diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/clang14/lib/CodeGen/CGStmt.cpp | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/clang14/lib/CodeGen/CGStmt.cpp')
-rw-r--r-- | contrib/libs/clang14/lib/CodeGen/CGStmt.cpp | 2842 |
1 files changed, 2842 insertions, 0 deletions
diff --git a/contrib/libs/clang14/lib/CodeGen/CGStmt.cpp b/contrib/libs/clang14/lib/CodeGen/CGStmt.cpp new file mode 100644 index 0000000000..9e939bb545 --- /dev/null +++ b/contrib/libs/clang14/lib/CodeGen/CGStmt.cpp @@ -0,0 +1,2842 @@ +//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This contains code to emit Stmt nodes as LLVM code. +// +//===----------------------------------------------------------------------===// + +#include "CGDebugInfo.h" +#include "CGOpenMPRuntime.h" +#include "CodeGenFunction.h" +#include "CodeGenModule.h" +#include "TargetInfo.h" +#include "clang/AST/Attr.h" +#include "clang/AST/Expr.h" +#include "clang/AST/Stmt.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/DiagnosticSema.h" +#include "clang/Basic/PrettyStackTrace.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/TargetInfo.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/IR/Assumptions.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/Support/SaveAndRestore.h" + +using namespace clang; +using namespace CodeGen; + +//===----------------------------------------------------------------------===// +// Statement Emission +//===----------------------------------------------------------------------===// + +void CodeGenFunction::EmitStopPoint(const Stmt *S) { + if (CGDebugInfo *DI = getDebugInfo()) { + SourceLocation Loc; + Loc = S->getBeginLoc(); + DI->EmitLocation(Builder, Loc); + + LastStopPoint = Loc; + } +} + +void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { + assert(S && "Null statement?"); + PGO.setCurrentStmt(S); + + // These statements have their own debug info handling. + if (EmitSimpleStmt(S, Attrs)) + return; + + // Check if we are generating unreachable code. + if (!HaveInsertPoint()) { + // If so, and the statement doesn't contain a label, then we do not need to + // generate actual code. This is safe because (1) the current point is + // unreachable, so we don't need to execute the code, and (2) we've already + // handled the statements which update internal data structures (like the + // local variable map) which could be used by subsequent statements. + if (!ContainsLabel(S)) { + // Verify that any decl statements were handled as simple, they may be in + // scope of subsequent reachable statements. + assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); + return; + } + + // Otherwise, make a new block to hold the code. + EnsureInsertPoint(); + } + + // Generate a stoppoint if we are emitting debug info. + EmitStopPoint(S); + + // Ignore all OpenMP directives except for simd if OpenMP with Simd is + // enabled. + if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { + if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { + EmitSimpleOMPExecutableDirective(*D); + return; + } + } + + switch (S->getStmtClass()) { + case Stmt::NoStmtClass: + case Stmt::CXXCatchStmtClass: + case Stmt::SEHExceptStmtClass: + case Stmt::SEHFinallyStmtClass: + case Stmt::MSDependentExistsStmtClass: + llvm_unreachable("invalid statement class to emit generically"); + case Stmt::NullStmtClass: + case Stmt::CompoundStmtClass: + case Stmt::DeclStmtClass: + case Stmt::LabelStmtClass: + case Stmt::AttributedStmtClass: + case Stmt::GotoStmtClass: + case Stmt::BreakStmtClass: + case Stmt::ContinueStmtClass: + case Stmt::DefaultStmtClass: + case Stmt::CaseStmtClass: + case Stmt::SEHLeaveStmtClass: + llvm_unreachable("should have emitted these statements as simple"); + +#define STMT(Type, Base) +#define ABSTRACT_STMT(Op) +#define EXPR(Type, Base) \ + case Stmt::Type##Class: +#include "clang/AST/StmtNodes.inc" + { + // Remember the block we came in on. + llvm::BasicBlock *incoming = Builder.GetInsertBlock(); + assert(incoming && "expression emission must have an insertion point"); + + EmitIgnoredExpr(cast<Expr>(S)); + + llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); + assert(outgoing && "expression emission cleared block!"); + + // The expression emitters assume (reasonably!) that the insertion + // point is always set. To maintain that, the call-emission code + // for noreturn functions has to enter a new block with no + // predecessors. We want to kill that block and mark the current + // insertion point unreachable in the common case of a call like + // "exit();". Since expression emission doesn't otherwise create + // blocks with no predecessors, we can just test for that. + // However, we must be careful not to do this to our incoming + // block, because *statement* emission does sometimes create + // reachable blocks which will have no predecessors until later in + // the function. This occurs with, e.g., labels that are not + // reachable by fallthrough. + if (incoming != outgoing && outgoing->use_empty()) { + outgoing->eraseFromParent(); + Builder.ClearInsertionPoint(); + } + break; + } + + case Stmt::IndirectGotoStmtClass: + EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; + + case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; + case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; + case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; + case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; + + case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; + + case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; + case Stmt::GCCAsmStmtClass: // Intentional fall-through. + case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; + case Stmt::CoroutineBodyStmtClass: + EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); + break; + case Stmt::CoreturnStmtClass: + EmitCoreturnStmt(cast<CoreturnStmt>(*S)); + break; + case Stmt::CapturedStmtClass: { + const CapturedStmt *CS = cast<CapturedStmt>(S); + EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); + } + break; + case Stmt::ObjCAtTryStmtClass: + EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); + break; + case Stmt::ObjCAtCatchStmtClass: + llvm_unreachable( + "@catch statements should be handled by EmitObjCAtTryStmt"); + case Stmt::ObjCAtFinallyStmtClass: + llvm_unreachable( + "@finally statements should be handled by EmitObjCAtTryStmt"); + case Stmt::ObjCAtThrowStmtClass: + EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); + break; + case Stmt::ObjCAtSynchronizedStmtClass: + EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); + break; + case Stmt::ObjCForCollectionStmtClass: + EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); + break; + case Stmt::ObjCAutoreleasePoolStmtClass: + EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); + break; + + case Stmt::CXXTryStmtClass: + EmitCXXTryStmt(cast<CXXTryStmt>(*S)); + break; + case Stmt::CXXForRangeStmtClass: + EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); + break; + case Stmt::SEHTryStmtClass: + EmitSEHTryStmt(cast<SEHTryStmt>(*S)); + break; + case Stmt::OMPMetaDirectiveClass: + EmitOMPMetaDirective(cast<OMPMetaDirective>(*S)); + break; + case Stmt::OMPCanonicalLoopClass: + EmitOMPCanonicalLoop(cast<OMPCanonicalLoop>(S)); + break; + case Stmt::OMPParallelDirectiveClass: + EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); + break; + case Stmt::OMPSimdDirectiveClass: + EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); + break; + case Stmt::OMPTileDirectiveClass: + EmitOMPTileDirective(cast<OMPTileDirective>(*S)); + break; + case Stmt::OMPUnrollDirectiveClass: + EmitOMPUnrollDirective(cast<OMPUnrollDirective>(*S)); + break; + case Stmt::OMPForDirectiveClass: + EmitOMPForDirective(cast<OMPForDirective>(*S)); + break; + case Stmt::OMPForSimdDirectiveClass: + EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); + break; + case Stmt::OMPSectionsDirectiveClass: + EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); + break; + case Stmt::OMPSectionDirectiveClass: + EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); + break; + case Stmt::OMPSingleDirectiveClass: + EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); + break; + case Stmt::OMPMasterDirectiveClass: + EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); + break; + case Stmt::OMPCriticalDirectiveClass: + EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); + break; + case Stmt::OMPParallelForDirectiveClass: + EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); + break; + case Stmt::OMPParallelForSimdDirectiveClass: + EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); + break; + case Stmt::OMPParallelMasterDirectiveClass: + EmitOMPParallelMasterDirective(cast<OMPParallelMasterDirective>(*S)); + break; + case Stmt::OMPParallelSectionsDirectiveClass: + EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); + break; + case Stmt::OMPTaskDirectiveClass: + EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); + break; + case Stmt::OMPTaskyieldDirectiveClass: + EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); + break; + case Stmt::OMPBarrierDirectiveClass: + EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); + break; + case Stmt::OMPTaskwaitDirectiveClass: + EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); + break; + case Stmt::OMPTaskgroupDirectiveClass: + EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); + break; + case Stmt::OMPFlushDirectiveClass: + EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); + break; + case Stmt::OMPDepobjDirectiveClass: + EmitOMPDepobjDirective(cast<OMPDepobjDirective>(*S)); + break; + case Stmt::OMPScanDirectiveClass: + EmitOMPScanDirective(cast<OMPScanDirective>(*S)); + break; + case Stmt::OMPOrderedDirectiveClass: + EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); + break; + case Stmt::OMPAtomicDirectiveClass: + EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); + break; + case Stmt::OMPTargetDirectiveClass: + EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); + break; + case Stmt::OMPTeamsDirectiveClass: + EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); + break; + case Stmt::OMPCancellationPointDirectiveClass: + EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); + break; + case Stmt::OMPCancelDirectiveClass: + EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); + break; + case Stmt::OMPTargetDataDirectiveClass: + EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); + break; + case Stmt::OMPTargetEnterDataDirectiveClass: + EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); + break; + case Stmt::OMPTargetExitDataDirectiveClass: + EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); + break; + case Stmt::OMPTargetParallelDirectiveClass: + EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); + break; + case Stmt::OMPTargetParallelForDirectiveClass: + EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); + break; + case Stmt::OMPTaskLoopDirectiveClass: + EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); + break; + case Stmt::OMPTaskLoopSimdDirectiveClass: + EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); + break; + case Stmt::OMPMasterTaskLoopDirectiveClass: + EmitOMPMasterTaskLoopDirective(cast<OMPMasterTaskLoopDirective>(*S)); + break; + case Stmt::OMPMasterTaskLoopSimdDirectiveClass: + EmitOMPMasterTaskLoopSimdDirective( + cast<OMPMasterTaskLoopSimdDirective>(*S)); + break; + case Stmt::OMPParallelMasterTaskLoopDirectiveClass: + EmitOMPParallelMasterTaskLoopDirective( + cast<OMPParallelMasterTaskLoopDirective>(*S)); + break; + case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: + EmitOMPParallelMasterTaskLoopSimdDirective( + cast<OMPParallelMasterTaskLoopSimdDirective>(*S)); + break; + case Stmt::OMPDistributeDirectiveClass: + EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); + break; + case Stmt::OMPTargetUpdateDirectiveClass: + EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); + break; + case Stmt::OMPDistributeParallelForDirectiveClass: + EmitOMPDistributeParallelForDirective( + cast<OMPDistributeParallelForDirective>(*S)); + break; + case Stmt::OMPDistributeParallelForSimdDirectiveClass: + EmitOMPDistributeParallelForSimdDirective( + cast<OMPDistributeParallelForSimdDirective>(*S)); + break; + case Stmt::OMPDistributeSimdDirectiveClass: + EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); + break; + case Stmt::OMPTargetParallelForSimdDirectiveClass: + EmitOMPTargetParallelForSimdDirective( + cast<OMPTargetParallelForSimdDirective>(*S)); + break; + case Stmt::OMPTargetSimdDirectiveClass: + EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); + break; + case Stmt::OMPTeamsDistributeDirectiveClass: + EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); + break; + case Stmt::OMPTeamsDistributeSimdDirectiveClass: + EmitOMPTeamsDistributeSimdDirective( + cast<OMPTeamsDistributeSimdDirective>(*S)); + break; + case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: + EmitOMPTeamsDistributeParallelForSimdDirective( + cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); + break; + case Stmt::OMPTeamsDistributeParallelForDirectiveClass: + EmitOMPTeamsDistributeParallelForDirective( + cast<OMPTeamsDistributeParallelForDirective>(*S)); + break; + case Stmt::OMPTargetTeamsDirectiveClass: + EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); + break; + case Stmt::OMPTargetTeamsDistributeDirectiveClass: + EmitOMPTargetTeamsDistributeDirective( + cast<OMPTargetTeamsDistributeDirective>(*S)); + break; + case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: + EmitOMPTargetTeamsDistributeParallelForDirective( + cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); + break; + case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: + EmitOMPTargetTeamsDistributeParallelForSimdDirective( + cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); + break; + case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: + EmitOMPTargetTeamsDistributeSimdDirective( + cast<OMPTargetTeamsDistributeSimdDirective>(*S)); + break; + case Stmt::OMPInteropDirectiveClass: + EmitOMPInteropDirective(cast<OMPInteropDirective>(*S)); + break; + case Stmt::OMPDispatchDirectiveClass: + llvm_unreachable("Dispatch directive not supported yet."); + break; + case Stmt::OMPMaskedDirectiveClass: + EmitOMPMaskedDirective(cast<OMPMaskedDirective>(*S)); + break; + case Stmt::OMPGenericLoopDirectiveClass: + EmitOMPGenericLoopDirective(cast<OMPGenericLoopDirective>(*S)); + break; + } +} + +bool CodeGenFunction::EmitSimpleStmt(const Stmt *S, + ArrayRef<const Attr *> Attrs) { + switch (S->getStmtClass()) { + default: + return false; + case Stmt::NullStmtClass: + break; + case Stmt::CompoundStmtClass: + EmitCompoundStmt(cast<CompoundStmt>(*S)); + break; + case Stmt::DeclStmtClass: + EmitDeclStmt(cast<DeclStmt>(*S)); + break; + case Stmt::LabelStmtClass: + EmitLabelStmt(cast<LabelStmt>(*S)); + break; + case Stmt::AttributedStmtClass: + EmitAttributedStmt(cast<AttributedStmt>(*S)); + break; + case Stmt::GotoStmtClass: + EmitGotoStmt(cast<GotoStmt>(*S)); + break; + case Stmt::BreakStmtClass: + EmitBreakStmt(cast<BreakStmt>(*S)); + break; + case Stmt::ContinueStmtClass: + EmitContinueStmt(cast<ContinueStmt>(*S)); + break; + case Stmt::DefaultStmtClass: + EmitDefaultStmt(cast<DefaultStmt>(*S), Attrs); + break; + case Stmt::CaseStmtClass: + EmitCaseStmt(cast<CaseStmt>(*S), Attrs); + break; + case Stmt::SEHLeaveStmtClass: + EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); + break; + } + return true; +} + +/// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, +/// this captures the expression result of the last sub-statement and returns it +/// (for use by the statement expression extension). +Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, + AggValueSlot AggSlot) { + PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), + "LLVM IR generation of compound statement ('{}')"); + + // Keep track of the current cleanup stack depth, including debug scopes. + LexicalScope Scope(*this, S.getSourceRange()); + + return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); +} + +Address +CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, + bool GetLast, + AggValueSlot AggSlot) { + + const Stmt *ExprResult = S.getStmtExprResult(); + assert((!GetLast || (GetLast && ExprResult)) && + "If GetLast is true then the CompoundStmt must have a StmtExprResult"); + + Address RetAlloca = Address::invalid(); + + for (auto *CurStmt : S.body()) { + if (GetLast && ExprResult == CurStmt) { + // We have to special case labels here. They are statements, but when put + // at the end of a statement expression, they yield the value of their + // subexpression. Handle this by walking through all labels we encounter, + // emitting them before we evaluate the subexpr. + // Similar issues arise for attributed statements. + while (!isa<Expr>(ExprResult)) { + if (const auto *LS = dyn_cast<LabelStmt>(ExprResult)) { + EmitLabel(LS->getDecl()); + ExprResult = LS->getSubStmt(); + } else if (const auto *AS = dyn_cast<AttributedStmt>(ExprResult)) { + // FIXME: Update this if we ever have attributes that affect the + // semantics of an expression. + ExprResult = AS->getSubStmt(); + } else { + llvm_unreachable("unknown value statement"); + } + } + + EnsureInsertPoint(); + + const Expr *E = cast<Expr>(ExprResult); + QualType ExprTy = E->getType(); + if (hasAggregateEvaluationKind(ExprTy)) { + EmitAggExpr(E, AggSlot); + } else { + // We can't return an RValue here because there might be cleanups at + // the end of the StmtExpr. Because of that, we have to emit the result + // here into a temporary alloca. + RetAlloca = CreateMemTemp(ExprTy); + EmitAnyExprToMem(E, RetAlloca, Qualifiers(), + /*IsInit*/ false); + } + } else { + EmitStmt(CurStmt); + } + } + + return RetAlloca; +} + +void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { + llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); + + // If there is a cleanup stack, then we it isn't worth trying to + // simplify this block (we would need to remove it from the scope map + // and cleanup entry). + if (!EHStack.empty()) + return; + + // Can only simplify direct branches. + if (!BI || !BI->isUnconditional()) + return; + + // Can only simplify empty blocks. + if (BI->getIterator() != BB->begin()) + return; + + BB->replaceAllUsesWith(BI->getSuccessor(0)); + BI->eraseFromParent(); + BB->eraseFromParent(); +} + +void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { + llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); + + // Fall out of the current block (if necessary). + EmitBranch(BB); + + if (IsFinished && BB->use_empty()) { + delete BB; + return; + } + + // Place the block after the current block, if possible, or else at + // the end of the function. + if (CurBB && CurBB->getParent()) + CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); + else + CurFn->getBasicBlockList().push_back(BB); + Builder.SetInsertPoint(BB); +} + +void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { + // Emit a branch from the current block to the target one if this + // was a real block. If this was just a fall-through block after a + // terminator, don't emit it. + llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); + + if (!CurBB || CurBB->getTerminator()) { + // If there is no insert point or the previous block is already + // terminated, don't touch it. + } else { + // Otherwise, create a fall-through branch. + Builder.CreateBr(Target); + } + + Builder.ClearInsertionPoint(); +} + +void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { + bool inserted = false; + for (llvm::User *u : block->users()) { + if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { + CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), + block); + inserted = true; + break; + } + } + + if (!inserted) + CurFn->getBasicBlockList().push_back(block); + + Builder.SetInsertPoint(block); +} + +CodeGenFunction::JumpDest +CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { + JumpDest &Dest = LabelMap[D]; + if (Dest.isValid()) return Dest; + + // Create, but don't insert, the new block. + Dest = JumpDest(createBasicBlock(D->getName()), + EHScopeStack::stable_iterator::invalid(), + NextCleanupDestIndex++); + return Dest; +} + +void CodeGenFunction::EmitLabel(const LabelDecl *D) { + // Add this label to the current lexical scope if we're within any + // normal cleanups. Jumps "in" to this label --- when permitted by + // the language --- may need to be routed around such cleanups. + if (EHStack.hasNormalCleanups() && CurLexicalScope) + CurLexicalScope->addLabel(D); + + JumpDest &Dest = LabelMap[D]; + + // If we didn't need a forward reference to this label, just go + // ahead and create a destination at the current scope. + if (!Dest.isValid()) { + Dest = getJumpDestInCurrentScope(D->getName()); + + // Otherwise, we need to give this label a target depth and remove + // it from the branch-fixups list. + } else { + assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); + Dest.setScopeDepth(EHStack.stable_begin()); + ResolveBranchFixups(Dest.getBlock()); + } + + EmitBlock(Dest.getBlock()); + + // Emit debug info for labels. + if (CGDebugInfo *DI = getDebugInfo()) { + if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { + DI->setLocation(D->getLocation()); + DI->EmitLabel(D, Builder); + } + } + + incrementProfileCounter(D->getStmt()); +} + +/// Change the cleanup scope of the labels in this lexical scope to +/// match the scope of the enclosing context. +void CodeGenFunction::LexicalScope::rescopeLabels() { + assert(!Labels.empty()); + EHScopeStack::stable_iterator innermostScope + = CGF.EHStack.getInnermostNormalCleanup(); + + // Change the scope depth of all the labels. + for (SmallVectorImpl<const LabelDecl*>::const_iterator + i = Labels.begin(), e = Labels.end(); i != e; ++i) { + assert(CGF.LabelMap.count(*i)); + JumpDest &dest = CGF.LabelMap.find(*i)->second; + assert(dest.getScopeDepth().isValid()); + assert(innermostScope.encloses(dest.getScopeDepth())); + dest.setScopeDepth(innermostScope); + } + + // Reparent the labels if the new scope also has cleanups. + if (innermostScope != EHScopeStack::stable_end() && ParentScope) { + ParentScope->Labels.append(Labels.begin(), Labels.end()); + } +} + + +void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { + EmitLabel(S.getDecl()); + + // IsEHa - emit eha.scope.begin if it's a side entry of a scope + if (getLangOpts().EHAsynch && S.isSideEntry()) + EmitSehCppScopeBegin(); + + EmitStmt(S.getSubStmt()); +} + +void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { + bool nomerge = false; + const CallExpr *musttail = nullptr; + + for (const auto *A : S.getAttrs()) { + if (A->getKind() == attr::NoMerge) { + nomerge = true; + } + if (A->getKind() == attr::MustTail) { + const Stmt *Sub = S.getSubStmt(); + const ReturnStmt *R = cast<ReturnStmt>(Sub); + musttail = cast<CallExpr>(R->getRetValue()->IgnoreParens()); + } + } + SaveAndRestore<bool> save_nomerge(InNoMergeAttributedStmt, nomerge); + SaveAndRestore<const CallExpr *> save_musttail(MustTailCall, musttail); + EmitStmt(S.getSubStmt(), S.getAttrs()); +} + +void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { + // If this code is reachable then emit a stop point (if generating + // debug info). We have to do this ourselves because we are on the + // "simple" statement path. + if (HaveInsertPoint()) + EmitStopPoint(&S); + + EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); +} + + +void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { + if (const LabelDecl *Target = S.getConstantTarget()) { + EmitBranchThroughCleanup(getJumpDestForLabel(Target)); + return; + } + + // Ensure that we have an i8* for our PHI node. + llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), + Int8PtrTy, "addr"); + llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); + + // Get the basic block for the indirect goto. + llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); + + // The first instruction in the block has to be the PHI for the switch dest, + // add an entry for this branch. + cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); + + EmitBranch(IndGotoBB); +} + +void CodeGenFunction::EmitIfStmt(const IfStmt &S) { + // The else branch of a consteval if statement is always the only branch that + // can be runtime evaluated. + if (S.isConsteval()) { + const Stmt *Executed = S.isNegatedConsteval() ? S.getThen() : S.getElse(); + if (Executed) { + RunCleanupsScope ExecutedScope(*this); + EmitStmt(Executed); + } + return; + } + + // C99 6.8.4.1: The first substatement is executed if the expression compares + // unequal to 0. The condition must be a scalar type. + LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); + + if (S.getInit()) + EmitStmt(S.getInit()); + + if (S.getConditionVariable()) + EmitDecl(*S.getConditionVariable()); + + // If the condition constant folds and can be elided, try to avoid emitting + // the condition and the dead arm of the if/else. + bool CondConstant; + if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, + S.isConstexpr())) { + // Figure out which block (then or else) is executed. + const Stmt *Executed = S.getThen(); + const Stmt *Skipped = S.getElse(); + if (!CondConstant) // Condition false? + std::swap(Executed, Skipped); + + // If the skipped block has no labels in it, just emit the executed block. + // This avoids emitting dead code and simplifies the CFG substantially. + if (S.isConstexpr() || !ContainsLabel(Skipped)) { + if (CondConstant) + incrementProfileCounter(&S); + if (Executed) { + RunCleanupsScope ExecutedScope(*this); + EmitStmt(Executed); + } + return; + } + } + + // Otherwise, the condition did not fold, or we couldn't elide it. Just emit + // the conditional branch. + llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); + llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); + llvm::BasicBlock *ElseBlock = ContBlock; + if (S.getElse()) + ElseBlock = createBasicBlock("if.else"); + + // Prefer the PGO based weights over the likelihood attribute. + // When the build isn't optimized the metadata isn't used, so don't generate + // it. + Stmt::Likelihood LH = Stmt::LH_None; + uint64_t Count = getProfileCount(S.getThen()); + if (!Count && CGM.getCodeGenOpts().OptimizationLevel) + LH = Stmt::getLikelihood(S.getThen(), S.getElse()); + EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Count, LH); + + // Emit the 'then' code. + EmitBlock(ThenBlock); + incrementProfileCounter(&S); + { + RunCleanupsScope ThenScope(*this); + EmitStmt(S.getThen()); + } + EmitBranch(ContBlock); + + // Emit the 'else' code if present. + if (const Stmt *Else = S.getElse()) { + { + // There is no need to emit line number for an unconditional branch. + auto NL = ApplyDebugLocation::CreateEmpty(*this); + EmitBlock(ElseBlock); + } + { + RunCleanupsScope ElseScope(*this); + EmitStmt(Else); + } + { + // There is no need to emit line number for an unconditional branch. + auto NL = ApplyDebugLocation::CreateEmpty(*this); + EmitBranch(ContBlock); + } + } + + // Emit the continuation block for code after the if. + EmitBlock(ContBlock, true); +} + +void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, + ArrayRef<const Attr *> WhileAttrs) { + // Emit the header for the loop, which will also become + // the continue target. + JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); + EmitBlock(LoopHeader.getBlock()); + + // Create an exit block for when the condition fails, which will + // also become the break target. + JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); + + // Store the blocks to use for break and continue. + BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); + + // C++ [stmt.while]p2: + // When the condition of a while statement is a declaration, the + // scope of the variable that is declared extends from its point + // of declaration (3.3.2) to the end of the while statement. + // [...] + // The object created in a condition is destroyed and created + // with each iteration of the loop. + RunCleanupsScope ConditionScope(*this); + + if (S.getConditionVariable()) + EmitDecl(*S.getConditionVariable()); + + // Evaluate the conditional in the while header. C99 6.8.5.1: The + // evaluation of the controlling expression takes place before each + // execution of the loop body. + llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); + + // while(1) is common, avoid extra exit blocks. Be sure + // to correctly handle break/continue though. + llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); + bool CondIsConstInt = C != nullptr; + bool EmitBoolCondBranch = !CondIsConstInt || !C->isOne(); + const SourceRange &R = S.getSourceRange(); + LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), CGM.getCodeGenOpts(), + WhileAttrs, SourceLocToDebugLoc(R.getBegin()), + SourceLocToDebugLoc(R.getEnd()), + checkIfLoopMustProgress(CondIsConstInt)); + + // As long as the condition is true, go to the loop body. + llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); + if (EmitBoolCondBranch) { + llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); + if (ConditionScope.requiresCleanups()) + ExitBlock = createBasicBlock("while.exit"); + llvm::MDNode *Weights = + createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); + if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) + BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( + BoolCondVal, Stmt::getLikelihood(S.getBody())); + Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock, Weights); + + if (ExitBlock != LoopExit.getBlock()) { + EmitBlock(ExitBlock); + EmitBranchThroughCleanup(LoopExit); + } + } else if (const Attr *A = Stmt::getLikelihoodAttr(S.getBody())) { + CGM.getDiags().Report(A->getLocation(), + diag::warn_attribute_has_no_effect_on_infinite_loop) + << A << A->getRange(); + CGM.getDiags().Report( + S.getWhileLoc(), + diag::note_attribute_has_no_effect_on_infinite_loop_here) + << SourceRange(S.getWhileLoc(), S.getRParenLoc()); + } + + // Emit the loop body. We have to emit this in a cleanup scope + // because it might be a singleton DeclStmt. + { + RunCleanupsScope BodyScope(*this); + EmitBlock(LoopBody); + incrementProfileCounter(&S); + EmitStmt(S.getBody()); + } + + BreakContinueStack.pop_back(); + + // Immediately force cleanup. + ConditionScope.ForceCleanup(); + + EmitStopPoint(&S); + // Branch to the loop header again. + EmitBranch(LoopHeader.getBlock()); + + LoopStack.pop(); + + // Emit the exit block. + EmitBlock(LoopExit.getBlock(), true); + + // The LoopHeader typically is just a branch if we skipped emitting + // a branch, try to erase it. + if (!EmitBoolCondBranch) + SimplifyForwardingBlocks(LoopHeader.getBlock()); +} + +void CodeGenFunction::EmitDoStmt(const DoStmt &S, + ArrayRef<const Attr *> DoAttrs) { + JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); + JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); + + uint64_t ParentCount = getCurrentProfileCount(); + + // Store the blocks to use for break and continue. + BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); + + // Emit the body of the loop. + llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); + + EmitBlockWithFallThrough(LoopBody, &S); + { + RunCleanupsScope BodyScope(*this); + EmitStmt(S.getBody()); + } + + EmitBlock(LoopCond.getBlock()); + + // C99 6.8.5.2: "The evaluation of the controlling expression takes place + // after each execution of the loop body." + + // Evaluate the conditional in the while header. + // C99 6.8.5p2/p4: The first substatement is executed if the expression + // compares unequal to 0. The condition must be a scalar type. + llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); + + BreakContinueStack.pop_back(); + + // "do {} while (0)" is common in macros, avoid extra blocks. Be sure + // to correctly handle break/continue though. + llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal); + bool CondIsConstInt = C; + bool EmitBoolCondBranch = !C || !C->isZero(); + + const SourceRange &R = S.getSourceRange(); + LoopStack.push(LoopBody, CGM.getContext(), CGM.getCodeGenOpts(), DoAttrs, + SourceLocToDebugLoc(R.getBegin()), + SourceLocToDebugLoc(R.getEnd()), + checkIfLoopMustProgress(CondIsConstInt)); + + // As long as the condition is true, iterate the loop. + if (EmitBoolCondBranch) { + uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; + Builder.CreateCondBr( + BoolCondVal, LoopBody, LoopExit.getBlock(), + createProfileWeightsForLoop(S.getCond(), BackedgeCount)); + } + + LoopStack.pop(); + + // Emit the exit block. + EmitBlock(LoopExit.getBlock()); + + // The DoCond block typically is just a branch if we skipped + // emitting a branch, try to erase it. + if (!EmitBoolCondBranch) + SimplifyForwardingBlocks(LoopCond.getBlock()); +} + +void CodeGenFunction::EmitForStmt(const ForStmt &S, + ArrayRef<const Attr *> ForAttrs) { + JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); + + LexicalScope ForScope(*this, S.getSourceRange()); + + // Evaluate the first part before the loop. + if (S.getInit()) + EmitStmt(S.getInit()); + + // Start the loop with a block that tests the condition. + // If there's an increment, the continue scope will be overwritten + // later. + JumpDest CondDest = getJumpDestInCurrentScope("for.cond"); + llvm::BasicBlock *CondBlock = CondDest.getBlock(); + EmitBlock(CondBlock); + + Expr::EvalResult Result; + bool CondIsConstInt = + !S.getCond() || S.getCond()->EvaluateAsInt(Result, getContext()); + + const SourceRange &R = S.getSourceRange(); + LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, + SourceLocToDebugLoc(R.getBegin()), + SourceLocToDebugLoc(R.getEnd()), + checkIfLoopMustProgress(CondIsConstInt)); + + // Create a cleanup scope for the condition variable cleanups. + LexicalScope ConditionScope(*this, S.getSourceRange()); + + // If the for loop doesn't have an increment we can just use the condition as + // the continue block. Otherwise, if there is no condition variable, we can + // form the continue block now. If there is a condition variable, we can't + // form the continue block until after we've emitted the condition, because + // the condition is in scope in the increment, but Sema's jump diagnostics + // ensure that there are no continues from the condition variable that jump + // to the loop increment. + JumpDest Continue; + if (!S.getInc()) + Continue = CondDest; + else if (!S.getConditionVariable()) + Continue = getJumpDestInCurrentScope("for.inc"); + BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); + + if (S.getCond()) { + // If the for statement has a condition scope, emit the local variable + // declaration. + if (S.getConditionVariable()) { + EmitDecl(*S.getConditionVariable()); + + // We have entered the condition variable's scope, so we're now able to + // jump to the continue block. + Continue = S.getInc() ? getJumpDestInCurrentScope("for.inc") : CondDest; + BreakContinueStack.back().ContinueBlock = Continue; + } + + llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); + // If there are any cleanups between here and the loop-exit scope, + // create a block to stage a loop exit along. + if (ForScope.requiresCleanups()) + ExitBlock = createBasicBlock("for.cond.cleanup"); + + // As long as the condition is true, iterate the loop. + llvm::BasicBlock *ForBody = createBasicBlock("for.body"); + + // C99 6.8.5p2/p4: The first substatement is executed if the expression + // compares unequal to 0. The condition must be a scalar type. + llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); + llvm::MDNode *Weights = + createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); + if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) + BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( + BoolCondVal, Stmt::getLikelihood(S.getBody())); + + Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); + + if (ExitBlock != LoopExit.getBlock()) { + EmitBlock(ExitBlock); + EmitBranchThroughCleanup(LoopExit); + } + + EmitBlock(ForBody); + } else { + // Treat it as a non-zero constant. Don't even create a new block for the + // body, just fall into it. + } + incrementProfileCounter(&S); + + { + // Create a separate cleanup scope for the body, in case it is not + // a compound statement. + RunCleanupsScope BodyScope(*this); + EmitStmt(S.getBody()); + } + + // If there is an increment, emit it next. + if (S.getInc()) { + EmitBlock(Continue.getBlock()); + EmitStmt(S.getInc()); + } + + BreakContinueStack.pop_back(); + + ConditionScope.ForceCleanup(); + + EmitStopPoint(&S); + EmitBranch(CondBlock); + + ForScope.ForceCleanup(); + + LoopStack.pop(); + + // Emit the fall-through block. + EmitBlock(LoopExit.getBlock(), true); +} + +void +CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, + ArrayRef<const Attr *> ForAttrs) { + JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); + + LexicalScope ForScope(*this, S.getSourceRange()); + + // Evaluate the first pieces before the loop. + if (S.getInit()) + EmitStmt(S.getInit()); + EmitStmt(S.getRangeStmt()); + EmitStmt(S.getBeginStmt()); + EmitStmt(S.getEndStmt()); + + // Start the loop with a block that tests the condition. + // If there's an increment, the continue scope will be overwritten + // later. + llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); + EmitBlock(CondBlock); + + const SourceRange &R = S.getSourceRange(); + LoopStack.push(CondBlock, CGM.getContext(), CGM.getCodeGenOpts(), ForAttrs, + SourceLocToDebugLoc(R.getBegin()), + SourceLocToDebugLoc(R.getEnd())); + + // If there are any cleanups between here and the loop-exit scope, + // create a block to stage a loop exit along. + llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); + if (ForScope.requiresCleanups()) + ExitBlock = createBasicBlock("for.cond.cleanup"); + + // The loop body, consisting of the specified body and the loop variable. + llvm::BasicBlock *ForBody = createBasicBlock("for.body"); + + // The body is executed if the expression, contextually converted + // to bool, is true. + llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); + llvm::MDNode *Weights = + createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody())); + if (!Weights && CGM.getCodeGenOpts().OptimizationLevel) + BoolCondVal = emitCondLikelihoodViaExpectIntrinsic( + BoolCondVal, Stmt::getLikelihood(S.getBody())); + Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock, Weights); + + if (ExitBlock != LoopExit.getBlock()) { + EmitBlock(ExitBlock); + EmitBranchThroughCleanup(LoopExit); + } + + EmitBlock(ForBody); + incrementProfileCounter(&S); + + // Create a block for the increment. In case of a 'continue', we jump there. + JumpDest Continue = getJumpDestInCurrentScope("for.inc"); + + // Store the blocks to use for break and continue. + BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); + + { + // Create a separate cleanup scope for the loop variable and body. + LexicalScope BodyScope(*this, S.getSourceRange()); + EmitStmt(S.getLoopVarStmt()); + EmitStmt(S.getBody()); + } + + EmitStopPoint(&S); + // If there is an increment, emit it next. + EmitBlock(Continue.getBlock()); + EmitStmt(S.getInc()); + + BreakContinueStack.pop_back(); + + EmitBranch(CondBlock); + + ForScope.ForceCleanup(); + + LoopStack.pop(); + + // Emit the fall-through block. + EmitBlock(LoopExit.getBlock(), true); +} + +void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { + if (RV.isScalar()) { + Builder.CreateStore(RV.getScalarVal(), ReturnValue); + } else if (RV.isAggregate()) { + LValue Dest = MakeAddrLValue(ReturnValue, Ty); + LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); + EmitAggregateCopy(Dest, Src, Ty, getOverlapForReturnValue()); + } else { + EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), + /*init*/ true); + } + EmitBranchThroughCleanup(ReturnBlock); +} + +namespace { +// RAII struct used to save and restore a return statment's result expression. +struct SaveRetExprRAII { + SaveRetExprRAII(const Expr *RetExpr, CodeGenFunction &CGF) + : OldRetExpr(CGF.RetExpr), CGF(CGF) { + CGF.RetExpr = RetExpr; + } + ~SaveRetExprRAII() { CGF.RetExpr = OldRetExpr; } + const Expr *OldRetExpr; + CodeGenFunction &CGF; +}; +} // namespace + +/// If we have 'return f(...);', where both caller and callee are SwiftAsync, +/// codegen it as 'tail call ...; ret void;'. +static void makeTailCallIfSwiftAsync(const CallExpr *CE, CGBuilderTy &Builder, + const CGFunctionInfo *CurFnInfo) { + auto calleeQualType = CE->getCallee()->getType(); + const FunctionType *calleeType = nullptr; + if (calleeQualType->isFunctionPointerType() || + calleeQualType->isFunctionReferenceType() || + calleeQualType->isBlockPointerType() || + calleeQualType->isMemberFunctionPointerType()) { + calleeType = calleeQualType->getPointeeType()->castAs<FunctionType>(); + } else if (auto *ty = dyn_cast<FunctionType>(calleeQualType)) { + calleeType = ty; + } else if (auto CMCE = dyn_cast<CXXMemberCallExpr>(CE)) { + if (auto methodDecl = CMCE->getMethodDecl()) { + // getMethodDecl() doesn't handle member pointers at the moment. + calleeType = methodDecl->getType()->castAs<FunctionType>(); + } else { + return; + } + } else { + return; + } + if (calleeType->getCallConv() == CallingConv::CC_SwiftAsync && + (CurFnInfo->getASTCallingConvention() == CallingConv::CC_SwiftAsync)) { + auto CI = cast<llvm::CallInst>(&Builder.GetInsertBlock()->back()); + CI->setTailCallKind(llvm::CallInst::TCK_MustTail); + Builder.CreateRetVoid(); + Builder.ClearInsertionPoint(); + } +} + +/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand +/// if the function returns void, or may be missing one if the function returns +/// non-void. Fun stuff :). +void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { + if (requiresReturnValueCheck()) { + llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); + auto *SLocPtr = + new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, + llvm::GlobalVariable::PrivateLinkage, SLoc); + SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); + assert(ReturnLocation.isValid() && "No valid return location"); + Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), + ReturnLocation); + } + + // Returning from an outlined SEH helper is UB, and we already warn on it. + if (IsOutlinedSEHHelper) { + Builder.CreateUnreachable(); + Builder.ClearInsertionPoint(); + } + + // Emit the result value, even if unused, to evaluate the side effects. + const Expr *RV = S.getRetValue(); + + // Record the result expression of the return statement. The recorded + // expression is used to determine whether a block capture's lifetime should + // end at the end of the full expression as opposed to the end of the scope + // enclosing the block expression. + // + // This permits a small, easily-implemented exception to our over-conservative + // rules about not jumping to statements following block literals with + // non-trivial cleanups. + SaveRetExprRAII SaveRetExpr(RV, *this); + + RunCleanupsScope cleanupScope(*this); + if (const auto *EWC = dyn_cast_or_null<ExprWithCleanups>(RV)) + RV = EWC->getSubExpr(); + // FIXME: Clean this up by using an LValue for ReturnTemp, + // EmitStoreThroughLValue, and EmitAnyExpr. + // Check if the NRVO candidate was not globalized in OpenMP mode. + if (getLangOpts().ElideConstructors && S.getNRVOCandidate() && + S.getNRVOCandidate()->isNRVOVariable() && + (!getLangOpts().OpenMP || + !CGM.getOpenMPRuntime() + .getAddressOfLocalVariable(*this, S.getNRVOCandidate()) + .isValid())) { + // Apply the named return value optimization for this return statement, + // which means doing nothing: the appropriate result has already been + // constructed into the NRVO variable. + + // If there is an NRVO flag for this variable, set it to 1 into indicate + // that the cleanup code should not destroy the variable. + if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) + Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); + } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { + // Make sure not to return anything, but evaluate the expression + // for side effects. + if (RV) { + EmitAnyExpr(RV); + if (auto *CE = dyn_cast<CallExpr>(RV)) + makeTailCallIfSwiftAsync(CE, Builder, CurFnInfo); + } + } else if (!RV) { + // Do nothing (return value is left uninitialized) + } else if (FnRetTy->isReferenceType()) { + // If this function returns a reference, take the address of the expression + // rather than the value. + RValue Result = EmitReferenceBindingToExpr(RV); + Builder.CreateStore(Result.getScalarVal(), ReturnValue); + } else { + switch (getEvaluationKind(RV->getType())) { + case TEK_Scalar: + Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); + break; + case TEK_Complex: + EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), + /*isInit*/ true); + break; + case TEK_Aggregate: + EmitAggExpr(RV, AggValueSlot::forAddr( + ReturnValue, Qualifiers(), + AggValueSlot::IsDestructed, + AggValueSlot::DoesNotNeedGCBarriers, + AggValueSlot::IsNotAliased, + getOverlapForReturnValue())); + break; + } + } + + ++NumReturnExprs; + if (!RV || RV->isEvaluatable(getContext())) + ++NumSimpleReturnExprs; + + cleanupScope.ForceCleanup(); + EmitBranchThroughCleanup(ReturnBlock); +} + +void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { + // As long as debug info is modeled with instructions, we have to ensure we + // have a place to insert here and write the stop point here. + if (HaveInsertPoint()) + EmitStopPoint(&S); + + for (const auto *I : S.decls()) + EmitDecl(*I); +} + +void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { + assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); + + // If this code is reachable then emit a stop point (if generating + // debug info). We have to do this ourselves because we are on the + // "simple" statement path. + if (HaveInsertPoint()) + EmitStopPoint(&S); + + EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); +} + +void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { + assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); + + // If this code is reachable then emit a stop point (if generating + // debug info). We have to do this ourselves because we are on the + // "simple" statement path. + if (HaveInsertPoint()) + EmitStopPoint(&S); + + EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); +} + +/// EmitCaseStmtRange - If case statement range is not too big then +/// add multiple cases to switch instruction, one for each value within +/// the range. If range is too big then emit "if" condition check. +void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S, + ArrayRef<const Attr *> Attrs) { + assert(S.getRHS() && "Expected RHS value in CaseStmt"); + + llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); + llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); + + // Emit the code for this case. We do this first to make sure it is + // properly chained from our predecessor before generating the + // switch machinery to enter this block. + llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); + EmitBlockWithFallThrough(CaseDest, &S); + EmitStmt(S.getSubStmt()); + + // If range is empty, do nothing. + if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) + return; + + Stmt::Likelihood LH = Stmt::getLikelihood(Attrs); + llvm::APInt Range = RHS - LHS; + // FIXME: parameters such as this should not be hardcoded. + if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { + // Range is small enough to add multiple switch instruction cases. + uint64_t Total = getProfileCount(&S); + unsigned NCases = Range.getZExtValue() + 1; + // We only have one region counter for the entire set of cases here, so we + // need to divide the weights evenly between the generated cases, ensuring + // that the total weight is preserved. E.g., a weight of 5 over three cases + // will be distributed as weights of 2, 2, and 1. + uint64_t Weight = Total / NCases, Rem = Total % NCases; + for (unsigned I = 0; I != NCases; ++I) { + if (SwitchWeights) + SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); + else if (SwitchLikelihood) + SwitchLikelihood->push_back(LH); + + if (Rem) + Rem--; + SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); + ++LHS; + } + return; + } + + // The range is too big. Emit "if" condition into a new block, + // making sure to save and restore the current insertion point. + llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); + + // Push this test onto the chain of range checks (which terminates + // in the default basic block). The switch's default will be changed + // to the top of this chain after switch emission is complete. + llvm::BasicBlock *FalseDest = CaseRangeBlock; + CaseRangeBlock = createBasicBlock("sw.caserange"); + + CurFn->getBasicBlockList().push_back(CaseRangeBlock); + Builder.SetInsertPoint(CaseRangeBlock); + + // Emit range check. + llvm::Value *Diff = + Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); + llvm::Value *Cond = + Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); + + llvm::MDNode *Weights = nullptr; + if (SwitchWeights) { + uint64_t ThisCount = getProfileCount(&S); + uint64_t DefaultCount = (*SwitchWeights)[0]; + Weights = createProfileWeights(ThisCount, DefaultCount); + + // Since we're chaining the switch default through each large case range, we + // need to update the weight for the default, ie, the first case, to include + // this case. + (*SwitchWeights)[0] += ThisCount; + } else if (SwitchLikelihood) + Cond = emitCondLikelihoodViaExpectIntrinsic(Cond, LH); + + Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); + + // Restore the appropriate insertion point. + if (RestoreBB) + Builder.SetInsertPoint(RestoreBB); + else + Builder.ClearInsertionPoint(); +} + +void CodeGenFunction::EmitCaseStmt(const CaseStmt &S, + ArrayRef<const Attr *> Attrs) { + // If there is no enclosing switch instance that we're aware of, then this + // case statement and its block can be elided. This situation only happens + // when we've constant-folded the switch, are emitting the constant case, + // and part of the constant case includes another case statement. For + // instance: switch (4) { case 4: do { case 5: } while (1); } + if (!SwitchInsn) { + EmitStmt(S.getSubStmt()); + return; + } + + // Handle case ranges. + if (S.getRHS()) { + EmitCaseStmtRange(S, Attrs); + return; + } + + llvm::ConstantInt *CaseVal = + Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); + if (SwitchLikelihood) + SwitchLikelihood->push_back(Stmt::getLikelihood(Attrs)); + + // If the body of the case is just a 'break', try to not emit an empty block. + // If we're profiling or we're not optimizing, leave the block in for better + // debug and coverage analysis. + if (!CGM.getCodeGenOpts().hasProfileClangInstr() && + CGM.getCodeGenOpts().OptimizationLevel > 0 && + isa<BreakStmt>(S.getSubStmt())) { + JumpDest Block = BreakContinueStack.back().BreakBlock; + + // Only do this optimization if there are no cleanups that need emitting. + if (isObviouslyBranchWithoutCleanups(Block)) { + if (SwitchWeights) + SwitchWeights->push_back(getProfileCount(&S)); + SwitchInsn->addCase(CaseVal, Block.getBlock()); + + // If there was a fallthrough into this case, make sure to redirect it to + // the end of the switch as well. + if (Builder.GetInsertBlock()) { + Builder.CreateBr(Block.getBlock()); + Builder.ClearInsertionPoint(); + } + return; + } + } + + llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); + EmitBlockWithFallThrough(CaseDest, &S); + if (SwitchWeights) + SwitchWeights->push_back(getProfileCount(&S)); + SwitchInsn->addCase(CaseVal, CaseDest); + + // Recursively emitting the statement is acceptable, but is not wonderful for + // code where we have many case statements nested together, i.e.: + // case 1: + // case 2: + // case 3: etc. + // Handling this recursively will create a new block for each case statement + // that falls through to the next case which is IR intensive. It also causes + // deep recursion which can run into stack depth limitations. Handle + // sequential non-range case statements specially. + // + // TODO When the next case has a likelihood attribute the code returns to the + // recursive algorithm. Maybe improve this case if it becomes common practice + // to use a lot of attributes. + const CaseStmt *CurCase = &S; + const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); + + // Otherwise, iteratively add consecutive cases to this switch stmt. + while (NextCase && NextCase->getRHS() == nullptr) { + CurCase = NextCase; + llvm::ConstantInt *CaseVal = + Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); + + if (SwitchWeights) + SwitchWeights->push_back(getProfileCount(NextCase)); + if (CGM.getCodeGenOpts().hasProfileClangInstr()) { + CaseDest = createBasicBlock("sw.bb"); + EmitBlockWithFallThrough(CaseDest, CurCase); + } + // Since this loop is only executed when the CaseStmt has no attributes + // use a hard-coded value. + if (SwitchLikelihood) + SwitchLikelihood->push_back(Stmt::LH_None); + + SwitchInsn->addCase(CaseVal, CaseDest); + NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); + } + + // Generate a stop point for debug info if the case statement is + // followed by a default statement. A fallthrough case before a + // default case gets its own branch target. + if (CurCase->getSubStmt()->getStmtClass() == Stmt::DefaultStmtClass) + EmitStopPoint(CurCase); + + // Normal default recursion for non-cases. + EmitStmt(CurCase->getSubStmt()); +} + +void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S, + ArrayRef<const Attr *> Attrs) { + // If there is no enclosing switch instance that we're aware of, then this + // default statement can be elided. This situation only happens when we've + // constant-folded the switch. + if (!SwitchInsn) { + EmitStmt(S.getSubStmt()); + return; + } + + llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); + assert(DefaultBlock->empty() && + "EmitDefaultStmt: Default block already defined?"); + + if (SwitchLikelihood) + SwitchLikelihood->front() = Stmt::getLikelihood(Attrs); + + EmitBlockWithFallThrough(DefaultBlock, &S); + + EmitStmt(S.getSubStmt()); +} + +/// CollectStatementsForCase - Given the body of a 'switch' statement and a +/// constant value that is being switched on, see if we can dead code eliminate +/// the body of the switch to a simple series of statements to emit. Basically, +/// on a switch (5) we want to find these statements: +/// case 5: +/// printf(...); <-- +/// ++i; <-- +/// break; +/// +/// and add them to the ResultStmts vector. If it is unsafe to do this +/// transformation (for example, one of the elided statements contains a label +/// that might be jumped to), return CSFC_Failure. If we handled it and 'S' +/// should include statements after it (e.g. the printf() line is a substmt of +/// the case) then return CSFC_FallThrough. If we handled it and found a break +/// statement, then return CSFC_Success. +/// +/// If Case is non-null, then we are looking for the specified case, checking +/// that nothing we jump over contains labels. If Case is null, then we found +/// the case and are looking for the break. +/// +/// If the recursive walk actually finds our Case, then we set FoundCase to +/// true. +/// +enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; +static CSFC_Result CollectStatementsForCase(const Stmt *S, + const SwitchCase *Case, + bool &FoundCase, + SmallVectorImpl<const Stmt*> &ResultStmts) { + // If this is a null statement, just succeed. + if (!S) + return Case ? CSFC_Success : CSFC_FallThrough; + + // If this is the switchcase (case 4: or default) that we're looking for, then + // we're in business. Just add the substatement. + if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { + if (S == Case) { + FoundCase = true; + return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, + ResultStmts); + } + + // Otherwise, this is some other case or default statement, just ignore it. + return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, + ResultStmts); + } + + // If we are in the live part of the code and we found our break statement, + // return a success! + if (!Case && isa<BreakStmt>(S)) + return CSFC_Success; + + // If this is a switch statement, then it might contain the SwitchCase, the + // break, or neither. + if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { + // Handle this as two cases: we might be looking for the SwitchCase (if so + // the skipped statements must be skippable) or we might already have it. + CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); + bool StartedInLiveCode = FoundCase; + unsigned StartSize = ResultStmts.size(); + + // If we've not found the case yet, scan through looking for it. + if (Case) { + // Keep track of whether we see a skipped declaration. The code could be + // using the declaration even if it is skipped, so we can't optimize out + // the decl if the kept statements might refer to it. + bool HadSkippedDecl = false; + + // If we're looking for the case, just see if we can skip each of the + // substatements. + for (; Case && I != E; ++I) { + HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); + + switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { + case CSFC_Failure: return CSFC_Failure; + case CSFC_Success: + // A successful result means that either 1) that the statement doesn't + // have the case and is skippable, or 2) does contain the case value + // and also contains the break to exit the switch. In the later case, + // we just verify the rest of the statements are elidable. + if (FoundCase) { + // If we found the case and skipped declarations, we can't do the + // optimization. + if (HadSkippedDecl) + return CSFC_Failure; + + for (++I; I != E; ++I) + if (CodeGenFunction::ContainsLabel(*I, true)) + return CSFC_Failure; + return CSFC_Success; + } + break; + case CSFC_FallThrough: + // If we have a fallthrough condition, then we must have found the + // case started to include statements. Consider the rest of the + // statements in the compound statement as candidates for inclusion. + assert(FoundCase && "Didn't find case but returned fallthrough?"); + // We recursively found Case, so we're not looking for it anymore. + Case = nullptr; + + // If we found the case and skipped declarations, we can't do the + // optimization. + if (HadSkippedDecl) + return CSFC_Failure; + break; + } + } + + if (!FoundCase) + return CSFC_Success; + + assert(!HadSkippedDecl && "fallthrough after skipping decl"); + } + + // If we have statements in our range, then we know that the statements are + // live and need to be added to the set of statements we're tracking. + bool AnyDecls = false; + for (; I != E; ++I) { + AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); + + switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { + case CSFC_Failure: return CSFC_Failure; + case CSFC_FallThrough: + // A fallthrough result means that the statement was simple and just + // included in ResultStmt, keep adding them afterwards. + break; + case CSFC_Success: + // A successful result means that we found the break statement and + // stopped statement inclusion. We just ensure that any leftover stmts + // are skippable and return success ourselves. + for (++I; I != E; ++I) + if (CodeGenFunction::ContainsLabel(*I, true)) + return CSFC_Failure; + return CSFC_Success; + } + } + + // If we're about to fall out of a scope without hitting a 'break;', we + // can't perform the optimization if there were any decls in that scope + // (we'd lose their end-of-lifetime). + if (AnyDecls) { + // If the entire compound statement was live, there's one more thing we + // can try before giving up: emit the whole thing as a single statement. + // We can do that unless the statement contains a 'break;'. + // FIXME: Such a break must be at the end of a construct within this one. + // We could emit this by just ignoring the BreakStmts entirely. + if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { + ResultStmts.resize(StartSize); + ResultStmts.push_back(S); + } else { + return CSFC_Failure; + } + } + + return CSFC_FallThrough; + } + + // Okay, this is some other statement that we don't handle explicitly, like a + // for statement or increment etc. If we are skipping over this statement, + // just verify it doesn't have labels, which would make it invalid to elide. + if (Case) { + if (CodeGenFunction::ContainsLabel(S, true)) + return CSFC_Failure; + return CSFC_Success; + } + + // Otherwise, we want to include this statement. Everything is cool with that + // so long as it doesn't contain a break out of the switch we're in. + if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; + + // Otherwise, everything is great. Include the statement and tell the caller + // that we fall through and include the next statement as well. + ResultStmts.push_back(S); + return CSFC_FallThrough; +} + +/// FindCaseStatementsForValue - Find the case statement being jumped to and +/// then invoke CollectStatementsForCase to find the list of statements to emit +/// for a switch on constant. See the comment above CollectStatementsForCase +/// for more details. +static bool FindCaseStatementsForValue(const SwitchStmt &S, + const llvm::APSInt &ConstantCondValue, + SmallVectorImpl<const Stmt*> &ResultStmts, + ASTContext &C, + const SwitchCase *&ResultCase) { + // First step, find the switch case that is being branched to. We can do this + // efficiently by scanning the SwitchCase list. + const SwitchCase *Case = S.getSwitchCaseList(); + const DefaultStmt *DefaultCase = nullptr; + + for (; Case; Case = Case->getNextSwitchCase()) { + // It's either a default or case. Just remember the default statement in + // case we're not jumping to any numbered cases. + if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { + DefaultCase = DS; + continue; + } + + // Check to see if this case is the one we're looking for. + const CaseStmt *CS = cast<CaseStmt>(Case); + // Don't handle case ranges yet. + if (CS->getRHS()) return false; + + // If we found our case, remember it as 'case'. + if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) + break; + } + + // If we didn't find a matching case, we use a default if it exists, or we + // elide the whole switch body! + if (!Case) { + // It is safe to elide the body of the switch if it doesn't contain labels + // etc. If it is safe, return successfully with an empty ResultStmts list. + if (!DefaultCase) + return !CodeGenFunction::ContainsLabel(&S); + Case = DefaultCase; + } + + // Ok, we know which case is being jumped to, try to collect all the + // statements that follow it. This can fail for a variety of reasons. Also, + // check to see that the recursive walk actually found our case statement. + // Insane cases like this can fail to find it in the recursive walk since we + // don't handle every stmt kind: + // switch (4) { + // while (1) { + // case 4: ... + bool FoundCase = false; + ResultCase = Case; + return CollectStatementsForCase(S.getBody(), Case, FoundCase, + ResultStmts) != CSFC_Failure && + FoundCase; +} + +static Optional<SmallVector<uint64_t, 16>> +getLikelihoodWeights(ArrayRef<Stmt::Likelihood> Likelihoods) { + // Are there enough branches to weight them? + if (Likelihoods.size() <= 1) + return None; + + uint64_t NumUnlikely = 0; + uint64_t NumNone = 0; + uint64_t NumLikely = 0; + for (const auto LH : Likelihoods) { + switch (LH) { + case Stmt::LH_Unlikely: + ++NumUnlikely; + break; + case Stmt::LH_None: + ++NumNone; + break; + case Stmt::LH_Likely: + ++NumLikely; + break; + } + } + + // Is there a likelihood attribute used? + if (NumUnlikely == 0 && NumLikely == 0) + return None; + + // When multiple cases share the same code they can be combined during + // optimization. In that case the weights of the branch will be the sum of + // the individual weights. Make sure the combined sum of all neutral cases + // doesn't exceed the value of a single likely attribute. + // The additions both avoid divisions by 0 and make sure the weights of None + // don't exceed the weight of Likely. + const uint64_t Likely = INT32_MAX / (NumLikely + 2); + const uint64_t None = Likely / (NumNone + 1); + const uint64_t Unlikely = 0; + + SmallVector<uint64_t, 16> Result; + Result.reserve(Likelihoods.size()); + for (const auto LH : Likelihoods) { + switch (LH) { + case Stmt::LH_Unlikely: + Result.push_back(Unlikely); + break; + case Stmt::LH_None: + Result.push_back(None); + break; + case Stmt::LH_Likely: + Result.push_back(Likely); + break; + } + } + + return Result; +} + +void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { + // Handle nested switch statements. + llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; + SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; + SmallVector<Stmt::Likelihood, 16> *SavedSwitchLikelihood = SwitchLikelihood; + llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; + + // See if we can constant fold the condition of the switch and therefore only + // emit the live case statement (if any) of the switch. + llvm::APSInt ConstantCondValue; + if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { + SmallVector<const Stmt*, 4> CaseStmts; + const SwitchCase *Case = nullptr; + if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, + getContext(), Case)) { + if (Case) + incrementProfileCounter(Case); + RunCleanupsScope ExecutedScope(*this); + + if (S.getInit()) + EmitStmt(S.getInit()); + + // Emit the condition variable if needed inside the entire cleanup scope + // used by this special case for constant folded switches. + if (S.getConditionVariable()) + EmitDecl(*S.getConditionVariable()); + + // At this point, we are no longer "within" a switch instance, so + // we can temporarily enforce this to ensure that any embedded case + // statements are not emitted. + SwitchInsn = nullptr; + + // Okay, we can dead code eliminate everything except this case. Emit the + // specified series of statements and we're good. + for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) + EmitStmt(CaseStmts[i]); + incrementProfileCounter(&S); + + // Now we want to restore the saved switch instance so that nested + // switches continue to function properly + SwitchInsn = SavedSwitchInsn; + + return; + } + } + + JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); + + RunCleanupsScope ConditionScope(*this); + + if (S.getInit()) + EmitStmt(S.getInit()); + + if (S.getConditionVariable()) + EmitDecl(*S.getConditionVariable()); + llvm::Value *CondV = EmitScalarExpr(S.getCond()); + + // Create basic block to hold stuff that comes after switch + // statement. We also need to create a default block now so that + // explicit case ranges tests can have a place to jump to on + // failure. + llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); + SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); + if (PGO.haveRegionCounts()) { + // Walk the SwitchCase list to find how many there are. + uint64_t DefaultCount = 0; + unsigned NumCases = 0; + for (const SwitchCase *Case = S.getSwitchCaseList(); + Case; + Case = Case->getNextSwitchCase()) { + if (isa<DefaultStmt>(Case)) + DefaultCount = getProfileCount(Case); + NumCases += 1; + } + SwitchWeights = new SmallVector<uint64_t, 16>(); + SwitchWeights->reserve(NumCases); + // The default needs to be first. We store the edge count, so we already + // know the right weight. + SwitchWeights->push_back(DefaultCount); + } else if (CGM.getCodeGenOpts().OptimizationLevel) { + SwitchLikelihood = new SmallVector<Stmt::Likelihood, 16>(); + // Initialize the default case. + SwitchLikelihood->push_back(Stmt::LH_None); + } + + CaseRangeBlock = DefaultBlock; + + // Clear the insertion point to indicate we are in unreachable code. + Builder.ClearInsertionPoint(); + + // All break statements jump to NextBlock. If BreakContinueStack is non-empty + // then reuse last ContinueBlock. + JumpDest OuterContinue; + if (!BreakContinueStack.empty()) + OuterContinue = BreakContinueStack.back().ContinueBlock; + + BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); + + // Emit switch body. + EmitStmt(S.getBody()); + + BreakContinueStack.pop_back(); + + // Update the default block in case explicit case range tests have + // been chained on top. + SwitchInsn->setDefaultDest(CaseRangeBlock); + + // If a default was never emitted: + if (!DefaultBlock->getParent()) { + // If we have cleanups, emit the default block so that there's a + // place to jump through the cleanups from. + if (ConditionScope.requiresCleanups()) { + EmitBlock(DefaultBlock); + + // Otherwise, just forward the default block to the switch end. + } else { + DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); + delete DefaultBlock; + } + } + + ConditionScope.ForceCleanup(); + + // Emit continuation. + EmitBlock(SwitchExit.getBlock(), true); + incrementProfileCounter(&S); + + // If the switch has a condition wrapped by __builtin_unpredictable, + // create metadata that specifies that the switch is unpredictable. + // Don't bother if not optimizing because that metadata would not be used. + auto *Call = dyn_cast<CallExpr>(S.getCond()); + if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { + auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); + if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { + llvm::MDBuilder MDHelper(getLLVMContext()); + SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, + MDHelper.createUnpredictable()); + } + } + + if (SwitchWeights) { + assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && + "switch weights do not match switch cases"); + // If there's only one jump destination there's no sense weighting it. + if (SwitchWeights->size() > 1) + SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, + createProfileWeights(*SwitchWeights)); + delete SwitchWeights; + } else if (SwitchLikelihood) { + assert(SwitchLikelihood->size() == 1 + SwitchInsn->getNumCases() && + "switch likelihoods do not match switch cases"); + Optional<SmallVector<uint64_t, 16>> LHW = + getLikelihoodWeights(*SwitchLikelihood); + if (LHW) { + llvm::MDBuilder MDHelper(CGM.getLLVMContext()); + SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, + createProfileWeights(*LHW)); + } + delete SwitchLikelihood; + } + SwitchInsn = SavedSwitchInsn; + SwitchWeights = SavedSwitchWeights; + SwitchLikelihood = SavedSwitchLikelihood; + CaseRangeBlock = SavedCRBlock; +} + +static std::string +SimplifyConstraint(const char *Constraint, const TargetInfo &Target, + SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { + std::string Result; + + while (*Constraint) { + switch (*Constraint) { + default: + Result += Target.convertConstraint(Constraint); + break; + // Ignore these + case '*': + case '?': + case '!': + case '=': // Will see this and the following in mult-alt constraints. + case '+': + break; + case '#': // Ignore the rest of the constraint alternative. + while (Constraint[1] && Constraint[1] != ',') + Constraint++; + break; + case '&': + case '%': + Result += *Constraint; + while (Constraint[1] && Constraint[1] == *Constraint) + Constraint++; + break; + case ',': + Result += "|"; + break; + case 'g': + Result += "imr"; + break; + case '[': { + assert(OutCons && + "Must pass output names to constraints with a symbolic name"); + unsigned Index; + bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); + assert(result && "Could not resolve symbolic name"); (void)result; + Result += llvm::utostr(Index); + break; + } + } + + Constraint++; + } + + return Result; +} + +/// AddVariableConstraints - Look at AsmExpr and if it is a variable declared +/// as using a particular register add that as a constraint that will be used +/// in this asm stmt. +static std::string +AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, + const TargetInfo &Target, CodeGenModule &CGM, + const AsmStmt &Stmt, const bool EarlyClobber, + std::string *GCCReg = nullptr) { + const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); + if (!AsmDeclRef) + return Constraint; + const ValueDecl &Value = *AsmDeclRef->getDecl(); + const VarDecl *Variable = dyn_cast<VarDecl>(&Value); + if (!Variable) + return Constraint; + if (Variable->getStorageClass() != SC_Register) + return Constraint; + AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); + if (!Attr) + return Constraint; + StringRef Register = Attr->getLabel(); + assert(Target.isValidGCCRegisterName(Register)); + // We're using validateOutputConstraint here because we only care if + // this is a register constraint. + TargetInfo::ConstraintInfo Info(Constraint, ""); + if (Target.validateOutputConstraint(Info) && + !Info.allowsRegister()) { + CGM.ErrorUnsupported(&Stmt, "__asm__"); + return Constraint; + } + // Canonicalize the register here before returning it. + Register = Target.getNormalizedGCCRegisterName(Register); + if (GCCReg != nullptr) + *GCCReg = Register.str(); + return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; +} + +std::pair<llvm::Value*, llvm::Type *> CodeGenFunction::EmitAsmInputLValue( + const TargetInfo::ConstraintInfo &Info, LValue InputValue, + QualType InputType, std::string &ConstraintStr, SourceLocation Loc) { + if (Info.allowsRegister() || !Info.allowsMemory()) { + if (CodeGenFunction::hasScalarEvaluationKind(InputType)) + return {EmitLoadOfLValue(InputValue, Loc).getScalarVal(), nullptr}; + + llvm::Type *Ty = ConvertType(InputType); + uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); + if ((Size <= 64 && llvm::isPowerOf2_64(Size)) || + getTargetHooks().isScalarizableAsmOperand(*this, Ty)) { + Ty = llvm::IntegerType::get(getLLVMContext(), Size); + Ty = llvm::PointerType::getUnqual(Ty); + + return {Builder.CreateLoad( + Builder.CreateBitCast(InputValue.getAddress(*this), Ty)), + nullptr}; + } + } + + Address Addr = InputValue.getAddress(*this); + ConstraintStr += '*'; + return {Addr.getPointer(), Addr.getElementType()}; +} + +std::pair<llvm::Value *, llvm::Type *> +CodeGenFunction::EmitAsmInput(const TargetInfo::ConstraintInfo &Info, + const Expr *InputExpr, + std::string &ConstraintStr) { + // If this can't be a register or memory, i.e., has to be a constant + // (immediate or symbolic), try to emit it as such. + if (!Info.allowsRegister() && !Info.allowsMemory()) { + if (Info.requiresImmediateConstant()) { + Expr::EvalResult EVResult; + InputExpr->EvaluateAsRValue(EVResult, getContext(), true); + + llvm::APSInt IntResult; + if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), + getContext())) + return {llvm::ConstantInt::get(getLLVMContext(), IntResult), nullptr}; + } + + Expr::EvalResult Result; + if (InputExpr->EvaluateAsInt(Result, getContext())) + return {llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()), + nullptr}; + } + + if (Info.allowsRegister() || !Info.allowsMemory()) + if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) + return {EmitScalarExpr(InputExpr), nullptr}; + if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) + return {EmitScalarExpr(InputExpr), nullptr}; + InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); + LValue Dest = EmitLValue(InputExpr); + return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, + InputExpr->getExprLoc()); +} + +/// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline +/// asm call instruction. The !srcloc MDNode contains a list of constant +/// integers which are the source locations of the start of each line in the +/// asm. +static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, + CodeGenFunction &CGF) { + SmallVector<llvm::Metadata *, 8> Locs; + // Add the location of the first line to the MDNode. + Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( + CGF.Int64Ty, Str->getBeginLoc().getRawEncoding()))); + StringRef StrVal = Str->getString(); + if (!StrVal.empty()) { + const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); + const LangOptions &LangOpts = CGF.CGM.getLangOpts(); + unsigned StartToken = 0; + unsigned ByteOffset = 0; + + // Add the location of the start of each subsequent line of the asm to the + // MDNode. + for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { + if (StrVal[i] != '\n') continue; + SourceLocation LineLoc = Str->getLocationOfByte( + i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); + Locs.push_back(llvm::ConstantAsMetadata::get( + llvm::ConstantInt::get(CGF.Int64Ty, LineLoc.getRawEncoding()))); + } + } + + return llvm::MDNode::get(CGF.getLLVMContext(), Locs); +} + +static void UpdateAsmCallInst(llvm::CallBase &Result, bool HasSideEffect, + bool HasUnwindClobber, bool ReadOnly, + bool ReadNone, bool NoMerge, const AsmStmt &S, + const std::vector<llvm::Type *> &ResultRegTypes, + const std::vector<llvm::Type *> &ArgElemTypes, + CodeGenFunction &CGF, + std::vector<llvm::Value *> &RegResults) { + if (!HasUnwindClobber) + Result.addFnAttr(llvm::Attribute::NoUnwind); + + if (NoMerge) + Result.addFnAttr(llvm::Attribute::NoMerge); + // Attach readnone and readonly attributes. + if (!HasSideEffect) { + if (ReadNone) + Result.addFnAttr(llvm::Attribute::ReadNone); + else if (ReadOnly) + Result.addFnAttr(llvm::Attribute::ReadOnly); + } + + // Add elementtype attribute for indirect constraints. + for (auto Pair : llvm::enumerate(ArgElemTypes)) { + if (Pair.value()) { + auto Attr = llvm::Attribute::get( + CGF.getLLVMContext(), llvm::Attribute::ElementType, Pair.value()); + Result.addParamAttr(Pair.index(), Attr); + } + } + + // Slap the source location of the inline asm into a !srcloc metadata on the + // call. + if (const auto *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) + Result.setMetadata("srcloc", + getAsmSrcLocInfo(gccAsmStmt->getAsmString(), CGF)); + else { + // At least put the line number on MS inline asm blobs. + llvm::Constant *Loc = + llvm::ConstantInt::get(CGF.Int64Ty, S.getAsmLoc().getRawEncoding()); + Result.setMetadata("srcloc", + llvm::MDNode::get(CGF.getLLVMContext(), + llvm::ConstantAsMetadata::get(Loc))); + } + + if (CGF.getLangOpts().assumeFunctionsAreConvergent()) + // Conservatively, mark all inline asm blocks in CUDA or OpenCL as + // convergent (meaning, they may call an intrinsically convergent op, such + // as bar.sync, and so can't have certain optimizations applied around + // them). + Result.addFnAttr(llvm::Attribute::Convergent); + // Extract all of the register value results from the asm. + if (ResultRegTypes.size() == 1) { + RegResults.push_back(&Result); + } else { + for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { + llvm::Value *Tmp = CGF.Builder.CreateExtractValue(&Result, i, "asmresult"); + RegResults.push_back(Tmp); + } + } +} + +void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { + // Assemble the final asm string. + std::string AsmString = S.generateAsmString(getContext()); + + // Get all the output and input constraints together. + SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; + SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; + + for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { + StringRef Name; + if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) + Name = GAS->getOutputName(i); + TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); + bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; + assert(IsValid && "Failed to parse output constraint"); + OutputConstraintInfos.push_back(Info); + } + + for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { + StringRef Name; + if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) + Name = GAS->getInputName(i); + TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); + bool IsValid = + getTarget().validateInputConstraint(OutputConstraintInfos, Info); + assert(IsValid && "Failed to parse input constraint"); (void)IsValid; + InputConstraintInfos.push_back(Info); + } + + std::string Constraints; + + std::vector<LValue> ResultRegDests; + std::vector<QualType> ResultRegQualTys; + std::vector<llvm::Type *> ResultRegTypes; + std::vector<llvm::Type *> ResultTruncRegTypes; + std::vector<llvm::Type *> ArgTypes; + std::vector<llvm::Type *> ArgElemTypes; + std::vector<llvm::Value*> Args; + llvm::BitVector ResultTypeRequiresCast; + + // Keep track of inout constraints. + std::string InOutConstraints; + std::vector<llvm::Value*> InOutArgs; + std::vector<llvm::Type*> InOutArgTypes; + std::vector<llvm::Type*> InOutArgElemTypes; + + // Keep track of out constraints for tied input operand. + std::vector<std::string> OutputConstraints; + + // Keep track of defined physregs. + llvm::SmallSet<std::string, 8> PhysRegOutputs; + + // An inline asm can be marked readonly if it meets the following conditions: + // - it doesn't have any sideeffects + // - it doesn't clobber memory + // - it doesn't return a value by-reference + // It can be marked readnone if it doesn't have any input memory constraints + // in addition to meeting the conditions listed above. + bool ReadOnly = true, ReadNone = true; + + for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { + TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; + + // Simplify the output constraint. + std::string OutputConstraint(S.getOutputConstraint(i)); + OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, + getTarget(), &OutputConstraintInfos); + + const Expr *OutExpr = S.getOutputExpr(i); + OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); + + std::string GCCReg; + OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, + getTarget(), CGM, S, + Info.earlyClobber(), + &GCCReg); + // Give an error on multiple outputs to same physreg. + if (!GCCReg.empty() && !PhysRegOutputs.insert(GCCReg).second) + CGM.Error(S.getAsmLoc(), "multiple outputs to hard register: " + GCCReg); + + OutputConstraints.push_back(OutputConstraint); + LValue Dest = EmitLValue(OutExpr); + if (!Constraints.empty()) + Constraints += ','; + + // If this is a register output, then make the inline asm return it + // by-value. If this is a memory result, return the value by-reference. + QualType QTy = OutExpr->getType(); + const bool IsScalarOrAggregate = hasScalarEvaluationKind(QTy) || + hasAggregateEvaluationKind(QTy); + if (!Info.allowsMemory() && IsScalarOrAggregate) { + + Constraints += "=" + OutputConstraint; + ResultRegQualTys.push_back(QTy); + ResultRegDests.push_back(Dest); + + llvm::Type *Ty = ConvertTypeForMem(QTy); + const bool RequiresCast = Info.allowsRegister() && + (getTargetHooks().isScalarizableAsmOperand(*this, Ty) || + Ty->isAggregateType()); + + ResultTruncRegTypes.push_back(Ty); + ResultTypeRequiresCast.push_back(RequiresCast); + + if (RequiresCast) { + unsigned Size = getContext().getTypeSize(QTy); + Ty = llvm::IntegerType::get(getLLVMContext(), Size); + } + ResultRegTypes.push_back(Ty); + // If this output is tied to an input, and if the input is larger, then + // we need to set the actual result type of the inline asm node to be the + // same as the input type. + if (Info.hasMatchingInput()) { + unsigned InputNo; + for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { + TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; + if (Input.hasTiedOperand() && Input.getTiedOperand() == i) + break; + } + assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); + + QualType InputTy = S.getInputExpr(InputNo)->getType(); + QualType OutputType = OutExpr->getType(); + + uint64_t InputSize = getContext().getTypeSize(InputTy); + if (getContext().getTypeSize(OutputType) < InputSize) { + // Form the asm to return the value as a larger integer or fp type. + ResultRegTypes.back() = ConvertType(InputTy); + } + } + if (llvm::Type* AdjTy = + getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, + ResultRegTypes.back())) + ResultRegTypes.back() = AdjTy; + else { + CGM.getDiags().Report(S.getAsmLoc(), + diag::err_asm_invalid_type_in_input) + << OutExpr->getType() << OutputConstraint; + } + + // Update largest vector width for any vector types. + if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) + LargestVectorWidth = + std::max((uint64_t)LargestVectorWidth, + VT->getPrimitiveSizeInBits().getKnownMinSize()); + } else { + Address DestAddr = Dest.getAddress(*this); + // Matrix types in memory are represented by arrays, but accessed through + // vector pointers, with the alignment specified on the access operation. + // For inline assembly, update pointer arguments to use vector pointers. + // Otherwise there will be a mis-match if the matrix is also an + // input-argument which is represented as vector. + if (isa<MatrixType>(OutExpr->getType().getCanonicalType())) + DestAddr = Builder.CreateElementBitCast( + DestAddr, ConvertType(OutExpr->getType())); + + ArgTypes.push_back(DestAddr.getType()); + ArgElemTypes.push_back(DestAddr.getElementType()); + Args.push_back(DestAddr.getPointer()); + Constraints += "=*"; + Constraints += OutputConstraint; + ReadOnly = ReadNone = false; + } + + if (Info.isReadWrite()) { + InOutConstraints += ','; + + const Expr *InputExpr = S.getOutputExpr(i); + llvm::Value *Arg; + llvm::Type *ArgElemType; + std::tie(Arg, ArgElemType) = EmitAsmInputLValue( + Info, Dest, InputExpr->getType(), InOutConstraints, + InputExpr->getExprLoc()); + + if (llvm::Type* AdjTy = + getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, + Arg->getType())) + Arg = Builder.CreateBitCast(Arg, AdjTy); + + // Update largest vector width for any vector types. + if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) + LargestVectorWidth = + std::max((uint64_t)LargestVectorWidth, + VT->getPrimitiveSizeInBits().getKnownMinSize()); + // Only tie earlyclobber physregs. + if (Info.allowsRegister() && (GCCReg.empty() || Info.earlyClobber())) + InOutConstraints += llvm::utostr(i); + else + InOutConstraints += OutputConstraint; + + InOutArgTypes.push_back(Arg->getType()); + InOutArgElemTypes.push_back(ArgElemType); + InOutArgs.push_back(Arg); + } + } + + // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) + // to the return value slot. Only do this when returning in registers. + if (isa<MSAsmStmt>(&S)) { + const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); + if (RetAI.isDirect() || RetAI.isExtend()) { + // Make a fake lvalue for the return value slot. + LValue ReturnSlot = MakeAddrLValueWithoutTBAA(ReturnValue, FnRetTy); + CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( + *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, + ResultRegDests, AsmString, S.getNumOutputs()); + SawAsmBlock = true; + } + } + + for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { + const Expr *InputExpr = S.getInputExpr(i); + + TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; + + if (Info.allowsMemory()) + ReadNone = false; + + if (!Constraints.empty()) + Constraints += ','; + + // Simplify the input constraint. + std::string InputConstraint(S.getInputConstraint(i)); + InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), + &OutputConstraintInfos); + + InputConstraint = AddVariableConstraints( + InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), + getTarget(), CGM, S, false /* No EarlyClobber */); + + std::string ReplaceConstraint (InputConstraint); + llvm::Value *Arg; + llvm::Type *ArgElemType; + std::tie(Arg, ArgElemType) = EmitAsmInput(Info, InputExpr, Constraints); + + // If this input argument is tied to a larger output result, extend the + // input to be the same size as the output. The LLVM backend wants to see + // the input and output of a matching constraint be the same size. Note + // that GCC does not define what the top bits are here. We use zext because + // that is usually cheaper, but LLVM IR should really get an anyext someday. + if (Info.hasTiedOperand()) { + unsigned Output = Info.getTiedOperand(); + QualType OutputType = S.getOutputExpr(Output)->getType(); + QualType InputTy = InputExpr->getType(); + + if (getContext().getTypeSize(OutputType) > + getContext().getTypeSize(InputTy)) { + // Use ptrtoint as appropriate so that we can do our extension. + if (isa<llvm::PointerType>(Arg->getType())) + Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); + llvm::Type *OutputTy = ConvertType(OutputType); + if (isa<llvm::IntegerType>(OutputTy)) + Arg = Builder.CreateZExt(Arg, OutputTy); + else if (isa<llvm::PointerType>(OutputTy)) + Arg = Builder.CreateZExt(Arg, IntPtrTy); + else { + assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); + Arg = Builder.CreateFPExt(Arg, OutputTy); + } + } + // Deal with the tied operands' constraint code in adjustInlineAsmType. + ReplaceConstraint = OutputConstraints[Output]; + } + if (llvm::Type* AdjTy = + getTargetHooks().adjustInlineAsmType(*this, ReplaceConstraint, + Arg->getType())) + Arg = Builder.CreateBitCast(Arg, AdjTy); + else + CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) + << InputExpr->getType() << InputConstraint; + + // Update largest vector width for any vector types. + if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) + LargestVectorWidth = + std::max((uint64_t)LargestVectorWidth, + VT->getPrimitiveSizeInBits().getKnownMinSize()); + + ArgTypes.push_back(Arg->getType()); + ArgElemTypes.push_back(ArgElemType); + Args.push_back(Arg); + Constraints += InputConstraint; + } + + // Append the "input" part of inout constraints. + for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { + ArgTypes.push_back(InOutArgTypes[i]); + ArgElemTypes.push_back(InOutArgElemTypes[i]); + Args.push_back(InOutArgs[i]); + } + Constraints += InOutConstraints; + + // Labels + SmallVector<llvm::BasicBlock *, 16> Transfer; + llvm::BasicBlock *Fallthrough = nullptr; + bool IsGCCAsmGoto = false; + if (const auto *GS = dyn_cast<GCCAsmStmt>(&S)) { + IsGCCAsmGoto = GS->isAsmGoto(); + if (IsGCCAsmGoto) { + for (const auto *E : GS->labels()) { + JumpDest Dest = getJumpDestForLabel(E->getLabel()); + Transfer.push_back(Dest.getBlock()); + llvm::BlockAddress *BA = + llvm::BlockAddress::get(CurFn, Dest.getBlock()); + Args.push_back(BA); + ArgTypes.push_back(BA->getType()); + ArgElemTypes.push_back(nullptr); + if (!Constraints.empty()) + Constraints += ','; + Constraints += 'i'; + } + Fallthrough = createBasicBlock("asm.fallthrough"); + } + } + + bool HasUnwindClobber = false; + + // Clobbers + for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { + StringRef Clobber = S.getClobber(i); + + if (Clobber == "memory") + ReadOnly = ReadNone = false; + else if (Clobber == "unwind") { + HasUnwindClobber = true; + continue; + } else if (Clobber != "cc") { + Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); + if (CGM.getCodeGenOpts().StackClashProtector && + getTarget().isSPRegName(Clobber)) { + CGM.getDiags().Report(S.getAsmLoc(), + diag::warn_stack_clash_protection_inline_asm); + } + } + + if (isa<MSAsmStmt>(&S)) { + if (Clobber == "eax" || Clobber == "edx") { + if (Constraints.find("=&A") != std::string::npos) + continue; + std::string::size_type position1 = + Constraints.find("={" + Clobber.str() + "}"); + if (position1 != std::string::npos) { + Constraints.insert(position1 + 1, "&"); + continue; + } + std::string::size_type position2 = Constraints.find("=A"); + if (position2 != std::string::npos) { + Constraints.insert(position2 + 1, "&"); + continue; + } + } + } + if (!Constraints.empty()) + Constraints += ','; + + Constraints += "~{"; + Constraints += Clobber; + Constraints += '}'; + } + + assert(!(HasUnwindClobber && IsGCCAsmGoto) && + "unwind clobber can't be used with asm goto"); + + // Add machine specific clobbers + std::string MachineClobbers = getTarget().getClobbers(); + if (!MachineClobbers.empty()) { + if (!Constraints.empty()) + Constraints += ','; + Constraints += MachineClobbers; + } + + llvm::Type *ResultType; + if (ResultRegTypes.empty()) + ResultType = VoidTy; + else if (ResultRegTypes.size() == 1) + ResultType = ResultRegTypes[0]; + else + ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); + + llvm::FunctionType *FTy = + llvm::FunctionType::get(ResultType, ArgTypes, false); + + bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; + + llvm::InlineAsm::AsmDialect GnuAsmDialect = + CGM.getCodeGenOpts().getInlineAsmDialect() == CodeGenOptions::IAD_ATT + ? llvm::InlineAsm::AD_ATT + : llvm::InlineAsm::AD_Intel; + llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? + llvm::InlineAsm::AD_Intel : GnuAsmDialect; + + llvm::InlineAsm *IA = llvm::InlineAsm::get( + FTy, AsmString, Constraints, HasSideEffect, + /* IsAlignStack */ false, AsmDialect, HasUnwindClobber); + std::vector<llvm::Value*> RegResults; + if (IsGCCAsmGoto) { + llvm::CallBrInst *Result = + Builder.CreateCallBr(IA, Fallthrough, Transfer, Args); + EmitBlock(Fallthrough); + UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, + ReadOnly, ReadNone, InNoMergeAttributedStmt, S, + ResultRegTypes, ArgElemTypes, *this, RegResults); + } else if (HasUnwindClobber) { + llvm::CallBase *Result = EmitCallOrInvoke(IA, Args, ""); + UpdateAsmCallInst(*Result, HasSideEffect, true, ReadOnly, ReadNone, + InNoMergeAttributedStmt, S, ResultRegTypes, ArgElemTypes, + *this, RegResults); + } else { + llvm::CallInst *Result = + Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); + UpdateAsmCallInst(cast<llvm::CallBase>(*Result), HasSideEffect, false, + ReadOnly, ReadNone, InNoMergeAttributedStmt, S, + ResultRegTypes, ArgElemTypes, *this, RegResults); + } + + assert(RegResults.size() == ResultRegTypes.size()); + assert(RegResults.size() == ResultTruncRegTypes.size()); + assert(RegResults.size() == ResultRegDests.size()); + // ResultRegDests can be also populated by addReturnRegisterOutputs() above, + // in which case its size may grow. + assert(ResultTypeRequiresCast.size() <= ResultRegDests.size()); + for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { + llvm::Value *Tmp = RegResults[i]; + llvm::Type *TruncTy = ResultTruncRegTypes[i]; + + // If the result type of the LLVM IR asm doesn't match the result type of + // the expression, do the conversion. + if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { + + // Truncate the integer result to the right size, note that TruncTy can be + // a pointer. + if (TruncTy->isFloatingPointTy()) + Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); + else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { + uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); + Tmp = Builder.CreateTrunc(Tmp, + llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); + Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); + } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { + uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); + Tmp = Builder.CreatePtrToInt(Tmp, + llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); + Tmp = Builder.CreateTrunc(Tmp, TruncTy); + } else if (TruncTy->isIntegerTy()) { + Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); + } else if (TruncTy->isVectorTy()) { + Tmp = Builder.CreateBitCast(Tmp, TruncTy); + } + } + + LValue Dest = ResultRegDests[i]; + // ResultTypeRequiresCast elements correspond to the first + // ResultTypeRequiresCast.size() elements of RegResults. + if ((i < ResultTypeRequiresCast.size()) && ResultTypeRequiresCast[i]) { + unsigned Size = getContext().getTypeSize(ResultRegQualTys[i]); + Address A = Builder.CreateBitCast(Dest.getAddress(*this), + ResultRegTypes[i]->getPointerTo()); + if (getTargetHooks().isScalarizableAsmOperand(*this, TruncTy)) { + Builder.CreateStore(Tmp, A); + continue; + } + + QualType Ty = getContext().getIntTypeForBitwidth(Size, /*Signed*/ false); + if (Ty.isNull()) { + const Expr *OutExpr = S.getOutputExpr(i); + CGM.Error( + OutExpr->getExprLoc(), + "impossible constraint in asm: can't store value into a register"); + return; + } + Dest = MakeAddrLValue(A, Ty); + } + EmitStoreThroughLValue(RValue::get(Tmp), Dest); + } +} + +LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { + const RecordDecl *RD = S.getCapturedRecordDecl(); + QualType RecordTy = getContext().getRecordType(RD); + + // Initialize the captured struct. + LValue SlotLV = + MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); + + RecordDecl::field_iterator CurField = RD->field_begin(); + for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), + E = S.capture_init_end(); + I != E; ++I, ++CurField) { + LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); + if (CurField->hasCapturedVLAType()) { + EmitLambdaVLACapture(CurField->getCapturedVLAType(), LV); + } else { + EmitInitializerForField(*CurField, LV, *I); + } + } + + return SlotLV; +} + +/// Generate an outlined function for the body of a CapturedStmt, store any +/// captured variables into the captured struct, and call the outlined function. +llvm::Function * +CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { + LValue CapStruct = InitCapturedStruct(S); + + // Emit the CapturedDecl + CodeGenFunction CGF(CGM, true); + CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); + llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); + delete CGF.CapturedStmtInfo; + + // Emit call to the helper function. + EmitCallOrInvoke(F, CapStruct.getPointer(*this)); + + return F; +} + +Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { + LValue CapStruct = InitCapturedStruct(S); + return CapStruct.getAddress(*this); +} + +/// Creates the outlined function for a CapturedStmt. +llvm::Function * +CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { + assert(CapturedStmtInfo && + "CapturedStmtInfo should be set when generating the captured function"); + const CapturedDecl *CD = S.getCapturedDecl(); + const RecordDecl *RD = S.getCapturedRecordDecl(); + SourceLocation Loc = S.getBeginLoc(); + assert(CD->hasBody() && "missing CapturedDecl body"); + + // Build the argument list. + ASTContext &Ctx = CGM.getContext(); + FunctionArgList Args; + Args.append(CD->param_begin(), CD->param_end()); + + // Create the function declaration. + const CGFunctionInfo &FuncInfo = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); + llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); + + llvm::Function *F = + llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, + CapturedStmtInfo->getHelperName(), &CGM.getModule()); + CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); + if (CD->isNothrow()) + F->addFnAttr(llvm::Attribute::NoUnwind); + + // Generate the function. + StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), + CD->getBody()->getBeginLoc()); + // Set the context parameter in CapturedStmtInfo. + Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); + CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); + + // Initialize variable-length arrays. + LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), + Ctx.getTagDeclType(RD)); + for (auto *FD : RD->fields()) { + if (FD->hasCapturedVLAType()) { + auto *ExprArg = + EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) + .getScalarVal(); + auto VAT = FD->getCapturedVLAType(); + VLASizeMap[VAT->getSizeExpr()] = ExprArg; + } + } + + // If 'this' is captured, load it into CXXThisValue. + if (CapturedStmtInfo->isCXXThisExprCaptured()) { + FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); + LValue ThisLValue = EmitLValueForField(Base, FD); + CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); + } + + PGO.assignRegionCounters(GlobalDecl(CD), F); + CapturedStmtInfo->EmitBody(*this, CD->getBody()); + FinishFunction(CD->getBodyRBrace()); + + return F; +} |