aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14/lib/CodeGen/CGOpenMPRuntimeGPU.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/clang14/lib/CodeGen/CGOpenMPRuntimeGPU.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/clang14/lib/CodeGen/CGOpenMPRuntimeGPU.cpp')
-rw-r--r--contrib/libs/clang14/lib/CodeGen/CGOpenMPRuntimeGPU.cpp3989
1 files changed, 3989 insertions, 0 deletions
diff --git a/contrib/libs/clang14/lib/CodeGen/CGOpenMPRuntimeGPU.cpp b/contrib/libs/clang14/lib/CodeGen/CGOpenMPRuntimeGPU.cpp
new file mode 100644
index 0000000000..2d55113368
--- /dev/null
+++ b/contrib/libs/clang14/lib/CodeGen/CGOpenMPRuntimeGPU.cpp
@@ -0,0 +1,3989 @@
+//===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides a generalized class for OpenMP runtime code generation
+// specialized by GPU targets NVPTX and AMDGCN.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGOpenMPRuntimeGPU.h"
+#include "CodeGenFunction.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclOpenMP.h"
+#include "clang/AST/StmtOpenMP.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/Cuda.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Frontend/OpenMP/OMPGridValues.h"
+#include "llvm/Support/MathExtras.h"
+
+using namespace clang;
+using namespace CodeGen;
+using namespace llvm::omp;
+
+namespace {
+/// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
+class NVPTXActionTy final : public PrePostActionTy {
+ llvm::FunctionCallee EnterCallee = nullptr;
+ ArrayRef<llvm::Value *> EnterArgs;
+ llvm::FunctionCallee ExitCallee = nullptr;
+ ArrayRef<llvm::Value *> ExitArgs;
+ bool Conditional = false;
+ llvm::BasicBlock *ContBlock = nullptr;
+
+public:
+ NVPTXActionTy(llvm::FunctionCallee EnterCallee,
+ ArrayRef<llvm::Value *> EnterArgs,
+ llvm::FunctionCallee ExitCallee,
+ ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
+ : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
+ ExitArgs(ExitArgs), Conditional(Conditional) {}
+ void Enter(CodeGenFunction &CGF) override {
+ llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
+ if (Conditional) {
+ llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
+ auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
+ ContBlock = CGF.createBasicBlock("omp_if.end");
+ // Generate the branch (If-stmt)
+ CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
+ CGF.EmitBlock(ThenBlock);
+ }
+ }
+ void Done(CodeGenFunction &CGF) {
+ // Emit the rest of blocks/branches
+ CGF.EmitBranch(ContBlock);
+ CGF.EmitBlock(ContBlock, true);
+ }
+ void Exit(CodeGenFunction &CGF) override {
+ CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
+ }
+};
+
+/// A class to track the execution mode when codegening directives within
+/// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
+/// to the target region and used by containing directives such as 'parallel'
+/// to emit optimized code.
+class ExecutionRuntimeModesRAII {
+private:
+ CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
+ CGOpenMPRuntimeGPU::EM_Unknown;
+ CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
+ bool SavedRuntimeMode = false;
+ bool *RuntimeMode = nullptr;
+
+public:
+ /// Constructor for Non-SPMD mode.
+ ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode)
+ : ExecMode(ExecMode) {
+ SavedExecMode = ExecMode;
+ ExecMode = CGOpenMPRuntimeGPU::EM_NonSPMD;
+ }
+ /// Constructor for SPMD mode.
+ ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
+ bool &RuntimeMode, bool FullRuntimeMode)
+ : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
+ SavedExecMode = ExecMode;
+ SavedRuntimeMode = RuntimeMode;
+ ExecMode = CGOpenMPRuntimeGPU::EM_SPMD;
+ RuntimeMode = FullRuntimeMode;
+ }
+ ~ExecutionRuntimeModesRAII() {
+ ExecMode = SavedExecMode;
+ if (RuntimeMode)
+ *RuntimeMode = SavedRuntimeMode;
+ }
+};
+
+/// GPU Configuration: This information can be derived from cuda registers,
+/// however, providing compile time constants helps generate more efficient
+/// code. For all practical purposes this is fine because the configuration
+/// is the same for all known NVPTX architectures.
+enum MachineConfiguration : unsigned {
+ /// See "llvm/Frontend/OpenMP/OMPGridValues.h" for various related target
+ /// specific Grid Values like GV_Warp_Size, GV_Slot_Size
+
+ /// Global memory alignment for performance.
+ GlobalMemoryAlignment = 128,
+
+ /// Maximal size of the shared memory buffer.
+ SharedMemorySize = 128,
+};
+
+static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
+ RefExpr = RefExpr->IgnoreParens();
+ if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
+ const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
+ while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
+ Base = TempASE->getBase()->IgnoreParenImpCasts();
+ RefExpr = Base;
+ } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
+ const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
+ while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
+ Base = TempOASE->getBase()->IgnoreParenImpCasts();
+ while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
+ Base = TempASE->getBase()->IgnoreParenImpCasts();
+ RefExpr = Base;
+ }
+ RefExpr = RefExpr->IgnoreParenImpCasts();
+ if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
+ return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
+ const auto *ME = cast<MemberExpr>(RefExpr);
+ return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
+}
+
+
+static RecordDecl *buildRecordForGlobalizedVars(
+ ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
+ ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
+ llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+ &MappedDeclsFields, int BufSize) {
+ using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
+ if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
+ return nullptr;
+ SmallVector<VarsDataTy, 4> GlobalizedVars;
+ for (const ValueDecl *D : EscapedDecls)
+ GlobalizedVars.emplace_back(
+ CharUnits::fromQuantity(std::max(
+ C.getDeclAlign(D).getQuantity(),
+ static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
+ D);
+ for (const ValueDecl *D : EscapedDeclsForTeams)
+ GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
+ llvm::stable_sort(GlobalizedVars, [](VarsDataTy L, VarsDataTy R) {
+ return L.first > R.first;
+ });
+
+ // Build struct _globalized_locals_ty {
+ // /* globalized vars */[WarSize] align (max(decl_align,
+ // GlobalMemoryAlignment))
+ // /* globalized vars */ for EscapedDeclsForTeams
+ // };
+ RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
+ GlobalizedRD->startDefinition();
+ llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
+ EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
+ for (const auto &Pair : GlobalizedVars) {
+ const ValueDecl *VD = Pair.second;
+ QualType Type = VD->getType();
+ if (Type->isLValueReferenceType())
+ Type = C.getPointerType(Type.getNonReferenceType());
+ else
+ Type = Type.getNonReferenceType();
+ SourceLocation Loc = VD->getLocation();
+ FieldDecl *Field;
+ if (SingleEscaped.count(VD)) {
+ Field = FieldDecl::Create(
+ C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
+ C.getTrivialTypeSourceInfo(Type, SourceLocation()),
+ /*BW=*/nullptr, /*Mutable=*/false,
+ /*InitStyle=*/ICIS_NoInit);
+ Field->setAccess(AS_public);
+ if (VD->hasAttrs()) {
+ for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
+ E(VD->getAttrs().end());
+ I != E; ++I)
+ Field->addAttr(*I);
+ }
+ } else {
+ llvm::APInt ArraySize(32, BufSize);
+ Type = C.getConstantArrayType(Type, ArraySize, nullptr, ArrayType::Normal,
+ 0);
+ Field = FieldDecl::Create(
+ C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
+ C.getTrivialTypeSourceInfo(Type, SourceLocation()),
+ /*BW=*/nullptr, /*Mutable=*/false,
+ /*InitStyle=*/ICIS_NoInit);
+ Field->setAccess(AS_public);
+ llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
+ static_cast<CharUnits::QuantityType>(
+ GlobalMemoryAlignment)));
+ Field->addAttr(AlignedAttr::CreateImplicit(
+ C, /*IsAlignmentExpr=*/true,
+ IntegerLiteral::Create(C, Align,
+ C.getIntTypeForBitwidth(32, /*Signed=*/0),
+ SourceLocation()),
+ {}, AttributeCommonInfo::AS_GNU, AlignedAttr::GNU_aligned));
+ }
+ GlobalizedRD->addDecl(Field);
+ MappedDeclsFields.try_emplace(VD, Field);
+ }
+ GlobalizedRD->completeDefinition();
+ return GlobalizedRD;
+}
+
+/// Get the list of variables that can escape their declaration context.
+class CheckVarsEscapingDeclContext final
+ : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
+ CodeGenFunction &CGF;
+ llvm::SetVector<const ValueDecl *> EscapedDecls;
+ llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
+ llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
+ RecordDecl *GlobalizedRD = nullptr;
+ llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
+ bool AllEscaped = false;
+ bool IsForCombinedParallelRegion = false;
+
+ void markAsEscaped(const ValueDecl *VD) {
+ // Do not globalize declare target variables.
+ if (!isa<VarDecl>(VD) ||
+ OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
+ return;
+ VD = cast<ValueDecl>(VD->getCanonicalDecl());
+ // Use user-specified allocation.
+ if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
+ return;
+ // Variables captured by value must be globalized.
+ if (auto *CSI = CGF.CapturedStmtInfo) {
+ if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
+ // Check if need to capture the variable that was already captured by
+ // value in the outer region.
+ if (!IsForCombinedParallelRegion) {
+ if (!FD->hasAttrs())
+ return;
+ const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
+ if (!Attr)
+ return;
+ if (((Attr->getCaptureKind() != OMPC_map) &&
+ !isOpenMPPrivate(Attr->getCaptureKind())) ||
+ ((Attr->getCaptureKind() == OMPC_map) &&
+ !FD->getType()->isAnyPointerType()))
+ return;
+ }
+ if (!FD->getType()->isReferenceType()) {
+ assert(!VD->getType()->isVariablyModifiedType() &&
+ "Parameter captured by value with variably modified type");
+ EscapedParameters.insert(VD);
+ } else if (!IsForCombinedParallelRegion) {
+ return;
+ }
+ }
+ }
+ if ((!CGF.CapturedStmtInfo ||
+ (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
+ VD->getType()->isReferenceType())
+ // Do not globalize variables with reference type.
+ return;
+ if (VD->getType()->isVariablyModifiedType())
+ EscapedVariableLengthDecls.insert(VD);
+ else
+ EscapedDecls.insert(VD);
+ }
+
+ void VisitValueDecl(const ValueDecl *VD) {
+ if (VD->getType()->isLValueReferenceType())
+ markAsEscaped(VD);
+ if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
+ if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
+ const bool SavedAllEscaped = AllEscaped;
+ AllEscaped = VD->getType()->isLValueReferenceType();
+ Visit(VarD->getInit());
+ AllEscaped = SavedAllEscaped;
+ }
+ }
+ }
+ void VisitOpenMPCapturedStmt(const CapturedStmt *S,
+ ArrayRef<OMPClause *> Clauses,
+ bool IsCombinedParallelRegion) {
+ if (!S)
+ return;
+ for (const CapturedStmt::Capture &C : S->captures()) {
+ if (C.capturesVariable() && !C.capturesVariableByCopy()) {
+ const ValueDecl *VD = C.getCapturedVar();
+ bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
+ if (IsCombinedParallelRegion) {
+ // Check if the variable is privatized in the combined construct and
+ // those private copies must be shared in the inner parallel
+ // directive.
+ IsForCombinedParallelRegion = false;
+ for (const OMPClause *C : Clauses) {
+ if (!isOpenMPPrivate(C->getClauseKind()) ||
+ C->getClauseKind() == OMPC_reduction ||
+ C->getClauseKind() == OMPC_linear ||
+ C->getClauseKind() == OMPC_private)
+ continue;
+ ArrayRef<const Expr *> Vars;
+ if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
+ Vars = PC->getVarRefs();
+ else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
+ Vars = PC->getVarRefs();
+ else
+ llvm_unreachable("Unexpected clause.");
+ for (const auto *E : Vars) {
+ const Decl *D =
+ cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
+ if (D == VD->getCanonicalDecl()) {
+ IsForCombinedParallelRegion = true;
+ break;
+ }
+ }
+ if (IsForCombinedParallelRegion)
+ break;
+ }
+ }
+ markAsEscaped(VD);
+ if (isa<OMPCapturedExprDecl>(VD))
+ VisitValueDecl(VD);
+ IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
+ }
+ }
+ }
+
+ void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
+ assert(!GlobalizedRD &&
+ "Record for globalized variables is built already.");
+ ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
+ unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
+ if (IsInTTDRegion)
+ EscapedDeclsForTeams = EscapedDecls.getArrayRef();
+ else
+ EscapedDeclsForParallel = EscapedDecls.getArrayRef();
+ GlobalizedRD = ::buildRecordForGlobalizedVars(
+ CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
+ MappedDeclsFields, WarpSize);
+ }
+
+public:
+ CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
+ ArrayRef<const ValueDecl *> TeamsReductions)
+ : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
+ }
+ virtual ~CheckVarsEscapingDeclContext() = default;
+ void VisitDeclStmt(const DeclStmt *S) {
+ if (!S)
+ return;
+ for (const Decl *D : S->decls())
+ if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
+ VisitValueDecl(VD);
+ }
+ void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
+ if (!D)
+ return;
+ if (!D->hasAssociatedStmt())
+ return;
+ if (const auto *S =
+ dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
+ // Do not analyze directives that do not actually require capturing,
+ // like `omp for` or `omp simd` directives.
+ llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
+ getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
+ if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
+ VisitStmt(S->getCapturedStmt());
+ return;
+ }
+ VisitOpenMPCapturedStmt(
+ S, D->clauses(),
+ CaptureRegions.back() == OMPD_parallel &&
+ isOpenMPDistributeDirective(D->getDirectiveKind()));
+ }
+ }
+ void VisitCapturedStmt(const CapturedStmt *S) {
+ if (!S)
+ return;
+ for (const CapturedStmt::Capture &C : S->captures()) {
+ if (C.capturesVariable() && !C.capturesVariableByCopy()) {
+ const ValueDecl *VD = C.getCapturedVar();
+ markAsEscaped(VD);
+ if (isa<OMPCapturedExprDecl>(VD))
+ VisitValueDecl(VD);
+ }
+ }
+ }
+ void VisitLambdaExpr(const LambdaExpr *E) {
+ if (!E)
+ return;
+ for (const LambdaCapture &C : E->captures()) {
+ if (C.capturesVariable()) {
+ if (C.getCaptureKind() == LCK_ByRef) {
+ const ValueDecl *VD = C.getCapturedVar();
+ markAsEscaped(VD);
+ if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
+ VisitValueDecl(VD);
+ }
+ }
+ }
+ }
+ void VisitBlockExpr(const BlockExpr *E) {
+ if (!E)
+ return;
+ for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
+ if (C.isByRef()) {
+ const VarDecl *VD = C.getVariable();
+ markAsEscaped(VD);
+ if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
+ VisitValueDecl(VD);
+ }
+ }
+ }
+ void VisitCallExpr(const CallExpr *E) {
+ if (!E)
+ return;
+ for (const Expr *Arg : E->arguments()) {
+ if (!Arg)
+ continue;
+ if (Arg->isLValue()) {
+ const bool SavedAllEscaped = AllEscaped;
+ AllEscaped = true;
+ Visit(Arg);
+ AllEscaped = SavedAllEscaped;
+ } else {
+ Visit(Arg);
+ }
+ }
+ Visit(E->getCallee());
+ }
+ void VisitDeclRefExpr(const DeclRefExpr *E) {
+ if (!E)
+ return;
+ const ValueDecl *VD = E->getDecl();
+ if (AllEscaped)
+ markAsEscaped(VD);
+ if (isa<OMPCapturedExprDecl>(VD))
+ VisitValueDecl(VD);
+ else if (const auto *VarD = dyn_cast<VarDecl>(VD))
+ if (VarD->isInitCapture())
+ VisitValueDecl(VD);
+ }
+ void VisitUnaryOperator(const UnaryOperator *E) {
+ if (!E)
+ return;
+ if (E->getOpcode() == UO_AddrOf) {
+ const bool SavedAllEscaped = AllEscaped;
+ AllEscaped = true;
+ Visit(E->getSubExpr());
+ AllEscaped = SavedAllEscaped;
+ } else {
+ Visit(E->getSubExpr());
+ }
+ }
+ void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
+ if (!E)
+ return;
+ if (E->getCastKind() == CK_ArrayToPointerDecay) {
+ const bool SavedAllEscaped = AllEscaped;
+ AllEscaped = true;
+ Visit(E->getSubExpr());
+ AllEscaped = SavedAllEscaped;
+ } else {
+ Visit(E->getSubExpr());
+ }
+ }
+ void VisitExpr(const Expr *E) {
+ if (!E)
+ return;
+ bool SavedAllEscaped = AllEscaped;
+ if (!E->isLValue())
+ AllEscaped = false;
+ for (const Stmt *Child : E->children())
+ if (Child)
+ Visit(Child);
+ AllEscaped = SavedAllEscaped;
+ }
+ void VisitStmt(const Stmt *S) {
+ if (!S)
+ return;
+ for (const Stmt *Child : S->children())
+ if (Child)
+ Visit(Child);
+ }
+
+ /// Returns the record that handles all the escaped local variables and used
+ /// instead of their original storage.
+ const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
+ if (!GlobalizedRD)
+ buildRecordForGlobalizedVars(IsInTTDRegion);
+ return GlobalizedRD;
+ }
+
+ /// Returns the field in the globalized record for the escaped variable.
+ const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
+ assert(GlobalizedRD &&
+ "Record for globalized variables must be generated already.");
+ auto I = MappedDeclsFields.find(VD);
+ if (I == MappedDeclsFields.end())
+ return nullptr;
+ return I->getSecond();
+ }
+
+ /// Returns the list of the escaped local variables/parameters.
+ ArrayRef<const ValueDecl *> getEscapedDecls() const {
+ return EscapedDecls.getArrayRef();
+ }
+
+ /// Checks if the escaped local variable is actually a parameter passed by
+ /// value.
+ const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
+ return EscapedParameters;
+ }
+
+ /// Returns the list of the escaped variables with the variably modified
+ /// types.
+ ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
+ return EscapedVariableLengthDecls.getArrayRef();
+ }
+};
+} // anonymous namespace
+
+/// Get the id of the warp in the block.
+/// We assume that the warp size is 32, which is always the case
+/// on the NVPTX device, to generate more efficient code.
+static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
+ CGBuilderTy &Bld = CGF.Builder;
+ unsigned LaneIDBits =
+ llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
+ auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
+ return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
+}
+
+/// Get the id of the current lane in the Warp.
+/// We assume that the warp size is 32, which is always the case
+/// on the NVPTX device, to generate more efficient code.
+static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
+ CGBuilderTy &Bld = CGF.Builder;
+ unsigned LaneIDBits =
+ llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
+ unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
+ auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
+ return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
+ "nvptx_lane_id");
+}
+
+CGOpenMPRuntimeGPU::ExecutionMode
+CGOpenMPRuntimeGPU::getExecutionMode() const {
+ return CurrentExecutionMode;
+}
+
+static CGOpenMPRuntimeGPU::DataSharingMode
+getDataSharingMode(CodeGenModule &CGM) {
+ return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeGPU::CUDA
+ : CGOpenMPRuntimeGPU::Generic;
+}
+
+/// Check for inner (nested) SPMD construct, if any
+static bool hasNestedSPMDDirective(ASTContext &Ctx,
+ const OMPExecutableDirective &D) {
+ const auto *CS = D.getInnermostCapturedStmt();
+ const auto *Body =
+ CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
+ const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
+
+ if (const auto *NestedDir =
+ dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+ OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
+ switch (D.getDirectiveKind()) {
+ case OMPD_target:
+ if (isOpenMPParallelDirective(DKind))
+ return true;
+ if (DKind == OMPD_teams) {
+ Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
+ /*IgnoreCaptured=*/true);
+ if (!Body)
+ return false;
+ ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
+ if (const auto *NND =
+ dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+ DKind = NND->getDirectiveKind();
+ if (isOpenMPParallelDirective(DKind))
+ return true;
+ }
+ }
+ return false;
+ case OMPD_target_teams:
+ return isOpenMPParallelDirective(DKind);
+ case OMPD_target_simd:
+ case OMPD_target_parallel:
+ case OMPD_target_parallel_for:
+ case OMPD_target_parallel_for_simd:
+ case OMPD_target_teams_distribute:
+ case OMPD_target_teams_distribute_simd:
+ case OMPD_target_teams_distribute_parallel_for:
+ case OMPD_target_teams_distribute_parallel_for_simd:
+ case OMPD_parallel:
+ case OMPD_for:
+ case OMPD_parallel_for:
+ case OMPD_parallel_master:
+ case OMPD_parallel_sections:
+ case OMPD_for_simd:
+ case OMPD_parallel_for_simd:
+ case OMPD_cancel:
+ case OMPD_cancellation_point:
+ case OMPD_ordered:
+ case OMPD_threadprivate:
+ case OMPD_allocate:
+ case OMPD_task:
+ case OMPD_simd:
+ case OMPD_sections:
+ case OMPD_section:
+ case OMPD_single:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_taskgroup:
+ case OMPD_atomic:
+ case OMPD_flush:
+ case OMPD_depobj:
+ case OMPD_scan:
+ case OMPD_teams:
+ case OMPD_target_data:
+ case OMPD_target_exit_data:
+ case OMPD_target_enter_data:
+ case OMPD_distribute:
+ case OMPD_distribute_simd:
+ case OMPD_distribute_parallel_for:
+ case OMPD_distribute_parallel_for_simd:
+ case OMPD_teams_distribute:
+ case OMPD_teams_distribute_simd:
+ case OMPD_teams_distribute_parallel_for:
+ case OMPD_teams_distribute_parallel_for_simd:
+ case OMPD_target_update:
+ case OMPD_declare_simd:
+ case OMPD_declare_variant:
+ case OMPD_begin_declare_variant:
+ case OMPD_end_declare_variant:
+ case OMPD_declare_target:
+ case OMPD_end_declare_target:
+ case OMPD_declare_reduction:
+ case OMPD_declare_mapper:
+ case OMPD_taskloop:
+ case OMPD_taskloop_simd:
+ case OMPD_master_taskloop:
+ case OMPD_master_taskloop_simd:
+ case OMPD_parallel_master_taskloop:
+ case OMPD_parallel_master_taskloop_simd:
+ case OMPD_requires:
+ case OMPD_unknown:
+ default:
+ llvm_unreachable("Unexpected directive.");
+ }
+ }
+
+ return false;
+}
+
+static bool supportsSPMDExecutionMode(ASTContext &Ctx,
+ const OMPExecutableDirective &D) {
+ OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
+ switch (DirectiveKind) {
+ case OMPD_target:
+ case OMPD_target_teams:
+ return hasNestedSPMDDirective(Ctx, D);
+ case OMPD_target_parallel:
+ case OMPD_target_parallel_for:
+ case OMPD_target_parallel_for_simd:
+ case OMPD_target_teams_distribute_parallel_for:
+ case OMPD_target_teams_distribute_parallel_for_simd:
+ case OMPD_target_simd:
+ case OMPD_target_teams_distribute_simd:
+ return true;
+ case OMPD_target_teams_distribute:
+ return false;
+ case OMPD_parallel:
+ case OMPD_for:
+ case OMPD_parallel_for:
+ case OMPD_parallel_master:
+ case OMPD_parallel_sections:
+ case OMPD_for_simd:
+ case OMPD_parallel_for_simd:
+ case OMPD_cancel:
+ case OMPD_cancellation_point:
+ case OMPD_ordered:
+ case OMPD_threadprivate:
+ case OMPD_allocate:
+ case OMPD_task:
+ case OMPD_simd:
+ case OMPD_sections:
+ case OMPD_section:
+ case OMPD_single:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_taskgroup:
+ case OMPD_atomic:
+ case OMPD_flush:
+ case OMPD_depobj:
+ case OMPD_scan:
+ case OMPD_teams:
+ case OMPD_target_data:
+ case OMPD_target_exit_data:
+ case OMPD_target_enter_data:
+ case OMPD_distribute:
+ case OMPD_distribute_simd:
+ case OMPD_distribute_parallel_for:
+ case OMPD_distribute_parallel_for_simd:
+ case OMPD_teams_distribute:
+ case OMPD_teams_distribute_simd:
+ case OMPD_teams_distribute_parallel_for:
+ case OMPD_teams_distribute_parallel_for_simd:
+ case OMPD_target_update:
+ case OMPD_declare_simd:
+ case OMPD_declare_variant:
+ case OMPD_begin_declare_variant:
+ case OMPD_end_declare_variant:
+ case OMPD_declare_target:
+ case OMPD_end_declare_target:
+ case OMPD_declare_reduction:
+ case OMPD_declare_mapper:
+ case OMPD_taskloop:
+ case OMPD_taskloop_simd:
+ case OMPD_master_taskloop:
+ case OMPD_master_taskloop_simd:
+ case OMPD_parallel_master_taskloop:
+ case OMPD_parallel_master_taskloop_simd:
+ case OMPD_requires:
+ case OMPD_unknown:
+ default:
+ break;
+ }
+ llvm_unreachable(
+ "Unknown programming model for OpenMP directive on NVPTX target.");
+}
+
+/// Check if the directive is loops based and has schedule clause at all or has
+/// static scheduling.
+static bool hasStaticScheduling(const OMPExecutableDirective &D) {
+ assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
+ isOpenMPLoopDirective(D.getDirectiveKind()) &&
+ "Expected loop-based directive.");
+ return !D.hasClausesOfKind<OMPOrderedClause>() &&
+ (!D.hasClausesOfKind<OMPScheduleClause>() ||
+ llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
+ [](const OMPScheduleClause *C) {
+ return C->getScheduleKind() == OMPC_SCHEDULE_static;
+ }));
+}
+
+/// Check for inner (nested) lightweight runtime construct, if any
+static bool hasNestedLightweightDirective(ASTContext &Ctx,
+ const OMPExecutableDirective &D) {
+ assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
+ const auto *CS = D.getInnermostCapturedStmt();
+ const auto *Body =
+ CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
+ const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
+
+ if (const auto *NestedDir =
+ dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+ OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
+ switch (D.getDirectiveKind()) {
+ case OMPD_target:
+ if (isOpenMPParallelDirective(DKind) &&
+ isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
+ hasStaticScheduling(*NestedDir))
+ return true;
+ if (DKind == OMPD_teams_distribute_simd || DKind == OMPD_simd)
+ return true;
+ if (DKind == OMPD_parallel) {
+ Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
+ /*IgnoreCaptured=*/true);
+ if (!Body)
+ return false;
+ ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
+ if (const auto *NND =
+ dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+ DKind = NND->getDirectiveKind();
+ if (isOpenMPWorksharingDirective(DKind) &&
+ isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
+ return true;
+ }
+ } else if (DKind == OMPD_teams) {
+ Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
+ /*IgnoreCaptured=*/true);
+ if (!Body)
+ return false;
+ ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
+ if (const auto *NND =
+ dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+ DKind = NND->getDirectiveKind();
+ if (isOpenMPParallelDirective(DKind) &&
+ isOpenMPWorksharingDirective(DKind) &&
+ isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
+ return true;
+ if (DKind == OMPD_parallel) {
+ Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
+ /*IgnoreCaptured=*/true);
+ if (!Body)
+ return false;
+ ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
+ if (const auto *NND =
+ dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+ DKind = NND->getDirectiveKind();
+ if (isOpenMPWorksharingDirective(DKind) &&
+ isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
+ return true;
+ }
+ }
+ }
+ }
+ return false;
+ case OMPD_target_teams:
+ if (isOpenMPParallelDirective(DKind) &&
+ isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
+ hasStaticScheduling(*NestedDir))
+ return true;
+ if (DKind == OMPD_distribute_simd || DKind == OMPD_simd)
+ return true;
+ if (DKind == OMPD_parallel) {
+ Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
+ /*IgnoreCaptured=*/true);
+ if (!Body)
+ return false;
+ ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
+ if (const auto *NND =
+ dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+ DKind = NND->getDirectiveKind();
+ if (isOpenMPWorksharingDirective(DKind) &&
+ isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
+ return true;
+ }
+ }
+ return false;
+ case OMPD_target_parallel:
+ if (DKind == OMPD_simd)
+ return true;
+ return isOpenMPWorksharingDirective(DKind) &&
+ isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
+ case OMPD_target_teams_distribute:
+ case OMPD_target_simd:
+ case OMPD_target_parallel_for:
+ case OMPD_target_parallel_for_simd:
+ case OMPD_target_teams_distribute_simd:
+ case OMPD_target_teams_distribute_parallel_for:
+ case OMPD_target_teams_distribute_parallel_for_simd:
+ case OMPD_parallel:
+ case OMPD_for:
+ case OMPD_parallel_for:
+ case OMPD_parallel_master:
+ case OMPD_parallel_sections:
+ case OMPD_for_simd:
+ case OMPD_parallel_for_simd:
+ case OMPD_cancel:
+ case OMPD_cancellation_point:
+ case OMPD_ordered:
+ case OMPD_threadprivate:
+ case OMPD_allocate:
+ case OMPD_task:
+ case OMPD_simd:
+ case OMPD_sections:
+ case OMPD_section:
+ case OMPD_single:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_taskgroup:
+ case OMPD_atomic:
+ case OMPD_flush:
+ case OMPD_depobj:
+ case OMPD_scan:
+ case OMPD_teams:
+ case OMPD_target_data:
+ case OMPD_target_exit_data:
+ case OMPD_target_enter_data:
+ case OMPD_distribute:
+ case OMPD_distribute_simd:
+ case OMPD_distribute_parallel_for:
+ case OMPD_distribute_parallel_for_simd:
+ case OMPD_teams_distribute:
+ case OMPD_teams_distribute_simd:
+ case OMPD_teams_distribute_parallel_for:
+ case OMPD_teams_distribute_parallel_for_simd:
+ case OMPD_target_update:
+ case OMPD_declare_simd:
+ case OMPD_declare_variant:
+ case OMPD_begin_declare_variant:
+ case OMPD_end_declare_variant:
+ case OMPD_declare_target:
+ case OMPD_end_declare_target:
+ case OMPD_declare_reduction:
+ case OMPD_declare_mapper:
+ case OMPD_taskloop:
+ case OMPD_taskloop_simd:
+ case OMPD_master_taskloop:
+ case OMPD_master_taskloop_simd:
+ case OMPD_parallel_master_taskloop:
+ case OMPD_parallel_master_taskloop_simd:
+ case OMPD_requires:
+ case OMPD_unknown:
+ default:
+ llvm_unreachable("Unexpected directive.");
+ }
+ }
+
+ return false;
+}
+
+/// Checks if the construct supports lightweight runtime. It must be SPMD
+/// construct + inner loop-based construct with static scheduling.
+static bool supportsLightweightRuntime(ASTContext &Ctx,
+ const OMPExecutableDirective &D) {
+ if (!supportsSPMDExecutionMode(Ctx, D))
+ return false;
+ OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
+ switch (DirectiveKind) {
+ case OMPD_target:
+ case OMPD_target_teams:
+ case OMPD_target_parallel:
+ return hasNestedLightweightDirective(Ctx, D);
+ case OMPD_target_parallel_for:
+ case OMPD_target_parallel_for_simd:
+ case OMPD_target_teams_distribute_parallel_for:
+ case OMPD_target_teams_distribute_parallel_for_simd:
+ // (Last|First)-privates must be shared in parallel region.
+ return hasStaticScheduling(D);
+ case OMPD_target_simd:
+ case OMPD_target_teams_distribute_simd:
+ return true;
+ case OMPD_target_teams_distribute:
+ return false;
+ case OMPD_parallel:
+ case OMPD_for:
+ case OMPD_parallel_for:
+ case OMPD_parallel_master:
+ case OMPD_parallel_sections:
+ case OMPD_for_simd:
+ case OMPD_parallel_for_simd:
+ case OMPD_cancel:
+ case OMPD_cancellation_point:
+ case OMPD_ordered:
+ case OMPD_threadprivate:
+ case OMPD_allocate:
+ case OMPD_task:
+ case OMPD_simd:
+ case OMPD_sections:
+ case OMPD_section:
+ case OMPD_single:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_taskgroup:
+ case OMPD_atomic:
+ case OMPD_flush:
+ case OMPD_depobj:
+ case OMPD_scan:
+ case OMPD_teams:
+ case OMPD_target_data:
+ case OMPD_target_exit_data:
+ case OMPD_target_enter_data:
+ case OMPD_distribute:
+ case OMPD_distribute_simd:
+ case OMPD_distribute_parallel_for:
+ case OMPD_distribute_parallel_for_simd:
+ case OMPD_teams_distribute:
+ case OMPD_teams_distribute_simd:
+ case OMPD_teams_distribute_parallel_for:
+ case OMPD_teams_distribute_parallel_for_simd:
+ case OMPD_target_update:
+ case OMPD_declare_simd:
+ case OMPD_declare_variant:
+ case OMPD_begin_declare_variant:
+ case OMPD_end_declare_variant:
+ case OMPD_declare_target:
+ case OMPD_end_declare_target:
+ case OMPD_declare_reduction:
+ case OMPD_declare_mapper:
+ case OMPD_taskloop:
+ case OMPD_taskloop_simd:
+ case OMPD_master_taskloop:
+ case OMPD_master_taskloop_simd:
+ case OMPD_parallel_master_taskloop:
+ case OMPD_parallel_master_taskloop_simd:
+ case OMPD_requires:
+ case OMPD_unknown:
+ default:
+ break;
+ }
+ llvm_unreachable(
+ "Unknown programming model for OpenMP directive on NVPTX target.");
+}
+
+void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
+ StringRef ParentName,
+ llvm::Function *&OutlinedFn,
+ llvm::Constant *&OutlinedFnID,
+ bool IsOffloadEntry,
+ const RegionCodeGenTy &CodeGen) {
+ ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
+ EntryFunctionState EST;
+ WrapperFunctionsMap.clear();
+
+ // Emit target region as a standalone region.
+ class NVPTXPrePostActionTy : public PrePostActionTy {
+ CGOpenMPRuntimeGPU::EntryFunctionState &EST;
+
+ public:
+ NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST)
+ : EST(EST) {}
+ void Enter(CodeGenFunction &CGF) override {
+ auto &RT =
+ static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
+ RT.emitKernelInit(CGF, EST, /* IsSPMD */ false);
+ // Skip target region initialization.
+ RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
+ }
+ void Exit(CodeGenFunction &CGF) override {
+ auto &RT =
+ static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
+ RT.clearLocThreadIdInsertPt(CGF);
+ RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
+ }
+ } Action(EST);
+ CodeGen.setAction(Action);
+ IsInTTDRegion = true;
+ emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
+ IsOffloadEntry, CodeGen);
+ IsInTTDRegion = false;
+}
+
+void CGOpenMPRuntimeGPU::emitKernelInit(CodeGenFunction &CGF,
+ EntryFunctionState &EST, bool IsSPMD) {
+ CGBuilderTy &Bld = CGF.Builder;
+ Bld.restoreIP(OMPBuilder.createTargetInit(Bld, IsSPMD, requiresFullRuntime()));
+ IsInTargetMasterThreadRegion = IsSPMD;
+ if (!IsSPMD)
+ emitGenericVarsProlog(CGF, EST.Loc);
+}
+
+void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
+ EntryFunctionState &EST,
+ bool IsSPMD) {
+ if (!IsSPMD)
+ emitGenericVarsEpilog(CGF);
+
+ CGBuilderTy &Bld = CGF.Builder;
+ OMPBuilder.createTargetDeinit(Bld, IsSPMD, requiresFullRuntime());
+}
+
+void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
+ StringRef ParentName,
+ llvm::Function *&OutlinedFn,
+ llvm::Constant *&OutlinedFnID,
+ bool IsOffloadEntry,
+ const RegionCodeGenTy &CodeGen) {
+ ExecutionRuntimeModesRAII ModeRAII(
+ CurrentExecutionMode, RequiresFullRuntime,
+ CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
+ !supportsLightweightRuntime(CGM.getContext(), D));
+ EntryFunctionState EST;
+
+ // Emit target region as a standalone region.
+ class NVPTXPrePostActionTy : public PrePostActionTy {
+ CGOpenMPRuntimeGPU &RT;
+ CGOpenMPRuntimeGPU::EntryFunctionState &EST;
+
+ public:
+ NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
+ CGOpenMPRuntimeGPU::EntryFunctionState &EST)
+ : RT(RT), EST(EST) {}
+ void Enter(CodeGenFunction &CGF) override {
+ RT.emitKernelInit(CGF, EST, /* IsSPMD */ true);
+ // Skip target region initialization.
+ RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
+ }
+ void Exit(CodeGenFunction &CGF) override {
+ RT.clearLocThreadIdInsertPt(CGF);
+ RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
+ }
+ } Action(*this, EST);
+ CodeGen.setAction(Action);
+ IsInTTDRegion = true;
+ emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
+ IsOffloadEntry, CodeGen);
+ IsInTTDRegion = false;
+}
+
+// Create a unique global variable to indicate the execution mode of this target
+// region. The execution mode is either 'generic', or 'spmd' depending on the
+// target directive. This variable is picked up by the offload library to setup
+// the device appropriately before kernel launch. If the execution mode is
+// 'generic', the runtime reserves one warp for the master, otherwise, all
+// warps participate in parallel work.
+static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
+ bool Mode) {
+ auto *GVMode = new llvm::GlobalVariable(
+ CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
+ llvm::GlobalValue::WeakAnyLinkage,
+ llvm::ConstantInt::get(CGM.Int8Ty, Mode ? OMP_TGT_EXEC_MODE_SPMD
+ : OMP_TGT_EXEC_MODE_GENERIC),
+ Twine(Name, "_exec_mode"));
+ CGM.addCompilerUsedGlobal(GVMode);
+}
+
+void CGOpenMPRuntimeGPU::createOffloadEntry(llvm::Constant *ID,
+ llvm::Constant *Addr,
+ uint64_t Size, int32_t,
+ llvm::GlobalValue::LinkageTypes) {
+ // TODO: Add support for global variables on the device after declare target
+ // support.
+ llvm::Function *Fn = dyn_cast<llvm::Function>(Addr);
+ if (!Fn)
+ return;
+
+ llvm::Module &M = CGM.getModule();
+ llvm::LLVMContext &Ctx = CGM.getLLVMContext();
+
+ // Get "nvvm.annotations" metadata node.
+ llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
+
+ llvm::Metadata *MDVals[] = {
+ llvm::ConstantAsMetadata::get(Fn), llvm::MDString::get(Ctx, "kernel"),
+ llvm::ConstantAsMetadata::get(
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
+ // Append metadata to nvvm.annotations.
+ MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
+
+ // Add a function attribute for the kernel.
+ Fn->addFnAttr(llvm::Attribute::get(Ctx, "kernel"));
+}
+
+void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
+ const OMPExecutableDirective &D, StringRef ParentName,
+ llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
+ bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
+ if (!IsOffloadEntry) // Nothing to do.
+ return;
+
+ assert(!ParentName.empty() && "Invalid target region parent name!");
+
+ bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
+ if (Mode)
+ emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
+ CodeGen);
+ else
+ emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
+ CodeGen);
+
+ setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
+}
+
+namespace {
+LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
+/// Enum for accesseing the reserved_2 field of the ident_t struct.
+enum ModeFlagsTy : unsigned {
+ /// Bit set to 1 when in SPMD mode.
+ KMP_IDENT_SPMD_MODE = 0x01,
+ /// Bit set to 1 when a simplified runtime is used.
+ KMP_IDENT_SIMPLE_RT_MODE = 0x02,
+ LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
+};
+
+/// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
+static const ModeFlagsTy UndefinedMode =
+ (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
+} // anonymous namespace
+
+unsigned CGOpenMPRuntimeGPU::getDefaultLocationReserved2Flags() const {
+ switch (getExecutionMode()) {
+ case EM_SPMD:
+ if (requiresFullRuntime())
+ return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
+ return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
+ case EM_NonSPMD:
+ assert(requiresFullRuntime() && "Expected full runtime.");
+ return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
+ case EM_Unknown:
+ return UndefinedMode;
+ }
+ llvm_unreachable("Unknown flags are requested.");
+}
+
+CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
+ : CGOpenMPRuntime(CGM, "_", "$") {
+ if (!CGM.getLangOpts().OpenMPIsDevice)
+ llvm_unreachable("OpenMP can only handle device code.");
+
+ llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
+ if (CGM.getLangOpts().OpenMPTargetNewRuntime &&
+ !CGM.getLangOpts().OMPHostIRFile.empty()) {
+ OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
+ "__omp_rtl_debug_kind");
+ OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
+ "__omp_rtl_assume_teams_oversubscription");
+ OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
+ "__omp_rtl_assume_threads_oversubscription");
+ }
+}
+
+void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
+ ProcBindKind ProcBind,
+ SourceLocation Loc) {
+ // Do nothing in case of SPMD mode and L0 parallel.
+ if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
+ return;
+
+ CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
+}
+
+void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
+ llvm::Value *NumThreads,
+ SourceLocation Loc) {
+ // Nothing to do.
+}
+
+void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
+ const Expr *NumTeams,
+ const Expr *ThreadLimit,
+ SourceLocation Loc) {}
+
+llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
+ const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+ OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
+ // Emit target region as a standalone region.
+ class NVPTXPrePostActionTy : public PrePostActionTy {
+ bool &IsInParallelRegion;
+ bool PrevIsInParallelRegion;
+
+ public:
+ NVPTXPrePostActionTy(bool &IsInParallelRegion)
+ : IsInParallelRegion(IsInParallelRegion) {}
+ void Enter(CodeGenFunction &CGF) override {
+ PrevIsInParallelRegion = IsInParallelRegion;
+ IsInParallelRegion = true;
+ }
+ void Exit(CodeGenFunction &CGF) override {
+ IsInParallelRegion = PrevIsInParallelRegion;
+ }
+ } Action(IsInParallelRegion);
+ CodeGen.setAction(Action);
+ bool PrevIsInTTDRegion = IsInTTDRegion;
+ IsInTTDRegion = false;
+ bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
+ IsInTargetMasterThreadRegion = false;
+ auto *OutlinedFun =
+ cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
+ D, ThreadIDVar, InnermostKind, CodeGen));
+ IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
+ IsInTTDRegion = PrevIsInTTDRegion;
+ if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD &&
+ !IsInParallelRegion) {
+ llvm::Function *WrapperFun =
+ createParallelDataSharingWrapper(OutlinedFun, D);
+ WrapperFunctionsMap[OutlinedFun] = WrapperFun;
+ }
+
+ return OutlinedFun;
+}
+
+/// Get list of lastprivate variables from the teams distribute ... or
+/// teams {distribute ...} directives.
+static void
+getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
+ llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
+ assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
+ "expected teams directive.");
+ const OMPExecutableDirective *Dir = &D;
+ if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
+ if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
+ Ctx,
+ D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
+ /*IgnoreCaptured=*/true))) {
+ Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
+ if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
+ Dir = nullptr;
+ }
+ }
+ if (!Dir)
+ return;
+ for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
+ for (const Expr *E : C->getVarRefs())
+ Vars.push_back(getPrivateItem(E));
+ }
+}
+
+/// Get list of reduction variables from the teams ... directives.
+static void
+getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
+ llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
+ assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
+ "expected teams directive.");
+ for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
+ for (const Expr *E : C->privates())
+ Vars.push_back(getPrivateItem(E));
+ }
+}
+
+llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
+ const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+ OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
+ SourceLocation Loc = D.getBeginLoc();
+
+ const RecordDecl *GlobalizedRD = nullptr;
+ llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
+ llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
+ unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
+ // Globalize team reductions variable unconditionally in all modes.
+ if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
+ getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
+ if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
+ getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
+ if (!LastPrivatesReductions.empty()) {
+ GlobalizedRD = ::buildRecordForGlobalizedVars(
+ CGM.getContext(), llvm::None, LastPrivatesReductions,
+ MappedDeclsFields, WarpSize);
+ }
+ } else if (!LastPrivatesReductions.empty()) {
+ assert(!TeamAndReductions.first &&
+ "Previous team declaration is not expected.");
+ TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
+ std::swap(TeamAndReductions.second, LastPrivatesReductions);
+ }
+
+ // Emit target region as a standalone region.
+ class NVPTXPrePostActionTy : public PrePostActionTy {
+ SourceLocation &Loc;
+ const RecordDecl *GlobalizedRD;
+ llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+ &MappedDeclsFields;
+
+ public:
+ NVPTXPrePostActionTy(
+ SourceLocation &Loc, const RecordDecl *GlobalizedRD,
+ llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+ &MappedDeclsFields)
+ : Loc(Loc), GlobalizedRD(GlobalizedRD),
+ MappedDeclsFields(MappedDeclsFields) {}
+ void Enter(CodeGenFunction &CGF) override {
+ auto &Rt =
+ static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
+ if (GlobalizedRD) {
+ auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
+ I->getSecond().MappedParams =
+ std::make_unique<CodeGenFunction::OMPMapVars>();
+ DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
+ for (const auto &Pair : MappedDeclsFields) {
+ assert(Pair.getFirst()->isCanonicalDecl() &&
+ "Expected canonical declaration");
+ Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
+ }
+ }
+ Rt.emitGenericVarsProlog(CGF, Loc);
+ }
+ void Exit(CodeGenFunction &CGF) override {
+ static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
+ .emitGenericVarsEpilog(CGF);
+ }
+ } Action(Loc, GlobalizedRD, MappedDeclsFields);
+ CodeGen.setAction(Action);
+ llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
+ D, ThreadIDVar, InnermostKind, CodeGen);
+
+ return OutlinedFun;
+}
+
+void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ bool WithSPMDCheck) {
+ if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
+ getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
+ return;
+
+ CGBuilderTy &Bld = CGF.Builder;
+
+ const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
+ if (I == FunctionGlobalizedDecls.end())
+ return;
+
+ for (auto &Rec : I->getSecond().LocalVarData) {
+ const auto *VD = cast<VarDecl>(Rec.first);
+ bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
+ QualType VarTy = VD->getType();
+
+ // Get the local allocation of a firstprivate variable before sharing
+ llvm::Value *ParValue;
+ if (EscapedParam) {
+ LValue ParLVal =
+ CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
+ ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
+ }
+
+ // Allocate space for the variable to be globalized
+ llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
+ llvm::CallBase *VoidPtr =
+ CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_alloc_shared),
+ AllocArgs, VD->getName());
+ // FIXME: We should use the variables actual alignment as an argument.
+ VoidPtr->addRetAttr(llvm::Attribute::get(
+ CGM.getLLVMContext(), llvm::Attribute::Alignment,
+ CGM.getContext().getTargetInfo().getNewAlign() / 8));
+
+ // Cast the void pointer and get the address of the globalized variable.
+ llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
+ llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
+ LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
+ Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
+ Rec.second.GlobalizedVal = VoidPtr;
+
+ // Assign the local allocation to the newly globalized location.
+ if (EscapedParam) {
+ CGF.EmitStoreOfScalar(ParValue, VarAddr);
+ I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
+ }
+ if (auto *DI = CGF.getDebugInfo())
+ VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
+ }
+ for (const auto *VD : I->getSecond().EscapedVariableLengthDecls) {
+ // Use actual memory size of the VLA object including the padding
+ // for alignment purposes.
+ llvm::Value *Size = CGF.getTypeSize(VD->getType());
+ CharUnits Align = CGM.getContext().getDeclAlign(VD);
+ Size = Bld.CreateNUWAdd(
+ Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
+ llvm::Value *AlignVal =
+ llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
+
+ Size = Bld.CreateUDiv(Size, AlignVal);
+ Size = Bld.CreateNUWMul(Size, AlignVal);
+
+ // Allocate space for this VLA object to be globalized.
+ llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
+ llvm::CallBase *VoidPtr =
+ CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_alloc_shared),
+ AllocArgs, VD->getName());
+ VoidPtr->addRetAttr(
+ llvm::Attribute::get(CGM.getLLVMContext(), llvm::Attribute::Alignment,
+ CGM.getContext().getTargetInfo().getNewAlign()));
+
+ I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(
+ std::pair<llvm::Value *, llvm::Value *>(
+ {VoidPtr, CGF.getTypeSize(VD->getType())}));
+ LValue Base = CGF.MakeAddrLValue(VoidPtr, VD->getType(),
+ CGM.getContext().getDeclAlign(VD),
+ AlignmentSource::Decl);
+ I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
+ Base.getAddress(CGF));
+ }
+ I->getSecond().MappedParams->apply(CGF);
+}
+
+void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF,
+ bool WithSPMDCheck) {
+ if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic &&
+ getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
+ return;
+
+ const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
+ if (I != FunctionGlobalizedDecls.end()) {
+ // Deallocate the memory for each globalized VLA object
+ for (auto AddrSizePair :
+ llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
+ CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_free_shared),
+ {AddrSizePair.first, AddrSizePair.second});
+ }
+ // Deallocate the memory for each globalized value
+ for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
+ const auto *VD = cast<VarDecl>(Rec.first);
+ I->getSecond().MappedParams->restore(CGF);
+
+ llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
+ CGF.getTypeSize(VD->getType())};
+ CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_free_shared),
+ FreeArgs);
+ }
+ }
+}
+
+void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
+ const OMPExecutableDirective &D,
+ SourceLocation Loc,
+ llvm::Function *OutlinedFn,
+ ArrayRef<llvm::Value *> CapturedVars) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
+ /*Name=*/".zero.addr");
+ CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
+ llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
+ OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
+ OutlinedFnArgs.push_back(ZeroAddr.getPointer());
+ OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
+ emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
+}
+
+void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ llvm::Function *OutlinedFn,
+ ArrayRef<llvm::Value *> CapturedVars,
+ const Expr *IfCond,
+ llvm::Value *NumThreads) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
+ NumThreads](CodeGenFunction &CGF,
+ PrePostActionTy &Action) {
+ CGBuilderTy &Bld = CGF.Builder;
+ llvm::Value *NumThreadsVal = NumThreads;
+ llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
+ llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
+ if (WFn)
+ ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
+ llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
+
+ // Create a private scope that will globalize the arguments
+ // passed from the outside of the target region.
+ // TODO: Is that needed?
+ CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
+
+ Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
+ llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
+ "captured_vars_addrs");
+ // There's something to share.
+ if (!CapturedVars.empty()) {
+ // Prepare for parallel region. Indicate the outlined function.
+ ASTContext &Ctx = CGF.getContext();
+ unsigned Idx = 0;
+ for (llvm::Value *V : CapturedVars) {
+ Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
+ llvm::Value *PtrV;
+ if (V->getType()->isIntegerTy())
+ PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
+ else
+ PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
+ CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
+ Ctx.getPointerType(Ctx.VoidPtrTy));
+ ++Idx;
+ }
+ }
+
+ llvm::Value *IfCondVal = nullptr;
+ if (IfCond)
+ IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
+ /* isSigned */ false);
+ else
+ IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
+
+ if (!NumThreadsVal)
+ NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
+ else
+ NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
+
+ assert(IfCondVal && "Expected a value");
+ llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+ llvm::Value *Args[] = {
+ RTLoc,
+ getThreadID(CGF, Loc),
+ IfCondVal,
+ NumThreadsVal,
+ llvm::ConstantInt::get(CGF.Int32Ty, -1),
+ FnPtr,
+ ID,
+ Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
+ CGF.VoidPtrPtrTy),
+ llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
+ CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_parallel_51),
+ Args);
+ };
+
+ RegionCodeGenTy RCG(ParallelGen);
+ RCG(CGF);
+}
+
+void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
+ // Always emit simple barriers!
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
+ // This function does not use parameters, so we can emit just default values.
+ llvm::Value *Args[] = {
+ llvm::ConstantPointerNull::get(
+ cast<llvm::PointerType>(getIdentTyPointerTy())),
+ llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
+ CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
+ Args);
+}
+
+void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ OpenMPDirectiveKind Kind, bool,
+ bool) {
+ // Always emit simple barriers!
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call __kmpc_cancel_barrier(loc, thread_id);
+ unsigned Flags = getDefaultFlagsForBarriers(Kind);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
+ getThreadID(CGF, Loc)};
+
+ CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_barrier),
+ Args);
+}
+
+void CGOpenMPRuntimeGPU::emitCriticalRegion(
+ CodeGenFunction &CGF, StringRef CriticalName,
+ const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
+ const Expr *Hint) {
+ llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
+ llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
+ llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
+ llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
+ llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
+
+ auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
+
+ // Get the mask of active threads in the warp.
+ llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
+ // Fetch team-local id of the thread.
+ llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
+
+ // Get the width of the team.
+ llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
+
+ // Initialize the counter variable for the loop.
+ QualType Int32Ty =
+ CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
+ Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
+ LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
+ CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
+ /*isInit=*/true);
+
+ // Block checks if loop counter exceeds upper bound.
+ CGF.EmitBlock(LoopBB);
+ llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
+ llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
+ CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
+
+ // Block tests which single thread should execute region, and which threads
+ // should go straight to synchronisation point.
+ CGF.EmitBlock(TestBB);
+ CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
+ llvm::Value *CmpThreadToCounter =
+ CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
+ CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
+
+ // Block emits the body of the critical region.
+ CGF.EmitBlock(BodyBB);
+
+ // Output the critical statement.
+ CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
+ Hint);
+
+ // After the body surrounded by the critical region, the single executing
+ // thread will jump to the synchronisation point.
+ // Block waits for all threads in current team to finish then increments the
+ // counter variable and returns to the loop.
+ CGF.EmitBlock(SyncBB);
+ // Reconverge active threads in the warp.
+ (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_syncwarp),
+ Mask);
+
+ llvm::Value *IncCounterVal =
+ CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
+ CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
+ CGF.EmitBranch(LoopBB);
+
+ // Block that is reached when all threads in the team complete the region.
+ CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
+}
+
+/// Cast value to the specified type.
+static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
+ QualType ValTy, QualType CastTy,
+ SourceLocation Loc) {
+ assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
+ "Cast type must sized.");
+ assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
+ "Val type must sized.");
+ llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
+ if (ValTy == CastTy)
+ return Val;
+ if (CGF.getContext().getTypeSizeInChars(ValTy) ==
+ CGF.getContext().getTypeSizeInChars(CastTy))
+ return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
+ if (CastTy->isIntegerType() && ValTy->isIntegerType())
+ return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
+ CastTy->hasSignedIntegerRepresentation());
+ Address CastItem = CGF.CreateMemTemp(CastTy);
+ Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
+ CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
+ LValueBaseInfo(AlignmentSource::Type),
+ TBAAAccessInfo());
+ return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
+ LValueBaseInfo(AlignmentSource::Type),
+ TBAAAccessInfo());
+}
+
+/// This function creates calls to one of two shuffle functions to copy
+/// variables between lanes in a warp.
+static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
+ llvm::Value *Elem,
+ QualType ElemType,
+ llvm::Value *Offset,
+ SourceLocation Loc) {
+ CodeGenModule &CGM = CGF.CGM;
+ CGBuilderTy &Bld = CGF.Builder;
+ CGOpenMPRuntimeGPU &RT =
+ *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
+ llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
+
+ CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
+ assert(Size.getQuantity() <= 8 &&
+ "Unsupported bitwidth in shuffle instruction.");
+
+ RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
+ ? OMPRTL___kmpc_shuffle_int32
+ : OMPRTL___kmpc_shuffle_int64;
+
+ // Cast all types to 32- or 64-bit values before calling shuffle routines.
+ QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
+ Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
+ llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
+ llvm::Value *WarpSize =
+ Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
+
+ llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
+ OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
+ {ElemCast, Offset, WarpSize});
+
+ return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
+}
+
+static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
+ Address DestAddr, QualType ElemType,
+ llvm::Value *Offset, SourceLocation Loc) {
+ CGBuilderTy &Bld = CGF.Builder;
+
+ CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
+ // Create the loop over the big sized data.
+ // ptr = (void*)Elem;
+ // ptrEnd = (void*) Elem + 1;
+ // Step = 8;
+ // while (ptr + Step < ptrEnd)
+ // shuffle((int64_t)*ptr);
+ // Step = 4;
+ // while (ptr + Step < ptrEnd)
+ // shuffle((int32_t)*ptr);
+ // ...
+ Address ElemPtr = DestAddr;
+ Address Ptr = SrcAddr;
+ Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy);
+ for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
+ if (Size < CharUnits::fromQuantity(IntSize))
+ continue;
+ QualType IntType = CGF.getContext().getIntTypeForBitwidth(
+ CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
+ /*Signed=*/1);
+ llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
+ Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo());
+ ElemPtr =
+ Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo());
+ if (Size.getQuantity() / IntSize > 1) {
+ llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
+ llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
+ llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
+ llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
+ CGF.EmitBlock(PreCondBB);
+ llvm::PHINode *PhiSrc =
+ Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
+ PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
+ llvm::PHINode *PhiDest =
+ Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
+ PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
+ Ptr = Address(PhiSrc, Ptr.getAlignment());
+ ElemPtr = Address(PhiDest, ElemPtr.getAlignment());
+ llvm::Value *PtrDiff = Bld.CreatePtrDiff(
+ CGF.Int8Ty, PtrEnd.getPointer(),
+ Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
+ CGF.VoidPtrTy));
+ Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
+ ThenBB, ExitBB);
+ CGF.EmitBlock(ThenBB);
+ llvm::Value *Res = createRuntimeShuffleFunction(
+ CGF,
+ CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
+ LValueBaseInfo(AlignmentSource::Type),
+ TBAAAccessInfo()),
+ IntType, Offset, Loc);
+ CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
+ LValueBaseInfo(AlignmentSource::Type),
+ TBAAAccessInfo());
+ Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
+ Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
+ PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
+ PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
+ CGF.EmitBranch(PreCondBB);
+ CGF.EmitBlock(ExitBB);
+ } else {
+ llvm::Value *Res = createRuntimeShuffleFunction(
+ CGF,
+ CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
+ LValueBaseInfo(AlignmentSource::Type),
+ TBAAAccessInfo()),
+ IntType, Offset, Loc);
+ CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
+ LValueBaseInfo(AlignmentSource::Type),
+ TBAAAccessInfo());
+ Ptr = Bld.CreateConstGEP(Ptr, 1);
+ ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
+ }
+ Size = Size % IntSize;
+ }
+}
+
+namespace {
+enum CopyAction : unsigned {
+ // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
+ // the warp using shuffle instructions.
+ RemoteLaneToThread,
+ // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
+ ThreadCopy,
+ // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
+ ThreadToScratchpad,
+ // ScratchpadToThread: Copy from a scratchpad array in global memory
+ // containing team-reduced data to a thread's stack.
+ ScratchpadToThread,
+};
+} // namespace
+
+struct CopyOptionsTy {
+ llvm::Value *RemoteLaneOffset;
+ llvm::Value *ScratchpadIndex;
+ llvm::Value *ScratchpadWidth;
+};
+
+/// Emit instructions to copy a Reduce list, which contains partially
+/// aggregated values, in the specified direction.
+static void emitReductionListCopy(
+ CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
+ ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
+ CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
+
+ CodeGenModule &CGM = CGF.CGM;
+ ASTContext &C = CGM.getContext();
+ CGBuilderTy &Bld = CGF.Builder;
+
+ llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
+ llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
+ llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
+
+ // Iterates, element-by-element, through the source Reduce list and
+ // make a copy.
+ unsigned Idx = 0;
+ unsigned Size = Privates.size();
+ for (const Expr *Private : Privates) {
+ Address SrcElementAddr = Address::invalid();
+ Address DestElementAddr = Address::invalid();
+ Address DestElementPtrAddr = Address::invalid();
+ // Should we shuffle in an element from a remote lane?
+ bool ShuffleInElement = false;
+ // Set to true to update the pointer in the dest Reduce list to a
+ // newly created element.
+ bool UpdateDestListPtr = false;
+ // Increment the src or dest pointer to the scratchpad, for each
+ // new element.
+ bool IncrScratchpadSrc = false;
+ bool IncrScratchpadDest = false;
+
+ switch (Action) {
+ case RemoteLaneToThread: {
+ // Step 1.1: Get the address for the src element in the Reduce list.
+ Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
+ SrcElementAddr = CGF.EmitLoadOfPointer(
+ SrcElementPtrAddr,
+ C.getPointerType(Private->getType())->castAs<PointerType>());
+
+ // Step 1.2: Create a temporary to store the element in the destination
+ // Reduce list.
+ DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
+ DestElementAddr =
+ CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
+ ShuffleInElement = true;
+ UpdateDestListPtr = true;
+ break;
+ }
+ case ThreadCopy: {
+ // Step 1.1: Get the address for the src element in the Reduce list.
+ Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
+ SrcElementAddr = CGF.EmitLoadOfPointer(
+ SrcElementPtrAddr,
+ C.getPointerType(Private->getType())->castAs<PointerType>());
+
+ // Step 1.2: Get the address for dest element. The destination
+ // element has already been created on the thread's stack.
+ DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
+ DestElementAddr = CGF.EmitLoadOfPointer(
+ DestElementPtrAddr,
+ C.getPointerType(Private->getType())->castAs<PointerType>());
+ break;
+ }
+ case ThreadToScratchpad: {
+ // Step 1.1: Get the address for the src element in the Reduce list.
+ Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
+ SrcElementAddr = CGF.EmitLoadOfPointer(
+ SrcElementPtrAddr,
+ C.getPointerType(Private->getType())->castAs<PointerType>());
+
+ // Step 1.2: Get the address for dest element:
+ // address = base + index * ElementSizeInChars.
+ llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
+ llvm::Value *CurrentOffset =
+ Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
+ llvm::Value *ScratchPadElemAbsolutePtrVal =
+ Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
+ ScratchPadElemAbsolutePtrVal =
+ Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
+ DestElementAddr = Address(ScratchPadElemAbsolutePtrVal,
+ C.getTypeAlignInChars(Private->getType()));
+ IncrScratchpadDest = true;
+ break;
+ }
+ case ScratchpadToThread: {
+ // Step 1.1: Get the address for the src element in the scratchpad.
+ // address = base + index * ElementSizeInChars.
+ llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
+ llvm::Value *CurrentOffset =
+ Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
+ llvm::Value *ScratchPadElemAbsolutePtrVal =
+ Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
+ ScratchPadElemAbsolutePtrVal =
+ Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
+ SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
+ C.getTypeAlignInChars(Private->getType()));
+ IncrScratchpadSrc = true;
+
+ // Step 1.2: Create a temporary to store the element in the destination
+ // Reduce list.
+ DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
+ DestElementAddr =
+ CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
+ UpdateDestListPtr = true;
+ break;
+ }
+ }
+
+ // Regardless of src and dest of copy, we emit the load of src
+ // element as this is required in all directions
+ SrcElementAddr = Bld.CreateElementBitCast(
+ SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
+ DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
+ SrcElementAddr.getElementType());
+
+ // Now that all active lanes have read the element in the
+ // Reduce list, shuffle over the value from the remote lane.
+ if (ShuffleInElement) {
+ shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
+ RemoteLaneOffset, Private->getExprLoc());
+ } else {
+ switch (CGF.getEvaluationKind(Private->getType())) {
+ case TEK_Scalar: {
+ llvm::Value *Elem = CGF.EmitLoadOfScalar(
+ SrcElementAddr, /*Volatile=*/false, Private->getType(),
+ Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
+ TBAAAccessInfo());
+ // Store the source element value to the dest element address.
+ CGF.EmitStoreOfScalar(
+ Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
+ LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
+ break;
+ }
+ case TEK_Complex: {
+ CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
+ CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
+ Private->getExprLoc());
+ CGF.EmitStoreOfComplex(
+ Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
+ /*isInit=*/false);
+ break;
+ }
+ case TEK_Aggregate:
+ CGF.EmitAggregateCopy(
+ CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
+ CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
+ Private->getType(), AggValueSlot::DoesNotOverlap);
+ break;
+ }
+ }
+
+ // Step 3.1: Modify reference in dest Reduce list as needed.
+ // Modifying the reference in Reduce list to point to the newly
+ // created element. The element is live in the current function
+ // scope and that of functions it invokes (i.e., reduce_function).
+ // RemoteReduceData[i] = (void*)&RemoteElem
+ if (UpdateDestListPtr) {
+ CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
+ DestElementAddr.getPointer(), CGF.VoidPtrTy),
+ DestElementPtrAddr, /*Volatile=*/false,
+ C.VoidPtrTy);
+ }
+
+ // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
+ // address of the next element in scratchpad memory, unless we're currently
+ // processing the last one. Memory alignment is also taken care of here.
+ if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
+ llvm::Value *ScratchpadBasePtr =
+ IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
+ llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
+ ScratchpadBasePtr = Bld.CreateNUWAdd(
+ ScratchpadBasePtr,
+ Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
+
+ // Take care of global memory alignment for performance
+ ScratchpadBasePtr = Bld.CreateNUWSub(
+ ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
+ ScratchpadBasePtr = Bld.CreateUDiv(
+ ScratchpadBasePtr,
+ llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
+ ScratchpadBasePtr = Bld.CreateNUWAdd(
+ ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
+ ScratchpadBasePtr = Bld.CreateNUWMul(
+ ScratchpadBasePtr,
+ llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
+
+ if (IncrScratchpadDest)
+ DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
+ else /* IncrScratchpadSrc = true */
+ SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
+ }
+
+ ++Idx;
+ }
+}
+
+/// This function emits a helper that gathers Reduce lists from the first
+/// lane of every active warp to lanes in the first warp.
+///
+/// void inter_warp_copy_func(void* reduce_data, num_warps)
+/// shared smem[warp_size];
+/// For all data entries D in reduce_data:
+/// sync
+/// If (I am the first lane in each warp)
+/// Copy my local D to smem[warp_id]
+/// sync
+/// if (I am the first warp)
+/// Copy smem[thread_id] to my local D
+static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
+ ArrayRef<const Expr *> Privates,
+ QualType ReductionArrayTy,
+ SourceLocation Loc) {
+ ASTContext &C = CGM.getContext();
+ llvm::Module &M = CGM.getModule();
+
+ // ReduceList: thread local Reduce list.
+ // At the stage of the computation when this function is called, partially
+ // aggregated values reside in the first lane of every active warp.
+ ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.VoidPtrTy, ImplicitParamDecl::Other);
+ // NumWarps: number of warps active in the parallel region. This could
+ // be smaller than 32 (max warps in a CTA) for partial block reduction.
+ ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.getIntTypeForBitwidth(32, /* Signed */ true),
+ ImplicitParamDecl::Other);
+ FunctionArgList Args;
+ Args.push_back(&ReduceListArg);
+ Args.push_back(&NumWarpsArg);
+
+ const CGFunctionInfo &CGFI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
+ llvm::GlobalValue::InternalLinkage,
+ "_omp_reduction_inter_warp_copy_func", &M);
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+ Fn->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+ CGBuilderTy &Bld = CGF.Builder;
+
+ // This array is used as a medium to transfer, one reduce element at a time,
+ // the data from the first lane of every warp to lanes in the first warp
+ // in order to perform the final step of a reduction in a parallel region
+ // (reduction across warps). The array is placed in NVPTX __shared__ memory
+ // for reduced latency, as well as to have a distinct copy for concurrently
+ // executing target regions. The array is declared with common linkage so
+ // as to be shared across compilation units.
+ StringRef TransferMediumName =
+ "__openmp_nvptx_data_transfer_temporary_storage";
+ llvm::GlobalVariable *TransferMedium =
+ M.getGlobalVariable(TransferMediumName);
+ unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
+ if (!TransferMedium) {
+ auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
+ unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
+ TransferMedium = new llvm::GlobalVariable(
+ M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
+ llvm::UndefValue::get(Ty), TransferMediumName,
+ /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
+ SharedAddressSpace);
+ CGM.addCompilerUsedGlobal(TransferMedium);
+ }
+
+ auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
+ // Get the CUDA thread id of the current OpenMP thread on the GPU.
+ llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
+ // nvptx_lane_id = nvptx_id % warpsize
+ llvm::Value *LaneID = getNVPTXLaneID(CGF);
+ // nvptx_warp_id = nvptx_id / warpsize
+ llvm::Value *WarpID = getNVPTXWarpID(CGF);
+
+ Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+ Address LocalReduceList(
+ Bld.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfScalar(
+ AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
+ LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
+ CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+ CGF.getPointerAlign());
+
+ unsigned Idx = 0;
+ for (const Expr *Private : Privates) {
+ //
+ // Warp master copies reduce element to transfer medium in __shared__
+ // memory.
+ //
+ unsigned RealTySize =
+ C.getTypeSizeInChars(Private->getType())
+ .alignTo(C.getTypeAlignInChars(Private->getType()))
+ .getQuantity();
+ for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
+ unsigned NumIters = RealTySize / TySize;
+ if (NumIters == 0)
+ continue;
+ QualType CType = C.getIntTypeForBitwidth(
+ C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
+ llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
+ CharUnits Align = CharUnits::fromQuantity(TySize);
+ llvm::Value *Cnt = nullptr;
+ Address CntAddr = Address::invalid();
+ llvm::BasicBlock *PrecondBB = nullptr;
+ llvm::BasicBlock *ExitBB = nullptr;
+ if (NumIters > 1) {
+ CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
+ CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
+ /*Volatile=*/false, C.IntTy);
+ PrecondBB = CGF.createBasicBlock("precond");
+ ExitBB = CGF.createBasicBlock("exit");
+ llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
+ // There is no need to emit line number for unconditional branch.
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(PrecondBB);
+ Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
+ llvm::Value *Cmp =
+ Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
+ Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
+ CGF.EmitBlock(BodyBB);
+ }
+ // kmpc_barrier.
+ CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
+ /*EmitChecks=*/false,
+ /*ForceSimpleCall=*/true);
+ llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
+ llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
+ llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
+
+ // if (lane_id == 0)
+ llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
+ Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
+ CGF.EmitBlock(ThenBB);
+
+ // Reduce element = LocalReduceList[i]
+ Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
+ llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
+ ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+ // elemptr = ((CopyType*)(elemptrptr)) + I
+ Address ElemPtr = Address(ElemPtrPtr, Align);
+ ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
+ if (NumIters > 1)
+ ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
+
+ // Get pointer to location in transfer medium.
+ // MediumPtr = &medium[warp_id]
+ llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
+ TransferMedium->getValueType(), TransferMedium,
+ {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
+ Address MediumPtr(MediumPtrVal, Align);
+ // Casting to actual data type.
+ // MediumPtr = (CopyType*)MediumPtrAddr;
+ MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
+
+ // elem = *elemptr
+ //*MediumPtr = elem
+ llvm::Value *Elem = CGF.EmitLoadOfScalar(
+ ElemPtr, /*Volatile=*/false, CType, Loc,
+ LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
+ // Store the source element value to the dest element address.
+ CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
+ LValueBaseInfo(AlignmentSource::Type),
+ TBAAAccessInfo());
+
+ Bld.CreateBr(MergeBB);
+
+ CGF.EmitBlock(ElseBB);
+ Bld.CreateBr(MergeBB);
+
+ CGF.EmitBlock(MergeBB);
+
+ // kmpc_barrier.
+ CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
+ /*EmitChecks=*/false,
+ /*ForceSimpleCall=*/true);
+
+ //
+ // Warp 0 copies reduce element from transfer medium.
+ //
+ llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
+ llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
+ llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
+
+ Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
+ llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
+ AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
+
+ // Up to 32 threads in warp 0 are active.
+ llvm::Value *IsActiveThread =
+ Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
+ Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
+
+ CGF.EmitBlock(W0ThenBB);
+
+ // SrcMediumPtr = &medium[tid]
+ llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
+ TransferMedium->getValueType(), TransferMedium,
+ {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
+ Address SrcMediumPtr(SrcMediumPtrVal, Align);
+ // SrcMediumVal = *SrcMediumPtr;
+ SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
+
+ // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
+ Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
+ llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
+ TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
+ Address TargetElemPtr = Address(TargetElemPtrVal, Align);
+ TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
+ if (NumIters > 1)
+ TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
+
+ // *TargetElemPtr = SrcMediumVal;
+ llvm::Value *SrcMediumValue =
+ CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
+ CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
+ CType);
+ Bld.CreateBr(W0MergeBB);
+
+ CGF.EmitBlock(W0ElseBB);
+ Bld.CreateBr(W0MergeBB);
+
+ CGF.EmitBlock(W0MergeBB);
+
+ if (NumIters > 1) {
+ Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
+ CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
+ CGF.EmitBranch(PrecondBB);
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(ExitBB);
+ }
+ RealTySize %= TySize;
+ }
+ ++Idx;
+ }
+
+ CGF.FinishFunction();
+ return Fn;
+}
+
+/// Emit a helper that reduces data across two OpenMP threads (lanes)
+/// in the same warp. It uses shuffle instructions to copy over data from
+/// a remote lane's stack. The reduction algorithm performed is specified
+/// by the fourth parameter.
+///
+/// Algorithm Versions.
+/// Full Warp Reduce (argument value 0):
+/// This algorithm assumes that all 32 lanes are active and gathers
+/// data from these 32 lanes, producing a single resultant value.
+/// Contiguous Partial Warp Reduce (argument value 1):
+/// This algorithm assumes that only a *contiguous* subset of lanes
+/// are active. This happens for the last warp in a parallel region
+/// when the user specified num_threads is not an integer multiple of
+/// 32. This contiguous subset always starts with the zeroth lane.
+/// Partial Warp Reduce (argument value 2):
+/// This algorithm gathers data from any number of lanes at any position.
+/// All reduced values are stored in the lowest possible lane. The set
+/// of problems every algorithm addresses is a super set of those
+/// addressable by algorithms with a lower version number. Overhead
+/// increases as algorithm version increases.
+///
+/// Terminology
+/// Reduce element:
+/// Reduce element refers to the individual data field with primitive
+/// data types to be combined and reduced across threads.
+/// Reduce list:
+/// Reduce list refers to a collection of local, thread-private
+/// reduce elements.
+/// Remote Reduce list:
+/// Remote Reduce list refers to a collection of remote (relative to
+/// the current thread) reduce elements.
+///
+/// We distinguish between three states of threads that are important to
+/// the implementation of this function.
+/// Alive threads:
+/// Threads in a warp executing the SIMT instruction, as distinguished from
+/// threads that are inactive due to divergent control flow.
+/// Active threads:
+/// The minimal set of threads that has to be alive upon entry to this
+/// function. The computation is correct iff active threads are alive.
+/// Some threads are alive but they are not active because they do not
+/// contribute to the computation in any useful manner. Turning them off
+/// may introduce control flow overheads without any tangible benefits.
+/// Effective threads:
+/// In order to comply with the argument requirements of the shuffle
+/// function, we must keep all lanes holding data alive. But at most
+/// half of them perform value aggregation; we refer to this half of
+/// threads as effective. The other half is simply handing off their
+/// data.
+///
+/// Procedure
+/// Value shuffle:
+/// In this step active threads transfer data from higher lane positions
+/// in the warp to lower lane positions, creating Remote Reduce list.
+/// Value aggregation:
+/// In this step, effective threads combine their thread local Reduce list
+/// with Remote Reduce list and store the result in the thread local
+/// Reduce list.
+/// Value copy:
+/// In this step, we deal with the assumption made by algorithm 2
+/// (i.e. contiguity assumption). When we have an odd number of lanes
+/// active, say 2k+1, only k threads will be effective and therefore k
+/// new values will be produced. However, the Reduce list owned by the
+/// (2k+1)th thread is ignored in the value aggregation. Therefore
+/// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
+/// that the contiguity assumption still holds.
+static llvm::Function *emitShuffleAndReduceFunction(
+ CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
+ QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
+ ASTContext &C = CGM.getContext();
+
+ // Thread local Reduce list used to host the values of data to be reduced.
+ ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.VoidPtrTy, ImplicitParamDecl::Other);
+ // Current lane id; could be logical.
+ ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
+ ImplicitParamDecl::Other);
+ // Offset of the remote source lane relative to the current lane.
+ ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.ShortTy, ImplicitParamDecl::Other);
+ // Algorithm version. This is expected to be known at compile time.
+ ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.ShortTy, ImplicitParamDecl::Other);
+ FunctionArgList Args;
+ Args.push_back(&ReduceListArg);
+ Args.push_back(&LaneIDArg);
+ Args.push_back(&RemoteLaneOffsetArg);
+ Args.push_back(&AlgoVerArg);
+
+ const CGFunctionInfo &CGFI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+ Fn->setDoesNotRecurse();
+
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+ CGBuilderTy &Bld = CGF.Builder;
+
+ Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+ Address LocalReduceList(
+ Bld.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+ C.VoidPtrTy, SourceLocation()),
+ CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+ CGF.getPointerAlign());
+
+ Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
+ llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
+ AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+ Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
+ llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
+ AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+ Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
+ llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
+ AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+ // Create a local thread-private variable to host the Reduce list
+ // from a remote lane.
+ Address RemoteReduceList =
+ CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
+
+ // This loop iterates through the list of reduce elements and copies,
+ // element by element, from a remote lane in the warp to RemoteReduceList,
+ // hosted on the thread's stack.
+ emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
+ LocalReduceList, RemoteReduceList,
+ {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
+ /*ScratchpadIndex=*/nullptr,
+ /*ScratchpadWidth=*/nullptr});
+
+ // The actions to be performed on the Remote Reduce list is dependent
+ // on the algorithm version.
+ //
+ // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
+ // LaneId % 2 == 0 && Offset > 0):
+ // do the reduction value aggregation
+ //
+ // The thread local variable Reduce list is mutated in place to host the
+ // reduced data, which is the aggregated value produced from local and
+ // remote lanes.
+ //
+ // Note that AlgoVer is expected to be a constant integer known at compile
+ // time.
+ // When AlgoVer==0, the first conjunction evaluates to true, making
+ // the entire predicate true during compile time.
+ // When AlgoVer==1, the second conjunction has only the second part to be
+ // evaluated during runtime. Other conjunctions evaluates to false
+ // during compile time.
+ // When AlgoVer==2, the third conjunction has only the second part to be
+ // evaluated during runtime. Other conjunctions evaluates to false
+ // during compile time.
+ llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
+
+ llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
+ llvm::Value *CondAlgo1 = Bld.CreateAnd(
+ Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
+
+ llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
+ llvm::Value *CondAlgo2 = Bld.CreateAnd(
+ Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
+ CondAlgo2 = Bld.CreateAnd(
+ CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
+
+ llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
+ CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
+
+ llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
+ llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
+ llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
+ Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
+
+ CGF.EmitBlock(ThenBB);
+ // reduce_function(LocalReduceList, RemoteReduceList)
+ llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ LocalReduceList.getPointer(), CGF.VoidPtrTy);
+ llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ RemoteReduceList.getPointer(), CGF.VoidPtrTy);
+ CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
+ CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
+ Bld.CreateBr(MergeBB);
+
+ CGF.EmitBlock(ElseBB);
+ Bld.CreateBr(MergeBB);
+
+ CGF.EmitBlock(MergeBB);
+
+ // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
+ // Reduce list.
+ Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
+ llvm::Value *CondCopy = Bld.CreateAnd(
+ Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
+
+ llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
+ llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
+ llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
+ Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
+
+ CGF.EmitBlock(CpyThenBB);
+ emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
+ RemoteReduceList, LocalReduceList);
+ Bld.CreateBr(CpyMergeBB);
+
+ CGF.EmitBlock(CpyElseBB);
+ Bld.CreateBr(CpyMergeBB);
+
+ CGF.EmitBlock(CpyMergeBB);
+
+ CGF.FinishFunction();
+ return Fn;
+}
+
+/// This function emits a helper that copies all the reduction variables from
+/// the team into the provided global buffer for the reduction variables.
+///
+/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
+/// For all data entries D in reduce_data:
+/// Copy local D to buffer.D[Idx]
+static llvm::Value *emitListToGlobalCopyFunction(
+ CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
+ QualType ReductionArrayTy, SourceLocation Loc,
+ const RecordDecl *TeamReductionRec,
+ const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+ &VarFieldMap) {
+ ASTContext &C = CGM.getContext();
+
+ // Buffer: global reduction buffer.
+ ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.VoidPtrTy, ImplicitParamDecl::Other);
+ // Idx: index of the buffer.
+ ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
+ ImplicitParamDecl::Other);
+ // ReduceList: thread local Reduce list.
+ ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.VoidPtrTy, ImplicitParamDecl::Other);
+ FunctionArgList Args;
+ Args.push_back(&BufferArg);
+ Args.push_back(&IdxArg);
+ Args.push_back(&ReduceListArg);
+
+ const CGFunctionInfo &CGFI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+ Fn->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+ CGBuilderTy &Bld = CGF.Builder;
+
+ Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+ Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
+ Address LocalReduceList(
+ Bld.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+ C.VoidPtrTy, Loc),
+ CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+ CGF.getPointerAlign());
+ QualType StaticTy = C.getRecordType(TeamReductionRec);
+ llvm::Type *LLVMReductionsBufferTy =
+ CGM.getTypes().ConvertTypeForMem(StaticTy);
+ llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
+ LLVMReductionsBufferTy->getPointerTo());
+ llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
+ CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
+ /*Volatile=*/false, C.IntTy,
+ Loc)};
+ unsigned Idx = 0;
+ for (const Expr *Private : Privates) {
+ // Reduce element = LocalReduceList[i]
+ Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
+ llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
+ ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+ // elemptr = ((CopyType*)(elemptrptr)) + I
+ ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
+ Address ElemPtr =
+ Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
+ const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
+ // Global = Buffer.VD[Idx];
+ const FieldDecl *FD = VarFieldMap.lookup(VD);
+ LValue GlobLVal = CGF.EmitLValueForField(
+ CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
+ Address GlobAddr = GlobLVal.getAddress(CGF);
+ llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
+ GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
+ GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment()));
+ switch (CGF.getEvaluationKind(Private->getType())) {
+ case TEK_Scalar: {
+ llvm::Value *V = CGF.EmitLoadOfScalar(
+ ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
+ LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
+ CGF.EmitStoreOfScalar(V, GlobLVal);
+ break;
+ }
+ case TEK_Complex: {
+ CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
+ CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
+ CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
+ break;
+ }
+ case TEK_Aggregate:
+ CGF.EmitAggregateCopy(GlobLVal,
+ CGF.MakeAddrLValue(ElemPtr, Private->getType()),
+ Private->getType(), AggValueSlot::DoesNotOverlap);
+ break;
+ }
+ ++Idx;
+ }
+
+ CGF.FinishFunction();
+ return Fn;
+}
+
+/// This function emits a helper that reduces all the reduction variables from
+/// the team into the provided global buffer for the reduction variables.
+///
+/// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
+/// void *GlobPtrs[];
+/// GlobPtrs[0] = (void*)&buffer.D0[Idx];
+/// ...
+/// GlobPtrs[N] = (void*)&buffer.DN[Idx];
+/// reduce_function(GlobPtrs, reduce_data);
+static llvm::Value *emitListToGlobalReduceFunction(
+ CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
+ QualType ReductionArrayTy, SourceLocation Loc,
+ const RecordDecl *TeamReductionRec,
+ const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+ &VarFieldMap,
+ llvm::Function *ReduceFn) {
+ ASTContext &C = CGM.getContext();
+
+ // Buffer: global reduction buffer.
+ ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.VoidPtrTy, ImplicitParamDecl::Other);
+ // Idx: index of the buffer.
+ ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
+ ImplicitParamDecl::Other);
+ // ReduceList: thread local Reduce list.
+ ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.VoidPtrTy, ImplicitParamDecl::Other);
+ FunctionArgList Args;
+ Args.push_back(&BufferArg);
+ Args.push_back(&IdxArg);
+ Args.push_back(&ReduceListArg);
+
+ const CGFunctionInfo &CGFI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+ Fn->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+ CGBuilderTy &Bld = CGF.Builder;
+
+ Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
+ QualType StaticTy = C.getRecordType(TeamReductionRec);
+ llvm::Type *LLVMReductionsBufferTy =
+ CGM.getTypes().ConvertTypeForMem(StaticTy);
+ llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
+ LLVMReductionsBufferTy->getPointerTo());
+
+ // 1. Build a list of reduction variables.
+ // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
+ Address ReductionList =
+ CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
+ auto IPriv = Privates.begin();
+ llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
+ CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
+ /*Volatile=*/false, C.IntTy,
+ Loc)};
+ unsigned Idx = 0;
+ for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
+ Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
+ // Global = Buffer.VD[Idx];
+ const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
+ const FieldDecl *FD = VarFieldMap.lookup(VD);
+ LValue GlobLVal = CGF.EmitLValueForField(
+ CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
+ Address GlobAddr = GlobLVal.getAddress(CGF);
+ llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
+ GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
+ llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
+ CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
+ if ((*IPriv)->getType()->isVariablyModifiedType()) {
+ // Store array size.
+ ++Idx;
+ Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
+ llvm::Value *Size = CGF.Builder.CreateIntCast(
+ CGF.getVLASize(
+ CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
+ .NumElts,
+ CGF.SizeTy, /*isSigned=*/false);
+ CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
+ Elem);
+ }
+ }
+
+ // Call reduce_function(GlobalReduceList, ReduceList)
+ llvm::Value *GlobalReduceList =
+ CGF.EmitCastToVoidPtr(ReductionList.getPointer());
+ Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+ llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
+ AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
+ CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
+ CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
+ CGF.FinishFunction();
+ return Fn;
+}
+
+/// This function emits a helper that copies all the reduction variables from
+/// the team into the provided global buffer for the reduction variables.
+///
+/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
+/// For all data entries D in reduce_data:
+/// Copy buffer.D[Idx] to local D;
+static llvm::Value *emitGlobalToListCopyFunction(
+ CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
+ QualType ReductionArrayTy, SourceLocation Loc,
+ const RecordDecl *TeamReductionRec,
+ const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+ &VarFieldMap) {
+ ASTContext &C = CGM.getContext();
+
+ // Buffer: global reduction buffer.
+ ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.VoidPtrTy, ImplicitParamDecl::Other);
+ // Idx: index of the buffer.
+ ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
+ ImplicitParamDecl::Other);
+ // ReduceList: thread local Reduce list.
+ ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.VoidPtrTy, ImplicitParamDecl::Other);
+ FunctionArgList Args;
+ Args.push_back(&BufferArg);
+ Args.push_back(&IdxArg);
+ Args.push_back(&ReduceListArg);
+
+ const CGFunctionInfo &CGFI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+ Fn->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+ CGBuilderTy &Bld = CGF.Builder;
+
+ Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+ Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
+ Address LocalReduceList(
+ Bld.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+ C.VoidPtrTy, Loc),
+ CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+ CGF.getPointerAlign());
+ QualType StaticTy = C.getRecordType(TeamReductionRec);
+ llvm::Type *LLVMReductionsBufferTy =
+ CGM.getTypes().ConvertTypeForMem(StaticTy);
+ llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
+ LLVMReductionsBufferTy->getPointerTo());
+
+ llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
+ CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
+ /*Volatile=*/false, C.IntTy,
+ Loc)};
+ unsigned Idx = 0;
+ for (const Expr *Private : Privates) {
+ // Reduce element = LocalReduceList[i]
+ Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
+ llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
+ ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+ // elemptr = ((CopyType*)(elemptrptr)) + I
+ ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ ElemPtrPtr, CGF.ConvertTypeForMem(Private->getType())->getPointerTo());
+ Address ElemPtr =
+ Address(ElemPtrPtr, C.getTypeAlignInChars(Private->getType()));
+ const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
+ // Global = Buffer.VD[Idx];
+ const FieldDecl *FD = VarFieldMap.lookup(VD);
+ LValue GlobLVal = CGF.EmitLValueForField(
+ CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
+ Address GlobAddr = GlobLVal.getAddress(CGF);
+ llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
+ GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
+ GlobLVal.setAddress(Address(BufferPtr, GlobAddr.getAlignment()));
+ switch (CGF.getEvaluationKind(Private->getType())) {
+ case TEK_Scalar: {
+ llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
+ CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
+ LValueBaseInfo(AlignmentSource::Type),
+ TBAAAccessInfo());
+ break;
+ }
+ case TEK_Complex: {
+ CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
+ CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
+ /*isInit=*/false);
+ break;
+ }
+ case TEK_Aggregate:
+ CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
+ GlobLVal, Private->getType(),
+ AggValueSlot::DoesNotOverlap);
+ break;
+ }
+ ++Idx;
+ }
+
+ CGF.FinishFunction();
+ return Fn;
+}
+
+/// This function emits a helper that reduces all the reduction variables from
+/// the team into the provided global buffer for the reduction variables.
+///
+/// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
+/// void *GlobPtrs[];
+/// GlobPtrs[0] = (void*)&buffer.D0[Idx];
+/// ...
+/// GlobPtrs[N] = (void*)&buffer.DN[Idx];
+/// reduce_function(reduce_data, GlobPtrs);
+static llvm::Value *emitGlobalToListReduceFunction(
+ CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
+ QualType ReductionArrayTy, SourceLocation Loc,
+ const RecordDecl *TeamReductionRec,
+ const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+ &VarFieldMap,
+ llvm::Function *ReduceFn) {
+ ASTContext &C = CGM.getContext();
+
+ // Buffer: global reduction buffer.
+ ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.VoidPtrTy, ImplicitParamDecl::Other);
+ // Idx: index of the buffer.
+ ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
+ ImplicitParamDecl::Other);
+ // ReduceList: thread local Reduce list.
+ ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.VoidPtrTy, ImplicitParamDecl::Other);
+ FunctionArgList Args;
+ Args.push_back(&BufferArg);
+ Args.push_back(&IdxArg);
+ Args.push_back(&ReduceListArg);
+
+ const CGFunctionInfo &CGFI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+ Fn->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+ CGBuilderTy &Bld = CGF.Builder;
+
+ Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
+ QualType StaticTy = C.getRecordType(TeamReductionRec);
+ llvm::Type *LLVMReductionsBufferTy =
+ CGM.getTypes().ConvertTypeForMem(StaticTy);
+ llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
+ LLVMReductionsBufferTy->getPointerTo());
+
+ // 1. Build a list of reduction variables.
+ // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
+ Address ReductionList =
+ CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
+ auto IPriv = Privates.begin();
+ llvm::Value *Idxs[] = {llvm::ConstantInt::getNullValue(CGF.Int32Ty),
+ CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
+ /*Volatile=*/false, C.IntTy,
+ Loc)};
+ unsigned Idx = 0;
+ for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
+ Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
+ // Global = Buffer.VD[Idx];
+ const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
+ const FieldDecl *FD = VarFieldMap.lookup(VD);
+ LValue GlobLVal = CGF.EmitLValueForField(
+ CGF.MakeNaturalAlignAddrLValue(BufferArrPtr, StaticTy), FD);
+ Address GlobAddr = GlobLVal.getAddress(CGF);
+ llvm::Value *BufferPtr = Bld.CreateInBoundsGEP(
+ GlobAddr.getElementType(), GlobAddr.getPointer(), Idxs);
+ llvm::Value *Ptr = CGF.EmitCastToVoidPtr(BufferPtr);
+ CGF.EmitStoreOfScalar(Ptr, Elem, /*Volatile=*/false, C.VoidPtrTy);
+ if ((*IPriv)->getType()->isVariablyModifiedType()) {
+ // Store array size.
+ ++Idx;
+ Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
+ llvm::Value *Size = CGF.Builder.CreateIntCast(
+ CGF.getVLASize(
+ CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
+ .NumElts,
+ CGF.SizeTy, /*isSigned=*/false);
+ CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
+ Elem);
+ }
+ }
+
+ // Call reduce_function(ReduceList, GlobalReduceList)
+ llvm::Value *GlobalReduceList =
+ CGF.EmitCastToVoidPtr(ReductionList.getPointer());
+ Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+ llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
+ AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
+ CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
+ CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
+ CGF.FinishFunction();
+ return Fn;
+}
+
+///
+/// Design of OpenMP reductions on the GPU
+///
+/// Consider a typical OpenMP program with one or more reduction
+/// clauses:
+///
+/// float foo;
+/// double bar;
+/// #pragma omp target teams distribute parallel for \
+/// reduction(+:foo) reduction(*:bar)
+/// for (int i = 0; i < N; i++) {
+/// foo += A[i]; bar *= B[i];
+/// }
+///
+/// where 'foo' and 'bar' are reduced across all OpenMP threads in
+/// all teams. In our OpenMP implementation on the NVPTX device an
+/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
+/// within a team are mapped to CUDA threads within a threadblock.
+/// Our goal is to efficiently aggregate values across all OpenMP
+/// threads such that:
+///
+/// - the compiler and runtime are logically concise, and
+/// - the reduction is performed efficiently in a hierarchical
+/// manner as follows: within OpenMP threads in the same warp,
+/// across warps in a threadblock, and finally across teams on
+/// the NVPTX device.
+///
+/// Introduction to Decoupling
+///
+/// We would like to decouple the compiler and the runtime so that the
+/// latter is ignorant of the reduction variables (number, data types)
+/// and the reduction operators. This allows a simpler interface
+/// and implementation while still attaining good performance.
+///
+/// Pseudocode for the aforementioned OpenMP program generated by the
+/// compiler is as follows:
+///
+/// 1. Create private copies of reduction variables on each OpenMP
+/// thread: 'foo_private', 'bar_private'
+/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
+/// to it and writes the result in 'foo_private' and 'bar_private'
+/// respectively.
+/// 3. Call the OpenMP runtime on the GPU to reduce within a team
+/// and store the result on the team master:
+///
+/// __kmpc_nvptx_parallel_reduce_nowait_v2(...,
+/// reduceData, shuffleReduceFn, interWarpCpyFn)
+///
+/// where:
+/// struct ReduceData {
+/// double *foo;
+/// double *bar;
+/// } reduceData
+/// reduceData.foo = &foo_private
+/// reduceData.bar = &bar_private
+///
+/// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
+/// auxiliary functions generated by the compiler that operate on
+/// variables of type 'ReduceData'. They aid the runtime perform
+/// algorithmic steps in a data agnostic manner.
+///
+/// 'shuffleReduceFn' is a pointer to a function that reduces data
+/// of type 'ReduceData' across two OpenMP threads (lanes) in the
+/// same warp. It takes the following arguments as input:
+///
+/// a. variable of type 'ReduceData' on the calling lane,
+/// b. its lane_id,
+/// c. an offset relative to the current lane_id to generate a
+/// remote_lane_id. The remote lane contains the second
+/// variable of type 'ReduceData' that is to be reduced.
+/// d. an algorithm version parameter determining which reduction
+/// algorithm to use.
+///
+/// 'shuffleReduceFn' retrieves data from the remote lane using
+/// efficient GPU shuffle intrinsics and reduces, using the
+/// algorithm specified by the 4th parameter, the two operands
+/// element-wise. The result is written to the first operand.
+///
+/// Different reduction algorithms are implemented in different
+/// runtime functions, all calling 'shuffleReduceFn' to perform
+/// the essential reduction step. Therefore, based on the 4th
+/// parameter, this function behaves slightly differently to
+/// cooperate with the runtime to ensure correctness under
+/// different circumstances.
+///
+/// 'InterWarpCpyFn' is a pointer to a function that transfers
+/// reduced variables across warps. It tunnels, through CUDA
+/// shared memory, the thread-private data of type 'ReduceData'
+/// from lane 0 of each warp to a lane in the first warp.
+/// 4. Call the OpenMP runtime on the GPU to reduce across teams.
+/// The last team writes the global reduced value to memory.
+///
+/// ret = __kmpc_nvptx_teams_reduce_nowait(...,
+/// reduceData, shuffleReduceFn, interWarpCpyFn,
+/// scratchpadCopyFn, loadAndReduceFn)
+///
+/// 'scratchpadCopyFn' is a helper that stores reduced
+/// data from the team master to a scratchpad array in
+/// global memory.
+///
+/// 'loadAndReduceFn' is a helper that loads data from
+/// the scratchpad array and reduces it with the input
+/// operand.
+///
+/// These compiler generated functions hide address
+/// calculation and alignment information from the runtime.
+/// 5. if ret == 1:
+/// The team master of the last team stores the reduced
+/// result to the globals in memory.
+/// foo += reduceData.foo; bar *= reduceData.bar
+///
+///
+/// Warp Reduction Algorithms
+///
+/// On the warp level, we have three algorithms implemented in the
+/// OpenMP runtime depending on the number of active lanes:
+///
+/// Full Warp Reduction
+///
+/// The reduce algorithm within a warp where all lanes are active
+/// is implemented in the runtime as follows:
+///
+/// full_warp_reduce(void *reduce_data,
+/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
+/// for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
+/// ShuffleReduceFn(reduce_data, 0, offset, 0);
+/// }
+///
+/// The algorithm completes in log(2, WARPSIZE) steps.
+///
+/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
+/// not used therefore we save instructions by not retrieving lane_id
+/// from the corresponding special registers. The 4th parameter, which
+/// represents the version of the algorithm being used, is set to 0 to
+/// signify full warp reduction.
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// #reduce_elem refers to an element in the local lane's data structure
+/// #remote_elem is retrieved from a remote lane
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
+///
+/// Contiguous Partial Warp Reduction
+///
+/// This reduce algorithm is used within a warp where only the first
+/// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the
+/// number of OpenMP threads in a parallel region is not a multiple of
+/// WARPSIZE. The algorithm is implemented in the runtime as follows:
+///
+/// void
+/// contiguous_partial_reduce(void *reduce_data,
+/// kmp_ShuffleReductFctPtr ShuffleReduceFn,
+/// int size, int lane_id) {
+/// int curr_size;
+/// int offset;
+/// curr_size = size;
+/// mask = curr_size/2;
+/// while (offset>0) {
+/// ShuffleReduceFn(reduce_data, lane_id, offset, 1);
+/// curr_size = (curr_size+1)/2;
+/// offset = curr_size/2;
+/// }
+/// }
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// if (lane_id < offset)
+/// reduce_elem = reduce_elem REDUCE_OP remote_elem
+/// else
+/// reduce_elem = remote_elem
+///
+/// This algorithm assumes that the data to be reduced are located in a
+/// contiguous subset of lanes starting from the first. When there is
+/// an odd number of active lanes, the data in the last lane is not
+/// aggregated with any other lane's dat but is instead copied over.
+///
+/// Dispersed Partial Warp Reduction
+///
+/// This algorithm is used within a warp when any discontiguous subset of
+/// lanes are active. It is used to implement the reduction operation
+/// across lanes in an OpenMP simd region or in a nested parallel region.
+///
+/// void
+/// dispersed_partial_reduce(void *reduce_data,
+/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
+/// int size, remote_id;
+/// int logical_lane_id = number_of_active_lanes_before_me() * 2;
+/// do {
+/// remote_id = next_active_lane_id_right_after_me();
+/// # the above function returns 0 of no active lane
+/// # is present right after the current lane.
+/// size = number_of_active_lanes_in_this_warp();
+/// logical_lane_id /= 2;
+/// ShuffleReduceFn(reduce_data, logical_lane_id,
+/// remote_id-1-threadIdx.x, 2);
+/// } while (logical_lane_id % 2 == 0 && size > 1);
+/// }
+///
+/// There is no assumption made about the initial state of the reduction.
+/// Any number of lanes (>=1) could be active at any position. The reduction
+/// result is returned in the first active lane.
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// if (lane_id % 2 == 0 && offset > 0)
+/// reduce_elem = reduce_elem REDUCE_OP remote_elem
+/// else
+/// reduce_elem = remote_elem
+///
+///
+/// Intra-Team Reduction
+///
+/// This function, as implemented in the runtime call
+/// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
+/// threads in a team. It first reduces within a warp using the
+/// aforementioned algorithms. We then proceed to gather all such
+/// reduced values at the first warp.
+///
+/// The runtime makes use of the function 'InterWarpCpyFn', which copies
+/// data from each of the "warp master" (zeroth lane of each warp, where
+/// warp-reduced data is held) to the zeroth warp. This step reduces (in
+/// a mathematical sense) the problem of reduction across warp masters in
+/// a block to the problem of warp reduction.
+///
+///
+/// Inter-Team Reduction
+///
+/// Once a team has reduced its data to a single value, it is stored in
+/// a global scratchpad array. Since each team has a distinct slot, this
+/// can be done without locking.
+///
+/// The last team to write to the scratchpad array proceeds to reduce the
+/// scratchpad array. One or more workers in the last team use the helper
+/// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
+/// the k'th worker reduces every k'th element.
+///
+/// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
+/// reduce across workers and compute a globally reduced value.
+///
+void CGOpenMPRuntimeGPU::emitReduction(
+ CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
+ ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
+ ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
+#ifndef NDEBUG
+ bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
+#endif
+
+ if (Options.SimpleReduction) {
+ assert(!TeamsReduction && !ParallelReduction &&
+ "Invalid reduction selection in emitReduction.");
+ CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
+ ReductionOps, Options);
+ return;
+ }
+
+ assert((TeamsReduction || ParallelReduction) &&
+ "Invalid reduction selection in emitReduction.");
+
+ // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
+ // RedList, shuffle_reduce_func, interwarp_copy_func);
+ // or
+ // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
+ llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+ llvm::Value *ThreadId = getThreadID(CGF, Loc);
+
+ llvm::Value *Res;
+ ASTContext &C = CGM.getContext();
+ // 1. Build a list of reduction variables.
+ // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
+ auto Size = RHSExprs.size();
+ for (const Expr *E : Privates) {
+ if (E->getType()->isVariablyModifiedType())
+ // Reserve place for array size.
+ ++Size;
+ }
+ llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
+ QualType ReductionArrayTy =
+ C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ Address ReductionList =
+ CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
+ auto IPriv = Privates.begin();
+ unsigned Idx = 0;
+ for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
+ Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
+ CGF.Builder.CreateStore(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
+ Elem);
+ if ((*IPriv)->getType()->isVariablyModifiedType()) {
+ // Store array size.
+ ++Idx;
+ Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
+ llvm::Value *Size = CGF.Builder.CreateIntCast(
+ CGF.getVLASize(
+ CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
+ .NumElts,
+ CGF.SizeTy, /*isSigned=*/false);
+ CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
+ Elem);
+ }
+ }
+
+ llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ ReductionList.getPointer(), CGF.VoidPtrTy);
+ llvm::Function *ReductionFn = emitReductionFunction(
+ Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
+ LHSExprs, RHSExprs, ReductionOps);
+ llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
+ llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
+ CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
+ llvm::Value *InterWarpCopyFn =
+ emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
+
+ if (ParallelReduction) {
+ llvm::Value *Args[] = {RTLoc,
+ ThreadId,
+ CGF.Builder.getInt32(RHSExprs.size()),
+ ReductionArrayTySize,
+ RL,
+ ShuffleAndReduceFn,
+ InterWarpCopyFn};
+
+ Res = CGF.EmitRuntimeCall(
+ OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
+ Args);
+ } else {
+ assert(TeamsReduction && "expected teams reduction.");
+ llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
+ llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
+ int Cnt = 0;
+ for (const Expr *DRE : Privates) {
+ PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
+ ++Cnt;
+ }
+ const RecordDecl *TeamReductionRec = ::buildRecordForGlobalizedVars(
+ CGM.getContext(), PrivatesReductions, llvm::None, VarFieldMap,
+ C.getLangOpts().OpenMPCUDAReductionBufNum);
+ TeamsReductions.push_back(TeamReductionRec);
+ if (!KernelTeamsReductionPtr) {
+ KernelTeamsReductionPtr = new llvm::GlobalVariable(
+ CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/true,
+ llvm::GlobalValue::InternalLinkage, nullptr,
+ "_openmp_teams_reductions_buffer_$_$ptr");
+ }
+ llvm::Value *GlobalBufferPtr = CGF.EmitLoadOfScalar(
+ Address(KernelTeamsReductionPtr, CGM.getPointerAlign()),
+ /*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
+ llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
+ CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
+ llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
+ CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
+ ReductionFn);
+ llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
+ CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap);
+ llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
+ CGM, Privates, ReductionArrayTy, Loc, TeamReductionRec, VarFieldMap,
+ ReductionFn);
+
+ llvm::Value *Args[] = {
+ RTLoc,
+ ThreadId,
+ GlobalBufferPtr,
+ CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
+ RL,
+ ShuffleAndReduceFn,
+ InterWarpCopyFn,
+ GlobalToBufferCpyFn,
+ GlobalToBufferRedFn,
+ BufferToGlobalCpyFn,
+ BufferToGlobalRedFn};
+
+ Res = CGF.EmitRuntimeCall(
+ OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
+ Args);
+ }
+
+ // 5. Build if (res == 1)
+ llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
+ llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
+ llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
+ Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
+ CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
+
+ // 6. Build then branch: where we have reduced values in the master
+ // thread in each team.
+ // __kmpc_end_reduce{_nowait}(<gtid>);
+ // break;
+ CGF.EmitBlock(ThenBB);
+
+ // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
+ auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
+ this](CodeGenFunction &CGF, PrePostActionTy &Action) {
+ auto IPriv = Privates.begin();
+ auto ILHS = LHSExprs.begin();
+ auto IRHS = RHSExprs.begin();
+ for (const Expr *E : ReductionOps) {
+ emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
+ cast<DeclRefExpr>(*IRHS));
+ ++IPriv;
+ ++ILHS;
+ ++IRHS;
+ }
+ };
+ llvm::Value *EndArgs[] = {ThreadId};
+ RegionCodeGenTy RCG(CodeGen);
+ NVPTXActionTy Action(
+ nullptr, llvm::None,
+ OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_nvptx_end_reduce_nowait),
+ EndArgs);
+ RCG.setAction(Action);
+ RCG(CGF);
+ // There is no need to emit line number for unconditional branch.
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
+}
+
+const VarDecl *
+CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
+ const VarDecl *NativeParam) const {
+ if (!NativeParam->getType()->isReferenceType())
+ return NativeParam;
+ QualType ArgType = NativeParam->getType();
+ QualifierCollector QC;
+ const Type *NonQualTy = QC.strip(ArgType);
+ QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
+ if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
+ if (Attr->getCaptureKind() == OMPC_map) {
+ PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
+ LangAS::opencl_global);
+ }
+ }
+ ArgType = CGM.getContext().getPointerType(PointeeTy);
+ QC.addRestrict();
+ enum { NVPTX_local_addr = 5 };
+ QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
+ ArgType = QC.apply(CGM.getContext(), ArgType);
+ if (isa<ImplicitParamDecl>(NativeParam))
+ return ImplicitParamDecl::Create(
+ CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
+ NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
+ return ParmVarDecl::Create(
+ CGM.getContext(),
+ const_cast<DeclContext *>(NativeParam->getDeclContext()),
+ NativeParam->getBeginLoc(), NativeParam->getLocation(),
+ NativeParam->getIdentifier(), ArgType,
+ /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
+}
+
+Address
+CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
+ const VarDecl *NativeParam,
+ const VarDecl *TargetParam) const {
+ assert(NativeParam != TargetParam &&
+ NativeParam->getType()->isReferenceType() &&
+ "Native arg must not be the same as target arg.");
+ Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
+ QualType NativeParamType = NativeParam->getType();
+ QualifierCollector QC;
+ const Type *NonQualTy = QC.strip(NativeParamType);
+ QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
+ unsigned NativePointeeAddrSpace =
+ CGF.getContext().getTargetAddressSpace(NativePointeeTy);
+ QualType TargetTy = TargetParam->getType();
+ llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
+ LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
+ // First cast to generic.
+ TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ TargetAddr, llvm::PointerType::getWithSamePointeeType(
+ cast<llvm::PointerType>(TargetAddr->getType()), /*AddrSpace=*/0));
+ // Cast from generic to native address space.
+ TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ TargetAddr, llvm::PointerType::getWithSamePointeeType(
+ cast<llvm::PointerType>(TargetAddr->getType()),
+ NativePointeeAddrSpace));
+ Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
+ CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
+ NativeParamType);
+ return NativeParamAddr;
+}
+
+void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
+ CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
+ ArrayRef<llvm::Value *> Args) const {
+ SmallVector<llvm::Value *, 4> TargetArgs;
+ TargetArgs.reserve(Args.size());
+ auto *FnType = OutlinedFn.getFunctionType();
+ for (unsigned I = 0, E = Args.size(); I < E; ++I) {
+ if (FnType->isVarArg() && FnType->getNumParams() <= I) {
+ TargetArgs.append(std::next(Args.begin(), I), Args.end());
+ break;
+ }
+ llvm::Type *TargetType = FnType->getParamType(I);
+ llvm::Value *NativeArg = Args[I];
+ if (!TargetType->isPointerTy()) {
+ TargetArgs.emplace_back(NativeArg);
+ continue;
+ }
+ llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ NativeArg, llvm::PointerType::getWithSamePointeeType(
+ cast<llvm::PointerType>(NativeArg->getType()), /*AddrSpace*/ 0));
+ TargetArgs.emplace_back(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
+ }
+ CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
+}
+
+/// Emit function which wraps the outline parallel region
+/// and controls the arguments which are passed to this function.
+/// The wrapper ensures that the outlined function is called
+/// with the correct arguments when data is shared.
+llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
+ llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
+ ASTContext &Ctx = CGM.getContext();
+ const auto &CS = *D.getCapturedStmt(OMPD_parallel);
+
+ // Create a function that takes as argument the source thread.
+ FunctionArgList WrapperArgs;
+ QualType Int16QTy =
+ Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
+ QualType Int32QTy =
+ Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
+ ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
+ /*Id=*/nullptr, Int16QTy,
+ ImplicitParamDecl::Other);
+ ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
+ /*Id=*/nullptr, Int32QTy,
+ ImplicitParamDecl::Other);
+ WrapperArgs.emplace_back(&ParallelLevelArg);
+ WrapperArgs.emplace_back(&WrapperArg);
+
+ const CGFunctionInfo &CGFI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
+
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
+
+ // Ensure we do not inline the function. This is trivially true for the ones
+ // passed to __kmpc_fork_call but the ones calles in serialized regions
+ // could be inlined. This is not a perfect but it is closer to the invariant
+ // we want, namely, every data environment starts with a new function.
+ // TODO: We should pass the if condition to the runtime function and do the
+ // handling there. Much cleaner code.
+ Fn->addFnAttr(llvm::Attribute::NoInline);
+
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+ Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
+ Fn->setDoesNotRecurse();
+
+ CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
+ CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
+ D.getBeginLoc(), D.getBeginLoc());
+
+ const auto *RD = CS.getCapturedRecordDecl();
+ auto CurField = RD->field_begin();
+
+ Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
+ /*Name=*/".zero.addr");
+ CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
+ // Get the array of arguments.
+ SmallVector<llvm::Value *, 8> Args;
+
+ Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
+ Args.emplace_back(ZeroAddr.getPointer());
+
+ CGBuilderTy &Bld = CGF.Builder;
+ auto CI = CS.capture_begin();
+
+ // Use global memory for data sharing.
+ // Handle passing of global args to workers.
+ Address GlobalArgs =
+ CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
+ llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
+ llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
+ CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
+ DataSharingArgs);
+
+ // Retrieve the shared variables from the list of references returned
+ // by the runtime. Pass the variables to the outlined function.
+ Address SharedArgListAddress = Address::invalid();
+ if (CS.capture_size() > 0 ||
+ isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
+ SharedArgListAddress = CGF.EmitLoadOfPointer(
+ GlobalArgs, CGF.getContext()
+ .getPointerType(CGF.getContext().getPointerType(
+ CGF.getContext().VoidPtrTy))
+ .castAs<PointerType>());
+ }
+ unsigned Idx = 0;
+ if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
+ Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
+ Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ Src, CGF.SizeTy->getPointerTo());
+ llvm::Value *LB = CGF.EmitLoadOfScalar(
+ TypedAddress,
+ /*Volatile=*/false,
+ CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
+ cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
+ Args.emplace_back(LB);
+ ++Idx;
+ Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
+ TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ Src, CGF.SizeTy->getPointerTo());
+ llvm::Value *UB = CGF.EmitLoadOfScalar(
+ TypedAddress,
+ /*Volatile=*/false,
+ CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
+ cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
+ Args.emplace_back(UB);
+ ++Idx;
+ }
+ if (CS.capture_size() > 0) {
+ ASTContext &CGFContext = CGF.getContext();
+ for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
+ QualType ElemTy = CurField->getType();
+ Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
+ Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)));
+ llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
+ /*Volatile=*/false,
+ CGFContext.getPointerType(ElemTy),
+ CI->getLocation());
+ if (CI->capturesVariableByCopy() &&
+ !CI->getCapturedVar()->getType()->isAnyPointerType()) {
+ Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
+ CI->getLocation());
+ }
+ Args.emplace_back(Arg);
+ }
+ }
+
+ emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
+ CGF.FinishFunction();
+ return Fn;
+}
+
+void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
+ const Decl *D) {
+ if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
+ return;
+
+ assert(D && "Expected function or captured|block decl.");
+ assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
+ "Function is registered already.");
+ assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
+ "Team is set but not processed.");
+ const Stmt *Body = nullptr;
+ bool NeedToDelayGlobalization = false;
+ if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
+ Body = FD->getBody();
+ } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
+ Body = BD->getBody();
+ } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
+ Body = CD->getBody();
+ NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
+ if (NeedToDelayGlobalization &&
+ getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
+ return;
+ }
+ if (!Body)
+ return;
+ CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
+ VarChecker.Visit(Body);
+ const RecordDecl *GlobalizedVarsRecord =
+ VarChecker.getGlobalizedRecord(IsInTTDRegion);
+ TeamAndReductions.first = nullptr;
+ TeamAndReductions.second.clear();
+ ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
+ VarChecker.getEscapedVariableLengthDecls();
+ if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
+ return;
+ auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
+ I->getSecond().MappedParams =
+ std::make_unique<CodeGenFunction::OMPMapVars>();
+ I->getSecond().EscapedParameters.insert(
+ VarChecker.getEscapedParameters().begin(),
+ VarChecker.getEscapedParameters().end());
+ I->getSecond().EscapedVariableLengthDecls.append(
+ EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
+ DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
+ for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
+ assert(VD->isCanonicalDecl() && "Expected canonical declaration");
+ Data.insert(std::make_pair(VD, MappedVarData()));
+ }
+ if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
+ CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
+ VarChecker.Visit(Body);
+ I->getSecond().SecondaryLocalVarData.emplace();
+ DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
+ for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
+ assert(VD->isCanonicalDecl() && "Expected canonical declaration");
+ Data.insert(std::make_pair(VD, MappedVarData()));
+ }
+ }
+ if (!NeedToDelayGlobalization) {
+ emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
+ struct GlobalizationScope final : EHScopeStack::Cleanup {
+ GlobalizationScope() = default;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
+ .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
+ }
+ };
+ CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
+ }
+}
+
+Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
+ const VarDecl *VD) {
+ if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
+ const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
+ auto AS = LangAS::Default;
+ switch (A->getAllocatorType()) {
+ // Use the default allocator here as by default local vars are
+ // threadlocal.
+ case OMPAllocateDeclAttr::OMPNullMemAlloc:
+ case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
+ case OMPAllocateDeclAttr::OMPThreadMemAlloc:
+ case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
+ case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
+ // Follow the user decision - use default allocation.
+ return Address::invalid();
+ case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
+ // TODO: implement aupport for user-defined allocators.
+ return Address::invalid();
+ case OMPAllocateDeclAttr::OMPConstMemAlloc:
+ AS = LangAS::cuda_constant;
+ break;
+ case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
+ AS = LangAS::cuda_shared;
+ break;
+ case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
+ case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
+ break;
+ }
+ llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), VarTy, /*isConstant=*/false,
+ llvm::GlobalValue::InternalLinkage, llvm::Constant::getNullValue(VarTy),
+ VD->getName(),
+ /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
+ CGM.getContext().getTargetAddressSpace(AS));
+ CharUnits Align = CGM.getContext().getDeclAlign(VD);
+ GV->setAlignment(Align.getAsAlign());
+ return Address(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
+ VD->getType().getAddressSpace()))),
+ Align);
+ }
+
+ if (getDataSharingMode(CGM) != CGOpenMPRuntimeGPU::Generic)
+ return Address::invalid();
+
+ VD = VD->getCanonicalDecl();
+ auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
+ if (I == FunctionGlobalizedDecls.end())
+ return Address::invalid();
+ auto VDI = I->getSecond().LocalVarData.find(VD);
+ if (VDI != I->getSecond().LocalVarData.end())
+ return VDI->second.PrivateAddr;
+ if (VD->hasAttrs()) {
+ for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
+ E(VD->attr_end());
+ IT != E; ++IT) {
+ auto VDI = I->getSecond().LocalVarData.find(
+ cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
+ ->getCanonicalDecl());
+ if (VDI != I->getSecond().LocalVarData.end())
+ return VDI->second.PrivateAddr;
+ }
+ }
+
+ return Address::invalid();
+}
+
+void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
+ FunctionGlobalizedDecls.erase(CGF.CurFn);
+ CGOpenMPRuntime::functionFinished(CGF);
+}
+
+void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
+ CodeGenFunction &CGF, const OMPLoopDirective &S,
+ OpenMPDistScheduleClauseKind &ScheduleKind,
+ llvm::Value *&Chunk) const {
+ auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
+ if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
+ ScheduleKind = OMPC_DIST_SCHEDULE_static;
+ Chunk = CGF.EmitScalarConversion(
+ RT.getGPUNumThreads(CGF),
+ CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
+ S.getIterationVariable()->getType(), S.getBeginLoc());
+ return;
+ }
+ CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
+ CGF, S, ScheduleKind, Chunk);
+}
+
+void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
+ CodeGenFunction &CGF, const OMPLoopDirective &S,
+ OpenMPScheduleClauseKind &ScheduleKind,
+ const Expr *&ChunkExpr) const {
+ ScheduleKind = OMPC_SCHEDULE_static;
+ // Chunk size is 1 in this case.
+ llvm::APInt ChunkSize(32, 1);
+ ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
+ CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
+ SourceLocation());
+}
+
+void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
+ CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
+ assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
+ " Expected target-based directive.");
+ const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
+ for (const CapturedStmt::Capture &C : CS->captures()) {
+ // Capture variables captured by reference in lambdas for target-based
+ // directives.
+ if (!C.capturesVariable())
+ continue;
+ const VarDecl *VD = C.getCapturedVar();
+ const auto *RD = VD->getType()
+ .getCanonicalType()
+ .getNonReferenceType()
+ ->getAsCXXRecordDecl();
+ if (!RD || !RD->isLambda())
+ continue;
+ Address VDAddr = CGF.GetAddrOfLocalVar(VD);
+ LValue VDLVal;
+ if (VD->getType().getCanonicalType()->isReferenceType())
+ VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
+ else
+ VDLVal = CGF.MakeAddrLValue(
+ VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
+ llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
+ FieldDecl *ThisCapture = nullptr;
+ RD->getCaptureFields(Captures, ThisCapture);
+ if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
+ LValue ThisLVal =
+ CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
+ llvm::Value *CXXThis = CGF.LoadCXXThis();
+ CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
+ }
+ for (const LambdaCapture &LC : RD->captures()) {
+ if (LC.getCaptureKind() != LCK_ByRef)
+ continue;
+ const VarDecl *VD = LC.getCapturedVar();
+ if (!CS->capturesVariable(VD))
+ continue;
+ auto It = Captures.find(VD);
+ assert(It != Captures.end() && "Found lambda capture without field.");
+ LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
+ Address VDAddr = CGF.GetAddrOfLocalVar(VD);
+ if (VD->getType().getCanonicalType()->isReferenceType())
+ VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
+ VD->getType().getCanonicalType())
+ .getAddress(CGF);
+ CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
+ }
+ }
+}
+
+bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
+ LangAS &AS) {
+ if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
+ return false;
+ const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
+ switch(A->getAllocatorType()) {
+ case OMPAllocateDeclAttr::OMPNullMemAlloc:
+ case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
+ // Not supported, fallback to the default mem space.
+ case OMPAllocateDeclAttr::OMPThreadMemAlloc:
+ case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
+ case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
+ case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
+ case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
+ AS = LangAS::Default;
+ return true;
+ case OMPAllocateDeclAttr::OMPConstMemAlloc:
+ AS = LangAS::cuda_constant;
+ return true;
+ case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
+ AS = LangAS::cuda_shared;
+ return true;
+ case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
+ llvm_unreachable("Expected predefined allocator for the variables with the "
+ "static storage.");
+ }
+ return false;
+}
+
+// Get current CudaArch and ignore any unknown values
+static CudaArch getCudaArch(CodeGenModule &CGM) {
+ if (!CGM.getTarget().hasFeature("ptx"))
+ return CudaArch::UNKNOWN;
+ for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
+ if (Feature.getValue()) {
+ CudaArch Arch = StringToCudaArch(Feature.getKey());
+ if (Arch != CudaArch::UNKNOWN)
+ return Arch;
+ }
+ }
+ return CudaArch::UNKNOWN;
+}
+
+/// Check to see if target architecture supports unified addressing which is
+/// a restriction for OpenMP requires clause "unified_shared_memory".
+void CGOpenMPRuntimeGPU::processRequiresDirective(
+ const OMPRequiresDecl *D) {
+ for (const OMPClause *Clause : D->clauselists()) {
+ if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
+ CudaArch Arch = getCudaArch(CGM);
+ switch (Arch) {
+ case CudaArch::SM_20:
+ case CudaArch::SM_21:
+ case CudaArch::SM_30:
+ case CudaArch::SM_32:
+ case CudaArch::SM_35:
+ case CudaArch::SM_37:
+ case CudaArch::SM_50:
+ case CudaArch::SM_52:
+ case CudaArch::SM_53: {
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ Out << "Target architecture " << CudaArchToString(Arch)
+ << " does not support unified addressing";
+ CGM.Error(Clause->getBeginLoc(), Out.str());
+ return;
+ }
+ case CudaArch::SM_60:
+ case CudaArch::SM_61:
+ case CudaArch::SM_62:
+ case CudaArch::SM_70:
+ case CudaArch::SM_72:
+ case CudaArch::SM_75:
+ case CudaArch::SM_80:
+ case CudaArch::SM_86:
+ case CudaArch::GFX600:
+ case CudaArch::GFX601:
+ case CudaArch::GFX602:
+ case CudaArch::GFX700:
+ case CudaArch::GFX701:
+ case CudaArch::GFX702:
+ case CudaArch::GFX703:
+ case CudaArch::GFX704:
+ case CudaArch::GFX705:
+ case CudaArch::GFX801:
+ case CudaArch::GFX802:
+ case CudaArch::GFX803:
+ case CudaArch::GFX805:
+ case CudaArch::GFX810:
+ case CudaArch::GFX900:
+ case CudaArch::GFX902:
+ case CudaArch::GFX904:
+ case CudaArch::GFX906:
+ case CudaArch::GFX908:
+ case CudaArch::GFX909:
+ case CudaArch::GFX90a:
+ case CudaArch::GFX90c:
+ case CudaArch::GFX1010:
+ case CudaArch::GFX1011:
+ case CudaArch::GFX1012:
+ case CudaArch::GFX1013:
+ case CudaArch::GFX1030:
+ case CudaArch::GFX1031:
+ case CudaArch::GFX1032:
+ case CudaArch::GFX1033:
+ case CudaArch::GFX1034:
+ case CudaArch::GFX1035:
+ case CudaArch::Generic:
+ case CudaArch::UNUSED:
+ case CudaArch::UNKNOWN:
+ break;
+ case CudaArch::LAST:
+ llvm_unreachable("Unexpected Cuda arch.");
+ }
+ }
+ }
+ CGOpenMPRuntime::processRequiresDirective(D);
+}
+
+void CGOpenMPRuntimeGPU::clear() {
+
+ if (!TeamsReductions.empty()) {
+ ASTContext &C = CGM.getContext();
+ RecordDecl *StaticRD = C.buildImplicitRecord(
+ "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::TTK_Union);
+ StaticRD->startDefinition();
+ for (const RecordDecl *TeamReductionRec : TeamsReductions) {
+ QualType RecTy = C.getRecordType(TeamReductionRec);
+ auto *Field = FieldDecl::Create(
+ C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
+ C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
+ /*BW=*/nullptr, /*Mutable=*/false,
+ /*InitStyle=*/ICIS_NoInit);
+ Field->setAccess(AS_public);
+ StaticRD->addDecl(Field);
+ }
+ StaticRD->completeDefinition();
+ QualType StaticTy = C.getRecordType(StaticRD);
+ llvm::Type *LLVMReductionsBufferTy =
+ CGM.getTypes().ConvertTypeForMem(StaticTy);
+ // FIXME: nvlink does not handle weak linkage correctly (object with the
+ // different size are reported as erroneous).
+ // Restore CommonLinkage as soon as nvlink is fixed.
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), LLVMReductionsBufferTy,
+ /*isConstant=*/false, llvm::GlobalValue::InternalLinkage,
+ llvm::Constant::getNullValue(LLVMReductionsBufferTy),
+ "_openmp_teams_reductions_buffer_$_");
+ KernelTeamsReductionPtr->setInitializer(
+ llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
+ CGM.VoidPtrTy));
+ }
+ CGOpenMPRuntime::clear();
+}
+
+llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
+ CGBuilderTy &Bld = CGF.Builder;
+ llvm::Module *M = &CGF.CGM.getModule();
+ const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
+ llvm::Function *F = M->getFunction(LocSize);
+ if (!F) {
+ F = llvm::Function::Create(
+ llvm::FunctionType::get(CGF.Int32Ty, llvm::None, false),
+ llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
+ }
+ return Bld.CreateCall(F, llvm::None, "nvptx_num_threads");
+}
+
+llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
+ ArrayRef<llvm::Value *> Args{};
+ return CGF.EmitRuntimeCall(
+ OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
+ Args);
+}
+
+llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
+ ArrayRef<llvm::Value *> Args{};
+ return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
+ CGM.getModule(), OMPRTL___kmpc_get_warp_size),
+ Args);
+}