too_many_args_at_most_suggest;
+ diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
+ << static_cast<unsigned>(Args.size())
+ << TC.getCorrectionRange());
+ } else if (NumParams == 1 && FDecl &&
+ FDecl->getParamDecl(0)->getDeclName())
+ Diag(Args[NumParams]->getBeginLoc(),
+ MinArgs == NumParams
+ ? diag::err_typecheck_call_too_many_args_one
+ : diag::err_typecheck_call_too_many_args_at_most_one)
+ << FnKind << FDecl->getParamDecl(0)
+ << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
+ << SourceRange(Args[NumParams]->getBeginLoc(),
+ Args.back()->getEndLoc());
+ else
+ Diag(Args[NumParams]->getBeginLoc(),
+ MinArgs == NumParams
+ ? diag::err_typecheck_call_too_many_args
+ : diag::err_typecheck_call_too_many_args_at_most)
+ << FnKind << NumParams << static_cast<unsigned>(Args.size())
+ << Fn->getSourceRange()
+ << SourceRange(Args[NumParams]->getBeginLoc(),
+ Args.back()->getEndLoc());
+
+ // Emit the location of the prototype.
+ if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
+ Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
+
+ // This deletes the extra arguments.
+ Call->shrinkNumArgs(NumParams);
+ return true;
+ }
+ }
+ SmallVector<Expr *, 8> AllArgs;
+ VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
+
+ Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
+ AllArgs, CallType);
+ if (Invalid)
+ return true;
+ unsigned TotalNumArgs = AllArgs.size();
+ for (unsigned i = 0; i < TotalNumArgs; ++i)
+ Call->setArg(i, AllArgs[i]);
+
+ Call->computeDependence();
+ return false;
+}
+
+bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
+ const FunctionProtoType *Proto,
+ unsigned FirstParam, ArrayRef<Expr *> Args,
+ SmallVectorImpl<Expr *> &AllArgs,
+ VariadicCallType CallType, bool AllowExplicit,
+ bool IsListInitialization) {
+ unsigned NumParams = Proto->getNumParams();
+ bool Invalid = false;
+ size_t ArgIx = 0;
+ // Continue to check argument types (even if we have too few/many args).
+ for (unsigned i = FirstParam; i < NumParams; i++) {
+ QualType ProtoArgType = Proto->getParamType(i);
+
+ Expr *Arg;
+ ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
+ if (ArgIx < Args.size()) {
+ Arg = Args[ArgIx++];
+
+ if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
+ diag::err_call_incomplete_argument, Arg))
+ return true;
+
+ // Strip the unbridged-cast placeholder expression off, if applicable.
+ bool CFAudited = false;
+ if (Arg->getType() == Context.ARCUnbridgedCastTy &&
+ FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
+ (!Param || !Param->hasAttr<CFConsumedAttr>()))
+ Arg = stripARCUnbridgedCast(Arg);
+ else if (getLangOpts().ObjCAutoRefCount &&
+ FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
+ (!Param || !Param->hasAttr<CFConsumedAttr>()))
+ CFAudited = true;
+
+ if (Proto->getExtParameterInfo(i).isNoEscape() &&
+ ProtoArgType->isBlockPointerType())
+ if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
+ BE->getBlockDecl()->setDoesNotEscape();
+
+ InitializedEntity Entity =
+ Param ? InitializedEntity::InitializeParameter(Context, Param,
+ ProtoArgType)
+ : InitializedEntity::InitializeParameter(
+ Context, ProtoArgType, Proto->isParamConsumed(i));
+
+ // Remember that parameter belongs to a CF audited API.
+ if (CFAudited)
+ Entity.setParameterCFAudited();
+
+ ExprResult ArgE = PerformCopyInitialization(
+ Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
+ if (ArgE.isInvalid())
+ return true;
+
+ Arg = ArgE.getAs<Expr>();
+ } else {
+ assert(Param && "can't use default arguments without a known callee");
+
+ ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
+ if (ArgExpr.isInvalid())
+ return true;
+
+ Arg = ArgExpr.getAs<Expr>();
+ }
+
+ // Check for array bounds violations for each argument to the call. This
+ // check only triggers warnings when the argument isn't a more complex Expr
+ // with its own checking, such as a BinaryOperator.
+ CheckArrayAccess(Arg);
+
+ // Check for violations of C99 static array rules (C99 6.7.5.3p7).
+ CheckStaticArrayArgument(CallLoc, Param, Arg);
+
+ AllArgs.push_back(Arg);
+ }
+
+ // If this is a variadic call, handle args passed through "...".
+ if (CallType != VariadicDoesNotApply) {
+ // Assume that extern "C" functions with variadic arguments that
+ // return __unknown_anytype aren't *really* variadic.
+ if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
+ FDecl->isExternC()) {
+ for (Expr *A : Args.slice(ArgIx)) {
+ QualType paramType; // ignored
+ ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
+ Invalid |= arg.isInvalid();
+ AllArgs.push_back(arg.get());
+ }
+
+ // Otherwise do argument promotion, (C99 6.5.2.2p7).
+ } else {
+ for (Expr *A : Args.slice(ArgIx)) {
+ ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
+ Invalid |= Arg.isInvalid();
+ AllArgs.push_back(Arg.get());
+ }
+ }
+
+ // Check for array bounds violations.
+ for (Expr *A : Args.slice(ArgIx))
+ CheckArrayAccess(A);
+ }
+ return Invalid;
+}
+
+static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
+ TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
+ if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
+ TL = DTL.getOriginalLoc();
+ if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
+ S.Diag(PVD->getLocation(), diag::note_callee_static_array)
+ << ATL.getLocalSourceRange();
+}
+
+/// CheckStaticArrayArgument - If the given argument corresponds to a static
+/// array parameter, check that it is non-null, and that if it is formed by
+/// array-to-pointer decay, the underlying array is sufficiently large.
+///
+/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
+/// array type derivation, then for each call to the function, the value of the
+/// corresponding actual argument shall provide access to the first element of
+/// an array with at least as many elements as specified by the size expression.
+void
+Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
+ ParmVarDecl *Param,
+ const Expr *ArgExpr) {
+ // Static array parameters are not supported in C++.
+ if (!Param || getLangOpts().CPlusPlus)
+ return;
+
+ QualType OrigTy = Param->getOriginalType();
+
+ const ArrayType *AT = Context.getAsArrayType(OrigTy);
+ if (!AT || AT->getSizeModifier() != ArrayType::Static)
+ return;
+
+ if (ArgExpr->isNullPointerConstant(Context,
+ Expr::NPC_NeverValueDependent)) {
+ Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
+ DiagnoseCalleeStaticArrayParam(*this, Param);
+ return;
+ }
+
+ const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
+ if (!CAT)
+ return;
+
+ const ConstantArrayType *ArgCAT =
+ Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
+ if (!ArgCAT)
+ return;
+
+ if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
+ ArgCAT->getElementType())) {
+ if (ArgCAT->getSize().ult(CAT->getSize())) {
+ Diag(CallLoc, diag::warn_static_array_too_small)
+ << ArgExpr->getSourceRange()
+ << (unsigned)ArgCAT->getSize().getZExtValue()
+ << (unsigned)CAT->getSize().getZExtValue() << 0;
+ DiagnoseCalleeStaticArrayParam(*this, Param);
+ }
+ return;
+ }
+
+ Optional<CharUnits> ArgSize =
+ getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
+ Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
+ if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
+ Diag(CallLoc, diag::warn_static_array_too_small)
+ << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
+ << (unsigned)ParmSize->getQuantity() << 1;
+ DiagnoseCalleeStaticArrayParam(*this, Param);
+ }
+}
+
+/// Given a function expression of unknown-any type, try to rebuild it
+/// to have a function type.
+static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
+
+/// Is the given type a placeholder that we need to lower out
+/// immediately during argument processing?
+static bool isPlaceholderToRemoveAsArg(QualType type) {
+ // Placeholders are never sugared.
+ const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
+ if (!placeholder) return false;
+
+ switch (placeholder->getKind()) {
+ // Ignore all the non-placeholder types.
+#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
+ case BuiltinType::Id:
+#include "clang/Basic/OpenCLImageTypes.def"
+#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
+ case BuiltinType::Id:
+#include "clang/Basic/OpenCLExtensionTypes.def"
+ // In practice we'll never use this, since all SVE types are sugared
+ // via TypedefTypes rather than exposed directly as BuiltinTypes.
+#define SVE_TYPE(Name, Id, SingletonId) \
+ case BuiltinType::Id:
+#include "clang/Basic/AArch64SVEACLETypes.def"
+#define PPC_VECTOR_TYPE(Name, Id, Size) \
+ case BuiltinType::Id:
+#include "clang/Basic/PPCTypes.def"
+#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
+#include "clang/Basic/RISCVVTypes.def"
+#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
+#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
+#include "clang/AST/BuiltinTypes.def"
+ return false;
+
+ // We cannot lower out overload sets; they might validly be resolved
+ // by the call machinery.
+ case BuiltinType::Overload:
+ return false;
+
+ // Unbridged casts in ARC can be handled in some call positions and
+ // should be left in place.
+ case BuiltinType::ARCUnbridgedCast:
+ return false;
+
+ // Pseudo-objects should be converted as soon as possible.
+ case BuiltinType::PseudoObject:
+ return true;
+
+ // The debugger mode could theoretically but currently does not try
+ // to resolve unknown-typed arguments based on known parameter types.
+ case BuiltinType::UnknownAny:
+ return true;
+
+ // These are always invalid as call arguments and should be reported.
+ case BuiltinType::BoundMember:
+ case BuiltinType::BuiltinFn:
+ case BuiltinType::IncompleteMatrixIdx:
+ case BuiltinType::OMPArraySection:
+ case BuiltinType::OMPArrayShaping:
+ case BuiltinType::OMPIterator:
+ return true;
+
+ }
+ llvm_unreachable("bad builtin type kind");
+}
+
+/// Check an argument list for placeholders that we won't try to
+/// handle later.
+static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
+ // Apply this processing to all the arguments at once instead of
+ // dying at the first failure.
+ bool hasInvalid = false;
+ for (size_t i = 0, e = args.size(); i != e; i++) {
+ if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
+ ExprResult result = S.CheckPlaceholderExpr(args[i]);
+ if (result.isInvalid()) hasInvalid = true;
+ else args[i] = result.get();
+ }
+ }
+ return hasInvalid;
+}
+
+/// If a builtin function has a pointer argument with no explicit address
+/// space, then it should be able to accept a pointer to any address
+/// space as input. In order to do this, we need to replace the
+/// standard builtin declaration with one that uses the same address space
+/// as the call.
+///
+/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
+/// it does not contain any pointer arguments without
+/// an address space qualifer. Otherwise the rewritten
+/// FunctionDecl is returned.
+/// TODO: Handle pointer return types.
+static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
+ FunctionDecl *FDecl,
+ MultiExprArg ArgExprs) {
+
+ QualType DeclType = FDecl->getType();
+ const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
+
+ if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
+ ArgExprs.size() < FT->getNumParams())
+ return nullptr;
+
+ bool NeedsNewDecl = false;
+ unsigned i = 0;
+ SmallVector<QualType, 8> OverloadParams;
+
+ for (QualType ParamType : FT->param_types()) {
+
+ // Convert array arguments to pointer to simplify type lookup.
+ ExprResult ArgRes =
+ Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
+ if (ArgRes.isInvalid())
+ return nullptr;
+ Expr *Arg = ArgRes.get();
+ QualType ArgType = Arg->getType();
+ if (!ParamType->isPointerType() ||
+ ParamType.hasAddressSpace() ||
+ !ArgType->isPointerType() ||
+ !ArgType->getPointeeType().hasAddressSpace()) {
+ OverloadParams.push_back(ParamType);
+ continue;
+ }
+
+ QualType PointeeType = ParamType->getPointeeType();
+ if (PointeeType.hasAddressSpace())
+ continue;
+
+ NeedsNewDecl = true;
+ LangAS AS = ArgType->getPointeeType().getAddressSpace();
+
+ PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
+ OverloadParams.push_back(Context.getPointerType(PointeeType));
+ }
+
+ if (!NeedsNewDecl)
+ return nullptr;
+
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.Variadic = FT->isVariadic();
+ QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
+ OverloadParams, EPI);
+ DeclContext *Parent = FDecl->getParent();
+ FunctionDecl *OverloadDecl = FunctionDecl::Create(
+ Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
+ FDecl->getIdentifier(), OverloadTy,
+ /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
+ false,
+ /*hasPrototype=*/true);
+ SmallVector<ParmVarDecl*, 16> Params;
+ FT = cast<FunctionProtoType>(OverloadTy);
+ for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
+ QualType ParamType = FT->getParamType(i);
+ ParmVarDecl *Parm =
+ ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
+ SourceLocation(), nullptr, ParamType,
+ /*TInfo=*/nullptr, SC_None, nullptr);
+ Parm->setScopeInfo(0, i);
+ Params.push_back(Parm);
+ }
+ OverloadDecl->setParams(Params);
+ Sema->mergeDeclAttributes(OverloadDecl, FDecl);
+ return OverloadDecl;
+}
+
+static void checkDirectCallValidity(Sema &S, const Expr *Fn,
+ FunctionDecl *Callee,
+ MultiExprArg ArgExprs) {
+ // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
+ // similar attributes) really don't like it when functions are called with an
+ // invalid number of args.
+ if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
+ /*PartialOverloading=*/false) &&
+ !Callee->isVariadic())
+ return;
+ if (Callee->getMinRequiredArguments() > ArgExprs.size())
+ return;
+
+ if (const EnableIfAttr *Attr =
+ S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
+ S.Diag(Fn->getBeginLoc(),
+ isa<CXXMethodDecl>(Callee)
+ ? diag::err_ovl_no_viable_member_function_in_call
+ : diag::err_ovl_no_viable_function_in_call)
+ << Callee << Callee->getSourceRange();
+ S.Diag(Callee->getLocation(),
+ diag::note_ovl_candidate_disabled_by_function_cond_attr)
+ << Attr->getCond()->getSourceRange() << Attr->getMessage();
+ return;
+ }
+}
+
+static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
+ const UnresolvedMemberExpr *const UME, Sema &S) {
+
+ const auto GetFunctionLevelDCIfCXXClass =
+ [](Sema &S) -> const CXXRecordDecl * {
+ const DeclContext *const DC = S.getFunctionLevelDeclContext();
+ if (!DC || !DC->getParent())
+ return nullptr;
+
+ // If the call to some member function was made from within a member
+ // function body 'M' return return 'M's parent.
+ if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
+ return MD->getParent()->getCanonicalDecl();
+ // else the call was made from within a default member initializer of a
+ // class, so return the class.
+ if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
+ return RD->getCanonicalDecl();
+ return nullptr;
+ };
+ // If our DeclContext is neither a member function nor a class (in the
+ // case of a lambda in a default member initializer), we can't have an
+ // enclosing 'this'.
+
+ const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
+ if (!CurParentClass)
+ return false;
+
+ // The naming class for implicit member functions call is the class in which
+ // name lookup starts.
+ const CXXRecordDecl *const NamingClass =
+ UME->getNamingClass()->getCanonicalDecl();
+ assert(NamingClass && "Must have naming class even for implicit access");
+
+ // If the unresolved member functions were found in a 'naming class' that is
+ // related (either the same or derived from) to the class that contains the
+ // member function that itself contained the implicit member access.
+
+ return CurParentClass == NamingClass ||
+ CurParentClass->isDerivedFrom(NamingClass);
+}
+
+static void
+tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
+ Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
+
+ if (!UME)
+ return;
+
+ LambdaScopeInfo *const CurLSI = S.getCurLambda();
+ // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
+ // already been captured, or if this is an implicit member function call (if
+ // it isn't, an attempt to capture 'this' should already have been made).
+ if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
+ !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
+ return;
+
+ // Check if the naming class in which the unresolved members were found is
+ // related (same as or is a base of) to the enclosing class.
+
+ if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
+ return;
+
+
+ DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
+ // If the enclosing function is not dependent, then this lambda is
+ // capture ready, so if we can capture this, do so.
+ if (!EnclosingFunctionCtx->isDependentContext()) {
+ // If the current lambda and all enclosing lambdas can capture 'this' -
+ // then go ahead and capture 'this' (since our unresolved overload set
+ // contains at least one non-static member function).
+ if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
+ S.CheckCXXThisCapture(CallLoc);
+ } else if (S.CurContext->isDependentContext()) {
+ // ... since this is an implicit member reference, that might potentially
+ // involve a 'this' capture, mark 'this' for potential capture in
+ // enclosing lambdas.
+ if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
+ CurLSI->addPotentialThisCapture(CallLoc);
+ }
+}
+
+ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
+ MultiExprArg ArgExprs, SourceLocation RParenLoc,
+ Expr *ExecConfig) {
+ ExprResult Call =
+ BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
+ /*IsExecConfig=*/false, /*AllowRecovery=*/true);
+ if (Call.isInvalid())
+ return Call;
+
+ // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
+ // language modes.
+ if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
+ if (ULE->hasExplicitTemplateArgs() &&
+ ULE->decls_begin() == ULE->decls_end()) {
+ Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
+ ? diag::warn_cxx17_compat_adl_only_template_id
+ : diag::ext_adl_only_template_id)
+ << ULE->getName();
+ }
+ }
+
+ if (LangOpts.OpenMP)
+ Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
+ ExecConfig);
+
+ return Call;
+}
+
+/// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
+/// This provides the location of the left/right parens and a list of comma
+/// locations.
+ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
+ MultiExprArg ArgExprs, SourceLocation RParenLoc,
+ Expr *ExecConfig, bool IsExecConfig,
+ bool AllowRecovery) {
+ // Since this might be a postfix expression, get rid of ParenListExprs.
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
+ if (Result.isInvalid()) return ExprError();
+ Fn = Result.get();
+
+ if (checkArgsForPlaceholders(*this, ArgExprs))
+ return ExprError();
+
+ if (getLangOpts().CPlusPlus) {
+ // If this is a pseudo-destructor expression, build the call immediately.
+ if (isa<CXXPseudoDestructorExpr>(Fn)) {
+ if (!ArgExprs.empty()) {
+ // Pseudo-destructor calls should not have any arguments.
+ Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
+ << FixItHint::CreateRemoval(
+ SourceRange(ArgExprs.front()->getBeginLoc(),
+ ArgExprs.back()->getEndLoc()));
+ }
+
+ return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
+ VK_PRValue, RParenLoc, CurFPFeatureOverrides());
+ }
+ if (Fn->getType() == Context.PseudoObjectTy) {
+ ExprResult result = CheckPlaceholderExpr(Fn);
+ if (result.isInvalid()) return ExprError();
+ Fn = result.get();
+ }
+
+ // Determine whether this is a dependent call inside a C++ template,
+ // in which case we won't do any semantic analysis now.
+ if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
+ if (ExecConfig) {
+ return CUDAKernelCallExpr::Create(Context, Fn,
+ cast<CallExpr>(ExecConfig), ArgExprs,
+ Context.DependentTy, VK_PRValue,
+ RParenLoc, CurFPFeatureOverrides());
+ } else {
+
+ tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
+ *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
+ Fn->getBeginLoc());
+
+ return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
+ VK_PRValue, RParenLoc, CurFPFeatureOverrides());
+ }
+ }
+
+ // Determine whether this is a call to an object (C++ [over.call.object]).
+ if (Fn->getType()->isRecordType())
+ return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
+ RParenLoc);
+
+ if (Fn->getType() == Context.UnknownAnyTy) {
+ ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
+ if (result.isInvalid()) return ExprError();
+ Fn = result.get();
+ }
+
+ if (Fn->getType() == Context.BoundMemberTy) {
+ return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
+ RParenLoc, ExecConfig, IsExecConfig,
+ AllowRecovery);
+ }
+ }
+
+ // Check for overloaded calls. This can happen even in C due to extensions.
+ if (Fn->getType() == Context.OverloadTy) {
+ OverloadExpr::FindResult find = OverloadExpr::find(Fn);
+
+ // We aren't supposed to apply this logic if there's an '&' involved.
+ if (!find.HasFormOfMemberPointer) {
+ if (Expr::hasAnyTypeDependentArguments(ArgExprs))
+ return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
+ VK_PRValue, RParenLoc, CurFPFeatureOverrides());
+ OverloadExpr *ovl = find.Expression;
+ if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
+ return BuildOverloadedCallExpr(
+ Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
+ /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
+ return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
+ RParenLoc, ExecConfig, IsExecConfig,
+ AllowRecovery);
+ }
+ }
+
+ // If we're directly calling a function, get the appropriate declaration.
+ if (Fn->getType() == Context.UnknownAnyTy) {
+ ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
+ if (result.isInvalid()) return ExprError();
+ Fn = result.get();
+ }
+
+ Expr *NakedFn = Fn->IgnoreParens();
+
+ bool CallingNDeclIndirectly = false;
+ NamedDecl *NDecl = nullptr;
+ if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
+ if (UnOp->getOpcode() == UO_AddrOf) {
+ CallingNDeclIndirectly = true;
+ NakedFn = UnOp->getSubExpr()->IgnoreParens();
+ }
+ }
+
+ if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
+ NDecl = DRE->getDecl();
+
+ FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
+ if (FDecl && FDecl->getBuiltinID()) {
+ // Rewrite the function decl for this builtin by replacing parameters
+ // with no explicit address space with the address space of the arguments
+ // in ArgExprs.
+ if ((FDecl =
+ rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
+ NDecl = FDecl;
+ Fn = DeclRefExpr::Create(
+ Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
+ SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
+ nullptr, DRE->isNonOdrUse());
+ }
+ }
+ } else if (isa<MemberExpr>(NakedFn))
+ NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
+
+ if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
+ if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
+ FD, /*Complain=*/true, Fn->getBeginLoc()))
+ return ExprError();
+
+ checkDirectCallValidity(*this, Fn, FD, ArgExprs);
+
+ // If this expression is a call to a builtin function in HIP device
+ // compilation, allow a pointer-type argument to default address space to be
+ // passed as a pointer-type parameter to a non-default address space.
+ // If Arg is declared in the default address space and Param is declared
+ // in a non-default address space, perform an implicit address space cast to
+ // the parameter type.
+ if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
+ FD->getBuiltinID()) {
+ for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
+ ParmVarDecl *Param = FD->getParamDecl(Idx);
+ if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
+ !ArgExprs[Idx]->getType()->isPointerType())
+ continue;
+
+ auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
+ auto ArgTy = ArgExprs[Idx]->getType();
+ auto ArgPtTy = ArgTy->getPointeeType();
+ auto ArgAS = ArgPtTy.getAddressSpace();
+
+ // Add address space cast if target address spaces are different
+ bool NeedImplicitASC =
+ ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling.
+ ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS
+ // or from specific AS which has target AS matching that of Param.
+ getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
+ if (!NeedImplicitASC)
+ continue;
+
+ // First, ensure that the Arg is an RValue.
+ if (ArgExprs[Idx]->isGLValue()) {
+ ArgExprs[Idx] = ImplicitCastExpr::Create(
+ Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
+ nullptr, VK_PRValue, FPOptionsOverride());
+ }
+
+ // Construct a new arg type with address space of Param
+ Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
+ ArgPtQuals.setAddressSpace(ParamAS);
+ auto NewArgPtTy =
+ Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
+ auto NewArgTy =
+ Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
+ ArgTy.getQualifiers());
+
+ // Finally perform an implicit address space cast
+ ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
+ CK_AddressSpaceConversion)
+ .get();
+ }
+ }
+ }
+
+ if (Context.isDependenceAllowed() &&
+ (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
+ assert(!getLangOpts().CPlusPlus);
+ assert((Fn->containsErrors() ||
+ llvm::any_of(ArgExprs,
+ [](clang::Expr *E) { return E->containsErrors(); })) &&
+ "should only occur in error-recovery path.");
+ QualType ReturnType =
+ llvm::isa_and_nonnull<FunctionDecl>(NDecl)
+ ? cast<FunctionDecl>(NDecl)->getCallResultType()
+ : Context.DependentTy;
+ return CallExpr::Create(Context, Fn, ArgExprs, ReturnType,
+ Expr::getValueKindForType(ReturnType), RParenLoc,
+ CurFPFeatureOverrides());
+ }
+ return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
+ ExecConfig, IsExecConfig);
+}
+
+/// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
+// with the specified CallArgs
+Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
+ MultiExprArg CallArgs) {
+ StringRef Name = Context.BuiltinInfo.getName(Id);
+ LookupResult R(*this, &Context.Idents.get(Name), Loc,
+ Sema::LookupOrdinaryName);
+ LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
+
+ auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
+ assert(BuiltInDecl && "failed to find builtin declaration");
+
+ ExprResult DeclRef =
+ BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
+ assert(DeclRef.isUsable() && "Builtin reference cannot fail");
+
+ ExprResult Call =
+ BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
+
+ assert(!Call.isInvalid() && "Call to builtin cannot fail!");
+ return Call.get();
+}
+
+/// Parse a __builtin_astype expression.
+///
+/// __builtin_astype( value, dst type )
+///
+ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
+ SourceLocation BuiltinLoc,
+ SourceLocation RParenLoc) {
+ QualType DstTy = GetTypeFromParser(ParsedDestTy);
+ return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
+}
+
+/// Create a new AsTypeExpr node (bitcast) from the arguments.
+ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
+ SourceLocation BuiltinLoc,
+ SourceLocation RParenLoc) {
+ ExprValueKind VK = VK_PRValue;
+ ExprObjectKind OK = OK_Ordinary;
+ QualType SrcTy = E->getType();
+ if (!SrcTy->isDependentType() &&
+ Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
+ return ExprError(
+ Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
+ << DestTy << SrcTy << E->getSourceRange());
+ return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
+}
+
+/// ActOnConvertVectorExpr - create a new convert-vector expression from the
+/// provided arguments.
+///
+/// __builtin_convertvector( value, dst type )
+///
+ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
+ SourceLocation BuiltinLoc,
+ SourceLocation RParenLoc) {
+ TypeSourceInfo *TInfo;
+ GetTypeFromParser(ParsedDestTy, &TInfo);
+ return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
+}
+
+/// BuildResolvedCallExpr - Build a call to a resolved expression,
+/// i.e. an expression not of \p OverloadTy. The expression should
+/// unary-convert to an expression of function-pointer or
+/// block-pointer type.
+///
+/// \param NDecl the declaration being called, if available
+ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
+ SourceLocation LParenLoc,
+ ArrayRef<Expr *> Args,
+ SourceLocation RParenLoc, Expr *Config,
+ bool IsExecConfig, ADLCallKind UsesADL) {
+ FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
+ unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
+
+ // Functions with 'interrupt' attribute cannot be called directly.
+ if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
+ Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
+ return ExprError();
+ }
+
+ // Interrupt handlers don't save off the VFP regs automatically on ARM,
+ // so there's some risk when calling out to non-interrupt handler functions
+ // that the callee might not preserve them. This is easy to diagnose here,
+ // but can be very challenging to debug.
+ // Likewise, X86 interrupt handlers may only call routines with attribute
+ // no_caller_saved_registers since there is no efficient way to
+ // save and restore the non-GPR state.
+ if (auto *Caller = getCurFunctionDecl()) {
+ if (Caller->hasAttr<ARMInterruptAttr>()) {
+ bool VFP = Context.getTargetInfo().hasFeature("vfp");
+ if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
+ Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
+ if (FDecl)
+ Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
+ }
+ }
+ if (Caller->hasAttr<AnyX86InterruptAttr>() &&
+ ((!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()))) {
+ Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave);
+ if (FDecl)
+ Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
+ }
+ }
+
+ // Promote the function operand.
+ // We special-case function promotion here because we only allow promoting
+ // builtin functions to function pointers in the callee of a call.
+ ExprResult Result;
+ QualType ResultTy;
+ if (BuiltinID &&
+ Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
+ // Extract the return type from the (builtin) function pointer type.
+ // FIXME Several builtins still have setType in
+ // Sema::CheckBuiltinFunctionCall. One should review their definitions in
+ // Builtins.def to ensure they are correct before removing setType calls.
+ QualType FnPtrTy = Context.getPointerType(FDecl->getType());
+ Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
+ ResultTy = FDecl->getCallResultType();
+ } else {
+ Result = CallExprUnaryConversions(Fn);
+ ResultTy = Context.BoolTy;
+ }
+ if (Result.isInvalid())
+ return ExprError();
+ Fn = Result.get();
+
+ // Check for a valid function type, but only if it is not a builtin which
+ // requires custom type checking. These will be handled by
+ // CheckBuiltinFunctionCall below just after creation of the call expression.
+ const FunctionType *FuncT = nullptr;
+ if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
+ retry:
+ if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
+ // C99 6.5.2.2p1 - "The expression that denotes the called function shall
+ // have type pointer to function".
+ FuncT = PT->getPointeeType()->getAs<FunctionType>();
+ if (!FuncT)
+ return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
+ << Fn->getType() << Fn->getSourceRange());
+ } else if (const BlockPointerType *BPT =
+ Fn->getType()->getAs<BlockPointerType>()) {
+ FuncT = BPT->getPointeeType()->castAs<FunctionType>();
+ } else {
+ // Handle calls to expressions of unknown-any type.
+ if (Fn->getType() == Context.UnknownAnyTy) {
+ ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
+ if (rewrite.isInvalid())
+ return ExprError();
+ Fn = rewrite.get();
+ goto retry;
+ }
+
+ return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
+ << Fn->getType() << Fn->getSourceRange());
+ }
+ }
+
+ // Get the number of parameters in the function prototype, if any.
+ // We will allocate space for max(Args.size(), NumParams) arguments
+ // in the call expression.
+ const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
+ unsigned NumParams = Proto ? Proto->getNumParams() : 0;
+
+ CallExpr *TheCall;
+ if (Config) {
+ assert(UsesADL == ADLCallKind::NotADL &&
+ "CUDAKernelCallExpr should not use ADL");
+ TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
+ Args, ResultTy, VK_PRValue, RParenLoc,
+ CurFPFeatureOverrides(), NumParams);
+ } else {
+ TheCall =
+ CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
+ CurFPFeatureOverrides(), NumParams, UsesADL);
+ }
+
+ if (!Context.isDependenceAllowed()) {
+ // Forget about the nulled arguments since typo correction
+ // do not handle them well.
+ TheCall->shrinkNumArgs(Args.size());
+ // C cannot always handle TypoExpr nodes in builtin calls and direct
+ // function calls as their argument checking don't necessarily handle
+ // dependent types properly, so make sure any TypoExprs have been
+ // dealt with.
+ ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
+ if (!Result.isUsable()) return ExprError();
+ CallExpr *TheOldCall = TheCall;
+ TheCall = dyn_cast<CallExpr>(Result.get());
+ bool CorrectedTypos = TheCall != TheOldCall;
+ if (!TheCall) return Result;
+ Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
+
+ // A new call expression node was created if some typos were corrected.
+ // However it may not have been constructed with enough storage. In this
+ // case, rebuild the node with enough storage. The waste of space is
+ // immaterial since this only happens when some typos were corrected.
+ if (CorrectedTypos && Args.size() < NumParams) {
+ if (Config)
+ TheCall = CUDAKernelCallExpr::Create(
+ Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
+ RParenLoc, CurFPFeatureOverrides(), NumParams);
+ else
+ TheCall =
+ CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
+ CurFPFeatureOverrides(), NumParams, UsesADL);
+ }
+ // We can now handle the nulled arguments for the default arguments.
+ TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
+ }
+
+ // Bail out early if calling a builtin with custom type checking.
+ if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
+ return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
+
+ if (getLangOpts().CUDA) {
+ if (Config) {
+ // CUDA: Kernel calls must be to global functions
+ if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
+ return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
+ << FDecl << Fn->getSourceRange());
+
+ // CUDA: Kernel function must have 'void' return type
+ if (!FuncT->getReturnType()->isVoidType() &&
+ !FuncT->getReturnType()->getAs<AutoType>() &&
+ !FuncT->getReturnType()->isInstantiationDependentType())
+ return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
+ << Fn->getType() << Fn->getSourceRange());
+ } else {
+ // CUDA: Calls to global functions must be configured
+ if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
+ return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
+ << FDecl << Fn->getSourceRange());
+ }
+ }
+
+ // Check for a valid return type
+ if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
+ FDecl))
+ return ExprError();
+
+ // We know the result type of the call, set it.
+ TheCall->setType(FuncT->getCallResultType(Context));
+ TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
+
+ if (Proto) {
+ if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
+ IsExecConfig))
+ return ExprError();
+ } else {
+ assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
+
+ if (FDecl) {
+ // Check if we have too few/too many template arguments, based
+ // on our knowledge of the function definition.
+ const FunctionDecl *Def = nullptr;
+ if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
+ Proto = Def->getType()->getAs<FunctionProtoType>();
+ if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
+ Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
+ << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
+ }
+
+ // If the function we're calling isn't a function prototype, but we have
+ // a function prototype from a prior declaratiom, use that prototype.
+ if (!FDecl->hasPrototype())
+ Proto = FDecl->getType()->getAs<FunctionProtoType>();
+ }
+
+ // Promote the arguments (C99 6.5.2.2p6).
+ for (unsigned i = 0, e = Args.size(); i != e; i++) {
+ Expr *Arg = Args[i];
+
+ if (Proto && i < Proto->getNumParams()) {
+ InitializedEntity Entity = InitializedEntity::InitializeParameter(
+ Context, Proto->getParamType(i), Proto->isParamConsumed(i));
+ ExprResult ArgE =
+ PerformCopyInitialization(Entity, SourceLocation(), Arg);
+ if (ArgE.isInvalid())
+ return true;
+
+ Arg = ArgE.getAs<Expr>();
+
+ } else {
+ ExprResult ArgE = DefaultArgumentPromotion(Arg);
+
+ if (ArgE.isInvalid())
+ return true;
+
+ Arg = ArgE.getAs<Expr>();
+ }
+
+ if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
+ diag::err_call_incomplete_argument, Arg))
+ return ExprError();
+
+ TheCall->setArg(i, Arg);
+ }
+ TheCall->computeDependence();
+ }
+
+ if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
+ if (!Method->isStatic())
+ return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
+ << Fn->getSourceRange());
+
+ // Check for sentinels
+ if (NDecl)
+ DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
+
+ // Warn for unions passing across security boundary (CMSE).
+ if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
+ for (unsigned i = 0, e = Args.size(); i != e; i++) {
+ if (const auto *RT =
+ dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
+ if (RT->getDecl()->isOrContainsUnion())
+ Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
+ << 0 << i;
+ }
+ }
+ }
+
+ // Do special checking on direct calls to functions.
+ if (FDecl) {
+ if (CheckFunctionCall(FDecl, TheCall, Proto))
+ return ExprError();
+
+ checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
+
+ if (BuiltinID)
+ return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
+ } else if (NDecl) {
+ if (CheckPointerCall(NDecl, TheCall, Proto))
+ return ExprError();
+ } else {
+ if (CheckOtherCall(TheCall, Proto))
+ return ExprError();
+ }
+
+ return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
+}
+
+ExprResult
+Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
+ SourceLocation RParenLoc, Expr *InitExpr) {
+ assert(Ty && "ActOnCompoundLiteral(): missing type");
+ assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
+
+ TypeSourceInfo *TInfo;
+ QualType literalType = GetTypeFromParser(Ty, &TInfo);
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(literalType);
+
+ return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
+}
+
+ExprResult
+Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
+ SourceLocation RParenLoc, Expr *LiteralExpr) {
+ QualType literalType = TInfo->getType();
+
+ if (literalType->isArrayType()) {
+ if (RequireCompleteSizedType(
+ LParenLoc, Context.getBaseElementType(literalType),
+ diag::err_array_incomplete_or_sizeless_type,
+ SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
+ return ExprError();
+ if (literalType->isVariableArrayType()) {
+ if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
+ diag::err_variable_object_no_init)) {
+ return ExprError();
+ }
+ }
+ } else if (!literalType->isDependentType() &&
+ RequireCompleteType(LParenLoc, literalType,
+ diag::err_typecheck_decl_incomplete_type,
+ SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
+ return ExprError();
+
+ InitializedEntity Entity
+ = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
+ InitializationKind Kind
+ = InitializationKind::CreateCStyleCast(LParenLoc,
+ SourceRange(LParenLoc, RParenLoc),
+ /*InitList=*/true);
+ InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
+ ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
+ &literalType);
+ if (Result.isInvalid())
+ return ExprError();
+ LiteralExpr = Result.get();
+
+ bool isFileScope = !CurContext->isFunctionOrMethod();
+
+ // In C, compound literals are l-values for some reason.
+ // For GCC compatibility, in C++, file-scope array compound literals with
+ // constant initializers are also l-values, and compound literals are
+ // otherwise prvalues.
+ //
+ // (GCC also treats C++ list-initialized file-scope array prvalues with
+ // constant initializers as l-values, but that's non-conforming, so we don't
+ // follow it there.)
+ //
+ // FIXME: It would be better to handle the lvalue cases as materializing and
+ // lifetime-extending a temporary object, but our materialized temporaries
+ // representation only supports lifetime extension from a variable, not "out
+ // of thin air".
+ // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
+ // is bound to the result of applying array-to-pointer decay to the compound
+ // literal.
+ // FIXME: GCC supports compound literals of reference type, which should
+ // obviously have a value kind derived from the kind of reference involved.
+ ExprValueKind VK =
+ (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
+ ? VK_PRValue
+ : VK_LValue;
+
+ if (isFileScope)
+ if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
+ for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
+ Expr *Init = ILE->getInit(i);
+ ILE->setInit(i, ConstantExpr::Create(Context, Init));
+ }
+
+ auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
+ VK, LiteralExpr, isFileScope);
+ if (isFileScope) {
+ if (!LiteralExpr->isTypeDependent() &&
+ !LiteralExpr->isValueDependent() &&
+ !literalType->isDependentType()) // C99 6.5.2.5p3
+ if (CheckForConstantInitializer(LiteralExpr, literalType))
+ return ExprError();
+ } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
+ literalType.getAddressSpace() != LangAS::Default) {
+ // Embedded-C extensions to C99 6.5.2.5:
+ // "If the compound literal occurs inside the body of a function, the
+ // type name shall not be qualified by an address-space qualifier."
+ Diag(LParenLoc, diag::err_compound_literal_with_address_space)
+ << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
+ return ExprError();
+ }
+
+ if (!isFileScope && !getLangOpts().CPlusPlus) {
+ // Compound literals that have automatic storage duration are destroyed at
+ // the end of the scope in C; in C++, they're just temporaries.
+
+ // Emit diagnostics if it is or contains a C union type that is non-trivial
+ // to destruct.
+ if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
+ checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
+ NTCUC_CompoundLiteral, NTCUK_Destruct);
+
+ // Diagnose jumps that enter or exit the lifetime of the compound literal.
+ if (literalType.isDestructedType()) {
+ Cleanup.setExprNeedsCleanups(true);
+ ExprCleanupObjects.push_back(E);
+ getCurFunction()->setHasBranchProtectedScope();
+ }
+ }
+
+ if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
+ E->getType().hasNonTrivialToPrimitiveCopyCUnion())
+ checkNonTrivialCUnionInInitializer(E->getInitializer(),
+ E->getInitializer()->getExprLoc());
+
+ return MaybeBindToTemporary(E);
+}
+
+ExprResult
+Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
+ SourceLocation RBraceLoc) {
+ // Only produce each kind of designated initialization diagnostic once.
+ SourceLocation FirstDesignator;
+ bool DiagnosedArrayDesignator = false;
+ bool DiagnosedNestedDesignator = false;
+ bool DiagnosedMixedDesignator = false;
+
+ // Check that any designated initializers are syntactically valid in the
+ // current language mode.
+ for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
+ if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
+ if (FirstDesignator.isInvalid())
+ FirstDesignator = DIE->getBeginLoc();
+
+ if (!getLangOpts().CPlusPlus)
+ break;
+
+ if (!DiagnosedNestedDesignator && DIE->size() > 1) {
+ DiagnosedNestedDesignator = true;
+ Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
+ << DIE->getDesignatorsSourceRange();
+ }
+
+ for (auto &Desig : DIE->designators()) {
+ if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
+ DiagnosedArrayDesignator = true;
+ Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
+ << Desig.getSourceRange();
+ }
+ }
+
+ if (!DiagnosedMixedDesignator &&
+ !isa<DesignatedInitExpr>(InitArgList[0])) {
+ DiagnosedMixedDesignator = true;
+ Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
+ << DIE->getSourceRange();
+ Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
+ << InitArgList[0]->getSourceRange();
+ }
+ } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
+ isa<DesignatedInitExpr>(InitArgList[0])) {
+ DiagnosedMixedDesignator = true;
+ auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
+ Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
+ << DIE->getSourceRange();
+ Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
+ << InitArgList[I]->getSourceRange();
+ }
+ }
+
+ if (FirstDesignator.isValid()) {
+ // Only diagnose designated initiaization as a C++20 extension if we didn't
+ // already diagnose use of (non-C++20) C99 designator syntax.
+ if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
+ !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
+ Diag(FirstDesignator, getLangOpts().CPlusPlus20
+ ? diag::warn_cxx17_compat_designated_init
+ : diag::ext_cxx_designated_init);
+ } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
+ Diag(FirstDesignator, diag::ext_designated_init);
+ }
+ }
+
+ return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
+}
+
+ExprResult
+Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
+ SourceLocation RBraceLoc) {
+ // Semantic analysis for initializers is done by ActOnDeclarator() and
+ // CheckInitializer() - it requires knowledge of the object being initialized.
+
+ // Immediately handle non-overload placeholders. Overloads can be
+ // resolved contextually, but everything else here can't.
+ for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
+ if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
+
+ // Ignore failures; dropping the entire initializer list because
+ // of one failure would be terrible for indexing/etc.
+ if (result.isInvalid()) continue;
+
+ InitArgList[I] = result.get();
+ }
+ }
+
+ InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
+ RBraceLoc);
+ E->setType(Context.VoidTy); // FIXME: just a place holder for now.
+ return E;
+}
+
+/// Do an explicit extend of the given block pointer if we're in ARC.
+void Sema::maybeExtendBlockObject(ExprResult &E) {
+ assert(E.get()->getType()->isBlockPointerType());
+ assert(E.get()->isPRValue());
+
+ // Only do this in an r-value context.
+ if (!getLangOpts().ObjCAutoRefCount) return;
+
+ E = ImplicitCastExpr::Create(
+ Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
+ /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
+ Cleanup.setExprNeedsCleanups(true);
+}
+
+/// Prepare a conversion of the given expression to an ObjC object
+/// pointer type.
+CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
+ QualType type = E.get()->getType();
+ if (type->isObjCObjectPointerType()) {
+ return CK_BitCast;
+ } else if (type->isBlockPointerType()) {
+ maybeExtendBlockObject(E);
+ return CK_BlockPointerToObjCPointerCast;
+ } else {
+ assert(type->isPointerType());
+ return CK_CPointerToObjCPointerCast;
+ }
+}
+
+/// Prepares for a scalar cast, performing all the necessary stages
+/// except the final cast and returning the kind required.
+CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
+ // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
+ // Also, callers should have filtered out the invalid cases with
+ // pointers. Everything else should be possible.
+
+ QualType SrcTy = Src.get()->getType();
+ if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
+ return CK_NoOp;
+
+ switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+
+ case Type::STK_CPointer:
+ case Type::STK_BlockPointer:
+ case Type::STK_ObjCObjectPointer:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_CPointer: {
+ LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
+ LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
+ if (SrcAS != DestAS)
+ return CK_AddressSpaceConversion;
+ if (Context.hasCvrSimilarType(SrcTy, DestTy))
+ return CK_NoOp;
+ return CK_BitCast;
+ }
+ case Type::STK_BlockPointer:
+ return (SrcKind == Type::STK_BlockPointer
+ ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
+ case Type::STK_ObjCObjectPointer:
+ if (SrcKind == Type::STK_ObjCObjectPointer)
+ return CK_BitCast;
+ if (SrcKind == Type::STK_CPointer)
+ return CK_CPointerToObjCPointerCast;
+ maybeExtendBlockObject(Src);
+ return CK_BlockPointerToObjCPointerCast;
+ case Type::STK_Bool:
+ return CK_PointerToBoolean;
+ case Type::STK_Integral:
+ return CK_PointerToIntegral;
+ case Type::STK_Floating:
+ case Type::STK_FloatingComplex:
+ case Type::STK_IntegralComplex:
+ case Type::STK_MemberPointer:
+ case Type::STK_FixedPoint:
+ llvm_unreachable("illegal cast from pointer");
+ }
+ llvm_unreachable("Should have returned before this");
+
+ case Type::STK_FixedPoint:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_FixedPoint:
+ return CK_FixedPointCast;
+ case Type::STK_Bool:
+ return CK_FixedPointToBoolean;
+ case Type::STK_Integral:
+ return CK_FixedPointToIntegral;
+ case Type::STK_Floating:
+ return CK_FixedPointToFloating;
+ case Type::STK_IntegralComplex:
+ case Type::STK_FloatingComplex:
+ Diag(Src.get()->getExprLoc(),
+ diag::err_unimplemented_conversion_with_fixed_point_type)
+ << DestTy;
+ return CK_IntegralCast;
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
+ case Type::STK_MemberPointer:
+ llvm_unreachable("illegal cast to pointer type");
+ }
+ llvm_unreachable("Should have returned before this");
+
+ case Type::STK_Bool: // casting from bool is like casting from an integer
+ case Type::STK_Integral:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
+ if (Src.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull))
+ return CK_NullToPointer;
+ return CK_IntegralToPointer;
+ case Type::STK_Bool:
+ return CK_IntegralToBoolean;
+ case Type::STK_Integral:
+ return CK_IntegralCast;
+ case Type::STK_Floating:
+ return CK_IntegralToFloating;
+ case Type::STK_IntegralComplex:
+ Src = ImpCastExprToType(Src.get(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_IntegralCast);
+ return CK_IntegralRealToComplex;
+ case Type::STK_FloatingComplex:
+ Src = ImpCastExprToType(Src.get(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_IntegralToFloating);
+ return CK_FloatingRealToComplex;
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ case Type::STK_FixedPoint:
+ return CK_IntegralToFixedPoint;
+ }
+ llvm_unreachable("Should have returned before this");
+
+ case Type::STK_Floating:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_Floating:
+ return CK_FloatingCast;
+ case Type::STK_Bool:
+ return CK_FloatingToBoolean;
+ case Type::STK_Integral:
+ return CK_FloatingToIntegral;
+ case Type::STK_FloatingComplex:
+ Src = ImpCastExprToType(Src.get(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_FloatingCast);
+ return CK_FloatingRealToComplex;
+ case Type::STK_IntegralComplex:
+ Src = ImpCastExprToType(Src.get(),
+ DestTy->castAs<ComplexType>()->getElementType(),
+ CK_FloatingToIntegral);
+ return CK_IntegralRealToComplex;
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
+ llvm_unreachable("valid float->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ case Type::STK_FixedPoint:
+ return CK_FloatingToFixedPoint;
+ }
+ llvm_unreachable("Should have returned before this");
+
+ case Type::STK_FloatingComplex:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_FloatingComplex:
+ return CK_FloatingComplexCast;
+ case Type::STK_IntegralComplex:
+ return CK_FloatingComplexToIntegralComplex;
+ case Type::STK_Floating: {
+ QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
+ if (Context.hasSameType(ET, DestTy))
+ return CK_FloatingComplexToReal;
+ Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
+ return CK_FloatingCast;
+ }
+ case Type::STK_Bool:
+ return CK_FloatingComplexToBoolean;
+ case Type::STK_Integral:
+ Src = ImpCastExprToType(Src.get(),
+ SrcTy->castAs<ComplexType>()->getElementType(),
+ CK_FloatingComplexToReal);
+ return CK_FloatingToIntegral;
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
+ llvm_unreachable("valid complex float->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ case Type::STK_FixedPoint:
+ Diag(Src.get()->getExprLoc(),
+ diag::err_unimplemented_conversion_with_fixed_point_type)
+ << SrcTy;
+ return CK_IntegralCast;
+ }
+ llvm_unreachable("Should have returned before this");
+
+ case Type::STK_IntegralComplex:
+ switch (DestTy->getScalarTypeKind()) {
+ case Type::STK_FloatingComplex:
+ return CK_IntegralComplexToFloatingComplex;
+ case Type::STK_IntegralComplex:
+ return CK_IntegralComplexCast;
+ case Type::STK_Integral: {
+ QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
+ if (Context.hasSameType(ET, DestTy))
+ return CK_IntegralComplexToReal;
+ Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
+ return CK_IntegralCast;
+ }
+ case Type::STK_Bool:
+ return CK_IntegralComplexToBoolean;
+ case Type::STK_Floating:
+ Src = ImpCastExprToType(Src.get(),
+ SrcTy->castAs<ComplexType>()->getElementType(),
+ CK_IntegralComplexToReal);
+ return CK_IntegralToFloating;
+ case Type::STK_CPointer:
+ case Type::STK_ObjCObjectPointer:
+ case Type::STK_BlockPointer:
+ llvm_unreachable("valid complex int->pointer cast?");
+ case Type::STK_MemberPointer:
+ llvm_unreachable("member pointer type in C");
+ case Type::STK_FixedPoint:
+ Diag(Src.get()->getExprLoc(),
+ diag::err_unimplemented_conversion_with_fixed_point_type)
+ << SrcTy;
+ return CK_IntegralCast;
+ }
+ llvm_unreachable("Should have returned before this");
+ }
+
+ llvm_unreachable("Unhandled scalar cast");
+}
+
+static bool breakDownVectorType(QualType type, uint64_t &len,
+ QualType &eltType) {
+ // Vectors are simple.
+ if (const VectorType *vecType = type->getAs<VectorType>()) {
+ len = vecType->getNumElements();
+ eltType = vecType->getElementType();
+ assert(eltType->isScalarType());
+ return true;
+ }
+
+ // We allow lax conversion to and from non-vector types, but only if
+ // they're real types (i.e. non-complex, non-pointer scalar types).
+ if (!type->isRealType()) return false;
+
+ len = 1;
+ eltType = type;
+ return true;
+}
+
+/// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
+/// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
+/// allowed?
+///
+/// This will also return false if the two given types do not make sense from
+/// the perspective of SVE bitcasts.
+bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
+ assert(srcTy->isVectorType() || destTy->isVectorType());
+
+ auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
+ if (!FirstType->isSizelessBuiltinType())
+ return false;
+
+ const auto *VecTy = SecondType->getAs<VectorType>();
+ return VecTy &&
+ VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector;
+ };
+
+ return ValidScalableConversion(srcTy, destTy) ||
+ ValidScalableConversion(destTy, srcTy);
+}
+
+/// Are the two types matrix types and do they have the same dimensions i.e.
+/// do they have the same number of rows and the same number of columns?
+bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
+ if (!destTy->isMatrixType() || !srcTy->isMatrixType())
+ return false;
+
+ const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
+ const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
+
+ return matSrcType->getNumRows() == matDestType->getNumRows() &&
+ matSrcType->getNumColumns() == matDestType->getNumColumns();
+}
+
+bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
+ assert(DestTy->isVectorType() || SrcTy->isVectorType());
+
+ uint64_t SrcLen, DestLen;
+ QualType SrcEltTy, DestEltTy;
+ if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
+ return false;
+ if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
+ return false;
+
+ // ASTContext::getTypeSize will return the size rounded up to a
+ // power of 2, so instead of using that, we need to use the raw
+ // element size multiplied by the element count.
+ uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
+ uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
+
+ return (SrcLen * SrcEltSize == DestLen * DestEltSize);
+}
+
+/// Are the two types lax-compatible vector types? That is, given
+/// that one of them is a vector, do they have equal storage sizes,
+/// where the storage size is the number of elements times the element
+/// size?
+///
+/// This will also return false if either of the types is neither a
+/// vector nor a real type.
+bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
+ assert(destTy->isVectorType() || srcTy->isVectorType());
+
+ // Disallow lax conversions between scalars and ExtVectors (these
+ // conversions are allowed for other vector types because common headers
+ // depend on them). Most scalar OP ExtVector cases are handled by the
+ // splat path anyway, which does what we want (convert, not bitcast).
+ // What this rules out for ExtVectors is crazy things like char4*float.
+ if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
+ if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
+
+ return areVectorTypesSameSize(srcTy, destTy);
+}
+
+/// Is this a legal conversion between two types, one of which is
+/// known to be a vector type?
+bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
+ assert(destTy->isVectorType() || srcTy->isVectorType());
+
+ switch (Context.getLangOpts().getLaxVectorConversions()) {
+ case LangOptions::LaxVectorConversionKind::None:
+ return false;
+
+ case LangOptions::LaxVectorConversionKind::Integer:
+ if (!srcTy->isIntegralOrEnumerationType()) {
+ auto *Vec = srcTy->getAs<VectorType>();
+ if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
+ return false;
+ }
+ if (!destTy->isIntegralOrEnumerationType()) {
+ auto *Vec = destTy->getAs<VectorType>();
+ if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
+ return false;
+ }
+ // OK, integer (vector) -> integer (vector) bitcast.
+ break;
+
+ case LangOptions::LaxVectorConversionKind::All:
+ break;
+ }
+
+ return areLaxCompatibleVectorTypes(srcTy, destTy);
+}
+
+bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
+ CastKind &Kind) {
+ if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
+ if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
+ return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
+ << DestTy << SrcTy << R;
+ }
+ } else if (SrcTy->isMatrixType()) {
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_matrix_and_type)
+ << SrcTy << DestTy << R;
+ } else if (DestTy->isMatrixType()) {
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_matrix_and_type)
+ << DestTy << SrcTy << R;
+ }
+
+ Kind = CK_MatrixCast;
+ return false;
+}
+
+bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
+ CastKind &Kind) {
+ assert(VectorTy->isVectorType() && "Not a vector type!");
+
+ if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
+ if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
+ return Diag(R.getBegin(),
+ Ty->isVectorType() ?
+ diag::err_invalid_conversion_between_vectors :
+ diag::err_invalid_conversion_between_vector_and_integer)
+ << VectorTy << Ty << R;
+ } else
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_vector_and_scalar)
+ << VectorTy << Ty << R;
+
+ Kind = CK_BitCast;
+ return false;
+}
+
+ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
+ QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
+
+ if (DestElemTy == SplattedExpr->getType())
+ return SplattedExpr;
+
+ assert(DestElemTy->isFloatingType() ||
+ DestElemTy->isIntegralOrEnumerationType());
+
+ CastKind CK;
+ if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
+ // OpenCL requires that we convert `true` boolean expressions to -1, but
+ // only when splatting vectors.
+ if (DestElemTy->isFloatingType()) {
+ // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
+ // in two steps: boolean to signed integral, then to floating.
+ ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
+ CK_BooleanToSignedIntegral);
+ SplattedExpr = CastExprRes.get();
+ CK = CK_IntegralToFloating;
+ } else {
+ CK = CK_BooleanToSignedIntegral;
+ }
+ } else {
+ ExprResult CastExprRes = SplattedExpr;
+ CK = PrepareScalarCast(CastExprRes, DestElemTy);
+ if (CastExprRes.isInvalid())
+ return ExprError();
+ SplattedExpr = CastExprRes.get();
+ }
+ return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
+}
+
+ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
+ Expr *CastExpr, CastKind &Kind) {
+ assert(DestTy->isExtVectorType() && "Not an extended vector type!");
+
+ QualType SrcTy = CastExpr->getType();
+
+ // If SrcTy is a VectorType, the total size must match to explicitly cast to
+ // an ExtVectorType.
+ // In OpenCL, casts between vectors of different types are not allowed.
+ // (See OpenCL 6.2).
+ if (SrcTy->isVectorType()) {
+ if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
+ (getLangOpts().OpenCL &&
+ !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
+ Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
+ << DestTy << SrcTy << R;
+ return ExprError();
+ }
+ Kind = CK_BitCast;
+ return CastExpr;
+ }
+
+ // All non-pointer scalars can be cast to ExtVector type. The appropriate
+ // conversion will take place first from scalar to elt type, and then
+ // splat from elt type to vector.
+ if (SrcTy->isPointerType())
+ return Diag(R.getBegin(),
+ diag::err_invalid_conversion_between_vector_and_scalar)
+ << DestTy << SrcTy << R;
+
+ Kind = CK_VectorSplat;
+ return prepareVectorSplat(DestTy, CastExpr);
+}
+
+ExprResult
+Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
+ Declarator &D, ParsedType &Ty,
+ SourceLocation RParenLoc, Expr *CastExpr) {
+ assert(!D.isInvalidType() && (CastExpr != nullptr) &&
+ "ActOnCastExpr(): missing type or expr");
+
+ TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
+ if (D.isInvalidType())
+ return ExprError();
+
+ if (getLangOpts().CPlusPlus) {
+ // Check that there are no default arguments (C++ only).
+ CheckExtraCXXDefaultArguments(D);
+ } else {
+ // Make sure any TypoExprs have been dealt with.
+ ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
+ if (!Res.isUsable())
+ return ExprError();
+ CastExpr = Res.get();
+ }
+
+ checkUnusedDeclAttributes(D);
+
+ QualType castType = castTInfo->getType();
+ Ty = CreateParsedType(castType, castTInfo);
+
+ bool isVectorLiteral = false;
+
+ // Check for an altivec or OpenCL literal,
+ // i.e. all the elements are integer constants.
+ ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
+ ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
+ if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
+ && castType->isVectorType() && (PE || PLE)) {
+ if (PLE && PLE->getNumExprs() == 0) {
+ Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
+ return ExprError();
+ }
+ if (PE || PLE->getNumExprs() == 1) {
+ Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
+ if (!E->isTypeDependent() && !E->getType()->isVectorType())
+ isVectorLiteral = true;
+ }
+ else
+ isVectorLiteral = true;
+ }
+
+ // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
+ // then handle it as such.
+ if (isVectorLiteral)
+ return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
+
+ // If the Expr being casted is a ParenListExpr, handle it specially.
+ // This is not an AltiVec-style cast, so turn the ParenListExpr into a
+ // sequence of BinOp comma operators.
+ if (isa<ParenListExpr>(CastExpr)) {
+ ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
+ if (Result.isInvalid()) return ExprError();
+ CastExpr = Result.get();
+ }
+
+ if (getLangOpts().CPlusPlus && !castType->isVoidType())
+ Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
+
+ CheckTollFreeBridgeCast(castType, CastExpr);
+
+ CheckObjCBridgeRelatedCast(castType, CastExpr);
+
+ DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
+
+ return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
+}
+
+ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
+ SourceLocation RParenLoc, Expr *E,
+ TypeSourceInfo *TInfo) {
+ assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
+ "Expected paren or paren list expression");
+
+ Expr **exprs;
+ unsigned numExprs;
+ Expr *subExpr;
+ SourceLocation LiteralLParenLoc, LiteralRParenLoc;
+ if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
+ LiteralLParenLoc = PE->getLParenLoc();
+ LiteralRParenLoc = PE->getRParenLoc();
+ exprs = PE->getExprs();
+ numExprs = PE->getNumExprs();
+ } else { // isa<ParenExpr> by assertion at function entrance
+ LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
+ LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
+ subExpr = cast<ParenExpr>(E)->getSubExpr();
+ exprs = &subExpr;
+ numExprs = 1;
+ }
+
+ QualType Ty = TInfo->getType();
+ assert(Ty->isVectorType() && "Expected vector type");
+
+ SmallVector<Expr *, 8> initExprs;
+ const VectorType *VTy = Ty->castAs<VectorType>();
+ unsigned numElems = VTy->getNumElements();
+
+ // '(...)' form of vector initialization in AltiVec: the number of
+ // initializers must be one or must match the size of the vector.
+ // If a single value is specified in the initializer then it will be
+ // replicated to all the components of the vector
+ if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
+ VTy->getElementType()))
+ return ExprError();
+ if (ShouldSplatAltivecScalarInCast(VTy)) {
+ // The number of initializers must be one or must match the size of the
+ // vector. If a single value is specified in the initializer then it will
+ // be replicated to all the components of the vector
+ if (numExprs == 1) {
+ QualType ElemTy = VTy->getElementType();
+ ExprResult Literal = DefaultLvalueConversion(exprs[0]);
+ if (Literal.isInvalid())
+ return ExprError();
+ Literal = ImpCastExprToType(Literal.get(), ElemTy,
+ PrepareScalarCast(Literal, ElemTy));
+ return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
+ }
+ else if (numExprs < numElems) {
+ Diag(E->getExprLoc(),
+ diag::err_incorrect_number_of_vector_initializers);
+ return ExprError();
+ }
+ else
+ initExprs.append(exprs, exprs + numExprs);
+ }
+ else {
+ // For OpenCL, when the number of initializers is a single value,
+ // it will be replicated to all components of the vector.
+ if (getLangOpts().OpenCL &&
+ VTy->getVectorKind() == VectorType::GenericVector &&
+ numExprs == 1) {
+ QualType ElemTy = VTy->getElementType();
+ ExprResult Literal = DefaultLvalueConversion(exprs[0]);
+ if (Literal.isInvalid())
+ return ExprError();
+ Literal = ImpCastExprToType(Literal.get(), ElemTy,
+ PrepareScalarCast(Literal, ElemTy));
+ return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
+ }
+
+ initExprs.append(exprs, exprs + numExprs);
+ }
+ // FIXME: This means that pretty-printing the final AST will produce curly
+ // braces instead of the original commas.
+ InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
+ initExprs, LiteralRParenLoc);
+ initE->setType(Ty);
+ return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
+}
+
+/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
+/// the ParenListExpr into a sequence of comma binary operators.
+ExprResult
+Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
+ ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
+ if (!E)
+ return OrigExpr;
+
+ ExprResult Result(E->getExpr(0));
+
+ for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
+ Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
+ E->getExpr(i));
+
+ if (Result.isInvalid()) return ExprError();
+
+ return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
+}
+
+ExprResult Sema::ActOnParenListExpr(SourceLocation L,
+ SourceLocation R,
+ MultiExprArg Val) {
+ return ParenListExpr::Create(Context, L, Val, R);
+}
+
+/// Emit a specialized diagnostic when one expression is a null pointer
+/// constant and the other is not a pointer. Returns true if a diagnostic is
+/// emitted.
+bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
+ SourceLocation QuestionLoc) {
+ Expr *NullExpr = LHSExpr;
+ Expr *NonPointerExpr = RHSExpr;
+ Expr::NullPointerConstantKind NullKind =
+ NullExpr->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull);
+
+ if (NullKind == Expr::NPCK_NotNull) {
+ NullExpr = RHSExpr;
+ NonPointerExpr = LHSExpr;
+ NullKind =
+ NullExpr->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull);
+ }
+
+ if (NullKind == Expr::NPCK_NotNull)
+ return false;
+
+ if (NullKind == Expr::NPCK_ZeroExpression)
+ return false;
+
+ if (NullKind == Expr::NPCK_ZeroLiteral) {
+ // In this case, check to make sure that we got here from a "NULL"
+ // string in the source code.
+ NullExpr = NullExpr->IgnoreParenImpCasts();
+ SourceLocation loc = NullExpr->getExprLoc();
+ if (!findMacroSpelling(loc, "NULL"))
+ return false;
+ }
+
+ int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
+ << NonPointerExpr->getType() << DiagType
+ << NonPointerExpr->getSourceRange();
+ return true;
+}
+
+/// Return false if the condition expression is valid, true otherwise.
+static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
+ QualType CondTy = Cond->getType();
+
+ // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
+ if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
+ S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
+ << CondTy << Cond->getSourceRange();
+ return true;
+ }
+
+ // C99 6.5.15p2
+ if (CondTy->isScalarType()) return false;
+
+ S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
+ << CondTy << Cond->getSourceRange();
+ return true;
+}
+
+/// Handle when one or both operands are void type.
+static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
+ ExprResult &RHS) {
+ Expr *LHSExpr = LHS.get();
+ Expr *RHSExpr = RHS.get();
+
+ if (!LHSExpr->getType()->isVoidType())
+ S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
+ << RHSExpr->getSourceRange();
+ if (!RHSExpr->getType()->isVoidType())
+ S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
+ << LHSExpr->getSourceRange();
+ LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
+ RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
+ return S.Context.VoidTy;
+}
+
+/// Return false if the NullExpr can be promoted to PointerTy,
+/// true otherwise.
+static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
+ QualType PointerTy) {
+ if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
+ !NullExpr.get()->isNullPointerConstant(S.Context,
+ Expr::NPC_ValueDependentIsNull))
+ return true;
+
+ NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
+ return false;
+}
+
+/// Checks compatibility between two pointers and return the resulting
+/// type.
+static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc) {
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ if (S.Context.hasSameType(LHSTy, RHSTy)) {
+ // Two identical pointers types are always compatible.
+ return LHSTy;
+ }
+
+ QualType lhptee, rhptee;
+
+ // Get the pointee types.
+ bool IsBlockPointer = false;
+ if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
+ lhptee = LHSBTy->getPointeeType();
+ rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
+ IsBlockPointer = true;
+ } else {
+ lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
+ rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
+ }
+
+ // C99 6.5.15p6: If both operands are pointers to compatible types or to
+ // differently qualified versions of compatible types, the result type is
+ // a pointer to an appropriately qualified version of the composite
+ // type.
+
+ // Only CVR-qualifiers exist in the standard, and the differently-qualified
+ // clause doesn't make sense for our extensions. E.g. address space 2 should
+ // be incompatible with address space 3: they may live on different devices or
+ // anything.
+ Qualifiers lhQual = lhptee.getQualifiers();
+ Qualifiers rhQual = rhptee.getQualifiers();
+
+ LangAS ResultAddrSpace = LangAS::Default;
+ LangAS LAddrSpace = lhQual.getAddressSpace();
+ LangAS RAddrSpace = rhQual.getAddressSpace();
+
+ // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
+ // spaces is disallowed.
+ if (lhQual.isAddressSpaceSupersetOf(rhQual))
+ ResultAddrSpace = LAddrSpace;
+ else if (rhQual.isAddressSpaceSupersetOf(lhQual))
+ ResultAddrSpace = RAddrSpace;
+ else {
+ S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
+ << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
+ auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
+ lhQual.removeCVRQualifiers();
+ rhQual.removeCVRQualifiers();
+
+ // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
+ // (C99 6.7.3) for address spaces. We assume that the check should behave in
+ // the same manner as it's defined for CVR qualifiers, so for OpenCL two
+ // qual types are compatible iff
+ // * corresponded types are compatible
+ // * CVR qualifiers are equal
+ // * address spaces are equal
+ // Thus for conditional operator we merge CVR and address space unqualified
+ // pointees and if there is a composite type we return a pointer to it with
+ // merged qualifiers.
+ LHSCastKind =
+ LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
+ RHSCastKind =
+ RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
+ lhQual.removeAddressSpace();
+ rhQual.removeAddressSpace();
+
+ lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
+ rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
+
+ QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
+
+ if (CompositeTy.isNull()) {
+ // In this situation, we assume void* type. No especially good
+ // reason, but this is what gcc does, and we do have to pick
+ // to get a consistent AST.
+ QualType incompatTy;
+ incompatTy = S.Context.getPointerType(
+ S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
+ LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
+ RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
+
+ // FIXME: For OpenCL the warning emission and cast to void* leaves a room
+ // for casts between types with incompatible address space qualifiers.
+ // For the following code the compiler produces casts between global and
+ // local address spaces of the corresponded innermost pointees:
+ // local int *global *a;
+ // global int *global *b;
+ // a = (0 ? a : b); // see C99 6.5.16.1.p1.
+ S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+
+ return incompatTy;
+ }
+
+ // The pointer types are compatible.
+ // In case of OpenCL ResultTy should have the address space qualifier
+ // which is a superset of address spaces of both the 2nd and the 3rd
+ // operands of the conditional operator.
+ QualType ResultTy = [&, ResultAddrSpace]() {
+ if (S.getLangOpts().OpenCL) {
+ Qualifiers CompositeQuals = CompositeTy.getQualifiers();
+ CompositeQuals.setAddressSpace(ResultAddrSpace);
+ return S.Context
+ .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
+ .withCVRQualifiers(MergedCVRQual);
+ }
+ return CompositeTy.withCVRQualifiers(MergedCVRQual);
+ }();
+ if (IsBlockPointer)
+ ResultTy = S.Context.getBlockPointerType(ResultTy);
+ else
+ ResultTy = S.Context.getPointerType(ResultTy);
+
+ LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
+ RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
+ return ResultTy;
+}
+
+/// Return the resulting type when the operands are both block pointers.
+static QualType checkConditionalBlockPointerCompatibility(Sema &S,
+ ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc) {
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
+ if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
+ QualType destType = S.Context.getPointerType(S.Context.VoidTy);
+ LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
+ RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
+ return destType;
+ }
+ S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ // We have 2 block pointer types.
+ return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
+}
+
+/// Return the resulting type when the operands are both pointers.
+static QualType
+checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc) {
+ // get the pointer types
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ // get the "pointed to" types
+ QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
+
+ // ignore qualifiers on void (C99 6.5.15p3, clause 6)
+ if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
+ // Figure out necessary qualifiers (C99 6.5.15p6)
+ QualType destPointee
+ = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
+ QualType destType = S.Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
+ // Promote to void*.
+ RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
+ return destType;
+ }
+ if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
+ QualType destPointee
+ = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
+ QualType destType = S.Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
+ // Promote to void*.
+ LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
+ return destType;
+ }
+
+ return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
+}
+
+/// Return false if the first expression is not an integer and the second
+/// expression is not a pointer, true otherwise.
+static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
+ Expr* PointerExpr, SourceLocation Loc,
+ bool IsIntFirstExpr) {
+ if (!PointerExpr->getType()->isPointerType() ||
+ !Int.get()->getType()->isIntegerType())
+ return false;
+
+ Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
+ Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
+
+ S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
+ << Expr1->getType() << Expr2->getType()
+ << Expr1->getSourceRange() << Expr2->getSourceRange();
+ Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
+ CK_IntegralToPointer);
+ return true;
+}
+
+/// Simple conversion between integer and floating point types.
+///
+/// Used when handling the OpenCL conditional operator where the
+/// condition is a vector while the other operands are scalar.
+///
+/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
+/// types are either integer or floating type. Between the two
+/// operands, the type with the higher rank is defined as the "result
+/// type". The other operand needs to be promoted to the same type. No
+/// other type promotion is allowed. We cannot use
+/// UsualArithmeticConversions() for this purpose, since it always
+/// promotes promotable types.
+static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation QuestionLoc) {
+ LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+ RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType LHSType =
+ S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
+ QualType RHSType =
+ S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
+
+ if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
+ S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
+ << LHSType << LHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
+ S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
+ << RHSType << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ // If both types are identical, no conversion is needed.
+ if (LHSType == RHSType)
+ return LHSType;
+
+ // Now handle "real" floating types (i.e. float, double, long double).
+ if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
+ return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
+ /*IsCompAssign = */ false);
+
+ // Finally, we have two differing integer types.
+ return handleIntegerConversion<doIntegralCast, doIntegralCast>
+ (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
+}
+
+/// Convert scalar operands to a vector that matches the
+/// condition in length.
+///
+/// Used when handling the OpenCL conditional operator where the
+/// condition is a vector while the other operands are scalar.
+///
+/// We first compute the "result type" for the scalar operands
+/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
+/// into a vector of that type where the length matches the condition
+/// vector type. s6.11.6 requires that the element types of the result
+/// and the condition must have the same number of bits.
+static QualType
+OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
+ QualType CondTy, SourceLocation QuestionLoc) {
+ QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
+ if (ResTy.isNull()) return QualType();
+
+ const VectorType *CV = CondTy->getAs<VectorType>();
+ assert(CV);
+
+ // Determine the vector result type
+ unsigned NumElements = CV->getNumElements();
+ QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
+
+ // Ensure that all types have the same number of bits
+ if (S.Context.getTypeSize(CV->getElementType())
+ != S.Context.getTypeSize(ResTy)) {
+ // Since VectorTy is created internally, it does not pretty print
+ // with an OpenCL name. Instead, we just print a description.
+ std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
+ SmallString<64> Str;
+ llvm::raw_svector_ostream OS(Str);
+ OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
+ S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
+ << CondTy << OS.str();
+ return QualType();
+ }
+
+ // Convert operands to the vector result type
+ LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
+ RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
+
+ return VectorTy;
+}
+
+/// Return false if this is a valid OpenCL condition vector
+static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
+ SourceLocation QuestionLoc) {
+ // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
+ // integral type.
+ const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
+ assert(CondTy);
+ QualType EleTy = CondTy->getElementType();
+ if (EleTy->isIntegerType()) return false;
+
+ S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
+ << Cond->getType() << Cond->getSourceRange();
+ return true;
+}
+
+/// Return false if the vector condition type and the vector
+/// result type are compatible.
+///
+/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
+/// number of elements, and their element types have the same number
+/// of bits.
+static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
+ SourceLocation QuestionLoc) {
+ const VectorType *CV = CondTy->getAs<VectorType>();
+ const VectorType *RV = VecResTy->getAs<VectorType>();
+ assert(CV && RV);
+
+ if (CV->getNumElements() != RV->getNumElements()) {
+ S.Diag(QuestionLoc, diag::err_conditional_vector_size)
+ << CondTy << VecResTy;
+ return true;
+ }
+
+ QualType CVE = CV->getElementType();
+ QualType RVE = RV->getElementType();
+
+ if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
+ S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
+ << CondTy << VecResTy;
+ return true;
+ }
+
+ return false;
+}
+
+/// Return the resulting type for the conditional operator in
+/// OpenCL (aka "ternary selection operator", OpenCL v1.1
+/// s6.3.i) when the condition is a vector type.
+static QualType
+OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
+ ExprResult &LHS, ExprResult &RHS,
+ SourceLocation QuestionLoc) {
+ Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
+ if (Cond.isInvalid())
+ return QualType();
+ QualType CondTy = Cond.get()->getType();
+
+ if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
+ return QualType();
+
+ // If either operand is a vector then find the vector type of the
+ // result as specified in OpenCL v1.1 s6.3.i.
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
+ /*isCompAssign*/false,
+ /*AllowBothBool*/true,
+ /*AllowBoolConversions*/false);
+ if (VecResTy.isNull()) return QualType();
+ // The result type must match the condition type as specified in
+ // OpenCL v1.1 s6.11.6.
+ if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
+ return QualType();
+ return VecResTy;
+ }
+
+ // Both operands are scalar.
+ return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
+}
+
+/// Return true if the Expr is block type
+static bool checkBlockType(Sema &S, const Expr *E) {
+ if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
+ QualType Ty = CE->getCallee()->getType();
+ if (Ty->isBlockPointerType()) {
+ S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
+/// In that case, LHS = cond.
+/// C99 6.5.15
+QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
+ ExprResult &RHS, ExprValueKind &VK,
+ ExprObjectKind &OK,
+ SourceLocation QuestionLoc) {
+
+ ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
+ if (!LHSResult.isUsable()) return QualType();
+ LHS = LHSResult;
+
+ ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
+ if (!RHSResult.isUsable()) return QualType();
+ RHS = RHSResult;
+
+ // C++ is sufficiently different to merit its own checker.
+ if (getLangOpts().CPlusPlus)
+ return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
+
+ VK = VK_PRValue;
+ OK = OK_Ordinary;
+
+ if (Context.isDependenceAllowed() &&
+ (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
+ RHS.get()->isTypeDependent())) {
+ assert(!getLangOpts().CPlusPlus);
+ assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
+ RHS.get()->containsErrors()) &&
+ "should only occur in error-recovery path.");
+ return Context.DependentTy;
+ }
+
+ // The OpenCL operator with a vector condition is sufficiently
+ // different to merit its own checker.
+ if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
+ Cond.get()->getType()->isExtVectorType())
+ return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
+
+ // First, check the condition.
+ Cond = UsualUnaryConversions(Cond.get());
+ if (Cond.isInvalid())
+ return QualType();
+ if (checkCondition(*this, Cond.get(), QuestionLoc))
+ return QualType();
+
+ // Now check the two expressions.
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType())
+ return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
+ /*AllowBothBool*/true,
+ /*AllowBoolConversions*/false);
+
+ QualType ResTy =
+ UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ // Diagnose attempts to convert between __ibm128, __float128 and long double
+ // where such conversions currently can't be handled.
+ if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
+ Diag(QuestionLoc,
+ diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
+ // selection operator (?:).
+ if (getLangOpts().OpenCL &&
+ ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
+ return QualType();
+ }
+
+ // If both operands have arithmetic type, do the usual arithmetic conversions
+ // to find a common type: C99 6.5.15p3,5.
+ if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
+ // Disallow invalid arithmetic conversions, such as those between bit-
+ // precise integers types of different sizes, or between a bit-precise
+ // integer and another type.
+ if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
+ RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
+
+ return ResTy;
+ }
+
+ // And if they're both bfloat (which isn't arithmetic), that's fine too.
+ if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
+ return LHSTy;
+ }
+
+ // If both operands are the same structure or union type, the result is that
+ // type.
+ if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
+ if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
+ if (LHSRT->getDecl() == RHSRT->getDecl())
+ // "If both the operands have structure or union type, the result has
+ // that type." This implies that CV qualifiers are dropped.
+ return LHSTy.getUnqualifiedType();
+ // FIXME: Type of conditional expression must be complete in C mode.
+ }
+
+ // C99 6.5.15p5: "If both operands have void type, the result has void type."
+ // The following || allows only one side to be void (a GCC-ism).
+ if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
+ return checkConditionalVoidType(*this, LHS, RHS);
+ }
+
+ // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
+ // the type of the other operand."
+ if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
+ if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
+
+ // All objective-c pointer type analysis is done here.
+ QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
+ QuestionLoc);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+ if (!compositeType.isNull())
+ return compositeType;
+
+
+ // Handle block pointer types.
+ if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
+ return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
+ QuestionLoc);
+
+ // Check constraints for C object pointers types (C99 6.5.15p3,6).
+ if (LHSTy->isPointerType() && RHSTy->isPointerType())
+ return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
+ QuestionLoc);
+
+ // GCC compatibility: soften pointer/integer mismatch. Note that
+ // null pointers have been filtered out by this point.
+ if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
+ /*IsIntFirstExpr=*/true))
+ return RHSTy;
+ if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
+ /*IsIntFirstExpr=*/false))
+ return LHSTy;
+
+ // Allow ?: operations in which both operands have the same
+ // built-in sizeless type.
+ if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy))
+ return LHSTy;
+
+ // Emit a better diagnostic if one of the expressions is a null pointer
+ // constant and the other is not a pointer type. In this case, the user most
+ // likely forgot to take the address of the other expression.
+ if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
+ return QualType();
+
+ // Otherwise, the operands are not compatible.
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ return QualType();
+}
+
+/// FindCompositeObjCPointerType - Helper method to find composite type of
+/// two objective-c pointer types of the two input expressions.
+QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation QuestionLoc) {
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+
+ // Handle things like Class and struct objc_class*. Here we case the result
+ // to the pseudo-builtin, because that will be implicitly cast back to the
+ // redefinition type if an attempt is made to access its fields.
+ if (LHSTy->isObjCClassType() &&
+ (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
+ RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
+ return LHSTy;
+ }
+ if (RHSTy->isObjCClassType() &&
+ (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
+ LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
+ return RHSTy;
+ }
+ // And the same for struct objc_object* / id
+ if (LHSTy->isObjCIdType() &&
+ (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
+ RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
+ return LHSTy;
+ }
+ if (RHSTy->isObjCIdType() &&
+ (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
+ LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
+ return RHSTy;
+ }
+ // And the same for struct objc_selector* / SEL
+ if (Context.isObjCSelType(LHSTy) &&
+ (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
+ RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
+ return LHSTy;
+ }
+ if (Context.isObjCSelType(RHSTy) &&
+ (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
+ LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
+ return RHSTy;
+ }
+ // Check constraints for Objective-C object pointers types.
+ if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
+
+ if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
+ // Two identical object pointer types are always compatible.
+ return LHSTy;
+ }
+ const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
+ const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
+ QualType compositeType = LHSTy;
+
+ // If both operands are interfaces and either operand can be
+ // assigned to the other, use that type as the composite
+ // type. This allows
+ // xxx ? (A*) a : (B*) b
+ // where B is a subclass of A.
+ //
+ // Additionally, as for assignment, if either type is 'id'
+ // allow silent coercion. Finally, if the types are
+ // incompatible then make sure to use 'id' as the composite
+ // type so the result is acceptable for sending messages to.
+
+ // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
+ // It could return the composite type.
+ if (!(compositeType =
+ Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
+ // Nothing more to do.
+ } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
+ compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
+ } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
+ compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
+ } else if ((LHSOPT->isObjCQualifiedIdType() ||
+ RHSOPT->isObjCQualifiedIdType()) &&
+ Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
+ true)) {
+ // Need to handle "id<xx>" explicitly.
+ // GCC allows qualified id and any Objective-C type to devolve to
+ // id. Currently localizing to here until clear this should be
+ // part of ObjCQualifiedIdTypesAreCompatible.
+ compositeType = Context.getObjCIdType();
+ } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
+ compositeType = Context.getObjCIdType();
+ } else {
+ Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
+ << LHSTy << RHSTy
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ QualType incompatTy = Context.getObjCIdType();
+ LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
+ return incompatTy;
+ }
+ // The object pointer types are compatible.
+ LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
+ RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
+ return compositeType;
+ }
+ // Check Objective-C object pointer types and 'void *'
+ if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
+ if (getLangOpts().ObjCAutoRefCount) {
+ // ARC forbids the implicit conversion of object pointers to 'void *',
+ // so these types are not compatible.
+ Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ LHS = RHS = true;
+ return QualType();
+ }
+ QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType destPointee
+ = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
+ // Promote to void*.
+ RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
+ return destType;
+ }
+ if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
+ if (getLangOpts().ObjCAutoRefCount) {
+ // ARC forbids the implicit conversion of object pointers to 'void *',
+ // so these types are not compatible.
+ Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ LHS = RHS = true;
+ return QualType();
+ }
+ QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
+ QualType destPointee
+ = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
+ QualType destType = Context.getPointerType(destPointee);
+ // Add qualifiers if necessary.
+ RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
+ // Promote to void*.
+ LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
+ return destType;
+ }
+ return QualType();
+}
+
+/// SuggestParentheses - Emit a note with a fixit hint that wraps
+/// ParenRange in parentheses.
+static void SuggestParentheses(Sema &Self, SourceLocation Loc,
+ const PartialDiagnostic &Note,
+ SourceRange ParenRange) {
+ SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
+ if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
+ EndLoc.isValid()) {
+ Self.Diag(Loc, Note)
+ << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
+ << FixItHint::CreateInsertion(EndLoc, ")");
+ } else {
+ // We can't display the parentheses, so just show the bare note.
+ Self.Diag(Loc, Note) << ParenRange;
+ }
+}
+
+static bool IsArithmeticOp(BinaryOperatorKind Opc) {
+ return BinaryOperator::isAdditiveOp(Opc) ||
+ BinaryOperator::isMultiplicativeOp(Opc) ||
+ BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
+ // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
+ // not any of the logical operators. Bitwise-xor is commonly used as a
+ // logical-xor because there is no logical-xor operator. The logical
+ // operators, including uses of xor, have a high false positive rate for
+ // precedence warnings.
+}
+
+/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
+/// expression, either using a built-in or overloaded operator,
+/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
+/// expression.
+static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
+ Expr **RHSExprs) {
+ // Don't strip parenthesis: we should not warn if E is in parenthesis.
+ E = E->IgnoreImpCasts();
+ E = E->IgnoreConversionOperatorSingleStep();
+ E = E->IgnoreImpCasts();
+ if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
+ E = MTE->getSubExpr();
+ E = E->IgnoreImpCasts();
+ }
+
+ // Built-in binary operator.
+ if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
+ if (IsArithmeticOp(OP->getOpcode())) {
+ *Opcode = OP->getOpcode();
+ *RHSExprs = OP->getRHS();
+ return true;
+ }
+ }
+
+ // Overloaded operator.
+ if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
+ if (Call->getNumArgs() != 2)
+ return false;
+
+ // Make sure this is really a binary operator that is safe to pass into
+ // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
+ OverloadedOperatorKind OO = Call->getOperator();
+ if (OO < OO_Plus || OO > OO_Arrow ||
+ OO == OO_PlusPlus || OO == OO_MinusMinus)
+ return false;
+
+ BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
+ if (IsArithmeticOp(OpKind)) {
+ *Opcode = OpKind;
+ *RHSExprs = Call->getArg(1);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
+/// or is a logical expression such as (x==y) which has int type, but is
+/// commonly interpreted as boolean.
+static bool ExprLooksBoolean(Expr *E) {
+ E = E->IgnoreParenImpCasts();
+
+ if (E->getType()->isBooleanType())
+ return true;
+ if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
+ return OP->isComparisonOp() || OP->isLogicalOp();
+ if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
+ return OP->getOpcode() == UO_LNot;
+ if (E->getType()->isPointerType())
+ return true;
+ // FIXME: What about overloaded operator calls returning "unspecified boolean
+ // type"s (commonly pointer-to-members)?
+
+ return false;
+}
+
+/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
+/// and binary operator are mixed in a way that suggests the programmer assumed
+/// the conditional operator has higher precedence, for example:
+/// "int x = a + someBinaryCondition ? 1 : 2".
+static void DiagnoseConditionalPrecedence(Sema &Self,
+ SourceLocation OpLoc,
+ Expr *Condition,
+ Expr *LHSExpr,
+ Expr *RHSExpr) {
+ BinaryOperatorKind CondOpcode;
+ Expr *CondRHS;
+
+ if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
+ return;
+ if (!ExprLooksBoolean(CondRHS))
+ return;
+
+ // The condition is an arithmetic binary expression, with a right-
+ // hand side that looks boolean, so warn.
+
+ unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
+ ? diag::warn_precedence_bitwise_conditional
+ : diag::warn_precedence_conditional;
+
+ Self.Diag(OpLoc, DiagID)
+ << Condition->getSourceRange()
+ << BinaryOperator::getOpcodeStr(CondOpcode);
+
+ SuggestParentheses(
+ Self, OpLoc,
+ Self.PDiag(diag::note_precedence_silence)
+ << BinaryOperator::getOpcodeStr(CondOpcode),
+ SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
+
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::note_precedence_conditional_first),
+ SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
+}
+
+/// Compute the nullability of a conditional expression.
+static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
+ QualType LHSTy, QualType RHSTy,
+ ASTContext &Ctx) {
+ if (!ResTy->isAnyPointerType())
+ return ResTy;
+
+ auto GetNullability = [&Ctx](QualType Ty) {
+ Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
+ if (Kind) {
+ // For our purposes, treat _Nullable_result as _Nullable.
+ if (*Kind == NullabilityKind::NullableResult)
+ return NullabilityKind::Nullable;
+ return *Kind;
+ }
+ return NullabilityKind::Unspecified;
+ };
+
+ auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
+ NullabilityKind MergedKind;
+
+ // Compute nullability of a binary conditional expression.
+ if (IsBin) {
+ if (LHSKind == NullabilityKind::NonNull)
+ MergedKind = NullabilityKind::NonNull;
+ else
+ MergedKind = RHSKind;
+ // Compute nullability of a normal conditional expression.
+ } else {
+ if (LHSKind == NullabilityKind::Nullable ||
+ RHSKind == NullabilityKind::Nullable)
+ MergedKind = NullabilityKind::Nullable;
+ else if (LHSKind == NullabilityKind::NonNull)
+ MergedKind = RHSKind;
+ else if (RHSKind == NullabilityKind::NonNull)
+ MergedKind = LHSKind;
+ else
+ MergedKind = NullabilityKind::Unspecified;
+ }
+
+ // Return if ResTy already has the correct nullability.
+ if (GetNullability(ResTy) == MergedKind)
+ return ResTy;
+
+ // Strip all nullability from ResTy.
+ while (ResTy->getNullability(Ctx))
+ ResTy = ResTy.getSingleStepDesugaredType(Ctx);
+
+ // Create a new AttributedType with the new nullability kind.
+ auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
+ return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
+}
+
+/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
+/// in the case of a the GNU conditional expr extension.
+ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
+ SourceLocation ColonLoc,
+ Expr *CondExpr, Expr *LHSExpr,
+ Expr *RHSExpr) {
+ if (!Context.isDependenceAllowed()) {
+ // C cannot handle TypoExpr nodes in the condition because it
+ // doesn't handle dependent types properly, so make sure any TypoExprs have
+ // been dealt with before checking the operands.
+ ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
+ ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
+ ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
+
+ if (!CondResult.isUsable())
+ return ExprError();
+
+ if (LHSExpr) {
+ if (!LHSResult.isUsable())
+ return ExprError();
+ }
+
+ if (!RHSResult.isUsable())
+ return ExprError();
+
+ CondExpr = CondResult.get();
+ LHSExpr = LHSResult.get();
+ RHSExpr = RHSResult.get();
+ }
+
+ // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
+ // was the condition.
+ OpaqueValueExpr *opaqueValue = nullptr;
+ Expr *commonExpr = nullptr;
+ if (!LHSExpr) {
+ commonExpr = CondExpr;
+ // Lower out placeholder types first. This is important so that we don't
+ // try to capture a placeholder. This happens in few cases in C++; such
+ // as Objective-C++'s dictionary subscripting syntax.
+ if (commonExpr->hasPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(commonExpr);
+ if (!result.isUsable()) return ExprError();
+ commonExpr = result.get();
+ }
+ // We usually want to apply unary conversions *before* saving, except
+ // in the special case of a C++ l-value conditional.
+ if (!(getLangOpts().CPlusPlus
+ && !commonExpr->isTypeDependent()
+ && commonExpr->getValueKind() == RHSExpr->getValueKind()
+ && commonExpr->isGLValue()
+ && commonExpr->isOrdinaryOrBitFieldObject()
+ && RHSExpr->isOrdinaryOrBitFieldObject()
+ && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
+ ExprResult commonRes = UsualUnaryConversions(commonExpr);
+ if (commonRes.isInvalid())
+ return ExprError();
+ commonExpr = commonRes.get();
+ }
+
+ // If the common expression is a class or array prvalue, materialize it
+ // so that we can safely refer to it multiple times.
+ if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
+ commonExpr->getType()->isArrayType())) {
+ ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
+ if (MatExpr.isInvalid())
+ return ExprError();
+ commonExpr = MatExpr.get();
+ }
+
+ opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
+ commonExpr->getType(),
+ commonExpr->getValueKind(),
+ commonExpr->getObjectKind(),
+ commonExpr);
+ LHSExpr = CondExpr = opaqueValue;
+ }
+
+ QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
+ ExprValueKind VK = VK_PRValue;
+ ExprObjectKind OK = OK_Ordinary;
+ ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
+ QualType result = CheckConditionalOperands(Cond, LHS, RHS,
+ VK, OK, QuestionLoc);
+ if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
+ RHS.isInvalid())
+ return ExprError();
+
+ DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
+ RHS.get());
+
+ CheckBoolLikeConversion(Cond.get(), QuestionLoc);
+
+ result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
+ Context);
+
+ if (!commonExpr)
+ return new (Context)
+ ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
+ RHS.get(), result, VK, OK);
+
+ return new (Context) BinaryConditionalOperator(
+ commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
+ ColonLoc, result, VK, OK);
+}
+
+// Check if we have a conversion between incompatible cmse function pointer
+// types, that is, a conversion between a function pointer with the
+// cmse_nonsecure_call attribute and one without.
+static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
+ QualType ToType) {
+ if (const auto *ToFn =
+ dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
+ if (const auto *FromFn =
+ dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
+ FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
+ FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
+
+ return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
+ }
+ }
+ return false;
+}
+
+// checkPointerTypesForAssignment - This is a very tricky routine (despite
+// being closely modeled after the C99 spec:-). The odd characteristic of this
+// routine is it effectively iqnores the qualifiers on the top level pointee.
+// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
+// FIXME: add a couple examples in this comment.
+static Sema::AssignConvertType
+checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
+ assert(LHSType.isCanonical() && "LHS not canonicalized!");
+ assert(RHSType.isCanonical() && "RHS not canonicalized!");
+
+ // get the "pointed to" type (ignoring qualifiers at the top level)
+ const Type *lhptee, *rhptee;
+ Qualifiers lhq, rhq;
+ std::tie(lhptee, lhq) =
+ cast<PointerType>(LHSType)->getPointeeType().split().asPair();
+ std::tie(rhptee, rhq) =
+ cast<PointerType>(RHSType)->getPointeeType().split().asPair();
+
+ Sema::AssignConvertType ConvTy = Sema::Compatible;
+
+ // C99 6.5.16.1p1: This following citation is common to constraints
+ // 3 & 4 (below). ...and the type *pointed to* by the left has all the
+ // qualifiers of the type *pointed to* by the right;
+
+ // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
+ if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
+ lhq.compatiblyIncludesObjCLifetime(rhq)) {
+ // Ignore lifetime for further calculation.
+ lhq.removeObjCLifetime();
+ rhq.removeObjCLifetime();
+ }
+
+ if (!lhq.compatiblyIncludes(rhq)) {
+ // Treat address-space mismatches as fatal.
+ if (!lhq.isAddressSpaceSupersetOf(rhq))
+ return Sema::IncompatiblePointerDiscardsQualifiers;
+
+ // It's okay to add or remove GC or lifetime qualifiers when converting to
+ // and from void*.
+ else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
+ .compatiblyIncludes(
+ rhq.withoutObjCGCAttr().withoutObjCLifetime())
+ && (lhptee->isVoidType() || rhptee->isVoidType()))
+ ; // keep old
+
+ // Treat lifetime mismatches as fatal.
+ else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
+ ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
+
+ // For GCC/MS compatibility, other qualifier mismatches are treated
+ // as still compatible in C.
+ else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
+ }
+
+ // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
+ // incomplete type and the other is a pointer to a qualified or unqualified
+ // version of void...
+ if (lhptee->isVoidType()) {
+ if (rhptee->isIncompleteOrObjectType())
+ return ConvTy;
+
+ // As an extension, we allow cast to/from void* to function pointer.
+ assert(rhptee->isFunctionType());
+ return Sema::FunctionVoidPointer;
+ }
+
+ if (rhptee->isVoidType()) {
+ if (lhptee->isIncompleteOrObjectType())
+ return ConvTy;
+
+ // As an extension, we allow cast to/from void* to function pointer.
+ assert(lhptee->isFunctionType());
+ return Sema::FunctionVoidPointer;
+ }
+
+ // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
+ // unqualified versions of compatible types, ...
+ QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
+ if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
+ // Check if the pointee types are compatible ignoring the sign.
+ // We explicitly check for char so that we catch "char" vs
+ // "unsigned char" on systems where "char" is unsigned.
+ if (lhptee->isCharType())
+ ltrans = S.Context.UnsignedCharTy;
+ else if (lhptee->hasSignedIntegerRepresentation())
+ ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
+
+ if (rhptee->isCharType())
+ rtrans = S.Context.UnsignedCharTy;
+ else if (rhptee->hasSignedIntegerRepresentation())
+ rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
+
+ if (ltrans == rtrans) {
+ // Types are compatible ignoring the sign. Qualifier incompatibility
+ // takes priority over sign incompatibility because the sign
+ // warning can be disabled.
+ if (ConvTy != Sema::Compatible)
+ return ConvTy;
+
+ return Sema::IncompatiblePointerSign;
+ }
+
+ // If we are a multi-level pointer, it's possible that our issue is simply
+ // one of qualification - e.g. char ** -> const char ** is not allowed. If
+ // the eventual target type is the same and the pointers have the same
+ // level of indirection, this must be the issue.
+ if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
+ do {
+ std::tie(lhptee, lhq) =
+ cast<PointerType>(lhptee)->getPointeeType().split().asPair();
+ std::tie(rhptee, rhq) =
+ cast<PointerType>(rhptee)->getPointeeType().split().asPair();
+
+ // Inconsistent address spaces at this point is invalid, even if the
+ // address spaces would be compatible.
+ // FIXME: This doesn't catch address space mismatches for pointers of
+ // different nesting levels, like:
+ // __local int *** a;
+ // int ** b = a;
+ // It's not clear how to actually determine when such pointers are
+ // invalidly incompatible.
+ if (lhq.getAddressSpace() != rhq.getAddressSpace())
+ return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
+
+ } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
+
+ if (lhptee == rhptee)
+ return Sema::IncompatibleNestedPointerQualifiers;
+ }
+
+ // General pointer incompatibility takes priority over qualifiers.
+ if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
+ return Sema::IncompatibleFunctionPointer;
+ return Sema::IncompatiblePointer;
+ }
+ if (!S.getLangOpts().CPlusPlus &&
+ S.IsFunctionConversion(ltrans, rtrans, ltrans))
+ return Sema::IncompatibleFunctionPointer;
+ if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
+ return Sema::IncompatibleFunctionPointer;
+ return ConvTy;
+}
+
+/// checkBlockPointerTypesForAssignment - This routine determines whether two
+/// block pointer types are compatible or whether a block and normal pointer
+/// are compatible. It is more restrict than comparing two function pointer
+// types.
+static Sema::AssignConvertType
+checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
+ QualType RHSType) {
+ assert(LHSType.isCanonical() && "LHS not canonicalized!");
+ assert(RHSType.isCanonical() && "RHS not canonicalized!");
+
+ QualType lhptee, rhptee;
+
+ // get the "pointed to" type (ignoring qualifiers at the top level)
+ lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
+ rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
+
+ // In C++, the types have to match exactly.
+ if (S.getLangOpts().CPlusPlus)
+ return Sema::IncompatibleBlockPointer;
+
+ Sema::AssignConvertType ConvTy = Sema::Compatible;
+
+ // For blocks we enforce that qualifiers are identical.
+ Qualifiers LQuals = lhptee.getLocalQualifiers();
+ Qualifiers RQuals = rhptee.getLocalQualifiers();
+ if (S.getLangOpts().OpenCL) {
+ LQuals.removeAddressSpace();
+ RQuals.removeAddressSpace();
+ }
+ if (LQuals != RQuals)
+ ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
+
+ // FIXME: OpenCL doesn't define the exact compile time semantics for a block
+ // assignment.
+ // The current behavior is similar to C++ lambdas. A block might be
+ // assigned to a variable iff its return type and parameters are compatible
+ // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
+ // an assignment. Presumably it should behave in way that a function pointer
+ // assignment does in C, so for each parameter and return type:
+ // * CVR and address space of LHS should be a superset of CVR and address
+ // space of RHS.
+ // * unqualified types should be compatible.
+ if (S.getLangOpts().OpenCL) {
+ if (!S.Context.typesAreBlockPointerCompatible(
+ S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
+ S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
+ return Sema::IncompatibleBlockPointer;
+ } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
+ return Sema::IncompatibleBlockPointer;
+
+ return ConvTy;
+}
+
+/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
+/// for assignment compatibility.
+static Sema::AssignConvertType
+checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
+ QualType RHSType) {
+ assert(LHSType.isCanonical() && "LHS was not canonicalized!");
+ assert(RHSType.isCanonical() && "RHS was not canonicalized!");
+
+ if (LHSType->isObjCBuiltinType()) {
+ // Class is not compatible with ObjC object pointers.
+ if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
+ !RHSType->isObjCQualifiedClassType())
+ return Sema::IncompatiblePointer;
+ return Sema::Compatible;
+ }
+ if (RHSType->isObjCBuiltinType()) {
+ if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
+ !LHSType->isObjCQualifiedClassType())
+ return Sema::IncompatiblePointer;
+ return Sema::Compatible;
+ }
+ QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
+ QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
+
+ if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
+ // make an exception for id<P>
+ !LHSType->isObjCQualifiedIdType())
+ return Sema::CompatiblePointerDiscardsQualifiers;
+
+ if (S.Context.typesAreCompatible(LHSType, RHSType))
+ return Sema::Compatible;
+ if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
+ return Sema::IncompatibleObjCQualifiedId;
+ return Sema::IncompatiblePointer;
+}
+
+Sema::AssignConvertType
+Sema::CheckAssignmentConstraints(SourceLocation Loc,
+ QualType LHSType, QualType RHSType) {
+ // Fake up an opaque expression. We don't actually care about what
+ // cast operations are required, so if CheckAssignmentConstraints
+ // adds casts to this they'll be wasted, but fortunately that doesn't
+ // usually happen on valid code.
+ OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
+ ExprResult RHSPtr = &RHSExpr;
+ CastKind K;
+
+ return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
+}
+
+/// This helper function returns true if QT is a vector type that has element
+/// type ElementType.
+static bool isVector(QualType QT, QualType ElementType) {
+ if (const VectorType *VT = QT->getAs<VectorType>())
+ return VT->getElementType().getCanonicalType() == ElementType;
+ return false;
+}
+
+/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
+/// has code to accommodate several GCC extensions when type checking
+/// pointers. Here are some objectionable examples that GCC considers warnings:
+///
+/// int a, *pint;
+/// short *pshort;
+/// struct foo *pfoo;
+///
+/// pint = pshort; // warning: assignment from incompatible pointer type
+/// a = pint; // warning: assignment makes integer from pointer without a cast
+/// pint = a; // warning: assignment makes pointer from integer without a cast
+/// pint = pfoo; // warning: assignment from incompatible pointer type
+///
+/// As a result, the code for dealing with pointers is more complex than the
+/// C99 spec dictates.
+///
+/// Sets 'Kind' for any result kind except Incompatible.
+Sema::AssignConvertType
+Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
+ CastKind &Kind, bool ConvertRHS) {
+ QualType RHSType = RHS.get()->getType();
+ QualType OrigLHSType = LHSType;
+
+ // Get canonical types. We're not formatting these types, just comparing
+ // them.
+ LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
+ RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
+
+ // Common case: no conversion required.
+ if (LHSType == RHSType) {
+ Kind = CK_NoOp;
+ return Compatible;
+ }
+
+ // If we have an atomic type, try a non-atomic assignment, then just add an
+ // atomic qualification step.
+ if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
+ Sema::AssignConvertType result =
+ CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
+ if (result != Compatible)
+ return result;
+ if (Kind != CK_NoOp && ConvertRHS)
+ RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
+ Kind = CK_NonAtomicToAtomic;
+ return Compatible;
+ }
+
+ // If the left-hand side is a reference type, then we are in a
+ // (rare!) case where we've allowed the use of references in C,
+ // e.g., as a parameter type in a built-in function. In this case,
+ // just make sure that the type referenced is compatible with the
+ // right-hand side type. The caller is responsible for adjusting
+ // LHSType so that the resulting expression does not have reference
+ // type.
+ if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
+ if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
+ Kind = CK_LValueBitCast;
+ return Compatible;
+ }
+ return Incompatible;
+ }
+
+ // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
+ // to the same ExtVector type.
+ if (LHSType->isExtVectorType()) {
+ if (RHSType->isExtVectorType())
+ return Incompatible;
+ if (RHSType->isArithmeticType()) {
+ // CK_VectorSplat does T -> vector T, so first cast to the element type.
+ if (ConvertRHS)
+ RHS = prepareVectorSplat(LHSType, RHS.get());
+ Kind = CK_VectorSplat;
+ return Compatible;
+ }
+ }
+
+ // Conversions to or from vector type.
+ if (LHSType->isVectorType() || RHSType->isVectorType()) {
+ if (LHSType->isVectorType() && RHSType->isVectorType()) {
+ // Allow assignments of an AltiVec vector type to an equivalent GCC
+ // vector type and vice versa
+ if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
+ // If we are allowing lax vector conversions, and LHS and RHS are both
+ // vectors, the total size only needs to be the same. This is a bitcast;
+ // no bits are changed but the result type is different.
+ if (isLaxVectorConversion(RHSType, LHSType)) {
+ Kind = CK_BitCast;
+ return IncompatibleVectors;
+ }
+ }
+
+ // When the RHS comes from another lax conversion (e.g. binops between
+ // scalars and vectors) the result is canonicalized as a vector. When the
+ // LHS is also a vector, the lax is allowed by the condition above. Handle
+ // the case where LHS is a scalar.
+ if (LHSType->isScalarType()) {
+ const VectorType *VecType = RHSType->getAs<VectorType>();
+ if (VecType && VecType->getNumElements() == 1 &&
+ isLaxVectorConversion(RHSType, LHSType)) {
+ ExprResult *VecExpr = &RHS;
+ *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+ }
+
+ // Allow assignments between fixed-length and sizeless SVE vectors.
+ if ((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) ||
+ (LHSType->isVectorType() && RHSType->isSizelessBuiltinType()))
+ if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
+ Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
+ return Incompatible;
+ }
+
+ // Diagnose attempts to convert between __ibm128, __float128 and long double
+ // where such conversions currently can't be handled.
+ if (unsupportedTypeConversion(*this, LHSType, RHSType))
+ return Incompatible;
+
+ // Disallow assigning a _Complex to a real type in C++ mode since it simply
+ // discards the imaginary part.
+ if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
+ !LHSType->getAs<ComplexType>())
+ return Incompatible;
+
+ // Arithmetic conversions.
+ if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
+ !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
+ if (ConvertRHS)
+ Kind = PrepareScalarCast(RHS, LHSType);
+ return Compatible;
+ }
+
+ // Conversions to normal pointers.
+ if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
+ // U* -> T*
+ if (isa<PointerType>(RHSType)) {
+ LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
+ LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
+ if (AddrSpaceL != AddrSpaceR)
+ Kind = CK_AddressSpaceConversion;
+ else if (Context.hasCvrSimilarType(RHSType, LHSType))
+ Kind = CK_NoOp;
+ else
+ Kind = CK_BitCast;
+ return checkPointerTypesForAssignment(*this, LHSType, RHSType);
+ }
+
+ // int -> T*
+ if (RHSType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null?
+ return IntToPointer;
+ }
+
+ // C pointers are not compatible with ObjC object pointers,
+ // with two exceptions:
+ if (isa<ObjCObjectPointerType>(RHSType)) {
+ // - conversions to void*
+ if (LHSPointer->getPointeeType()->isVoidType()) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
+ // - conversions from 'Class' to the redefinition type
+ if (RHSType->isObjCClassType() &&
+ Context.hasSameType(LHSType,
+ Context.getObjCClassRedefinitionType())) {
+ Kind = CK_BitCast;
+ return Compatible;
+ }
+
+ Kind = CK_BitCast;
+ return IncompatiblePointer;
+ }
+
+ // U^ -> void*
+ if (RHSType->getAs<BlockPointerType>()) {
+ if (LHSPointer->getPointeeType()->isVoidType()) {
+ LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
+ LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
+ ->getPointeeType()
+ .getAddressSpace();
+ Kind =
+ AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
+ return Compatible;
+ }
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions to block pointers.
+ if (isa<BlockPointerType>(LHSType)) {
+ // U^ -> T^
+ if (RHSType->isBlockPointerType()) {
+ LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
+ ->getPointeeType()
+ .getAddressSpace();
+ LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
+ ->getPointeeType()
+ .getAddressSpace();
+ Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
+ return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
+ }
+
+ // int or null -> T^
+ if (RHSType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null
+ return IntToBlockPointer;
+ }
+
+ // id -> T^
+ if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
+ Kind = CK_AnyPointerToBlockPointerCast;
+ return Compatible;
+ }
+
+ // void* -> T^
+ if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
+ if (RHSPT->getPointeeType()->isVoidType()) {
+ Kind = CK_AnyPointerToBlockPointerCast;
+ return Compatible;
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions to Objective-C pointers.
+ if (isa<ObjCObjectPointerType>(LHSType)) {
+ // A* -> B*
+ if (RHSType->isObjCObjectPointerType()) {
+ Kind = CK_BitCast;
+ Sema::AssignConvertType result =
+ checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
+ if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
+ result == Compatible &&
+ !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
+ result = IncompatibleObjCWeakRef;
+ return result;
+ }
+
+ // int or null -> A*
+ if (RHSType->isIntegerType()) {
+ Kind = CK_IntegralToPointer; // FIXME: null
+ return IntToPointer;
+ }
+
+ // In general, C pointers are not compatible with ObjC object pointers,
+ // with two exceptions:
+ if (isa<PointerType>(RHSType)) {
+ Kind = CK_CPointerToObjCPointerCast;
+
+ // - conversions from 'void*'
+ if (RHSType->isVoidPointerType()) {
+ return Compatible;
+ }
+
+ // - conversions to 'Class' from its redefinition type
+ if (LHSType->isObjCClassType() &&
+ Context.hasSameType(RHSType,
+ Context.getObjCClassRedefinitionType())) {
+ return Compatible;
+ }
+
+ return IncompatiblePointer;
+ }
+
+ // Only under strict condition T^ is compatible with an Objective-C pointer.
+ if (RHSType->isBlockPointerType() &&
+ LHSType->isBlockCompatibleObjCPointerType(Context)) {
+ if (ConvertRHS)
+ maybeExtendBlockObject(RHS);
+ Kind = CK_BlockPointerToObjCPointerCast;
+ return Compatible;
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions from pointers that are not covered by the above.
+ if (isa<PointerType>(RHSType)) {
+ // T* -> _Bool
+ if (LHSType == Context.BoolTy) {
+ Kind = CK_PointerToBoolean;
+ return Compatible;
+ }
+
+ // T* -> int
+ if (LHSType->isIntegerType()) {
+ Kind = CK_PointerToIntegral;
+ return PointerToInt;
+ }
+
+ return Incompatible;
+ }
+
+ // Conversions from Objective-C pointers that are not covered by the above.
+ if (isa<ObjCObjectPointerType>(RHSType)) {
+ // T* -> _Bool
+ if (LHSType == Context.BoolTy) {
+ Kind = CK_PointerToBoolean;
+ return Compatible;
+ }
+
+ // T* -> int
+ if (LHSType->isIntegerType()) {
+ Kind = CK_PointerToIntegral;
+ return PointerToInt;
+ }
+
+ return Incompatible;
+ }
+
+ // struct A -> struct B
+ if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
+ if (Context.typesAreCompatible(LHSType, RHSType)) {
+ Kind = CK_NoOp;
+ return Compatible;
+ }
+ }
+
+ if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
+ Kind = CK_IntToOCLSampler;
+ return Compatible;
+ }
+
+ return Incompatible;
+}
+
+/// Constructs a transparent union from an expression that is
+/// used to initialize the transparent union.
+static void ConstructTransparentUnion(Sema &S, ASTContext &C,
+ ExprResult &EResult, QualType UnionType,
+ FieldDecl *Field) {
+ // Build an initializer list that designates the appropriate member
+ // of the transparent union.
+ Expr *E = EResult.get();
+ InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
+ E, SourceLocation());
+ Initializer->setType(UnionType);
+ Initializer->setInitializedFieldInUnion(Field);
+
+ // Build a compound literal constructing a value of the transparent
+ // union type from this initializer list.
+ TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
+ EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
+ VK_PRValue, Initializer, false);
+}
+
+Sema::AssignConvertType
+Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
+ ExprResult &RHS) {
+ QualType RHSType = RHS.get()->getType();
+
+ // If the ArgType is a Union type, we want to handle a potential
+ // transparent_union GCC extension.
+ const RecordType *UT = ArgType->getAsUnionType();
+ if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
+ return Incompatible;
+
+ // The field to initialize within the transparent union.
+ RecordDecl *UD = UT->getDecl();
+ FieldDecl *InitField = nullptr;
+ // It's compatible if the expression matches any of the fields.
+ for (auto *it : UD->fields()) {
+ if (it->getType()->isPointerType()) {
+ // If the transparent union contains a pointer type, we allow:
+ // 1) void pointer
+ // 2) null pointer constant
+ if (RHSType->isPointerType())
+ if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
+ RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
+ InitField = it;
+ break;
+ }
+
+ if (RHS.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ RHS = ImpCastExprToType(RHS.get(), it->getType(),
+ CK_NullToPointer);
+ InitField = it;
+ break;
+ }
+ }
+
+ CastKind Kind;
+ if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
+ == Compatible) {
+ RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
+ InitField = it;
+ break;
+ }
+ }
+
+ if (!InitField)
+ return Incompatible;
+
+ ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
+ return Compatible;
+}
+
+Sema::AssignConvertType
+Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
+ bool Diagnose,
+ bool DiagnoseCFAudited,
+ bool ConvertRHS) {
+ // We need to be able to tell the caller whether we diagnosed a problem, if
+ // they ask us to issue diagnostics.
+ assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
+
+ // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
+ // we can't avoid *all* modifications at the moment, so we need some somewhere
+ // to put the updated value.
+ ExprResult LocalRHS = CallerRHS;
+ ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
+
+ if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
+ if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
+ if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
+ !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
+ Diag(RHS.get()->getExprLoc(),
+ diag::warn_noderef_to_dereferenceable_pointer)
+ << RHS.get()->getSourceRange();
+ }
+ }
+ }
+
+ if (getLangOpts().CPlusPlus) {
+ if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
+ // C++ 5.17p3: If the left operand is not of class type, the
+ // expression is implicitly converted (C++ 4) to the
+ // cv-unqualified type of the left operand.
+ QualType RHSType = RHS.get()->getType();
+ if (Diagnose) {
+ RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
+ AA_Assigning);
+ } else {
+ ImplicitConversionSequence ICS =
+ TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
+ /*SuppressUserConversions=*/false,
+ AllowedExplicit::None,
+ /*InOverloadResolution=*/false,
+ /*CStyle=*/false,
+ /*AllowObjCWritebackConversion=*/false);
+ if (ICS.isFailure())
+ return Incompatible;
+ RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
+ ICS, AA_Assigning);
+ }
+ if (RHS.isInvalid())
+ return Incompatible;
+ Sema::AssignConvertType result = Compatible;
+ if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
+ !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
+ result = IncompatibleObjCWeakRef;
+ return result;
+ }
+
+ // FIXME: Currently, we fall through and treat C++ classes like C
+ // structures.
+ // FIXME: We also fall through for atomics; not sure what should
+ // happen there, though.
+ } else if (RHS.get()->getType() == Context.OverloadTy) {
+ // As a set of extensions to C, we support overloading on functions. These
+ // functions need to be resolved here.
+ DeclAccessPair DAP;
+ if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
+ RHS.get(), LHSType, /*Complain=*/false, DAP))
+ RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
+ else
+ return Incompatible;
+ }
+
+ // C99 6.5.16.1p1: the left operand is a pointer and the right is
+ // a null pointer constant.
+ if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
+ LHSType->isBlockPointerType()) &&
+ RHS.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ if (Diagnose || ConvertRHS) {
+ CastKind Kind;
+ CXXCastPath Path;
+ CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
+ /*IgnoreBaseAccess=*/false, Diagnose);
+ if (ConvertRHS)
+ RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
+ }
+ return Compatible;
+ }
+
+ // OpenCL queue_t type assignment.
+ if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
+ Context, Expr::NPC_ValueDependentIsNull)) {
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
+ return Compatible;
+ }
+
+ // This check seems unnatural, however it is necessary to ensure the proper
+ // conversion of functions/arrays. If the conversion were done for all
+ // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
+ // expressions that suppress this implicit conversion (&, sizeof).
+ //
+ // Suppress this for references: C++ 8.5.3p5.
+ if (!LHSType->isReferenceType()) {
+ // FIXME: We potentially allocate here even if ConvertRHS is false.
+ RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
+ if (RHS.isInvalid())
+ return Incompatible;
+ }
+ CastKind Kind;
+ Sema::AssignConvertType result =
+ CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
+
+ // C99 6.5.16.1p2: The value of the right operand is converted to the
+ // type of the assignment expression.
+ // CheckAssignmentConstraints allows the left-hand side to be a reference,
+ // so that we can use references in built-in functions even in C.
+ // The getNonReferenceType() call makes sure that the resulting expression
+ // does not have reference type.
+ if (result != Incompatible && RHS.get()->getType() != LHSType) {
+ QualType Ty = LHSType.getNonLValueExprType(Context);
+ Expr *E = RHS.get();
+
+ // Check for various Objective-C errors. If we are not reporting
+ // diagnostics and just checking for errors, e.g., during overload
+ // resolution, return Incompatible to indicate the failure.
+ if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
+ CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
+ Diagnose, DiagnoseCFAudited) != ACR_okay) {
+ if (!Diagnose)
+ return Incompatible;
+ }
+ if (getLangOpts().ObjC &&
+ (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
+ E->getType(), E, Diagnose) ||
+ CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
+ if (!Diagnose)
+ return Incompatible;
+ // Replace the expression with a corrected version and continue so we
+ // can find further errors.
+ RHS = E;
+ return Compatible;
+ }
+
+ if (ConvertRHS)
+ RHS = ImpCastExprToType(E, Ty, Kind);
+ }
+
+ return result;
+}
+
+namespace {
+/// The original operand to an operator, prior to the application of the usual
+/// arithmetic conversions and converting the arguments of a builtin operator
+/// candidate.
+struct OriginalOperand {
+ explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
+ if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
+ Op = MTE->getSubExpr();
+ if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
+ Op = BTE->getSubExpr();
+ if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
+ Orig = ICE->getSubExprAsWritten();
+ Conversion = ICE->getConversionFunction();
+ }
+ }
+
+ QualType getType() const { return Orig->getType(); }
+
+ Expr *Orig;
+ NamedDecl *Conversion;
+};
+}
+
+QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
+ ExprResult &RHS) {
+ OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
+
+ Diag(Loc, diag::err_typecheck_invalid_operands)
+ << OrigLHS.getType() << OrigRHS.getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+
+ // If a user-defined conversion was applied to either of the operands prior
+ // to applying the built-in operator rules, tell the user about it.
+ if (OrigLHS.Conversion) {
+ Diag(OrigLHS.Conversion->getLocation(),
+ diag::note_typecheck_invalid_operands_converted)
+ << 0 << LHS.get()->getType();
+ }
+ if (OrigRHS.Conversion) {
+ Diag(OrigRHS.Conversion->getLocation(),
+ diag::note_typecheck_invalid_operands_converted)
+ << 1 << RHS.get()->getType();
+ }
+
+ return QualType();
+}
+
+// Diagnose cases where a scalar was implicitly converted to a vector and
+// diagnose the underlying types. Otherwise, diagnose the error
+// as invalid vector logical operands for non-C++ cases.
+QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
+ ExprResult &RHS) {
+ QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
+ QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
+
+ bool LHSNatVec = LHSType->isVectorType();
+ bool RHSNatVec = RHSType->isVectorType();
+
+ if (!(LHSNatVec && RHSNatVec)) {
+ Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
+ Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
+ Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
+ << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
+ << Vector->getSourceRange();
+ return QualType();
+ }
+
+ Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
+ << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+
+ return QualType();
+}
+
+/// Try to convert a value of non-vector type to a vector type by converting
+/// the type to the element type of the vector and then performing a splat.
+/// If the language is OpenCL, we only use conversions that promote scalar
+/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
+/// for float->int.
+///
+/// OpenCL V2.0 6.2.6.p2:
+/// An error shall occur if any scalar operand type has greater rank
+/// than the type of the vector element.
+///
+/// \param scalar - if non-null, actually perform the conversions
+/// \return true if the operation fails (but without diagnosing the failure)
+static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
+ QualType scalarTy,
+ QualType vectorEltTy,
+ QualType vectorTy,
+ unsigned &DiagID) {
+ // The conversion to apply to the scalar before splatting it,
+ // if necessary.
+ CastKind scalarCast = CK_NoOp;
+
+ if (vectorEltTy->isIntegralType(S.Context)) {
+ if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
+ (scalarTy->isIntegerType() &&
+ S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
+ DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
+ return true;
+ }
+ if (!scalarTy->isIntegralType(S.Context))
+ return true;
+ scalarCast = CK_IntegralCast;
+ } else if (vectorEltTy->isRealFloatingType()) {
+ if (scalarTy->isRealFloatingType()) {
+ if (S.getLangOpts().OpenCL &&
+ S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
+ DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
+ return true;
+ }
+ scalarCast = CK_FloatingCast;
+ }
+ else if (scalarTy->isIntegralType(S.Context))
+ scalarCast = CK_IntegralToFloating;
+ else
+ return true;
+ } else {
+ return true;
+ }
+
+ // Adjust scalar if desired.
+ if (scalar) {
+ if (scalarCast != CK_NoOp)
+ *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
+ *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
+ }
+ return false;
+}
+
+/// Convert vector E to a vector with the same number of elements but different
+/// element type.
+static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
+ const auto *VecTy = E->getType()->getAs<VectorType>();
+ assert(VecTy && "Expression E must be a vector");
+ QualType NewVecTy = S.Context.getVectorType(ElementType,
+ VecTy->getNumElements(),
+ VecTy->getVectorKind());
+
+ // Look through the implicit cast. Return the subexpression if its type is
+ // NewVecTy.
+ if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
+ if (ICE->getSubExpr()->getType() == NewVecTy)
+ return ICE->getSubExpr();
+
+ auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
+ return S.ImpCastExprToType(E, NewVecTy, Cast);
+}
+
+/// Test if a (constant) integer Int can be casted to another integer type
+/// IntTy without losing precision.
+static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
+ QualType OtherIntTy) {
+ QualType IntTy = Int->get()->getType().getUnqualifiedType();
+
+ // Reject cases where the value of the Int is unknown as that would
+ // possibly cause truncation, but accept cases where the scalar can be
+ // demoted without loss of precision.
+ Expr::EvalResult EVResult;
+ bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
+ int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
+ bool IntSigned = IntTy->hasSignedIntegerRepresentation();
+ bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
+
+ if (CstInt) {
+ // If the scalar is constant and is of a higher order and has more active
+ // bits that the vector element type, reject it.
+ llvm::APSInt Result = EVResult.Val.getInt();
+ unsigned NumBits = IntSigned
+ ? (Result.isNegative() ? Result.getMinSignedBits()
+ : Result.getActiveBits())
+ : Result.getActiveBits();
+ if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
+ return true;
+
+ // If the signedness of the scalar type and the vector element type
+ // differs and the number of bits is greater than that of the vector
+ // element reject it.
+ return (IntSigned != OtherIntSigned &&
+ NumBits > S.Context.getIntWidth(OtherIntTy));
+ }
+
+ // Reject cases where the value of the scalar is not constant and it's
+ // order is greater than that of the vector element type.
+ return (Order < 0);
+}
+
+/// Test if a (constant) integer Int can be casted to floating point type
+/// FloatTy without losing precision.
+static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
+ QualType FloatTy) {
+ QualType IntTy = Int->get()->getType().getUnqualifiedType();
+
+ // Determine if the integer constant can be expressed as a floating point
+ // number of the appropriate type.
+ Expr::EvalResult EVResult;
+ bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
+
+ uint64_t Bits = 0;
+ if (CstInt) {
+ // Reject constants that would be truncated if they were converted to
+ // the floating point type. Test by simple to/from conversion.
+ // FIXME: Ideally the conversion to an APFloat and from an APFloat
+ // could be avoided if there was a convertFromAPInt method
+ // which could signal back if implicit truncation occurred.
+ llvm::APSInt Result = EVResult.Val.getInt();
+ llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
+ Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
+ llvm::APFloat::rmTowardZero);
+ llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
+ !IntTy->hasSignedIntegerRepresentation());
+ bool Ignored = false;
+ Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
+ &Ignored);
+ if (Result != ConvertBack)
+ return true;
+ } else {
+ // Reject types that cannot be fully encoded into the mantissa of
+ // the float.
+ Bits = S.Context.getTypeSize(IntTy);
+ unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
+ S.Context.getFloatTypeSemantics(FloatTy));
+ if (Bits > FloatPrec)
+ return true;
+ }
+
+ return false;
+}
+
+/// Attempt to convert and splat Scalar into a vector whose types matches
+/// Vector following GCC conversion rules. The rule is that implicit
+/// conversion can occur when Scalar can be casted to match Vector's element
+/// type without causing truncation of Scalar.
+static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
+ ExprResult *Vector) {
+ QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
+ QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
+ const VectorType *VT = VectorTy->getAs<VectorType>();
+
+ assert(!isa<ExtVectorType>(VT) &&
+ "ExtVectorTypes should not be handled here!");
+
+ QualType VectorEltTy = VT->getElementType();
+
+ // Reject cases where the vector element type or the scalar element type are
+ // not integral or floating point types.
+ if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
+ return true;
+
+ // The conversion to apply to the scalar before splatting it,
+ // if necessary.
+ CastKind ScalarCast = CK_NoOp;
+
+ // Accept cases where the vector elements are integers and the scalar is
+ // an integer.
+ // FIXME: Notionally if the scalar was a floating point value with a precise
+ // integral representation, we could cast it to an appropriate integer
+ // type and then perform the rest of the checks here. GCC will perform
+ // this conversion in some cases as determined by the input language.
+ // We should accept it on a language independent basis.
+ if (VectorEltTy->isIntegralType(S.Context) &&
+ ScalarTy->isIntegralType(S.Context) &&
+ S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
+
+ if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
+ return true;
+
+ ScalarCast = CK_IntegralCast;
+ } else if (VectorEltTy->isIntegralType(S.Context) &&
+ ScalarTy->isRealFloatingType()) {
+ if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
+ ScalarCast = CK_FloatingToIntegral;
+ else
+ return true;
+ } else if (VectorEltTy->isRealFloatingType()) {
+ if (ScalarTy->isRealFloatingType()) {
+
+ // Reject cases where the scalar type is not a constant and has a higher
+ // Order than the vector element type.
+ llvm::APFloat Result(0.0);
+
+ // Determine whether this is a constant scalar. In the event that the
+ // value is dependent (and thus cannot be evaluated by the constant
+ // evaluator), skip the evaluation. This will then diagnose once the
+ // expression is instantiated.
+ bool CstScalar = Scalar->get()->isValueDependent() ||
+ Scalar->get()->EvaluateAsFloat(Result, S.Context);
+ int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
+ if (!CstScalar && Order < 0)
+ return true;
+
+ // If the scalar cannot be safely casted to the vector element type,
+ // reject it.
+ if (CstScalar) {
+ bool Truncated = false;
+ Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
+ llvm::APFloat::rmNearestTiesToEven, &Truncated);
+ if (Truncated)
+ return true;
+ }
+
+ ScalarCast = CK_FloatingCast;
+ } else if (ScalarTy->isIntegralType(S.Context)) {
+ if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
+ return true;
+
+ ScalarCast = CK_IntegralToFloating;
+ } else
+ return true;
+ } else if (ScalarTy->isEnumeralType())
+ return true;
+
+ // Adjust scalar if desired.
+ if (Scalar) {
+ if (ScalarCast != CK_NoOp)
+ *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
+ *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
+ }
+ return false;
+}
+
+QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, bool IsCompAssign,
+ bool AllowBothBool,
+ bool AllowBoolConversions) {
+ if (!IsCompAssign) {
+ LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+ }
+ RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType LHSType = LHS.get()->getType().getUnqualifiedType();
+ QualType RHSType = RHS.get()->getType().getUnqualifiedType();
+
+ const VectorType *LHSVecType = LHSType->getAs<VectorType>();
+ const VectorType *RHSVecType = RHSType->getAs<VectorType>();
+ assert(LHSVecType || RHSVecType);
+
+ if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) ||
+ (RHSVecType && RHSVecType->getElementType()->isBFloat16Type()))
+ return InvalidOperands(Loc, LHS, RHS);
+
+ // AltiVec-style "vector bool op vector bool" combinations are allowed
+ // for some operators but not others.
+ if (!AllowBothBool &&
+ LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
+ RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
+ return InvalidOperands(Loc, LHS, RHS);
+
+ // If the vector types are identical, return.
+ if (Context.hasSameType(LHSType, RHSType))
+ return LHSType;
+
+ // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
+ if (LHSVecType && RHSVecType &&
+ Context.areCompatibleVectorTypes(LHSType, RHSType)) {
+ if (isa<ExtVectorType>(LHSVecType)) {
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
+ return LHSType;
+ }
+
+ if (!IsCompAssign)
+ LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
+ return RHSType;
+ }
+
+ // AllowBoolConversions says that bool and non-bool AltiVec vectors
+ // can be mixed, with the result being the non-bool type. The non-bool
+ // operand must have integer element type.
+ if (AllowBoolConversions && LHSVecType && RHSVecType &&
+ LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
+ (Context.getTypeSize(LHSVecType->getElementType()) ==
+ Context.getTypeSize(RHSVecType->getElementType()))) {
+ if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
+ LHSVecType->getElementType()->isIntegerType() &&
+ RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
+ return LHSType;
+ }
+ if (!IsCompAssign &&
+ LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
+ RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
+ RHSVecType->getElementType()->isIntegerType()) {
+ LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
+ return RHSType;
+ }
+ }
+
+ // Expressions containing fixed-length and sizeless SVE vectors are invalid
+ // since the ambiguity can affect the ABI.
+ auto IsSveConversion = [](QualType FirstType, QualType SecondType) {
+ const VectorType *VecType = SecondType->getAs<VectorType>();
+ return FirstType->isSizelessBuiltinType() && VecType &&
+ (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
+ VecType->getVectorKind() ==
+ VectorType::SveFixedLengthPredicateVector);
+ };
+
+ if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) {
+ Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType;
+ return QualType();
+ }
+
+ // Expressions containing GNU and SVE (fixed or sizeless) vectors are invalid
+ // since the ambiguity can affect the ABI.
+ auto IsSveGnuConversion = [](QualType FirstType, QualType SecondType) {
+ const VectorType *FirstVecType = FirstType->getAs<VectorType>();
+ const VectorType *SecondVecType = SecondType->getAs<VectorType>();
+
+ if (FirstVecType && SecondVecType)
+ return FirstVecType->getVectorKind() == VectorType::GenericVector &&
+ (SecondVecType->getVectorKind() ==
+ VectorType::SveFixedLengthDataVector ||
+ SecondVecType->getVectorKind() ==
+ VectorType::SveFixedLengthPredicateVector);
+
+ return FirstType->isSizelessBuiltinType() && SecondVecType &&
+ SecondVecType->getVectorKind() == VectorType::GenericVector;
+ };
+
+ if (IsSveGnuConversion(LHSType, RHSType) ||
+ IsSveGnuConversion(RHSType, LHSType)) {
+ Diag(Loc, diag::err_typecheck_sve_gnu_ambiguous) << LHSType << RHSType;
+ return QualType();
+ }
+
+ // If there's a vector type and a scalar, try to convert the scalar to
+ // the vector element type and splat.
+ unsigned DiagID = diag::err_typecheck_vector_not_convertable;
+ if (!RHSVecType) {
+ if (isa<ExtVectorType>(LHSVecType)) {
+ if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
+ LHSVecType->getElementType(), LHSType,
+ DiagID))
+ return LHSType;
+ } else {
+ if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
+ return LHSType;
+ }
+ }
+ if (!LHSVecType) {
+ if (isa<ExtVectorType>(RHSVecType)) {
+ if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
+ LHSType, RHSVecType->getElementType(),
+ RHSType, DiagID))
+ return RHSType;
+ } else {
+ if (LHS.get()->isLValue() ||
+ !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
+ return RHSType;
+ }
+ }
+
+ // FIXME: The code below also handles conversion between vectors and
+ // non-scalars, we should break this down into fine grained specific checks
+ // and emit proper diagnostics.
+ QualType VecType = LHSVecType ? LHSType : RHSType;
+ const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
+ QualType OtherType = LHSVecType ? RHSType : LHSType;
+ ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
+ if (isLaxVectorConversion(OtherType, VecType)) {
+ // If we're allowing lax vector conversions, only the total (data) size
+ // needs to be the same. For non compound assignment, if one of the types is
+ // scalar, the result is always the vector type.
+ if (!IsCompAssign) {
+ *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
+ return VecType;
+ // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
+ // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
+ // type. Note that this is already done by non-compound assignments in
+ // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
+ // <1 x T> -> T. The result is also a vector type.
+ } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
+ (OtherType->isScalarType() && VT->getNumElements() == 1)) {
+ ExprResult *RHSExpr = &RHS;
+ *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
+ return VecType;
+ }
+ }
+
+ // Okay, the expression is invalid.
+
+ // If there's a non-vector, non-real operand, diagnose that.
+ if ((!RHSVecType && !RHSType->isRealType()) ||
+ (!LHSVecType && !LHSType->isRealType())) {
+ Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
+ << LHSType << RHSType
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ // OpenCL V1.1 6.2.6.p1:
+ // If the operands are of more than one vector type, then an error shall
+ // occur. Implicit conversions between vector types are not permitted, per
+ // section 6.2.1.
+ if (getLangOpts().OpenCL &&
+ RHSVecType && isa<ExtVectorType>(RHSVecType) &&
+ LHSVecType && isa<ExtVectorType>(LHSVecType)) {
+ Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
+ << RHSType;
+ return QualType();
+ }
+
+
+ // If there is a vector type that is not a ExtVector and a scalar, we reach
+ // this point if scalar could not be converted to the vector's element type
+ // without truncation.
+ if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
+ (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
+ QualType Scalar = LHSVecType ? RHSType : LHSType;
+ QualType Vector = LHSVecType ? LHSType : RHSType;
+ unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
+ Diag(Loc,
+ diag::err_typecheck_vector_not_convertable_implict_truncation)
+ << ScalarOrVector << Scalar << Vector;
+
+ return QualType();
+ }
+
+ // Otherwise, use the generic diagnostic.
+ Diag(Loc, DiagID)
+ << LHSType << RHSType
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+}
+
+// checkArithmeticNull - Detect when a NULL constant is used improperly in an
+// expression. These are mainly cases where the null pointer is used as an
+// integer instead of a pointer.
+static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, bool IsCompare) {
+ // The canonical way to check for a GNU null is with isNullPointerConstant,
+ // but we use a bit of a hack here for speed; this is a relatively
+ // hot path, and isNullPointerConstant is slow.
+ bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
+ bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
+
+ QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
+
+ // Avoid analyzing cases where the result will either be invalid (and
+ // diagnosed as such) or entirely valid and not something to warn about.
+ if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
+ NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
+ return;
+
+ // Comparison operations would not make sense with a null pointer no matter
+ // what the other expression is.
+ if (!IsCompare) {
+ S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
+ << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
+ << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
+ return;
+ }
+
+ // The rest of the operations only make sense with a null pointer
+ // if the other expression is a pointer.
+ if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
+ NonNullType->canDecayToPointerType())
+ return;
+
+ S.Diag(Loc, diag::warn_null_in_comparison_operation)
+ << LHSNull /* LHS is NULL */ << NonNullType
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+}
+
+static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
+ SourceLocation Loc) {
+ const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
+ const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
+ if (!LUE || !RUE)
+ return;
+ if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
+ RUE->getKind() != UETT_SizeOf)
+ return;
+
+ const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
+ QualType LHSTy = LHSArg->getType();
+ QualType RHSTy;
+
+ if (RUE->isArgumentType())
+ RHSTy = RUE->getArgumentType().getNonReferenceType();
+ else
+ RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
+
+ if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
+ if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
+ return;
+
+ S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
+ if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
+ if (const ValueDecl *LHSArgDecl = DRE->getDecl())
+ S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
+ << LHSArgDecl;
+ }
+ } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
+ QualType ArrayElemTy = ArrayTy->getElementType();
+ if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
+ ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
+ RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
+ S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
+ return;
+ S.Diag(Loc, diag::warn_division_sizeof_array)
+ << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
+ if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
+ if (const ValueDecl *LHSArgDecl = DRE->getDecl())
+ S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
+ << LHSArgDecl;
+ }
+
+ S.Diag(Loc, diag::note_precedence_silence) << RHS;
+ }
+}
+
+static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc, bool IsDiv) {
+ // Check for division/remainder by zero.
+ Expr::EvalResult RHSValue;
+ if (!RHS.get()->isValueDependent() &&
+ RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
+ RHSValue.Val.getInt() == 0)
+ S.DiagRuntimeBehavior(Loc, RHS.get(),
+ S.PDiag(diag::warn_remainder_division_by_zero)
+ << IsDiv << RHS.get()->getSourceRange());
+}
+
+QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ bool IsCompAssign, bool IsDiv) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
+
+ QualType LHSTy = LHS.get()->getType();
+ QualType RHSTy = RHS.get()->getType();
+ if (LHSTy->isVectorType() || RHSTy->isVectorType())
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
+ /*AllowBothBool*/getLangOpts().AltiVec,
+ /*AllowBoolConversions*/false);
+ if (!IsDiv &&
+ (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
+ return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
+ // For division, only matrix-by-scalar is supported. Other combinations with
+ // matrix types are invalid.
+ if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
+ return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
+
+ QualType compType = UsualArithmeticConversions(
+ LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+
+ if (compType.isNull() || !compType->isArithmeticType())
+ return InvalidOperands(Loc, LHS, RHS);
+ if (IsDiv) {
+ DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
+ DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
+ }
+ return compType;
+}
+
+QualType Sema::CheckRemainderOperands(
+ ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ if (LHS.get()->getType()->hasIntegerRepresentation() &&
+ RHS.get()->getType()->hasIntegerRepresentation())
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
+ /*AllowBothBool*/getLangOpts().AltiVec,
+ /*AllowBoolConversions*/false);
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+
+ QualType compType = UsualArithmeticConversions(
+ LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ if (compType.isNull() || !compType->isIntegerType())
+ return InvalidOperands(Loc, LHS, RHS);
+ DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
+ return compType;
+}
+
+/// Diagnose invalid arithmetic on two void pointers.
+static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ S.Diag(Loc, S.getLangOpts().CPlusPlus
+ ? diag::err_typecheck_pointer_arith_void_type
+ : diag::ext_gnu_void_ptr)
+ << 1 /* two pointers */ << LHSExpr->getSourceRange()
+ << RHSExpr->getSourceRange();
+}
+
+/// Diagnose invalid arithmetic on a void pointer.
+static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
+ Expr *Pointer) {
+ S.Diag(Loc, S.getLangOpts().CPlusPlus
+ ? diag::err_typecheck_pointer_arith_void_type
+ : diag::ext_gnu_void_ptr)
+ << 0 /* one pointer */ << Pointer->getSourceRange();
+}
+
+/// Diagnose invalid arithmetic on a null pointer.
+///
+/// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
+/// idiom, which we recognize as a GNU extension.
+///
+static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
+ Expr *Pointer, bool IsGNUIdiom) {
+ if (IsGNUIdiom)
+ S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
+ << Pointer->getSourceRange();
+ else
+ S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
+ << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
+}
+
+/// Diagnose invalid subraction on a null pointer.
+///
+static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
+ Expr *Pointer, bool BothNull) {
+ // Null - null is valid in C++ [expr.add]p7
+ if (BothNull && S.getLangOpts().CPlusPlus)
+ return;
+
+ // Is this s a macro from a system header?
+ if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
+ return;
+
+ S.Diag(Loc, diag::warn_pointer_sub_null_ptr)
+ << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
+}
+
+/// Diagnose invalid arithmetic on two function pointers.
+static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
+ Expr *LHS, Expr *RHS) {
+ assert(LHS->getType()->isAnyPointerType());
+ assert(RHS->getType()->isAnyPointerType());
+ S.Diag(Loc, S.getLangOpts().CPlusPlus
+ ? diag::err_typecheck_pointer_arith_function_type
+ : diag::ext_gnu_ptr_func_arith)
+ << 1 /* two pointers */ << LHS->getType()->getPointeeType()
+ // We only show the second type if it differs from the first.
+ << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
+ RHS->getType())
+ << RHS->getType()->getPointeeType()
+ << LHS->getSourceRange() << RHS->getSourceRange();
+}
+
+/// Diagnose invalid arithmetic on a function pointer.
+static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
+ Expr *Pointer) {
+ assert(Pointer->getType()->isAnyPointerType());
+ S.Diag(Loc, S.getLangOpts().CPlusPlus
+ ? diag::err_typecheck_pointer_arith_function_type
+ : diag::ext_gnu_ptr_func_arith)
+ << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
+ << 0 /* one pointer, so only one type */
+ << Pointer->getSourceRange();
+}
+
+/// Emit error if Operand is incomplete pointer type
+///
+/// \returns True if pointer has incomplete type
+static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
+ Expr *Operand) {
+ QualType ResType = Operand->getType();
+ if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
+ ResType = ResAtomicType->getValueType();
+
+ assert(ResType->isAnyPointerType() && !ResType->isDependentType());
+ QualType PointeeTy = ResType->getPointeeType();
+ return S.RequireCompleteSizedType(
+ Loc, PointeeTy,
+ diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
+ Operand->getSourceRange());
+}
+
+/// Check the validity of an arithmetic pointer operand.
+///
+/// If the operand has pointer type, this code will check for pointer types
+/// which are invalid in arithmetic operations. These will be diagnosed
+/// appropriately, including whether or not the use is supported as an
+/// extension.
+///
+/// \returns True when the operand is valid to use (even if as an extension).
+static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
+ Expr *Operand) {
+ QualType ResType = Operand->getType();
+ if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
+ ResType = ResAtomicType->getValueType();
+
+ if (!ResType->isAnyPointerType()) return true;
+
+ QualType PointeeTy = ResType->getPointeeType();
+ if (PointeeTy->isVoidType()) {
+ diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
+ return !S.getLangOpts().CPlusPlus;
+ }
+ if (PointeeTy->isFunctionType()) {
+ diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
+ return !S.getLangOpts().CPlusPlus;
+ }
+
+ if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
+
+ return true;
+}
+
+/// Check the validity of a binary arithmetic operation w.r.t. pointer
+/// operands.
+///
+/// This routine will diagnose any invalid arithmetic on pointer operands much
+/// like \see checkArithmeticOpPointerOperand. However, it has special logic
+/// for emitting a single diagnostic even for operations where both LHS and RHS
+/// are (potentially problematic) pointers.
+///
+/// \returns True when the operand is valid to use (even if as an extension).
+static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
+ bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
+ if (!isLHSPointer && !isRHSPointer) return true;
+
+ QualType LHSPointeeTy, RHSPointeeTy;
+ if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
+ if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
+
+ // if both are pointers check if operation is valid wrt address spaces
+ if (isLHSPointer && isRHSPointer) {
+ if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
+ S.Diag(Loc,
+ diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
+ << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
+ << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
+ return false;
+ }
+ }
+
+ // Check for arithmetic on pointers to incomplete types.
+ bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
+ bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
+ if (isLHSVoidPtr || isRHSVoidPtr) {
+ if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
+ else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
+ else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
+
+ return !S.getLangOpts().CPlusPlus;
+ }
+
+ bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
+ bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
+ if (isLHSFuncPtr || isRHSFuncPtr) {
+ if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
+ else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
+ RHSExpr);
+ else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
+
+ return !S.getLangOpts().CPlusPlus;
+ }
+
+ if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
+ return false;
+ if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
+ return false;
+
+ return true;
+}
+
+/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
+/// literal.
+static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
+ Expr* IndexExpr = RHSExpr;
+ if (!StrExpr) {
+ StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
+ IndexExpr = LHSExpr;
+ }
+
+ bool IsStringPlusInt = StrExpr &&
+ IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
+ if (!IsStringPlusInt || IndexExpr->isValueDependent())
+ return;
+
+ SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
+ Self.Diag(OpLoc, diag::warn_string_plus_int)
+ << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
+
+ // Only print a fixit for "str" + int, not for int + "str".
+ if (IndexExpr == RHSExpr) {
+ SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
+ Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
+ << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
+ << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
+ << FixItHint::CreateInsertion(EndLoc, "]");
+ } else
+ Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
+}
+
+/// Emit a warning when adding a char literal to a string.
+static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ const Expr *StringRefExpr = LHSExpr;
+ const CharacterLiteral *CharExpr =
+ dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
+
+ if (!CharExpr) {
+ CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
+ StringRefExpr = RHSExpr;
+ }
+
+ if (!CharExpr || !StringRefExpr)
+ return;
+
+ const QualType StringType = StringRefExpr->getType();
+
+ // Return if not a PointerType.
+ if (!StringType->isAnyPointerType())
+ return;
+
+ // Return if not a CharacterType.
+ if (!StringType->getPointeeType()->isAnyCharacterType())
+ return;
+
+ ASTContext &Ctx = Self.getASTContext();
+ SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
+
+ const QualType CharType = CharExpr->getType();
+ if (!CharType->isAnyCharacterType() &&
+ CharType->isIntegerType() &&
+ llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
+ Self.Diag(OpLoc, diag::warn_string_plus_char)
+ << DiagRange << Ctx.CharTy;
+ } else {
+ Self.Diag(OpLoc, diag::warn_string_plus_char)
+ << DiagRange << CharExpr->getType();
+ }
+
+ // Only print a fixit for str + char, not for char + str.
+ if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
+ SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
+ Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
+ << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
+ << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
+ << FixItHint::CreateInsertion(EndLoc, "]");
+ } else {
+ Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
+ }
+}
+
+/// Emit error when two pointers are incompatible.
+static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ assert(LHSExpr->getType()->isAnyPointerType());
+ assert(RHSExpr->getType()->isAnyPointerType());
+ S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
+ << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
+ << RHSExpr->getSourceRange();
+}
+
+// C99 6.5.6
+QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, BinaryOperatorKind Opc,
+ QualType* CompLHSTy) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ QualType compType = CheckVectorOperands(
+ LHS, RHS, Loc, CompLHSTy,
+ /*AllowBothBool*/getLangOpts().AltiVec,
+ /*AllowBoolConversions*/getLangOpts().ZVector);
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ if (LHS.get()->getType()->isConstantMatrixType() ||
+ RHS.get()->getType()->isConstantMatrixType()) {
+ QualType compType =
+ CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
+ if (CompLHSTy)
+ *CompLHSTy = compType;
+ return compType;
+ }
+
+ QualType compType = UsualArithmeticConversions(
+ LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ // Diagnose "string literal" '+' int and string '+' "char literal".
+ if (Opc == BO_Add) {
+ diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
+ diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
+ }
+
+ // handle the common case first (both operands are arithmetic).
+ if (!compType.isNull() && compType->isArithmeticType()) {
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ // Type-checking. Ultimately the pointer's going to be in PExp;
+ // note that we bias towards the LHS being the pointer.
+ Expr *PExp = LHS.get(), *IExp = RHS.get();
+
+ bool isObjCPointer;
+ if (PExp->getType()->isPointerType()) {
+ isObjCPointer = false;
+ } else if (PExp->getType()->isObjCObjectPointerType()) {
+ isObjCPointer = true;
+ } else {
+ std::swap(PExp, IExp);
+ if (PExp->getType()->isPointerType()) {
+ isObjCPointer = false;
+ } else if (PExp->getType()->isObjCObjectPointerType()) {
+ isObjCPointer = true;
+ } else {
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+ }
+ assert(PExp->getType()->isAnyPointerType());
+
+ if (!IExp->getType()->isIntegerType())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ // Adding to a null pointer results in undefined behavior.
+ if (PExp->IgnoreParenCasts()->isNullPointerConstant(
+ Context, Expr::NPC_ValueDependentIsNotNull)) {
+ // In C++ adding zero to a null pointer is defined.
+ Expr::EvalResult KnownVal;
+ if (!getLangOpts().CPlusPlus ||
+ (!IExp->isValueDependent() &&
+ (!IExp->EvaluateAsInt(KnownVal, Context) ||
+ KnownVal.Val.getInt() != 0))) {
+ // Check the conditions to see if this is the 'p = nullptr + n' idiom.
+ bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
+ Context, BO_Add, PExp, IExp);
+ diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
+ }
+ }
+
+ if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
+ return QualType();
+
+ if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
+ return QualType();
+
+ // Check array bounds for pointer arithemtic
+ CheckArrayAccess(PExp, IExp);
+
+ if (CompLHSTy) {
+ QualType LHSTy = Context.isPromotableBitField(LHS.get());
+ if (LHSTy.isNull()) {
+ LHSTy = LHS.get()->getType();
+ if (LHSTy->isPromotableIntegerType())
+ LHSTy = Context.getPromotedIntegerType(LHSTy);
+ }
+ *CompLHSTy = LHSTy;
+ }
+
+ return PExp->getType();
+}
+
+// C99 6.5.6
+QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ QualType* CompLHSTy) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ QualType compType = CheckVectorOperands(
+ LHS, RHS, Loc, CompLHSTy,
+ /*AllowBothBool*/getLangOpts().AltiVec,
+ /*AllowBoolConversions*/getLangOpts().ZVector);
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ if (LHS.get()->getType()->isConstantMatrixType() ||
+ RHS.get()->getType()->isConstantMatrixType()) {
+ QualType compType =
+ CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
+ if (CompLHSTy)
+ *CompLHSTy = compType;
+ return compType;
+ }
+
+ QualType compType = UsualArithmeticConversions(
+ LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ // Enforce type constraints: C99 6.5.6p3.
+
+ // Handle the common case first (both operands are arithmetic).
+ if (!compType.isNull() && compType->isArithmeticType()) {
+ if (CompLHSTy) *CompLHSTy = compType;
+ return compType;
+ }
+
+ // Either ptr - int or ptr - ptr.
+ if (LHS.get()->getType()->isAnyPointerType()) {
+ QualType lpointee = LHS.get()->getType()->getPointeeType();
+
+ // Diagnose bad cases where we step over interface counts.
+ if (LHS.get()->getType()->isObjCObjectPointerType() &&
+ checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
+ return QualType();
+
+ // The result type of a pointer-int computation is the pointer type.
+ if (RHS.get()->getType()->isIntegerType()) {
+ // Subtracting from a null pointer should produce a warning.
+ // The last argument to the diagnose call says this doesn't match the
+ // GNU int-to-pointer idiom.
+ if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull)) {
+ // In C++ adding zero to a null pointer is defined.
+ Expr::EvalResult KnownVal;
+ if (!getLangOpts().CPlusPlus ||
+ (!RHS.get()->isValueDependent() &&
+ (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
+ KnownVal.Val.getInt() != 0))) {
+ diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
+ }
+ }
+
+ if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
+ return QualType();
+
+ // Check array bounds for pointer arithemtic
+ CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
+ /*AllowOnePastEnd*/true, /*IndexNegated*/true);
+
+ if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
+ return LHS.get()->getType();
+ }
+
+ // Handle pointer-pointer subtractions.
+ if (const PointerType *RHSPTy
+ = RHS.get()->getType()->getAs<PointerType>()) {
+ QualType rpointee = RHSPTy->getPointeeType();
+
+ if (getLangOpts().CPlusPlus) {
+ // Pointee types must be the same: C++ [expr.add]
+ if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
+ diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
+ }
+ } else {
+ // Pointee types must be compatible C99 6.5.6p3
+ if (!Context.typesAreCompatible(
+ Context.getCanonicalType(lpointee).getUnqualifiedType(),
+ Context.getCanonicalType(rpointee).getUnqualifiedType())) {
+ diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
+ return QualType();
+ }
+ }
+
+ if (!checkArithmeticBinOpPointerOperands(*this, Loc,
+ LHS.get(), RHS.get()))
+ return QualType();
+
+ bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
+ Context, Expr::NPC_ValueDependentIsNotNull);
+ bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
+ Context, Expr::NPC_ValueDependentIsNotNull);
+
+ // Subtracting nullptr or from nullptr is suspect
+ if (LHSIsNullPtr)
+ diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
+ if (RHSIsNullPtr)
+ diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
+
+ // The pointee type may have zero size. As an extension, a structure or
+ // union may have zero size or an array may have zero length. In this
+ // case subtraction does not make sense.
+ if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
+ CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
+ if (ElementSize.isZero()) {
+ Diag(Loc,diag::warn_sub_ptr_zero_size_types)
+ << rpointee.getUnqualifiedType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ }
+ }
+
+ if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
+ return Context.getPointerDiffType();
+ }
+ }
+
+ return InvalidOperands(Loc, LHS, RHS);
+}
+
+static bool isScopedEnumerationType(QualType T) {
+ if (const EnumType *ET = T->getAs<EnumType>())
+ return ET->getDecl()->isScoped();
+ return false;
+}
+
+static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, BinaryOperatorKind Opc,
+ QualType LHSType) {
+ // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
+ // so skip remaining warnings as we don't want to modify values within Sema.
+ if (S.getLangOpts().OpenCL)
+ return;
+
+ // Check right/shifter operand
+ Expr::EvalResult RHSResult;
+ if (RHS.get()->isValueDependent() ||
+ !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
+ return;
+ llvm::APSInt Right = RHSResult.Val.getInt();
+
+ if (Right.isNegative()) {
+ S.DiagRuntimeBehavior(Loc, RHS.get(),
+ S.PDiag(diag::warn_shift_negative)
+ << RHS.get()->getSourceRange());
+ return;
+ }
+
+ QualType LHSExprType = LHS.get()->getType();
+ uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
+ if (LHSExprType->isBitIntType())
+ LeftSize = S.Context.getIntWidth(LHSExprType);
+ else if (LHSExprType->isFixedPointType()) {
+ auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
+ LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
+ }
+ llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
+ if (Right.uge(LeftBits)) {
+ S.DiagRuntimeBehavior(Loc, RHS.get(),
+ S.PDiag(diag::warn_shift_gt_typewidth)
+ << RHS.get()->getSourceRange());
+ return;
+ }
+
+ // FIXME: We probably need to handle fixed point types specially here.
+ if (Opc != BO_Shl || LHSExprType->isFixedPointType())
+ return;
+
+ // When left shifting an ICE which is signed, we can check for overflow which
+ // according to C++ standards prior to C++2a has undefined behavior
+ // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
+ // more than the maximum value representable in the result type, so never
+ // warn for those. (FIXME: Unsigned left-shift overflow in a constant
+ // expression is still probably a bug.)
+ Expr::EvalResult LHSResult;
+ if (LHS.get()->isValueDependent() ||
+ LHSType->hasUnsignedIntegerRepresentation() ||
+ !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
+ return;
+ llvm::APSInt Left = LHSResult.Val.getInt();
+
+ // If LHS does not have a signed type and non-negative value
+ // then, the behavior is undefined before C++2a. Warn about it.
+ if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() &&
+ !S.getLangOpts().CPlusPlus20) {
+ S.DiagRuntimeBehavior(Loc, LHS.get(),
+ S.PDiag(diag::warn_shift_lhs_negative)
+ << LHS.get()->getSourceRange());
+ return;
+ }
+
+ llvm::APInt ResultBits =
+ static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
+ if (LeftBits.uge(ResultBits))
+ return;
+ llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
+ Result = Result.shl(Right);
+
+ // Print the bit representation of the signed integer as an unsigned
+ // hexadecimal number.
+ SmallString<40> HexResult;
+ Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
+
+ // If we are only missing a sign bit, this is less likely to result in actual
+ // bugs -- if the result is cast back to an unsigned type, it will have the
+ // expected value. Thus we place this behind a different warning that can be
+ // turned off separately if needed.
+ if (LeftBits == ResultBits - 1) {
+ S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
+ << HexResult << LHSType
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return;
+ }
+
+ S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
+ << HexResult.str() << Result.getMinSignedBits() << LHSType
+ << Left.getBitWidth() << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+}
+
+/// Return the resulting type when a vector is shifted
+/// by a scalar or vector shift amount.
+static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, bool IsCompAssign) {
+ // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
+ if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
+ !LHS.get()->getType()->isVectorType()) {
+ S.Diag(Loc, diag::err_shift_rhs_only_vector)
+ << RHS.get()->getType() << LHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ if (!IsCompAssign) {
+ LHS = S.UsualUnaryConversions(LHS.get());
+ if (LHS.isInvalid()) return QualType();
+ }
+
+ RHS = S.UsualUnaryConversions(RHS.get());
+ if (RHS.isInvalid()) return QualType();
+
+ QualType LHSType = LHS.get()->getType();
+ // Note that LHS might be a scalar because the routine calls not only in
+ // OpenCL case.
+ const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
+ QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
+
+ // Note that RHS might not be a vector.
+ QualType RHSType = RHS.get()->getType();
+ const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
+ QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
+
+ // The operands need to be integers.
+ if (!LHSEleType->isIntegerType()) {
+ S.Diag(Loc, diag::err_typecheck_expect_int)
+ << LHS.get()->getType() << LHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ if (!RHSEleType->isIntegerType()) {
+ S.Diag(Loc, diag::err_typecheck_expect_int)
+ << RHS.get()->getType() << RHS.get()->getSourceRange();
+ return QualType();
+ }
+
+ if (!LHSVecTy) {
+ assert(RHSVecTy);
+ if (IsCompAssign)
+ return RHSType;
+ if (LHSEleType != RHSEleType) {
+ LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
+ LHSEleType = RHSEleType;
+ }
+ QualType VecTy =
+ S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
+ LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
+ LHSType = VecTy;
+ } else if (RHSVecTy) {
+ // OpenCL v1.1 s6.3.j says that for vector types, the operators
+ // are applied component-wise. So if RHS is a vector, then ensure
+ // that the number of elements is the same as LHS...
+ if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
+ S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ return QualType();
+ }
+ if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
+ const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
+ const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
+ if (LHSBT != RHSBT &&
+ S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
+ S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ }
+ }
+ } else {
+ // ...else expand RHS to match the number of elements in LHS.
+ QualType VecTy =
+ S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
+ RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
+ }
+
+ return LHSType;
+}
+
+// C99 6.5.7
+QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc, BinaryOperatorKind Opc,
+ bool IsCompAssign) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
+
+ // Vector shifts promote their scalar inputs to vector type.
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ if (LangOpts.ZVector) {
+ // The shift operators for the z vector extensions work basically
+ // like general shifts, except that neither the LHS nor the RHS is
+ // allowed to be a "vector bool".
+ if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
+ if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
+ return InvalidOperands(Loc, LHS, RHS);
+ if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
+ if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+ return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
+ }
+
+ // Shifts don't perform usual arithmetic conversions, they just do integer
+ // promotions on each operand. C99 6.5.7p3
+
+ // For the LHS, do usual unary conversions, but then reset them away
+ // if this is a compound assignment.
+ ExprResult OldLHS = LHS;
+ LHS = UsualUnaryConversions(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+ QualType LHSType = LHS.get()->getType();
+ if (IsCompAssign) LHS = OldLHS;
+
+ // The RHS is simpler.
+ RHS = UsualUnaryConversions(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+ QualType RHSType = RHS.get()->getType();
+
+ // C99 6.5.7p2: Each of the operands shall have integer type.
+ // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
+ if ((!LHSType->isFixedPointOrIntegerType() &&
+ !LHSType->hasIntegerRepresentation()) ||
+ !RHSType->hasIntegerRepresentation())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ // C++0x: Don't allow scoped enums. FIXME: Use something better than
+ // hasIntegerRepresentation() above instead of this.
+ if (isScopedEnumerationType(LHSType) ||
+ isScopedEnumerationType(RHSType)) {
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+ DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
+
+ // "The type of the result is that of the promoted left operand."
+ return LHSType;
+}
+
+/// Diagnose bad pointer comparisons.
+static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
+ ExprResult &LHS, ExprResult &RHS,
+ bool IsError) {
+ S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
+ : diag::ext_typecheck_comparison_of_distinct_pointers)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+}
+
+/// Returns false if the pointers are converted to a composite type,
+/// true otherwise.
+static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
+ ExprResult &LHS, ExprResult &RHS) {
+ // C++ [expr.rel]p2:
+ // [...] Pointer conversions (4.10) and qualification
+ // conversions (4.4) are performed on pointer operands (or on
+ // a pointer operand and a null pointer constant) to bring
+ // them to their composite pointer type. [...]
+ //
+ // C++ [expr.eq]p1 uses the same notion for (in)equality
+ // comparisons of pointers.
+
+ QualType LHSType = LHS.get()->getType();
+ QualType RHSType = RHS.get()->getType();
+ assert(LHSType->isPointerType() || RHSType->isPointerType() ||
+ LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
+
+ QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
+ if (T.isNull()) {
+ if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
+ (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
+ diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
+ else
+ S.InvalidOperands(Loc, LHS, RHS);
+ return true;
+ }
+
+ return false;
+}
+
+static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
+ ExprResult &LHS,
+ ExprResult &RHS,
+ bool IsError) {
+ S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
+ : diag::ext_typecheck_comparison_of_fptr_to_void)
+ << LHS.get()->getType() << RHS.get()->getType()
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+}
+
+static bool isObjCObjectLiteral(ExprResult &E) {
+ switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
+ case Stmt::ObjCArrayLiteralClass:
+ case Stmt::ObjCDictionaryLiteralClass:
+ case Stmt::ObjCStringLiteralClass:
+ case Stmt::ObjCBoxedExprClass:
+ return true;
+ default:
+ // Note that ObjCBoolLiteral is NOT an object literal!
+ return false;
+ }
+}
+
+static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
+ const ObjCObjectPointerType *Type =
+ LHS->getType()->getAs<ObjCObjectPointerType>();
+
+ // If this is not actually an Objective-C object, bail out.
+ if (!Type)
+ return false;
+
+ // Get the LHS object's interface type.
+ QualType InterfaceType = Type->getPointeeType();
+
+ // If the RHS isn't an Objective-C object, bail out.
+ if (!RHS->getType()->isObjCObjectPointerType())
+ return false;
+
+ // Try to find the -isEqual: method.
+ Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
+ ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
+ InterfaceType,
+ /*IsInstance=*/true);
+ if (!Method) {
+ if (Type->isObjCIdType()) {
+ // For 'id', just check the global pool.
+ Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
+ /*receiverId=*/true);
+ } else {
+ // Check protocols.
+ Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
+ /*IsInstance=*/true);
+ }
+ }
+
+ if (!Method)
+ return false;
+
+ QualType T = Method->parameters()[0]->getType();
+ if (!T->isObjCObjectPointerType())
+ return false;
+
+ QualType R = Method->getReturnType();
+ if (!R->isScalarType())
+ return false;
+
+ return true;
+}
+
+Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
+ FromE = FromE->IgnoreParenImpCasts();
+ switch (FromE->getStmtClass()) {
+ default:
+ break;
+ case Stmt::ObjCStringLiteralClass:
+ // "string literal"
+ return LK_String;
+ case Stmt::ObjCArrayLiteralClass:
+ // "array literal"
+ return LK_Array;
+ case Stmt::ObjCDictionaryLiteralClass:
+ // "dictionary literal"
+ return LK_Dictionary;
+ case Stmt::BlockExprClass:
+ return LK_Block;
+ case Stmt::ObjCBoxedExprClass: {
+ Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
+ switch (Inner->getStmtClass()) {
+ case Stmt::IntegerLiteralClass:
+ case Stmt::FloatingLiteralClass:
+ case Stmt::CharacterLiteralClass:
+ case Stmt::ObjCBoolLiteralExprClass:
+ case Stmt::CXXBoolLiteralExprClass:
+ // "numeric literal"
+ return LK_Numeric;
+ case Stmt::ImplicitCastExprClass: {
+ CastKind CK = cast<CastExpr>(Inner)->getCastKind();
+ // Boolean literals can be represented by implicit casts.
+ if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
+ return LK_Numeric;
+ break;
+ }
+ default:
+ break;
+ }
+ return LK_Boxed;
+ }
+ }
+ return LK_None;
+}
+
+static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
+ ExprResult &LHS, ExprResult &RHS,
+ BinaryOperator::Opcode Opc){
+ Expr *Literal;
+ Expr *Other;
+ if (isObjCObjectLiteral(LHS)) {
+ Literal = LHS.get();
+ Other = RHS.get();
+ } else {
+ Literal = RHS.get();
+ Other = LHS.get();
+ }
+
+ // Don't warn on comparisons against nil.
+ Other = Other->IgnoreParenCasts();
+ if (Other->isNullPointerConstant(S.getASTContext(),
+ Expr::NPC_ValueDependentIsNotNull))
+ return;
+
+ // This should be kept in sync with warn_objc_literal_comparison.
+ // LK_String should always be after the other literals, since it has its own
+ // warning flag.
+ Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
+ assert(LiteralKind != Sema::LK_Block);
+ if (LiteralKind == Sema::LK_None) {
+ llvm_unreachable("Unknown Objective-C object literal kind");
+ }
+
+ if (LiteralKind == Sema::LK_String)
+ S.Diag(Loc, diag::warn_objc_string_literal_comparison)
+ << Literal->getSourceRange();
+ else
+ S.Diag(Loc, diag::warn_objc_literal_comparison)
+ << LiteralKind << Literal->getSourceRange();
+
+ if (BinaryOperator::isEqualityOp(Opc) &&
+ hasIsEqualMethod(S, LHS.get(), RHS.get())) {
+ SourceLocation Start = LHS.get()->getBeginLoc();
+ SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
+ CharSourceRange OpRange =
+ CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
+
+ S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
+ << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
+ << FixItHint::CreateReplacement(OpRange, " isEqual:")
+ << FixItHint::CreateInsertion(End, "]");
+ }
+}
+
+/// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
+static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
+ ExprResult &RHS, SourceLocation Loc,
+ BinaryOperatorKind Opc) {
+ // Check that left hand side is !something.
+ UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
+ if (!UO || UO->getOpcode() != UO_LNot) return;
+
+ // Only check if the right hand side is non-bool arithmetic type.
+ if (RHS.get()->isKnownToHaveBooleanValue()) return;
+
+ // Make sure that the something in !something is not bool.
+ Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
+ if (SubExpr->isKnownToHaveBooleanValue()) return;
+
+ // Emit warning.
+ bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
+ S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
+ << Loc << IsBitwiseOp;
+
+ // First note suggest !(x < y)
+ SourceLocation FirstOpen = SubExpr->getBeginLoc();
+ SourceLocation FirstClose = RHS.get()->getEndLoc();
+ FirstClose = S.getLocForEndOfToken(FirstClose);
+ if (FirstClose.isInvalid())
+ FirstOpen = SourceLocation();
+ S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
+ << IsBitwiseOp
+ << FixItHint::CreateInsertion(FirstOpen, "(")
+ << FixItHint::CreateInsertion(FirstClose, ")");
+
+ // Second note suggests (!x) < y
+ SourceLocation SecondOpen = LHS.get()->getBeginLoc();
+ SourceLocation SecondClose = LHS.get()->getEndLoc();
+ SecondClose = S.getLocForEndOfToken(SecondClose);
+ if (SecondClose.isInvalid())
+ SecondOpen = SourceLocation();
+ S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
+ << FixItHint::CreateInsertion(SecondOpen, "(")
+ << FixItHint::CreateInsertion(SecondClose, ")");
+}
+
+// Returns true if E refers to a non-weak array.
+static bool checkForArray(const Expr *E) {
+ const ValueDecl *D = nullptr;
+ if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
+ D = DR->getDecl();
+ } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
+ if (Mem->isImplicitAccess())
+ D = Mem->getMemberDecl();
+ }
+ if (!D)
+ return false;
+ return D->getType()->isArrayType() && !D->isWeak();
+}
+
+/// Diagnose some forms of syntactically-obvious tautological comparison.
+static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
+ Expr *LHS, Expr *RHS,
+ BinaryOperatorKind Opc) {
+ Expr *LHSStripped = LHS->IgnoreParenImpCasts();
+ Expr *RHSStripped = RHS->IgnoreParenImpCasts();
+
+ QualType LHSType = LHS->getType();
+ QualType RHSType = RHS->getType();
+ if (LHSType->hasFloatingRepresentation() ||
+ (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
+ S.inTemplateInstantiation())
+ return;
+
+ // Comparisons between two array types are ill-formed for operator<=>, so
+ // we shouldn't emit any additional warnings about it.
+ if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
+ return;
+
+ // For non-floating point types, check for self-comparisons of the form
+ // x == x, x != x, x < x, etc. These always evaluate to a constant, and
+ // often indicate logic errors in the program.
+ //
+ // NOTE: Don't warn about comparison expressions resulting from macro
+ // expansion. Also don't warn about comparisons which are only self
+ // comparisons within a template instantiation. The warnings should catch
+ // obvious cases in the definition of the template anyways. The idea is to
+ // warn when the typed comparison operator will always evaluate to the same
+ // result.
+
+ // Used for indexing into %select in warn_comparison_always
+ enum {
+ AlwaysConstant,
+ AlwaysTrue,
+ AlwaysFalse,
+ AlwaysEqual, // std::strong_ordering::equal from operator<=>
+ };
+
+ // C++2a [depr.array.comp]:
+ // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
+ // operands of array type are deprecated.
+ if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
+ RHSStripped->getType()->isArrayType()) {
+ S.Diag(Loc, diag::warn_depr_array_comparison)
+ << LHS->getSourceRange() << RHS->getSourceRange()
+ << LHSStripped->getType() << RHSStripped->getType();
+ // Carry on to produce the tautological comparison warning, if this
+ // expression is potentially-evaluated, we can resolve the array to a
+ // non-weak declaration, and so on.
+ }
+
+ if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
+ if (Expr::isSameComparisonOperand(LHS, RHS)) {
+ unsigned Result;
+ switch (Opc) {
+ case BO_EQ:
+ case BO_LE:
+ case BO_GE:
+ Result = AlwaysTrue;
+ break;
+ case BO_NE:
+ case BO_LT:
+ case BO_GT:
+ Result = AlwaysFalse;
+ break;
+ case BO_Cmp:
+ Result = AlwaysEqual;
+ break;
+ default:
+ Result = AlwaysConstant;
+ break;
+ }
+ S.DiagRuntimeBehavior(Loc, nullptr,
+ S.PDiag(diag::warn_comparison_always)
+ << 0 /*self-comparison*/
+ << Result);
+ } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
+ // What is it always going to evaluate to?
+ unsigned Result;
+ switch (Opc) {
+ case BO_EQ: // e.g. array1 == array2
+ Result = AlwaysFalse;
+ break;
+ case BO_NE: // e.g. array1 != array2
+ Result = AlwaysTrue;
+ break;
+ default: // e.g. array1 <= array2
+ // The best we can say is 'a constant'
+ Result = AlwaysConstant;
+ break;
+ }
+ S.DiagRuntimeBehavior(Loc, nullptr,
+ S.PDiag(diag::warn_comparison_always)
+ << 1 /*array comparison*/
+ << Result);
+ }
+ }
+
+ if (isa<CastExpr>(LHSStripped))
+ LHSStripped = LHSStripped->IgnoreParenCasts();
+ if (isa<CastExpr>(RHSStripped))
+ RHSStripped = RHSStripped->IgnoreParenCasts();
+
+ // Warn about comparisons against a string constant (unless the other
+ // operand is null); the user probably wants string comparison function.
+ Expr *LiteralString = nullptr;
+ Expr *LiteralStringStripped = nullptr;
+ if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
+ !RHSStripped->isNullPointerConstant(S.Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ LiteralString = LHS;
+ LiteralStringStripped = LHSStripped;
+ } else if ((isa<StringLiteral>(RHSStripped) ||
+ isa<ObjCEncodeExpr>(RHSStripped)) &&
+ !LHSStripped->isNullPointerConstant(S.Context,
+ Expr::NPC_ValueDependentIsNull)) {
+ LiteralString = RHS;
+ LiteralStringStripped = RHSStripped;
+ }
+
+ if (LiteralString) {
+ S.DiagRuntimeBehavior(Loc, nullptr,
+ S.PDiag(diag::warn_stringcompare)
+ << isa<ObjCEncodeExpr>(LiteralStringStripped)
+ << LiteralString->getSourceRange());
+ }
+}
+
+static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
+ switch (CK) {
+ default: {
+#ifndef NDEBUG
+ llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
+ << "\n";
+#endif
+ llvm_unreachable("unhandled cast kind");
+ }
+ case CK_UserDefinedConversion:
+ return ICK_Identity;
+ case CK_LValueToRValue:
+ return ICK_Lvalue_To_Rvalue;
+ case CK_ArrayToPointerDecay:
+ return ICK_Array_To_Pointer;
+ case CK_FunctionToPointerDecay:
+ return ICK_Function_To_Pointer;
+ case CK_IntegralCast:
+ return ICK_Integral_Conversion;
+ case CK_FloatingCast:
+ return ICK_Floating_Conversion;
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ return ICK_Floating_Integral;
+ case CK_IntegralComplexCast:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralComplexToFloatingComplex:
+ return ICK_Complex_Conversion;
+ case CK_FloatingComplexToReal:
+ case CK_FloatingRealToComplex:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralRealToComplex:
+ return ICK_Complex_Real;
+ }
+}
+
+static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
+ QualType FromType,
+ SourceLocation Loc) {
+ // Check for a narrowing implicit conversion.
+ StandardConversionSequence SCS;
+ SCS.setAsIdentityConversion();
+ SCS.setToType(0, FromType);
+ SCS.setToType(1, ToType);
+ if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
+ SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
+
+ APValue PreNarrowingValue;
+ QualType PreNarrowingType;
+ switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
+ PreNarrowingType,
+ /*IgnoreFloatToIntegralConversion*/ true)) {
+ case NK_Dependent_Narrowing:
+ // Implicit conversion to a narrower type, but the expression is
+ // value-dependent so we can't tell whether it's actually narrowing.
+ case NK_Not_Narrowing:
+ return false;
+
+ case NK_Constant_Narrowing:
+ // Implicit conversion to a narrower type, and the value is not a constant
+ // expression.
+ S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
+ << /*Constant*/ 1
+ << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
+ return true;
+
+ case NK_Variable_Narrowing:
+ // Implicit conversion to a narrower type, and the value is not a constant
+ // expression.
+ case NK_Type_Narrowing:
+ S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
+ << /*Constant*/ 0 << FromType << ToType;
+ // TODO: It's not a constant expression, but what if the user intended it
+ // to be? Can we produce notes to help them figure out why it isn't?
+ return true;
+ }
+ llvm_unreachable("unhandled case in switch");
+}
+
+static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
+ ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc) {
+ QualType LHSType = LHS.get()->getType();
+ QualType RHSType = RHS.get()->getType();
+ // Dig out the original argument type and expression before implicit casts
+ // were applied. These are the types/expressions we need to check the
+ // [expr.spaceship] requirements against.
+ ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
+ ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
+ QualType LHSStrippedType = LHSStripped.get()->getType();
+ QualType RHSStrippedType = RHSStripped.get()->getType();
+
+ // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
+ // other is not, the program is ill-formed.
+ if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
+ S.InvalidOperands(Loc, LHSStripped, RHSStripped);
+ return QualType();
+ }
+
+ // FIXME: Consider combining this with checkEnumArithmeticConversions.
+ int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
+ RHSStrippedType->isEnumeralType();
+ if (NumEnumArgs == 1) {
+ bool LHSIsEnum = LHSStrippedType->isEnumeralType();
+ QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
+ if (OtherTy->hasFloatingRepresentation()) {
+ S.InvalidOperands(Loc, LHSStripped, RHSStripped);
+ return QualType();
+ }
+ }
+ if (NumEnumArgs == 2) {
+ // C++2a [expr.spaceship]p5: If both operands have the same enumeration
+ // type E, the operator yields the result of converting the operands
+ // to the underlying type of E and applying <=> to the converted operands.
+ if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
+ S.InvalidOperands(Loc, LHS, RHS);
+ return QualType();
+ }
+ QualType IntType =
+ LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
+ assert(IntType->isArithmeticType());
+
+ // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
+ // promote the boolean type, and all other promotable integer types, to
+ // avoid this.
+ if (IntType->isPromotableIntegerType())
+ IntType = S.Context.getPromotedIntegerType(IntType);
+
+ LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
+ RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
+ LHSType = RHSType = IntType;
+ }
+
+ // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
+ // usual arithmetic conversions are applied to the operands.
+ QualType Type =
+ S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+ if (Type.isNull())
+ return S.InvalidOperands(Loc, LHS, RHS);
+
+ Optional<ComparisonCategoryType> CCT =
+ getComparisonCategoryForBuiltinCmp(Type);
+ if (!CCT)
+ return S.InvalidOperands(Loc, LHS, RHS);
+
+ bool HasNarrowing = checkThreeWayNarrowingConversion(
+ S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
+ HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
+ RHS.get()->getBeginLoc());
+ if (HasNarrowing)
+ return QualType();
+
+ assert(!Type.isNull() && "composite type for <=> has not been set");
+
+ return S.CheckComparisonCategoryType(
+ *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
+}
+
+static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
+ ExprResult &RHS,
+ SourceLocation Loc,
+ BinaryOperatorKind Opc) {
+ if (Opc == BO_Cmp)
+ return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
+
+ // C99 6.5.8p3 / C99 6.5.9p4
+ QualType Type =
+ S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+ if (Type.isNull())
+ return S.InvalidOperands(Loc, LHS, RHS);
+ assert(Type->isArithmeticType() || Type->isEnumeralType());
+
+ if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
+ return S.InvalidOperands(Loc, LHS, RHS);
+
+ // Check for comparisons of floating point operands using != and ==.
+ if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
+ S.CheckFloatComparison(Loc, LHS.get(), RHS.get());
+
+ // The result of comparisons is 'bool' in C++, 'int' in C.
+ return S.Context.getLogicalOperationType();
+}
+
+void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
+ if (!NullE.get()->getType()->isAnyPointerType())
+ return;
+ int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
+ if (!E.get()->getType()->isAnyPointerType() &&
+ E.get()->isNullPointerConstant(Context,
+ Expr::NPC_ValueDependentIsNotNull) ==
+ Expr::NPCK_ZeroExpression) {
+ if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
+ if (CL->getValue() == 0)
+ Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
+ << NullValue
+ << FixItHint::CreateReplacement(E.get()->getExprLoc(),
+ NullValue ? "NULL" : "(void *)0");
+ } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
+ TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
+ QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
+ if (T == Context.CharTy)
+ Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
+ << NullValue
+ << FixItHint::CreateReplacement(E.get()->getExprLoc(),
+ NullValue ? "NULL" : "(void *)0");
+ }
+ }
+}
+
+// C99 6.5.8, C++ [expr.rel]
+QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ BinaryOperatorKind Opc) {
+ bool IsRelational = BinaryOperator::isRelationalOp(Opc);
+ bool IsThreeWay = Opc == BO_Cmp;
+ bool IsOrdered = IsRelational || IsThreeWay;
+ auto IsAnyPointerType = [](ExprResult E) {
+ QualType Ty = E.get()->getType();
+ return Ty->isPointerType() || Ty->isMemberPointerType();
+ };
+
+ // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
+ // type, array-to-pointer, ..., conversions are performed on both operands to
+ // bring them to their composite type.
+ // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
+ // any type-related checks.
+ if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
+ LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+ RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+ } else {
+ LHS = DefaultLvalueConversion(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+ RHS = DefaultLvalueConversion(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+ }
+
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
+ if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
+ CheckPtrComparisonWithNullChar(LHS, RHS);
+ CheckPtrComparisonWithNullChar(RHS, LHS);
+ }
+
+ // Handle vector comparisons separately.
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType())
+ return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
+
+ diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
+ diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
+
+ QualType LHSType = LHS.get()->getType();
+ QualType RHSType = RHS.get()->getType();
+ if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
+ (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
+ return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
+
+ const Expr::NullPointerConstantKind LHSNullKind =
+ LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
+ const Expr::NullPointerConstantKind RHSNullKind =
+ RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
+ bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
+ bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
+
+ auto computeResultTy = [&]() {
+ if (Opc != BO_Cmp)
+ return Context.getLogicalOperationType();
+ assert(getLangOpts().CPlusPlus);
+ assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
+
+ QualType CompositeTy = LHS.get()->getType();
+ assert(!CompositeTy->isReferenceType());
+
+ Optional<ComparisonCategoryType> CCT =
+ getComparisonCategoryForBuiltinCmp(CompositeTy);
+ if (!CCT)
+ return InvalidOperands(Loc, LHS, RHS);
+
+ if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
+ // P0946R0: Comparisons between a null pointer constant and an object
+ // pointer result in std::strong_equality, which is ill-formed under
+ // P1959R0.
+ Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
+ << (LHSIsNull ? LHS.get()->getSourceRange()
+ : RHS.get()->getSourceRange());
+ return QualType();
+ }
+
+ return CheckComparisonCategoryType(
+ *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
+ };
+
+ if (!IsOrdered && LHSIsNull != RHSIsNull) {
+ bool IsEquality = Opc == BO_EQ;
+ if (RHSIsNull)
+ DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
+ RHS.get()->getSourceRange());
+ else
+ DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
+ LHS.get()->getSourceRange());
+ }
+
+ if (IsOrdered && LHSType->isFunctionPointerType() &&
+ RHSType->isFunctionPointerType()) {
+ // Valid unless a relational comparison of function pointers
+ bool IsError = Opc == BO_Cmp;
+ auto DiagID =
+ IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
+ : getLangOpts().CPlusPlus
+ ? diag::warn_typecheck_ordered_comparison_of_function_pointers
+ : diag::ext_typecheck_ordered_comparison_of_function_pointers;
+ Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ if (IsError)
+ return QualType();
+ }
+
+ if ((LHSType->isIntegerType() && !LHSIsNull) ||
+ (RHSType->isIntegerType() && !RHSIsNull)) {
+ // Skip normal pointer conversion checks in this case; we have better
+ // diagnostics for this below.
+ } else if (getLangOpts().CPlusPlus) {
+ // Equality comparison of a function pointer to a void pointer is invalid,
+ // but we allow it as an extension.
+ // FIXME: If we really want to allow this, should it be part of composite
+ // pointer type computation so it works in conditionals too?
+ if (!IsOrdered &&
+ ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
+ (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
+ // This is a gcc extension compatibility comparison.
+ // In a SFINAE context, we treat this as a hard error to maintain
+ // conformance with the C++ standard.
+ diagnoseFunctionPointerToVoidComparison(
+ *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
+
+ if (isSFINAEContext())
+ return QualType();
+
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
+ return computeResultTy();
+ }
+
+ // C++ [expr.eq]p2:
+ // If at least one operand is a pointer [...] bring them to their
+ // composite pointer type.
+ // C++ [expr.spaceship]p6
+ // If at least one of the operands is of pointer type, [...] bring them
+ // to their composite pointer type.
+ // C++ [expr.rel]p2:
+ // If both operands are pointers, [...] bring them to their composite
+ // pointer type.
+ // For <=>, the only valid non-pointer types are arrays and functions, and
+ // we already decayed those, so this is really the same as the relational
+ // comparison rule.
+ if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
+ (IsOrdered ? 2 : 1) &&
+ (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
+ RHSType->isObjCObjectPointerType()))) {
+ if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
+ return QualType();
+ return computeResultTy();
+ }
+ } else if (LHSType->isPointerType() &&
+ RHSType->isPointerType()) { // C99 6.5.8p2
+ // All of the following pointer-related warnings are GCC extensions, except
+ // when handling null pointer constants.
+ QualType LCanPointeeTy =
+ LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
+ QualType RCanPointeeTy =
+ RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
+
+ // C99 6.5.9p2 and C99 6.5.8p2
+ if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
+ RCanPointeeTy.getUnqualifiedType())) {
+ if (IsRelational) {
+ // Pointers both need to point to complete or incomplete types
+ if ((LCanPointeeTy->isIncompleteType() !=
+ RCanPointeeTy->isIncompleteType()) &&
+ !getLangOpts().C11) {
+ Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
+ << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
+ << RCanPointeeTy->isIncompleteType();
+ }
+ }
+ } else if (!IsRelational &&
+ (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
+ // Valid unless comparison between non-null pointer and function pointer
+ if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
+ && !LHSIsNull && !RHSIsNull)
+ diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
+ /*isError*/false);
+ } else {
+ // Invalid
+ diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
+ }
+ if (LCanPointeeTy != RCanPointeeTy) {
+ // Treat NULL constant as a special case in OpenCL.
+ if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
+ if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
+ Diag(Loc,
+ diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
+ << LHSType << RHSType << 0 /* comparison */
+ << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
+ }
+ }
+ LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
+ LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
+ CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
+ : CK_BitCast;
+ if (LHSIsNull && !RHSIsNull)
+ LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
+ else
+ RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
+ }
+ return computeResultTy();
+ }
+
+ if (getLangOpts().CPlusPlus) {
+ // C++ [expr.eq]p4:
+ // Two operands of type std::nullptr_t or one operand of type
+ // std::nullptr_t and the other a null pointer constant compare equal.
+ if (!IsOrdered && LHSIsNull && RHSIsNull) {
+ if (LHSType->isNullPtrType()) {
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
+ return computeResultTy();
+ }
+ if (RHSType->isNullPtrType()) {
+ LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
+ return computeResultTy();
+ }
+ }
+
+ // Comparison of Objective-C pointers and block pointers against nullptr_t.
+ // These aren't covered by the composite pointer type rules.
+ if (!IsOrdered && RHSType->isNullPtrType() &&
+ (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
+ return computeResultTy();
+ }
+ if (!IsOrdered && LHSType->isNullPtrType() &&
+ (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
+ LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
+ return computeResultTy();
+ }
+
+ if (IsRelational &&
+ ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
+ (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
+ // HACK: Relational comparison of nullptr_t against a pointer type is
+ // invalid per DR583, but we allow it within std::less<> and friends,
+ // since otherwise common uses of it break.
+ // FIXME: Consider removing this hack once LWG fixes std::less<> and
+ // friends to have std::nullptr_t overload candidates.
+ DeclContext *DC = CurContext;
+ if (isa<FunctionDecl>(DC))
+ DC = DC->getParent();
+ if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
+ if (CTSD->isInStdNamespace() &&
+ llvm::StringSwitch<bool>(CTSD->getName())
+ .Cases("less", "less_equal", "greater", "greater_equal", true)
+ .Default(false)) {
+ if (RHSType->isNullPtrType())
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
+ else
+ LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
+ return computeResultTy();
+ }
+ }
+ }
+
+ // C++ [expr.eq]p2:
+ // If at least one operand is a pointer to member, [...] bring them to
+ // their composite pointer type.
+ if (!IsOrdered &&
+ (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
+ if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
+ return QualType();
+ else
+ return computeResultTy();
+ }
+ }
+
+ // Handle block pointer types.
+ if (!IsOrdered && LHSType->isBlockPointerType() &&
+ RHSType->isBlockPointerType()) {
+ QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
+ QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
+
+ if (!LHSIsNull && !RHSIsNull &&
+ !Context.typesAreCompatible(lpointee, rpointee)) {
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ }
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
+ return computeResultTy();
+ }
+
+ // Allow block pointers to be compared with null pointer constants.
+ if (!IsOrdered
+ && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
+ || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
+ if (!LHSIsNull && !RHSIsNull) {
+ if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
+ ->getPointeeType()->isVoidType())
+ || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
+ ->getPointeeType()->isVoidType())))
+ Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ }
+ if (LHSIsNull && !RHSIsNull)
+ LHS = ImpCastExprToType(LHS.get(), RHSType,
+ RHSType->isPointerType() ? CK_BitCast
+ : CK_AnyPointerToBlockPointerCast);
+ else
+ RHS = ImpCastExprToType(RHS.get(), LHSType,
+ LHSType->isPointerType() ? CK_BitCast
+ : CK_AnyPointerToBlockPointerCast);
+ return computeResultTy();
+ }
+
+ if (LHSType->isObjCObjectPointerType() ||
+ RHSType->isObjCObjectPointerType()) {
+ const PointerType *LPT = LHSType->getAs<PointerType>();
+ const PointerType *RPT = RHSType->getAs<PointerType>();
+ if (LPT || RPT) {
+ bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
+ bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
+
+ if (!LPtrToVoid && !RPtrToVoid &&
+ !Context.typesAreCompatible(LHSType, RHSType)) {
+ diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
+ /*isError*/false);
+ }
+ // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
+ // the RHS, but we have test coverage for this behavior.
+ // FIXME: Consider using convertPointersToCompositeType in C++.
+ if (LHSIsNull && !RHSIsNull) {
+ Expr *E = LHS.get();
+ if (getLangOpts().ObjCAutoRefCount)
+ CheckObjCConversion(SourceRange(), RHSType, E,
+ CCK_ImplicitConversion);
+ LHS = ImpCastExprToType(E, RHSType,
+ RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
+ }
+ else {
+ Expr *E = RHS.get();
+ if (getLangOpts().ObjCAutoRefCount)
+ CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
+ /*Diagnose=*/true,
+ /*DiagnoseCFAudited=*/false, Opc);
+ RHS = ImpCastExprToType(E, LHSType,
+ LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
+ }
+ return computeResultTy();
+ }
+ if (LHSType->isObjCObjectPointerType() &&
+ RHSType->isObjCObjectPointerType()) {
+ if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
+ diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
+ /*isError*/false);
+ if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
+ diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
+
+ if (LHSIsNull && !RHSIsNull)
+ LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
+ else
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
+ return computeResultTy();
+ }
+
+ if (!IsOrdered && LHSType->isBlockPointerType() &&
+ RHSType->isBlockCompatibleObjCPointerType(Context)) {
+ LHS = ImpCastExprToType(LHS.get(), RHSType,
+ CK_BlockPointerToObjCPointerCast);
+ return computeResultTy();
+ } else if (!IsOrdered &&
+ LHSType->isBlockCompatibleObjCPointerType(Context) &&
+ RHSType->isBlockPointerType()) {
+ RHS = ImpCastExprToType(RHS.get(), LHSType,
+ CK_BlockPointerToObjCPointerCast);
+ return computeResultTy();
+ }
+ }
+ if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
+ (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
+ unsigned DiagID = 0;
+ bool isError = false;
+ if (LangOpts.DebuggerSupport) {
+ // Under a debugger, allow the comparison of pointers to integers,
+ // since users tend to want to compare addresses.
+ } else if ((LHSIsNull && LHSType->isIntegerType()) ||
+ (RHSIsNull && RHSType->isIntegerType())) {
+ if (IsOrdered) {
+ isError = getLangOpts().CPlusPlus;
+ DiagID =
+ isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
+ : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
+ }
+ } else if (getLangOpts().CPlusPlus) {
+ DiagID = diag::err_typecheck_comparison_of_pointer_integer;
+ isError = true;
+ } else if (IsOrdered)
+ DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
+ else
+ DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
+
+ if (DiagID) {
+ Diag(Loc, DiagID)
+ << LHSType << RHSType << LHS.get()->getSourceRange()
+ << RHS.get()->getSourceRange();
+ if (isError)
+ return QualType();
+ }
+
+ if (LHSType->isIntegerType())
+ LHS = ImpCastExprToType(LHS.get(), RHSType,
+ LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
+ else
+ RHS = ImpCastExprToType(RHS.get(), LHSType,
+ RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
+ return computeResultTy();
+ }
+
+ // Handle block pointers.
+ if (!IsOrdered && RHSIsNull
+ && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
+ return computeResultTy();
+ }
+ if (!IsOrdered && LHSIsNull
+ && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
+ LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
+ return computeResultTy();
+ }
+
+ if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
+ if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
+ return computeResultTy();
+ }
+
+ if (LHSType->isQueueT() && RHSType->isQueueT()) {
+ return computeResultTy();
+ }
+
+ if (LHSIsNull && RHSType->isQueueT()) {
+ LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
+ return computeResultTy();
+ }
+
+ if (LHSType->isQueueT() && RHSIsNull) {
+ RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
+ return computeResultTy();
+ }
+ }
+
+ return InvalidOperands(Loc, LHS, RHS);
+}
+
+// Return a signed ext_vector_type that is of identical size and number of
+// elements. For floating point vectors, return an integer type of identical
+// size and number of elements. In the non ext_vector_type case, search from
+// the largest type to the smallest type to avoid cases where long long == long,
+// where long gets picked over long long.
+QualType Sema::GetSignedVectorType(QualType V) {
+ const VectorType *VTy = V->castAs<VectorType>();
+ unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
+
+ if (isa<ExtVectorType>(VTy)) {
+ if (TypeSize == Context.getTypeSize(Context.CharTy))
+ return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
+ if (TypeSize == Context.getTypeSize(Context.ShortTy))
+ return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
+ if (TypeSize == Context.getTypeSize(Context.IntTy))
+ return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
+ if (TypeSize == Context.getTypeSize(Context.Int128Ty))
+ return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
+ if (TypeSize == Context.getTypeSize(Context.LongTy))
+ return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
+ assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
+ "Unhandled vector element size in vector compare");
+ return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
+ }
+
+ if (TypeSize == Context.getTypeSize(Context.Int128Ty))
+ return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
+ VectorType::GenericVector);
+ if (TypeSize == Context.getTypeSize(Context.LongLongTy))
+ return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
+ VectorType::GenericVector);
+ if (TypeSize == Context.getTypeSize(Context.LongTy))
+ return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
+ VectorType::GenericVector);
+ if (TypeSize == Context.getTypeSize(Context.IntTy))
+ return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
+ VectorType::GenericVector);
+ if (TypeSize == Context.getTypeSize(Context.ShortTy))
+ return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
+ VectorType::GenericVector);
+ assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
+ "Unhandled vector element size in vector compare");
+ return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
+ VectorType::GenericVector);
+}
+
+/// CheckVectorCompareOperands - vector comparisons are a clang extension that
+/// operates on extended vector types. Instead of producing an IntTy result,
+/// like a scalar comparison, a vector comparison produces a vector of integer
+/// types.
+QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ BinaryOperatorKind Opc) {
+ if (Opc == BO_Cmp) {
+ Diag(Loc, diag::err_three_way_vector_comparison);
+ return QualType();
+ }
+
+ // Check to make sure we're operating on vectors of the same type and width,
+ // Allowing one side to be a scalar of element type.
+ QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
+ /*AllowBothBool*/true,
+ /*AllowBoolConversions*/getLangOpts().ZVector);
+ if (vType.isNull())
+ return vType;
+
+ QualType LHSType = LHS.get()->getType();
+
+ // Determine the return type of a vector compare. By default clang will return
+ // a scalar for all vector compares except vector bool and vector pixel.
+ // With the gcc compiler we will always return a vector type and with the xl
+ // compiler we will always return a scalar type. This switch allows choosing
+ // which behavior is prefered.
+ if (getLangOpts().AltiVec) {
+ switch (getLangOpts().getAltivecSrcCompat()) {
+ case LangOptions::AltivecSrcCompatKind::Mixed:
+ // If AltiVec, the comparison results in a numeric type, i.e.
+ // bool for C++, int for C
+ if (vType->castAs<VectorType>()->getVectorKind() ==
+ VectorType::AltiVecVector)
+ return Context.getLogicalOperationType();
+ else
+ Diag(Loc, diag::warn_deprecated_altivec_src_compat);
+ break;
+ case LangOptions::AltivecSrcCompatKind::GCC:
+ // For GCC we always return the vector type.
+ break;
+ case LangOptions::AltivecSrcCompatKind::XL:
+ return Context.getLogicalOperationType();
+ break;
+ }
+ }
+
+ // For non-floating point types, check for self-comparisons of the form
+ // x == x, x != x, x < x, etc. These always evaluate to a constant, and
+ // often indicate logic errors in the program.
+ diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
+
+ // Check for comparisons of floating point operands using != and ==.
+ if (BinaryOperator::isEqualityOp(Opc) &&
+ LHSType->hasFloatingRepresentation()) {
+ assert(RHS.get()->getType()->hasFloatingRepresentation());
+ CheckFloatComparison(Loc, LHS.get(), RHS.get());
+ }
+
+ // Return a signed type for the vector.
+ return GetSignedVectorType(vType);
+}
+
+static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
+ const ExprResult &XorRHS,
+ const SourceLocation Loc) {
+ // Do not diagnose macros.
+ if (Loc.isMacroID())
+ return;
+
+ // Do not diagnose if both LHS and RHS are macros.
+ if (XorLHS.get()->getExprLoc().isMacroID() &&
+ XorRHS.get()->getExprLoc().isMacroID())
+ return;
+
+ bool Negative = false;
+ bool ExplicitPlus = false;
+ const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
+ const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
+
+ if (!LHSInt)
+ return;
+ if (!RHSInt) {
+ // Check negative literals.
+ if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
+ UnaryOperatorKind Opc = UO->getOpcode();
+ if (Opc != UO_Minus && Opc != UO_Plus)
+ return;
+ RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
+ if (!RHSInt)
+ return;
+ Negative = (Opc == UO_Minus);
+ ExplicitPlus = !Negative;
+ } else {
+ return;
+ }
+ }
+
+ const llvm::APInt &LeftSideValue = LHSInt->getValue();
+ llvm::APInt RightSideValue = RHSInt->getValue();
+ if (LeftSideValue != 2 && LeftSideValue != 10)
+ return;
+
+ if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
+ return;
+
+ CharSourceRange ExprRange = CharSourceRange::getCharRange(
+ LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
+ llvm::StringRef ExprStr =
+ Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
+
+ CharSourceRange XorRange =
+ CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
+ llvm::StringRef XorStr =
+ Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
+ // Do not diagnose if xor keyword/macro is used.
+ if (XorStr == "xor")
+ return;
+
+ std::string LHSStr = std::string(Lexer::getSourceText(
+ CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
+ S.getSourceManager(), S.getLangOpts()));
+ std::string RHSStr = std::string(Lexer::getSourceText(
+ CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
+ S.getSourceManager(), S.getLangOpts()));
+
+ if (Negative) {
+ RightSideValue = -RightSideValue;
+ RHSStr = "-" + RHSStr;
+ } else if (ExplicitPlus) {
+ RHSStr = "+" + RHSStr;
+ }
+
+ StringRef LHSStrRef = LHSStr;
+ StringRef RHSStrRef = RHSStr;
+ // Do not diagnose literals with digit separators, binary, hexadecimal, octal
+ // literals.
+ if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
+ RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
+ LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
+ RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
+ (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
+ (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
+ LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
+ return;
+
+ bool SuggestXor =
+ S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
+ const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
+ int64_t RightSideIntValue = RightSideValue.getSExtValue();
+ if (LeftSideValue == 2 && RightSideIntValue >= 0) {
+ std::string SuggestedExpr = "1 << " + RHSStr;
+ bool Overflow = false;
+ llvm::APInt One = (LeftSideValue - 1);
+ llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
+ if (Overflow) {
+ if (RightSideIntValue < 64)
+ S.Diag(Loc, diag::warn_xor_used_as_pow_base)
+ << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
+ << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
+ else if (RightSideIntValue == 64)
+ S.Diag(Loc, diag::warn_xor_used_as_pow)
+ << ExprStr << toString(XorValue, 10, true);
+ else
+ return;
+ } else {
+ S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
+ << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
+ << toString(PowValue, 10, true)
+ << FixItHint::CreateReplacement(
+ ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
+ }
+
+ S.Diag(Loc, diag::note_xor_used_as_pow_silence)
+ << ("0x2 ^ " + RHSStr) << SuggestXor;
+ } else if (LeftSideValue == 10) {
+ std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
+ S.Diag(Loc, diag::warn_xor_used_as_pow_base)
+ << ExprStr << toString(XorValue, 10, true) << SuggestedValue
+ << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
+ S.Diag(Loc, diag::note_xor_used_as_pow_silence)
+ << ("0xA ^ " + RHSStr) << SuggestXor;
+ }
+}
+
+QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc) {
+ // Ensure that either both operands are of the same vector type, or
+ // one operand is of a vector type and the other is of its element type.
+ QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
+ /*AllowBothBool*/true,
+ /*AllowBoolConversions*/false);
+ if (vType.isNull())
+ return InvalidOperands(Loc, LHS, RHS);
+ if (getLangOpts().OpenCL &&
+ getLangOpts().getOpenCLCompatibleVersion() < 120 &&
+ vType->hasFloatingRepresentation())
+ return InvalidOperands(Loc, LHS, RHS);
+ // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
+ // usage of the logical operators && and || with vectors in C. This
+ // check could be notionally dropped.
+ if (!getLangOpts().CPlusPlus &&
+ !(isa<ExtVectorType>(vType->getAs<VectorType>())))
+ return InvalidLogicalVectorOperands(Loc, LHS, RHS);
+
+ return GetSignedVectorType(LHS.get()->getType());
+}
+
+QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ bool IsCompAssign) {
+ if (!IsCompAssign) {
+ LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+ }
+ RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+
+ // For conversion purposes, we ignore any qualifiers.
+ // For example, "const float" and "float" are equivalent.
+ QualType LHSType = LHS.get()->getType().getUnqualifiedType();
+ QualType RHSType = RHS.get()->getType().getUnqualifiedType();
+
+ const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
+ const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
+ assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
+
+ if (Context.hasSameType(LHSType, RHSType))
+ return LHSType;
+
+ // Type conversion may change LHS/RHS. Keep copies to the original results, in
+ // case we have to return InvalidOperands.
+ ExprResult OriginalLHS = LHS;
+ ExprResult OriginalRHS = RHS;
+ if (LHSMatType && !RHSMatType) {
+ RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
+ if (!RHS.isInvalid())
+ return LHSType;
+
+ return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
+ }
+
+ if (!LHSMatType && RHSMatType) {
+ LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
+ if (!LHS.isInvalid())
+ return RHSType;
+ return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
+ }
+
+ return InvalidOperands(Loc, LHS, RHS);
+}
+
+QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ bool IsCompAssign) {
+ if (!IsCompAssign) {
+ LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+ }
+ RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+
+ auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
+ auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
+ assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
+
+ if (LHSMatType && RHSMatType) {
+ if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ if (!Context.hasSameType(LHSMatType->getElementType(),
+ RHSMatType->getElementType()))
+ return InvalidOperands(Loc, LHS, RHS);
+
+ return Context.getConstantMatrixType(LHSMatType->getElementType(),
+ LHSMatType->getNumRows(),
+ RHSMatType->getNumColumns());
+ }
+ return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
+}
+
+inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ BinaryOperatorKind Opc) {
+ checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
+
+ bool IsCompAssign =
+ Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
+
+ if (LHS.get()->getType()->isVectorType() ||
+ RHS.get()->getType()->isVectorType()) {
+ if (LHS.get()->getType()->hasIntegerRepresentation() &&
+ RHS.get()->getType()->hasIntegerRepresentation())
+ return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
+ /*AllowBothBool*/true,
+ /*AllowBoolConversions*/getLangOpts().ZVector);
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+
+ if (Opc == BO_And)
+ diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
+
+ if (LHS.get()->getType()->hasFloatingRepresentation() ||
+ RHS.get()->getType()->hasFloatingRepresentation())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ ExprResult LHSResult = LHS, RHSResult = RHS;
+ QualType compType = UsualArithmeticConversions(
+ LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
+ if (LHSResult.isInvalid() || RHSResult.isInvalid())
+ return QualType();
+ LHS = LHSResult.get();
+ RHS = RHSResult.get();
+
+ if (Opc == BO_Xor)
+ diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
+
+ if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
+ return compType;
+ return InvalidOperands(Loc, LHS, RHS);
+}
+
+// C99 6.5.[13,14]
+inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc,
+ BinaryOperatorKind Opc) {
+ // Check vector operands differently.
+ if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
+ return CheckVectorLogicalOperands(LHS, RHS, Loc);
+
+ bool EnumConstantInBoolContext = false;
+ for (const ExprResult &HS : {LHS, RHS}) {
+ if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
+ const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
+ if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
+ EnumConstantInBoolContext = true;
+ }
+ }
+
+ if (EnumConstantInBoolContext)
+ Diag(Loc, diag::warn_enum_constant_in_bool_context);
+
+ // Diagnose cases where the user write a logical and/or but probably meant a
+ // bitwise one. We do this when the LHS is a non-bool integer and the RHS
+ // is a constant.
+ if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
+ !LHS.get()->getType()->isBooleanType() &&
+ RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
+ // Don't warn in macros or template instantiations.
+ !Loc.isMacroID() && !inTemplateInstantiation()) {
+ // If the RHS can be constant folded, and if it constant folds to something
+ // that isn't 0 or 1 (which indicate a potential logical operation that
+ // happened to fold to true/false) then warn.
+ // Parens on the RHS are ignored.
+ Expr::EvalResult EVResult;
+ if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
+ llvm::APSInt Result = EVResult.Val.getInt();
+ if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
+ !RHS.get()->getExprLoc().isMacroID()) ||
+ (Result != 0 && Result != 1)) {
+ Diag(Loc, diag::warn_logical_instead_of_bitwise)
+ << RHS.get()->getSourceRange()
+ << (Opc == BO_LAnd ? "&&" : "||");
+ // Suggest replacing the logical operator with the bitwise version
+ Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
+ << (Opc == BO_LAnd ? "&" : "|")
+ << FixItHint::CreateReplacement(SourceRange(
+ Loc, getLocForEndOfToken(Loc)),
+ Opc == BO_LAnd ? "&" : "|");
+ if (Opc == BO_LAnd)
+ // Suggest replacing "Foo() && kNonZero" with "Foo()"
+ Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
+ << FixItHint::CreateRemoval(
+ SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
+ RHS.get()->getEndLoc()));
+ }
+ }
+ }
+
+ if (!Context.getLangOpts().CPlusPlus) {
+ // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
+ // not operate on the built-in scalar and vector float types.
+ if (Context.getLangOpts().OpenCL &&
+ Context.getLangOpts().OpenCLVersion < 120) {
+ if (LHS.get()->getType()->isFloatingType() ||
+ RHS.get()->getType()->isFloatingType())
+ return InvalidOperands(Loc, LHS, RHS);
+ }
+
+ LHS = UsualUnaryConversions(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+
+ RHS = UsualUnaryConversions(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+
+ if (!LHS.get()->getType()->isScalarType() ||
+ !RHS.get()->getType()->isScalarType())
+ return InvalidOperands(Loc, LHS, RHS);
+
+ return Context.IntTy;
+ }
+
+ // The following is safe because we only use this method for
+ // non-overloadable operands.
+
+ // C++ [expr.log.and]p1
+ // C++ [expr.log.or]p1
+ // The operands are both contextually converted to type bool.
+ ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
+ if (LHSRes.isInvalid())
+ return InvalidOperands(Loc, LHS, RHS);
+ LHS = LHSRes;
+
+ ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
+ if (RHSRes.isInvalid())
+ return InvalidOperands(Loc, LHS, RHS);
+ RHS = RHSRes;
+
+ // C++ [expr.log.and]p2
+ // C++ [expr.log.or]p2
+ // The result is a bool.
+ return Context.BoolTy;
+}
+
+static bool IsReadonlyMessage(Expr *E, Sema &S) {
+ const MemberExpr *ME = dyn_cast<MemberExpr>(E);
+ if (!ME) return false;
+ if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
+ ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
+ ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
+ if (!Base) return false;
+ return Base->getMethodDecl() != nullptr;
+}
+
+/// Is the given expression (which must be 'const') a reference to a
+/// variable which was originally non-const, but which has become
+/// 'const' due to being captured within a block?
+enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
+static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
+ assert(E->isLValue() && E->getType().isConstQualified());
+ E = E->IgnoreParens();
+
+ // Must be a reference to a declaration from an enclosing scope.
+ DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
+ if (!DRE) return NCCK_None;
+ if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
+
+ // The declaration must be a variable which is not declared 'const'.
+ VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
+ if (!var) return NCCK_None;
+ if (var->getType().isConstQualified()) return NCCK_None;
+ assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
+
+ // Decide whether the first capture was for a block or a lambda.
+ DeclContext *DC = S.CurContext, *Prev = nullptr;
+ // Decide whether the first capture was for a block or a lambda.
+ while (DC) {
+ // For init-capture, it is possible that the variable belongs to the
+ // template pattern of the current context.
+ if (auto *FD = dyn_cast<FunctionDecl>(DC))
+ if (var->isInitCapture() &&
+ FD->getTemplateInstantiationPattern() == var->getDeclContext())
+ break;
+ if (DC == var->getDeclContext())
+ break;
+ Prev = DC;
+ DC = DC->getParent();
+ }
+ // Unless we have an init-capture, we've gone one step too far.
+ if (!var->isInitCapture())
+ DC = Prev;
+ return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
+}
+
+static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
+ Ty = Ty.getNonReferenceType();
+ if (IsDereference && Ty->isPointerType())
+ Ty = Ty->getPointeeType();
+ return !Ty.isConstQualified();
+}
+
+// Update err_typecheck_assign_const and note_typecheck_assign_const
+// when this enum is changed.
+enum {
+ ConstFunction,
+ ConstVariable,
+ ConstMember,
+ ConstMethod,
+ NestedConstMember,
+ ConstUnknown, // Keep as last element
+};
+
+/// Emit the "read-only variable not assignable" error and print notes to give
+/// more information about why the variable is not assignable, such as pointing
+/// to the declaration of a const variable, showing that a method is const, or
+/// that the function is returning a const reference.
+static void DiagnoseConstAssignment(Sema &S, const Expr *E,
+ SourceLocation Loc) {
+ SourceRange ExprRange = E->getSourceRange();
+
+ // Only emit one error on the first const found. All other consts will emit
+ // a note to the error.
+ bool DiagnosticEmitted = false;
+
+ // Track if the current expression is the result of a dereference, and if the
+ // next checked expression is the result of a dereference.
+ bool IsDereference = false;
+ bool NextIsDereference = false;
+
+ // Loop to process MemberExpr chains.
+ while (true) {
+ IsDereference = NextIsDereference;
+
+ E = E->IgnoreImplicit()->IgnoreParenImpCasts();
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
+ NextIsDereference = ME->isArrow();
+ const ValueDecl *VD = ME->getMemberDecl();
+ if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
+ // Mutable fields can be modified even if the class is const.
+ if (Field->isMutable()) {
+ assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
+ break;
+ }
+
+ if (!IsTypeModifiable(Field->getType(), IsDereference)) {
+ if (!DiagnosticEmitted) {
+ S.Diag(Loc, diag::err_typecheck_assign_const)
+ << ExprRange << ConstMember << false /*static*/ << Field
+ << Field->getType();
+ DiagnosticEmitted = true;
+ }
+ S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
+ << ConstMember << false /*static*/ << Field << Field->getType()
+ << Field->getSourceRange();
+ }
+ E = ME->getBase();
+ continue;
+ } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
+ if (VDecl->getType().isConstQualified()) {
+ if (!DiagnosticEmitted) {
+ S.Diag(Loc, diag::err_typecheck_assign_const)
+ << ExprRange << ConstMember << true /*static*/ << VDecl
+ << VDecl->getType();
+ DiagnosticEmitted = true;
+ }
+ S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
+ << ConstMember << true /*static*/ << VDecl << VDecl->getType()
+ << VDecl->getSourceRange();
+ }
+ // Static fields do not inherit constness from parents.
+ break;
+ }
+ break; // End MemberExpr
+ } else if (const ArraySubscriptExpr *ASE =
+ dyn_cast<ArraySubscriptExpr>(E)) {
+ E = ASE->getBase()->IgnoreParenImpCasts();
+ continue;
+ } else if (const ExtVectorElementExpr *EVE =
+ dyn_cast<ExtVectorElementExpr>(E)) {
+ E = EVE->getBase()->IgnoreParenImpCasts();
+ continue;
+ }
+ break;
+ }
+
+ if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
+ // Function calls
+ const FunctionDecl *FD = CE->getDirectCallee();
+ if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
+ if (!DiagnosticEmitted) {
+ S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
+ << ConstFunction << FD;
+ DiagnosticEmitted = true;
+ }
+ S.Diag(FD->getReturnTypeSourceRange().getBegin(),
+ diag::note_typecheck_assign_const)
+ << ConstFunction << FD << FD->getReturnType()
+ << FD->getReturnTypeSourceRange();
+ }
+ } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ // Point to variable declaration.
+ if (const ValueDecl *VD = DRE->getDecl()) {
+ if (!IsTypeModifiable(VD->getType(), IsDereference)) {
+ if (!DiagnosticEmitted) {
+ S.Diag(Loc, diag::err_typecheck_assign_const)
+ << ExprRange << ConstVariable << VD << VD->getType();
+ DiagnosticEmitted = true;
+ }
+ S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
+ << ConstVariable << VD << VD->getType() << VD->getSourceRange();
+ }
+ }
+ } else if (isa<CXXThisExpr>(E)) {
+ if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
+ if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
+ if (MD->isConst()) {
+ if (!DiagnosticEmitted) {
+ S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
+ << ConstMethod << MD;
+ DiagnosticEmitted = true;
+ }
+ S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
+ << ConstMethod << MD << MD->getSourceRange();
+ }
+ }
+ }
+ }
+
+ if (DiagnosticEmitted)
+ return;
+
+ // Can't determine a more specific message, so display the generic error.
+ S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
+}
+
+enum OriginalExprKind {
+ OEK_Variable,
+ OEK_Member,
+ OEK_LValue
+};
+
+static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
+ const RecordType *Ty,
+ SourceLocation Loc, SourceRange Range,
+ OriginalExprKind OEK,
+ bool &DiagnosticEmitted) {
+ std::vector<const RecordType *> RecordTypeList;
+ RecordTypeList.push_back(Ty);
+ unsigned NextToCheckIndex = 0;
+ // We walk the record hierarchy breadth-first to ensure that we print
+ // diagnostics in field nesting order.
+ while (RecordTypeList.size() > NextToCheckIndex) {
+ bool IsNested = NextToCheckIndex > 0;
+ for (const FieldDecl *Field :
+ RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
+ // First, check every field for constness.
+ QualType FieldTy = Field->getType();
+ if (FieldTy.isConstQualified()) {
+ if (!DiagnosticEmitted) {
+ S.Diag(Loc, diag::err_typecheck_assign_const)
+ << Range << NestedConstMember << OEK << VD
+ << IsNested << Field;
+ DiagnosticEmitted = true;
+ }
+ S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
+ << NestedConstMember << IsNested << Field
+ << FieldTy << Field->getSourceRange();
+ }
+
+ // Then we append it to the list to check next in order.
+ FieldTy = FieldTy.getCanonicalType();
+ if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
+ if (!llvm::is_contained(RecordTypeList, FieldRecTy))
+ RecordTypeList.push_back(FieldRecTy);
+ }
+ }
+ ++NextToCheckIndex;
+ }
+}
+
+/// Emit an error for the case where a record we are trying to assign to has a
+/// const-qualified field somewhere in its hierarchy.
+static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
+ SourceLocation Loc) {
+ QualType Ty = E->getType();
+ assert(Ty->isRecordType() && "lvalue was not record?");
+ SourceRange Range = E->getSourceRange();
+ const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
+ bool DiagEmitted = false;
+
+ if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
+ DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
+ Range, OEK_Member, DiagEmitted);
+ else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
+ Range, OEK_Variable, DiagEmitted);
+ else
+ DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
+ Range, OEK_LValue, DiagEmitted);
+ if (!DiagEmitted)
+ DiagnoseConstAssignment(S, E, Loc);
+}
+
+/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
+/// emit an error and return true. If so, return false.
+static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
+ assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
+
+ S.CheckShadowingDeclModification(E, Loc);
+
+ SourceLocation OrigLoc = Loc;
+ Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
+ &Loc);
+ if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
+ IsLV = Expr::MLV_InvalidMessageExpression;
+ if (IsLV == Expr::MLV_Valid)
+ return false;
+
+ unsigned DiagID = 0;
+ bool NeedType = false;
+ switch (IsLV) { // C99 6.5.16p2
+ case Expr::MLV_ConstQualified:
+ // Use a specialized diagnostic when we're assigning to an object
+ // from an enclosing function or block.
+ if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
+ if (NCCK == NCCK_Block)
+ DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
+ else
+ DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
+ break;
+ }
+
+ // In ARC, use some specialized diagnostics for occasions where we
+ // infer 'const'. These are always pseudo-strong variables.
+ if (S.getLangOpts().ObjCAutoRefCount) {
+ DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
+ if (declRef && isa<VarDecl>(declRef->getDecl())) {
+ VarDecl *var = cast<VarDecl>(declRef->getDecl());
+
+ // Use the normal diagnostic if it's pseudo-__strong but the
+ // user actually wrote 'const'.
+ if (var->isARCPseudoStrong() &&
+ (!var->getTypeSourceInfo() ||
+ !var->getTypeSourceInfo()->getType().isConstQualified())) {
+ // There are three pseudo-strong cases:
+ // - self
+ ObjCMethodDecl *method = S.getCurMethodDecl();
+ if (method && var == method->getSelfDecl()) {
+ DiagID = method->isClassMethod()
+ ? diag::err_typecheck_arc_assign_self_class_method
+ : diag::err_typecheck_arc_assign_self;
+
+ // - Objective-C externally_retained attribute.
+ } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
+ isa<ParmVarDecl>(var)) {
+ DiagID = diag::err_typecheck_arc_assign_externally_retained;
+
+ // - fast enumeration variables
+ } else {
+ DiagID = diag::err_typecheck_arr_assign_enumeration;
+ }
+
+ SourceRange Assign;
+ if (Loc != OrigLoc)
+ Assign = SourceRange(OrigLoc, OrigLoc);
+ S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
+ // We need to preserve the AST regardless, so migration tool
+ // can do its job.
+ return false;
+ }
+ }
+ }
+
+ // If none of the special cases above are triggered, then this is a
+ // simple const assignment.
+ if (DiagID == 0) {
+ DiagnoseConstAssignment(S, E, Loc);
+ return true;
+ }
+
+ break;
+ case Expr::MLV_ConstAddrSpace:
+ DiagnoseConstAssignment(S, E, Loc);
+ return true;
+ case Expr::MLV_ConstQualifiedField:
+ DiagnoseRecursiveConstFields(S, E, Loc);
+ return true;
+ case Expr::MLV_ArrayType:
+ case Expr::MLV_ArrayTemporary:
+ DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
+ NeedType = true;
+ break;
+ case Expr::MLV_NotObjectType:
+ DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
+ NeedType = true;
+ break;
+ case Expr::MLV_LValueCast:
+ DiagID = diag::err_typecheck_lvalue_casts_not_supported;
+ break;
+ case Expr::MLV_Valid:
+ llvm_unreachable("did not take early return for MLV_Valid");
+ case Expr::MLV_InvalidExpression:
+ case Expr::MLV_MemberFunction:
+ case Expr::MLV_ClassTemporary:
+ DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
+ break;
+ case Expr::MLV_IncompleteType:
+ case Expr::MLV_IncompleteVoidType:
+ return S.RequireCompleteType(Loc, E->getType(),
+ diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
+ case Expr::MLV_DuplicateVectorComponents:
+ DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
+ break;
+ case Expr::MLV_NoSetterProperty:
+ llvm_unreachable("readonly properties should be processed differently");
+ case Expr::MLV_InvalidMessageExpression:
+ DiagID = diag::err_readonly_message_assignment;
+ break;
+ case Expr::MLV_SubObjCPropertySetting:
+ DiagID = diag::err_no_subobject_property_setting;
+ break;
+ }
+
+ SourceRange Assign;
+ if (Loc != OrigLoc)
+ Assign = SourceRange(OrigLoc, OrigLoc);
+ if (NeedType)
+ S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
+ else
+ S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
+ return true;
+}
+
+static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
+ SourceLocation Loc,
+ Sema &Sema) {
+ if (Sema.inTemplateInstantiation())
+ return;
+ if (Sema.isUnevaluatedContext())
+ return;
+ if (Loc.isInvalid() || Loc.isMacroID())
+ return;
+ if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
+ return;
+
+ // C / C++ fields
+ MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
+ MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
+ if (ML && MR) {
+ if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
+ return;
+ const ValueDecl *LHSDecl =
+ cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
+ const ValueDecl *RHSDecl =
+ cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
+ if (LHSDecl != RHSDecl)
+ return;
+ if (LHSDecl->getType().isVolatileQualified())
+ return;
+ if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
+ if (RefTy->getPointeeType().isVolatileQualified())
+ return;
+
+ Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
+ }
+
+ // Objective-C instance variables
+ ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
+ ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
+ if (OL && OR && OL->getDecl() == OR->getDecl()) {
+ DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
+ DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
+ if (RL && RR && RL->getDecl() == RR->getDecl())
+ Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
+ }
+}
+
+// C99 6.5.16.1
+QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
+ SourceLocation Loc,
+ QualType CompoundType) {
+ assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
+
+ // Verify that LHS is a modifiable lvalue, and emit error if not.
+ if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
+ return QualType();
+
+ QualType LHSType = LHSExpr->getType();
+ QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
+ CompoundType;
+ // OpenCL v1.2 s6.1.1.1 p2:
+ // The half data type can only be used to declare a pointer to a buffer that
+ // contains half values
+ if (getLangOpts().OpenCL &&
+ !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
+ LHSType->isHalfType()) {
+ Diag(Loc, diag::err_opencl_half_load_store) << 1
+ << LHSType.getUnqualifiedType();
+ return QualType();
+ }
+
+ AssignConvertType ConvTy;
+ if (CompoundType.isNull()) {
+ Expr *RHSCheck = RHS.get();
+
+ CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
+
+ QualType LHSTy(LHSType);
+ ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
+ if (RHS.isInvalid())
+ return QualType();
+ // Special case of NSObject attributes on c-style pointer types.
+ if (ConvTy == IncompatiblePointer &&
+ ((Context.isObjCNSObjectType(LHSType) &&
+ RHSType->isObjCObjectPointerType()) ||
+ (Context.isObjCNSObjectType(RHSType) &&
+ LHSType->isObjCObjectPointerType())))
+ ConvTy = Compatible;
+
+ if (ConvTy == Compatible &&
+ LHSType->isObjCObjectType())
+ Diag(Loc, diag::err_objc_object_assignment)
+ << LHSType;
+
+ // If the RHS is a unary plus or minus, check to see if they = and + are
+ // right next to each other. If so, the user may have typo'd "x =+ 4"
+ // instead of "x += 4".
+ if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
+ RHSCheck = ICE->getSubExpr();
+ if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
+ if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
+ Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
+ // Only if the two operators are exactly adjacent.
+ Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
+ // And there is a space or other character before the subexpr of the
+ // unary +/-. We don't want to warn on "x=-1".
+ Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
+ UO->getSubExpr()->getBeginLoc().isFileID()) {
+ Diag(Loc, diag::warn_not_compound_assign)
+ << (UO->getOpcode() == UO_Plus ? "+" : "-")
+ << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
+ }
+ }
+
+ if (ConvTy == Compatible) {
+ if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
+ // Warn about retain cycles where a block captures the LHS, but
+ // not if the LHS is a simple variable into which the block is
+ // being stored...unless that variable can be captured by reference!
+ const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
+ if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
+ checkRetainCycles(LHSExpr, RHS.get());
+ }
+
+ if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
+ LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
+ // It is safe to assign a weak reference into a strong variable.
+ // Although this code can still have problems:
+ // id x = self.weakProp;
+ // id y = self.weakProp;
+ // we do not warn to warn spuriously when 'x' and 'y' are on separate
+ // paths through the function. This should be revisited if
+ // -Wrepeated-use-of-weak is made flow-sensitive.
+ // For ObjCWeak only, we do not warn if the assign is to a non-weak
+ // variable, which will be valid for the current autorelease scope.
+ if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
+ RHS.get()->getBeginLoc()))
+ getCurFunction()->markSafeWeakUse(RHS.get());
+
+ } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
+ checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
+ }
+ }
+ } else {
+ // Compound assignment "x += y"
+ ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
+ }
+
+ if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
+ RHS.get(), AA_Assigning))
+ return QualType();
+
+ CheckForNullPointerDereference(*this, LHSExpr);
+
+ if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
+ if (CompoundType.isNull()) {
+ // C++2a [expr.ass]p5:
+ // A simple-assignment whose left operand is of a volatile-qualified
+ // type is deprecated unless the assignment is either a discarded-value
+ // expression or an unevaluated operand
+ ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
+ } else {
+ // C++2a [expr.ass]p6:
+ // [Compound-assignment] expressions are deprecated if E1 has
+ // volatile-qualified type
+ Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
+ }
+ }
+
+ // C99 6.5.16p3: The type of an assignment expression is the type of the
+ // left operand unless the left operand has qualified type, in which case
+ // it is the unqualified version of the type of the left operand.
+ // C99 6.5.16.1p2: In simple assignment, the value of the right operand
+ // is converted to the type of the assignment expression (above).
+ // C++ 5.17p1: the type of the assignment expression is that of its left
+ // operand.
+ return (getLangOpts().CPlusPlus
+ ? LHSType : LHSType.getUnqualifiedType());
+}
+
+// Only ignore explicit casts to void.
+static bool IgnoreCommaOperand(const Expr *E) {
+ E = E->IgnoreParens();
+
+ if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
+ if (CE->getCastKind() == CK_ToVoid) {
+ return true;
+ }
+
+ // static_cast<void> on a dependent type will not show up as CK_ToVoid.
+ if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
+ CE->getSubExpr()->getType()->isDependentType()) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// Look for instances where it is likely the comma operator is confused with
+// another operator. There is an explicit list of acceptable expressions for
+// the left hand side of the comma operator, otherwise emit a warning.
+void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
+ // No warnings in macros
+ if (Loc.isMacroID())
+ return;
+
+ // Don't warn in template instantiations.
+ if (inTemplateInstantiation())
+ return;
+
+ // Scope isn't fine-grained enough to explicitly list the specific cases, so
+ // instead, skip more than needed, then call back into here with the
+ // CommaVisitor in SemaStmt.cpp.
+ // The listed locations are the initialization and increment portions
+ // of a for loop. The additional checks are on the condition of
+ // if statements, do/while loops, and for loops.
+ // Differences in scope flags for C89 mode requires the extra logic.
+ const unsigned ForIncrementFlags =
+ getLangOpts().C99 || getLangOpts().CPlusPlus
+ ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
+ : Scope::ContinueScope | Scope::BreakScope;
+ const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
+ const unsigned ScopeFlags = getCurScope()->getFlags();
+ if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
+ (ScopeFlags & ForInitFlags) == ForInitFlags)
+ return;
+
+ // If there are multiple comma operators used together, get the RHS of the
+ // of the comma operator as the LHS.
+ while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
+ if (BO->getOpcode() != BO_Comma)
+ break;
+ LHS = BO->getRHS();
+ }
+
+ // Only allow some expressions on LHS to not warn.
+ if (IgnoreCommaOperand(LHS))
+ return;
+
+ Diag(Loc, diag::warn_comma_operator);
+ Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
+ << LHS->getSourceRange()
+ << FixItHint::CreateInsertion(LHS->getBeginLoc(),
+ LangOpts.CPlusPlus ? "static_cast<void>("
+ : "(void)(")
+ << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
+ ")");
+}
+
+// C99 6.5.17
+static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
+ SourceLocation Loc) {
+ LHS = S.CheckPlaceholderExpr(LHS.get());
+ RHS = S.CheckPlaceholderExpr(RHS.get());
+ if (LHS.isInvalid() || RHS.isInvalid())
+ return QualType();
+
+ // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
+ // operands, but not unary promotions.
+ // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
+
+ // So we treat the LHS as a ignored value, and in C++ we allow the
+ // containing site to determine what should be done with the RHS.
+ LHS = S.IgnoredValueConversions(LHS.get());
+ if (LHS.isInvalid())
+ return QualType();
+
+ S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
+
+ if (!S.getLangOpts().CPlusPlus) {
+ RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
+ if (RHS.isInvalid())
+ return QualType();
+ if (!RHS.get()->getType()->isVoidType())
+ S.RequireCompleteType(Loc, RHS.get()->getType(),
+ diag::err_incomplete_type);
+ }
+
+ if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
+ S.DiagnoseCommaOperator(LHS.get(), Loc);
+
+ return RHS.get()->getType();
+}
+
+/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
+/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
+static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
+ ExprValueKind &VK,
+ ExprObjectKind &OK,
+ SourceLocation OpLoc,
+ bool IsInc, bool IsPrefix) {
+ if (Op->isTypeDependent())
+ return S.Context.DependentTy;
+
+ QualType ResType = Op->getType();
+ // Atomic types can be used for increment / decrement where the non-atomic
+ // versions can, so ignore the _Atomic() specifier for the purpose of
+ // checking.
+ if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
+ ResType = ResAtomicType->getValueType();
+
+ assert(!ResType.isNull() && "no type for increment/decrement expression");
+
+ if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
+ // Decrement of bool is not allowed.
+ if (!IsInc) {
+ S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
+ return QualType();
+ }
+ // Increment of bool sets it to true, but is deprecated.
+ S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
+ : diag::warn_increment_bool)
+ << Op->getSourceRange();
+ } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
+ // Error on enum increments and decrements in C++ mode
+ S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
+ return QualType();
+ } else if (ResType->isRealType()) {
+ // OK!
+ } else if (ResType->isPointerType()) {
+ // C99 6.5.2.4p2, 6.5.6p2
+ if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
+ return QualType();
+ } else if (ResType->isObjCObjectPointerType()) {
+ // On modern runtimes, ObjC pointer arithmetic is forbidden.
+ // Otherwise, we just need a complete type.
+ if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
+ checkArithmeticOnObjCPointer(S, OpLoc, Op))
+ return QualType();
+ } else if (ResType->isAnyComplexType()) {
+ // C99 does not support ++/-- on complex types, we allow as an extension.
+ S.Diag(OpLoc, diag::ext_integer_increment_complex)
+ << ResType << Op->getSourceRange();
+ } else if (ResType->isPlaceholderType()) {
+ ExprResult PR = S.CheckPlaceholderExpr(Op);
+ if (PR.isInvalid()) return QualType();
+ return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
+ IsInc, IsPrefix);
+ } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
+ // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
+ } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
+ (ResType->castAs<VectorType>()->getVectorKind() !=
+ VectorType::AltiVecBool)) {
+ // The z vector extensions allow ++ and -- for non-bool vectors.
+ } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
+ ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
+ // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
+ } else {
+ S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
+ << ResType << int(IsInc) << Op->getSourceRange();
+ return QualType();
+ }
+ // At this point, we know we have a real, complex or pointer type.
+ // Now make sure the operand is a modifiable lvalue.
+ if (CheckForModifiableLvalue(Op, OpLoc, S))
+ return QualType();
+ if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
+ // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
+ // An operand with volatile-qualified type is deprecated
+ S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
+ << IsInc << ResType;
+ }
+ // In C++, a prefix increment is the same type as the operand. Otherwise
+ // (in C or with postfix), the increment is the unqualified type of the
+ // operand.
+ if (IsPrefix && S.getLangOpts().CPlusPlus) {
+ VK = VK_LValue;
+ OK = Op->getObjectKind();
+ return ResType;
+ } else {
+ VK = VK_PRValue;
+ return ResType.getUnqualifiedType();
+ }
+}
+
+
+/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
+/// This routine allows us to typecheck complex/recursive expressions
+/// where the declaration is needed for type checking. We only need to
+/// handle cases when the expression references a function designator
+/// or is an lvalue. Here are some examples:
+/// - &(x) => x
+/// - &*****f => f for f a function designator.
+/// - &s.xx => s
+/// - &s.zz[1].yy -> s, if zz is an array
+/// - *(x + 1) -> x, if x is an array
+/// - &"123"[2] -> 0
+/// - & __real__ x -> x
+///
+/// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
+/// members.
+static ValueDecl *getPrimaryDecl(Expr *E) {
+ switch (E->getStmtClass()) {
+ case Stmt::DeclRefExprClass:
+ return cast<DeclRefExpr>(E)->getDecl();
+ case Stmt::MemberExprClass:
+ // If this is an arrow operator, the address is an offset from
+ // the base's value, so the object the base refers to is
+ // irrelevant.
+ if (cast<MemberExpr>(E)->isArrow())
+ return nullptr;
+ // Otherwise, the expression refers to a part of the base
+ return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
+ case Stmt::ArraySubscriptExprClass: {
+ // FIXME: This code shouldn't be necessary! We should catch the implicit
+ // promotion of register arrays earlier.
+ Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
+ if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
+ if (ICE->getSubExpr()->getType()->isArrayType())
+ return getPrimaryDecl(ICE->getSubExpr());
+ }
+ return nullptr;
+ }
+ case Stmt::UnaryOperatorClass: {
+ UnaryOperator *UO = cast<UnaryOperator>(E);
+
+ switch(UO->getOpcode()) {
+ case UO_Real:
+ case UO_Imag:
+ case UO_Extension:
+ return getPrimaryDecl(UO->getSubExpr());
+ default:
+ return nullptr;
+ }
+ }
+ case Stmt::ParenExprClass:
+ return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
+ case Stmt::ImplicitCastExprClass:
+ // If the result of an implicit cast is an l-value, we care about
+ // the sub-expression; otherwise, the result here doesn't matter.
+ return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
+ case Stmt::CXXUuidofExprClass:
+ return cast<CXXUuidofExpr>(E)->getGuidDecl();
+ default:
+ return nullptr;
+ }
+}
+
+namespace {
+enum {
+ AO_Bit_Field = 0,
+ AO_Vector_Element = 1,
+ AO_Property_Expansion = 2,
+ AO_Register_Variable = 3,
+ AO_Matrix_Element = 4,
+ AO_No_Error = 5
+};
+}
+/// Diagnose invalid operand for address of operations.
+///
+/// \param Type The type of operand which cannot have its address taken.
+static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
+ Expr *E, unsigned Type) {
+ S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
+}
+
+/// CheckAddressOfOperand - The operand of & must be either a function
+/// designator or an lvalue designating an object. If it is an lvalue, the
+/// object cannot be declared with storage class register or be a bit field.
+/// Note: The usual conversions are *not* applied to the operand of the &
+/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
+/// In C++, the operand might be an overloaded function name, in which case
+/// we allow the '&' but retain the overloaded-function type.
+QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
+ if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
+ if (PTy->getKind() == BuiltinType::Overload) {
+ Expr *E = OrigOp.get()->IgnoreParens();
+ if (!isa<OverloadExpr>(E)) {
+ assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
+ Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
+ << OrigOp.get()->getSourceRange();
+ return QualType();
+ }
+
+ OverloadExpr *Ovl = cast<OverloadExpr>(E);
+ if (isa<UnresolvedMemberExpr>(Ovl))
+ if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
+ Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
+ << OrigOp.get()->getSourceRange();
+ return QualType();
+ }
+
+ return Context.OverloadTy;
+ }
+
+ if (PTy->getKind() == BuiltinType::UnknownAny)
+ return Context.UnknownAnyTy;
+
+ if (PTy->getKind() == BuiltinType::BoundMember) {
+ Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
+ << OrigOp.get()->getSourceRange();
+ return QualType();
+ }
+
+ OrigOp = CheckPlaceholderExpr(OrigOp.get());
+ if (OrigOp.isInvalid()) return QualType();
+ }
+
+ if (OrigOp.get()->isTypeDependent())
+ return Context.DependentTy;
+
+ assert(!OrigOp.get()->hasPlaceholderType());
+
+ // Make sure to ignore parentheses in subsequent checks
+ Expr *op = OrigOp.get()->IgnoreParens();
+
+ // In OpenCL captures for blocks called as lambda functions
+ // are located in the private address space. Blocks used in
+ // enqueue_kernel can be located in a different address space
+ // depending on a vendor implementation. Thus preventing
+ // taking an address of the capture to avoid invalid AS casts.
+ if (LangOpts.OpenCL) {
+ auto* VarRef = dyn_cast<DeclRefExpr>(op);
+ if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
+ Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
+ return QualType();
+ }
+ }
+
+ if (getLangOpts().C99) {
+ // Implement C99-only parts of addressof rules.
+ if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
+ if (uOp->getOpcode() == UO_Deref)
+ // Per C99 6.5.3.2, the address of a deref always returns a valid result
+ // (assuming the deref expression is valid).
+ return uOp->getSubExpr()->getType();
+ }
+ // Technically, there should be a check for array subscript
+ // expressions here, but the result of one is always an lvalue anyway.
+ }
+ ValueDecl *dcl = getPrimaryDecl(op);
+
+ if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
+ if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
+ op->getBeginLoc()))
+ return QualType();
+
+ Expr::LValueClassification lval = op->ClassifyLValue(Context);
+ unsigned AddressOfError = AO_No_Error;
+
+ if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
+ bool sfinae = (bool)isSFINAEContext();
+ Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
+ : diag::ext_typecheck_addrof_temporary)
+ << op->getType() << op->getSourceRange();
+ if (sfinae)
+ return QualType();
+ // Materialize the temporary as an lvalue so that we can take its address.
+ OrigOp = op =
+ CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
+ } else if (isa<ObjCSelectorExpr>(op)) {
+ return Context.getPointerType(op->getType());
+ } else if (lval == Expr::LV_MemberFunction) {
+ // If it's an instance method, make a member pointer.
+ // The expression must have exactly the form &A::foo.
+
+ // If the underlying expression isn't a decl ref, give up.
+ if (!isa<DeclRefExpr>(op)) {
+ Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
+ << OrigOp.get()->getSourceRange();
+ return QualType();
+ }
+ DeclRefExpr *DRE = cast<DeclRefExpr>(op);
+ CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
+
+ // The id-expression was parenthesized.
+ if (OrigOp.get() != DRE) {
+ Diag(OpLoc, diag::err_parens_pointer_member_function)
+ << OrigOp.get()->getSourceRange();
+
+ // The method was named without a qualifier.
+ } else if (!DRE->getQualifier()) {
+ if (MD->getParent()->getName().empty())
+ Diag(OpLoc, diag::err_unqualified_pointer_member_function)
+ << op->getSourceRange();
+ else {
+ SmallString<32> Str;
+ StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
+ Diag(OpLoc, diag::err_unqualified_pointer_member_function)
+ << op->getSourceRange()
+ << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
+ }
+ }
+
+ // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
+ if (isa<CXXDestructorDecl>(MD))
+ Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
+
+ QualType MPTy = Context.getMemberPointerType(
+ op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
+ // Under the MS ABI, lock down the inheritance model now.
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft())
+ (void)isCompleteType(OpLoc, MPTy);
+ return MPTy;
+ } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
+ // C99 6.5.3.2p1
+ // The operand must be either an l-value or a function designator
+ if (!op->getType()->isFunctionType()) {
+ // Use a special diagnostic for loads from property references.
+ if (isa<PseudoObjectExpr>(op)) {
+ AddressOfError = AO_Property_Expansion;
+ } else {
+ Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
+ << op->getType() << op->getSourceRange();
+ return QualType();
+ }
+ }
+ } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
+ // The operand cannot be a bit-field
+ AddressOfError = AO_Bit_Field;
+ } else if (op->getObjectKind() == OK_VectorComponent) {
+ // The operand cannot be an element of a vector
+ AddressOfError = AO_Vector_Element;
+ } else if (op->getObjectKind() == OK_MatrixComponent) {
+ // The operand cannot be an element of a matrix.
+ AddressOfError = AO_Matrix_Element;
+ } else if (dcl) { // C99 6.5.3.2p1
+ // We have an lvalue with a decl. Make sure the decl is not declared
+ // with the register storage-class specifier.
+ if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
+ // in C++ it is not error to take address of a register
+ // variable (c++03 7.1.1P3)
+ if (vd->getStorageClass() == SC_Register &&
+ !getLangOpts().CPlusPlus) {
+ AddressOfError = AO_Register_Variable;
+ }
+ } else if (isa<MSPropertyDecl>(dcl)) {
+ AddressOfError = AO_Property_Expansion;
+ } else if (isa<FunctionTemplateDecl>(dcl)) {
+ return Context.OverloadTy;
+ } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
+ // Okay: we can take the address of a field.
+ // Could be a pointer to member, though, if there is an explicit
+ // scope qualifier for the class.
+ if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
+ DeclContext *Ctx = dcl->getDeclContext();
+ if (Ctx && Ctx->isRecord()) {
+ if (dcl->getType()->isReferenceType()) {
+ Diag(OpLoc,
+ diag::err_cannot_form_pointer_to_member_of_reference_type)
+ << dcl->getDeclName() << dcl->getType();
+ return QualType();
+ }
+
+ while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
+ Ctx = Ctx->getParent();
+
+ QualType MPTy = Context.getMemberPointerType(
+ op->getType(),
+ Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
+ // Under the MS ABI, lock down the inheritance model now.
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft())
+ (void)isCompleteType(OpLoc, MPTy);
+ return MPTy;
+ }
+ }
+ } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
+ !isa<BindingDecl>(dcl) && !isa<MSGuidDecl>(dcl))
+ llvm_unreachable("Unknown/unexpected decl type");
+ }
+
+ if (AddressOfError != AO_No_Error) {
+ diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
+ return QualType();
+ }
+
+ if (lval == Expr::LV_IncompleteVoidType) {
+ // Taking the address of a void variable is technically illegal, but we
+ // allow it in cases which are otherwise valid.
+ // Example: "extern void x; void* y = &x;".
+ Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
+ }
+
+ // If the operand has type "type", the result has type "pointer to type".
+ if (op->getType()->isObjCObjectType())
+ return Context.getObjCObjectPointerType(op->getType());
+
+ CheckAddressOfPackedMember(op);
+
+ return Context.getPointerType(op->getType());
+}
+
+static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
+ if (!DRE)
+ return;
+ const Decl *D = DRE->getDecl();
+ if (!D)
+ return;
+ const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
+ if (!Param)
+ return;
+ if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
+ if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
+ return;
+ if (FunctionScopeInfo *FD = S.getCurFunction())
+ if (!FD->ModifiedNonNullParams.count(Param))
+ FD->ModifiedNonNullParams.insert(Param);
+}
+
+/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
+static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
+ SourceLocation OpLoc) {
+ if (Op->isTypeDependent())
+ return S.Context.DependentTy;
+
+ ExprResult ConvResult = S.UsualUnaryConversions(Op);
+ if (ConvResult.isInvalid())
+ return QualType();
+ Op = ConvResult.get();
+ QualType OpTy = Op->getType();
+ QualType Result;
+
+ if (isa<CXXReinterpretCastExpr>(Op)) {
+ QualType OpOrigType = Op->IgnoreParenCasts()->getType();
+ S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
+ Op->getSourceRange());
+ }
+
+ if (const PointerType *PT = OpTy->getAs<PointerType>())
+ {
+ Result = PT->getPointeeType();
+ }
+ else if (const ObjCObjectPointerType *OPT =
+ OpTy->getAs<ObjCObjectPointerType>())
+ Result = OPT->getPointeeType();
+ else {
+ ExprResult PR = S.CheckPlaceholderExpr(Op);
+ if (PR.isInvalid()) return QualType();
+ if (PR.get() != Op)
+ return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
+ }
+
+ if (Result.isNull()) {
+ S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
+ << OpTy << Op->getSourceRange();
+ return QualType();
+ }
+
+ // Note that per both C89 and C99, indirection is always legal, even if Result
+ // is an incomplete type or void. It would be possible to warn about
+ // dereferencing a void pointer, but it's completely well-defined, and such a
+ // warning is unlikely to catch any mistakes. In C++, indirection is not valid
+ // for pointers to 'void' but is fine for any other pointer type:
+ //
+ // C++ [expr.unary.op]p1:
+ // [...] the expression to which [the unary * operator] is applied shall
+ // be a pointer to an object type, or a pointer to a function type
+ if (S.getLangOpts().CPlusPlus && Result->isVoidType())
+ S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
+ << OpTy << Op->getSourceRange();
+
+ // Dereferences are usually l-values...
+ VK = VK_LValue;
+
+ // ...except that certain expressions are never l-values in C.
+ if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
+ VK = VK_PRValue;
+
+ return Result;
+}
+
+BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
+ BinaryOperatorKind Opc;
+ switch (Kind) {
+ default: llvm_unreachable("Unknown binop!");
+ case tok::periodstar: Opc = BO_PtrMemD; break;
+ case tok::arrowstar: Opc = BO_PtrMemI; break;
+ case tok::star: Opc = BO_Mul; break;
+ case tok::slash: Opc = BO_Div; break;
+ case tok::percent: Opc = BO_Rem; break;
+ case tok::plus: Opc = BO_Add; break;
+ case tok::minus: Opc = BO_Sub; break;
+ case tok::lessless: Opc = BO_Shl; break;
+ case tok::greatergreater: Opc = BO_Shr; break;
+ case tok::lessequal: Opc = BO_LE; break;
+ case tok::less: Opc = BO_LT; break;
+ case tok::greaterequal: Opc = BO_GE; break;
+ case tok::greater: Opc = BO_GT; break;
+ case tok::exclaimequal: Opc = BO_NE; break;
+ case tok::equalequal: Opc = BO_EQ; break;
+ case tok::spaceship: Opc = BO_Cmp; break;
+ case tok::amp: Opc = BO_And; break;
+ case tok::caret: Opc = BO_Xor; break;
+ case tok::pipe: Opc = BO_Or; break;
+ case tok::ampamp: Opc = BO_LAnd; break;
+ case tok::pipepipe: Opc = BO_LOr; break;
+ case tok::equal: Opc = BO_Assign; break;
+ case tok::starequal: Opc = BO_MulAssign; break;
+ case tok::slashequal: Opc = BO_DivAssign; break;
+ case tok::percentequal: Opc = BO_RemAssign; break;
+ case tok::plusequal: Opc = BO_AddAssign; break;
+ case tok::minusequal: Opc = BO_SubAssign; break;
+ case tok::lesslessequal: Opc = BO_ShlAssign; break;
+ case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
+ case tok::ampequal: Opc = BO_AndAssign; break;
+ case tok::caretequal: Opc = BO_XorAssign; break;
+ case tok::pipeequal: Opc = BO_OrAssign; break;
+ case tok::comma: Opc = BO_Comma; break;
+ }
+ return Opc;
+}
+
+static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
+ tok::TokenKind Kind) {
+ UnaryOperatorKind Opc;
+ switch (Kind) {
+ default: llvm_unreachable("Unknown unary op!");
+ case tok::plusplus: Opc = UO_PreInc; break;
+ case tok::minusminus: Opc = UO_PreDec; break;
+ case tok::amp: Opc = UO_AddrOf; break;
+ case tok::star: Opc = UO_Deref; break;
+ case tok::plus: Opc = UO_Plus; break;
+ case tok::minus: Opc = UO_Minus; break;
+ case tok::tilde: Opc = UO_Not; break;
+ case tok::exclaim: Opc = UO_LNot; break;
+ case tok::kw___real: Opc = UO_Real; break;
+ case tok::kw___imag: Opc = UO_Imag; break;
+ case tok::kw___extension__: Opc = UO_Extension; break;
+ }
+ return Opc;
+}
+
+/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
+/// This warning suppressed in the event of macro expansions.
+static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
+ SourceLocation OpLoc, bool IsBuiltin) {
+ if (S.inTemplateInstantiation())
+ return;
+ if (S.isUnevaluatedContext())
+ return;
+ if (OpLoc.isInvalid() || OpLoc.isMacroID())
+ return;
+ LHSExpr = LHSExpr->IgnoreParenImpCasts();
+ RHSExpr = RHSExpr->IgnoreParenImpCasts();
+ const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
+ const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
+ if (!LHSDeclRef || !RHSDeclRef ||
+ LHSDeclRef->getLocation().isMacroID() ||
+ RHSDeclRef->getLocation().isMacroID())
+ return;
+ const ValueDecl *LHSDecl =
+ cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
+ const ValueDecl *RHSDecl =
+ cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
+ if (LHSDecl != RHSDecl)
+ return;
+ if (LHSDecl->getType().isVolatileQualified())
+ return;
+ if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
+ if (RefTy->getPointeeType().isVolatileQualified())
+ return;
+
+ S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
+ : diag::warn_self_assignment_overloaded)
+ << LHSDeclRef->getType() << LHSExpr->getSourceRange()
+ << RHSExpr->getSourceRange();
+}
+
+/// Check if a bitwise-& is performed on an Objective-C pointer. This
+/// is usually indicative of introspection within the Objective-C pointer.
+static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
+ SourceLocation OpLoc) {
+ if (!S.getLangOpts().ObjC)
+ return;
+
+ const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
+ const Expr *LHS = L.get();
+ const Expr *RHS = R.get();
+
+ if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
+ ObjCPointerExpr = LHS;
+ OtherExpr = RHS;
+ }
+ else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
+ ObjCPointerExpr = RHS;
+ OtherExpr = LHS;
+ }
+
+ // This warning is deliberately made very specific to reduce false
+ // positives with logic that uses '&' for hashing. This logic mainly
+ // looks for code trying to introspect into tagged pointers, which
+ // code should generally never do.
+ if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
+ unsigned Diag = diag::warn_objc_pointer_masking;
+ // Determine if we are introspecting the result of performSelectorXXX.
+ const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
+ // Special case messages to -performSelector and friends, which
+ // can return non-pointer values boxed in a pointer value.
+ // Some clients may wish to silence warnings in this subcase.
+ if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
+ Selector S = ME->getSelector();
+ StringRef SelArg0 = S.getNameForSlot(0);
+ if (SelArg0.startswith("performSelector"))
+ Diag = diag::warn_objc_pointer_masking_performSelector;
+ }
+
+ S.Diag(OpLoc, Diag)
+ << ObjCPointerExpr->getSourceRange();
+ }
+}
+
+static NamedDecl *getDeclFromExpr(Expr *E) {
+ if (!E)
+ return nullptr;
+ if (auto *DRE = dyn_cast<DeclRefExpr>(E))
+ return DRE->getDecl();
+ if (auto *ME = dyn_cast<MemberExpr>(E))
+ return ME->getMemberDecl();
+ if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
+ return IRE->getDecl();
+ return nullptr;
+}
+
+// This helper function promotes a binary operator's operands (which are of a
+// half vector type) to a vector of floats and then truncates the result to
+// a vector of either half or short.
+static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
+ BinaryOperatorKind Opc, QualType ResultTy,
+ ExprValueKind VK, ExprObjectKind OK,
+ bool IsCompAssign, SourceLocation OpLoc,
+ FPOptionsOverride FPFeatures) {
+ auto &Context = S.getASTContext();
+ assert((isVector(ResultTy, Context.HalfTy) ||
+ isVector(ResultTy, Context.ShortTy)) &&
+ "Result must be a vector of half or short");
+ assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
+ isVector(RHS.get()->getType(), Context.HalfTy) &&
+ "both operands expected to be a half vector");
+
+ RHS = convertVector(RHS.get(), Context.FloatTy, S);
+ QualType BinOpResTy = RHS.get()->getType();
+
+ // If Opc is a comparison, ResultType is a vector of shorts. In that case,
+ // change BinOpResTy to a vector of ints.
+ if (isVector(ResultTy, Context.ShortTy))
+ BinOpResTy = S.GetSignedVectorType(BinOpResTy);
+
+ if (IsCompAssign)
+ return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
+ ResultTy, VK, OK, OpLoc, FPFeatures,
+ BinOpResTy, BinOpResTy);
+
+ LHS = convertVector(LHS.get(), Context.FloatTy, S);
+ auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
+ BinOpResTy, VK, OK, OpLoc, FPFeatures);
+ return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
+}
+
+static std::pair<ExprResult, ExprResult>
+CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
+ Expr *RHSExpr) {
+ ExprResult LHS = LHSExpr, RHS = RHSExpr;
+ if (!S.Context.isDependenceAllowed()) {
+ // C cannot handle TypoExpr nodes on either side of a binop because it
+ // doesn't handle dependent types properly, so make sure any TypoExprs have
+ // been dealt with before checking the operands.
+ LHS = S.CorrectDelayedTyposInExpr(LHS);
+ RHS = S.CorrectDelayedTyposInExpr(
+ RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
+ [Opc, LHS](Expr *E) {
+ if (Opc != BO_Assign)
+ return ExprResult(E);
+ // Avoid correcting the RHS to the same Expr as the LHS.
+ Decl *D = getDeclFromExpr(E);
+ return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
+ });
+ }
+ return std::make_pair(LHS, RHS);
+}
+
+/// Returns true if conversion between vectors of halfs and vectors of floats
+/// is needed.
+static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
+ Expr *E0, Expr *E1 = nullptr) {
+ if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
+ Ctx.getTargetInfo().useFP16ConversionIntrinsics())
+ return false;
+
+ auto HasVectorOfHalfType = [&Ctx](Expr *E) {
+ QualType Ty = E->IgnoreImplicit()->getType();
+
+ // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
+ // to vectors of floats. Although the element type of the vectors is __fp16,
+ // the vectors shouldn't be treated as storage-only types. See the
+ // discussion here: https://reviews.llvm.org/rG825235c140e7
+ if (const VectorType *VT = Ty->getAs<VectorType>()) {
+ if (VT->getVectorKind() == VectorType::NeonVector)
+ return false;
+ return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
+ }
+ return false;
+ };
+
+ return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
+}
+
+/// CreateBuiltinBinOp - Creates a new built-in binary operation with
+/// operator @p Opc at location @c TokLoc. This routine only supports
+/// built-in operations; ActOnBinOp handles overloaded operators.
+ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
+ BinaryOperatorKind Opc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
+ // The syntax only allows initializer lists on the RHS of assignment,
+ // so we don't need to worry about accepting invalid code for
+ // non-assignment operators.
+ // C++11 5.17p9:
+ // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
+ // of x = {} is x = T().
+ InitializationKind Kind = InitializationKind::CreateDirectList(
+ RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
+ InitializedEntity Entity =
+ InitializedEntity::InitializeTemporary(LHSExpr->getType());
+ InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
+ ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
+ if (Init.isInvalid())
+ return Init;
+ RHSExpr = Init.get();
+ }
+
+ ExprResult LHS = LHSExpr, RHS = RHSExpr;
+ QualType ResultTy; // Result type of the binary operator.
+ // The following two variables are used for compound assignment operators
+ QualType CompLHSTy; // Type of LHS after promotions for computation
+ QualType CompResultTy; // Type of computation result
+ ExprValueKind VK = VK_PRValue;
+ ExprObjectKind OK = OK_Ordinary;
+ bool ConvertHalfVec = false;
+
+ std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
+ if (!LHS.isUsable() || !RHS.isUsable())
+ return ExprError();
+
+ if (getLangOpts().OpenCL) {
+ QualType LHSTy = LHSExpr->getType();
+ QualType RHSTy = RHSExpr->getType();
+ // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
+ // the ATOMIC_VAR_INIT macro.
+ if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
+ SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
+ if (BO_Assign == Opc)
+ Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
+ else
+ ResultTy = InvalidOperands(OpLoc, LHS, RHS);
+ return ExprError();
+ }
+
+ // OpenCL special types - image, sampler, pipe, and blocks are to be used
+ // only with a builtin functions and therefore should be disallowed here.
+ if (LHSTy->isImageType() || RHSTy->isImageType() ||
+ LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
+ LHSTy->isPipeType() || RHSTy->isPipeType() ||
+ LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
+ ResultTy = InvalidOperands(OpLoc, LHS, RHS);
+ return ExprError();
+ }
+ }
+
+ checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
+ checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
+
+ switch (Opc) {
+ case BO_Assign:
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
+ if (getLangOpts().CPlusPlus &&
+ LHS.get()->getObjectKind() != OK_ObjCProperty) {
+ VK = LHS.get()->getValueKind();
+ OK = LHS.get()->getObjectKind();
+ }
+ if (!ResultTy.isNull()) {
+ DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
+ DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
+
+ // Avoid copying a block to the heap if the block is assigned to a local
+ // auto variable that is declared in the same scope as the block. This
+ // optimization is unsafe if the local variable is declared in an outer
+ // scope. For example:
+ //
+ // BlockTy b;
+ // {
+ // b = ^{...};
+ // }
+ // // It is unsafe to invoke the block here if it wasn't copied to the
+ // // heap.
+ // b();
+
+ if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
+ if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
+ if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
+ if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
+ BE->getBlockDecl()->setCanAvoidCopyToHeap();
+
+ if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
+ checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
+ NTCUC_Assignment, NTCUK_Copy);
+ }
+ RecordModifiableNonNullParam(*this, LHS.get());
+ break;
+ case BO_PtrMemD:
+ case BO_PtrMemI:
+ ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
+ Opc == BO_PtrMemI);
+ break;
+ case BO_Mul:
+ case BO_Div:
+ ConvertHalfVec = true;
+ ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
+ Opc == BO_Div);
+ break;
+ case BO_Rem:
+ ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
+ break;
+ case BO_Add:
+ ConvertHalfVec = true;
+ ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
+ break;
+ case BO_Sub:
+ ConvertHalfVec = true;
+ ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
+ break;
+ case BO_Shl:
+ case BO_Shr:
+ ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
+ break;
+ case BO_LE:
+ case BO_LT:
+ case BO_GE:
+ case BO_GT:
+ ConvertHalfVec = true;
+ ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
+ break;
+ case BO_EQ:
+ case BO_NE:
+ ConvertHalfVec = true;
+ ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
+ break;
+ case BO_Cmp:
+ ConvertHalfVec = true;
+ ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
+ assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
+ break;
+ case BO_And:
+ checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
+ LLVM_FALLTHROUGH;
+ case BO_Xor:
+ case BO_Or:
+ ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
+ break;
+ case BO_LAnd:
+ case BO_LOr:
+ ConvertHalfVec = true;
+ ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
+ break;
+ case BO_MulAssign:
+ case BO_DivAssign:
+ ConvertHalfVec = true;
+ CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
+ Opc == BO_DivAssign);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_RemAssign:
+ CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_AddAssign:
+ ConvertHalfVec = true;
+ CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_SubAssign:
+ ConvertHalfVec = true;
+ CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_ShlAssign:
+ case BO_ShrAssign:
+ CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_AndAssign:
+ case BO_OrAssign: // fallthrough
+ DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
+ LLVM_FALLTHROUGH;
+ case BO_XorAssign:
+ CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
+ CompLHSTy = CompResultTy;
+ if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
+ ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
+ break;
+ case BO_Comma:
+ ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
+ if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
+ VK = RHS.get()->getValueKind();
+ OK = RHS.get()->getObjectKind();
+ }
+ break;
+ }
+ if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
+ return ExprError();
+
+ // Some of the binary operations require promoting operands of half vector to
+ // float vectors and truncating the result back to half vector. For now, we do
+ // this only when HalfArgsAndReturn is set (that is, when the target is arm or
+ // arm64).
+ assert(
+ (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
+ isVector(LHS.get()->getType(), Context.HalfTy)) &&
+ "both sides are half vectors or neither sides are");
+ ConvertHalfVec =
+ needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
+
+ // Check for array bounds violations for both sides of the BinaryOperator
+ CheckArrayAccess(LHS.get());
+ CheckArrayAccess(RHS.get());
+
+ if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
+ NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
+ &Context.Idents.get("object_setClass"),
+ SourceLocation(), LookupOrdinaryName);
+ if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
+ SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
+ Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
+ << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
+ "object_setClass(")
+ << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
+ ",")
+ << FixItHint::CreateInsertion(RHSLocEnd, ")");
+ }
+ else
+ Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
+ }
+ else if (const ObjCIvarRefExpr *OIRE =
+ dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
+ DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
+
+ // Opc is not a compound assignment if CompResultTy is null.
+ if (CompResultTy.isNull()) {
+ if (ConvertHalfVec)
+ return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
+ OpLoc, CurFPFeatureOverrides());
+ return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
+ VK, OK, OpLoc, CurFPFeatureOverrides());
+ }
+
+ // Handle compound assignments.
+ if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
+ OK_ObjCProperty) {
+ VK = VK_LValue;
+ OK = LHS.get()->getObjectKind();
+ }
+
+ // The LHS is not converted to the result type for fixed-point compound
+ // assignment as the common type is computed on demand. Reset the CompLHSTy
+ // to the LHS type we would have gotten after unary conversions.
+ if (CompResultTy->isFixedPointType())
+ CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
+
+ if (ConvertHalfVec)
+ return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
+ OpLoc, CurFPFeatureOverrides());
+
+ return CompoundAssignOperator::Create(
+ Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
+ CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
+}
+
+/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
+/// operators are mixed in a way that suggests that the programmer forgot that
+/// comparison operators have higher precedence. The most typical example of
+/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
+static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
+ SourceLocation OpLoc, Expr *LHSExpr,
+ Expr *RHSExpr) {
+ BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
+ BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
+
+ // Check that one of the sides is a comparison operator and the other isn't.
+ bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
+ bool isRightComp = RHSBO && RHSBO->isComparisonOp();
+ if (isLeftComp == isRightComp)
+ return;
+
+ // Bitwise operations are sometimes used as eager logical ops.
+ // Don't diagnose this.
+ bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
+ bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
+ if (isLeftBitwise || isRightBitwise)
+ return;
+
+ SourceRange DiagRange = isLeftComp
+ ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
+ : SourceRange(OpLoc, RHSExpr->getEndLoc());
+ StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
+ SourceRange ParensRange =
+ isLeftComp
+ ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
+ : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
+
+ Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
+ << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::note_precedence_silence) << OpStr,
+ (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
+ SuggestParentheses(Self, OpLoc,
+ Self.PDiag(diag::note_precedence_bitwise_first)
+ << BinaryOperator::getOpcodeStr(Opc),
+ ParensRange);
+}
+
+/// It accepts a '&&' expr that is inside a '||' one.
+/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
+/// in parentheses.
+static void
+EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
+ BinaryOperator *Bop) {
+ assert(Bop->getOpcode() == BO_LAnd);
+ Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
+ << Bop->getSourceRange() << OpLoc;
+ SuggestParentheses(Self, Bop->getOperatorLoc(),
+ Self.PDiag(diag::note_precedence_silence)
+ << Bop->getOpcodeStr(),
+ Bop->getSourceRange());
+}
+
+/// Returns true if the given expression can be evaluated as a constant
+/// 'true'.
+static bool EvaluatesAsTrue(Sema &S, Expr *E) {
+ bool Res;
+ return !E->isValueDependent() &&
+ E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
+}
+
+/// Returns true if the given expression can be evaluated as a constant
+/// 'false'.
+static bool EvaluatesAsFalse(Sema &S, Expr *E) {
+ bool Res;
+ return !E->isValueDependent() &&
+ E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
+}
+
+/// Look for '&&' in the left hand of a '||' expr.
+static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
+ if (Bop->getOpcode() == BO_LAnd) {
+ // If it's "a && b || 0" don't warn since the precedence doesn't matter.
+ if (EvaluatesAsFalse(S, RHSExpr))
+ return;
+ // If it's "1 && a || b" don't warn since the precedence doesn't matter.
+ if (!EvaluatesAsTrue(S, Bop->getLHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
+ } else if (Bop->getOpcode() == BO_LOr) {
+ if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
+ // If it's "a || b && 1 || c" we didn't warn earlier for
+ // "a || b && 1", but warn now.
+ if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
+ }
+ }
+ }
+}
+
+/// Look for '&&' in the right hand of a '||' expr.
+static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
+ if (Bop->getOpcode() == BO_LAnd) {
+ // If it's "0 || a && b" don't warn since the precedence doesn't matter.
+ if (EvaluatesAsFalse(S, LHSExpr))
+ return;
+ // If it's "a || b && 1" don't warn since the precedence doesn't matter.
+ if (!EvaluatesAsTrue(S, Bop->getRHS()))
+ return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
+ }
+ }
+}
+
+/// Look for bitwise op in the left or right hand of a bitwise op with
+/// lower precedence and emit a diagnostic together with a fixit hint that wraps
+/// the '&' expression in parentheses.
+static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
+ SourceLocation OpLoc, Expr *SubExpr) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
+ if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
+ S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
+ << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
+ << Bop->getSourceRange() << OpLoc;
+ SuggestParentheses(S, Bop->getOperatorLoc(),
+ S.PDiag(diag::note_precedence_silence)
+ << Bop->getOpcodeStr(),
+ Bop->getSourceRange());
+ }
+ }
+}
+
+static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
+ Expr *SubExpr, StringRef Shift) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
+ if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
+ StringRef Op = Bop->getOpcodeStr();
+ S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
+ << Bop->getSourceRange() << OpLoc << Shift << Op;
+ SuggestParentheses(S, Bop->getOperatorLoc(),
+ S.PDiag(diag::note_precedence_silence) << Op,
+ Bop->getSourceRange());
+ }
+ }
+}
+
+static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
+ if (!OCE)
+ return;
+
+ FunctionDecl *FD = OCE->getDirectCallee();
+ if (!FD || !FD->isOverloadedOperator())
+ return;
+
+ OverloadedOperatorKind Kind = FD->getOverloadedOperator();
+ if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
+ return;
+
+ S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
+ << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
+ << (Kind == OO_LessLess);
+ SuggestParentheses(S, OCE->getOperatorLoc(),
+ S.PDiag(diag::note_precedence_silence)
+ << (Kind == OO_LessLess ? "<<" : ">>"),
+ OCE->getSourceRange());
+ SuggestParentheses(
+ S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
+ SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
+}
+
+/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
+/// precedence.
+static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
+ SourceLocation OpLoc, Expr *LHSExpr,
+ Expr *RHSExpr){
+ // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
+ if (BinaryOperator::isBitwiseOp(Opc))
+ DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
+
+ // Diagnose "arg1 & arg2 | arg3"
+ if ((Opc == BO_Or || Opc == BO_Xor) &&
+ !OpLoc.isMacroID()/* Don't warn in macros. */) {
+ DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
+ DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
+ }
+
+ // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
+ // We don't warn for 'assert(a || b && "bad")' since this is safe.
+ if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
+ DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
+ DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
+ }
+
+ if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
+ || Opc == BO_Shr) {
+ StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
+ DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
+ DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
+ }
+
+ // Warn on overloaded shift operators and comparisons, such as:
+ // cout << 5 == 4;
+ if (BinaryOperator::isComparisonOp(Opc))
+ DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
+}
+
+// Binary Operators. 'Tok' is the token for the operator.
+ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
+ tok::TokenKind Kind,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
+ assert(LHSExpr && "ActOnBinOp(): missing left expression");
+ assert(RHSExpr && "ActOnBinOp(): missing right expression");
+
+ // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
+ DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
+
+ return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
+}
+
+void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
+ UnresolvedSetImpl &Functions) {
+ OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
+ if (OverOp != OO_None && OverOp != OO_Equal)
+ LookupOverloadedOperatorName(OverOp, S, Functions);
+
+ // In C++20 onwards, we may have a second operator to look up.
+ if (getLangOpts().CPlusPlus20) {
+ if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
+ LookupOverloadedOperatorName(ExtraOp, S, Functions);
+ }
+}
+
+/// Build an overloaded binary operator expression in the given scope.
+static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
+ BinaryOperatorKind Opc,
+ Expr *LHS, Expr *RHS) {
+ switch (Opc) {
+ case BO_Assign:
+ case BO_DivAssign:
+ case BO_RemAssign:
+ case BO_SubAssign:
+ case BO_AndAssign:
+ case BO_OrAssign:
+ case BO_XorAssign:
+ DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
+ CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
+ break;
+ default:
+ break;
+ }
+
+ // Find all of the overloaded operators visible from this point.
+ UnresolvedSet<16> Functions;
+ S.LookupBinOp(Sc, OpLoc, Opc, Functions);
+
+ // Build the (potentially-overloaded, potentially-dependent)
+ // binary operation.
+ return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
+}
+
+ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
+ BinaryOperatorKind Opc,
+ Expr *LHSExpr, Expr *RHSExpr) {
+ ExprResult LHS, RHS;
+ std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
+ if (!LHS.isUsable() || !RHS.isUsable())
+ return ExprError();
+ LHSExpr = LHS.get();
+ RHSExpr = RHS.get();
+
+ // We want to end up calling one of checkPseudoObjectAssignment
+ // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
+ // both expressions are overloadable or either is type-dependent),
+ // or CreateBuiltinBinOp (in any other case). We also want to get
+ // any placeholder types out of the way.
+
+ // Handle pseudo-objects in the LHS.
+ if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
+ // Assignments with a pseudo-object l-value need special analysis.
+ if (pty->getKind() == BuiltinType::PseudoObject &&
+ BinaryOperator::isAssignmentOp(Opc))
+ return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
+
+ // Don't resolve overloads if the other type is overloadable.
+ if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
+ // We can't actually test that if we still have a placeholder,
+ // though. Fortunately, none of the exceptions we see in that
+ // code below are valid when the LHS is an overload set. Note
+ // that an overload set can be dependently-typed, but it never
+ // instantiates to having an overloadable type.
+ ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
+ if (resolvedRHS.isInvalid()) return ExprError();
+ RHSExpr = resolvedRHS.get();
+
+ if (RHSExpr->isTypeDependent() ||
+ RHSExpr->getType()->isOverloadableType())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+ }
+
+ // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
+ // template, diagnose the missing 'template' keyword instead of diagnosing
+ // an invalid use of a bound member function.
+ //
+ // Note that "A::x < b" might be valid if 'b' has an overloadable type due
+ // to C++1z [over.over]/1.4, but we already checked for that case above.
+ if (Opc == BO_LT && inTemplateInstantiation() &&
+ (pty->getKind() == BuiltinType::BoundMember ||
+ pty->getKind() == BuiltinType::Overload)) {
+ auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
+ if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
+ std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
+ return isa<FunctionTemplateDecl>(ND);
+ })) {
+ Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
+ : OE->getNameLoc(),
+ diag::err_template_kw_missing)
+ << OE->getName().getAsString() << "";
+ return ExprError();
+ }
+ }
+
+ ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
+ if (LHS.isInvalid()) return ExprError();
+ LHSExpr = LHS.get();
+ }
+
+ // Handle pseudo-objects in the RHS.
+ if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
+ // An overload in the RHS can potentially be resolved by the type
+ // being assigned to.
+ if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
+ if (getLangOpts().CPlusPlus &&
+ (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
+ LHSExpr->getType()->isOverloadableType()))
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+
+ return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
+ }
+
+ // Don't resolve overloads if the other type is overloadable.
+ if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
+ LHSExpr->getType()->isOverloadableType())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+
+ ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
+ if (!resolvedRHS.isUsable()) return ExprError();
+ RHSExpr = resolvedRHS.get();
+ }
+
+ if (getLangOpts().CPlusPlus) {
+ // If either expression is type-dependent, always build an
+ // overloaded op.
+ if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+
+ // Otherwise, build an overloaded op if either expression has an
+ // overloadable type.
+ if (LHSExpr->getType()->isOverloadableType() ||
+ RHSExpr->getType()->isOverloadableType())
+ return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
+ }
+
+ if (getLangOpts().RecoveryAST &&
+ (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
+ assert(!getLangOpts().CPlusPlus);
+ assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
+ "Should only occur in error-recovery path.");
+ if (BinaryOperator::isCompoundAssignmentOp(Opc))
+ // C [6.15.16] p3:
+ // An assignment expression has the value of the left operand after the
+ // assignment, but is not an lvalue.
+ return CompoundAssignOperator::Create(
+ Context, LHSExpr, RHSExpr, Opc,
+ LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
+ OpLoc, CurFPFeatureOverrides());
+ QualType ResultType;
+ switch (Opc) {
+ case BO_Assign:
+ ResultType = LHSExpr->getType().getUnqualifiedType();
+ break;
+ case BO_LT:
+ case BO_GT:
+ case BO_LE:
+ case BO_GE:
+ case BO_EQ:
+ case BO_NE:
+ case BO_LAnd:
+ case BO_LOr:
+ // These operators have a fixed result type regardless of operands.
+ ResultType = Context.IntTy;
+ break;
+ case BO_Comma:
+ ResultType = RHSExpr->getType();
+ break;
+ default:
+ ResultType = Context.DependentTy;
+ break;
+ }
+ return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
+ VK_PRValue, OK_Ordinary, OpLoc,
+ CurFPFeatureOverrides());
+ }
+
+ // Build a built-in binary operation.
+ return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
+}
+
+static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
+ if (T.isNull() || T->isDependentType())
+ return false;
+
+ if (!T->isPromotableIntegerType())
+ return true;
+
+ return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
+}
+
+ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
+ UnaryOperatorKind Opc,
+ Expr *InputExpr) {
+ ExprResult Input = InputExpr;
+ ExprValueKind VK = VK_PRValue;
+ ExprObjectKind OK = OK_Ordinary;
+ QualType resultType;
+ bool CanOverflow = false;
+
+ bool ConvertHalfVec = false;
+ if (getLangOpts().OpenCL) {
+ QualType Ty = InputExpr->getType();
+ // The only legal unary operation for atomics is '&'.
+ if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
+ // OpenCL special types - image, sampler, pipe, and blocks are to be used
+ // only with a builtin functions and therefore should be disallowed here.
+ (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
+ || Ty->isBlockPointerType())) {
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << InputExpr->getType()
+ << Input.get()->getSourceRange());
+ }
+ }
+
+ switch (Opc) {
+ case UO_PreInc:
+ case UO_PreDec:
+ case UO_PostInc:
+ case UO_PostDec:
+ resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
+ OpLoc,
+ Opc == UO_PreInc ||
+ Opc == UO_PostInc,
+ Opc == UO_PreInc ||
+ Opc == UO_PreDec);
+ CanOverflow = isOverflowingIntegerType(Context, resultType);
+ break;
+ case UO_AddrOf:
+ resultType = CheckAddressOfOperand(Input, OpLoc);
+ CheckAddressOfNoDeref(InputExpr);
+ RecordModifiableNonNullParam(*this, InputExpr);
+ break;
+ case UO_Deref: {
+ Input = DefaultFunctionArrayLvalueConversion(Input.get());
+ if (Input.isInvalid()) return ExprError();
+ resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
+ break;
+ }
+ case UO_Plus:
+ case UO_Minus:
+ CanOverflow = Opc == UO_Minus &&
+ isOverflowingIntegerType(Context, Input.get()->getType());
+ Input = UsualUnaryConversions(Input.get());
+ if (Input.isInvalid()) return ExprError();
+ // Unary plus and minus require promoting an operand of half vector to a
+ // float vector and truncating the result back to a half vector. For now, we
+ // do this only when HalfArgsAndReturns is set (that is, when the target is
+ // arm or arm64).
+ ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
+
+ // If the operand is a half vector, promote it to a float vector.
+ if (ConvertHalfVec)
+ Input = convertVector(Input.get(), Context.FloatTy, *this);
+ resultType = Input.get()->getType();
+ if (resultType->isDependentType())
+ break;
+ if (resultType->isArithmeticType()) // C99 6.5.3.3p1
+ break;
+ else if (resultType->isVectorType() &&
+ // The z vector extensions don't allow + or - with bool vectors.
+ (!Context.getLangOpts().ZVector ||
+ resultType->castAs<VectorType>()->getVectorKind() !=
+ VectorType::AltiVecBool))
+ break;
+ else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
+ Opc == UO_Plus &&
+ resultType->isPointerType())
+ break;
+
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+
+ case UO_Not: // bitwise complement
+ Input = UsualUnaryConversions(Input.get());
+ if (Input.isInvalid())
+ return ExprError();
+ resultType = Input.get()->getType();
+ if (resultType->isDependentType())
+ break;
+ // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
+ if (resultType->isComplexType() || resultType->isComplexIntegerType())
+ // C99 does not support '~' for complex conjugation.
+ Diag(OpLoc, diag::ext_integer_complement_complex)
+ << resultType << Input.get()->getSourceRange();
+ else if (resultType->hasIntegerRepresentation())
+ break;
+ else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
+ // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
+ // on vector float types.
+ QualType T = resultType->castAs<ExtVectorType>()->getElementType();
+ if (!T->isIntegerType())
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+ } else {
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+ }
+ break;
+
+ case UO_LNot: // logical negation
+ // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
+ Input = DefaultFunctionArrayLvalueConversion(Input.get());
+ if (Input.isInvalid()) return ExprError();
+ resultType = Input.get()->getType();
+
+ // Though we still have to promote half FP to float...
+ if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
+ Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
+ resultType = Context.FloatTy;
+ }
+
+ if (resultType->isDependentType())
+ break;
+ if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
+ // C99 6.5.3.3p1: ok, fallthrough;
+ if (Context.getLangOpts().CPlusPlus) {
+ // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
+ // operand contextually converted to bool.
+ Input = ImpCastExprToType(Input.get(), Context.BoolTy,
+ ScalarTypeToBooleanCastKind(resultType));
+ } else if (Context.getLangOpts().OpenCL &&
+ Context.getLangOpts().OpenCLVersion < 120) {
+ // OpenCL v1.1 6.3.h: The logical operator not (!) does not
+ // operate on scalar float types.
+ if (!resultType->isIntegerType() && !resultType->isPointerType())
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+ }
+ } else if (resultType->isExtVectorType()) {
+ if (Context.getLangOpts().OpenCL &&
+ Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
+ // OpenCL v1.1 6.3.h: The logical operator not (!) does not
+ // operate on vector float types.
+ QualType T = resultType->castAs<ExtVectorType>()->getElementType();
+ if (!T->isIntegerType())
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+ }
+ // Vector logical not returns the signed variant of the operand type.
+ resultType = GetSignedVectorType(resultType);
+ break;
+ } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
+ const VectorType *VTy = resultType->castAs<VectorType>();
+ if (VTy->getVectorKind() != VectorType::GenericVector)
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+
+ // Vector logical not returns the signed variant of the operand type.
+ resultType = GetSignedVectorType(resultType);
+ break;
+ } else {
+ return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
+ << resultType << Input.get()->getSourceRange());
+ }
+
+ // LNot always has type int. C99 6.5.3.3p5.
+ // In C++, it's bool. C++ 5.3.1p8
+ resultType = Context.getLogicalOperationType();
+ break;
+ case UO_Real:
+ case UO_Imag:
+ resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
+ // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
+ // complex l-values to ordinary l-values and all other values to r-values.
+ if (Input.isInvalid()) return ExprError();
+ if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
+ if (Input.get()->isGLValue() &&
+ Input.get()->getObjectKind() == OK_Ordinary)
+ VK = Input.get()->getValueKind();
+ } else if (!getLangOpts().CPlusPlus) {
+ // In C, a volatile scalar is read by __imag. In C++, it is not.
+ Input = DefaultLvalueConversion(Input.get());
+ }
+ break;
+ case UO_Extension:
+ resultType = Input.get()->getType();
+ VK = Input.get()->getValueKind();
+ OK = Input.get()->getObjectKind();
+ break;
+ case UO_Coawait:
+ // It's unnecessary to represent the pass-through operator co_await in the
+ // AST; just return the input expression instead.
+ assert(!Input.get()->getType()->isDependentType() &&
+ "the co_await expression must be non-dependant before "
+ "building operator co_await");
+ return Input;
+ }
+ if (resultType.isNull() || Input.isInvalid())
+ return ExprError();
+
+ // Check for array bounds violations in the operand of the UnaryOperator,
+ // except for the '*' and '&' operators that have to be handled specially
+ // by CheckArrayAccess (as there are special cases like &array[arraysize]
+ // that are explicitly defined as valid by the standard).
+ if (Opc != UO_AddrOf && Opc != UO_Deref)
+ CheckArrayAccess(Input.get());
+
+ auto *UO =
+ UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
+ OpLoc, CanOverflow, CurFPFeatureOverrides());
+
+ if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
+ !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
+ !isUnevaluatedContext())
+ ExprEvalContexts.back().PossibleDerefs.insert(UO);
+
+ // Convert the result back to a half vector.
+ if (ConvertHalfVec)
+ return convertVector(UO, Context.HalfTy, *this);
+ return UO;
+}
+
+/// Determine whether the given expression is a qualified member
+/// access expression, of a form that could be turned into a pointer to member
+/// with the address-of operator.
+bool Sema::isQualifiedMemberAccess(Expr *E) {
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+ if (!DRE->getQualifier())
+ return false;
+
+ ValueDecl *VD = DRE->getDecl();
+ if (!VD->isCXXClassMember())
+ return false;
+
+ if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
+ return true;
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
+ return Method->isInstance();
+
+ return false;
+ }
+
+ if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
+ if (!ULE->getQualifier())
+ return false;
+
+ for (NamedDecl *D : ULE->decls()) {
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ if (Method->isInstance())
+ return true;
+ } else {
+ // Overload set does not contain methods.
+ break;
+ }
+ }
+
+ return false;
+ }
+
+ return false;
+}
+
+ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
+ UnaryOperatorKind Opc, Expr *Input) {
+ // First things first: handle placeholders so that the
+ // overloaded-operator check considers the right type.
+ if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
+ // Increment and decrement of pseudo-object references.
+ if (pty->getKind() == BuiltinType::PseudoObject &&
+ UnaryOperator::isIncrementDecrementOp(Opc))
+ return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
+
+ // extension is always a builtin operator.
+ if (Opc == UO_Extension)
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
+
+ // & gets special logic for several kinds of placeholder.
+ // The builtin code knows what to do.
+ if (Opc == UO_AddrOf &&
+ (pty->getKind() == BuiltinType::Overload ||
+ pty->getKind() == BuiltinType::UnknownAny ||
+ pty->getKind() == BuiltinType::BoundMember))
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
+
+ // Anything else needs to be handled now.
+ ExprResult Result = CheckPlaceholderExpr(Input);
+ if (Result.isInvalid()) return ExprError();
+ Input = Result.get();
+ }
+
+ if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
+ UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
+ !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
+ // Find all of the overloaded operators visible from this point.
+ UnresolvedSet<16> Functions;
+ OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
+ if (S && OverOp != OO_None)
+ LookupOverloadedOperatorName(OverOp, S, Functions);
+
+ return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
+ }
+
+ return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
+}
+
+// Unary Operators. 'Tok' is the token for the operator.
+ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
+ tok::TokenKind Op, Expr *Input) {
+ return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
+}
+
+/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
+ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
+ LabelDecl *TheDecl) {
+ TheDecl->markUsed(Context);
+ // Create the AST node. The address of a label always has type 'void*'.
+ return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
+ Context.getPointerType(Context.VoidTy));
+}
+
+void Sema::ActOnStartStmtExpr() {
+ PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
+}
+
+void Sema::ActOnStmtExprError() {
+ // Note that function is also called by TreeTransform when leaving a
+ // StmtExpr scope without rebuilding anything.
+
+ DiscardCleanupsInEvaluationContext();
+ PopExpressionEvaluationContext();
+}
+
+ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
+ SourceLocation RPLoc) {
+ return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
+}
+
+ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
+ SourceLocation RPLoc, unsigned TemplateDepth) {
+ assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
+ CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
+
+ if (hasAnyUnrecoverableErrorsInThisFunction())
+ DiscardCleanupsInEvaluationContext();
+ assert(!Cleanup.exprNeedsCleanups() &&
+ "cleanups within StmtExpr not correctly bound!");
+ PopExpressionEvaluationContext();
+
+ // FIXME: there are a variety of strange constraints to enforce here, for
+ // example, it is not possible to goto into a stmt expression apparently.
+ // More semantic analysis is needed.
+
+ // If there are sub-stmts in the compound stmt, take the type of the last one
+ // as the type of the stmtexpr.
+ QualType Ty = Context.VoidTy;
+ bool StmtExprMayBindToTemp = false;
+ if (!Compound->body_empty()) {
+ // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
+ if (const auto *LastStmt =
+ dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
+ if (const Expr *Value = LastStmt->getExprStmt()) {
+ StmtExprMayBindToTemp = true;
+ Ty = Value->getType();
+ }
+ }
+ }
+
+ // FIXME: Check that expression type is complete/non-abstract; statement
+ // expressions are not lvalues.
+ Expr *ResStmtExpr =
+ new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
+ if (StmtExprMayBindToTemp)
+ return MaybeBindToTemporary(ResStmtExpr);
+ return ResStmtExpr;
+}
+
+ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
+ if (ER.isInvalid())
+ return ExprError();
+
+ // Do function/array conversion on the last expression, but not
+ // lvalue-to-rvalue. However, initialize an unqualified type.
+ ER = DefaultFunctionArrayConversion(ER.get());
+ if (ER.isInvalid())
+ return ExprError();
+ Expr *E = ER.get();
+
+ if (E->isTypeDependent())
+ return E;
+
+ // In ARC, if the final expression ends in a consume, splice
+ // the consume out and bind it later. In the alternate case
+ // (when dealing with a retainable type), the result
+ // initialization will create a produce. In both cases the
+ // result will be +1, and we'll need to balance that out with
+ // a bind.
+ auto *Cast = dyn_cast<ImplicitCastExpr>(E);
+ if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
+ return Cast->getSubExpr();
+
+ // FIXME: Provide a better location for the initialization.
+ return PerformCopyInitialization(
+ InitializedEntity::InitializeStmtExprResult(
+ E->getBeginLoc(), E->getType().getUnqualifiedType()),
+ SourceLocation(), E);
+}
+
+ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
+ TypeSourceInfo *TInfo,
+ ArrayRef<OffsetOfComponent> Components,
+ SourceLocation RParenLoc) {
+ QualType ArgTy = TInfo->getType();
+ bool Dependent = ArgTy->isDependentType();
+ SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
+
+ // We must have at least one component that refers to the type, and the first
+ // one is known to be a field designator. Verify that the ArgTy represents
+ // a struct/union/class.
+ if (!Dependent && !ArgTy->isRecordType())
+ return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
+ << ArgTy << TypeRange);
+
+ // Type must be complete per C99 7.17p3 because a declaring a variable
+ // with an incomplete type would be ill-formed.
+ if (!Dependent
+ && RequireCompleteType(BuiltinLoc, ArgTy,
+ diag::err_offsetof_incomplete_type, TypeRange))
+ return ExprError();
+
+ bool DidWarnAboutNonPOD = false;
+ QualType CurrentType = ArgTy;
+ SmallVector<OffsetOfNode, 4> Comps;
+ SmallVector<Expr*, 4> Exprs;
+ for (const OffsetOfComponent &OC : Components) {
+ if (OC.isBrackets) {
+ // Offset of an array sub-field. TODO: Should we allow vector elements?
+ if (!CurrentType->isDependentType()) {
+ const ArrayType *AT = Context.getAsArrayType(CurrentType);
+ if(!AT)
+ return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
+ << CurrentType);
+ CurrentType = AT->getElementType();
+ } else
+ CurrentType = Context.DependentTy;
+
+ ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
+ if (IdxRval.isInvalid())
+ return ExprError();
+ Expr *Idx = IdxRval.get();
+
+ // The expression must be an integral expression.
+ // FIXME: An integral constant expression?
+ if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
+ !Idx->getType()->isIntegerType())
+ return ExprError(
+ Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
+ << Idx->getSourceRange());
+
+ // Record this array index.
+ Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
+ Exprs.push_back(Idx);
+ continue;
+ }
+
+ // Offset of a field.
+ if (CurrentType->isDependentType()) {
+ // We have the offset of a field, but we can't look into the dependent
+ // type. Just record the identifier of the field.
+ Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
+ CurrentType = Context.DependentTy;
+ continue;
+ }
+
+ // We need to have a complete type to look into.
+ if (RequireCompleteType(OC.LocStart, CurrentType,
+ diag::err_offsetof_incomplete_type))
+ return ExprError();
+
+ // Look for the designated field.
+ const RecordType *RC = CurrentType->getAs<RecordType>();
+ if (!RC)
+ return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
+ << CurrentType);
+ RecordDecl *RD = RC->getDecl();
+
+ // C++ [lib.support.types]p5:
+ // The macro offsetof accepts a restricted set of type arguments in this
+ // International Standard. type shall be a POD structure or a POD union
+ // (clause 9).
+ // C++11 [support.types]p4:
+ // If type is not a standard-layout class (Clause 9), the results are
+ // undefined.
+ if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
+ bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
+ unsigned DiagID =
+ LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
+ : diag::ext_offsetof_non_pod_type;
+
+ if (!IsSafe && !DidWarnAboutNonPOD &&
+ DiagRuntimeBehavior(BuiltinLoc, nullptr,
+ PDiag(DiagID)
+ << SourceRange(Components[0].LocStart, OC.LocEnd)
+ << CurrentType))
+ DidWarnAboutNonPOD = true;
+ }
+
+ // Look for the field.
+ LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
+ LookupQualifiedName(R, RD);
+ FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
+ IndirectFieldDecl *IndirectMemberDecl = nullptr;
+ if (!MemberDecl) {
+ if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
+ MemberDecl = IndirectMemberDecl->getAnonField();
+ }
+
+ if (!MemberDecl)
+ return ExprError(Diag(BuiltinLoc, diag::err_no_member)
+ << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
+ OC.LocEnd));
+
+ // C99 7.17p3:
+ // (If the specified member is a bit-field, the behavior is undefined.)
+ //
+ // We diagnose this as an error.
+ if (MemberDecl->isBitField()) {
+ Diag(OC.LocEnd, diag::err_offsetof_bitfield)
+ << MemberDecl->getDeclName()
+ << SourceRange(BuiltinLoc, RParenLoc);
+ Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
+ return ExprError();
+ }
+
+ RecordDecl *Parent = MemberDecl->getParent();
+ if (IndirectMemberDecl)
+ Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
+
+ // If the member was found in a base class, introduce OffsetOfNodes for
+ // the base class indirections.
+ CXXBasePaths Paths;
+ if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
+ Paths)) {
+ if (Paths.getDetectedVirtual()) {
+ Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
+ << MemberDecl->getDeclName()
+ << SourceRange(BuiltinLoc, RParenLoc);
+ return ExprError();
+ }
+
+ CXXBasePath &Path = Paths.front();
+ for (const CXXBasePathElement &B : Path)
+ Comps.push_back(OffsetOfNode(B.Base));
+ }
+
+ if (IndirectMemberDecl) {
+ for (auto *FI : IndirectMemberDecl->chain()) {
+ assert(isa<FieldDecl>(FI));
+ Comps.push_back(OffsetOfNode(OC.LocStart,
+ cast<FieldDecl>(FI), OC.LocEnd));
+ }
+ } else
+ Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
+
+ CurrentType = MemberDecl->getType().getNonReferenceType();
+ }
+
+ return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
+ Comps, Exprs, RParenLoc);
+}
+
+ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
+ SourceLocation BuiltinLoc,
+ SourceLocation TypeLoc,
+ ParsedType ParsedArgTy,
+ ArrayRef<OffsetOfComponent> Components,
+ SourceLocation RParenLoc) {
+
+ TypeSourceInfo *ArgTInfo;
+ QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
+ if (ArgTy.isNull())
+ return ExprError();
+
+ if (!ArgTInfo)
+ ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
+
+ return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
+}
+
+
+ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
+ Expr *CondExpr,
+ Expr *LHSExpr, Expr *RHSExpr,
+ SourceLocation RPLoc) {
+ assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
+
+ ExprValueKind VK = VK_PRValue;
+ ExprObjectKind OK = OK_Ordinary;
+ QualType resType;
+ bool CondIsTrue = false;
+ if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
+ resType = Context.DependentTy;
+ } else {
+ // The conditional expression is required to be a constant expression.
+ llvm::APSInt condEval(32);
+ ExprResult CondICE = VerifyIntegerConstantExpression(
+ CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
+ if (CondICE.isInvalid())
+ return ExprError();
+ CondExpr = CondICE.get();
+ CondIsTrue = condEval.getZExtValue();
+
+ // If the condition is > zero, then the AST type is the same as the LHSExpr.
+ Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
+
+ resType = ActiveExpr->getType();
+ VK = ActiveExpr->getValueKind();
+ OK = ActiveExpr->getObjectKind();
+ }
+
+ return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
+ resType, VK, OK, RPLoc, CondIsTrue);
+}
+
+//===----------------------------------------------------------------------===//
+// Clang Extensions.
+//===----------------------------------------------------------------------===//
+
+/// ActOnBlockStart - This callback is invoked when a block literal is started.
+void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
+ BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
+
+ if (LangOpts.CPlusPlus) {
+ MangleNumberingContext *MCtx;
+ Decl *ManglingContextDecl;
+ std::tie(MCtx, ManglingContextDecl) =
+ getCurrentMangleNumberContext(Block->getDeclContext());
+ if (MCtx) {
+ unsigned ManglingNumber = MCtx->getManglingNumber(Block);
+ Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
+ }
+ }
+
+ PushBlockScope(CurScope, Block);
+ CurContext->addDecl(Block);
+ if (CurScope)
+ PushDeclContext(CurScope, Block);
+ else
+ CurContext = Block;
+
+ getCurBlock()->HasImplicitReturnType = true;
+
+ // Enter a new evaluation context to insulate the block from any
+ // cleanups from the enclosing full-expression.
+ PushExpressionEvaluationContext(
+ ExpressionEvaluationContext::PotentiallyEvaluated);
+}
+
+void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
+ Scope *CurScope) {
+ assert(ParamInfo.getIdentifier() == nullptr &&
+ "block-id should have no identifier!");
+ assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
+ BlockScopeInfo *CurBlock = getCurBlock();
+
+ TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
+ QualType T = Sig->getType();
+
+ // FIXME: We should allow unexpanded parameter packs here, but that would,
+ // in turn, make the block expression contain unexpanded parameter packs.
+ if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
+ // Drop the parameters.
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.HasTrailingReturn = false;
+ EPI.TypeQuals.addConst();
+ T = Context.getFunctionType(Context.DependentTy, None, EPI);
+ Sig = Context.getTrivialTypeSourceInfo(T);
+ }
+
+ // GetTypeForDeclarator always produces a function type for a block
+ // literal signature. Furthermore, it is always a FunctionProtoType
+ // unless the function was written with a typedef.
+ assert(T->isFunctionType() &&
+ "GetTypeForDeclarator made a non-function block signature");
+
+ // Look for an explicit signature in that function type.
+ FunctionProtoTypeLoc ExplicitSignature;
+
+ if ((ExplicitSignature = Sig->getTypeLoc()
+ .getAsAdjusted<FunctionProtoTypeLoc>())) {
+
+ // Check whether that explicit signature was synthesized by
+ // GetTypeForDeclarator. If so, don't save that as part of the
+ // written signature.
+ if (ExplicitSignature.getLocalRangeBegin() ==
+ ExplicitSignature.getLocalRangeEnd()) {
+ // This would be much cheaper if we stored TypeLocs instead of
+ // TypeSourceInfos.
+ TypeLoc Result = ExplicitSignature.getReturnLoc();
+ unsigned Size = Result.getFullDataSize();
+ Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
+ Sig->getTypeLoc().initializeFullCopy(Result, Size);
+
+ ExplicitSignature = FunctionProtoTypeLoc();
+ }
+ }
+
+ CurBlock->TheDecl->setSignatureAsWritten(Sig);
+ CurBlock->FunctionType = T;
+
+ const auto *Fn = T->castAs<FunctionType>();
+ QualType RetTy = Fn->getReturnType();
+ bool isVariadic =
+ (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
+
+ CurBlock->TheDecl->setIsVariadic(isVariadic);
+
+ // Context.DependentTy is used as a placeholder for a missing block
+ // return type. TODO: what should we do with declarators like:
+ // ^ * { ... }
+ // If the answer is "apply template argument deduction"....
+ if (RetTy != Context.DependentTy) {
+ CurBlock->ReturnType = RetTy;
+ CurBlock->TheDecl->setBlockMissingReturnType(false);
+ CurBlock->HasImplicitReturnType = false;
+ }
+
+ // Push block parameters from the declarator if we had them.
+ SmallVector<ParmVarDecl*, 8> Params;
+ if (ExplicitSignature) {
+ for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
+ ParmVarDecl *Param = ExplicitSignature.getParam(I);
+ if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
+ !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
+ // Diagnose this as an extension in C17 and earlier.
+ if (!getLangOpts().C2x)
+ Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
+ }
+ Params.push_back(Param);
+ }
+
+ // Fake up parameter variables if we have a typedef, like
+ // ^ fntype { ... }
+ } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
+ for (const auto &I : Fn->param_types()) {
+ ParmVarDecl *Param = BuildParmVarDeclForTypedef(
+ CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
+ Params.push_back(Param);
+ }
+ }
+
+ // Set the parameters on the block decl.
+ if (!Params.empty()) {
+ CurBlock->TheDecl->setParams(Params);
+ CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
+ /*CheckParameterNames=*/false);
+ }
+
+ // Finally we can process decl attributes.
+ ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
+
+ // Put the parameter variables in scope.
+ for (auto AI : CurBlock->TheDecl->parameters()) {
+ AI->setOwningFunction(CurBlock->TheDecl);
+
+ // If this has an identifier, add it to the scope stack.
+ if (AI->getIdentifier()) {
+ CheckShadow(CurBlock->TheScope, AI);
+
+ PushOnScopeChains(AI, CurBlock->TheScope);
+ }
+ }
+}
+
+/// ActOnBlockError - If there is an error parsing a block, this callback
+/// is invoked to pop the information about the block from the action impl.
+void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
+ // Leave the expression-evaluation context.
+ DiscardCleanupsInEvaluationContext();
+ PopExpressionEvaluationContext();
+
+ // Pop off CurBlock, handle nested blocks.
+ PopDeclContext();
+ PopFunctionScopeInfo();
+}
+
+/// ActOnBlockStmtExpr - This is called when the body of a block statement
+/// literal was successfully completed. ^(int x){...}
+ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
+ Stmt *Body, Scope *CurScope) {
+ // If blocks are disabled, emit an error.
+ if (!LangOpts.Blocks)
+ Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
+
+ // Leave the expression-evaluation context.
+ if (hasAnyUnrecoverableErrorsInThisFunction())
+ DiscardCleanupsInEvaluationContext();
+ assert(!Cleanup.exprNeedsCleanups() &&
+ "cleanups within block not correctly bound!");
+ PopExpressionEvaluationContext();
+
+ BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
+ BlockDecl *BD = BSI->TheDecl;
+
+ if (BSI->HasImplicitReturnType)
+ deduceClosureReturnType(*BSI);
+
+ QualType RetTy = Context.VoidTy;
+ if (!BSI->ReturnType.isNull())
+ RetTy = BSI->ReturnType;
+
+ bool NoReturn = BD->hasAttr<NoReturnAttr>();
+ QualType BlockTy;
+
+ // If the user wrote a function type in some form, try to use that.
+ if (!BSI->FunctionType.isNull()) {
+ const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
+
+ FunctionType::ExtInfo Ext = FTy->getExtInfo();
+ if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
+
+ // Turn protoless block types into nullary block types.
+ if (isa<FunctionNoProtoType>(FTy)) {
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = Ext;
+ BlockTy = Context.getFunctionType(RetTy, None, EPI);
+
+ // Otherwise, if we don't need to change anything about the function type,
+ // preserve its sugar structure.
+ } else if (FTy->getReturnType() == RetTy &&
+ (!NoReturn || FTy->getNoReturnAttr())) {
+ BlockTy = BSI->FunctionType;
+
+ // Otherwise, make the minimal modifications to the function type.
+ } else {
+ const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
+ FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
+ EPI.TypeQuals = Qualifiers();
+ EPI.ExtInfo = Ext;
+ BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
+ }
+
+ // If we don't have a function type, just build one from nothing.
+ } else {
+ FunctionProtoType::ExtProtoInfo EPI;
+ EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
+ BlockTy = Context.getFunctionType(RetTy, None, EPI);
+ }
+
+ DiagnoseUnusedParameters(BD->parameters());
+ BlockTy = Context.getBlockPointerType(BlockTy);
+
+ // If needed, diagnose invalid gotos and switches in the block.
+ if (getCurFunction()->NeedsScopeChecking() &&
+ !PP.isCodeCompletionEnabled())
+ DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
+
+ BD->setBody(cast<CompoundStmt>(Body));
+
+ if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
+ DiagnoseUnguardedAvailabilityViolations(BD);
+
+ // Try to apply the named return value optimization. We have to check again
+ // if we can do this, though, because blocks keep return statements around
+ // to deduce an implicit return type.
+ if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
+ !BD->isDependentContext())
+ computeNRVO(Body, BSI);
+
+ if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
+ RetTy.hasNonTrivialToPrimitiveCopyCUnion())
+ checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
+ NTCUK_Destruct|NTCUK_Copy);
+
+ PopDeclContext();
+
+ // Set the captured variables on the block.
+ SmallVector<BlockDecl::Capture, 4> Captures;
+ for (Capture &Cap : BSI->Captures) {
+ if (Cap.isInvalid() || Cap.isThisCapture())
+ continue;
+
+ VarDecl *Var = Cap.getVariable();
+ Expr *CopyExpr = nullptr;
+ if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
+ if (const RecordType *Record =
+ Cap.getCaptureType()->getAs<RecordType>()) {
+ // The capture logic needs the destructor, so make sure we mark it.
+ // Usually this is unnecessary because most local variables have
+ // their destructors marked at declaration time, but parameters are
+ // an exception because it's technically only the call site that
+ // actually requires the destructor.
+ if (isa<ParmVarDecl>(Var))
+ FinalizeVarWithDestructor(Var, Record);
+
+ // Enter a separate potentially-evaluated context while building block
+ // initializers to isolate their cleanups from those of the block
+ // itself.
+ // FIXME: Is this appropriate even when the block itself occurs in an
+ // unevaluated operand?
+ EnterExpressionEvaluationContext EvalContext(
+ *this, ExpressionEvaluationContext::PotentiallyEvaluated);
+
+ SourceLocation Loc = Cap.getLocation();
+
+ ExprResult Result = BuildDeclarationNameExpr(
+ CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
+
+ // According to the blocks spec, the capture of a variable from
+ // the stack requires a const copy constructor. This is not true
+ // of the copy/move done to move a __block variable to the heap.
+ if (!Result.isInvalid() &&
+ !Result.get()->getType().isConstQualified()) {
+ Result = ImpCastExprToType(Result.get(),
+ Result.get()->getType().withConst(),
+ CK_NoOp, VK_LValue);
+ }
+
+ if (!Result.isInvalid()) {
+ Result = PerformCopyInitialization(
+ InitializedEntity::InitializeBlock(Var->getLocation(),
+ Cap.getCaptureType()),
+ Loc, Result.get());
+ }
+
+ // Build a full-expression copy expression if initialization
+ // succeeded and used a non-trivial constructor. Recover from
+ // errors by pretending that the copy isn't necessary.
+ if (!Result.isInvalid() &&
+ !cast<CXXConstructExpr>(Result.get())->getConstructor()
+ ->isTrivial()) {
+ Result = MaybeCreateExprWithCleanups(Result);
+ CopyExpr = Result.get();
+ }
+ }
+ }
+
+ BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
+ CopyExpr);
+ Captures.push_back(NewCap);
+ }
+ BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
+
+ // Pop the block scope now but keep it alive to the end of this function.
+ AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
+ PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
+
+ BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
+
+ // If the block isn't obviously global, i.e. it captures anything at
+ // all, then we need to do a few things in the surrounding context:
+ if (Result->getBlockDecl()->hasCaptures()) {
+ // First, this expression has a new cleanup object.
+ ExprCleanupObjects.push_back(Result->getBlockDecl());
+ Cleanup.setExprNeedsCleanups(true);
+
+ // It also gets a branch-protected scope if any of the captured
+ // variables needs destruction.
+ for (const auto &CI : Result->getBlockDecl()->captures()) {
+ const VarDecl *var = CI.getVariable();
+ if (var->getType().isDestructedType() != QualType::DK_none) {
+ setFunctionHasBranchProtectedScope();
+ break;
+ }
+ }
+ }
+
+ if (getCurFunction())
+ getCurFunction()->addBlock(BD);
+
+ return Result;
+}
+
+ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
+ SourceLocation RPLoc) {
+ TypeSourceInfo *TInfo;
+ GetTypeFromParser(Ty, &TInfo);
+ return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
+}
+
+ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
+ Expr *E, TypeSourceInfo *TInfo,
+ SourceLocation RPLoc) {
+ Expr *OrigExpr = E;
+ bool IsMS = false;
+
+ // CUDA device code does not support varargs.
+ if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
+ if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
+ CUDAFunctionTarget T = IdentifyCUDATarget(F);
+ if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
+ return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
+ }
+ }
+
+ // NVPTX does not support va_arg expression.
+ if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
+ Context.getTargetInfo().getTriple().isNVPTX())
+ targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
+
+ // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
+ // as Microsoft ABI on an actual Microsoft platform, where
+ // __builtin_ms_va_list and __builtin_va_list are the same.)
+ if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
+ Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
+ QualType MSVaListType = Context.getBuiltinMSVaListType();
+ if (Context.hasSameType(MSVaListType, E->getType())) {
+ if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
+ return ExprError();
+ IsMS = true;
+ }
+ }
+
+ // Get the va_list type
+ QualType VaListType = Context.getBuiltinVaListType();
+ if (!IsMS) {
+ if (VaListType->isArrayType()) {
+ // Deal with implicit array decay; for example, on x86-64,
+ // va_list is an array, but it's supposed to decay to
+ // a pointer for va_arg.
+ VaListType = Context.getArrayDecayedType(VaListType);
+ // Make sure the input expression also decays appropriately.
+ ExprResult Result = UsualUnaryConversions(E);
+ if (Result.isInvalid())
+ return ExprError();
+ E = Result.get();
+ } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
+ // If va_list is a record type and we are compiling in C++ mode,
+ // check the argument using reference binding.
+ InitializedEntity Entity = InitializedEntity::InitializeParameter(
+ Context, Context.getLValueReferenceType(VaListType), false);
+ ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
+ if (Init.isInvalid())
+ return ExprError();
+ E = Init.getAs<Expr>();
+ } else {
+ // Otherwise, the va_list argument must be an l-value because
+ // it is modified by va_arg.
+ if (!E->isTypeDependent() &&
+ CheckForModifiableLvalue(E, BuiltinLoc, *this))
+ return ExprError();
+ }
+ }
+
+ if (!IsMS && !E->isTypeDependent() &&
+ !Context.hasSameType(VaListType, E->getType()))
+ return ExprError(
+ Diag(E->getBeginLoc(),
+ diag::err_first_argument_to_va_arg_not_of_type_va_list)
+ << OrigExpr->getType() << E->getSourceRange());
+
+ if (!TInfo->getType()->isDependentType()) {
+ if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
+ diag::err_second_parameter_to_va_arg_incomplete,
+ TInfo->getTypeLoc()))
+ return ExprError();
+
+ if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
+ TInfo->getType(),
+ diag::err_second_parameter_to_va_arg_abstract,
+ TInfo->getTypeLoc()))
+ return ExprError();
+
+ if (!TInfo->getType().isPODType(Context)) {
+ Diag(TInfo->getTypeLoc().getBeginLoc(),
+ TInfo->getType()->isObjCLifetimeType()
+ ? diag::warn_second_parameter_to_va_arg_ownership_qualified
+ : diag::warn_second_parameter_to_va_arg_not_pod)
+ << TInfo->getType()
+ << TInfo->getTypeLoc().getSourceRange();
+ }
+
+ // Check for va_arg where arguments of the given type will be promoted
+ // (i.e. this va_arg is guaranteed to have undefined behavior).
+ QualType PromoteType;
+ if (TInfo->getType()->isPromotableIntegerType()) {
+ PromoteType = Context.getPromotedIntegerType(TInfo->getType());
+ // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
+ // and C2x 7.16.1.1p2 says, in part:
+ // If type is not compatible with the type of the actual next argument
+ // (as promoted according to the default argument promotions), the
+ // behavior is undefined, except for the following cases:
+ // - both types are pointers to qualified or unqualified versions of
+ // compatible types;
+ // - one type is a signed integer type, the other type is the
+ // corresponding unsigned integer type, and the value is
+ // representable in both types;
+ // - one type is pointer to qualified or unqualified void and the
+ // other is a pointer to a qualified or unqualified character type.
+ // Given that type compatibility is the primary requirement (ignoring
+ // qualifications), you would think we could call typesAreCompatible()
+ // directly to test this. However, in C++, that checks for *same type*,
+ // which causes false positives when passing an enumeration type to
+ // va_arg. Instead, get the underlying type of the enumeration and pass
+ // that.
+ QualType UnderlyingType = TInfo->getType();
+ if (const auto *ET = UnderlyingType->getAs<EnumType>())
+ UnderlyingType = ET->getDecl()->getIntegerType();
+ if (Context.typesAreCompatible(PromoteType, UnderlyingType,
+ /*CompareUnqualified*/ true))
+ PromoteType = QualType();
+
+ // If the types are still not compatible, we need to test whether the
+ // promoted type and the underlying type are the same except for
+ // signedness. Ask the AST for the correctly corresponding type and see
+ // if that's compatible.
+ if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
+ PromoteType->isUnsignedIntegerType() !=
+ UnderlyingType->isUnsignedIntegerType()) {
+ UnderlyingType =
+ UnderlyingType->isUnsignedIntegerType()
+ ? Context.getCorrespondingSignedType(UnderlyingType)
+ : Context.getCorrespondingUnsignedType(UnderlyingType);
+ if (Context.typesAreCompatible(PromoteType, UnderlyingType,
+ /*CompareUnqualified*/ true))
+ PromoteType = QualType();
+ }
+ }
+ if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
+ PromoteType = Context.DoubleTy;
+ if (!PromoteType.isNull())
+ DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
+ PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
+ << TInfo->getType()
+ << PromoteType
+ << TInfo->getTypeLoc().getSourceRange());
+ }
+
+ QualType T = TInfo->getType().getNonLValueExprType(Context);
+ return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
+}
+
+ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
+ // The type of __null will be int or long, depending on the size of
+ // pointers on the target.
+ QualType Ty;
+ unsigned pw = Context.getTargetInfo().getPointerWidth(0);
+ if (pw == Context.getTargetInfo().getIntWidth())
+ Ty = Context.IntTy;
+ else if (pw == Context.getTargetInfo().getLongWidth())
+ Ty = Context.LongTy;
+ else if (pw == Context.getTargetInfo().getLongLongWidth())
+ Ty = Context.LongLongTy;
+ else {
+ llvm_unreachable("I don't know size of pointer!");
+ }
+
+ return new (Context) GNUNullExpr(Ty, TokenLoc);
+}
+
+ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
+ SourceLocation BuiltinLoc,
+ SourceLocation RPLoc) {
+ return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
+}
+
+ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
+ SourceLocation BuiltinLoc,
+ SourceLocation RPLoc,
+ DeclContext *ParentContext) {
+ return new (Context)
+ SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
+}
+
+bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
+ bool Diagnose) {
+ if (!getLangOpts().ObjC)
+ return false;
+
+ const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
+ if (!PT)
+ return false;
+ const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
+
+ // Ignore any parens, implicit casts (should only be
+ // array-to-pointer decays), and not-so-opaque values. The last is
+ // important for making this trigger for property assignments.
+ Expr *SrcExpr = Exp->IgnoreParenImpCasts();
+ if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
+ if (OV->getSourceExpr())
+ SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
+
+ if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
+ if (!PT->isObjCIdType() &&
+ !(ID && ID->getIdentifier()->isStr("NSString")))
+ return false;
+ if (!SL->isAscii())
+ return false;
+
+ if (Diagnose) {
+ Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
+ << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
+ Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
+ }
+ return true;
+ }
+
+ if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
+ isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
+ isa<CXXBoolLiteralExpr>(SrcExpr)) &&
+ !SrcExpr->isNullPointerConstant(
+ getASTContext(), Expr::NPC_NeverValueDependent)) {
+ if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
+ return false;
+ if (Diagnose) {
+ Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
+ << /*number*/1
+ << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
+ Expr *NumLit =
+ BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
+ if (NumLit)
+ Exp = NumLit;
+ }
+ return true;
+ }
+
+ return false;
+}
+
+static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
+ const Expr *SrcExpr) {
+ if (!DstType->isFunctionPointerType() ||
+ !SrcExpr->getType()->isFunctionType())
+ return false;
+
+ auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
+ if (!DRE)
+ return false;
+
+ auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
+ if (!FD)
+ return false;
+
+ return !S.checkAddressOfFunctionIsAvailable(FD,
+ /*Complain=*/true,
+ SrcExpr->getBeginLoc());
+}
+
+bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
+ SourceLocation Loc,
+ QualType DstType, QualType SrcType,
+ Expr *SrcExpr, AssignmentAction Action,
+ bool *Complained) {
+ if (Complained)
+ *Complained = false;
+
+ // Decode the result (notice that AST's are still created for extensions).
+ bool CheckInferredResultType = false;
+ bool isInvalid = false;
+ unsigned DiagKind = 0;
+ ConversionFixItGenerator ConvHints;
+ bool MayHaveConvFixit = false;
+ bool MayHaveFunctionDiff = false;
+ const ObjCInterfaceDecl *IFace = nullptr;
+ const ObjCProtocolDecl *PDecl = nullptr;
+
+ switch (ConvTy) {
+ case Compatible:
+ DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
+ return false;
+
+ case PointerToInt:
+ if (getLangOpts().CPlusPlus) {
+ DiagKind = diag::err_typecheck_convert_pointer_int;
+ isInvalid = true;
+ } else {
+ DiagKind = diag::ext_typecheck_convert_pointer_int;
+ }
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ MayHaveConvFixit = true;
+ break;
+ case IntToPointer:
+ if (getLangOpts().CPlusPlus) {
+ DiagKind = diag::err_typecheck_convert_int_pointer;
+ isInvalid = true;
+ } else {
+ DiagKind = diag::ext_typecheck_convert_int_pointer;
+ }
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ MayHaveConvFixit = true;
+ break;
+ case IncompatibleFunctionPointer:
+ if (getLangOpts().CPlusPlus) {
+ DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
+ isInvalid = true;
+ } else {
+ DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
+ }
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ MayHaveConvFixit = true;
+ break;
+ case IncompatiblePointer:
+ if (Action == AA_Passing_CFAudited) {
+ DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
+ } else if (getLangOpts().CPlusPlus) {
+ DiagKind = diag::err_typecheck_convert_incompatible_pointer;
+ isInvalid = true;
+ } else {
+ DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
+ }
+ CheckInferredResultType = DstType->isObjCObjectPointerType() &&
+ SrcType->isObjCObjectPointerType();
+ if (!CheckInferredResultType) {
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ } else if (CheckInferredResultType) {
+ SrcType = SrcType.getUnqualifiedType();
+ DstType = DstType.getUnqualifiedType();
+ }
+ MayHaveConvFixit = true;
+ break;
+ case IncompatiblePointerSign:
+ if (getLangOpts().CPlusPlus) {
+ DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
+ isInvalid = true;
+ } else {
+ DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
+ }
+ break;
+ case FunctionVoidPointer:
+ if (getLangOpts().CPlusPlus) {
+ DiagKind = diag::err_typecheck_convert_pointer_void_func;
+ isInvalid = true;
+ } else {
+ DiagKind = diag::ext_typecheck_convert_pointer_void_func;
+ }
+ break;
+ case IncompatiblePointerDiscardsQualifiers: {
+ // Perform array-to-pointer decay if necessary.
+ if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
+
+ isInvalid = true;
+
+ Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
+ Qualifiers rhq = DstType->getPointeeType().getQualifiers();
+ if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
+ DiagKind = diag::err_typecheck_incompatible_address_space;
+ break;
+
+ } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
+ DiagKind = diag::err_typecheck_incompatible_ownership;
+ break;
+ }
+
+ llvm_unreachable("unknown error case for discarding qualifiers!");
+ // fallthrough
+ }
+ case CompatiblePointerDiscardsQualifiers:
+ // If the qualifiers lost were because we were applying the
+ // (deprecated) C++ conversion from a string literal to a char*
+ // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
+ // Ideally, this check would be performed in
+ // checkPointerTypesForAssignment. However, that would require a
+ // bit of refactoring (so that the second argument is an
+ // expression, rather than a type), which should be done as part
+ // of a larger effort to fix checkPointerTypesForAssignment for
+ // C++ semantics.
+ if (getLangOpts().CPlusPlus &&
+ IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
+ return false;
+ if (getLangOpts().CPlusPlus) {
+ DiagKind = diag::err_typecheck_convert_discards_qualifiers;
+ isInvalid = true;
+ } else {
+ DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
+ }
+
+ break;
+ case IncompatibleNestedPointerQualifiers:
+ if (getLangOpts().CPlusPlus) {
+ isInvalid = true;
+ DiagKind = diag::err_nested_pointer_qualifier_mismatch;
+ } else {
+ DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
+ }
+ break;
+ case IncompatibleNestedPointerAddressSpaceMismatch:
+ DiagKind = diag::err_typecheck_incompatible_nested_address_space;
+ isInvalid = true;
+ break;
+ case IntToBlockPointer:
+ DiagKind = diag::err_int_to_block_pointer;
+ isInvalid = true;
+ break;
+ case IncompatibleBlockPointer:
+ DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
+ isInvalid = true;
+ break;
+ case IncompatibleObjCQualifiedId: {
+ if (SrcType->isObjCQualifiedIdType()) {
+ const ObjCObjectPointerType *srcOPT =
+ SrcType->castAs<ObjCObjectPointerType>();
+ for (auto *srcProto : srcOPT->quals()) {
+ PDecl = srcProto;
+ break;
+ }
+ if (const ObjCInterfaceType *IFaceT =
+ DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
+ IFace = IFaceT->getDecl();
+ }
+ else if (DstType->isObjCQualifiedIdType()) {
+ const ObjCObjectPointerType *dstOPT =
+ DstType->castAs<ObjCObjectPointerType>();
+ for (auto *dstProto : dstOPT->quals()) {
+ PDecl = dstProto;
+ break;
+ }
+ if (const ObjCInterfaceType *IFaceT =
+ SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
+ IFace = IFaceT->getDecl();
+ }
+ if (getLangOpts().CPlusPlus) {
+ DiagKind = diag::err_incompatible_qualified_id;
+ isInvalid = true;
+ } else {
+ DiagKind = diag::warn_incompatible_qualified_id;
+ }
+ break;
+ }
+ case IncompatibleVectors:
+ if (getLangOpts().CPlusPlus) {
+ DiagKind = diag::err_incompatible_vectors;
+ isInvalid = true;
+ } else {
+ DiagKind = diag::warn_incompatible_vectors;
+ }
+ break;
+ case IncompatibleObjCWeakRef:
+ DiagKind = diag::err_arc_weak_unavailable_assign;
+ isInvalid = true;
+ break;
+ case Incompatible:
+ if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
+ if (Complained)
+ *Complained = true;
+ return true;
+ }
+
+ DiagKind = diag::err_typecheck_convert_incompatible;
+ ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
+ MayHaveConvFixit = true;
+ isInvalid = true;
+ MayHaveFunctionDiff = true;
+ break;
+ }
+
+ QualType FirstType, SecondType;
+ switch (Action) {
+ case AA_Assigning:
+ case AA_Initializing:
+ // The destination type comes first.
+ FirstType = DstType;
+ SecondType = SrcType;
+ break;
+
+ case AA_Returning:
+ case AA_Passing:
+ case AA_Passing_CFAudited:
+ case AA_Converting:
+ case AA_Sending:
+ case AA_Casting:
+ // The source type comes first.
+ FirstType = SrcType;
+ SecondType = DstType;
+ break;
+ }
+
+ PartialDiagnostic FDiag = PDiag(DiagKind);
+ if (Action == AA_Passing_CFAudited)
+ FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
+ else
+ FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
+
+ if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
+ DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
+ auto isPlainChar = [](const clang::Type *Type) {
+ return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
+ Type->isSpecificBuiltinType(BuiltinType::Char_U);
+ };
+ FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
+ isPlainChar(SecondType->getPointeeOrArrayElementType()));
+ }
+
+ // If we can fix the conversion, suggest the FixIts.
+ if (!ConvHints.isNull()) {
+ for (FixItHint &H : ConvHints.Hints)
+ FDiag << H;
+ }
+
+ if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
+
+ if (MayHaveFunctionDiff)
+ HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
+
+ Diag(Loc, FDiag);
+ if ((DiagKind == diag::warn_incompatible_qualified_id ||
+ DiagKind == diag::err_incompatible_qualified_id) &&
+ PDecl && IFace && !IFace->hasDefinition())
+ Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
+ << IFace << PDecl;
+
+ if (SecondType == Context.OverloadTy)
+ NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
+ FirstType, /*TakingAddress=*/true);
+
+ if (CheckInferredResultType)
+ EmitRelatedResultTypeNote(SrcExpr);
+
+ if (Action == AA_Returning && ConvTy == IncompatiblePointer)
+ EmitRelatedResultTypeNoteForReturn(DstType);
+
+ if (Complained)
+ *Complained = true;
+ return isInvalid;
+}
+
+ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
+ llvm::APSInt *Result,
+ AllowFoldKind CanFold) {
+ class SimpleICEDiagnoser : public VerifyICEDiagnoser {
+ public:
+ SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
+ QualType T) override {
+ return S.Diag(Loc, diag::err_ice_not_integral)
+ << T << S.LangOpts.CPlusPlus;
+ }
+ SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
+ return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
+ }
+ } Diagnoser;
+
+ return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
+}
+
+ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
+ llvm::APSInt *Result,
+ unsigned DiagID,
+ AllowFoldKind CanFold) {
+ class IDDiagnoser : public VerifyICEDiagnoser {
+ unsigned DiagID;
+
+ public:
+ IDDiagnoser(unsigned DiagID)
+ : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
+
+ SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
+ return S.Diag(Loc, DiagID);
+ }
+ } Diagnoser(DiagID);
+
+ return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
+}
+
+Sema::SemaDiagnosticBuilder
+Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
+ QualType T) {
+ return diagnoseNotICE(S, Loc);
+}
+
+Sema::SemaDiagnosticBuilder
+Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
+ return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
+}
+
+ExprResult
+Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
+ VerifyICEDiagnoser &Diagnoser,
+ AllowFoldKind CanFold) {
+ SourceLocation DiagLoc = E->getBeginLoc();
+
+ if (getLangOpts().CPlusPlus11) {
+ // C++11 [expr.const]p5:
+ // If an expression of literal class type is used in a context where an
+ // integral constant expression is required, then that class type shall
+ // have a single non-explicit conversion function to an integral or
+ // unscoped enumeration type
+ ExprResult Converted;
+ class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
+ VerifyICEDiagnoser &BaseDiagnoser;
+ public:
+ CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
+ : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
+ BaseDiagnoser.Suppress, true),
+ BaseDiagnoser(BaseDiagnoser) {}
+
+ SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
+ QualType T) override {
+ return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
+ }
+
+ SemaDiagnosticBuilder diagnoseIncomplete(
+ Sema &S, SourceLocation Loc, QualType T) override {
+ return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
+ }
+
+ SemaDiagnosticBuilder diagnoseExplicitConv(
+ Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
+ return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
+ }
+
+ SemaDiagnosticBuilder noteExplicitConv(
+ Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
+ return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
+ << ConvTy->isEnumeralType() << ConvTy;
+ }
+
+ SemaDiagnosticBuilder diagnoseAmbiguous(
+ Sema &S, SourceLocation Loc, QualType T) override {
+ return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
+ }
+
+ SemaDiagnosticBuilder noteAmbiguous(
+ Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
+ return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
+ << ConvTy->isEnumeralType() << ConvTy;
+ }
+
+ SemaDiagnosticBuilder diagnoseConversion(
+ Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
+ llvm_unreachable("conversion functions are permitted");
+ }
+ } ConvertDiagnoser(Diagnoser);
+
+ Converted = PerformContextualImplicitConversion(DiagLoc, E,
+ ConvertDiagnoser);
+ if (Converted.isInvalid())
+ return Converted;
+ E = Converted.get();
+ if (!E->getType()->isIntegralOrUnscopedEnumerationType())
+ return ExprError();
+ } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
+ // An ICE must be of integral or unscoped enumeration type.
+ if (!Diagnoser.Suppress)
+ Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
+ << E->getSourceRange();
+ return ExprError();
+ }
+
+ ExprResult RValueExpr = DefaultLvalueConversion(E);
+ if (RValueExpr.isInvalid())
+ return ExprError();
+
+ E = RValueExpr.get();
+
+ // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
+ // in the non-ICE case.
+ if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
+ if (Result)
+ *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
+ if (!isa<ConstantExpr>(E))
+ E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
+ : ConstantExpr::Create(Context, E);
+ return E;
+ }
+
+ Expr::EvalResult EvalResult;
+ SmallVector<PartialDiagnosticAt, 8> Notes;
+ EvalResult.Diag = &Notes;
+
+ // Try to evaluate the expression, and produce diagnostics explaining why it's
+ // not a constant expression as a side-effect.
+ bool Folded =
+ E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
+ EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
+
+ if (!isa<ConstantExpr>(E))
+ E = ConstantExpr::Create(Context, E, EvalResult.Val);
+
+ // In C++11, we can rely on diagnostics being produced for any expression
+ // which is not a constant expression. If no diagnostics were produced, then
+ // this is a constant expression.
+ if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
+ if (Result)
+ *Result = EvalResult.Val.getInt();
+ return E;
+ }
+
+ // If our only note is the usual "invalid subexpression" note, just point
+ // the caret at its location rather than producing an essentially
+ // redundant note.
+ if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
+ diag::note_invalid_subexpr_in_const_expr) {
+ DiagLoc = Notes[0].first;
+ Notes.clear();
+ }
+
+ if (!Folded || !CanFold) {
+ if (!Diagnoser.Suppress) {
+ Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
+ for (const PartialDiagnosticAt &Note : Notes)
+ Diag(Note.first, Note.second);
+ }
+
+ return ExprError();
+ }
+
+ Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
+ for (const PartialDiagnosticAt &Note : Notes)
+ Diag(Note.first, Note.second);
+
+ if (Result)
+ *Result = EvalResult.Val.getInt();
+ return E;
+}
+
+namespace {
+ // Handle the case where we conclude a expression which we speculatively
+ // considered to be unevaluated is actually evaluated.
+ class TransformToPE : public TreeTransform<TransformToPE> {
+ typedef TreeTransform<TransformToPE> BaseTransform;
+
+ public:
+ TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
+
+ // Make sure we redo semantic analysis
+ bool AlwaysRebuild() { return true; }
+ bool ReplacingOriginal() { return true; }
+
+ // We need to special-case DeclRefExprs referring to FieldDecls which
+ // are not part of a member pointer formation; normal TreeTransforming
+ // doesn't catch this case because of the way we represent them in the AST.
+ // FIXME: This is a bit ugly; is it really the best way to handle this
+ // case?
+ //
+ // Error on DeclRefExprs referring to FieldDecls.
+ ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
+ if (isa<FieldDecl>(E->getDecl()) &&
+ !SemaRef.isUnevaluatedContext())
+ return SemaRef.Diag(E->getLocation(),
+ diag::err_invalid_non_static_member_use)
+ << E->getDecl() << E->getSourceRange();
+
+ return BaseTransform::TransformDeclRefExpr(E);
+ }
+
+ // Exception: filter out member pointer formation
+ ExprResult TransformUnaryOperator(UnaryOperator *E) {
+ if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
+ return E;
+
+ return BaseTransform::TransformUnaryOperator(E);
+ }
+
+ // The body of a lambda-expression is in a separate expression evaluation
+ // context so never needs to be transformed.
+ // FIXME: Ideally we wouldn't transform the closure type either, and would
+ // just recreate the capture expressions and lambda expression.
+ StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
+ return SkipLambdaBody(E, Body);
+ }
+ };
+}
+
+ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
+ assert(isUnevaluatedContext() &&
+ "Should only transform unevaluated expressions");
+ ExprEvalContexts.back().Context =
+ ExprEvalContexts[ExprEvalContexts.size()-2].Context;
+ if (isUnevaluatedContext())
+ return E;
+ return TransformToPE(*this).TransformExpr(E);
+}
+
+TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
+ assert(isUnevaluatedContext() &&
+ "Should only transform unevaluated expressions");
+ ExprEvalContexts.back().Context =
+ ExprEvalContexts[ExprEvalContexts.size() - 2].Context;
+ if (isUnevaluatedContext())
+ return TInfo;
+ return TransformToPE(*this).TransformType(TInfo);
+}
+
+void
+Sema::PushExpressionEvaluationContext(
+ ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
+ ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
+ ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
+ LambdaContextDecl, ExprContext);
+
+ // Discarded statements and immediate contexts nested in other
+ // discarded statements or immediate context are themselves
+ // a discarded statement or an immediate context, respectively.
+ ExprEvalContexts.back().InDiscardedStatement =
+ ExprEvalContexts[ExprEvalContexts.size() - 2]
+ .isDiscardedStatementContext();
+ ExprEvalContexts.back().InImmediateFunctionContext =
+ ExprEvalContexts[ExprEvalContexts.size() - 2]
+ .isImmediateFunctionContext();
+
+ Cleanup.reset();
+ if (!MaybeODRUseExprs.empty())
+ std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
+}
+
+void
+Sema::PushExpressionEvaluationContext(
+ ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
+ ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
+ Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
+ PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
+}
+
+namespace {
+
+const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
+ PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
+ if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
+ if (E->getOpcode() == UO_Deref)
+ return CheckPossibleDeref(S, E->getSubExpr());
+ } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
+ return CheckPossibleDeref(S, E->getBase());
+ } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
+ return CheckPossibleDeref(S, E->getBase());
+ } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
+ QualType Inner;
+ QualType Ty = E->getType();
+ if (const auto *Ptr = Ty->getAs<PointerType>())
+ Inner = Ptr->getPointeeType();
+ else if (const auto *Arr = S.Context.getAsArrayType(Ty))
+ Inner = Arr->getElementType();
+ else
+ return nullptr;
+
+ if (Inner->hasAttr(attr::NoDeref))
+ return E;
+ }
+ return nullptr;
+}
+
+} // namespace
+
+void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
+ for (const Expr *E : Rec.PossibleDerefs) {
+ const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
+ if (DeclRef) {
+ const ValueDecl *Decl = DeclRef->getDecl();
+ Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
+ << Decl->getName() << E->getSourceRange();
+ Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
+ } else {
+ Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
+ << E->getSourceRange();
+ }
+ }
+ Rec.PossibleDerefs.clear();
+}
+
+/// Check whether E, which is either a discarded-value expression or an
+/// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
+/// and if so, remove it from the list of volatile-qualified assignments that
+/// we are going to warn are deprecated.
+void Sema::CheckUnusedVolatileAssignment(Expr *E) {
+ if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
+ return;
+
+ // Note: ignoring parens here is not justified by the standard rules, but
+ // ignoring parentheses seems like a more reasonable approach, and this only
+ // drives a deprecation warning so doesn't affect conformance.
+ if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
+ if (BO->getOpcode() == BO_Assign) {
+ auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
+ llvm::erase_value(LHSs, BO->getLHS());
+ }
+ }
+}
+
+ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
+ if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
+ !Decl->isConsteval() || isConstantEvaluated() ||
+ RebuildingImmediateInvocation || isImmediateFunctionContext())
+ return E;
+
+ /// Opportunistically remove the callee from ReferencesToConsteval if we can.
+ /// It's OK if this fails; we'll also remove this in
+ /// HandleImmediateInvocations, but catching it here allows us to avoid
+ /// walking the AST looking for it in simple cases.
+ if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
+ if (auto *DeclRef =
+ dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
+ ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
+
+ E = MaybeCreateExprWithCleanups(E);
+
+ ConstantExpr *Res = ConstantExpr::Create(
+ getASTContext(), E.get(),
+ ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
+ getASTContext()),
+ /*IsImmediateInvocation*/ true);
+ ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
+ return Res;
+}
+
+static void EvaluateAndDiagnoseImmediateInvocation(
+ Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
+ llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
+ Expr::EvalResult Eval;
+ Eval.Diag = &Notes;
+ ConstantExpr *CE = Candidate.getPointer();
+ bool Result = CE->EvaluateAsConstantExpr(
+ Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
+ if (!Result || !Notes.empty()) {
+ Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
+ if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
+ InnerExpr = FunctionalCast->getSubExpr();
+ FunctionDecl *FD = nullptr;
+ if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
+ FD = cast<FunctionDecl>(Call->getCalleeDecl());
+ else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
+ FD = Call->getConstructor();
+ else
+ llvm_unreachable("unhandled decl kind");
+ assert(FD->isConsteval());
+ SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
+ for (auto &Note : Notes)
+ SemaRef.Diag(Note.first, Note.second);
+ return;
+ }
+ CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
+}
+
+static void RemoveNestedImmediateInvocation(
+ Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
+ SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
+ struct ComplexRemove : TreeTransform<ComplexRemove> {
+ using Base = TreeTransform<ComplexRemove>;
+ llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
+ SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
+ SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
+ CurrentII;
+ ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
+ SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
+ SmallVector<Sema::ImmediateInvocationCandidate,
+ 4>::reverse_iterator Current)
+ : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
+ void RemoveImmediateInvocation(ConstantExpr* E) {
+ auto It = std::find_if(CurrentII, IISet.rend(),
+ [E](Sema::ImmediateInvocationCandidate Elem) {
+ return Elem.getPointer() == E;
+ });
+ assert(It != IISet.rend() &&
+ "ConstantExpr marked IsImmediateInvocation should "
+ "be present");
+ It->setInt(1); // Mark as deleted
+ }
+ ExprResult TransformConstantExpr(ConstantExpr *E) {
+ if (!E->isImmediateInvocation())
+ return Base::TransformConstantExpr(E);
+ RemoveImmediateInvocation(E);
+ return Base::TransformExpr(E->getSubExpr());
+ }
+ /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
+ /// we need to remove its DeclRefExpr from the DRSet.
+ ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
+ DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
+ return Base::TransformCXXOperatorCallExpr(E);
+ }
+ /// Base::TransformInitializer skip ConstantExpr so we need to visit them
+ /// here.
+ ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
+ if (!Init)
+ return Init;
+ /// ConstantExpr are the first layer of implicit node to be removed so if
+ /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
+ if (auto *CE = dyn_cast<ConstantExpr>(Init))
+ if (CE->isImmediateInvocation())
+ RemoveImmediateInvocation(CE);
+ return Base::TransformInitializer(Init, NotCopyInit);
+ }
+ ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
+ DRSet.erase(E);
+ return E;
+ }
+ bool AlwaysRebuild() { return false; }
+ bool ReplacingOriginal() { return true; }
+ bool AllowSkippingCXXConstructExpr() {
+ bool Res = AllowSkippingFirstCXXConstructExpr;
+ AllowSkippingFirstCXXConstructExpr = true;
+ return Res;
+ }
+ bool AllowSkippingFirstCXXConstructExpr = true;
+ } Transformer(SemaRef, Rec.ReferenceToConsteval,
+ Rec.ImmediateInvocationCandidates, It);
+
+ /// CXXConstructExpr with a single argument are getting skipped by
+ /// TreeTransform in some situtation because they could be implicit. This
+ /// can only occur for the top-level CXXConstructExpr because it is used
+ /// nowhere in the expression being transformed therefore will not be rebuilt.
+ /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
+ /// skipping the first CXXConstructExpr.
+ if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
+ Transformer.AllowSkippingFirstCXXConstructExpr = false;
+
+ ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
+ assert(Res.isUsable());
+ Res = SemaRef.MaybeCreateExprWithCleanups(Res);
+ It->getPointer()->setSubExpr(Res.get());
+}
+
+static void
+HandleImmediateInvocations(Sema &SemaRef,
+ Sema::ExpressionEvaluationContextRecord &Rec) {
+ if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
+ Rec.ReferenceToConsteval.size() == 0) ||
+ SemaRef.RebuildingImmediateInvocation)
+ return;
+
+ /// When we have more then 1 ImmediateInvocationCandidates we need to check
+ /// for nested ImmediateInvocationCandidates. when we have only 1 we only
+ /// need to remove ReferenceToConsteval in the immediate invocation.
+ if (Rec.ImmediateInvocationCandidates.size() > 1) {
+
+ /// Prevent sema calls during the tree transform from adding pointers that
+ /// are already in the sets.
+ llvm::SaveAndRestore<bool> DisableIITracking(
+ SemaRef.RebuildingImmediateInvocation, true);
+
+ /// Prevent diagnostic during tree transfrom as they are duplicates
+ Sema::TentativeAnalysisScope DisableDiag(SemaRef);
+
+ for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
+ It != Rec.ImmediateInvocationCandidates.rend(); It++)
+ if (!It->getInt())
+ RemoveNestedImmediateInvocation(SemaRef, Rec, It);
+ } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
+ Rec.ReferenceToConsteval.size()) {
+ struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
+ llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
+ SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
+ bool VisitDeclRefExpr(DeclRefExpr *E) {
+ DRSet.erase(E);
+ return DRSet.size();
+ }
+ } Visitor(Rec.ReferenceToConsteval);
+ Visitor.TraverseStmt(
+ Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
+ }
+ for (auto CE : Rec.ImmediateInvocationCandidates)
+ if (!CE.getInt())
+ EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
+ for (auto DR : Rec.ReferenceToConsteval) {
+ auto *FD = cast<FunctionDecl>(DR->getDecl());
+ SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
+ << FD;
+ SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
+ }
+}
+
+void Sema::PopExpressionEvaluationContext() {
+ ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
+ unsigned NumTypos = Rec.NumTypos;
+
+ if (!Rec.Lambdas.empty()) {
+ using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
+ if (!getLangOpts().CPlusPlus20 &&
+ (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
+ Rec.isUnevaluated() ||
+ (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
+ unsigned D;
+ if (Rec.isUnevaluated()) {
+ // C++11 [expr.prim.lambda]p2:
+ // A lambda-expression shall not appear in an unevaluated operand
+ // (Clause 5).
+ D = diag::err_lambda_unevaluated_operand;
+ } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
+ // C++1y [expr.const]p2:
+ // A conditional-expression e is a core constant expression unless the
+ // evaluation of e, following the rules of the abstract machine, would
+ // evaluate [...] a lambda-expression.
+ D = diag::err_lambda_in_constant_expression;
+ } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
+ // C++17 [expr.prim.lamda]p2:
+ // A lambda-expression shall not appear [...] in a template-argument.
+ D = diag::err_lambda_in_invalid_context;
+ } else
+ llvm_unreachable("Couldn't infer lambda error message.");
+
+ for (const auto *L : Rec.Lambdas)
+ Diag(L->getBeginLoc(), D);
+ }
+ }
+
+ WarnOnPendingNoDerefs(Rec);
+ HandleImmediateInvocations(*this, Rec);
+
+ // Warn on any volatile-qualified simple-assignments that are not discarded-
+ // value expressions nor unevaluated operands (those cases get removed from
+ // this list by CheckUnusedVolatileAssignment).
+ for (auto *BO : Rec.VolatileAssignmentLHSs)
+ Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
+ << BO->getType();
+
+ // When are coming out of an unevaluated context, clear out any
+ // temporaries that we may have created as part of the evaluation of
+ // the expression in that context: they aren't relevant because they
+ // will never be constructed.
+ if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
+ ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
+ ExprCleanupObjects.end());
+ Cleanup = Rec.ParentCleanup;
+ CleanupVarDeclMarking();
+ std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
+ // Otherwise, merge the contexts together.
+ } else {
+ Cleanup.mergeFrom(Rec.ParentCleanup);
+ MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
+ Rec.SavedMaybeODRUseExprs.end());
+ }
+
+ // Pop the current expression evaluation context off the stack.
+ ExprEvalContexts.pop_back();
+
+ // The global expression evaluation context record is never popped.
+ ExprEvalContexts.back().NumTypos += NumTypos;
+}
+
+void Sema::DiscardCleanupsInEvaluationContext() {
+ ExprCleanupObjects.erase(
+ ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
+ ExprCleanupObjects.end());
+ Cleanup.reset();
+ MaybeODRUseExprs.clear();
+}
+
+ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
+ ExprResult Result = CheckPlaceholderExpr(E);
+ if (Result.isInvalid())
+ return ExprError();
+ E = Result.get();
+ if (!E->getType()->isVariablyModifiedType())
+ return E;
+ return TransformToPotentiallyEvaluated(E);
+}
+
+/// Are we in a context that is potentially constant evaluated per C++20
+/// [expr.const]p12?
+static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
+ /// C++2a [expr.const]p12:
+ // An expression or conversion is potentially constant evaluated if it is
+ switch (SemaRef.ExprEvalContexts.back().Context) {
+ case Sema::ExpressionEvaluationContext::ConstantEvaluated:
+ case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
+
+ // -- a manifestly constant-evaluated expression,
+ case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
+ case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
+ case Sema::ExpressionEvaluationContext::DiscardedStatement:
+ // -- a potentially-evaluated expression,
+ case Sema::ExpressionEvaluationContext::UnevaluatedList:
+ // -- an immediate subexpression of a braced-init-list,
+
+ // -- [FIXME] an expression of the form & cast-expression that occurs
+ // within a templated entity
+ // -- a subexpression of one of the above that is not a subexpression of
+ // a nested unevaluated operand.
+ return true;
+
+ case Sema::ExpressionEvaluationContext::Unevaluated:
+ case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
+ // Expressions in this context are never evaluated.
+ return false;
+ }
+ llvm_unreachable("Invalid context");
+}
+
+/// Return true if this function has a calling convention that requires mangling
+/// in the size of the parameter pack.
+static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
+ // These manglings don't do anything on non-Windows or non-x86 platforms, so
+ // we don't need parameter type sizes.
+ const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
+ if (!TT.isOSWindows() || !TT.isX86())
+ return false;
+
+ // If this is C++ and this isn't an extern "C" function, parameters do not
+ // need to be complete. In this case, C++ mangling will apply, which doesn't
+ // use the size of the parameters.
+ if (S.getLangOpts().CPlusPlus && !FD->isExternC())
+ return false;
+
+ // Stdcall, fastcall, and vectorcall need this special treatment.
+ CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
+ switch (CC) {
+ case CC_X86StdCall:
+ case CC_X86FastCall:
+ case CC_X86VectorCall:
+ return true;
+ default:
+ break;
+ }
+ return false;
+}
+
+/// Require that all of the parameter types of function be complete. Normally,
+/// parameter types are only required to be complete when a function is called
+/// or defined, but to mangle functions with certain calling conventions, the
+/// mangler needs to know the size of the parameter list. In this situation,
+/// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
+/// the function as _foo@0, i.e. zero bytes of parameters, which will usually
+/// result in a linker error. Clang doesn't implement this behavior, and instead
+/// attempts to error at compile time.
+static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
+ SourceLocation Loc) {
+ class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
+ FunctionDecl *FD;
+ ParmVarDecl *Param;
+
+ public:
+ ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
+ : FD(FD), Param(Param) {}
+
+ void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
+ CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
+ StringRef CCName;
+ switch (CC) {
+ case CC_X86StdCall:
+ CCName = "stdcall";
+ break;
+ case CC_X86FastCall:
+ CCName = "fastcall";
+ break;
+ case CC_X86VectorCall:
+ CCName = "vectorcall";
+ break;
+ default:
+ llvm_unreachable("CC does not need mangling");
+ }
+
+ S.Diag(Loc, diag::err_cconv_incomplete_param_type)
+ << Param->getDeclName() << FD->getDeclName() << CCName;
+ }
+ };
+
+ for (ParmVarDecl *Param : FD->parameters()) {
+ ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
+ S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
+ }
+}
+
+namespace {
+enum class OdrUseContext {
+ /// Declarations in this context are not odr-used.
+ None,
+ /// Declarations in this context are formally odr-used, but this is a
+ /// dependent context.
+ Dependent,
+ /// Declarations in this context are odr-used but not actually used (yet).
+ FormallyOdrUsed,
+ /// Declarations in this context are used.
+ Used
+};
+}
+
+/// Are we within a context in which references to resolved functions or to
+/// variables result in odr-use?
+static OdrUseContext isOdrUseContext(Sema &SemaRef) {
+ OdrUseContext Result;
+
+ switch (SemaRef.ExprEvalContexts.back().Context) {
+ case Sema::ExpressionEvaluationContext::Unevaluated:
+ case Sema::ExpressionEvaluationContext::UnevaluatedList:
+ case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
+ return OdrUseContext::None;
+
+ case Sema::ExpressionEvaluationContext::ConstantEvaluated:
+ case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
+ case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
+ Result = OdrUseContext::Used;
+ break;
+
+ case Sema::ExpressionEvaluationContext::DiscardedStatement:
+ Result = OdrUseContext::FormallyOdrUsed;
+ break;
+
+ case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
+ // A default argument formally results in odr-use, but doesn't actually
+ // result in a use in any real sense until it itself is used.
+ Result = OdrUseContext::FormallyOdrUsed;
+ break;
+ }
+
+ if (SemaRef.CurContext->isDependentContext())
+ return OdrUseContext::Dependent;
+
+ return Result;
+}
+
+static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
+ if (!Func->isConstexpr())
+ return false;
+
+ if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
+ return true;
+ auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
+ return CCD && CCD->getInheritedConstructor();
+}
+
+/// Mark a function referenced, and check whether it is odr-used
+/// (C++ [basic.def.odr]p2, C99 6.9p3)
+void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
+ bool MightBeOdrUse) {
+ assert(Func && "No function?");
+
+ Func->setReferenced();
+
+ // Recursive functions aren't really used until they're used from some other
+ // context.
+ bool IsRecursiveCall = CurContext == Func;
+
+ // C++11 [basic.def.odr]p3:
+ // A function whose name appears as a potentially-evaluated expression is
+ // odr-used if it is the unique lookup result or the selected member of a
+ // set of overloaded functions [...].
+ //
+ // We (incorrectly) mark overload resolution as an unevaluated context, so we
+ // can just check that here.
+ OdrUseContext OdrUse =
+ MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
+ if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
+ OdrUse = OdrUseContext::FormallyOdrUsed;
+
+ // Trivial default constructors and destructors are never actually used.
+ // FIXME: What about other special members?
+ if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
+ OdrUse == OdrUseContext::Used) {
+ if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
+ if (Constructor->isDefaultConstructor())
+ OdrUse = OdrUseContext::FormallyOdrUsed;
+ if (isa<CXXDestructorDecl>(Func))
+ OdrUse = OdrUseContext::FormallyOdrUsed;
+ }
+
+ // C++20 [expr.const]p12:
+ // A function [...] is needed for constant evaluation if it is [...] a
+ // constexpr function that is named by an expression that is potentially
+ // constant evaluated
+ bool NeededForConstantEvaluation =
+ isPotentiallyConstantEvaluatedContext(*this) &&
+ isImplicitlyDefinableConstexprFunction(Func);
+
+ // Determine whether we require a function definition to exist, per
+ // C++11 [temp.inst]p3:
+ // Unless a function template specialization has been explicitly
+ // instantiated or explicitly specialized, the function template
+ // specialization is implicitly instantiated when the specialization is
+ // referenced in a context that requires a function definition to exist.
+ // C++20 [temp.inst]p7:
+ // The existence of a definition of a [...] function is considered to
+ // affect the semantics of the program if the [...] function is needed for
+ // constant evaluation by an expression
+ // C++20 [basic.def.odr]p10:
+ // Every program shall contain exactly one definition of every non-inline
+ // function or variable that is odr-used in that program outside of a
+ // discarded statement
+ // C++20 [special]p1:
+ // The implementation will implicitly define [defaulted special members]
+ // if they are odr-used or needed for constant evaluation.
+ //
+ // Note that we skip the implicit instantiation of templates that are only
+ // used in unused default arguments or by recursive calls to themselves.
+ // This is formally non-conforming, but seems reasonable in practice.
+ bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
+ NeededForConstantEvaluation);
+
+ // C++14 [temp.expl.spec]p6:
+ // If a template [...] is explicitly specialized then that specialization
+ // shall be declared before the first use of that specialization that would
+ // cause an implicit instantiation to take place, in every translation unit
+ // in which such a use occurs
+ if (NeedDefinition &&
+ (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
+ Func->getMemberSpecializationInfo()))
+ checkSpecializationVisibility(Loc, Func);
+
+ if (getLangOpts().CUDA)
+ CheckCUDACall(Loc, Func);
+
+ if (getLangOpts().SYCLIsDevice)
+ checkSYCLDeviceFunction(Loc, Func);
+
+ // If we need a definition, try to create one.
+ if (NeedDefinition && !Func->getBody()) {
+ runWithSufficientStackSpace(Loc, [&] {
+ if (CXXConstructorDecl *Constructor =
+ dyn_cast<CXXConstructorDecl>(Func)) {
+ Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
+ if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
+ if (Constructor->isDefaultConstructor()) {
+ if (Constructor->isTrivial() &&
+ !Constructor->hasAttr<DLLExportAttr>())
+ return;
+ DefineImplicitDefaultConstructor(Loc, Constructor);
+ } else if (Constructor->isCopyConstructor()) {
+ DefineImplicitCopyConstructor(Loc, Constructor);
+ } else if (Constructor->isMoveConstructor()) {
+ DefineImplicitMoveConstructor(Loc, Constructor);
+ }
+ } else if (Constructor->getInheritedConstructor()) {
+ DefineInheritingConstructor(Loc, Constructor);
+ }
+ } else if (CXXDestructorDecl *Destructor =
+ dyn_cast<CXXDestructorDecl>(Func)) {
+ Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
+ if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
+ if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
+ return;
+ DefineImplicitDestructor(Loc, Destructor);
+ }
+ if (Destructor->isVirtual() && getLangOpts().AppleKext)
+ MarkVTableUsed(Loc, Destructor->getParent());
+ } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
+ if (MethodDecl->isOverloadedOperator() &&
+ MethodDecl->getOverloadedOperator() == OO_Equal) {
+ MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
+ if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
+ if (MethodDecl->isCopyAssignmentOperator())
+ DefineImplicitCopyAssignment(Loc, MethodDecl);
+ else if (MethodDecl->isMoveAssignmentOperator())
+ DefineImplicitMoveAssignment(Loc, MethodDecl);
+ }
+ } else if (isa<CXXConversionDecl>(MethodDecl) &&
+ MethodDecl->getParent()->isLambda()) {
+ CXXConversionDecl *Conversion =
+ cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
+ if (Conversion->isLambdaToBlockPointerConversion())
+ DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
+ else
+ DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
+ } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
+ MarkVTableUsed(Loc, MethodDecl->getParent());
+ }
+
+ if (Func->isDefaulted() && !Func->isDeleted()) {
+ DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
+ if (DCK != DefaultedComparisonKind::None)
+ DefineDefaultedComparison(Loc, Func, DCK);
+ }
+
+ // Implicit instantiation of function templates and member functions of
+ // class templates.
+ if (Func->isImplicitlyInstantiable()) {
+ TemplateSpecializationKind TSK =
+ Func->getTemplateSpecializationKindForInstantiation();
+ SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
+ bool FirstInstantiation = PointOfInstantiation.isInvalid();
+ if (FirstInstantiation) {
+ PointOfInstantiation = Loc;
+ if (auto *MSI = Func->getMemberSpecializationInfo())
+ MSI->setPointOfInstantiation(Loc);
+ // FIXME: Notify listener.
+ else
+ Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
+ } else if (TSK != TSK_ImplicitInstantiation) {
+ // Use the point of use as the point of instantiation, instead of the
+ // point of explicit instantiation (which we track as the actual point
+ // of instantiation). This gives better backtraces in diagnostics.
+ PointOfInstantiation = Loc;
+ }
+
+ if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
+ Func->isConstexpr()) {
+ if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
+ cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
+ CodeSynthesisContexts.size())
+ PendingLocalImplicitInstantiations.push_back(
+ std::make_pair(Func, PointOfInstantiation));
+ else if (Func->isConstexpr())
+ // Do not defer instantiations of constexpr functions, to avoid the
+ // expression evaluator needing to call back into Sema if it sees a
+ // call to such a function.
+ InstantiateFunctionDefinition(PointOfInstantiation, Func);
+ else {
+ Func->setInstantiationIsPending(true);
+ PendingInstantiations.push_back(
+ std::make_pair(Func, PointOfInstantiation));
+ // Notify the consumer that a function was implicitly instantiated.
+ Consumer.HandleCXXImplicitFunctionInstantiation(Func);
+ }
+ }
+ } else {
+ // Walk redefinitions, as some of them may be instantiable.
+ for (auto i : Func->redecls()) {
+ if (!i->isUsed(false) && i->isImplicitlyInstantiable())
+ MarkFunctionReferenced(Loc, i, MightBeOdrUse);
+ }
+ }
+ });
+ }
+
+ // C++14 [except.spec]p17:
+ // An exception-specification is considered to be needed when:
+ // - the function is odr-used or, if it appears in an unevaluated operand,
+ // would be odr-used if the expression were potentially-evaluated;
+ //
+ // Note, we do this even if MightBeOdrUse is false. That indicates that the
+ // function is a pure virtual function we're calling, and in that case the
+ // function was selected by overload resolution and we need to resolve its
+ // exception specification for a different reason.
+ const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
+ if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
+ ResolveExceptionSpec(Loc, FPT);
+
+ // If this is the first "real" use, act on that.
+ if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
+ // Keep track of used but undefined functions.
+ if (!Func->isDefined()) {
+ if (mightHaveNonExternalLinkage(Func))
+ UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
+ else if (Func->getMostRecentDecl()->isInlined() &&
+ !LangOpts.GNUInline &&
+ !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
+ UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
+ else if (isExternalWithNoLinkageType(Func))
+ UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
+ }
+
+ // Some x86 Windows calling conventions mangle the size of the parameter
+ // pack into the name. Computing the size of the parameters requires the
+ // parameter types to be complete. Check that now.
+ if (funcHasParameterSizeMangling(*this, Func))
+ CheckCompleteParameterTypesForMangler(*this, Func, Loc);
+
+ // In the MS C++ ABI, the compiler emits destructor variants where they are
+ // used. If the destructor is used here but defined elsewhere, mark the
+ // virtual base destructors referenced. If those virtual base destructors
+ // are inline, this will ensure they are defined when emitting the complete
+ // destructor variant. This checking may be redundant if the destructor is
+ // provided later in this TU.
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
+ if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
+ CXXRecordDecl *Parent = Dtor->getParent();
+ if (Parent->getNumVBases() > 0 && !Dtor->getBody())
+ CheckCompleteDestructorVariant(Loc, Dtor);
+ }
+ }
+
+ Func->markUsed(Context);
+ }
+}
+
+/// Directly mark a variable odr-used. Given a choice, prefer to use
+/// MarkVariableReferenced since it does additional checks and then
+/// calls MarkVarDeclODRUsed.
+/// If the variable must be captured:
+/// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
+/// - else capture it in the DeclContext that maps to the
+/// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
+static void
+MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
+ const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
+ // Keep track of used but undefined variables.
+ // FIXME: We shouldn't suppress this warning for static data members.
+ if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
+ (!Var->isExternallyVisible() || Var->isInline() ||
+ SemaRef.isExternalWithNoLinkageType(Var)) &&
+ !(Var->isStaticDataMember() && Var->hasInit())) {
+ SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
+ if (old.isInvalid())
+ old = Loc;
+ }
+ QualType CaptureType, DeclRefType;
+ if (SemaRef.LangOpts.OpenMP)
+ SemaRef.tryCaptureOpenMPLambdas(Var);
+ SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
+ /*EllipsisLoc*/ SourceLocation(),
+ /*BuildAndDiagnose*/ true,
+ CaptureType, DeclRefType,
+ FunctionScopeIndexToStopAt);
+
+ if (SemaRef.LangOpts.CUDA && Var && Var->hasGlobalStorage()) {
+ auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
+ auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
+ auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
+ if (VarTarget == Sema::CVT_Host &&
+ (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
+ UserTarget == Sema::CFT_Global)) {
+ // Diagnose ODR-use of host global variables in device functions.
+ // Reference of device global variables in host functions is allowed
+ // through shadow variables therefore it is not diagnosed.
+ if (SemaRef.LangOpts.CUDAIsDevice) {
+ SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
+ << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
+ SemaRef.targetDiag(Var->getLocation(),
+ Var->getType().isConstQualified()
+ ? diag::note_cuda_const_var_unpromoted
+ : diag::note_cuda_host_var);
+ }
+ } else if (VarTarget == Sema::CVT_Device &&
+ (UserTarget == Sema::CFT_Host ||
+ UserTarget == Sema::CFT_HostDevice) &&
+ !Var->hasExternalStorage()) {
+ // Record a CUDA/HIP device side variable if it is ODR-used
+ // by host code. This is done conservatively, when the variable is
+ // referenced in any of the following contexts:
+ // - a non-function context
+ // - a host function
+ // - a host device function
+ // This makes the ODR-use of the device side variable by host code to
+ // be visible in the device compilation for the compiler to be able to
+ // emit template variables instantiated by host code only and to
+ // externalize the static device side variable ODR-used by host code.
+ SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
+ }
+ }
+
+ Var->markUsed(SemaRef.Context);
+}
+
+void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
+ SourceLocation Loc,
+ unsigned CapturingScopeIndex) {
+ MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
+}
+
+static void diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
+ ValueDecl *var) {
+ DeclContext *VarDC = var->getDeclContext();
+
+ // If the parameter still belongs to the translation unit, then
+ // we're actually just using one parameter in the declaration of
+ // the next.
+ if (isa<ParmVarDecl>(var) &&
+ isa<TranslationUnitDecl>(VarDC))
+ return;
+
+ // For C code, don't diagnose about capture if we're not actually in code
+ // right now; it's impossible to write a non-constant expression outside of
+ // function context, so we'll get other (more useful) diagnostics later.
+ //
+ // For C++, things get a bit more nasty... it would be nice to suppress this
+ // diagnostic for certain cases like using a local variable in an array bound
+ // for a member of a local class, but the correct predicate is not obvious.
+ if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
+ return;
+
+ unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
+ unsigned ContextKind = 3; // unknown
+ if (isa<CXXMethodDecl>(VarDC) &&
+ cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
+ ContextKind = 2;
+ } else if (isa<FunctionDecl>(VarDC)) {
+ ContextKind = 0;
+ } else if (isa<BlockDecl>(VarDC)) {
+ ContextKind = 1;
+ }
+
+ S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
+ << var << ValueKind << ContextKind << VarDC;
+ S.Diag(var->getLocation(), diag::note_entity_declared_at)
+ << var;
+
+ // FIXME: Add additional diagnostic info about class etc. which prevents
+ // capture.
+}
+
+
+static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
+ bool &SubCapturesAreNested,
+ QualType &CaptureType,
+ QualType &DeclRefType) {
+ // Check whether we've already captured it.
+ if (CSI->CaptureMap.count(Var)) {
+ // If we found a capture, any subcaptures are nested.
+ SubCapturesAreNested = true;
+
+ // Retrieve the capture type for this variable.
+ CaptureType = CSI->getCapture(Var).getCaptureType();
+
+ // Compute the type of an expression that refers to this variable.
+ DeclRefType = CaptureType.getNonReferenceType();
+
+ // Similarly to mutable captures in lambda, all the OpenMP captures by copy
+ // are mutable in the sense that user can change their value - they are
+ // private instances of the captured declarations.
+ const Capture &Cap = CSI->getCapture(Var);
+ if (Cap.isCopyCapture() &&
+ !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
+ !(isa<CapturedRegionScopeInfo>(CSI) &&
+ cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
+ DeclRefType.addConst();
+ return true;
+ }
+ return false;
+}
+
+// Only block literals, captured statements, and lambda expressions can
+// capture; other scopes don't work.
+static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
+ SourceLocation Loc,
+ const bool Diagnose, Sema &S) {
+ if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
+ return getLambdaAwareParentOfDeclContext(DC);
+ else if (Var->hasLocalStorage()) {
+ if (Diagnose)
+ diagnoseUncapturableValueReference(S, Loc, Var);
+ }
+ return nullptr;
+}
+
+// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
+// certain types of variables (unnamed, variably modified types etc.)
+// so check for eligibility.
+static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
+ SourceLocation Loc,
+ const bool Diagnose, Sema &S) {
+
+ bool IsBlock = isa<BlockScopeInfo>(CSI);
+ bool IsLambda = isa<LambdaScopeInfo>(CSI);
+
+ // Lambdas are not allowed to capture unnamed variables
+ // (e.g. anonymous unions).
+ // FIXME: The C++11 rule don't actually state this explicitly, but I'm
+ // assuming that's the intent.
+ if (IsLambda && !Var->getDeclName()) {
+ if (Diagnose) {
+ S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
+ S.Diag(Var->getLocation(), diag::note_declared_at);
+ }
+ return false;
+ }
+
+ // Prohibit variably-modified types in blocks; they're difficult to deal with.
+ if (Var->getType()->isVariablyModifiedType() && IsBlock) {
+ if (Diagnose) {
+ S.Diag(Loc, diag::err_ref_vm_type);
+ S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
+ }
+ return false;
+ }
+ // Prohibit structs with flexible array members too.
+ // We cannot capture what is in the tail end of the struct.
+ if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
+ if (VTTy->getDecl()->hasFlexibleArrayMember()) {
+ if (Diagnose) {
+ if (IsBlock)
+ S.Diag(Loc, diag::err_ref_flexarray_type);
+ else
+ S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
+ S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
+ }
+ return false;
+ }
+ }
+ const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
+ // Lambdas and captured statements are not allowed to capture __block
+ // variables; they don't support the expected semantics.
+ if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
+ if (Diagnose) {
+ S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
+ S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
+ }
+ return false;
+ }
+ // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
+ if (S.getLangOpts().OpenCL && IsBlock &&
+ Var->getType()->isBlockPointerType()) {
+ if (Diagnose)
+ S.Diag(Loc, diag::err_opencl_block_ref_block);
+ return false;
+ }
+
+ return true;
+}
+
+// Returns true if the capture by block was successful.
+static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
+ SourceLocation Loc,
+ const bool BuildAndDiagnose,
+ QualType &CaptureType,
+ QualType &DeclRefType,
+ const bool Nested,
+ Sema &S, bool Invalid) {
+ bool ByRef = false;
+
+ // Blocks are not allowed to capture arrays, excepting OpenCL.
+ // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
+ // (decayed to pointers).
+ if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
+ if (BuildAndDiagnose) {
+ S.Diag(Loc, diag::err_ref_array_type);
+ S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
+ Invalid = true;
+ } else {
+ return false;
+ }
+ }
+
+ // Forbid the block-capture of autoreleasing variables.
+ if (!Invalid &&
+ CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
+ if (BuildAndDiagnose) {
+ S.Diag(Loc, diag::err_arc_autoreleasing_capture)
+ << /*block*/ 0;
+ S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
+ Invalid = true;
+ } else {
+ return false;
+ }
+ }
+
+ // Warn about implicitly autoreleasing indirect parameters captured by blocks.
+ if (const auto *PT = CaptureType->getAs<PointerType>()) {
+ QualType PointeeTy = PT->getPointeeType();
+
+ if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
+ PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
+ !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
+ if (BuildAndDiagnose) {
+ SourceLocation VarLoc = Var->getLocation();
+ S.Diag(Loc, diag::warn_block_capture_autoreleasing);
+ S.Diag(VarLoc, diag::note_declare_parameter_strong);
+ }
+ }
+ }
+
+ const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
+ if (HasBlocksAttr || CaptureType->isReferenceType() ||
+ (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
+ // Block capture by reference does not change the capture or
+ // declaration reference types.
+ ByRef = true;
+ } else {
+ // Block capture by copy introduces 'const'.
+ CaptureType = CaptureType.getNonReferenceType().withConst();
+ DeclRefType = CaptureType;
+ }
+
+ // Actually capture the variable.
+ if (BuildAndDiagnose)
+ BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
+ CaptureType, Invalid);
+
+ return !Invalid;
+}
+
+
+/// Capture the given variable in the captured region.
+static bool captureInCapturedRegion(
+ CapturedRegionScopeInfo *RSI, VarDecl *Var, SourceLocation Loc,
+ const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
+ const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
+ bool IsTopScope, Sema &S, bool Invalid) {
+ // By default, capture variables by reference.
+ bool ByRef = true;
+ if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
+ ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
+ } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
+ // Using an LValue reference type is consistent with Lambdas (see below).
+ if (S.isOpenMPCapturedDecl(Var)) {
+ bool HasConst = DeclRefType.isConstQualified();
+ DeclRefType = DeclRefType.getUnqualifiedType();
+ // Don't lose diagnostics about assignments to const.
+ if (HasConst)
+ DeclRefType.addConst();
+ }
+ // Do not capture firstprivates in tasks.
+ if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
+ OMPC_unknown)
+ return true;
+ ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
+ RSI->OpenMPCaptureLevel);
+ }
+
+ if (ByRef)
+ CaptureType = S.Context.getLValueReferenceType(DeclRefType);
+ else
+ CaptureType = DeclRefType;
+
+ // Actually capture the variable.
+ if (BuildAndDiagnose)
+ RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
+ Loc, SourceLocation(), CaptureType, Invalid);
+
+ return !Invalid;
+}
+
+/// Capture the given variable in the lambda.
+static bool captureInLambda(LambdaScopeInfo *LSI,
+ VarDecl *Var,
+ SourceLocation Loc,
+ const bool BuildAndDiagnose,
+ QualType &CaptureType,
+ QualType &DeclRefType,
+ const bool RefersToCapturedVariable,
+ const Sema::TryCaptureKind Kind,
+ SourceLocation EllipsisLoc,
+ const bool IsTopScope,
+ Sema &S, bool Invalid) {
+ // Determine whether we are capturing by reference or by value.
+ bool ByRef = false;
+ if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
+ ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
+ } else {
+ ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
+ }
+
+ // Compute the type of the field that will capture this variable.
+ if (ByRef) {
+ // C++11 [expr.prim.lambda]p15:
+ // An entity is captured by reference if it is implicitly or
+ // explicitly captured but not captured by copy. It is
+ // unspecified whether additional unnamed non-static data
+ // members are declared in the closure type for entities
+ // captured by reference.
+ //
+ // FIXME: It is not clear whether we want to build an lvalue reference
+ // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
+ // to do the former, while EDG does the latter. Core issue 1249 will
+ // clarify, but for now we follow GCC because it's a more permissive and
+ // easily defensible position.
+ CaptureType = S.Context.getLValueReferenceType(DeclRefType);
+ } else {
+ // C++11 [expr.prim.lambda]p14:
+ // For each entity captured by copy, an unnamed non-static
+ // data member is declared in the closure type. The
+ // declaration order of these members is unspecified. The type
+ // of such a data member is the type of the corresponding
+ // captured entity if the entity is not a reference to an
+ // object, or the referenced type otherwise. [Note: If the
+ // captured entity is a reference to a function, the
+ // corresponding data member is also a reference to a
+ // function. - end note ]
+ if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
+ if (!RefType->getPointeeType()->isFunctionType())
+ CaptureType = RefType->getPointeeType();
+ }
+
+ // Forbid the lambda copy-capture of autoreleasing variables.
+ if (!Invalid &&
+ CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
+ if (BuildAndDiagnose) {
+ S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
+ S.Diag(Var->getLocation(), diag::note_previous_decl)
+ << Var->getDeclName();
+ Invalid = true;
+ } else {
+ return false;
+ }
+ }
+
+ // Make sure that by-copy captures are of a complete and non-abstract type.
+ if (!Invalid && BuildAndDiagnose) {
+ if (!CaptureType->isDependentType() &&
+ S.RequireCompleteSizedType(
+ Loc, CaptureType,
+ diag::err_capture_of_incomplete_or_sizeless_type,
+ Var->getDeclName()))
+ Invalid = true;
+ else if (S.RequireNonAbstractType(Loc, CaptureType,
+ diag::err_capture_of_abstract_type))
+ Invalid = true;
+ }
+ }
+
+ // Compute the type of a reference to this captured variable.
+ if (ByRef)
+ DeclRefType = CaptureType.getNonReferenceType();
+ else {
+ // C++ [expr.prim.lambda]p5:
+ // The closure type for a lambda-expression has a public inline
+ // function call operator [...]. This function call operator is
+ // declared const (9.3.1) if and only if the lambda-expression's
+ // parameter-declaration-clause is not followed by mutable.
+ DeclRefType = CaptureType.getNonReferenceType();
+ if (!LSI->Mutable && !CaptureType->isReferenceType())
+ DeclRefType.addConst();
+ }
+
+ // Add the capture.
+ if (BuildAndDiagnose)
+ LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
+ Loc, EllipsisLoc, CaptureType, Invalid);
+
+ return !Invalid;
+}
+
+static bool canCaptureVariableByCopy(VarDecl *Var, const ASTContext &Context) {
+ // Offer a Copy fix even if the type is dependent.
+ if (Var->getType()->isDependentType())
+ return true;
+ QualType T = Var->getType().getNonReferenceType();
+ if (T.isTriviallyCopyableType(Context))
+ return true;
+ if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
+
+ if (!(RD = RD->getDefinition()))
+ return false;
+ if (RD->hasSimpleCopyConstructor())
+ return true;
+ if (RD->hasUserDeclaredCopyConstructor())
+ for (CXXConstructorDecl *Ctor : RD->ctors())
+ if (Ctor->isCopyConstructor())
+ return !Ctor->isDeleted();
+ }
+ return false;
+}
+
+/// Create up to 4 fix-its for explicit reference and value capture of \p Var or
+/// default capture. Fixes may be omitted if they aren't allowed by the
+/// standard, for example we can't emit a default copy capture fix-it if we
+/// already explicitly copy capture capture another variable.
+static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
+ VarDecl *Var) {
+ assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
+ // Don't offer Capture by copy of default capture by copy fixes if Var is
+ // known not to be copy constructible.
+ bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
+
+ SmallString<32> FixBuffer;
+ StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
+ if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
+ SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
+ if (ShouldOfferCopyFix) {
+ // Offer fixes to insert an explicit capture for the variable.
+ // [] -> [VarName]
+ // [OtherCapture] -> [OtherCapture, VarName]
+ FixBuffer.assign({Separator, Var->getName()});
+ Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
+ << Var << /*value*/ 0
+ << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
+ }
+ // As above but capture by reference.
+ FixBuffer.assign({Separator, "&", Var->getName()});
+ Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
+ << Var << /*reference*/ 1
+ << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
+ }
+
+ // Only try to offer default capture if there are no captures excluding this
+ // and init captures.
+ // [this]: OK.
+ // [X = Y]: OK.
+ // [&A, &B]: Don't offer.
+ // [A, B]: Don't offer.
+ if (llvm::any_of(LSI->Captures, [](Capture &C) {
+ return !C.isThisCapture() && !C.isInitCapture();
+ }))
+ return;
+
+ // The default capture specifiers, '=' or '&', must appear first in the
+ // capture body.
+ SourceLocation DefaultInsertLoc =
+ LSI->IntroducerRange.getBegin().getLocWithOffset(1);
+
+ if (ShouldOfferCopyFix) {
+ bool CanDefaultCopyCapture = true;
+ // [=, *this] OK since c++17
+ // [=, this] OK since c++20
+ if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
+ CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
+ ? LSI->getCXXThisCapture().isCopyCapture()
+ : false;
+ // We can't use default capture by copy if any captures already specified
+ // capture by copy.
+ if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
+ return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
+ })) {
+ FixBuffer.assign({"=", Separator});
+ Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
+ << /*value*/ 0
+ << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
+ }
+ }
+
+ // We can't use default capture by reference if any captures already specified
+ // capture by reference.
+ if (llvm::none_of(LSI->Captures, [](Capture &C) {
+ return !C.isInitCapture() && C.isReferenceCapture() &&
+ !C.isThisCapture();
+ })) {
+ FixBuffer.assign({"&", Separator});
+ Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
+ << /*reference*/ 1
+ << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
+ }
+}
+
+bool Sema::tryCaptureVariable(
+ VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
+ SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
+ QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
+ // An init-capture is notionally from the context surrounding its
+ // declaration, but its parent DC is the lambda class.
+ DeclContext *VarDC = Var->getDeclContext();
+ if (Var->isInitCapture())
+ VarDC = VarDC->getParent();
+
+ DeclContext *DC = CurContext;
+ const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
+ ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
+ // We need to sync up the Declaration Context with the
+ // FunctionScopeIndexToStopAt
+ if (FunctionScopeIndexToStopAt) {
+ unsigned FSIndex = FunctionScopes.size() - 1;
+ while (FSIndex != MaxFunctionScopesIndex) {
+ DC = getLambdaAwareParentOfDeclContext(DC);
+ --FSIndex;
+ }
+ }
+
+
+ // If the variable is declared in the current context, there is no need to
+ // capture it.
+ if (VarDC == DC) return true;
+
+ // Capture global variables if it is required to use private copy of this
+ // variable.
+ bool IsGlobal = !Var->hasLocalStorage();
+ if (IsGlobal &&
+ !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
+ MaxFunctionScopesIndex)))
+ return true;
+ Var = Var->getCanonicalDecl();
+
+ // Walk up the stack to determine whether we can capture the variable,
+ // performing the "simple" checks that don't depend on type. We stop when
+ // we've either hit the declared scope of the variable or find an existing
+ // capture of that variable. We start from the innermost capturing-entity
+ // (the DC) and ensure that all intervening capturing-entities
+ // (blocks/lambdas etc.) between the innermost capturer and the variable`s
+ // declcontext can either capture the variable or have already captured
+ // the variable.
+ CaptureType = Var->getType();
+ DeclRefType = CaptureType.getNonReferenceType();
+ bool Nested = false;
+ bool Explicit = (Kind != TryCapture_Implicit);
+ unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
+ do {
+ // Only block literals, captured statements, and lambda expressions can
+ // capture; other scopes don't work.
+ DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
+ ExprLoc,
+ BuildAndDiagnose,
+ *this);
+ // We need to check for the parent *first* because, if we *have*
+ // private-captured a global variable, we need to recursively capture it in
+ // intermediate blocks, lambdas, etc.
+ if (!ParentDC) {
+ if (IsGlobal) {
+ FunctionScopesIndex = MaxFunctionScopesIndex - 1;
+ break;
+ }
+ return true;
+ }
+
+ FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
+ CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
+
+
+ // Check whether we've already captured it.
+ if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
+ DeclRefType)) {
+ CSI->getCapture(Var).markUsed(BuildAndDiagnose);
+ break;
+ }
+ // If we are instantiating a generic lambda call operator body,
+ // we do not want to capture new variables. What was captured
+ // during either a lambdas transformation or initial parsing
+ // should be used.
+ if (isGenericLambdaCallOperatorSpecialization(DC)) {
+ if (BuildAndDiagnose) {
+ LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
+ if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
+ Diag(ExprLoc, diag::err_lambda_impcap) << Var;
+ Diag(Var->getLocation(), diag::note_previous_decl) << Var;
+ Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
+ buildLambdaCaptureFixit(*this, LSI, Var);
+ } else
+ diagnoseUncapturableValueReference(*this, ExprLoc, Var);
+ }
+ return true;
+ }
+
+ // Try to capture variable-length arrays types.
+ if (Var->getType()->isVariablyModifiedType()) {
+ // We're going to walk down into the type and look for VLA
+ // expressions.
+ QualType QTy = Var->getType();
+ if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
+ QTy = PVD->getOriginalType();
+ captureVariablyModifiedType(Context, QTy, CSI);
+ }
+
+ if (getLangOpts().OpenMP) {
+ if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
+ // OpenMP private variables should not be captured in outer scope, so
+ // just break here. Similarly, global variables that are captured in a
+ // target region should not be captured outside the scope of the region.
+ if (RSI->CapRegionKind == CR_OpenMP) {
+ OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
+ Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
+ // If the variable is private (i.e. not captured) and has variably
+ // modified type, we still need to capture the type for correct
+ // codegen in all regions, associated with the construct. Currently,
+ // it is captured in the innermost captured region only.
+ if (IsOpenMPPrivateDecl != OMPC_unknown &&
+ Var->getType()->isVariablyModifiedType()) {
+ QualType QTy = Var->getType();
+ if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
+ QTy = PVD->getOriginalType();
+ for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
+ I < E; ++I) {
+ auto *OuterRSI = cast<CapturedRegionScopeInfo>(
+ FunctionScopes[FunctionScopesIndex - I]);
+ assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
+ "Wrong number of captured regions associated with the "
+ "OpenMP construct.");
+ captureVariablyModifiedType(Context, QTy, OuterRSI);
+ }
+ }
+ bool IsTargetCap =
+ IsOpenMPPrivateDecl != OMPC_private &&
+ isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
+ RSI->OpenMPCaptureLevel);
+ // Do not capture global if it is not privatized in outer regions.
+ bool IsGlobalCap =
+ IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
+ RSI->OpenMPCaptureLevel);
+
+ // When we detect target captures we are looking from inside the
+ // target region, therefore we need to propagate the capture from the
+ // enclosing region. Therefore, the capture is not initially nested.
+ if (IsTargetCap)
+ adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
+
+ if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
+ (IsGlobal && !IsGlobalCap)) {
+ Nested = !IsTargetCap;
+ bool HasConst = DeclRefType.isConstQualified();
+ DeclRefType = DeclRefType.getUnqualifiedType();
+ // Don't lose diagnostics about assignments to const.
+ if (HasConst)
+ DeclRefType.addConst();
+ CaptureType = Context.getLValueReferenceType(DeclRefType);
+ break;
+ }
+ }
+ }
+ }
+ if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
+ // No capture-default, and this is not an explicit capture
+ // so cannot capture this variable.
+ if (BuildAndDiagnose) {
+ Diag(ExprLoc, diag::err_lambda_impcap) << Var;
+ Diag(Var->getLocation(), diag::note_previous_decl) << Var;
+ auto *LSI = cast<LambdaScopeInfo>(CSI);
+ if (LSI->Lambda) {
+ Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
+ buildLambdaCaptureFixit(*this, LSI, Var);
+ }
+ // FIXME: If we error out because an outer lambda can not implicitly
+ // capture a variable that an inner lambda explicitly captures, we
+ // should have the inner lambda do the explicit capture - because
+ // it makes for cleaner diagnostics later. This would purely be done
+ // so that the diagnostic does not misleadingly claim that a variable
+ // can not be captured by a lambda implicitly even though it is captured
+ // explicitly. Suggestion:
+ // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
+ // at the function head
+ // - cache the StartingDeclContext - this must be a lambda
+ // - captureInLambda in the innermost lambda the variable.
+ }
+ return true;
+ }
+
+ FunctionScopesIndex--;
+ DC = ParentDC;
+ Explicit = false;
+ } while (!VarDC->Equals(DC));
+
+ // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
+ // computing the type of the capture at each step, checking type-specific
+ // requirements, and adding captures if requested.
+ // If the variable had already been captured previously, we start capturing
+ // at the lambda nested within that one.
+ bool Invalid = false;
+ for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
+ ++I) {
+ CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
+
+ // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
+ // certain types of variables (unnamed, variably modified types etc.)
+ // so check for eligibility.
+ if (!Invalid)
+ Invalid =
+ !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
+
+ // After encountering an error, if we're actually supposed to capture, keep
+ // capturing in nested contexts to suppress any follow-on diagnostics.
+ if (Invalid && !BuildAndDiagnose)
+ return true;
+
+ if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
+ Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
+ DeclRefType, Nested, *this, Invalid);
+ Nested = true;
+ } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
+ Invalid = !captureInCapturedRegion(
+ RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
+ Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
+ Nested = true;
+ } else {
+ LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
+ Invalid =
+ !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
+ DeclRefType, Nested, Kind, EllipsisLoc,
+ /*IsTopScope*/ I == N - 1, *this, Invalid);
+ Nested = true;
+ }
+
+ if (Invalid && !BuildAndDiagnose)
+ return true;
+ }
+ return Invalid;
+}
+
+bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
+ TryCaptureKind Kind, SourceLocation EllipsisLoc) {
+ QualType CaptureType;
+ QualType DeclRefType;
+ return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
+ /*BuildAndDiagnose=*/true, CaptureType,
+ DeclRefType, nullptr);
+}
+
+bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
+ QualType CaptureType;
+ QualType DeclRefType;
+ return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
+ /*BuildAndDiagnose=*/false, CaptureType,
+ DeclRefType, nullptr);
+}
+
+QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
+ QualType CaptureType;
+ QualType DeclRefType;
+
+ // Determine whether we can capture this variable.
+ if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
+ /*BuildAndDiagnose=*/false, CaptureType,
+ DeclRefType, nullptr))
+ return QualType();
+
+ return DeclRefType;
+}
+
+namespace {
+// Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
+// The produced TemplateArgumentListInfo* points to data stored within this
+// object, so should only be used in contexts where the pointer will not be
+// used after the CopiedTemplateArgs object is destroyed.
+class CopiedTemplateArgs {
+ bool HasArgs;
+ TemplateArgumentListInfo TemplateArgStorage;
+public:
+ template<typename RefExpr>
+ CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
+ if (HasArgs)
+ E->copyTemplateArgumentsInto(TemplateArgStorage);
+ }
+ operator TemplateArgumentListInfo*()
+#ifdef __has_cpp_attribute
+#if __has_cpp_attribute(clang::lifetimebound)
+ [[clang::lifetimebound]]
+#endif
+#endif
+ {
+ return HasArgs ? &TemplateArgStorage : nullptr;
+ }
+};
+}
+
+/// Walk the set of potential results of an expression and mark them all as
+/// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
+///
+/// \return A new expression if we found any potential results, ExprEmpty() if
+/// not, and ExprError() if we diagnosed an error.
+static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
+ NonOdrUseReason NOUR) {
+ // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
+ // an object that satisfies the requirements for appearing in a
+ // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
+ // is immediately applied." This function handles the lvalue-to-rvalue
+ // conversion part.
+ //
+ // If we encounter a node that claims to be an odr-use but shouldn't be, we
+ // transform it into the relevant kind of non-odr-use node and rebuild the
+ // tree of nodes leading to it.
+ //
+ // This is a mini-TreeTransform that only transforms a restricted subset of
+ // nodes (and only certain operands of them).
+
+ // Rebuild a subexpression.
+ auto Rebuild = [&](Expr *Sub) {
+ return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
+ };
+
+ // Check whether a potential result satisfies the requirements of NOUR.
+ auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
+ // Any entity other than a VarDecl is always odr-used whenever it's named
+ // in a potentially-evaluated expression.
+ auto *VD = dyn_cast<VarDecl>(D);
+ if (!VD)
+ return true;
+
+ // C++2a [basic.def.odr]p4:
+ // A variable x whose name appears as a potentially-evalauted expression
+ // e is odr-used by e unless
+ // -- x is a reference that is usable in constant expressions, or
+ // -- x is a variable of non-reference type that is usable in constant
+ // expressions and has no mutable subobjects, and e is an element of
+ // the set of potential results of an expression of
+ // non-volatile-qualified non-class type to which the lvalue-to-rvalue
+ // conversion is applied, or
+ // -- x is a variable of non-reference type, and e is an element of the
+ // set of potential results of a discarded-value expression to which
+ // the lvalue-to-rvalue conversion is not applied
+ //
+ // We check the first bullet and the "potentially-evaluated" condition in
+ // BuildDeclRefExpr. We check the type requirements in the second bullet
+ // in CheckLValueToRValueConversionOperand below.
+ switch (NOUR) {
+ case NOUR_None:
+ case NOUR_Unevaluated:
+ llvm_unreachable("unexpected non-odr-use-reason");
+
+ case NOUR_Constant:
+ // Constant references were handled when they were built.
+ if (VD->getType()->isReferenceType())
+ return true;
+ if (auto *RD = VD->getType()->getAsCXXRecordDecl())
+ if (RD->hasMutableFields())
+ return true;
+ if (!VD->isUsableInConstantExpressions(S.Context))
+ return true;
+ break;
+
+ case NOUR_Discarded:
+ if (VD->getType()->isReferenceType())
+ return true;
+ break;
+ }
+ return false;
+ };
+
+ // Mark that this expression does not constitute an odr-use.
+ auto MarkNotOdrUsed = [&] {
+ S.MaybeODRUseExprs.remove(E);
+ if (LambdaScopeInfo *LSI = S.getCurLambda())
+ LSI->markVariableExprAsNonODRUsed(E);
+ };
+
+ // C++2a [basic.def.odr]p2:
+ // The set of potential results of an expression e is defined as follows:
+ switch (E->getStmtClass()) {
+ // -- If e is an id-expression, ...
+ case Expr::DeclRefExprClass: {
+ auto *DRE = cast<DeclRefExpr>(E);
+ if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
+ break;
+
+ // Rebuild as a non-odr-use DeclRefExpr.
+ MarkNotOdrUsed();
+ return DeclRefExpr::Create(
+ S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
+ DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
+ DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
+ DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
+ }
+
+ case Expr::FunctionParmPackExprClass: {
+ auto *FPPE = cast<FunctionParmPackExpr>(E);
+ // If any of the declarations in the pack is odr-used, then the expression
+ // as a whole constitutes an odr-use.
+ for (VarDecl *D : *FPPE)
+ if (IsPotentialResultOdrUsed(D))
+ return ExprEmpty();
+
+ // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
+ // nothing cares about whether we marked this as an odr-use, but it might
+ // be useful for non-compiler tools.
+ MarkNotOdrUsed();
+ break;
+ }
+
+ // -- If e is a subscripting operation with an array operand...
+ case Expr::ArraySubscriptExprClass: {
+ auto *ASE = cast<ArraySubscriptExpr>(E);
+ Expr *OldBase = ASE->getBase()->IgnoreImplicit();
+ if (!OldBase->getType()->isArrayType())
+ break;
+ ExprResult Base = Rebuild(OldBase);
+ if (!Base.isUsable())
+ return Base;
+ Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
+ Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
+ SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
+ return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
+ ASE->getRBracketLoc());
+ }
+
+ case Expr::MemberExprClass: {
+ auto *ME = cast<MemberExpr>(E);
+ // -- If e is a class member access expression [...] naming a non-static
+ // data member...
+ if (isa<FieldDecl>(ME->getMemberDecl())) {
+ ExprResult Base = Rebuild(ME->getBase());
+ if (!Base.isUsable())
+ return Base;
+ return MemberExpr::Create(
+ S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
+ ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
+ ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
+ CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
+ ME->getObjectKind(), ME->isNonOdrUse());
+ }
+
+ if (ME->getMemberDecl()->isCXXInstanceMember())
+ break;
+
+ // -- If e is a class member access expression naming a static data member,
+ // ...
+ if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
+ break;
+
+ // Rebuild as a non-odr-use MemberExpr.
+ MarkNotOdrUsed();
+ return MemberExpr::Create(
+ S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
+ ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
+ ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
+ ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
+ }
+
+ case Expr::BinaryOperatorClass: {
+ auto *BO = cast<BinaryOperator>(E);
+ Expr *LHS = BO->getLHS();
+ Expr *RHS = BO->getRHS();
+ // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
+ if (BO->getOpcode() == BO_PtrMemD) {
+ ExprResult Sub = Rebuild(LHS);
+ if (!Sub.isUsable())
+ return Sub;
+ LHS = Sub.get();
+ // -- If e is a comma expression, ...
+ } else if (BO->getOpcode() == BO_Comma) {
+ ExprResult Sub = Rebuild(RHS);
+ if (!Sub.isUsable())
+ return Sub;
+ RHS = Sub.get();
+ } else {
+ break;
+ }
+ return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
+ LHS, RHS);
+ }
+
+ // -- If e has the form (e1)...
+ case Expr::ParenExprClass: {
+ auto *PE = cast<ParenExpr>(E);
+ ExprResult Sub = Rebuild(PE->getSubExpr());
+ if (!Sub.isUsable())
+ return Sub;
+ return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
+ }
+
+ // -- If e is a glvalue conditional expression, ...
+ // We don't apply this to a binary conditional operator. FIXME: Should we?
+ case Expr::ConditionalOperatorClass: {
+ auto *CO = cast<ConditionalOperator>(E);
+ ExprResult LHS = Rebuild(CO->getLHS());
+ if (LHS.isInvalid())
+ return ExprError();
+ ExprResult RHS = Rebuild(CO->getRHS());
+ if (RHS.isInvalid())
+ return ExprError();
+ if (!LHS.isUsable() && !RHS.isUsable())
+ return ExprEmpty();
+ if (!LHS.isUsable())
+ LHS = CO->getLHS();
+ if (!RHS.isUsable())
+ RHS = CO->getRHS();
+ return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
+ CO->getCond(), LHS.get(), RHS.get());
+ }
+
+ // [Clang extension]
+ // -- If e has the form __extension__ e1...
+ case Expr::UnaryOperatorClass: {
+ auto *UO = cast<UnaryOperator>(E);
+ if (UO->getOpcode() != UO_Extension)
+ break;
+ ExprResult Sub = Rebuild(UO->getSubExpr());
+ if (!Sub.isUsable())
+ return Sub;
+ return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
+ Sub.get());
+ }
+
+ // [Clang extension]
+ // -- If e has the form _Generic(...), the set of potential results is the
+ // union of the sets of potential results of the associated expressions.
+ case Expr::GenericSelectionExprClass: {
+ auto *GSE = cast<GenericSelectionExpr>(E);
+
+ SmallVector<Expr *, 4> AssocExprs;
+ bool AnyChanged = false;
+ for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
+ ExprResult AssocExpr = Rebuild(OrigAssocExpr);
+ if (AssocExpr.isInvalid())
+ return ExprError();
+ if (AssocExpr.isUsable()) {
+ AssocExprs.push_back(AssocExpr.get());
+ AnyChanged = true;
+ } else {
+ AssocExprs.push_back(OrigAssocExpr);
+ }
+ }
+
+ return AnyChanged ? S.CreateGenericSelectionExpr(
+ GSE->getGenericLoc(), GSE->getDefaultLoc(),
+ GSE->getRParenLoc(), GSE->getControllingExpr(),
+ GSE->getAssocTypeSourceInfos(), AssocExprs)
+ : ExprEmpty();
+ }
+
+ // [Clang extension]
+ // -- If e has the form __builtin_choose_expr(...), the set of potential
+ // results is the union of the sets of potential results of the
+ // second and third subexpressions.
+ case Expr::ChooseExprClass: {
+ auto *CE = cast<ChooseExpr>(E);
+
+ ExprResult LHS = Rebuild(CE->getLHS());
+ if (LHS.isInvalid())
+ return ExprError();
+
+ ExprResult RHS = Rebuild(CE->getLHS());
+ if (RHS.isInvalid())
+ return ExprError();
+
+ if (!LHS.get() && !RHS.get())
+ return ExprEmpty();
+ if (!LHS.isUsable())
+ LHS = CE->getLHS();
+ if (!RHS.isUsable())
+ RHS = CE->getRHS();
+
+ return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
+ RHS.get(), CE->getRParenLoc());
+ }
+
+ // Step through non-syntactic nodes.
+ case Expr::ConstantExprClass: {
+ auto *CE = cast<ConstantExpr>(E);
+ ExprResult Sub = Rebuild(CE->getSubExpr());
+ if (!Sub.isUsable())
+ return Sub;
+ return ConstantExpr::Create(S.Context, Sub.get());
+ }
+
+ // We could mostly rely on the recursive rebuilding to rebuild implicit
+ // casts, but not at the top level, so rebuild them here.
+ case Expr::ImplicitCastExprClass: {
+ auto *ICE = cast<ImplicitCastExpr>(E);
+ // Only step through the narrow set of cast kinds we expect to encounter.
+ // Anything else suggests we've left the region in which potential results
+ // can be found.
+ switch (ICE->getCastKind()) {
+ case CK_NoOp:
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase: {
+ ExprResult Sub = Rebuild(ICE->getSubExpr());
+ if (!Sub.isUsable())
+ return Sub;
+ CXXCastPath Path(ICE->path());
+ return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
+ ICE->getValueKind(), &Path);
+ }
+
+ default:
+ break;
+ }
+ break;
+ }
+
+ default:
+ break;
+ }
+
+ // Can't traverse through this node. Nothing to do.
+ return ExprEmpty();
+}
+
+ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
+ // Check whether the operand is or contains an object of non-trivial C union
+ // type.
+ if (E->getType().isVolatileQualified() &&
+ (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
+ E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
+ checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
+ Sema::NTCUC_LValueToRValueVolatile,
+ NTCUK_Destruct|NTCUK_Copy);
+
+ // C++2a [basic.def.odr]p4:
+ // [...] an expression of non-volatile-qualified non-class type to which
+ // the lvalue-to-rvalue conversion is applied [...]
+ if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
+ return E;
+
+ ExprResult Result =
+ rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
+ if (Result.isInvalid())
+ return ExprError();
+ return Result.get() ? Result : E;
+}
+
+ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
+ Res = CorrectDelayedTyposInExpr(Res);
+
+ if (!Res.isUsable())
+ return Res;
+
+ // If a constant-expression is a reference to a variable where we delay
+ // deciding whether it is an odr-use, just assume we will apply the
+ // lvalue-to-rvalue conversion. In the one case where this doesn't happen
+ // (a non-type template argument), we have special handling anyway.
+ return CheckLValueToRValueConversionOperand(Res.get());
+}
+
+void Sema::CleanupVarDeclMarking() {
+ // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
+ // call.
+ MaybeODRUseExprSet LocalMaybeODRUseExprs;
+ std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
+
+ for (Expr *E : LocalMaybeODRUseExprs) {
+ if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
+ MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
+ DRE->getLocation(), *this);
+ } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
+ MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
+ *this);
+ } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
+ for (VarDecl *VD : *FP)
+ MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
+ } else {
+ llvm_unreachable("Unexpected expression");
+ }
+ }
+
+ assert(MaybeODRUseExprs.empty() &&
+ "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
+}
+
+static void DoMarkVarDeclReferenced(
+ Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
+ llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
+ assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
+ isa<FunctionParmPackExpr>(E)) &&
+ "Invalid Expr argument to DoMarkVarDeclReferenced");
+ Var->setReferenced();
+
+ if (Var->isInvalidDecl())
+ return;
+
+ auto *MSI = Var->getMemberSpecializationInfo();
+ TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
+ : Var->getTemplateSpecializationKind();
+
+ OdrUseContext OdrUse = isOdrUseContext(SemaRef);
+ bool UsableInConstantExpr =
+ Var->mightBeUsableInConstantExpressions(SemaRef.Context);
+
+ if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
+ RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
+ }
+
+ // C++20 [expr.const]p12:
+ // A variable [...] is needed for constant evaluation if it is [...] a
+ // variable whose name appears as a potentially constant evaluated
+ // expression that is either a contexpr variable or is of non-volatile
+ // const-qualified integral type or of reference type
+ bool NeededForConstantEvaluation =
+ isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
+
+ bool NeedDefinition =
+ OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
+
+ assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
+ "Can't instantiate a partial template specialization.");
+
+ // If this might be a member specialization of a static data member, check
+ // the specialization is visible. We already did the checks for variable
+ // template specializations when we created them.
+ if (NeedDefinition && TSK != TSK_Undeclared &&
+ !isa<VarTemplateSpecializationDecl>(Var))
+ SemaRef.checkSpecializationVisibility(Loc, Var);
+
+ // Perform implicit instantiation of static data members, static data member
+ // templates of class templates, and variable template specializations. Delay
+ // instantiations of variable templates, except for those that could be used
+ // in a constant expression.
+ if (NeedDefinition && isTemplateInstantiation(TSK)) {
+ // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
+ // instantiation declaration if a variable is usable in a constant
+ // expression (among other cases).
+ bool TryInstantiating =
+ TSK == TSK_ImplicitInstantiation ||
+ (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
+
+ if (TryInstantiating) {
+ SourceLocation PointOfInstantiation =
+ MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
+ bool FirstInstantiation = PointOfInstantiation.isInvalid();
+ if (FirstInstantiation) {
+ PointOfInstantiation = Loc;
+ if (MSI)
+ MSI->setPointOfInstantiation(PointOfInstantiation);
+ // FIXME: Notify listener.
+ else
+ Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
+ }
+
+ if (UsableInConstantExpr) {
+ // Do not defer instantiations of variables that could be used in a
+ // constant expression.
+ SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
+ SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
+ });
+
+ // Re-set the member to trigger a recomputation of the dependence bits
+ // for the expression.
+ if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
+ DRE->setDecl(DRE->getDecl());
+ else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
+ ME->setMemberDecl(ME->getMemberDecl());
+ } else if (FirstInstantiation ||
+ isa<VarTemplateSpecializationDecl>(Var)) {
+ // FIXME: For a specialization of a variable template, we don't
+ // distinguish between "declaration and type implicitly instantiated"
+ // and "implicit instantiation of definition requested", so we have
+ // no direct way to avoid enqueueing the pending instantiation
+ // multiple times.
+ SemaRef.PendingInstantiations
+ .push_back(std::make_pair(Var, PointOfInstantiation));
+ }
+ }
+ }
+
+ // C++2a [basic.def.odr]p4:
+ // A variable x whose name appears as a potentially-evaluated expression e
+ // is odr-used by e unless
+ // -- x is a reference that is usable in constant expressions
+ // -- x is a variable of non-reference type that is usable in constant
+ // expressions and has no mutable subobjects [FIXME], and e is an
+ // element of the set of potential results of an expression of
+ // non-volatile-qualified non-class type to which the lvalue-to-rvalue
+ // conversion is applied
+ // -- x is a variable of non-reference type, and e is an element of the set
+ // of potential results of a discarded-value expression to which the
+ // lvalue-to-rvalue conversion is not applied [FIXME]
+ //
+ // We check the first part of the second bullet here, and
+ // Sema::CheckLValueToRValueConversionOperand deals with the second part.
+ // FIXME: To get the third bullet right, we need to delay this even for
+ // variables that are not usable in constant expressions.
+
+ // If we already know this isn't an odr-use, there's nothing more to do.
+ if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
+ if (DRE->isNonOdrUse())
+ return;
+ if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
+ if (ME->isNonOdrUse())
+ return;
+
+ switch (OdrUse) {
+ case OdrUseContext::None:
+ assert((!E || isa<FunctionParmPackExpr>(E)) &&
+ "missing non-odr-use marking for unevaluated decl ref");
+ break;
+
+ case OdrUseContext::FormallyOdrUsed:
+ // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
+ // behavior.
+ break;
+
+ case OdrUseContext::Used:
+ // If we might later find that this expression isn't actually an odr-use,
+ // delay the marking.
+ if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
+ SemaRef.MaybeODRUseExprs.insert(E);
+ else
+ MarkVarDeclODRUsed(Var, Loc, SemaRef);
+ break;
+
+ case OdrUseContext::Dependent:
+ // If this is a dependent context, we don't need to mark variables as
+ // odr-used, but we may still need to track them for lambda capture.
+ // FIXME: Do we also need to do this inside dependent typeid expressions
+ // (which are modeled as unevaluated at this point)?
+ const bool RefersToEnclosingScope =
+ (SemaRef.CurContext != Var->getDeclContext() &&
+ Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
+ if (RefersToEnclosingScope) {
+ LambdaScopeInfo *const LSI =
+ SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
+ if (LSI && (!LSI->CallOperator ||
+ !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
+ // If a variable could potentially be odr-used, defer marking it so
+ // until we finish analyzing the full expression for any
+ // lvalue-to-rvalue
+ // or discarded value conversions that would obviate odr-use.
+ // Add it to the list of potential captures that will be analyzed
+ // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
+ // unless the variable is a reference that was initialized by a constant
+ // expression (this will never need to be captured or odr-used).
+ //
+ // FIXME: We can simplify this a lot after implementing P0588R1.
+ assert(E && "Capture variable should be used in an expression.");
+ if (!Var->getType()->isReferenceType() ||
+ !Var->isUsableInConstantExpressions(SemaRef.Context))
+ LSI->addPotentialCapture(E->IgnoreParens());
+ }
+ }
+ break;
+ }
+}
+
+/// Mark a variable referenced, and check whether it is odr-used
+/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
+/// used directly for normal expressions referring to VarDecl.
+void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
+ DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
+}
+
+static void
+MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
+ bool MightBeOdrUse,
+ llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
+ if (SemaRef.isInOpenMPDeclareTargetContext())
+ SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
+
+ if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
+ DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
+ return;
+ }
+
+ SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
+
+ // If this is a call to a method via a cast, also mark the method in the
+ // derived class used in case codegen can devirtualize the call.
+ const MemberExpr *ME = dyn_cast<MemberExpr>(E);
+ if (!ME)
+ return;
+ CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
+ if (!MD)
+ return;
+ // Only attempt to devirtualize if this is truly a virtual call.
+ bool IsVirtualCall = MD->isVirtual() &&
+ ME->performsVirtualDispatch(SemaRef.getLangOpts());
+ if (!IsVirtualCall)
+ return;
+
+ // If it's possible to devirtualize the call, mark the called function
+ // referenced.
+ CXXMethodDecl *DM = MD->getDevirtualizedMethod(
+ ME->getBase(), SemaRef.getLangOpts().AppleKext);
+ if (DM)
+ SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
+}
+
+/// Perform reference-marking and odr-use handling for a DeclRefExpr.
+///
+/// Note, this may change the dependence of the DeclRefExpr, and so needs to be
+/// handled with care if the DeclRefExpr is not newly-created.
+void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
+ // TODO: update this with DR# once a defect report is filed.
+ // C++11 defect. The address of a pure member should not be an ODR use, even
+ // if it's a qualified reference.
+ bool OdrUse = true;
+ if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
+ if (Method->isVirtual() &&
+ !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
+ OdrUse = false;
+
+ if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
+ if (!isUnevaluatedContext() && !isConstantEvaluated() &&
+ FD->isConsteval() && !RebuildingImmediateInvocation)
+ ExprEvalContexts.back().ReferenceToConsteval.insert(E);
+ MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
+ RefsMinusAssignments);
+}
+
+/// Perform reference-marking and odr-use handling for a MemberExpr.
+void Sema::MarkMemberReferenced(MemberExpr *E) {
+ // C++11 [basic.def.odr]p2:
+ // A non-overloaded function whose name appears as a potentially-evaluated
+ // expression or a member of a set of candidate functions, if selected by
+ // overload resolution when referred to from a potentially-evaluated
+ // expression, is odr-used, unless it is a pure virtual function and its
+ // name is not explicitly qualified.
+ bool MightBeOdrUse = true;
+ if (E->performsVirtualDispatch(getLangOpts())) {
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
+ if (Method->isPure())
+ MightBeOdrUse = false;
+ }
+ SourceLocation Loc =
+ E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
+ MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
+ RefsMinusAssignments);
+}
+
+/// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
+void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
+ for (VarDecl *VD : *E)
+ MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
+ RefsMinusAssignments);
+}
+
+/// Perform marking for a reference to an arbitrary declaration. It
+/// marks the declaration referenced, and performs odr-use checking for
+/// functions and variables. This method should not be used when building a
+/// normal expression which refers to a variable.
+void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
+ bool MightBeOdrUse) {
+ if (MightBeOdrUse) {
+ if (auto *VD = dyn_cast<VarDecl>(D)) {
+ MarkVariableReferenced(Loc, VD);
+ return;
+ }
+ }
+ if (auto *FD = dyn_cast<FunctionDecl>(D)) {
+ MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
+ return;
+ }
+ D->setReferenced();
+}
+
+namespace {
+ // Mark all of the declarations used by a type as referenced.
+ // FIXME: Not fully implemented yet! We need to have a better understanding
+ // of when we're entering a context we should not recurse into.
+ // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
+ // TreeTransforms rebuilding the type in a new context. Rather than
+ // duplicating the TreeTransform logic, we should consider reusing it here.
+ // Currently that causes problems when rebuilding LambdaExprs.
+ class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
+ Sema &S;
+ SourceLocation Loc;
+
+ public:
+ typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
+
+ MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
+
+ bool TraverseTemplateArgument(const TemplateArgument &Arg);
+ };
+}
+
+bool MarkReferencedDecls::TraverseTemplateArgument(
+ const TemplateArgument &Arg) {
+ {
+ // A non-type template argument is a constant-evaluated context.
+ EnterExpressionEvaluationContext Evaluated(
+ S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+ if (Arg.getKind() == TemplateArgument::Declaration) {
+ if (Decl *D = Arg.getAsDecl())
+ S.MarkAnyDeclReferenced(Loc, D, true);
+ } else if (Arg.getKind() == TemplateArgument::Expression) {
+ S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
+ }
+ }
+
+ return Inherited::TraverseTemplateArgument(Arg);
+}
+
+void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
+ MarkReferencedDecls Marker(*this, Loc);
+ Marker.TraverseType(T);
+}
+
+namespace {
+/// Helper class that marks all of the declarations referenced by
+/// potentially-evaluated subexpressions as "referenced".
+class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
+public:
+ typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
+ bool SkipLocalVariables;
+ ArrayRef<const Expr *> StopAt;
+
+ EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
+ ArrayRef<const Expr *> StopAt)
+ : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
+
+ void visitUsedDecl(SourceLocation Loc, Decl *D) {
+ S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
+ }
+
+ void Visit(Expr *E) {
+ if (std::find(StopAt.begin(), StopAt.end(), E) != StopAt.end())
+ return;
+ Inherited::Visit(E);
+ }
+
+ void VisitDeclRefExpr(DeclRefExpr *E) {
+ // If we were asked not to visit local variables, don't.
+ if (SkipLocalVariables) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
+ if (VD->hasLocalStorage())
+ return;
+ }
+
+ // FIXME: This can trigger the instantiation of the initializer of a
+ // variable, which can cause the expression to become value-dependent
+ // or error-dependent. Do we need to propagate the new dependence bits?
+ S.MarkDeclRefReferenced(E);
+ }
+
+ void VisitMemberExpr(MemberExpr *E) {
+ S.MarkMemberReferenced(E);
+ Visit(E->getBase());
+ }
+};
+} // namespace
+
+/// Mark any declarations that appear within this expression or any
+/// potentially-evaluated subexpressions as "referenced".
+///
+/// \param SkipLocalVariables If true, don't mark local variables as
+/// 'referenced'.
+/// \param StopAt Subexpressions that we shouldn't recurse into.
+void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
+ bool SkipLocalVariables,
+ ArrayRef<const Expr*> StopAt) {
+ EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
+}
+
+/// Emit a diagnostic when statements are reachable.
+/// FIXME: check for reachability even in expressions for which we don't build a
+/// CFG (eg, in the initializer of a global or in a constant expression).
+/// For example,
+/// namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
+bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
+ const PartialDiagnostic &PD) {
+ if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
+ if (!FunctionScopes.empty())
+ FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
+ sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
+ return true;
+ }
+
+ // The initializer of a constexpr variable or of the first declaration of a
+ // static data member is not syntactically a constant evaluated constant,
+ // but nonetheless is always required to be a constant expression, so we
+ // can skip diagnosing.
+ // FIXME: Using the mangling context here is a hack.
+ if (auto *VD = dyn_cast_or_null<VarDecl>(
+ ExprEvalContexts.back().ManglingContextDecl)) {
+ if (VD->isConstexpr() ||
+ (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
+ return false;
+ // FIXME: For any other kind of variable, we should build a CFG for its
+ // initializer and check whether the context in question is reachable.
+ }
+
+ Diag(Loc, PD);
+ return true;
+}
+
+/// Emit a diagnostic that describes an effect on the run-time behavior
+/// of the program being compiled.
+///
+/// This routine emits the given diagnostic when the code currently being
+/// type-checked is "potentially evaluated", meaning that there is a
+/// possibility that the code will actually be executable. Code in sizeof()
+/// expressions, code used only during overload resolution, etc., are not
+/// potentially evaluated. This routine will suppress such diagnostics or,
+/// in the absolutely nutty case of potentially potentially evaluated
+/// expressions (C++ typeid), queue the diagnostic to potentially emit it
+/// later.
+///
+/// This routine should be used for all diagnostics that describe the run-time
+/// behavior of a program, such as passing a non-POD value through an ellipsis.
+/// Failure to do so will likely result in spurious diagnostics or failures
+/// during overload resolution or within sizeof/alignof/typeof/typeid.
+bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
+ const PartialDiagnostic &PD) {
+
+ if (ExprEvalContexts.back().isDiscardedStatementContext())
+ return false;
+
+ switch (ExprEvalContexts.back().Context) {
+ case ExpressionEvaluationContext::Unevaluated:
+ case ExpressionEvaluationContext::UnevaluatedList:
+ case ExpressionEvaluationContext::UnevaluatedAbstract:
+ case ExpressionEvaluationContext::DiscardedStatement:
+ // The argument will never be evaluated, so don't complain.
+ break;
+
+ case ExpressionEvaluationContext::ConstantEvaluated:
+ case ExpressionEvaluationContext::ImmediateFunctionContext:
+ // Relevant diagnostics should be produced by constant evaluation.
+ break;
+
+ case ExpressionEvaluationContext::PotentiallyEvaluated:
+ case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
+ return DiagIfReachable(Loc, Stmts, PD);
+ }
+
+ return false;
+}
+
+bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
+ const PartialDiagnostic &PD) {
+ return DiagRuntimeBehavior(
+ Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
+}
+
+bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
+ CallExpr *CE, FunctionDecl *FD) {
+ if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
+ return false;
+
+ // If we're inside a decltype's expression, don't check for a valid return
+ // type or construct temporaries until we know whether this is the last call.
+ if (ExprEvalContexts.back().ExprContext ==
+ ExpressionEvaluationContextRecord::EK_Decltype) {
+ ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
+ return false;
+ }
+
+ class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
+ FunctionDecl *FD;
+ CallExpr *CE;
+
+ public:
+ CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
+ : FD(FD), CE(CE) { }
+
+ void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
+ if (!FD) {
+ S.Diag(Loc, diag::err_call_incomplete_return)
+ << T << CE->getSourceRange();
+ return;
+ }
+
+ S.Diag(Loc, diag::err_call_function_incomplete_return)
+ << CE->getSourceRange() << FD << T;
+ S.Diag(FD->getLocation(), diag::note_entity_declared_at)
+ << FD->getDeclName();
+ }
+ } Diagnoser(FD, CE);
+
+ if (RequireCompleteType(Loc, ReturnType, Diagnoser))
+ return true;
+
+ return false;
+}
+
+// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
+// will prevent this condition from triggering, which is what we want.
+void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
+ SourceLocation Loc;
+
+ unsigned diagnostic = diag::warn_condition_is_assignment;
+ bool IsOrAssign = false;
+
+ if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
+ if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
+ return;
+
+ IsOrAssign = Op->getOpcode() == BO_OrAssign;
+
+ // Greylist some idioms by putting them into a warning subcategory.
+ if (ObjCMessageExpr *ME
+ = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
+ Selector Sel = ME->getSelector();
+
+ // self = [<foo> init...]
+ if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
+ diagnostic = diag::warn_condition_is_idiomatic_assignment;
+
+ // <foo> = [<bar> nextObject]
+ else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
+ diagnostic = diag::warn_condition_is_idiomatic_assignment;
+ }
+
+ Loc = Op->getOperatorLoc();
+ } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
+ if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
+ return;
+
+ IsOrAssign = Op->getOperator() == OO_PipeEqual;
+ Loc = Op->getOperatorLoc();
+ } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
+ return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
+ else {
+ // Not an assignment.
+ return;
+ }
+
+ Diag(Loc, diagnostic) << E->getSourceRange();
+
+ SourceLocation Open = E->getBeginLoc();
+ SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
+ Diag(Loc, diag::note_condition_assign_silence)
+ << FixItHint::CreateInsertion(Open, "(")
+ << FixItHint::CreateInsertion(Close, ")");
+
+ if (IsOrAssign)
+ Diag(Loc, diag::note_condition_or_assign_to_comparison)
+ << FixItHint::CreateReplacement(Loc, "!=");
+ else
+ Diag(Loc, diag::note_condition_assign_to_comparison)
+ << FixItHint::CreateReplacement(Loc, "==");
+}
+
+/// Redundant parentheses over an equality comparison can indicate
+/// that the user intended an assignment used as condition.
+void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
+ // Don't warn if the parens came from a macro.
+ SourceLocation parenLoc = ParenE->getBeginLoc();
+ if (parenLoc.isInvalid() || parenLoc.isMacroID())
+ return;
+ // Don't warn for dependent expressions.
+ if (ParenE->isTypeDependent())
+ return;
+
+ Expr *E = ParenE->IgnoreParens();
+
+ if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
+ if (opE->getOpcode() == BO_EQ &&
+ opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
+ == Expr::MLV_Valid) {
+ SourceLocation Loc = opE->getOperatorLoc();
+
+ Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
+ SourceRange ParenERange = ParenE->getSourceRange();
+ Diag(Loc, diag::note_equality_comparison_silence)
+ << FixItHint::CreateRemoval(ParenERange.getBegin())
+ << FixItHint::CreateRemoval(ParenERange.getEnd());
+ Diag(Loc, diag::note_equality_comparison_to_assign)
+ << FixItHint::CreateReplacement(Loc, "=");
+ }
+}
+
+ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
+ bool IsConstexpr) {
+ DiagnoseAssignmentAsCondition(E);
+ if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
+ DiagnoseEqualityWithExtraParens(parenE);
+
+ ExprResult result = CheckPlaceholderExpr(E);
+ if (result.isInvalid()) return ExprError();
+ E = result.get();
+
+ if (!E->isTypeDependent()) {
+ if (getLangOpts().CPlusPlus)
+ return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
+
+ ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
+ if (ERes.isInvalid())
+ return ExprError();
+ E = ERes.get();
+
+ QualType T = E->getType();
+ if (!T->isScalarType()) { // C99 6.8.4.1p1
+ Diag(Loc, diag::err_typecheck_statement_requires_scalar)
+ << T << E->getSourceRange();
+ return ExprError();
+ }
+ CheckBoolLikeConversion(E, Loc);
+ }
+
+ return E;
+}
+
+Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
+ Expr *SubExpr, ConditionKind CK,
+ bool MissingOK) {
+ // MissingOK indicates whether having no condition expression is valid
+ // (for loop) or invalid (e.g. while loop).
+ if (!SubExpr)
+ return MissingOK ? ConditionResult() : ConditionError();
+
+ ExprResult Cond;
+ switch (CK) {
+ case ConditionKind::Boolean:
+ Cond = CheckBooleanCondition(Loc, SubExpr);
+ break;
+
+ case ConditionKind::ConstexprIf:
+ Cond = CheckBooleanCondition(Loc, SubExpr, true);
+ break;
+
+ case ConditionKind::Switch:
+ Cond = CheckSwitchCondition(Loc, SubExpr);
+ break;
+ }
+ if (Cond.isInvalid()) {
+ Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
+ {SubExpr}, PreferredConditionType(CK));
+ if (!Cond.get())
+ return ConditionError();
+ }
+ // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
+ FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
+ if (!FullExpr.get())
+ return ConditionError();
+
+ return ConditionResult(*this, nullptr, FullExpr,
+ CK == ConditionKind::ConstexprIf);
+}
+
+namespace {
+ /// A visitor for rebuilding a call to an __unknown_any expression
+ /// to have an appropriate type.
+ struct RebuildUnknownAnyFunction
+ : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
+
+ Sema &S;
+
+ RebuildUnknownAnyFunction(Sema &S) : S(S) {}
+
+ ExprResult VisitStmt(Stmt *S) {
+ llvm_unreachable("unexpected statement!");
+ }
+
+ ExprResult VisitExpr(Expr *E) {
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
+ << E->getSourceRange();
+ return ExprError();
+ }
+
+ /// Rebuild an expression which simply semantically wraps another
+ /// expression which it shares the type and value kind of.
+ template <class T> ExprResult rebuildSugarExpr(T *E) {
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
+
+ Expr *SubExpr = SubResult.get();
+ E->setSubExpr(SubExpr);
+ E->setType(SubExpr->getType());
+ E->setValueKind(SubExpr->getValueKind());
+ assert(E->getObjectKind() == OK_Ordinary);
+ return E;
+ }
+
+ ExprResult VisitParenExpr(ParenExpr *E) {
+ return rebuildSugarExpr(E);
+ }
+
+ ExprResult VisitUnaryExtension(UnaryOperator *E) {
+ return rebuildSugarExpr(E);
+ }
+
+ ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
+
+ Expr *SubExpr = SubResult.get();
+ E->setSubExpr(SubExpr);
+ E->setType(S.Context.getPointerType(SubExpr->getType()));
+ assert(E->isPRValue());
+ assert(E->getObjectKind() == OK_Ordinary);
+ return E;
+ }
+
+ ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
+ if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
+
+ E->setType(VD->getType());
+
+ assert(E->isPRValue());
+ if (S.getLangOpts().CPlusPlus &&
+ !(isa<CXXMethodDecl>(VD) &&
+ cast<CXXMethodDecl>(VD)->isInstance()))
+ E->setValueKind(VK_LValue);
+
+ return E;
+ }
+
+ ExprResult VisitMemberExpr(MemberExpr *E) {
+ return resolveDecl(E, E->getMemberDecl());
+ }
+
+ ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
+ return resolveDecl(E, E->getDecl());
+ }
+ };
+}
+
+/// Given a function expression of unknown-any type, try to rebuild it
+/// to have a function type.
+static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
+ ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
+ if (Result.isInvalid()) return ExprError();
+ return S.DefaultFunctionArrayConversion(Result.get());
+}
+
+namespace {
+ /// A visitor for rebuilding an expression of type __unknown_anytype
+ /// into one which resolves the type directly on the referring
+ /// expression. Strict preservation of the original source
+ /// structure is not a goal.
+ struct RebuildUnknownAnyExpr
+ : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
+
+ Sema &S;
+
+ /// The current destination type.
+ QualType DestType;
+
+ RebuildUnknownAnyExpr(Sema &S, QualType CastType)
+ : S(S), DestType(CastType) {}
+
+ ExprResult VisitStmt(Stmt *S) {
+ llvm_unreachable("unexpected statement!");
+ }
+
+ ExprResult VisitExpr(Expr *E) {
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
+ << E->getSourceRange();
+ return ExprError();
+ }
+
+ ExprResult VisitCallExpr(CallExpr *E);
+ ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
+
+ /// Rebuild an expression which simply semantically wraps another
+ /// expression which it shares the type and value kind of.
+ template <class T> ExprResult rebuildSugarExpr(T *E) {
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
+ Expr *SubExpr = SubResult.get();
+ E->setSubExpr(SubExpr);
+ E->setType(SubExpr->getType());
+ E->setValueKind(SubExpr->getValueKind());
+ assert(E->getObjectKind() == OK_Ordinary);
+ return E;
+ }
+
+ ExprResult VisitParenExpr(ParenExpr *E) {
+ return rebuildSugarExpr(E);
+ }
+
+ ExprResult VisitUnaryExtension(UnaryOperator *E) {
+ return rebuildSugarExpr(E);
+ }
+
+ ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
+ const PointerType *Ptr = DestType->getAs<PointerType>();
+ if (!Ptr) {
+ S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
+ << E->getSourceRange();
+ return ExprError();
+ }
+
+ if (isa<CallExpr>(E->getSubExpr())) {
+ S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
+ << E->getSourceRange();
+ return ExprError();
+ }
+
+ assert(E->isPRValue());
+ assert(E->getObjectKind() == OK_Ordinary);
+ E->setType(DestType);
+
+ // Build the sub-expression as if it were an object of the pointee type.
+ DestType = Ptr->getPointeeType();
+ ExprResult SubResult = Visit(E->getSubExpr());
+ if (SubResult.isInvalid()) return ExprError();
+ E->setSubExpr(SubResult.get());
+ return E;
+ }
+
+ ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
+
+ ExprResult resolveDecl(Expr *E, ValueDecl *VD);
+
+ ExprResult VisitMemberExpr(MemberExpr *E) {
+ return resolveDecl(E, E->getMemberDecl());
+ }
+
+ ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
+ return resolveDecl(E, E->getDecl());
+ }
+ };
+}
+
+/// Rebuilds a call expression which yielded __unknown_anytype.
+ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
+ Expr *CalleeExpr = E->getCallee();
+
+ enum FnKind {
+ FK_MemberFunction,
+ FK_FunctionPointer,
+ FK_BlockPointer
+ };
+
+ FnKind Kind;
+ QualType CalleeType = CalleeExpr->getType();
+ if (CalleeType == S.Context.BoundMemberTy) {
+ assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
+ Kind = FK_MemberFunction;
+ CalleeType = Expr::findBoundMemberType(CalleeExpr);
+ } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
+ CalleeType = Ptr->getPointeeType();
+ Kind = FK_FunctionPointer;
+ } else {
+ CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
+ Kind = FK_BlockPointer;
+ }
+ const FunctionType *FnType = CalleeType->castAs<FunctionType>();
+
+ // Verify that this is a legal result type of a function.
+ if (DestType->isArrayType() || DestType->isFunctionType()) {
+ unsigned diagID = diag::err_func_returning_array_function;
+ if (Kind == FK_BlockPointer)
+ diagID = diag::err_block_returning_array_function;
+
+ S.Diag(E->getExprLoc(), diagID)
+ << DestType->isFunctionType() << DestType;
+ return ExprError();
+ }
+
+ // Otherwise, go ahead and set DestType as the call's result.
+ E->setType(DestType.getNonLValueExprType(S.Context));
+ E->setValueKind(Expr::getValueKindForType(DestType));
+ assert(E->getObjectKind() == OK_Ordinary);
+
+ // Rebuild the function type, replacing the result type with DestType.
+ const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
+ if (Proto) {
+ // __unknown_anytype(...) is a special case used by the debugger when
+ // it has no idea what a function's signature is.
+ //
+ // We want to build this call essentially under the K&R
+ // unprototyped rules, but making a FunctionNoProtoType in C++
+ // would foul up all sorts of assumptions. However, we cannot
+ // simply pass all arguments as variadic arguments, nor can we
+ // portably just call the function under a non-variadic type; see
+ // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
+ // However, it turns out that in practice it is generally safe to
+ // call a function declared as "A foo(B,C,D);" under the prototype
+ // "A foo(B,C,D,...);". The only known exception is with the
+ // Windows ABI, where any variadic function is implicitly cdecl
+ // regardless of its normal CC. Therefore we change the parameter
+ // types to match the types of the arguments.
+ //
+ // This is a hack, but it is far superior to moving the
+ // corresponding target-specific code from IR-gen to Sema/AST.
+
+ ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
+ SmallVector<QualType, 8> ArgTypes;
+ if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
+ ArgTypes.reserve(E->getNumArgs());
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
+ ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
+ }
+ ParamTypes = ArgTypes;
+ }
+ DestType = S.Context.getFunctionType(DestType, ParamTypes,
+ Proto->getExtProtoInfo());
+ } else {
+ DestType = S.Context.getFunctionNoProtoType(DestType,
+ FnType->getExtInfo());
+ }
+
+ // Rebuild the appropriate pointer-to-function type.
+ switch (Kind) {
+ case FK_MemberFunction:
+ // Nothing to do.
+ break;
+
+ case FK_FunctionPointer:
+ DestType = S.Context.getPointerType(DestType);
+ break;
+
+ case FK_BlockPointer:
+ DestType = S.Context.getBlockPointerType(DestType);
+ break;
+ }
+
+ // Finally, we can recurse.
+ ExprResult CalleeResult = Visit(CalleeExpr);
+ if (!CalleeResult.isUsable()) return ExprError();
+ E->setCallee(CalleeResult.get());
+
+ // Bind a temporary if necessary.
+ return S.MaybeBindToTemporary(E);
+}
+
+ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
+ // Verify that this is a legal result type of a call.
+ if (DestType->isArrayType() || DestType->isFunctionType()) {
+ S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
+ << DestType->isFunctionType() << DestType;
+ return ExprError();
+ }
+
+ // Rewrite the method result type if available.
+ if (ObjCMethodDecl *Method = E->getMethodDecl()) {
+ assert(Method->getReturnType() == S.Context.UnknownAnyTy);
+ Method->setReturnType(DestType);
+ }
+
+ // Change the type of the message.
+ E->setType(DestType.getNonReferenceType());
+ E->setValueKind(Expr::getValueKindForType(DestType));
+
+ return S.MaybeBindToTemporary(E);
+}
+
+ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
+ // The only case we should ever see here is a function-to-pointer decay.
+ if (E->getCastKind() == CK_FunctionToPointerDecay) {
+ assert(E->isPRValue());
+ assert(E->getObjectKind() == OK_Ordinary);
+
+ E->setType(DestType);
+
+ // Rebuild the sub-expression as the pointee (function) type.
+ DestType = DestType->castAs<PointerType>()->getPointeeType();
+
+ ExprResult Result = Visit(E->getSubExpr());
+ if (!Result.isUsable()) return ExprError();
+
+ E->setSubExpr(Result.get());
+ return E;
+ } else if (E->getCastKind() == CK_LValueToRValue) {
+ assert(E->isPRValue());
+ assert(E->getObjectKind() == OK_Ordinary);
+
+ assert(isa<BlockPointerType>(E->getType()));
+
+ E->setType(DestType);
+
+ // The sub-expression has to be a lvalue reference, so rebuild it as such.
+ DestType = S.Context.getLValueReferenceType(DestType);
+
+ ExprResult Result = Visit(E->getSubExpr());
+ if (!Result.isUsable()) return ExprError();
+
+ E->setSubExpr(Result.get());
+ return E;
+ } else {
+ llvm_unreachable("Unhandled cast type!");
+ }
+}
+
+ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
+ ExprValueKind ValueKind = VK_LValue;
+ QualType Type = DestType;
+
+ // We know how to make this work for certain kinds of decls:
+
+ // - functions
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
+ if (const PointerType *Ptr = Type->getAs<PointerType>()) {
+ DestType = Ptr->getPointeeType();
+ ExprResult Result = resolveDecl(E, VD);
+ if (Result.isInvalid()) return ExprError();
+ return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
+ VK_PRValue);
+ }
+
+ if (!Type->isFunctionType()) {
+ S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
+ << VD << E->getSourceRange();
+ return ExprError();
+ }
+ if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
+ // We must match the FunctionDecl's type to the hack introduced in
+ // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
+ // type. See the lengthy commentary in that routine.
+ QualType FDT = FD->getType();
+ const FunctionType *FnType = FDT->castAs<FunctionType>();
+ const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
+ DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
+ if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
+ SourceLocation Loc = FD->getLocation();
+ FunctionDecl *NewFD = FunctionDecl::Create(
+ S.Context, FD->getDeclContext(), Loc, Loc,
+ FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
+ SC_None, S.getCurFPFeatures().isFPConstrained(),
+ false /*isInlineSpecified*/, FD->hasPrototype(),
+ /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
+
+ if (FD->getQualifier())
+ NewFD->setQualifierInfo(FD->getQualifierLoc());
+
+ SmallVector<ParmVarDecl*, 16> Params;
+ for (const auto &AI : FT->param_types()) {
+ ParmVarDecl *Param =
+ S.BuildParmVarDeclForTypedef(FD, Loc, AI);
+ Param->setScopeInfo(0, Params.size());
+ Params.push_back(Param);
+ }
+ NewFD->setParams(Params);
+ DRE->setDecl(NewFD);
+ VD = DRE->getDecl();
+ }
+ }
+
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
+ if (MD->isInstance()) {
+ ValueKind = VK_PRValue;
+ Type = S.Context.BoundMemberTy;
+ }
+
+ // Function references aren't l-values in C.
+ if (!S.getLangOpts().CPlusPlus)
+ ValueKind = VK_PRValue;
+
+ // - variables
+ } else if (isa<VarDecl>(VD)) {
+ if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
+ Type = RefTy->getPointeeType();
+ } else if (Type->isFunctionType()) {
+ S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
+ << VD << E->getSourceRange();
+ return ExprError();
+ }
+
+ // - nothing else
+ } else {
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
+ << VD << E->getSourceRange();
+ return ExprError();
+ }
+
+ // Modifying the declaration like this is friendly to IR-gen but
+ // also really dangerous.
+ VD->setType(DestType);
+ E->setType(Type);
+ E->setValueKind(ValueKind);
+ return E;
+}
+
+/// Check a cast of an unknown-any type. We intentionally only
+/// trigger this for C-style casts.
+ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
+ Expr *CastExpr, CastKind &CastKind,
+ ExprValueKind &VK, CXXCastPath &Path) {
+ // The type we're casting to must be either void or complete.
+ if (!CastType->isVoidType() &&
+ RequireCompleteType(TypeRange.getBegin(), CastType,
+ diag::err_typecheck_cast_to_incomplete))
+ return ExprError();
+
+ // Rewrite the casted expression from scratch.
+ ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
+ if (!result.isUsable()) return ExprError();
+
+ CastExpr = result.get();
+ VK = CastExpr->getValueKind();
+ CastKind = CK_NoOp;
+
+ return CastExpr;
+}
+
+ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
+ return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
+}
+
+ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
+ Expr *arg, QualType &paramType) {
+ // If the syntactic form of the argument is not an explicit cast of
+ // any sort, just do default argument promotion.
+ ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
+ if (!castArg) {
+ ExprResult result = DefaultArgumentPromotion(arg);
+ if (result.isInvalid()) return ExprError();
+ paramType = result.get()->getType();
+ return result;
+ }
+
+ // Otherwise, use the type that was written in the explicit cast.
+ assert(!arg->hasPlaceholderType());
+ paramType = castArg->getTypeAsWritten();
+
+ // Copy-initialize a parameter of that type.
+ InitializedEntity entity =
+ InitializedEntity::InitializeParameter(Context, paramType,
+ /*consumed*/ false);
+ return PerformCopyInitialization(entity, callLoc, arg);
+}
+
+static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
+ Expr *orig = E;
+ unsigned diagID = diag::err_uncasted_use_of_unknown_any;
+ while (true) {
+ E = E->IgnoreParenImpCasts();
+ if (CallExpr *call = dyn_cast<CallExpr>(E)) {
+ E = call->getCallee();
+ diagID = diag::err_uncasted_call_of_unknown_any;
+ } else {
+ break;
+ }
+ }
+
+ SourceLocation loc;
+ NamedDecl *d;
+ if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
+ loc = ref->getLocation();
+ d = ref->getDecl();
+ } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
+ loc = mem->getMemberLoc();
+ d = mem->getMemberDecl();
+ } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
+ diagID = diag::err_uncasted_call_of_unknown_any;
+ loc = msg->getSelectorStartLoc();
+ d = msg->getMethodDecl();
+ if (!d) {
+ S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
+ << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
+ << orig->getSourceRange();
+ return ExprError();
+ }
+ } else {
+ S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
+ << E->getSourceRange();
+ return ExprError();
+ }
+
+ S.Diag(loc, diagID) << d << orig->getSourceRange();
+
+ // Never recoverable.
+ return ExprError();
+}
+
+/// Check for operands with placeholder types and complain if found.
+/// Returns ExprError() if there was an error and no recovery was possible.
+ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
+ if (!Context.isDependenceAllowed()) {
+ // C cannot handle TypoExpr nodes on either side of a binop because it
+ // doesn't handle dependent types properly, so make sure any TypoExprs have
+ // been dealt with before checking the operands.
+ ExprResult Result = CorrectDelayedTyposInExpr(E);
+ if (!Result.isUsable()) return ExprError();
+ E = Result.get();
+ }
+
+ const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
+ if (!placeholderType) return E;
+
+ switch (placeholderType->getKind()) {
+
+ // Overloaded expressions.
+ case BuiltinType::Overload: {
+ // Try to resolve a single function template specialization.
+ // This is obligatory.
+ ExprResult Result = E;
+ if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
+ return Result;
+
+ // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
+ // leaves Result unchanged on failure.
+ Result = E;
+ if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
+ return Result;
+
+ // If that failed, try to recover with a call.
+ tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
+ /*complain*/ true);
+ return Result;
+ }
+
+ // Bound member functions.
+ case BuiltinType::BoundMember: {
+ ExprResult result = E;
+ const Expr *BME = E->IgnoreParens();
+ PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
+ // Try to give a nicer diagnostic if it is a bound member that we recognize.
+ if (isa<CXXPseudoDestructorExpr>(BME)) {
+ PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
+ } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
+ if (ME->getMemberNameInfo().getName().getNameKind() ==
+ DeclarationName::CXXDestructorName)
+ PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
+ }
+ tryToRecoverWithCall(result, PD,
+ /*complain*/ true);
+ return result;
+ }
+
+ // ARC unbridged casts.
+ case BuiltinType::ARCUnbridgedCast: {
+ Expr *realCast = stripARCUnbridgedCast(E);
+ diagnoseARCUnbridgedCast(realCast);
+ return realCast;
+ }
+
+ // Expressions of unknown type.
+ case BuiltinType::UnknownAny:
+ return diagnoseUnknownAnyExpr(*this, E);
+
+ // Pseudo-objects.
+ case BuiltinType::PseudoObject:
+ return checkPseudoObjectRValue(E);
+
+ case BuiltinType::BuiltinFn: {
+ // Accept __noop without parens by implicitly converting it to a call expr.
+ auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
+ if (DRE) {
+ auto *FD = cast<FunctionDecl>(DRE->getDecl());
+ if (FD->getBuiltinID() == Builtin::BI__noop) {
+ E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
+ CK_BuiltinFnToFnPtr)
+ .get();
+ return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
+ VK_PRValue, SourceLocation(),
+ FPOptionsOverride());
+ }
+ }
+
+ Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
+ return ExprError();
+ }
+
+ case BuiltinType::IncompleteMatrixIdx:
+ Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
+ ->getRowIdx()
+ ->getBeginLoc(),
+ diag::err_matrix_incomplete_index);
+ return ExprError();
+
+ // Expressions of unknown type.
+ case BuiltinType::OMPArraySection:
+ Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
+ return ExprError();
+
+ // Expressions of unknown type.
+ case BuiltinType::OMPArrayShaping:
+ return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
+
+ case BuiltinType::OMPIterator:
+ return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
+
+ // Everything else should be impossible.
+#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
+ case BuiltinType::Id:
+#include "clang/Basic/OpenCLImageTypes.def"
+#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
+ case BuiltinType::Id:
+#include "clang/Basic/OpenCLExtensionTypes.def"
+#define SVE_TYPE(Name, Id, SingletonId) \
+ case BuiltinType::Id:
+#include "clang/Basic/AArch64SVEACLETypes.def"
+#define PPC_VECTOR_TYPE(Name, Id, Size) \
+ case BuiltinType::Id:
+#include "clang/Basic/PPCTypes.def"
+#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
+#include "clang/Basic/RISCVVTypes.def"
+#define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
+#define PLACEHOLDER_TYPE(Id, SingletonId)
+#include "clang/AST/BuiltinTypes.def"
+ break;
+ }
+
+ llvm_unreachable("invalid placeholder type!");
+}
+
+bool Sema::CheckCaseExpression(Expr *E) {
+ if (E->isTypeDependent())
+ return true;
+ if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
+ return E->getType()->isIntegralOrEnumerationType();
+ return false;
+}
+
+/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
+ExprResult
+Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
+ assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
+ "Unknown Objective-C Boolean value!");
+ QualType BoolT = Context.ObjCBuiltinBoolTy;
+ if (!Context.getBOOLDecl()) {
+ LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
+ Sema::LookupOrdinaryName);
+ if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
+ NamedDecl *ND = Result.getFoundDecl();
+ if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
+ Context.setBOOLDecl(TD);
+ }
+ }
+ if (Context.getBOOLDecl())
+ BoolT = Context.getBOOLType();
+ return new (Context)
+ ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
+}
+
+ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
+ llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
+ SourceLocation RParen) {
+ auto FindSpecVersion = [&](StringRef Platform) -> Optional<VersionTuple> {
+ auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
+ return Spec.getPlatform() == Platform;
+ });
+ // Transcribe the "ios" availability check to "maccatalyst" when compiling
+ // for "maccatalyst" if "maccatalyst" is not specified.
+ if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
+ Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
+ return Spec.getPlatform() == "ios";
+ });
+ }
+ if (Spec == AvailSpecs.end())
+ return None;
+ return Spec->getVersion();
+ };
+
+ VersionTuple Version;
+ if (auto MaybeVersion =
+ FindSpecVersion(Context.getTargetInfo().getPlatformName()))
+ Version = *MaybeVersion;
+
+ // The use of `@available` in the enclosing context should be analyzed to
+ // warn when it's used inappropriately (i.e. not if(@available)).
+ if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
+ Context->HasPotentialAvailabilityViolations = true;
+
+ return new (Context)
+ ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
+}
+
+ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
+ ArrayRef<Expr *> SubExprs, QualType T) {
+ if (!Context.getLangOpts().RecoveryAST)
+ return ExprError();
+
+ if (isSFINAEContext())
+ return ExprError();
+
+ if (T.isNull() || T->isUndeducedType() ||
+ !Context.getLangOpts().RecoveryASTType)
+ // We don't know the concrete type, fallback to dependent type.
+ T = Context.DependentTy;
+
+ return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
+}