aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14/lib/Analysis/CFG.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/clang14/lib/Analysis/CFG.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/clang14/lib/Analysis/CFG.cpp')
-rw-r--r--contrib/libs/clang14/lib/Analysis/CFG.cpp6175
1 files changed, 6175 insertions, 0 deletions
diff --git a/contrib/libs/clang14/lib/Analysis/CFG.cpp b/contrib/libs/clang14/lib/Analysis/CFG.cpp
new file mode 100644
index 0000000000..8246854dc1
--- /dev/null
+++ b/contrib/libs/clang14/lib/Analysis/CFG.cpp
@@ -0,0 +1,6175 @@
+//===- CFG.cpp - Classes for representing and building CFGs ---------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the CFG and CFGBuilder classes for representing and
+// building Control-Flow Graphs (CFGs) from ASTs.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/Analysis/CFG.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclBase.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclGroup.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/OperationKinds.h"
+#include "clang/AST/PrettyPrinter.h"
+#include "clang/AST/Stmt.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/Type.h"
+#include "clang/Analysis/ConstructionContext.h"
+#include "clang/Analysis/Support/BumpVector.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/ExceptionSpecificationType.h"
+#include "clang/Basic/JsonSupport.h"
+#include "clang/Basic/LLVM.h"
+#include "clang/Basic/LangOptions.h"
+#include "clang/Basic/SourceLocation.h"
+#include "clang/Basic/Specifiers.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/DOTGraphTraits.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/SaveAndRestore.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <memory>
+#include <string>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace clang;
+
+static SourceLocation GetEndLoc(Decl *D) {
+ if (VarDecl *VD = dyn_cast<VarDecl>(D))
+ if (Expr *Ex = VD->getInit())
+ return Ex->getSourceRange().getEnd();
+ return D->getLocation();
+}
+
+/// Returns true on constant values based around a single IntegerLiteral.
+/// Allow for use of parentheses, integer casts, and negative signs.
+static bool IsIntegerLiteralConstantExpr(const Expr *E) {
+ // Allow parentheses
+ E = E->IgnoreParens();
+
+ // Allow conversions to different integer kind.
+ if (const auto *CE = dyn_cast<CastExpr>(E)) {
+ if (CE->getCastKind() != CK_IntegralCast)
+ return false;
+ E = CE->getSubExpr();
+ }
+
+ // Allow negative numbers.
+ if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
+ if (UO->getOpcode() != UO_Minus)
+ return false;
+ E = UO->getSubExpr();
+ }
+
+ return isa<IntegerLiteral>(E);
+}
+
+/// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
+/// constant expression or EnumConstantDecl from the given Expr. If it fails,
+/// returns nullptr.
+static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
+ E = E->IgnoreParens();
+ if (IsIntegerLiteralConstantExpr(E))
+ return E;
+ if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
+ return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
+ return nullptr;
+}
+
+/// Tries to interpret a binary operator into `Expr Op NumExpr` form, if
+/// NumExpr is an integer literal or an enum constant.
+///
+/// If this fails, at least one of the returned DeclRefExpr or Expr will be
+/// null.
+static std::tuple<const Expr *, BinaryOperatorKind, const Expr *>
+tryNormalizeBinaryOperator(const BinaryOperator *B) {
+ BinaryOperatorKind Op = B->getOpcode();
+
+ const Expr *MaybeDecl = B->getLHS();
+ const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
+ // Expr looked like `0 == Foo` instead of `Foo == 0`
+ if (Constant == nullptr) {
+ // Flip the operator
+ if (Op == BO_GT)
+ Op = BO_LT;
+ else if (Op == BO_GE)
+ Op = BO_LE;
+ else if (Op == BO_LT)
+ Op = BO_GT;
+ else if (Op == BO_LE)
+ Op = BO_GE;
+
+ MaybeDecl = B->getRHS();
+ Constant = tryTransformToIntOrEnumConstant(B->getLHS());
+ }
+
+ return std::make_tuple(MaybeDecl, Op, Constant);
+}
+
+/// For an expression `x == Foo && x == Bar`, this determines whether the
+/// `Foo` and `Bar` are either of the same enumeration type, or both integer
+/// literals.
+///
+/// It's an error to pass this arguments that are not either IntegerLiterals
+/// or DeclRefExprs (that have decls of type EnumConstantDecl)
+static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
+ // User intent isn't clear if they're mixing int literals with enum
+ // constants.
+ if (isa<DeclRefExpr>(E1) != isa<DeclRefExpr>(E2))
+ return false;
+
+ // Integer literal comparisons, regardless of literal type, are acceptable.
+ if (!isa<DeclRefExpr>(E1))
+ return true;
+
+ // IntegerLiterals are handled above and only EnumConstantDecls are expected
+ // beyond this point
+ assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
+ auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
+ auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();
+
+ assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
+ const DeclContext *DC1 = Decl1->getDeclContext();
+ const DeclContext *DC2 = Decl2->getDeclContext();
+
+ assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
+ return DC1 == DC2;
+}
+
+namespace {
+
+class CFGBuilder;
+
+/// The CFG builder uses a recursive algorithm to build the CFG. When
+/// we process an expression, sometimes we know that we must add the
+/// subexpressions as block-level expressions. For example:
+///
+/// exp1 || exp2
+///
+/// When processing the '||' expression, we know that exp1 and exp2
+/// need to be added as block-level expressions, even though they
+/// might not normally need to be. AddStmtChoice records this
+/// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then
+/// the builder has an option not to add a subexpression as a
+/// block-level expression.
+class AddStmtChoice {
+public:
+ enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
+
+ AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
+
+ bool alwaysAdd(CFGBuilder &builder,
+ const Stmt *stmt) const;
+
+ /// Return a copy of this object, except with the 'always-add' bit
+ /// set as specified.
+ AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
+ return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
+ }
+
+private:
+ Kind kind;
+};
+
+/// LocalScope - Node in tree of local scopes created for C++ implicit
+/// destructor calls generation. It contains list of automatic variables
+/// declared in the scope and link to position in previous scope this scope
+/// began in.
+///
+/// The process of creating local scopes is as follows:
+/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
+/// - Before processing statements in scope (e.g. CompoundStmt) create
+/// LocalScope object using CFGBuilder::ScopePos as link to previous scope
+/// and set CFGBuilder::ScopePos to the end of new scope,
+/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
+/// at this VarDecl,
+/// - For every normal (without jump) end of scope add to CFGBlock destructors
+/// for objects in the current scope,
+/// - For every jump add to CFGBlock destructors for objects
+/// between CFGBuilder::ScopePos and local scope position saved for jump
+/// target. Thanks to C++ restrictions on goto jumps we can be sure that
+/// jump target position will be on the path to root from CFGBuilder::ScopePos
+/// (adding any variable that doesn't need constructor to be called to
+/// LocalScope can break this assumption),
+///
+class LocalScope {
+public:
+ using AutomaticVarsTy = BumpVector<VarDecl *>;
+
+ /// const_iterator - Iterates local scope backwards and jumps to previous
+ /// scope on reaching the beginning of currently iterated scope.
+ class const_iterator {
+ const LocalScope* Scope = nullptr;
+
+ /// VarIter is guaranteed to be greater then 0 for every valid iterator.
+ /// Invalid iterator (with null Scope) has VarIter equal to 0.
+ unsigned VarIter = 0;
+
+ public:
+ /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
+ /// Incrementing invalid iterator is allowed and will result in invalid
+ /// iterator.
+ const_iterator() = default;
+
+ /// Create valid iterator. In case when S.Prev is an invalid iterator and
+ /// I is equal to 0, this will create invalid iterator.
+ const_iterator(const LocalScope& S, unsigned I)
+ : Scope(&S), VarIter(I) {
+ // Iterator to "end" of scope is not allowed. Handle it by going up
+ // in scopes tree possibly up to invalid iterator in the root.
+ if (VarIter == 0 && Scope)
+ *this = Scope->Prev;
+ }
+
+ VarDecl *const* operator->() const {
+ assert(Scope && "Dereferencing invalid iterator is not allowed");
+ assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
+ return &Scope->Vars[VarIter - 1];
+ }
+
+ const VarDecl *getFirstVarInScope() const {
+ assert(Scope && "Dereferencing invalid iterator is not allowed");
+ assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
+ return Scope->Vars[0];
+ }
+
+ VarDecl *operator*() const {
+ return *this->operator->();
+ }
+
+ const_iterator &operator++() {
+ if (!Scope)
+ return *this;
+
+ assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
+ --VarIter;
+ if (VarIter == 0)
+ *this = Scope->Prev;
+ return *this;
+ }
+ const_iterator operator++(int) {
+ const_iterator P = *this;
+ ++*this;
+ return P;
+ }
+
+ bool operator==(const const_iterator &rhs) const {
+ return Scope == rhs.Scope && VarIter == rhs.VarIter;
+ }
+ bool operator!=(const const_iterator &rhs) const {
+ return !(*this == rhs);
+ }
+
+ explicit operator bool() const {
+ return *this != const_iterator();
+ }
+
+ int distance(const_iterator L);
+ const_iterator shared_parent(const_iterator L);
+ bool pointsToFirstDeclaredVar() { return VarIter == 1; }
+ };
+
+private:
+ BumpVectorContext ctx;
+
+ /// Automatic variables in order of declaration.
+ AutomaticVarsTy Vars;
+
+ /// Iterator to variable in previous scope that was declared just before
+ /// begin of this scope.
+ const_iterator Prev;
+
+public:
+ /// Constructs empty scope linked to previous scope in specified place.
+ LocalScope(BumpVectorContext ctx, const_iterator P)
+ : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}
+
+ /// Begin of scope in direction of CFG building (backwards).
+ const_iterator begin() const { return const_iterator(*this, Vars.size()); }
+
+ void addVar(VarDecl *VD) {
+ Vars.push_back(VD, ctx);
+ }
+};
+
+} // namespace
+
+/// distance - Calculates distance from this to L. L must be reachable from this
+/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
+/// number of scopes between this and L.
+int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
+ int D = 0;
+ const_iterator F = *this;
+ while (F.Scope != L.Scope) {
+ assert(F != const_iterator() &&
+ "L iterator is not reachable from F iterator.");
+ D += F.VarIter;
+ F = F.Scope->Prev;
+ }
+ D += F.VarIter - L.VarIter;
+ return D;
+}
+
+/// Calculates the closest parent of this iterator
+/// that is in a scope reachable through the parents of L.
+/// I.e. when using 'goto' from this to L, the lifetime of all variables
+/// between this and shared_parent(L) end.
+LocalScope::const_iterator
+LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) {
+ llvm::SmallPtrSet<const LocalScope *, 4> ScopesOfL;
+ while (true) {
+ ScopesOfL.insert(L.Scope);
+ if (L == const_iterator())
+ break;
+ L = L.Scope->Prev;
+ }
+
+ const_iterator F = *this;
+ while (true) {
+ if (ScopesOfL.count(F.Scope))
+ return F;
+ assert(F != const_iterator() &&
+ "L iterator is not reachable from F iterator.");
+ F = F.Scope->Prev;
+ }
+}
+
+namespace {
+
+/// Structure for specifying position in CFG during its build process. It
+/// consists of CFGBlock that specifies position in CFG and
+/// LocalScope::const_iterator that specifies position in LocalScope graph.
+struct BlockScopePosPair {
+ CFGBlock *block = nullptr;
+ LocalScope::const_iterator scopePosition;
+
+ BlockScopePosPair() = default;
+ BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
+ : block(b), scopePosition(scopePos) {}
+};
+
+/// TryResult - a class representing a variant over the values
+/// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool,
+/// and is used by the CFGBuilder to decide if a branch condition
+/// can be decided up front during CFG construction.
+class TryResult {
+ int X = -1;
+
+public:
+ TryResult() = default;
+ TryResult(bool b) : X(b ? 1 : 0) {}
+
+ bool isTrue() const { return X == 1; }
+ bool isFalse() const { return X == 0; }
+ bool isKnown() const { return X >= 0; }
+
+ void negate() {
+ assert(isKnown());
+ X ^= 0x1;
+ }
+};
+
+} // namespace
+
+static TryResult bothKnownTrue(TryResult R1, TryResult R2) {
+ if (!R1.isKnown() || !R2.isKnown())
+ return TryResult();
+ return TryResult(R1.isTrue() && R2.isTrue());
+}
+
+namespace {
+
+class reverse_children {
+ llvm::SmallVector<Stmt *, 12> childrenBuf;
+ ArrayRef<Stmt *> children;
+
+public:
+ reverse_children(Stmt *S);
+
+ using iterator = ArrayRef<Stmt *>::reverse_iterator;
+
+ iterator begin() const { return children.rbegin(); }
+ iterator end() const { return children.rend(); }
+};
+
+} // namespace
+
+reverse_children::reverse_children(Stmt *S) {
+ if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
+ children = CE->getRawSubExprs();
+ return;
+ }
+ switch (S->getStmtClass()) {
+ // Note: Fill in this switch with more cases we want to optimize.
+ case Stmt::InitListExprClass: {
+ InitListExpr *IE = cast<InitListExpr>(S);
+ children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
+ IE->getNumInits());
+ return;
+ }
+ default:
+ break;
+ }
+
+ // Default case for all other statements.
+ for (Stmt *SubStmt : S->children())
+ childrenBuf.push_back(SubStmt);
+
+ // This needs to be done *after* childrenBuf has been populated.
+ children = childrenBuf;
+}
+
+namespace {
+
+/// CFGBuilder - This class implements CFG construction from an AST.
+/// The builder is stateful: an instance of the builder should be used to only
+/// construct a single CFG.
+///
+/// Example usage:
+///
+/// CFGBuilder builder;
+/// std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
+///
+/// CFG construction is done via a recursive walk of an AST. We actually parse
+/// the AST in reverse order so that the successor of a basic block is
+/// constructed prior to its predecessor. This allows us to nicely capture
+/// implicit fall-throughs without extra basic blocks.
+class CFGBuilder {
+ using JumpTarget = BlockScopePosPair;
+ using JumpSource = BlockScopePosPair;
+
+ ASTContext *Context;
+ std::unique_ptr<CFG> cfg;
+
+ // Current block.
+ CFGBlock *Block = nullptr;
+
+ // Block after the current block.
+ CFGBlock *Succ = nullptr;
+
+ JumpTarget ContinueJumpTarget;
+ JumpTarget BreakJumpTarget;
+ JumpTarget SEHLeaveJumpTarget;
+ CFGBlock *SwitchTerminatedBlock = nullptr;
+ CFGBlock *DefaultCaseBlock = nullptr;
+
+ // This can point to either a C++ try, an Objective-C @try, or an SEH __try.
+ // try and @try can be mixed and generally work the same.
+ // The frontend forbids mixing SEH __try with either try or @try.
+ // So having one for all three is enough.
+ CFGBlock *TryTerminatedBlock = nullptr;
+
+ // Current position in local scope.
+ LocalScope::const_iterator ScopePos;
+
+ // LabelMap records the mapping from Label expressions to their jump targets.
+ using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>;
+ LabelMapTy LabelMap;
+
+ // A list of blocks that end with a "goto" that must be backpatched to their
+ // resolved targets upon completion of CFG construction.
+ using BackpatchBlocksTy = std::vector<JumpSource>;
+ BackpatchBlocksTy BackpatchBlocks;
+
+ // A list of labels whose address has been taken (for indirect gotos).
+ using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>;
+ LabelSetTy AddressTakenLabels;
+
+ // Information about the currently visited C++ object construction site.
+ // This is set in the construction trigger and read when the constructor
+ // or a function that returns an object by value is being visited.
+ llvm::DenseMap<Expr *, const ConstructionContextLayer *>
+ ConstructionContextMap;
+
+ using DeclsWithEndedScopeSetTy = llvm::SmallSetVector<VarDecl *, 16>;
+ DeclsWithEndedScopeSetTy DeclsWithEndedScope;
+
+ bool badCFG = false;
+ const CFG::BuildOptions &BuildOpts;
+
+ // State to track for building switch statements.
+ bool switchExclusivelyCovered = false;
+ Expr::EvalResult *switchCond = nullptr;
+
+ CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr;
+ const Stmt *lastLookup = nullptr;
+
+ // Caches boolean evaluations of expressions to avoid multiple re-evaluations
+ // during construction of branches for chained logical operators.
+ using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>;
+ CachedBoolEvalsTy CachedBoolEvals;
+
+public:
+ explicit CFGBuilder(ASTContext *astContext,
+ const CFG::BuildOptions &buildOpts)
+ : Context(astContext), cfg(new CFG()), BuildOpts(buildOpts) {}
+
+ // buildCFG - Used by external clients to construct the CFG.
+ std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
+
+ bool alwaysAdd(const Stmt *stmt);
+
+private:
+ // Visitors to walk an AST and construct the CFG.
+ CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc);
+ CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
+ CFGBlock *VisitAttributedStmt(AttributedStmt *A, AddStmtChoice asc);
+ CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
+ CFGBlock *VisitBreakStmt(BreakStmt *B);
+ CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
+ CFGBlock *VisitCaseStmt(CaseStmt *C);
+ CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
+ CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed);
+ CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
+ AddStmtChoice asc);
+ CFGBlock *VisitContinueStmt(ContinueStmt *C);
+ CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
+ AddStmtChoice asc);
+ CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
+ CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
+ CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
+ CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
+ CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
+ CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
+ AddStmtChoice asc);
+ CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
+ AddStmtChoice asc);
+ CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
+ CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
+ CFGBlock *VisitDeclStmt(DeclStmt *DS);
+ CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
+ CFGBlock *VisitDefaultStmt(DefaultStmt *D);
+ CFGBlock *VisitDoStmt(DoStmt *D);
+ CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
+ AddStmtChoice asc, bool ExternallyDestructed);
+ CFGBlock *VisitForStmt(ForStmt *F);
+ CFGBlock *VisitGotoStmt(GotoStmt *G);
+ CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc);
+ CFGBlock *VisitIfStmt(IfStmt *I);
+ CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
+ CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc);
+ CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
+ CFGBlock *VisitLabelStmt(LabelStmt *L);
+ CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
+ CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
+ CFGBlock *VisitLogicalOperator(BinaryOperator *B);
+ std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
+ Stmt *Term,
+ CFGBlock *TrueBlock,
+ CFGBlock *FalseBlock);
+ CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
+ AddStmtChoice asc);
+ CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
+ CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
+ CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
+ CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
+ CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
+ CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
+ CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
+ CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc);
+ CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
+ CFGBlock *VisitReturnStmt(Stmt *S);
+ CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S);
+ CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S);
+ CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S);
+ CFGBlock *VisitSEHTryStmt(SEHTryStmt *S);
+ CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
+ CFGBlock *VisitSwitchStmt(SwitchStmt *S);
+ CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
+ AddStmtChoice asc);
+ CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
+ CFGBlock *VisitWhileStmt(WhileStmt *W);
+
+ CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd,
+ bool ExternallyDestructed = false);
+ CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
+ CFGBlock *VisitChildren(Stmt *S);
+ CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
+ CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D,
+ AddStmtChoice asc);
+
+ void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD,
+ const Stmt *S) {
+ if (ScopePos && (VD == ScopePos.getFirstVarInScope()))
+ appendScopeBegin(B, VD, S);
+ }
+
+ /// When creating the CFG for temporary destructors, we want to mirror the
+ /// branch structure of the corresponding constructor calls.
+ /// Thus, while visiting a statement for temporary destructors, we keep a
+ /// context to keep track of the following information:
+ /// - whether a subexpression is executed unconditionally
+ /// - if a subexpression is executed conditionally, the first
+ /// CXXBindTemporaryExpr we encounter in that subexpression (which
+ /// corresponds to the last temporary destructor we have to call for this
+ /// subexpression) and the CFG block at that point (which will become the
+ /// successor block when inserting the decision point).
+ ///
+ /// That way, we can build the branch structure for temporary destructors as
+ /// follows:
+ /// 1. If a subexpression is executed unconditionally, we add the temporary
+ /// destructor calls to the current block.
+ /// 2. If a subexpression is executed conditionally, when we encounter a
+ /// CXXBindTemporaryExpr:
+ /// a) If it is the first temporary destructor call in the subexpression,
+ /// we remember the CXXBindTemporaryExpr and the current block in the
+ /// TempDtorContext; we start a new block, and insert the temporary
+ /// destructor call.
+ /// b) Otherwise, add the temporary destructor call to the current block.
+ /// 3. When we finished visiting a conditionally executed subexpression,
+ /// and we found at least one temporary constructor during the visitation
+ /// (2.a has executed), we insert a decision block that uses the
+ /// CXXBindTemporaryExpr as terminator, and branches to the current block
+ /// if the CXXBindTemporaryExpr was marked executed, and otherwise
+ /// branches to the stored successor.
+ struct TempDtorContext {
+ TempDtorContext() = default;
+ TempDtorContext(TryResult KnownExecuted)
+ : IsConditional(true), KnownExecuted(KnownExecuted) {}
+
+ /// Returns whether we need to start a new branch for a temporary destructor
+ /// call. This is the case when the temporary destructor is
+ /// conditionally executed, and it is the first one we encounter while
+ /// visiting a subexpression - other temporary destructors at the same level
+ /// will be added to the same block and are executed under the same
+ /// condition.
+ bool needsTempDtorBranch() const {
+ return IsConditional && !TerminatorExpr;
+ }
+
+ /// Remember the successor S of a temporary destructor decision branch for
+ /// the corresponding CXXBindTemporaryExpr E.
+ void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
+ Succ = S;
+ TerminatorExpr = E;
+ }
+
+ const bool IsConditional = false;
+ const TryResult KnownExecuted = true;
+ CFGBlock *Succ = nullptr;
+ CXXBindTemporaryExpr *TerminatorExpr = nullptr;
+ };
+
+ // Visitors to walk an AST and generate destructors of temporaries in
+ // full expression.
+ CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
+ TempDtorContext &Context);
+ CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
+ TempDtorContext &Context);
+ CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
+ bool ExternallyDestructed,
+ TempDtorContext &Context);
+ CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
+ CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context);
+ CFGBlock *VisitConditionalOperatorForTemporaryDtors(
+ AbstractConditionalOperator *E, bool ExternallyDestructed,
+ TempDtorContext &Context);
+ void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
+ CFGBlock *FalseSucc = nullptr);
+
+ // NYS == Not Yet Supported
+ CFGBlock *NYS() {
+ badCFG = true;
+ return Block;
+ }
+
+ // Remember to apply the construction context based on the current \p Layer
+ // when constructing the CFG element for \p CE.
+ void consumeConstructionContext(const ConstructionContextLayer *Layer,
+ Expr *E);
+
+ // Scan \p Child statement to find constructors in it, while keeping in mind
+ // that its parent statement is providing a partial construction context
+ // described by \p Layer. If a constructor is found, it would be assigned
+ // the context based on the layer. If an additional construction context layer
+ // is found, the function recurses into that.
+ void findConstructionContexts(const ConstructionContextLayer *Layer,
+ Stmt *Child);
+
+ // Scan all arguments of a call expression for a construction context.
+ // These sorts of call expressions don't have a common superclass,
+ // hence strict duck-typing.
+ template <typename CallLikeExpr,
+ typename = std::enable_if_t<
+ std::is_base_of<CallExpr, CallLikeExpr>::value ||
+ std::is_base_of<CXXConstructExpr, CallLikeExpr>::value ||
+ std::is_base_of<ObjCMessageExpr, CallLikeExpr>::value>>
+ void findConstructionContextsForArguments(CallLikeExpr *E) {
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
+ Expr *Arg = E->getArg(i);
+ if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue())
+ findConstructionContexts(
+ ConstructionContextLayer::create(cfg->getBumpVectorContext(),
+ ConstructionContextItem(E, i)),
+ Arg);
+ }
+ }
+
+ // Unset the construction context after consuming it. This is done immediately
+ // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so
+ // there's no need to do this manually in every Visit... function.
+ void cleanupConstructionContext(Expr *E);
+
+ void autoCreateBlock() { if (!Block) Block = createBlock(); }
+ CFGBlock *createBlock(bool add_successor = true);
+ CFGBlock *createNoReturnBlock();
+
+ CFGBlock *addStmt(Stmt *S) {
+ return Visit(S, AddStmtChoice::AlwaysAdd);
+ }
+
+ CFGBlock *addInitializer(CXXCtorInitializer *I);
+ void addLoopExit(const Stmt *LoopStmt);
+ void addAutomaticObjDtors(LocalScope::const_iterator B,
+ LocalScope::const_iterator E, Stmt *S);
+ void addLifetimeEnds(LocalScope::const_iterator B,
+ LocalScope::const_iterator E, Stmt *S);
+ void addAutomaticObjHandling(LocalScope::const_iterator B,
+ LocalScope::const_iterator E, Stmt *S);
+ void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
+ void addScopesEnd(LocalScope::const_iterator B, LocalScope::const_iterator E,
+ Stmt *S);
+
+ void getDeclsWithEndedScope(LocalScope::const_iterator B,
+ LocalScope::const_iterator E, Stmt *S);
+
+ // Local scopes creation.
+ LocalScope* createOrReuseLocalScope(LocalScope* Scope);
+
+ void addLocalScopeForStmt(Stmt *S);
+ LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
+ LocalScope* Scope = nullptr);
+ LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
+
+ void addLocalScopeAndDtors(Stmt *S);
+
+ const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) {
+ if (!BuildOpts.AddRichCXXConstructors)
+ return nullptr;
+
+ const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(E);
+ if (!Layer)
+ return nullptr;
+
+ cleanupConstructionContext(E);
+ return ConstructionContext::createFromLayers(cfg->getBumpVectorContext(),
+ Layer);
+ }
+
+ // Interface to CFGBlock - adding CFGElements.
+
+ void appendStmt(CFGBlock *B, const Stmt *S) {
+ if (alwaysAdd(S) && cachedEntry)
+ cachedEntry->second = B;
+
+ // All block-level expressions should have already been IgnoreParens()ed.
+ assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
+ B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
+ }
+
+ void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) {
+ if (const ConstructionContext *CC =
+ retrieveAndCleanupConstructionContext(CE)) {
+ B->appendConstructor(CE, CC, cfg->getBumpVectorContext());
+ return;
+ }
+
+ // No valid construction context found. Fall back to statement.
+ B->appendStmt(CE, cfg->getBumpVectorContext());
+ }
+
+ void appendCall(CFGBlock *B, CallExpr *CE) {
+ if (alwaysAdd(CE) && cachedEntry)
+ cachedEntry->second = B;
+
+ if (const ConstructionContext *CC =
+ retrieveAndCleanupConstructionContext(CE)) {
+ B->appendCXXRecordTypedCall(CE, CC, cfg->getBumpVectorContext());
+ return;
+ }
+
+ // No valid construction context found. Fall back to statement.
+ B->appendStmt(CE, cfg->getBumpVectorContext());
+ }
+
+ void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
+ B->appendInitializer(I, cfg->getBumpVectorContext());
+ }
+
+ void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
+ B->appendNewAllocator(NE, cfg->getBumpVectorContext());
+ }
+
+ void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
+ B->appendBaseDtor(BS, cfg->getBumpVectorContext());
+ }
+
+ void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
+ B->appendMemberDtor(FD, cfg->getBumpVectorContext());
+ }
+
+ void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) {
+ if (alwaysAdd(ME) && cachedEntry)
+ cachedEntry->second = B;
+
+ if (const ConstructionContext *CC =
+ retrieveAndCleanupConstructionContext(ME)) {
+ B->appendCXXRecordTypedCall(ME, CC, cfg->getBumpVectorContext());
+ return;
+ }
+
+ B->appendStmt(const_cast<ObjCMessageExpr *>(ME),
+ cfg->getBumpVectorContext());
+ }
+
+ void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
+ B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
+ }
+
+ void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
+ B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
+ }
+
+ void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) {
+ B->appendLifetimeEnds(VD, S, cfg->getBumpVectorContext());
+ }
+
+ void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) {
+ B->appendLoopExit(LoopStmt, cfg->getBumpVectorContext());
+ }
+
+ void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
+ B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
+ }
+
+ void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
+ LocalScope::const_iterator B, LocalScope::const_iterator E);
+
+ void prependAutomaticObjLifetimeWithTerminator(CFGBlock *Blk,
+ LocalScope::const_iterator B,
+ LocalScope::const_iterator E);
+
+ const VarDecl *
+ prependAutomaticObjScopeEndWithTerminator(CFGBlock *Blk,
+ LocalScope::const_iterator B,
+ LocalScope::const_iterator E);
+
+ void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
+ B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
+ cfg->getBumpVectorContext());
+ }
+
+ /// Add a reachable successor to a block, with the alternate variant that is
+ /// unreachable.
+ void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
+ B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
+ cfg->getBumpVectorContext());
+ }
+
+ void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
+ if (BuildOpts.AddScopes)
+ B->appendScopeBegin(VD, S, cfg->getBumpVectorContext());
+ }
+
+ void prependScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
+ if (BuildOpts.AddScopes)
+ B->prependScopeBegin(VD, S, cfg->getBumpVectorContext());
+ }
+
+ void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
+ if (BuildOpts.AddScopes)
+ B->appendScopeEnd(VD, S, cfg->getBumpVectorContext());
+ }
+
+ void prependScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
+ if (BuildOpts.AddScopes)
+ B->prependScopeEnd(VD, S, cfg->getBumpVectorContext());
+ }
+
+ /// Find a relational comparison with an expression evaluating to a
+ /// boolean and a constant other than 0 and 1.
+ /// e.g. if ((x < y) == 10)
+ TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
+ const Expr *LHSExpr = B->getLHS()->IgnoreParens();
+ const Expr *RHSExpr = B->getRHS()->IgnoreParens();
+
+ const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
+ const Expr *BoolExpr = RHSExpr;
+ bool IntFirst = true;
+ if (!IntLiteral) {
+ IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
+ BoolExpr = LHSExpr;
+ IntFirst = false;
+ }
+
+ if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
+ return TryResult();
+
+ llvm::APInt IntValue = IntLiteral->getValue();
+ if ((IntValue == 1) || (IntValue == 0))
+ return TryResult();
+
+ bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
+ !IntValue.isNegative();
+
+ BinaryOperatorKind Bok = B->getOpcode();
+ if (Bok == BO_GT || Bok == BO_GE) {
+ // Always true for 10 > bool and bool > -1
+ // Always false for -1 > bool and bool > 10
+ return TryResult(IntFirst == IntLarger);
+ } else {
+ // Always true for -1 < bool and bool < 10
+ // Always false for 10 < bool and bool < -1
+ return TryResult(IntFirst != IntLarger);
+ }
+ }
+
+ /// Find an incorrect equality comparison. Either with an expression
+ /// evaluating to a boolean and a constant other than 0 and 1.
+ /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
+ /// true/false e.q. (x & 8) == 4.
+ TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
+ const Expr *LHSExpr = B->getLHS()->IgnoreParens();
+ const Expr *RHSExpr = B->getRHS()->IgnoreParens();
+
+ const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
+ const Expr *BoolExpr = RHSExpr;
+
+ if (!IntLiteral) {
+ IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
+ BoolExpr = LHSExpr;
+ }
+
+ if (!IntLiteral)
+ return TryResult();
+
+ const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
+ if (BitOp && (BitOp->getOpcode() == BO_And ||
+ BitOp->getOpcode() == BO_Or)) {
+ const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
+ const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
+
+ const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2);
+
+ if (!IntLiteral2)
+ IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2);
+
+ if (!IntLiteral2)
+ return TryResult();
+
+ llvm::APInt L1 = IntLiteral->getValue();
+ llvm::APInt L2 = IntLiteral2->getValue();
+ if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) ||
+ (BitOp->getOpcode() == BO_Or && (L2 | L1) != L1)) {
+ if (BuildOpts.Observer)
+ BuildOpts.Observer->compareBitwiseEquality(B,
+ B->getOpcode() != BO_EQ);
+ TryResult(B->getOpcode() != BO_EQ);
+ }
+ } else if (BoolExpr->isKnownToHaveBooleanValue()) {
+ llvm::APInt IntValue = IntLiteral->getValue();
+ if ((IntValue == 1) || (IntValue == 0)) {
+ return TryResult();
+ }
+ return TryResult(B->getOpcode() != BO_EQ);
+ }
+
+ return TryResult();
+ }
+
+ TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
+ const llvm::APSInt &Value1,
+ const llvm::APSInt &Value2) {
+ assert(Value1.isSigned() == Value2.isSigned());
+ switch (Relation) {
+ default:
+ return TryResult();
+ case BO_EQ:
+ return TryResult(Value1 == Value2);
+ case BO_NE:
+ return TryResult(Value1 != Value2);
+ case BO_LT:
+ return TryResult(Value1 < Value2);
+ case BO_LE:
+ return TryResult(Value1 <= Value2);
+ case BO_GT:
+ return TryResult(Value1 > Value2);
+ case BO_GE:
+ return TryResult(Value1 >= Value2);
+ }
+ }
+
+ /// Find a pair of comparison expressions with or without parentheses
+ /// with a shared variable and constants and a logical operator between them
+ /// that always evaluates to either true or false.
+ /// e.g. if (x != 3 || x != 4)
+ TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
+ assert(B->isLogicalOp());
+ const BinaryOperator *LHS =
+ dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
+ const BinaryOperator *RHS =
+ dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
+ if (!LHS || !RHS)
+ return {};
+
+ if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
+ return {};
+
+ const Expr *DeclExpr1;
+ const Expr *NumExpr1;
+ BinaryOperatorKind BO1;
+ std::tie(DeclExpr1, BO1, NumExpr1) = tryNormalizeBinaryOperator(LHS);
+
+ if (!DeclExpr1 || !NumExpr1)
+ return {};
+
+ const Expr *DeclExpr2;
+ const Expr *NumExpr2;
+ BinaryOperatorKind BO2;
+ std::tie(DeclExpr2, BO2, NumExpr2) = tryNormalizeBinaryOperator(RHS);
+
+ if (!DeclExpr2 || !NumExpr2)
+ return {};
+
+ // Check that it is the same variable on both sides.
+ if (!Expr::isSameComparisonOperand(DeclExpr1, DeclExpr2))
+ return {};
+
+ // Make sure the user's intent is clear (e.g. they're comparing against two
+ // int literals, or two things from the same enum)
+ if (!areExprTypesCompatible(NumExpr1, NumExpr2))
+ return {};
+
+ Expr::EvalResult L1Result, L2Result;
+ if (!NumExpr1->EvaluateAsInt(L1Result, *Context) ||
+ !NumExpr2->EvaluateAsInt(L2Result, *Context))
+ return {};
+
+ llvm::APSInt L1 = L1Result.Val.getInt();
+ llvm::APSInt L2 = L2Result.Val.getInt();
+
+ // Can't compare signed with unsigned or with different bit width.
+ if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
+ return {};
+
+ // Values that will be used to determine if result of logical
+ // operator is always true/false
+ const llvm::APSInt Values[] = {
+ // Value less than both Value1 and Value2
+ llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
+ // L1
+ L1,
+ // Value between Value1 and Value2
+ ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
+ L1.isUnsigned()),
+ // L2
+ L2,
+ // Value greater than both Value1 and Value2
+ llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
+ };
+
+ // Check whether expression is always true/false by evaluating the following
+ // * variable x is less than the smallest literal.
+ // * variable x is equal to the smallest literal.
+ // * Variable x is between smallest and largest literal.
+ // * Variable x is equal to the largest literal.
+ // * Variable x is greater than largest literal.
+ bool AlwaysTrue = true, AlwaysFalse = true;
+ // Track value of both subexpressions. If either side is always
+ // true/false, another warning should have already been emitted.
+ bool LHSAlwaysTrue = true, LHSAlwaysFalse = true;
+ bool RHSAlwaysTrue = true, RHSAlwaysFalse = true;
+ for (const llvm::APSInt &Value : Values) {
+ TryResult Res1, Res2;
+ Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
+ Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
+
+ if (!Res1.isKnown() || !Res2.isKnown())
+ return {};
+
+ if (B->getOpcode() == BO_LAnd) {
+ AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
+ AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
+ } else {
+ AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
+ AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
+ }
+
+ LHSAlwaysTrue &= Res1.isTrue();
+ LHSAlwaysFalse &= Res1.isFalse();
+ RHSAlwaysTrue &= Res2.isTrue();
+ RHSAlwaysFalse &= Res2.isFalse();
+ }
+
+ if (AlwaysTrue || AlwaysFalse) {
+ if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue &&
+ !RHSAlwaysFalse && BuildOpts.Observer)
+ BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
+ return TryResult(AlwaysTrue);
+ }
+ return {};
+ }
+
+ /// A bitwise-or with a non-zero constant always evaluates to true.
+ TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) {
+ const Expr *LHSConstant =
+ tryTransformToIntOrEnumConstant(B->getLHS()->IgnoreParenImpCasts());
+ const Expr *RHSConstant =
+ tryTransformToIntOrEnumConstant(B->getRHS()->IgnoreParenImpCasts());
+
+ if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant))
+ return {};
+
+ const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant;
+
+ Expr::EvalResult Result;
+ if (!Constant->EvaluateAsInt(Result, *Context))
+ return {};
+
+ if (Result.Val.getInt() == 0)
+ return {};
+
+ if (BuildOpts.Observer)
+ BuildOpts.Observer->compareBitwiseOr(B);
+
+ return TryResult(true);
+ }
+
+ /// Try and evaluate an expression to an integer constant.
+ bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
+ if (!BuildOpts.PruneTriviallyFalseEdges)
+ return false;
+ return !S->isTypeDependent() &&
+ !S->isValueDependent() &&
+ S->EvaluateAsRValue(outResult, *Context);
+ }
+
+ /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
+ /// if we can evaluate to a known value, otherwise return -1.
+ TryResult tryEvaluateBool(Expr *S) {
+ if (!BuildOpts.PruneTriviallyFalseEdges ||
+ S->isTypeDependent() || S->isValueDependent())
+ return {};
+
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
+ if (Bop->isLogicalOp() || Bop->isEqualityOp()) {
+ // Check the cache first.
+ CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
+ if (I != CachedBoolEvals.end())
+ return I->second; // already in map;
+
+ // Retrieve result at first, or the map might be updated.
+ TryResult Result = evaluateAsBooleanConditionNoCache(S);
+ CachedBoolEvals[S] = Result; // update or insert
+ return Result;
+ }
+ else {
+ switch (Bop->getOpcode()) {
+ default: break;
+ // For 'x & 0' and 'x * 0', we can determine that
+ // the value is always false.
+ case BO_Mul:
+ case BO_And: {
+ // If either operand is zero, we know the value
+ // must be false.
+ Expr::EvalResult LHSResult;
+ if (Bop->getLHS()->EvaluateAsInt(LHSResult, *Context)) {
+ llvm::APSInt IntVal = LHSResult.Val.getInt();
+ if (!IntVal.getBoolValue()) {
+ return TryResult(false);
+ }
+ }
+ Expr::EvalResult RHSResult;
+ if (Bop->getRHS()->EvaluateAsInt(RHSResult, *Context)) {
+ llvm::APSInt IntVal = RHSResult.Val.getInt();
+ if (!IntVal.getBoolValue()) {
+ return TryResult(false);
+ }
+ }
+ }
+ break;
+ }
+ }
+ }
+
+ return evaluateAsBooleanConditionNoCache(S);
+ }
+
+ /// Evaluate as boolean \param E without using the cache.
+ TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
+ if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
+ if (Bop->isLogicalOp()) {
+ TryResult LHS = tryEvaluateBool(Bop->getLHS());
+ if (LHS.isKnown()) {
+ // We were able to evaluate the LHS, see if we can get away with not
+ // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
+ if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
+ return LHS.isTrue();
+
+ TryResult RHS = tryEvaluateBool(Bop->getRHS());
+ if (RHS.isKnown()) {
+ if (Bop->getOpcode() == BO_LOr)
+ return LHS.isTrue() || RHS.isTrue();
+ else
+ return LHS.isTrue() && RHS.isTrue();
+ }
+ } else {
+ TryResult RHS = tryEvaluateBool(Bop->getRHS());
+ if (RHS.isKnown()) {
+ // We can't evaluate the LHS; however, sometimes the result
+ // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
+ if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
+ return RHS.isTrue();
+ } else {
+ TryResult BopRes = checkIncorrectLogicOperator(Bop);
+ if (BopRes.isKnown())
+ return BopRes.isTrue();
+ }
+ }
+
+ return {};
+ } else if (Bop->isEqualityOp()) {
+ TryResult BopRes = checkIncorrectEqualityOperator(Bop);
+ if (BopRes.isKnown())
+ return BopRes.isTrue();
+ } else if (Bop->isRelationalOp()) {
+ TryResult BopRes = checkIncorrectRelationalOperator(Bop);
+ if (BopRes.isKnown())
+ return BopRes.isTrue();
+ } else if (Bop->getOpcode() == BO_Or) {
+ TryResult BopRes = checkIncorrectBitwiseOrOperator(Bop);
+ if (BopRes.isKnown())
+ return BopRes.isTrue();
+ }
+ }
+
+ bool Result;
+ if (E->EvaluateAsBooleanCondition(Result, *Context))
+ return Result;
+
+ return {};
+ }
+
+ bool hasTrivialDestructor(VarDecl *VD);
+};
+
+} // namespace
+
+inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
+ const Stmt *stmt) const {
+ return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
+}
+
+bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
+ bool shouldAdd = BuildOpts.alwaysAdd(stmt);
+
+ if (!BuildOpts.forcedBlkExprs)
+ return shouldAdd;
+
+ if (lastLookup == stmt) {
+ if (cachedEntry) {
+ assert(cachedEntry->first == stmt);
+ return true;
+ }
+ return shouldAdd;
+ }
+
+ lastLookup = stmt;
+
+ // Perform the lookup!
+ CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
+
+ if (!fb) {
+ // No need to update 'cachedEntry', since it will always be null.
+ assert(!cachedEntry);
+ return shouldAdd;
+ }
+
+ CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
+ if (itr == fb->end()) {
+ cachedEntry = nullptr;
+ return shouldAdd;
+ }
+
+ cachedEntry = &*itr;
+ return true;
+}
+
+// FIXME: Add support for dependent-sized array types in C++?
+// Does it even make sense to build a CFG for an uninstantiated template?
+static const VariableArrayType *FindVA(const Type *t) {
+ while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
+ if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
+ if (vat->getSizeExpr())
+ return vat;
+
+ t = vt->getElementType().getTypePtr();
+ }
+
+ return nullptr;
+}
+
+void CFGBuilder::consumeConstructionContext(
+ const ConstructionContextLayer *Layer, Expr *E) {
+ assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) ||
+ isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!");
+ if (const ConstructionContextLayer *PreviouslyStoredLayer =
+ ConstructionContextMap.lookup(E)) {
+ (void)PreviouslyStoredLayer;
+ // We might have visited this child when we were finding construction
+ // contexts within its parents.
+ assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) &&
+ "Already within a different construction context!");
+ } else {
+ ConstructionContextMap[E] = Layer;
+ }
+}
+
+void CFGBuilder::findConstructionContexts(
+ const ConstructionContextLayer *Layer, Stmt *Child) {
+ if (!BuildOpts.AddRichCXXConstructors)
+ return;
+
+ if (!Child)
+ return;
+
+ auto withExtraLayer = [this, Layer](const ConstructionContextItem &Item) {
+ return ConstructionContextLayer::create(cfg->getBumpVectorContext(), Item,
+ Layer);
+ };
+
+ switch(Child->getStmtClass()) {
+ case Stmt::CXXConstructExprClass:
+ case Stmt::CXXTemporaryObjectExprClass: {
+ // Support pre-C++17 copy elision AST.
+ auto *CE = cast<CXXConstructExpr>(Child);
+ if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) {
+ findConstructionContexts(withExtraLayer(CE), CE->getArg(0));
+ }
+
+ consumeConstructionContext(Layer, CE);
+ break;
+ }
+ // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr.
+ // FIXME: An isa<> would look much better but this whole switch is a
+ // workaround for an internal compiler error in MSVC 2015 (see r326021).
+ case Stmt::CallExprClass:
+ case Stmt::CXXMemberCallExprClass:
+ case Stmt::CXXOperatorCallExprClass:
+ case Stmt::UserDefinedLiteralClass:
+ case Stmt::ObjCMessageExprClass: {
+ auto *E = cast<Expr>(Child);
+ if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E))
+ consumeConstructionContext(Layer, E);
+ break;
+ }
+ case Stmt::ExprWithCleanupsClass: {
+ auto *Cleanups = cast<ExprWithCleanups>(Child);
+ findConstructionContexts(Layer, Cleanups->getSubExpr());
+ break;
+ }
+ case Stmt::CXXFunctionalCastExprClass: {
+ auto *Cast = cast<CXXFunctionalCastExpr>(Child);
+ findConstructionContexts(Layer, Cast->getSubExpr());
+ break;
+ }
+ case Stmt::ImplicitCastExprClass: {
+ auto *Cast = cast<ImplicitCastExpr>(Child);
+ // Should we support other implicit cast kinds?
+ switch (Cast->getCastKind()) {
+ case CK_NoOp:
+ case CK_ConstructorConversion:
+ findConstructionContexts(Layer, Cast->getSubExpr());
+ break;
+ default:
+ break;
+ }
+ break;
+ }
+ case Stmt::CXXBindTemporaryExprClass: {
+ auto *BTE = cast<CXXBindTemporaryExpr>(Child);
+ findConstructionContexts(withExtraLayer(BTE), BTE->getSubExpr());
+ break;
+ }
+ case Stmt::MaterializeTemporaryExprClass: {
+ // Normally we don't want to search in MaterializeTemporaryExpr because
+ // it indicates the beginning of a temporary object construction context,
+ // so it shouldn't be found in the middle. However, if it is the beginning
+ // of an elidable copy or move construction context, we need to include it.
+ if (Layer->getItem().getKind() ==
+ ConstructionContextItem::ElidableConstructorKind) {
+ auto *MTE = cast<MaterializeTemporaryExpr>(Child);
+ findConstructionContexts(withExtraLayer(MTE), MTE->getSubExpr());
+ }
+ break;
+ }
+ case Stmt::ConditionalOperatorClass: {
+ auto *CO = cast<ConditionalOperator>(Child);
+ if (Layer->getItem().getKind() !=
+ ConstructionContextItem::MaterializationKind) {
+ // If the object returned by the conditional operator is not going to be a
+ // temporary object that needs to be immediately materialized, then
+ // it must be C++17 with its mandatory copy elision. Do not yet promise
+ // to support this case.
+ assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() ||
+ Context->getLangOpts().CPlusPlus17);
+ break;
+ }
+ findConstructionContexts(Layer, CO->getLHS());
+ findConstructionContexts(Layer, CO->getRHS());
+ break;
+ }
+ case Stmt::InitListExprClass: {
+ auto *ILE = cast<InitListExpr>(Child);
+ if (ILE->isTransparent()) {
+ findConstructionContexts(Layer, ILE->getInit(0));
+ break;
+ }
+ // TODO: Handle other cases. For now, fail to find construction contexts.
+ break;
+ }
+ case Stmt::ParenExprClass: {
+ // If expression is placed into parenthesis we should propagate the parent
+ // construction context to subexpressions.
+ auto *PE = cast<ParenExpr>(Child);
+ findConstructionContexts(Layer, PE->getSubExpr());
+ break;
+ }
+ default:
+ break;
+ }
+}
+
+void CFGBuilder::cleanupConstructionContext(Expr *E) {
+ assert(BuildOpts.AddRichCXXConstructors &&
+ "We should not be managing construction contexts!");
+ assert(ConstructionContextMap.count(E) &&
+ "Cannot exit construction context without the context!");
+ ConstructionContextMap.erase(E);
+}
+
+
+/// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an
+/// arbitrary statement. Examples include a single expression or a function
+/// body (compound statement). The ownership of the returned CFG is
+/// transferred to the caller. If CFG construction fails, this method returns
+/// NULL.
+std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
+ assert(cfg.get());
+ if (!Statement)
+ return nullptr;
+
+ // Create an empty block that will serve as the exit block for the CFG. Since
+ // this is the first block added to the CFG, it will be implicitly registered
+ // as the exit block.
+ Succ = createBlock();
+ assert(Succ == &cfg->getExit());
+ Block = nullptr; // the EXIT block is empty. Create all other blocks lazily.
+
+ assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
+ "AddImplicitDtors and AddLifetime cannot be used at the same time");
+
+ if (BuildOpts.AddImplicitDtors)
+ if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
+ addImplicitDtorsForDestructor(DD);
+
+ // Visit the statements and create the CFG.
+ CFGBlock *B = addStmt(Statement);
+
+ if (badCFG)
+ return nullptr;
+
+ // For C++ constructor add initializers to CFG. Constructors of virtual bases
+ // are ignored unless the object is of the most derived class.
+ // class VBase { VBase() = default; VBase(int) {} };
+ // class A : virtual public VBase { A() : VBase(0) {} };
+ // class B : public A {};
+ // B b; // Constructor calls in order: VBase(), A(), B().
+ // // VBase(0) is ignored because A isn't the most derived class.
+ // This may result in the virtual base(s) being already initialized at this
+ // point, in which case we should jump right onto non-virtual bases and
+ // fields. To handle this, make a CFG branch. We only need to add one such
+ // branch per constructor, since the Standard states that all virtual bases
+ // shall be initialized before non-virtual bases and direct data members.
+ if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
+ CFGBlock *VBaseSucc = nullptr;
+ for (auto *I : llvm::reverse(CD->inits())) {
+ if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc &&
+ I->isBaseInitializer() && I->isBaseVirtual()) {
+ // We've reached the first virtual base init while iterating in reverse
+ // order. Make a new block for virtual base initializers so that we
+ // could skip them.
+ VBaseSucc = Succ = B ? B : &cfg->getExit();
+ Block = createBlock();
+ }
+ B = addInitializer(I);
+ if (badCFG)
+ return nullptr;
+ }
+ if (VBaseSucc) {
+ // Make a branch block for potentially skipping virtual base initializers.
+ Succ = VBaseSucc;
+ B = createBlock();
+ B->setTerminator(
+ CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch));
+ addSuccessor(B, Block, true);
+ }
+ }
+
+ if (B)
+ Succ = B;
+
+ // Backpatch the gotos whose label -> block mappings we didn't know when we
+ // encountered them.
+ for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
+ E = BackpatchBlocks.end(); I != E; ++I ) {
+
+ CFGBlock *B = I->block;
+ if (auto *G = dyn_cast<GotoStmt>(B->getTerminator())) {
+ LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
+ // If there is no target for the goto, then we are looking at an
+ // incomplete AST. Handle this by not registering a successor.
+ if (LI == LabelMap.end())
+ continue;
+ JumpTarget JT = LI->second;
+ prependAutomaticObjLifetimeWithTerminator(B, I->scopePosition,
+ JT.scopePosition);
+ prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
+ JT.scopePosition);
+ const VarDecl *VD = prependAutomaticObjScopeEndWithTerminator(
+ B, I->scopePosition, JT.scopePosition);
+ appendScopeBegin(JT.block, VD, G);
+ addSuccessor(B, JT.block);
+ };
+ if (auto *G = dyn_cast<GCCAsmStmt>(B->getTerminator())) {
+ CFGBlock *Successor = (I+1)->block;
+ for (auto *L : G->labels()) {
+ LabelMapTy::iterator LI = LabelMap.find(L->getLabel());
+ // If there is no target for the goto, then we are looking at an
+ // incomplete AST. Handle this by not registering a successor.
+ if (LI == LabelMap.end())
+ continue;
+ JumpTarget JT = LI->second;
+ // Successor has been added, so skip it.
+ if (JT.block == Successor)
+ continue;
+ addSuccessor(B, JT.block);
+ }
+ I++;
+ }
+ }
+
+ // Add successors to the Indirect Goto Dispatch block (if we have one).
+ if (CFGBlock *B = cfg->getIndirectGotoBlock())
+ for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
+ E = AddressTakenLabels.end(); I != E; ++I ) {
+ // Lookup the target block.
+ LabelMapTy::iterator LI = LabelMap.find(*I);
+
+ // If there is no target block that contains label, then we are looking
+ // at an incomplete AST. Handle this by not registering a successor.
+ if (LI == LabelMap.end()) continue;
+
+ addSuccessor(B, LI->second.block);
+ }
+
+ // Create an empty entry block that has no predecessors.
+ cfg->setEntry(createBlock());
+
+ if (BuildOpts.AddRichCXXConstructors)
+ assert(ConstructionContextMap.empty() &&
+ "Not all construction contexts were cleaned up!");
+
+ return std::move(cfg);
+}
+
+/// createBlock - Used to lazily create blocks that are connected
+/// to the current (global) succcessor.
+CFGBlock *CFGBuilder::createBlock(bool add_successor) {
+ CFGBlock *B = cfg->createBlock();
+ if (add_successor && Succ)
+ addSuccessor(B, Succ);
+ return B;
+}
+
+/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
+/// CFG. It is *not* connected to the current (global) successor, and instead
+/// directly tied to the exit block in order to be reachable.
+CFGBlock *CFGBuilder::createNoReturnBlock() {
+ CFGBlock *B = createBlock(false);
+ B->setHasNoReturnElement();
+ addSuccessor(B, &cfg->getExit(), Succ);
+ return B;
+}
+
+/// addInitializer - Add C++ base or member initializer element to CFG.
+CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
+ if (!BuildOpts.AddInitializers)
+ return Block;
+
+ bool HasTemporaries = false;
+
+ // Destructors of temporaries in initialization expression should be called
+ // after initialization finishes.
+ Expr *Init = I->getInit();
+ if (Init) {
+ HasTemporaries = isa<ExprWithCleanups>(Init);
+
+ if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
+ // Generate destructors for temporaries in initialization expression.
+ TempDtorContext Context;
+ VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
+ /*ExternallyDestructed=*/false, Context);
+ }
+ }
+
+ autoCreateBlock();
+ appendInitializer(Block, I);
+
+ if (Init) {
+ findConstructionContexts(
+ ConstructionContextLayer::create(cfg->getBumpVectorContext(), I),
+ Init);
+
+ if (HasTemporaries) {
+ // For expression with temporaries go directly to subexpression to omit
+ // generating destructors for the second time.
+ return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
+ }
+ if (BuildOpts.AddCXXDefaultInitExprInCtors) {
+ if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
+ // In general, appending the expression wrapped by a CXXDefaultInitExpr
+ // may cause the same Expr to appear more than once in the CFG. Doing it
+ // here is safe because there's only one initializer per field.
+ autoCreateBlock();
+ appendStmt(Block, Default);
+ if (Stmt *Child = Default->getExpr())
+ if (CFGBlock *R = Visit(Child))
+ Block = R;
+ return Block;
+ }
+ }
+ return Visit(Init);
+ }
+
+ return Block;
+}
+
+/// Retrieve the type of the temporary object whose lifetime was
+/// extended by a local reference with the given initializer.
+static QualType getReferenceInitTemporaryType(const Expr *Init,
+ bool *FoundMTE = nullptr) {
+ while (true) {
+ // Skip parentheses.
+ Init = Init->IgnoreParens();
+
+ // Skip through cleanups.
+ if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
+ Init = EWC->getSubExpr();
+ continue;
+ }
+
+ // Skip through the temporary-materialization expression.
+ if (const MaterializeTemporaryExpr *MTE
+ = dyn_cast<MaterializeTemporaryExpr>(Init)) {
+ Init = MTE->getSubExpr();
+ if (FoundMTE)
+ *FoundMTE = true;
+ continue;
+ }
+
+ // Skip sub-object accesses into rvalues.
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ const Expr *SkippedInit =
+ Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
+ if (SkippedInit != Init) {
+ Init = SkippedInit;
+ continue;
+ }
+
+ break;
+ }
+
+ return Init->getType();
+}
+
+// TODO: Support adding LoopExit element to the CFG in case where the loop is
+// ended by ReturnStmt, GotoStmt or ThrowExpr.
+void CFGBuilder::addLoopExit(const Stmt *LoopStmt){
+ if(!BuildOpts.AddLoopExit)
+ return;
+ autoCreateBlock();
+ appendLoopExit(Block, LoopStmt);
+}
+
+void CFGBuilder::getDeclsWithEndedScope(LocalScope::const_iterator B,
+ LocalScope::const_iterator E, Stmt *S) {
+ if (!BuildOpts.AddScopes)
+ return;
+
+ if (B == E)
+ return;
+
+ // To go from B to E, one first goes up the scopes from B to P
+ // then sideways in one scope from P to P' and then down
+ // the scopes from P' to E.
+ // The lifetime of all objects between B and P end.
+ LocalScope::const_iterator P = B.shared_parent(E);
+ int Dist = B.distance(P);
+ if (Dist <= 0)
+ return;
+
+ for (LocalScope::const_iterator I = B; I != P; ++I)
+ if (I.pointsToFirstDeclaredVar())
+ DeclsWithEndedScope.insert(*I);
+}
+
+void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B,
+ LocalScope::const_iterator E,
+ Stmt *S) {
+ getDeclsWithEndedScope(B, E, S);
+ if (BuildOpts.AddScopes)
+ addScopesEnd(B, E, S);
+ if (BuildOpts.AddImplicitDtors)
+ addAutomaticObjDtors(B, E, S);
+ if (BuildOpts.AddLifetime)
+ addLifetimeEnds(B, E, S);
+}
+
+/// Add to current block automatic objects that leave the scope.
+void CFGBuilder::addLifetimeEnds(LocalScope::const_iterator B,
+ LocalScope::const_iterator E, Stmt *S) {
+ if (!BuildOpts.AddLifetime)
+ return;
+
+ if (B == E)
+ return;
+
+ // To go from B to E, one first goes up the scopes from B to P
+ // then sideways in one scope from P to P' and then down
+ // the scopes from P' to E.
+ // The lifetime of all objects between B and P end.
+ LocalScope::const_iterator P = B.shared_parent(E);
+ int dist = B.distance(P);
+ if (dist <= 0)
+ return;
+
+ // We need to perform the scope leaving in reverse order
+ SmallVector<VarDecl *, 10> DeclsTrivial;
+ SmallVector<VarDecl *, 10> DeclsNonTrivial;
+ DeclsTrivial.reserve(dist);
+ DeclsNonTrivial.reserve(dist);
+
+ for (LocalScope::const_iterator I = B; I != P; ++I)
+ if (hasTrivialDestructor(*I))
+ DeclsTrivial.push_back(*I);
+ else
+ DeclsNonTrivial.push_back(*I);
+
+ autoCreateBlock();
+ // object with trivial destructor end their lifetime last (when storage
+ // duration ends)
+ for (VarDecl *VD : llvm::reverse(DeclsTrivial))
+ appendLifetimeEnds(Block, VD, S);
+
+ for (VarDecl *VD : llvm::reverse(DeclsNonTrivial))
+ appendLifetimeEnds(Block, VD, S);
+}
+
+/// Add to current block markers for ending scopes.
+void CFGBuilder::addScopesEnd(LocalScope::const_iterator B,
+ LocalScope::const_iterator E, Stmt *S) {
+ // If implicit destructors are enabled, we'll add scope ends in
+ // addAutomaticObjDtors.
+ if (BuildOpts.AddImplicitDtors)
+ return;
+
+ autoCreateBlock();
+
+ for (VarDecl *VD : llvm::reverse(DeclsWithEndedScope))
+ appendScopeEnd(Block, VD, S);
+}
+
+/// addAutomaticObjDtors - Add to current block automatic objects destructors
+/// for objects in range of local scope positions. Use S as trigger statement
+/// for destructors.
+void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
+ LocalScope::const_iterator E, Stmt *S) {
+ if (!BuildOpts.AddImplicitDtors)
+ return;
+
+ if (B == E)
+ return;
+
+ // We need to append the destructors in reverse order, but any one of them
+ // may be a no-return destructor which changes the CFG. As a result, buffer
+ // this sequence up and replay them in reverse order when appending onto the
+ // CFGBlock(s).
+ SmallVector<VarDecl*, 10> Decls;
+ Decls.reserve(B.distance(E));
+ for (LocalScope::const_iterator I = B; I != E; ++I)
+ Decls.push_back(*I);
+
+ for (VarDecl *VD : llvm::reverse(Decls)) {
+ if (hasTrivialDestructor(VD)) {
+ // If AddScopes is enabled and *I is a first variable in a scope, add a
+ // ScopeEnd marker in a Block.
+ if (BuildOpts.AddScopes && DeclsWithEndedScope.count(VD)) {
+ autoCreateBlock();
+ appendScopeEnd(Block, VD, S);
+ }
+ continue;
+ }
+ // If this destructor is marked as a no-return destructor, we need to
+ // create a new block for the destructor which does not have as a successor
+ // anything built thus far: control won't flow out of this block.
+ QualType Ty = VD->getType();
+ if (Ty->isReferenceType()) {
+ Ty = getReferenceInitTemporaryType(VD->getInit());
+ }
+ Ty = Context->getBaseElementType(Ty);
+
+ if (Ty->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
+ Block = createNoReturnBlock();
+ else
+ autoCreateBlock();
+
+ // Add ScopeEnd just after automatic obj destructor.
+ if (BuildOpts.AddScopes && DeclsWithEndedScope.count(VD))
+ appendScopeEnd(Block, VD, S);
+ appendAutomaticObjDtor(Block, VD, S);
+ }
+}
+
+/// addImplicitDtorsForDestructor - Add implicit destructors generated for
+/// base and member objects in destructor.
+void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
+ assert(BuildOpts.AddImplicitDtors &&
+ "Can be called only when dtors should be added");
+ const CXXRecordDecl *RD = DD->getParent();
+
+ // At the end destroy virtual base objects.
+ for (const auto &VI : RD->vbases()) {
+ // TODO: Add a VirtualBaseBranch to see if the most derived class
+ // (which is different from the current class) is responsible for
+ // destroying them.
+ const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
+ if (!CD->hasTrivialDestructor()) {
+ autoCreateBlock();
+ appendBaseDtor(Block, &VI);
+ }
+ }
+
+ // Before virtual bases destroy direct base objects.
+ for (const auto &BI : RD->bases()) {
+ if (!BI.isVirtual()) {
+ const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
+ if (!CD->hasTrivialDestructor()) {
+ autoCreateBlock();
+ appendBaseDtor(Block, &BI);
+ }
+ }
+ }
+
+ // First destroy member objects.
+ for (auto *FI : RD->fields()) {
+ // Check for constant size array. Set type to array element type.
+ QualType QT = FI->getType();
+ if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
+ if (AT->getSize() == 0)
+ continue;
+ QT = AT->getElementType();
+ }
+
+ if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
+ if (!CD->hasTrivialDestructor()) {
+ autoCreateBlock();
+ appendMemberDtor(Block, FI);
+ }
+ }
+}
+
+/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
+/// way return valid LocalScope object.
+LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
+ if (Scope)
+ return Scope;
+ llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
+ return new (alloc.Allocate<LocalScope>())
+ LocalScope(BumpVectorContext(alloc), ScopePos);
+}
+
+/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
+/// that should create implicit scope (e.g. if/else substatements).
+void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
+ if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
+ !BuildOpts.AddScopes)
+ return;
+
+ LocalScope *Scope = nullptr;
+
+ // For compound statement we will be creating explicit scope.
+ if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
+ for (auto *BI : CS->body()) {
+ Stmt *SI = BI->stripLabelLikeStatements();
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
+ Scope = addLocalScopeForDeclStmt(DS, Scope);
+ }
+ return;
+ }
+
+ // For any other statement scope will be implicit and as such will be
+ // interesting only for DeclStmt.
+ if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
+ addLocalScopeForDeclStmt(DS);
+}
+
+/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
+/// reuse Scope if not NULL.
+LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
+ LocalScope* Scope) {
+ if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
+ !BuildOpts.AddScopes)
+ return Scope;
+
+ for (auto *DI : DS->decls())
+ if (VarDecl *VD = dyn_cast<VarDecl>(DI))
+ Scope = addLocalScopeForVarDecl(VD, Scope);
+ return Scope;
+}
+
+bool CFGBuilder::hasTrivialDestructor(VarDecl *VD) {
+ // Check for const references bound to temporary. Set type to pointee.
+ QualType QT = VD->getType();
+ if (QT->isReferenceType()) {
+ // Attempt to determine whether this declaration lifetime-extends a
+ // temporary.
+ //
+ // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
+ // temporaries, and a single declaration can extend multiple temporaries.
+ // We should look at the storage duration on each nested
+ // MaterializeTemporaryExpr instead.
+
+ const Expr *Init = VD->getInit();
+ if (!Init) {
+ // Probably an exception catch-by-reference variable.
+ // FIXME: It doesn't really mean that the object has a trivial destructor.
+ // Also are there other cases?
+ return true;
+ }
+
+ // Lifetime-extending a temporary?
+ bool FoundMTE = false;
+ QT = getReferenceInitTemporaryType(Init, &FoundMTE);
+ if (!FoundMTE)
+ return true;
+ }
+
+ // Check for constant size array. Set type to array element type.
+ while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
+ if (AT->getSize() == 0)
+ return true;
+ QT = AT->getElementType();
+ }
+
+ // Check if type is a C++ class with non-trivial destructor.
+ if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
+ return !CD->hasDefinition() || CD->hasTrivialDestructor();
+ return true;
+}
+
+/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
+/// create add scope for automatic objects and temporary objects bound to
+/// const reference. Will reuse Scope if not NULL.
+LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
+ LocalScope* Scope) {
+ assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
+ "AddImplicitDtors and AddLifetime cannot be used at the same time");
+ if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
+ !BuildOpts.AddScopes)
+ return Scope;
+
+ // Check if variable is local.
+ switch (VD->getStorageClass()) {
+ case SC_None:
+ case SC_Auto:
+ case SC_Register:
+ break;
+ default: return Scope;
+ }
+
+ if (BuildOpts.AddImplicitDtors) {
+ if (!hasTrivialDestructor(VD) || BuildOpts.AddScopes) {
+ // Add the variable to scope
+ Scope = createOrReuseLocalScope(Scope);
+ Scope->addVar(VD);
+ ScopePos = Scope->begin();
+ }
+ return Scope;
+ }
+
+ assert(BuildOpts.AddLifetime);
+ // Add the variable to scope
+ Scope = createOrReuseLocalScope(Scope);
+ Scope->addVar(VD);
+ ScopePos = Scope->begin();
+ return Scope;
+}
+
+/// addLocalScopeAndDtors - For given statement add local scope for it and
+/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
+void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
+ LocalScope::const_iterator scopeBeginPos = ScopePos;
+ addLocalScopeForStmt(S);
+ addAutomaticObjHandling(ScopePos, scopeBeginPos, S);
+}
+
+/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
+/// variables with automatic storage duration to CFGBlock's elements vector.
+/// Elements will be prepended to physical beginning of the vector which
+/// happens to be logical end. Use blocks terminator as statement that specifies
+/// destructors call site.
+/// FIXME: This mechanism for adding automatic destructors doesn't handle
+/// no-return destructors properly.
+void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
+ LocalScope::const_iterator B, LocalScope::const_iterator E) {
+ if (!BuildOpts.AddImplicitDtors)
+ return;
+ BumpVectorContext &C = cfg->getBumpVectorContext();
+ CFGBlock::iterator InsertPos
+ = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
+ for (LocalScope::const_iterator I = B; I != E; ++I)
+ InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
+ Blk->getTerminatorStmt());
+}
+
+/// prependAutomaticObjLifetimeWithTerminator - Prepend lifetime CFGElements for
+/// variables with automatic storage duration to CFGBlock's elements vector.
+/// Elements will be prepended to physical beginning of the vector which
+/// happens to be logical end. Use blocks terminator as statement that specifies
+/// where lifetime ends.
+void CFGBuilder::prependAutomaticObjLifetimeWithTerminator(
+ CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
+ if (!BuildOpts.AddLifetime)
+ return;
+ BumpVectorContext &C = cfg->getBumpVectorContext();
+ CFGBlock::iterator InsertPos =
+ Blk->beginLifetimeEndsInsert(Blk->end(), B.distance(E), C);
+ for (LocalScope::const_iterator I = B; I != E; ++I) {
+ InsertPos =
+ Blk->insertLifetimeEnds(InsertPos, *I, Blk->getTerminatorStmt());
+ }
+}
+
+/// prependAutomaticObjScopeEndWithTerminator - Prepend scope end CFGElements for
+/// variables with automatic storage duration to CFGBlock's elements vector.
+/// Elements will be prepended to physical beginning of the vector which
+/// happens to be logical end. Use blocks terminator as statement that specifies
+/// where scope ends.
+const VarDecl *
+CFGBuilder::prependAutomaticObjScopeEndWithTerminator(
+ CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
+ if (!BuildOpts.AddScopes)
+ return nullptr;
+ BumpVectorContext &C = cfg->getBumpVectorContext();
+ CFGBlock::iterator InsertPos =
+ Blk->beginScopeEndInsert(Blk->end(), 1, C);
+ LocalScope::const_iterator PlaceToInsert = B;
+ for (LocalScope::const_iterator I = B; I != E; ++I)
+ PlaceToInsert = I;
+ Blk->insertScopeEnd(InsertPos, *PlaceToInsert, Blk->getTerminatorStmt());
+ return *PlaceToInsert;
+}
+
+/// Visit - Walk the subtree of a statement and add extra
+/// blocks for ternary operators, &&, and ||. We also process "," and
+/// DeclStmts (which may contain nested control-flow).
+CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc,
+ bool ExternallyDestructed) {
+ if (!S) {
+ badCFG = true;
+ return nullptr;
+ }
+
+ if (Expr *E = dyn_cast<Expr>(S))
+ S = E->IgnoreParens();
+
+ if (Context->getLangOpts().OpenMP)
+ if (auto *D = dyn_cast<OMPExecutableDirective>(S))
+ return VisitOMPExecutableDirective(D, asc);
+
+ switch (S->getStmtClass()) {
+ default:
+ return VisitStmt(S, asc);
+
+ case Stmt::ImplicitValueInitExprClass:
+ if (BuildOpts.OmitImplicitValueInitializers)
+ return Block;
+ return VisitStmt(S, asc);
+
+ case Stmt::InitListExprClass:
+ return VisitInitListExpr(cast<InitListExpr>(S), asc);
+
+ case Stmt::AttributedStmtClass:
+ return VisitAttributedStmt(cast<AttributedStmt>(S), asc);
+
+ case Stmt::AddrLabelExprClass:
+ return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
+
+ case Stmt::BinaryConditionalOperatorClass:
+ return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
+
+ case Stmt::BinaryOperatorClass:
+ return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
+
+ case Stmt::BlockExprClass:
+ return VisitBlockExpr(cast<BlockExpr>(S), asc);
+
+ case Stmt::BreakStmtClass:
+ return VisitBreakStmt(cast<BreakStmt>(S));
+
+ case Stmt::CallExprClass:
+ case Stmt::CXXOperatorCallExprClass:
+ case Stmt::CXXMemberCallExprClass:
+ case Stmt::UserDefinedLiteralClass:
+ return VisitCallExpr(cast<CallExpr>(S), asc);
+
+ case Stmt::CaseStmtClass:
+ return VisitCaseStmt(cast<CaseStmt>(S));
+
+ case Stmt::ChooseExprClass:
+ return VisitChooseExpr(cast<ChooseExpr>(S), asc);
+
+ case Stmt::CompoundStmtClass:
+ return VisitCompoundStmt(cast<CompoundStmt>(S), ExternallyDestructed);
+
+ case Stmt::ConditionalOperatorClass:
+ return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
+
+ case Stmt::ContinueStmtClass:
+ return VisitContinueStmt(cast<ContinueStmt>(S));
+
+ case Stmt::CXXCatchStmtClass:
+ return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
+
+ case Stmt::ExprWithCleanupsClass:
+ return VisitExprWithCleanups(cast<ExprWithCleanups>(S),
+ asc, ExternallyDestructed);
+
+ case Stmt::CXXDefaultArgExprClass:
+ case Stmt::CXXDefaultInitExprClass:
+ // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
+ // called function's declaration, not by the caller. If we simply add
+ // this expression to the CFG, we could end up with the same Expr
+ // appearing multiple times.
+ // PR13385 / <rdar://problem/12156507>
+ //
+ // It's likewise possible for multiple CXXDefaultInitExprs for the same
+ // expression to be used in the same function (through aggregate
+ // initialization).
+ return VisitStmt(S, asc);
+
+ case Stmt::CXXBindTemporaryExprClass:
+ return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
+
+ case Stmt::CXXConstructExprClass:
+ return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
+
+ case Stmt::CXXNewExprClass:
+ return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
+
+ case Stmt::CXXDeleteExprClass:
+ return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
+
+ case Stmt::CXXFunctionalCastExprClass:
+ return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
+
+ case Stmt::CXXTemporaryObjectExprClass:
+ return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
+
+ case Stmt::CXXThrowExprClass:
+ return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
+
+ case Stmt::CXXTryStmtClass:
+ return VisitCXXTryStmt(cast<CXXTryStmt>(S));
+
+ case Stmt::CXXForRangeStmtClass:
+ return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
+
+ case Stmt::DeclStmtClass:
+ return VisitDeclStmt(cast<DeclStmt>(S));
+
+ case Stmt::DefaultStmtClass:
+ return VisitDefaultStmt(cast<DefaultStmt>(S));
+
+ case Stmt::DoStmtClass:
+ return VisitDoStmt(cast<DoStmt>(S));
+
+ case Stmt::ForStmtClass:
+ return VisitForStmt(cast<ForStmt>(S));
+
+ case Stmt::GotoStmtClass:
+ return VisitGotoStmt(cast<GotoStmt>(S));
+
+ case Stmt::GCCAsmStmtClass:
+ return VisitGCCAsmStmt(cast<GCCAsmStmt>(S), asc);
+
+ case Stmt::IfStmtClass:
+ return VisitIfStmt(cast<IfStmt>(S));
+
+ case Stmt::ImplicitCastExprClass:
+ return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
+
+ case Stmt::ConstantExprClass:
+ return VisitConstantExpr(cast<ConstantExpr>(S), asc);
+
+ case Stmt::IndirectGotoStmtClass:
+ return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
+
+ case Stmt::LabelStmtClass:
+ return VisitLabelStmt(cast<LabelStmt>(S));
+
+ case Stmt::LambdaExprClass:
+ return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
+
+ case Stmt::MaterializeTemporaryExprClass:
+ return VisitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(S),
+ asc);
+
+ case Stmt::MemberExprClass:
+ return VisitMemberExpr(cast<MemberExpr>(S), asc);
+
+ case Stmt::NullStmtClass:
+ return Block;
+
+ case Stmt::ObjCAtCatchStmtClass:
+ return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
+
+ case Stmt::ObjCAutoreleasePoolStmtClass:
+ return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
+
+ case Stmt::ObjCAtSynchronizedStmtClass:
+ return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
+
+ case Stmt::ObjCAtThrowStmtClass:
+ return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
+
+ case Stmt::ObjCAtTryStmtClass:
+ return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
+
+ case Stmt::ObjCForCollectionStmtClass:
+ return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
+
+ case Stmt::ObjCMessageExprClass:
+ return VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), asc);
+
+ case Stmt::OpaqueValueExprClass:
+ return Block;
+
+ case Stmt::PseudoObjectExprClass:
+ return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
+
+ case Stmt::ReturnStmtClass:
+ case Stmt::CoreturnStmtClass:
+ return VisitReturnStmt(S);
+
+ case Stmt::SEHExceptStmtClass:
+ return VisitSEHExceptStmt(cast<SEHExceptStmt>(S));
+
+ case Stmt::SEHFinallyStmtClass:
+ return VisitSEHFinallyStmt(cast<SEHFinallyStmt>(S));
+
+ case Stmt::SEHLeaveStmtClass:
+ return VisitSEHLeaveStmt(cast<SEHLeaveStmt>(S));
+
+ case Stmt::SEHTryStmtClass:
+ return VisitSEHTryStmt(cast<SEHTryStmt>(S));
+
+ case Stmt::UnaryExprOrTypeTraitExprClass:
+ return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
+ asc);
+
+ case Stmt::StmtExprClass:
+ return VisitStmtExpr(cast<StmtExpr>(S), asc);
+
+ case Stmt::SwitchStmtClass:
+ return VisitSwitchStmt(cast<SwitchStmt>(S));
+
+ case Stmt::UnaryOperatorClass:
+ return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
+
+ case Stmt::WhileStmtClass:
+ return VisitWhileStmt(cast<WhileStmt>(S));
+ }
+}
+
+CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, S)) {
+ autoCreateBlock();
+ appendStmt(Block, S);
+ }
+
+ return VisitChildren(S);
+}
+
+/// VisitChildren - Visit the children of a Stmt.
+CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
+ CFGBlock *B = Block;
+
+ // Visit the children in their reverse order so that they appear in
+ // left-to-right (natural) order in the CFG.
+ reverse_children RChildren(S);
+ for (Stmt *Child : RChildren) {
+ if (Child)
+ if (CFGBlock *R = Visit(Child))
+ B = R;
+ }
+ return B;
+}
+
+CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, ILE)) {
+ autoCreateBlock();
+ appendStmt(Block, ILE);
+ }
+ CFGBlock *B = Block;
+
+ reverse_children RChildren(ILE);
+ for (Stmt *Child : RChildren) {
+ if (!Child)
+ continue;
+ if (CFGBlock *R = Visit(Child))
+ B = R;
+ if (BuildOpts.AddCXXDefaultInitExprInAggregates) {
+ if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Child))
+ if (Stmt *Child = DIE->getExpr())
+ if (CFGBlock *R = Visit(Child))
+ B = R;
+ }
+ }
+ return B;
+}
+
+CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
+ AddStmtChoice asc) {
+ AddressTakenLabels.insert(A->getLabel());
+
+ if (asc.alwaysAdd(*this, A)) {
+ autoCreateBlock();
+ appendStmt(Block, A);
+ }
+
+ return Block;
+}
+
+static bool isFallthroughStatement(const AttributedStmt *A) {
+ bool isFallthrough = hasSpecificAttr<FallThroughAttr>(A->getAttrs());
+ assert((!isFallthrough || isa<NullStmt>(A->getSubStmt())) &&
+ "expected fallthrough not to have children");
+ return isFallthrough;
+}
+
+CFGBlock *CFGBuilder::VisitAttributedStmt(AttributedStmt *A,
+ AddStmtChoice asc) {
+ // AttributedStmts for [[likely]] can have arbitrary statements as children,
+ // and the current visitation order here would add the AttributedStmts
+ // for [[likely]] after the child nodes, which is undesirable: For example,
+ // if the child contains an unconditional return, the [[likely]] would be
+ // considered unreachable.
+ // So only add the AttributedStmt for FallThrough, which has CFG effects and
+ // also no children, and omit the others. None of the other current StmtAttrs
+ // have semantic meaning for the CFG.
+ if (isFallthroughStatement(A) && asc.alwaysAdd(*this, A)) {
+ autoCreateBlock();
+ appendStmt(Block, A);
+ }
+
+ return VisitChildren(A);
+}
+
+CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, U)) {
+ autoCreateBlock();
+ appendStmt(Block, U);
+ }
+
+ if (U->getOpcode() == UO_LNot)
+ tryEvaluateBool(U->getSubExpr()->IgnoreParens());
+
+ return Visit(U->getSubExpr(), AddStmtChoice());
+}
+
+CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
+ CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
+ appendStmt(ConfluenceBlock, B);
+
+ if (badCFG)
+ return nullptr;
+
+ return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
+ ConfluenceBlock).first;
+}
+
+std::pair<CFGBlock*, CFGBlock*>
+CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
+ Stmt *Term,
+ CFGBlock *TrueBlock,
+ CFGBlock *FalseBlock) {
+ // Introspect the RHS. If it is a nested logical operation, we recursively
+ // build the CFG using this function. Otherwise, resort to default
+ // CFG construction behavior.
+ Expr *RHS = B->getRHS()->IgnoreParens();
+ CFGBlock *RHSBlock, *ExitBlock;
+
+ do {
+ if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
+ if (B_RHS->isLogicalOp()) {
+ std::tie(RHSBlock, ExitBlock) =
+ VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
+ break;
+ }
+
+ // The RHS is not a nested logical operation. Don't push the terminator
+ // down further, but instead visit RHS and construct the respective
+ // pieces of the CFG, and link up the RHSBlock with the terminator
+ // we have been provided.
+ ExitBlock = RHSBlock = createBlock(false);
+
+ // Even though KnownVal is only used in the else branch of the next
+ // conditional, tryEvaluateBool performs additional checking on the
+ // Expr, so it should be called unconditionally.
+ TryResult KnownVal = tryEvaluateBool(RHS);
+ if (!KnownVal.isKnown())
+ KnownVal = tryEvaluateBool(B);
+
+ if (!Term) {
+ assert(TrueBlock == FalseBlock);
+ addSuccessor(RHSBlock, TrueBlock);
+ }
+ else {
+ RHSBlock->setTerminator(Term);
+ addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
+ addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
+ }
+
+ Block = RHSBlock;
+ RHSBlock = addStmt(RHS);
+ }
+ while (false);
+
+ if (badCFG)
+ return std::make_pair(nullptr, nullptr);
+
+ // Generate the blocks for evaluating the LHS.
+ Expr *LHS = B->getLHS()->IgnoreParens();
+
+ if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
+ if (B_LHS->isLogicalOp()) {
+ if (B->getOpcode() == BO_LOr)
+ FalseBlock = RHSBlock;
+ else
+ TrueBlock = RHSBlock;
+
+ // For the LHS, treat 'B' as the terminator that we want to sink
+ // into the nested branch. The RHS always gets the top-most
+ // terminator.
+ return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
+ }
+
+ // Create the block evaluating the LHS.
+ // This contains the '&&' or '||' as the terminator.
+ CFGBlock *LHSBlock = createBlock(false);
+ LHSBlock->setTerminator(B);
+
+ Block = LHSBlock;
+ CFGBlock *EntryLHSBlock = addStmt(LHS);
+
+ if (badCFG)
+ return std::make_pair(nullptr, nullptr);
+
+ // See if this is a known constant.
+ TryResult KnownVal = tryEvaluateBool(LHS);
+
+ // Now link the LHSBlock with RHSBlock.
+ if (B->getOpcode() == BO_LOr) {
+ addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
+ addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
+ } else {
+ assert(B->getOpcode() == BO_LAnd);
+ addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
+ addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
+ }
+
+ return std::make_pair(EntryLHSBlock, ExitBlock);
+}
+
+CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
+ AddStmtChoice asc) {
+ // && or ||
+ if (B->isLogicalOp())
+ return VisitLogicalOperator(B);
+
+ if (B->getOpcode() == BO_Comma) { // ,
+ autoCreateBlock();
+ appendStmt(Block, B);
+ addStmt(B->getRHS());
+ return addStmt(B->getLHS());
+ }
+
+ if (B->isAssignmentOp()) {
+ if (asc.alwaysAdd(*this, B)) {
+ autoCreateBlock();
+ appendStmt(Block, B);
+ }
+ Visit(B->getLHS());
+ return Visit(B->getRHS());
+ }
+
+ if (asc.alwaysAdd(*this, B)) {
+ autoCreateBlock();
+ appendStmt(Block, B);
+ }
+
+ if (B->isEqualityOp() || B->isRelationalOp())
+ tryEvaluateBool(B);
+
+ CFGBlock *RBlock = Visit(B->getRHS());
+ CFGBlock *LBlock = Visit(B->getLHS());
+ // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
+ // containing a DoStmt, and the LHS doesn't create a new block, then we should
+ // return RBlock. Otherwise we'll incorrectly return NULL.
+ return (LBlock ? LBlock : RBlock);
+}
+
+CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, E)) {
+ autoCreateBlock();
+ appendStmt(Block, E);
+ }
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
+ // "break" is a control-flow statement. Thus we stop processing the current
+ // block.
+ if (badCFG)
+ return nullptr;
+
+ // Now create a new block that ends with the break statement.
+ Block = createBlock(false);
+ Block->setTerminator(B);
+
+ // If there is no target for the break, then we are looking at an incomplete
+ // AST. This means that the CFG cannot be constructed.
+ if (BreakJumpTarget.block) {
+ addAutomaticObjHandling(ScopePos, BreakJumpTarget.scopePosition, B);
+ addSuccessor(Block, BreakJumpTarget.block);
+ } else
+ badCFG = true;
+
+ return Block;
+}
+
+static bool CanThrow(Expr *E, ASTContext &Ctx) {
+ QualType Ty = E->getType();
+ if (Ty->isFunctionPointerType() || Ty->isBlockPointerType())
+ Ty = Ty->getPointeeType();
+
+ const FunctionType *FT = Ty->getAs<FunctionType>();
+ if (FT) {
+ if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
+ if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
+ Proto->isNothrow())
+ return false;
+ }
+ return true;
+}
+
+CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
+ // Compute the callee type.
+ QualType calleeType = C->getCallee()->getType();
+ if (calleeType == Context->BoundMemberTy) {
+ QualType boundType = Expr::findBoundMemberType(C->getCallee());
+
+ // We should only get a null bound type if processing a dependent
+ // CFG. Recover by assuming nothing.
+ if (!boundType.isNull()) calleeType = boundType;
+ }
+
+ // If this is a call to a no-return function, this stops the block here.
+ bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
+
+ bool AddEHEdge = false;
+
+ // Languages without exceptions are assumed to not throw.
+ if (Context->getLangOpts().Exceptions) {
+ if (BuildOpts.AddEHEdges)
+ AddEHEdge = true;
+ }
+
+ // If this is a call to a builtin function, it might not actually evaluate
+ // its arguments. Don't add them to the CFG if this is the case.
+ bool OmitArguments = false;
+
+ if (FunctionDecl *FD = C->getDirectCallee()) {
+ // TODO: Support construction contexts for variadic function arguments.
+ // These are a bit problematic and not very useful because passing
+ // C++ objects as C-style variadic arguments doesn't work in general
+ // (see [expr.call]).
+ if (!FD->isVariadic())
+ findConstructionContextsForArguments(C);
+
+ if (FD->isNoReturn() || C->isBuiltinAssumeFalse(*Context))
+ NoReturn = true;
+ if (FD->hasAttr<NoThrowAttr>())
+ AddEHEdge = false;
+ if (FD->getBuiltinID() == Builtin::BI__builtin_object_size ||
+ FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size)
+ OmitArguments = true;
+ }
+
+ if (!CanThrow(C->getCallee(), *Context))
+ AddEHEdge = false;
+
+ if (OmitArguments) {
+ assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
+ assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
+ autoCreateBlock();
+ appendStmt(Block, C);
+ return Visit(C->getCallee());
+ }
+
+ if (!NoReturn && !AddEHEdge) {
+ autoCreateBlock();
+ appendCall(Block, C);
+
+ return VisitChildren(C);
+ }
+
+ if (Block) {
+ Succ = Block;
+ if (badCFG)
+ return nullptr;
+ }
+
+ if (NoReturn)
+ Block = createNoReturnBlock();
+ else
+ Block = createBlock();
+
+ appendCall(Block, C);
+
+ if (AddEHEdge) {
+ // Add exceptional edges.
+ if (TryTerminatedBlock)
+ addSuccessor(Block, TryTerminatedBlock);
+ else
+ addSuccessor(Block, &cfg->getExit());
+ }
+
+ return VisitChildren(C);
+}
+
+CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
+ AddStmtChoice asc) {
+ CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
+ appendStmt(ConfluenceBlock, C);
+ if (badCFG)
+ return nullptr;
+
+ AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
+ Succ = ConfluenceBlock;
+ Block = nullptr;
+ CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
+ if (badCFG)
+ return nullptr;
+
+ Succ = ConfluenceBlock;
+ Block = nullptr;
+ CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
+ if (badCFG)
+ return nullptr;
+
+ Block = createBlock(false);
+ // See if this is a known constant.
+ const TryResult& KnownVal = tryEvaluateBool(C->getCond());
+ addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
+ addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
+ Block->setTerminator(C);
+ return addStmt(C->getCond());
+}
+
+CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C,
+ bool ExternallyDestructed) {
+ LocalScope::const_iterator scopeBeginPos = ScopePos;
+ addLocalScopeForStmt(C);
+
+ if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
+ // If the body ends with a ReturnStmt, the dtors will be added in
+ // VisitReturnStmt.
+ addAutomaticObjHandling(ScopePos, scopeBeginPos, C);
+ }
+
+ CFGBlock *LastBlock = Block;
+
+ for (Stmt *S : llvm::reverse(C->body())) {
+ // If we hit a segment of code just containing ';' (NullStmts), we can
+ // get a null block back. In such cases, just use the LastBlock
+ CFGBlock *newBlock = Visit(S, AddStmtChoice::AlwaysAdd,
+ ExternallyDestructed);
+
+ if (newBlock)
+ LastBlock = newBlock;
+
+ if (badCFG)
+ return nullptr;
+
+ ExternallyDestructed = false;
+ }
+
+ return LastBlock;
+}
+
+CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
+ AddStmtChoice asc) {
+ const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
+ const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
+
+ // Create the confluence block that will "merge" the results of the ternary
+ // expression.
+ CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
+ appendStmt(ConfluenceBlock, C);
+ if (badCFG)
+ return nullptr;
+
+ AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
+
+ // Create a block for the LHS expression if there is an LHS expression. A
+ // GCC extension allows LHS to be NULL, causing the condition to be the
+ // value that is returned instead.
+ // e.g: x ?: y is shorthand for: x ? x : y;
+ Succ = ConfluenceBlock;
+ Block = nullptr;
+ CFGBlock *LHSBlock = nullptr;
+ const Expr *trueExpr = C->getTrueExpr();
+ if (trueExpr != opaqueValue) {
+ LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
+ if (badCFG)
+ return nullptr;
+ Block = nullptr;
+ }
+ else
+ LHSBlock = ConfluenceBlock;
+
+ // Create the block for the RHS expression.
+ Succ = ConfluenceBlock;
+ CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
+ if (badCFG)
+ return nullptr;
+
+ // If the condition is a logical '&&' or '||', build a more accurate CFG.
+ if (BinaryOperator *Cond =
+ dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
+ if (Cond->isLogicalOp())
+ return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
+
+ // Create the block that will contain the condition.
+ Block = createBlock(false);
+
+ // See if this is a known constant.
+ const TryResult& KnownVal = tryEvaluateBool(C->getCond());
+ addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
+ addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
+ Block->setTerminator(C);
+ Expr *condExpr = C->getCond();
+
+ if (opaqueValue) {
+ // Run the condition expression if it's not trivially expressed in
+ // terms of the opaque value (or if there is no opaque value).
+ if (condExpr != opaqueValue)
+ addStmt(condExpr);
+
+ // Before that, run the common subexpression if there was one.
+ // At least one of this or the above will be run.
+ return addStmt(BCO->getCommon());
+ }
+
+ return addStmt(condExpr);
+}
+
+CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
+ // Check if the Decl is for an __label__. If so, elide it from the
+ // CFG entirely.
+ if (isa<LabelDecl>(*DS->decl_begin()))
+ return Block;
+
+ // This case also handles static_asserts.
+ if (DS->isSingleDecl())
+ return VisitDeclSubExpr(DS);
+
+ CFGBlock *B = nullptr;
+
+ // Build an individual DeclStmt for each decl.
+ for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
+ E = DS->decl_rend();
+ I != E; ++I) {
+
+ // Allocate the DeclStmt using the BumpPtrAllocator. It will get
+ // automatically freed with the CFG.
+ DeclGroupRef DG(*I);
+ Decl *D = *I;
+ DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
+ cfg->addSyntheticDeclStmt(DSNew, DS);
+
+ // Append the fake DeclStmt to block.
+ B = VisitDeclSubExpr(DSNew);
+ }
+
+ return B;
+}
+
+/// VisitDeclSubExpr - Utility method to add block-level expressions for
+/// DeclStmts and initializers in them.
+CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
+ assert(DS->isSingleDecl() && "Can handle single declarations only.");
+
+ if (const auto *TND = dyn_cast<TypedefNameDecl>(DS->getSingleDecl())) {
+ // If we encounter a VLA, process its size expressions.
+ const Type *T = TND->getUnderlyingType().getTypePtr();
+ if (!T->isVariablyModifiedType())
+ return Block;
+
+ autoCreateBlock();
+ appendStmt(Block, DS);
+
+ CFGBlock *LastBlock = Block;
+ for (const VariableArrayType *VA = FindVA(T); VA != nullptr;
+ VA = FindVA(VA->getElementType().getTypePtr())) {
+ if (CFGBlock *NewBlock = addStmt(VA->getSizeExpr()))
+ LastBlock = NewBlock;
+ }
+ return LastBlock;
+ }
+
+ VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
+
+ if (!VD) {
+ // Of everything that can be declared in a DeclStmt, only VarDecls and the
+ // exceptions above impact runtime semantics.
+ return Block;
+ }
+
+ bool HasTemporaries = false;
+
+ // Guard static initializers under a branch.
+ CFGBlock *blockAfterStaticInit = nullptr;
+
+ if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
+ // For static variables, we need to create a branch to track
+ // whether or not they are initialized.
+ if (Block) {
+ Succ = Block;
+ Block = nullptr;
+ if (badCFG)
+ return nullptr;
+ }
+ blockAfterStaticInit = Succ;
+ }
+
+ // Destructors of temporaries in initialization expression should be called
+ // after initialization finishes.
+ Expr *Init = VD->getInit();
+ if (Init) {
+ HasTemporaries = isa<ExprWithCleanups>(Init);
+
+ if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
+ // Generate destructors for temporaries in initialization expression.
+ TempDtorContext Context;
+ VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
+ /*ExternallyDestructed=*/true, Context);
+ }
+ }
+
+ autoCreateBlock();
+ appendStmt(Block, DS);
+
+ findConstructionContexts(
+ ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
+ Init);
+
+ // Keep track of the last non-null block, as 'Block' can be nulled out
+ // if the initializer expression is something like a 'while' in a
+ // statement-expression.
+ CFGBlock *LastBlock = Block;
+
+ if (Init) {
+ if (HasTemporaries) {
+ // For expression with temporaries go directly to subexpression to omit
+ // generating destructors for the second time.
+ ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
+ if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
+ LastBlock = newBlock;
+ }
+ else {
+ if (CFGBlock *newBlock = Visit(Init))
+ LastBlock = newBlock;
+ }
+ }
+
+ // If the type of VD is a VLA, then we must process its size expressions.
+ // FIXME: This does not find the VLA if it is embedded in other types,
+ // like here: `int (*p_vla)[x];`
+ for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
+ VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
+ if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
+ LastBlock = newBlock;
+ }
+
+ maybeAddScopeBeginForVarDecl(Block, VD, DS);
+
+ // Remove variable from local scope.
+ if (ScopePos && VD == *ScopePos)
+ ++ScopePos;
+
+ CFGBlock *B = LastBlock;
+ if (blockAfterStaticInit) {
+ Succ = B;
+ Block = createBlock(false);
+ Block->setTerminator(DS);
+ addSuccessor(Block, blockAfterStaticInit);
+ addSuccessor(Block, B);
+ B = Block;
+ }
+
+ return B;
+}
+
+CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
+ // We may see an if statement in the middle of a basic block, or it may be the
+ // first statement we are processing. In either case, we create a new basic
+ // block. First, we create the blocks for the then...else statements, and
+ // then we create the block containing the if statement. If we were in the
+ // middle of a block, we stop processing that block. That block is then the
+ // implicit successor for the "then" and "else" clauses.
+
+ // Save local scope position because in case of condition variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for C++17 if init-stmt if one exists.
+ if (Stmt *Init = I->getInit())
+ addLocalScopeForStmt(Init);
+
+ // Create local scope for possible condition variable.
+ // Store scope position. Add implicit destructor.
+ if (VarDecl *VD = I->getConditionVariable())
+ addLocalScopeForVarDecl(VD);
+
+ addAutomaticObjHandling(ScopePos, save_scope_pos.get(), I);
+
+ // The block we were processing is now finished. Make it the successor
+ // block.
+ if (Block) {
+ Succ = Block;
+ if (badCFG)
+ return nullptr;
+ }
+
+ // Process the false branch.
+ CFGBlock *ElseBlock = Succ;
+
+ if (Stmt *Else = I->getElse()) {
+ SaveAndRestore<CFGBlock*> sv(Succ);
+
+ // NULL out Block so that the recursive call to Visit will
+ // create a new basic block.
+ Block = nullptr;
+
+ // If branch is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(Else))
+ addLocalScopeAndDtors(Else);
+
+ ElseBlock = addStmt(Else);
+
+ if (!ElseBlock) // Can occur when the Else body has all NullStmts.
+ ElseBlock = sv.get();
+ else if (Block) {
+ if (badCFG)
+ return nullptr;
+ }
+ }
+
+ // Process the true branch.
+ CFGBlock *ThenBlock;
+ {
+ Stmt *Then = I->getThen();
+ assert(Then);
+ SaveAndRestore<CFGBlock*> sv(Succ);
+ Block = nullptr;
+
+ // If branch is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(Then))
+ addLocalScopeAndDtors(Then);
+
+ ThenBlock = addStmt(Then);
+
+ if (!ThenBlock) {
+ // We can reach here if the "then" body has all NullStmts.
+ // Create an empty block so we can distinguish between true and false
+ // branches in path-sensitive analyses.
+ ThenBlock = createBlock(false);
+ addSuccessor(ThenBlock, sv.get());
+ } else if (Block) {
+ if (badCFG)
+ return nullptr;
+ }
+ }
+
+ // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
+ // having these handle the actual control-flow jump. Note that
+ // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
+ // we resort to the old control-flow behavior. This special handling
+ // removes infeasible paths from the control-flow graph by having the
+ // control-flow transfer of '&&' or '||' go directly into the then/else
+ // blocks directly.
+ BinaryOperator *Cond =
+ (I->isConsteval() || I->getConditionVariable())
+ ? nullptr
+ : dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens());
+ CFGBlock *LastBlock;
+ if (Cond && Cond->isLogicalOp())
+ LastBlock = VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
+ else {
+ // Now create a new block containing the if statement.
+ Block = createBlock(false);
+
+ // Set the terminator of the new block to the If statement.
+ Block->setTerminator(I);
+
+ // See if this is a known constant.
+ TryResult KnownVal;
+ if (!I->isConsteval())
+ KnownVal = tryEvaluateBool(I->getCond());
+
+ // Add the successors. If we know that specific branches are
+ // unreachable, inform addSuccessor() of that knowledge.
+ addSuccessor(Block, ThenBlock, /* IsReachable = */ !KnownVal.isFalse());
+ addSuccessor(Block, ElseBlock, /* IsReachable = */ !KnownVal.isTrue());
+
+ // Add the condition as the last statement in the new block. This may
+ // create new blocks as the condition may contain control-flow. Any newly
+ // created blocks will be pointed to be "Block".
+ LastBlock = addStmt(I->getCond());
+
+ // If the IfStmt contains a condition variable, add it and its
+ // initializer to the CFG.
+ if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
+ autoCreateBlock();
+ LastBlock = addStmt(const_cast<DeclStmt *>(DS));
+ }
+ }
+
+ // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG.
+ if (Stmt *Init = I->getInit()) {
+ autoCreateBlock();
+ LastBlock = addStmt(Init);
+ }
+
+ return LastBlock;
+}
+
+CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) {
+ // If we were in the middle of a block we stop processing that block.
+ //
+ // NOTE: If a "return" or "co_return" appears in the middle of a block, this
+ // means that the code afterwards is DEAD (unreachable). We still keep
+ // a basic block for that code; a simple "mark-and-sweep" from the entry
+ // block will be able to report such dead blocks.
+ assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S));
+
+ // Create the new block.
+ Block = createBlock(false);
+
+ addAutomaticObjHandling(ScopePos, LocalScope::const_iterator(), S);
+
+ if (auto *R = dyn_cast<ReturnStmt>(S))
+ findConstructionContexts(
+ ConstructionContextLayer::create(cfg->getBumpVectorContext(), R),
+ R->getRetValue());
+
+ // If the one of the destructors does not return, we already have the Exit
+ // block as a successor.
+ if (!Block->hasNoReturnElement())
+ addSuccessor(Block, &cfg->getExit());
+
+ // Add the return statement to the block.
+ appendStmt(Block, S);
+
+ // Visit children
+ if (ReturnStmt *RS = dyn_cast<ReturnStmt>(S)) {
+ if (Expr *O = RS->getRetValue())
+ return Visit(O, AddStmtChoice::AlwaysAdd, /*ExternallyDestructed=*/true);
+ return Block;
+ }
+ // co_return
+ return VisitChildren(S);
+}
+
+CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) {
+ // SEHExceptStmt are treated like labels, so they are the first statement in a
+ // block.
+
+ // Save local scope position because in case of exception variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ addStmt(ES->getBlock());
+ CFGBlock *SEHExceptBlock = Block;
+ if (!SEHExceptBlock)
+ SEHExceptBlock = createBlock();
+
+ appendStmt(SEHExceptBlock, ES);
+
+ // Also add the SEHExceptBlock as a label, like with regular labels.
+ SEHExceptBlock->setLabel(ES);
+
+ // Bail out if the CFG is bad.
+ if (badCFG)
+ return nullptr;
+
+ // We set Block to NULL to allow lazy creation of a new block (if necessary).
+ Block = nullptr;
+
+ return SEHExceptBlock;
+}
+
+CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) {
+ return VisitCompoundStmt(FS->getBlock(), /*ExternallyDestructed=*/false);
+}
+
+CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) {
+ // "__leave" is a control-flow statement. Thus we stop processing the current
+ // block.
+ if (badCFG)
+ return nullptr;
+
+ // Now create a new block that ends with the __leave statement.
+ Block = createBlock(false);
+ Block->setTerminator(LS);
+
+ // If there is no target for the __leave, then we are looking at an incomplete
+ // AST. This means that the CFG cannot be constructed.
+ if (SEHLeaveJumpTarget.block) {
+ addAutomaticObjHandling(ScopePos, SEHLeaveJumpTarget.scopePosition, LS);
+ addSuccessor(Block, SEHLeaveJumpTarget.block);
+ } else
+ badCFG = true;
+
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) {
+ // "__try"/"__except"/"__finally" is a control-flow statement. Thus we stop
+ // processing the current block.
+ CFGBlock *SEHTrySuccessor = nullptr;
+
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ SEHTrySuccessor = Block;
+ } else SEHTrySuccessor = Succ;
+
+ // FIXME: Implement __finally support.
+ if (Terminator->getFinallyHandler())
+ return NYS();
+
+ CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock;
+
+ // Create a new block that will contain the __try statement.
+ CFGBlock *NewTryTerminatedBlock = createBlock(false);
+
+ // Add the terminator in the __try block.
+ NewTryTerminatedBlock->setTerminator(Terminator);
+
+ if (SEHExceptStmt *Except = Terminator->getExceptHandler()) {
+ // The code after the try is the implicit successor if there's an __except.
+ Succ = SEHTrySuccessor;
+ Block = nullptr;
+ CFGBlock *ExceptBlock = VisitSEHExceptStmt(Except);
+ if (!ExceptBlock)
+ return nullptr;
+ // Add this block to the list of successors for the block with the try
+ // statement.
+ addSuccessor(NewTryTerminatedBlock, ExceptBlock);
+ }
+ if (PrevSEHTryTerminatedBlock)
+ addSuccessor(NewTryTerminatedBlock, PrevSEHTryTerminatedBlock);
+ else
+ addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
+
+ // The code after the try is the implicit successor.
+ Succ = SEHTrySuccessor;
+
+ // Save the current "__try" context.
+ SaveAndRestore<CFGBlock *> SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
+ cfg->addTryDispatchBlock(TryTerminatedBlock);
+
+ // Save the current value for the __leave target.
+ // All __leaves should go to the code following the __try
+ // (FIXME: or if the __try has a __finally, to the __finally.)
+ SaveAndRestore<JumpTarget> save_break(SEHLeaveJumpTarget);
+ SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos);
+
+ assert(Terminator->getTryBlock() && "__try must contain a non-NULL body");
+ Block = nullptr;
+ return addStmt(Terminator->getTryBlock());
+}
+
+CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
+ // Get the block of the labeled statement. Add it to our map.
+ addStmt(L->getSubStmt());
+ CFGBlock *LabelBlock = Block;
+
+ if (!LabelBlock) // This can happen when the body is empty, i.e.
+ LabelBlock = createBlock(); // scopes that only contains NullStmts.
+
+ assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
+ "label already in map");
+ LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
+
+ // Labels partition blocks, so this is the end of the basic block we were
+ // processing (L is the block's label). Because this is label (and we have
+ // already processed the substatement) there is no extra control-flow to worry
+ // about.
+ LabelBlock->setLabel(L);
+ if (badCFG)
+ return nullptr;
+
+ // We set Block to NULL to allow lazy creation of a new block (if necessary).
+ Block = nullptr;
+
+ // This block is now the implicit successor of other blocks.
+ Succ = LabelBlock;
+
+ return LabelBlock;
+}
+
+CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
+ CFGBlock *LastBlock = VisitNoRecurse(E, asc);
+ for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) {
+ if (Expr *CopyExpr = CI.getCopyExpr()) {
+ CFGBlock *Tmp = Visit(CopyExpr);
+ if (Tmp)
+ LastBlock = Tmp;
+ }
+ }
+ return LastBlock;
+}
+
+CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
+ CFGBlock *LastBlock = VisitNoRecurse(E, asc);
+ for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
+ et = E->capture_init_end(); it != et; ++it) {
+ if (Expr *Init = *it) {
+ CFGBlock *Tmp = Visit(Init);
+ if (Tmp)
+ LastBlock = Tmp;
+ }
+ }
+ return LastBlock;
+}
+
+CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
+ // Goto is a control-flow statement. Thus we stop processing the current
+ // block and create a new one.
+
+ Block = createBlock(false);
+ Block->setTerminator(G);
+
+ // If we already know the mapping to the label block add the successor now.
+ LabelMapTy::iterator I = LabelMap.find(G->getLabel());
+
+ if (I == LabelMap.end())
+ // We will need to backpatch this block later.
+ BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
+ else {
+ JumpTarget JT = I->second;
+ addAutomaticObjHandling(ScopePos, JT.scopePosition, G);
+ addSuccessor(Block, JT.block);
+ }
+
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc) {
+ // Goto is a control-flow statement. Thus we stop processing the current
+ // block and create a new one.
+
+ if (!G->isAsmGoto())
+ return VisitStmt(G, asc);
+
+ if (Block) {
+ Succ = Block;
+ if (badCFG)
+ return nullptr;
+ }
+ Block = createBlock();
+ Block->setTerminator(G);
+ // We will backpatch this block later for all the labels.
+ BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
+ // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is
+ // used to avoid adding "Succ" again.
+ BackpatchBlocks.push_back(JumpSource(Succ, ScopePos));
+ return VisitChildren(G);
+}
+
+CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
+ CFGBlock *LoopSuccessor = nullptr;
+
+ // Save local scope position because in case of condition variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for init statement and possible condition variable.
+ // Add destructor for init statement and condition variable.
+ // Store scope position for continue statement.
+ if (Stmt *Init = F->getInit())
+ addLocalScopeForStmt(Init);
+ LocalScope::const_iterator LoopBeginScopePos = ScopePos;
+
+ if (VarDecl *VD = F->getConditionVariable())
+ addLocalScopeForVarDecl(VD);
+ LocalScope::const_iterator ContinueScopePos = ScopePos;
+
+ addAutomaticObjHandling(ScopePos, save_scope_pos.get(), F);
+
+ addLoopExit(F);
+
+ // "for" is a control-flow statement. Thus we stop processing the current
+ // block.
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ LoopSuccessor = Block;
+ } else
+ LoopSuccessor = Succ;
+
+ // Save the current value for the break targets.
+ // All breaks should go to the code following the loop.
+ SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
+ BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
+
+ CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
+
+ // Now create the loop body.
+ {
+ assert(F->getBody());
+
+ // Save the current values for Block, Succ, continue and break targets.
+ SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
+ SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
+
+ // Create an empty block to represent the transition block for looping back
+ // to the head of the loop. If we have increment code, it will
+ // go in this block as well.
+ Block = Succ = TransitionBlock = createBlock(false);
+ TransitionBlock->setLoopTarget(F);
+
+ if (Stmt *I = F->getInc()) {
+ // Generate increment code in its own basic block. This is the target of
+ // continue statements.
+ Succ = addStmt(I);
+ }
+
+ // Finish up the increment (or empty) block if it hasn't been already.
+ if (Block) {
+ assert(Block == Succ);
+ if (badCFG)
+ return nullptr;
+ Block = nullptr;
+ }
+
+ // The starting block for the loop increment is the block that should
+ // represent the 'loop target' for looping back to the start of the loop.
+ ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
+ ContinueJumpTarget.block->setLoopTarget(F);
+
+ // Loop body should end with destructor of Condition variable (if any).
+ addAutomaticObjHandling(ScopePos, LoopBeginScopePos, F);
+
+ // If body is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(F->getBody()))
+ addLocalScopeAndDtors(F->getBody());
+
+ // Now populate the body block, and in the process create new blocks as we
+ // walk the body of the loop.
+ BodyBlock = addStmt(F->getBody());
+
+ if (!BodyBlock) {
+ // In the case of "for (...;...;...);" we can have a null BodyBlock.
+ // Use the continue jump target as the proxy for the body.
+ BodyBlock = ContinueJumpTarget.block;
+ }
+ else if (badCFG)
+ return nullptr;
+ }
+
+ // Because of short-circuit evaluation, the condition of the loop can span
+ // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
+ // evaluate the condition.
+ CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
+
+ do {
+ Expr *C = F->getCond();
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Specially handle logical operators, which have a slightly
+ // more optimal CFG representation.
+ if (BinaryOperator *Cond =
+ dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
+ if (Cond->isLogicalOp()) {
+ std::tie(EntryConditionBlock, ExitConditionBlock) =
+ VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
+ break;
+ }
+
+ // The default case when not handling logical operators.
+ EntryConditionBlock = ExitConditionBlock = createBlock(false);
+ ExitConditionBlock->setTerminator(F);
+
+ // See if this is a known constant.
+ TryResult KnownVal(true);
+
+ if (C) {
+ // Now add the actual condition to the condition block.
+ // Because the condition itself may contain control-flow, new blocks may
+ // be created. Thus we update "Succ" after adding the condition.
+ Block = ExitConditionBlock;
+ EntryConditionBlock = addStmt(C);
+
+ // If this block contains a condition variable, add both the condition
+ // variable and initializer to the CFG.
+ if (VarDecl *VD = F->getConditionVariable()) {
+ if (Expr *Init = VD->getInit()) {
+ autoCreateBlock();
+ const DeclStmt *DS = F->getConditionVariableDeclStmt();
+ assert(DS->isSingleDecl());
+ findConstructionContexts(
+ ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
+ Init);
+ appendStmt(Block, DS);
+ EntryConditionBlock = addStmt(Init);
+ assert(Block == EntryConditionBlock);
+ maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
+ }
+ }
+
+ if (Block && badCFG)
+ return nullptr;
+
+ KnownVal = tryEvaluateBool(C);
+ }
+
+ // Add the loop body entry as a successor to the condition.
+ addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
+ // Link up the condition block with the code that follows the loop. (the
+ // false branch).
+ addSuccessor(ExitConditionBlock,
+ KnownVal.isTrue() ? nullptr : LoopSuccessor);
+ } while (false);
+
+ // Link up the loop-back block to the entry condition block.
+ addSuccessor(TransitionBlock, EntryConditionBlock);
+
+ // The condition block is the implicit successor for any code above the loop.
+ Succ = EntryConditionBlock;
+
+ // If the loop contains initialization, create a new block for those
+ // statements. This block can also contain statements that precede the loop.
+ if (Stmt *I = F->getInit()) {
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+ ScopePos = LoopBeginScopePos;
+ Block = createBlock();
+ return addStmt(I);
+ }
+
+ // There is no loop initialization. We are thus basically a while loop.
+ // NULL out Block to force lazy block construction.
+ Block = nullptr;
+ Succ = EntryConditionBlock;
+ return EntryConditionBlock;
+}
+
+CFGBlock *
+CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
+ AddStmtChoice asc) {
+ findConstructionContexts(
+ ConstructionContextLayer::create(cfg->getBumpVectorContext(), MTE),
+ MTE->getSubExpr());
+
+ return VisitStmt(MTE, asc);
+}
+
+CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, M)) {
+ autoCreateBlock();
+ appendStmt(Block, M);
+ }
+ return Visit(M->getBase());
+}
+
+CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
+ // Objective-C fast enumeration 'for' statements:
+ // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
+ //
+ // for ( Type newVariable in collection_expression ) { statements }
+ //
+ // becomes:
+ //
+ // prologue:
+ // 1. collection_expression
+ // T. jump to loop_entry
+ // loop_entry:
+ // 1. side-effects of element expression
+ // 1. ObjCForCollectionStmt [performs binding to newVariable]
+ // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil]
+ // TB:
+ // statements
+ // T. jump to loop_entry
+ // FB:
+ // what comes after
+ //
+ // and
+ //
+ // Type existingItem;
+ // for ( existingItem in expression ) { statements }
+ //
+ // becomes:
+ //
+ // the same with newVariable replaced with existingItem; the binding works
+ // the same except that for one ObjCForCollectionStmt::getElement() returns
+ // a DeclStmt and the other returns a DeclRefExpr.
+
+ CFGBlock *LoopSuccessor = nullptr;
+
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ LoopSuccessor = Block;
+ Block = nullptr;
+ } else
+ LoopSuccessor = Succ;
+
+ // Build the condition blocks.
+ CFGBlock *ExitConditionBlock = createBlock(false);
+
+ // Set the terminator for the "exit" condition block.
+ ExitConditionBlock->setTerminator(S);
+
+ // The last statement in the block should be the ObjCForCollectionStmt, which
+ // performs the actual binding to 'element' and determines if there are any
+ // more items in the collection.
+ appendStmt(ExitConditionBlock, S);
+ Block = ExitConditionBlock;
+
+ // Walk the 'element' expression to see if there are any side-effects. We
+ // generate new blocks as necessary. We DON'T add the statement by default to
+ // the CFG unless it contains control-flow.
+ CFGBlock *EntryConditionBlock = Visit(S->getElement(),
+ AddStmtChoice::NotAlwaysAdd);
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ Block = nullptr;
+ }
+
+ // The condition block is the implicit successor for the loop body as well as
+ // any code above the loop.
+ Succ = EntryConditionBlock;
+
+ // Now create the true branch.
+ {
+ // Save the current values for Succ, continue and break targets.
+ SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
+ SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
+ save_break(BreakJumpTarget);
+
+ // Add an intermediate block between the BodyBlock and the
+ // EntryConditionBlock to represent the "loop back" transition, for looping
+ // back to the head of the loop.
+ CFGBlock *LoopBackBlock = nullptr;
+ Succ = LoopBackBlock = createBlock();
+ LoopBackBlock->setLoopTarget(S);
+
+ BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
+ ContinueJumpTarget = JumpTarget(Succ, ScopePos);
+
+ CFGBlock *BodyBlock = addStmt(S->getBody());
+
+ if (!BodyBlock)
+ BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
+ else if (Block) {
+ if (badCFG)
+ return nullptr;
+ }
+
+ // This new body block is a successor to our "exit" condition block.
+ addSuccessor(ExitConditionBlock, BodyBlock);
+ }
+
+ // Link up the condition block with the code that follows the loop.
+ // (the false branch).
+ addSuccessor(ExitConditionBlock, LoopSuccessor);
+
+ // Now create a prologue block to contain the collection expression.
+ Block = createBlock();
+ return addStmt(S->getCollection());
+}
+
+CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
+ // Inline the body.
+ return addStmt(S->getSubStmt());
+ // TODO: consider adding cleanups for the end of @autoreleasepool scope.
+}
+
+CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
+ // FIXME: Add locking 'primitives' to CFG for @synchronized.
+
+ // Inline the body.
+ CFGBlock *SyncBlock = addStmt(S->getSynchBody());
+
+ // The sync body starts its own basic block. This makes it a little easier
+ // for diagnostic clients.
+ if (SyncBlock) {
+ if (badCFG)
+ return nullptr;
+
+ Block = nullptr;
+ Succ = SyncBlock;
+ }
+
+ // Add the @synchronized to the CFG.
+ autoCreateBlock();
+ appendStmt(Block, S);
+
+ // Inline the sync expression.
+ return addStmt(S->getSynchExpr());
+}
+
+CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
+ autoCreateBlock();
+
+ // Add the PseudoObject as the last thing.
+ appendStmt(Block, E);
+
+ CFGBlock *lastBlock = Block;
+
+ // Before that, evaluate all of the semantics in order. In
+ // CFG-land, that means appending them in reverse order.
+ for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
+ Expr *Semantic = E->getSemanticExpr(--i);
+
+ // If the semantic is an opaque value, we're being asked to bind
+ // it to its source expression.
+ if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
+ Semantic = OVE->getSourceExpr();
+
+ if (CFGBlock *B = Visit(Semantic))
+ lastBlock = B;
+ }
+
+ return lastBlock;
+}
+
+CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
+ CFGBlock *LoopSuccessor = nullptr;
+
+ // Save local scope position because in case of condition variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for possible condition variable.
+ // Store scope position for continue statement.
+ LocalScope::const_iterator LoopBeginScopePos = ScopePos;
+ if (VarDecl *VD = W->getConditionVariable()) {
+ addLocalScopeForVarDecl(VD);
+ addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
+ }
+ addLoopExit(W);
+
+ // "while" is a control-flow statement. Thus we stop processing the current
+ // block.
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ LoopSuccessor = Block;
+ Block = nullptr;
+ } else {
+ LoopSuccessor = Succ;
+ }
+
+ CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
+
+ // Process the loop body.
+ {
+ assert(W->getBody());
+
+ // Save the current values for Block, Succ, continue and break targets.
+ SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
+ SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
+ save_break(BreakJumpTarget);
+
+ // Create an empty block to represent the transition block for looping back
+ // to the head of the loop.
+ Succ = TransitionBlock = createBlock(false);
+ TransitionBlock->setLoopTarget(W);
+ ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
+
+ // All breaks should go to the code following the loop.
+ BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
+
+ // Loop body should end with destructor of Condition variable (if any).
+ addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
+
+ // If body is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(W->getBody()))
+ addLocalScopeAndDtors(W->getBody());
+
+ // Create the body. The returned block is the entry to the loop body.
+ BodyBlock = addStmt(W->getBody());
+
+ if (!BodyBlock)
+ BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
+ else if (Block && badCFG)
+ return nullptr;
+ }
+
+ // Because of short-circuit evaluation, the condition of the loop can span
+ // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
+ // evaluate the condition.
+ CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
+
+ do {
+ Expr *C = W->getCond();
+
+ // Specially handle logical operators, which have a slightly
+ // more optimal CFG representation.
+ if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
+ if (Cond->isLogicalOp()) {
+ std::tie(EntryConditionBlock, ExitConditionBlock) =
+ VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
+ break;
+ }
+
+ // The default case when not handling logical operators.
+ ExitConditionBlock = createBlock(false);
+ ExitConditionBlock->setTerminator(W);
+
+ // Now add the actual condition to the condition block.
+ // Because the condition itself may contain control-flow, new blocks may
+ // be created. Thus we update "Succ" after adding the condition.
+ Block = ExitConditionBlock;
+ Block = EntryConditionBlock = addStmt(C);
+
+ // If this block contains a condition variable, add both the condition
+ // variable and initializer to the CFG.
+ if (VarDecl *VD = W->getConditionVariable()) {
+ if (Expr *Init = VD->getInit()) {
+ autoCreateBlock();
+ const DeclStmt *DS = W->getConditionVariableDeclStmt();
+ assert(DS->isSingleDecl());
+ findConstructionContexts(
+ ConstructionContextLayer::create(cfg->getBumpVectorContext(),
+ const_cast<DeclStmt *>(DS)),
+ Init);
+ appendStmt(Block, DS);
+ EntryConditionBlock = addStmt(Init);
+ assert(Block == EntryConditionBlock);
+ maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
+ }
+ }
+
+ if (Block && badCFG)
+ return nullptr;
+
+ // See if this is a known constant.
+ const TryResult& KnownVal = tryEvaluateBool(C);
+
+ // Add the loop body entry as a successor to the condition.
+ addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
+ // Link up the condition block with the code that follows the loop. (the
+ // false branch).
+ addSuccessor(ExitConditionBlock,
+ KnownVal.isTrue() ? nullptr : LoopSuccessor);
+ } while(false);
+
+ // Link up the loop-back block to the entry condition block.
+ addSuccessor(TransitionBlock, EntryConditionBlock);
+
+ // There can be no more statements in the condition block since we loop back
+ // to this block. NULL out Block to force lazy creation of another block.
+ Block = nullptr;
+
+ // Return the condition block, which is the dominating block for the loop.
+ Succ = EntryConditionBlock;
+ return EntryConditionBlock;
+}
+
+CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *CS) {
+ // ObjCAtCatchStmt are treated like labels, so they are the first statement
+ // in a block.
+
+ // Save local scope position because in case of exception variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ if (CS->getCatchBody())
+ addStmt(CS->getCatchBody());
+
+ CFGBlock *CatchBlock = Block;
+ if (!CatchBlock)
+ CatchBlock = createBlock();
+
+ appendStmt(CatchBlock, CS);
+
+ // Also add the ObjCAtCatchStmt as a label, like with regular labels.
+ CatchBlock->setLabel(CS);
+
+ // Bail out if the CFG is bad.
+ if (badCFG)
+ return nullptr;
+
+ // We set Block to NULL to allow lazy creation of a new block (if necessary).
+ Block = nullptr;
+
+ return CatchBlock;
+}
+
+CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
+ // If we were in the middle of a block we stop processing that block.
+ if (badCFG)
+ return nullptr;
+
+ // Create the new block.
+ Block = createBlock(false);
+
+ if (TryTerminatedBlock)
+ // The current try statement is the only successor.
+ addSuccessor(Block, TryTerminatedBlock);
+ else
+ // otherwise the Exit block is the only successor.
+ addSuccessor(Block, &cfg->getExit());
+
+ // Add the statement to the block. This may create new blocks if S contains
+ // control-flow (short-circuit operations).
+ return VisitStmt(S, AddStmtChoice::AlwaysAdd);
+}
+
+CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *Terminator) {
+ // "@try"/"@catch" is a control-flow statement. Thus we stop processing the
+ // current block.
+ CFGBlock *TrySuccessor = nullptr;
+
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ TrySuccessor = Block;
+ } else
+ TrySuccessor = Succ;
+
+ // FIXME: Implement @finally support.
+ if (Terminator->getFinallyStmt())
+ return NYS();
+
+ CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
+
+ // Create a new block that will contain the try statement.
+ CFGBlock *NewTryTerminatedBlock = createBlock(false);
+ // Add the terminator in the try block.
+ NewTryTerminatedBlock->setTerminator(Terminator);
+
+ bool HasCatchAll = false;
+ for (ObjCAtCatchStmt *CS : Terminator->catch_stmts()) {
+ // The code after the try is the implicit successor.
+ Succ = TrySuccessor;
+ if (CS->hasEllipsis()) {
+ HasCatchAll = true;
+ }
+ Block = nullptr;
+ CFGBlock *CatchBlock = VisitObjCAtCatchStmt(CS);
+ if (!CatchBlock)
+ return nullptr;
+ // Add this block to the list of successors for the block with the try
+ // statement.
+ addSuccessor(NewTryTerminatedBlock, CatchBlock);
+ }
+
+ // FIXME: This needs updating when @finally support is added.
+ if (!HasCatchAll) {
+ if (PrevTryTerminatedBlock)
+ addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
+ else
+ addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
+ }
+
+ // The code after the try is the implicit successor.
+ Succ = TrySuccessor;
+
+ // Save the current "try" context.
+ SaveAndRestore<CFGBlock *> SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
+ cfg->addTryDispatchBlock(TryTerminatedBlock);
+
+ assert(Terminator->getTryBody() && "try must contain a non-NULL body");
+ Block = nullptr;
+ return addStmt(Terminator->getTryBody());
+}
+
+CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME,
+ AddStmtChoice asc) {
+ findConstructionContextsForArguments(ME);
+
+ autoCreateBlock();
+ appendObjCMessage(Block, ME);
+
+ return VisitChildren(ME);
+}
+
+CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
+ // If we were in the middle of a block we stop processing that block.
+ if (badCFG)
+ return nullptr;
+
+ // Create the new block.
+ Block = createBlock(false);
+
+ if (TryTerminatedBlock)
+ // The current try statement is the only successor.
+ addSuccessor(Block, TryTerminatedBlock);
+ else
+ // otherwise the Exit block is the only successor.
+ addSuccessor(Block, &cfg->getExit());
+
+ // Add the statement to the block. This may create new blocks if S contains
+ // control-flow (short-circuit operations).
+ return VisitStmt(T, AddStmtChoice::AlwaysAdd);
+}
+
+CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
+ CFGBlock *LoopSuccessor = nullptr;
+
+ addLoopExit(D);
+
+ // "do...while" is a control-flow statement. Thus we stop processing the
+ // current block.
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ LoopSuccessor = Block;
+ } else
+ LoopSuccessor = Succ;
+
+ // Because of short-circuit evaluation, the condition of the loop can span
+ // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
+ // evaluate the condition.
+ CFGBlock *ExitConditionBlock = createBlock(false);
+ CFGBlock *EntryConditionBlock = ExitConditionBlock;
+
+ // Set the terminator for the "exit" condition block.
+ ExitConditionBlock->setTerminator(D);
+
+ // Now add the actual condition to the condition block. Because the condition
+ // itself may contain control-flow, new blocks may be created.
+ if (Stmt *C = D->getCond()) {
+ Block = ExitConditionBlock;
+ EntryConditionBlock = addStmt(C);
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ }
+ }
+
+ // The condition block is the implicit successor for the loop body.
+ Succ = EntryConditionBlock;
+
+ // See if this is a known constant.
+ const TryResult &KnownVal = tryEvaluateBool(D->getCond());
+
+ // Process the loop body.
+ CFGBlock *BodyBlock = nullptr;
+ {
+ assert(D->getBody());
+
+ // Save the current values for Block, Succ, and continue and break targets
+ SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
+ SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
+ save_break(BreakJumpTarget);
+
+ // All continues within this loop should go to the condition block
+ ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
+
+ // All breaks should go to the code following the loop.
+ BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
+
+ // NULL out Block to force lazy instantiation of blocks for the body.
+ Block = nullptr;
+
+ // If body is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(D->getBody()))
+ addLocalScopeAndDtors(D->getBody());
+
+ // Create the body. The returned block is the entry to the loop body.
+ BodyBlock = addStmt(D->getBody());
+
+ if (!BodyBlock)
+ BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
+ else if (Block) {
+ if (badCFG)
+ return nullptr;
+ }
+
+ // Add an intermediate block between the BodyBlock and the
+ // ExitConditionBlock to represent the "loop back" transition. Create an
+ // empty block to represent the transition block for looping back to the
+ // head of the loop.
+ // FIXME: Can we do this more efficiently without adding another block?
+ Block = nullptr;
+ Succ = BodyBlock;
+ CFGBlock *LoopBackBlock = createBlock();
+ LoopBackBlock->setLoopTarget(D);
+
+ if (!KnownVal.isFalse())
+ // Add the loop body entry as a successor to the condition.
+ addSuccessor(ExitConditionBlock, LoopBackBlock);
+ else
+ addSuccessor(ExitConditionBlock, nullptr);
+ }
+
+ // Link up the condition block with the code that follows the loop.
+ // (the false branch).
+ addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
+
+ // There can be no more statements in the body block(s) since we loop back to
+ // the body. NULL out Block to force lazy creation of another block.
+ Block = nullptr;
+
+ // Return the loop body, which is the dominating block for the loop.
+ Succ = BodyBlock;
+ return BodyBlock;
+}
+
+CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
+ // "continue" is a control-flow statement. Thus we stop processing the
+ // current block.
+ if (badCFG)
+ return nullptr;
+
+ // Now create a new block that ends with the continue statement.
+ Block = createBlock(false);
+ Block->setTerminator(C);
+
+ // If there is no target for the continue, then we are looking at an
+ // incomplete AST. This means the CFG cannot be constructed.
+ if (ContinueJumpTarget.block) {
+ addAutomaticObjHandling(ScopePos, ContinueJumpTarget.scopePosition, C);
+ addSuccessor(Block, ContinueJumpTarget.block);
+ } else
+ badCFG = true;
+
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
+ AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, E)) {
+ autoCreateBlock();
+ appendStmt(Block, E);
+ }
+
+ // VLA types have expressions that must be evaluated.
+ // Evaluation is done only for `sizeof`.
+
+ if (E->getKind() != UETT_SizeOf)
+ return Block;
+
+ CFGBlock *lastBlock = Block;
+
+ if (E->isArgumentType()) {
+ for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
+ VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
+ lastBlock = addStmt(VA->getSizeExpr());
+ }
+ return lastBlock;
+}
+
+/// VisitStmtExpr - Utility method to handle (nested) statement
+/// expressions (a GCC extension).
+CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, SE)) {
+ autoCreateBlock();
+ appendStmt(Block, SE);
+ }
+ return VisitCompoundStmt(SE->getSubStmt(), /*ExternallyDestructed=*/true);
+}
+
+CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
+ // "switch" is a control-flow statement. Thus we stop processing the current
+ // block.
+ CFGBlock *SwitchSuccessor = nullptr;
+
+ // Save local scope position because in case of condition variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for C++17 switch init-stmt if one exists.
+ if (Stmt *Init = Terminator->getInit())
+ addLocalScopeForStmt(Init);
+
+ // Create local scope for possible condition variable.
+ // Store scope position. Add implicit destructor.
+ if (VarDecl *VD = Terminator->getConditionVariable())
+ addLocalScopeForVarDecl(VD);
+
+ addAutomaticObjHandling(ScopePos, save_scope_pos.get(), Terminator);
+
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ SwitchSuccessor = Block;
+ } else SwitchSuccessor = Succ;
+
+ // Save the current "switch" context.
+ SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
+ save_default(DefaultCaseBlock);
+ SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
+
+ // Set the "default" case to be the block after the switch statement. If the
+ // switch statement contains a "default:", this value will be overwritten with
+ // the block for that code.
+ DefaultCaseBlock = SwitchSuccessor;
+
+ // Create a new block that will contain the switch statement.
+ SwitchTerminatedBlock = createBlock(false);
+
+ // Now process the switch body. The code after the switch is the implicit
+ // successor.
+ Succ = SwitchSuccessor;
+ BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
+
+ // When visiting the body, the case statements should automatically get linked
+ // up to the switch. We also don't keep a pointer to the body, since all
+ // control-flow from the switch goes to case/default statements.
+ assert(Terminator->getBody() && "switch must contain a non-NULL body");
+ Block = nullptr;
+
+ // For pruning unreachable case statements, save the current state
+ // for tracking the condition value.
+ SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
+ false);
+
+ // Determine if the switch condition can be explicitly evaluated.
+ assert(Terminator->getCond() && "switch condition must be non-NULL");
+ Expr::EvalResult result;
+ bool b = tryEvaluate(Terminator->getCond(), result);
+ SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
+ b ? &result : nullptr);
+
+ // If body is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(Terminator->getBody()))
+ addLocalScopeAndDtors(Terminator->getBody());
+
+ addStmt(Terminator->getBody());
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ }
+
+ // If we have no "default:" case, the default transition is to the code
+ // following the switch body. Moreover, take into account if all the
+ // cases of a switch are covered (e.g., switching on an enum value).
+ //
+ // Note: We add a successor to a switch that is considered covered yet has no
+ // case statements if the enumeration has no enumerators.
+ bool SwitchAlwaysHasSuccessor = false;
+ SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
+ SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
+ Terminator->getSwitchCaseList();
+ addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
+ !SwitchAlwaysHasSuccessor);
+
+ // Add the terminator and condition in the switch block.
+ SwitchTerminatedBlock->setTerminator(Terminator);
+ Block = SwitchTerminatedBlock;
+ CFGBlock *LastBlock = addStmt(Terminator->getCond());
+
+ // If the SwitchStmt contains a condition variable, add both the
+ // SwitchStmt and the condition variable initialization to the CFG.
+ if (VarDecl *VD = Terminator->getConditionVariable()) {
+ if (Expr *Init = VD->getInit()) {
+ autoCreateBlock();
+ appendStmt(Block, Terminator->getConditionVariableDeclStmt());
+ LastBlock = addStmt(Init);
+ maybeAddScopeBeginForVarDecl(LastBlock, VD, Init);
+ }
+ }
+
+ // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG.
+ if (Stmt *Init = Terminator->getInit()) {
+ autoCreateBlock();
+ LastBlock = addStmt(Init);
+ }
+
+ return LastBlock;
+}
+
+static bool shouldAddCase(bool &switchExclusivelyCovered,
+ const Expr::EvalResult *switchCond,
+ const CaseStmt *CS,
+ ASTContext &Ctx) {
+ if (!switchCond)
+ return true;
+
+ bool addCase = false;
+
+ if (!switchExclusivelyCovered) {
+ if (switchCond->Val.isInt()) {
+ // Evaluate the LHS of the case value.
+ const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
+ const llvm::APSInt &condInt = switchCond->Val.getInt();
+
+ if (condInt == lhsInt) {
+ addCase = true;
+ switchExclusivelyCovered = true;
+ }
+ else if (condInt > lhsInt) {
+ if (const Expr *RHS = CS->getRHS()) {
+ // Evaluate the RHS of the case value.
+ const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
+ if (V2 >= condInt) {
+ addCase = true;
+ switchExclusivelyCovered = true;
+ }
+ }
+ }
+ }
+ else
+ addCase = true;
+ }
+ return addCase;
+}
+
+CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
+ // CaseStmts are essentially labels, so they are the first statement in a
+ // block.
+ CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
+
+ if (Stmt *Sub = CS->getSubStmt()) {
+ // For deeply nested chains of CaseStmts, instead of doing a recursion
+ // (which can blow out the stack), manually unroll and create blocks
+ // along the way.
+ while (isa<CaseStmt>(Sub)) {
+ CFGBlock *currentBlock = createBlock(false);
+ currentBlock->setLabel(CS);
+
+ if (TopBlock)
+ addSuccessor(LastBlock, currentBlock);
+ else
+ TopBlock = currentBlock;
+
+ addSuccessor(SwitchTerminatedBlock,
+ shouldAddCase(switchExclusivelyCovered, switchCond,
+ CS, *Context)
+ ? currentBlock : nullptr);
+
+ LastBlock = currentBlock;
+ CS = cast<CaseStmt>(Sub);
+ Sub = CS->getSubStmt();
+ }
+
+ addStmt(Sub);
+ }
+
+ CFGBlock *CaseBlock = Block;
+ if (!CaseBlock)
+ CaseBlock = createBlock();
+
+ // Cases statements partition blocks, so this is the top of the basic block we
+ // were processing (the "case XXX:" is the label).
+ CaseBlock->setLabel(CS);
+
+ if (badCFG)
+ return nullptr;
+
+ // Add this block to the list of successors for the block with the switch
+ // statement.
+ assert(SwitchTerminatedBlock);
+ addSuccessor(SwitchTerminatedBlock, CaseBlock,
+ shouldAddCase(switchExclusivelyCovered, switchCond,
+ CS, *Context));
+
+ // We set Block to NULL to allow lazy creation of a new block (if necessary).
+ Block = nullptr;
+
+ if (TopBlock) {
+ addSuccessor(LastBlock, CaseBlock);
+ Succ = TopBlock;
+ } else {
+ // This block is now the implicit successor of other blocks.
+ Succ = CaseBlock;
+ }
+
+ return Succ;
+}
+
+CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
+ if (Terminator->getSubStmt())
+ addStmt(Terminator->getSubStmt());
+
+ DefaultCaseBlock = Block;
+
+ if (!DefaultCaseBlock)
+ DefaultCaseBlock = createBlock();
+
+ // Default statements partition blocks, so this is the top of the basic block
+ // we were processing (the "default:" is the label).
+ DefaultCaseBlock->setLabel(Terminator);
+
+ if (badCFG)
+ return nullptr;
+
+ // Unlike case statements, we don't add the default block to the successors
+ // for the switch statement immediately. This is done when we finish
+ // processing the switch statement. This allows for the default case
+ // (including a fall-through to the code after the switch statement) to always
+ // be the last successor of a switch-terminated block.
+
+ // We set Block to NULL to allow lazy creation of a new block (if necessary).
+ Block = nullptr;
+
+ // This block is now the implicit successor of other blocks.
+ Succ = DefaultCaseBlock;
+
+ return DefaultCaseBlock;
+}
+
+CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
+ // "try"/"catch" is a control-flow statement. Thus we stop processing the
+ // current block.
+ CFGBlock *TrySuccessor = nullptr;
+
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ TrySuccessor = Block;
+ } else
+ TrySuccessor = Succ;
+
+ CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
+
+ // Create a new block that will contain the try statement.
+ CFGBlock *NewTryTerminatedBlock = createBlock(false);
+ // Add the terminator in the try block.
+ NewTryTerminatedBlock->setTerminator(Terminator);
+
+ bool HasCatchAll = false;
+ for (unsigned I = 0, E = Terminator->getNumHandlers(); I != E; ++I) {
+ // The code after the try is the implicit successor.
+ Succ = TrySuccessor;
+ CXXCatchStmt *CS = Terminator->getHandler(I);
+ if (CS->getExceptionDecl() == nullptr) {
+ HasCatchAll = true;
+ }
+ Block = nullptr;
+ CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
+ if (!CatchBlock)
+ return nullptr;
+ // Add this block to the list of successors for the block with the try
+ // statement.
+ addSuccessor(NewTryTerminatedBlock, CatchBlock);
+ }
+ if (!HasCatchAll) {
+ if (PrevTryTerminatedBlock)
+ addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
+ else
+ addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
+ }
+
+ // The code after the try is the implicit successor.
+ Succ = TrySuccessor;
+
+ // Save the current "try" context.
+ SaveAndRestore<CFGBlock *> SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
+ cfg->addTryDispatchBlock(TryTerminatedBlock);
+
+ assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
+ Block = nullptr;
+ return addStmt(Terminator->getTryBlock());
+}
+
+CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
+ // CXXCatchStmt are treated like labels, so they are the first statement in a
+ // block.
+
+ // Save local scope position because in case of exception variable ScopePos
+ // won't be restored when traversing AST.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scope for possible exception variable.
+ // Store scope position. Add implicit destructor.
+ if (VarDecl *VD = CS->getExceptionDecl()) {
+ LocalScope::const_iterator BeginScopePos = ScopePos;
+ addLocalScopeForVarDecl(VD);
+ addAutomaticObjHandling(ScopePos, BeginScopePos, CS);
+ }
+
+ if (CS->getHandlerBlock())
+ addStmt(CS->getHandlerBlock());
+
+ CFGBlock *CatchBlock = Block;
+ if (!CatchBlock)
+ CatchBlock = createBlock();
+
+ // CXXCatchStmt is more than just a label. They have semantic meaning
+ // as well, as they implicitly "initialize" the catch variable. Add
+ // it to the CFG as a CFGElement so that the control-flow of these
+ // semantics gets captured.
+ appendStmt(CatchBlock, CS);
+
+ // Also add the CXXCatchStmt as a label, to mirror handling of regular
+ // labels.
+ CatchBlock->setLabel(CS);
+
+ // Bail out if the CFG is bad.
+ if (badCFG)
+ return nullptr;
+
+ // We set Block to NULL to allow lazy creation of a new block (if necessary).
+ Block = nullptr;
+
+ return CatchBlock;
+}
+
+CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
+ // C++0x for-range statements are specified as [stmt.ranged]:
+ //
+ // {
+ // auto && __range = range-init;
+ // for ( auto __begin = begin-expr,
+ // __end = end-expr;
+ // __begin != __end;
+ // ++__begin ) {
+ // for-range-declaration = *__begin;
+ // statement
+ // }
+ // }
+
+ // Save local scope position before the addition of the implicit variables.
+ SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
+
+ // Create local scopes and destructors for range, begin and end variables.
+ if (Stmt *Range = S->getRangeStmt())
+ addLocalScopeForStmt(Range);
+ if (Stmt *Begin = S->getBeginStmt())
+ addLocalScopeForStmt(Begin);
+ if (Stmt *End = S->getEndStmt())
+ addLocalScopeForStmt(End);
+ addAutomaticObjHandling(ScopePos, save_scope_pos.get(), S);
+
+ LocalScope::const_iterator ContinueScopePos = ScopePos;
+
+ // "for" is a control-flow statement. Thus we stop processing the current
+ // block.
+ CFGBlock *LoopSuccessor = nullptr;
+ if (Block) {
+ if (badCFG)
+ return nullptr;
+ LoopSuccessor = Block;
+ } else
+ LoopSuccessor = Succ;
+
+ // Save the current value for the break targets.
+ // All breaks should go to the code following the loop.
+ SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
+ BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
+
+ // The block for the __begin != __end expression.
+ CFGBlock *ConditionBlock = createBlock(false);
+ ConditionBlock->setTerminator(S);
+
+ // Now add the actual condition to the condition block.
+ if (Expr *C = S->getCond()) {
+ Block = ConditionBlock;
+ CFGBlock *BeginConditionBlock = addStmt(C);
+ if (badCFG)
+ return nullptr;
+ assert(BeginConditionBlock == ConditionBlock &&
+ "condition block in for-range was unexpectedly complex");
+ (void)BeginConditionBlock;
+ }
+
+ // The condition block is the implicit successor for the loop body as well as
+ // any code above the loop.
+ Succ = ConditionBlock;
+
+ // See if this is a known constant.
+ TryResult KnownVal(true);
+
+ if (S->getCond())
+ KnownVal = tryEvaluateBool(S->getCond());
+
+ // Now create the loop body.
+ {
+ assert(S->getBody());
+
+ // Save the current values for Block, Succ, and continue targets.
+ SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
+ SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
+
+ // Generate increment code in its own basic block. This is the target of
+ // continue statements.
+ Block = nullptr;
+ Succ = addStmt(S->getInc());
+ if (badCFG)
+ return nullptr;
+ ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
+
+ // The starting block for the loop increment is the block that should
+ // represent the 'loop target' for looping back to the start of the loop.
+ ContinueJumpTarget.block->setLoopTarget(S);
+
+ // Finish up the increment block and prepare to start the loop body.
+ assert(Block);
+ if (badCFG)
+ return nullptr;
+ Block = nullptr;
+
+ // Add implicit scope and dtors for loop variable.
+ addLocalScopeAndDtors(S->getLoopVarStmt());
+
+ // If body is not a compound statement create implicit scope
+ // and add destructors.
+ if (!isa<CompoundStmt>(S->getBody()))
+ addLocalScopeAndDtors(S->getBody());
+
+ // Populate a new block to contain the loop body and loop variable.
+ addStmt(S->getBody());
+
+ if (badCFG)
+ return nullptr;
+ CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
+ if (badCFG)
+ return nullptr;
+
+ // This new body block is a successor to our condition block.
+ addSuccessor(ConditionBlock,
+ KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
+ }
+
+ // Link up the condition block with the code that follows the loop (the
+ // false branch).
+ addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
+
+ // Add the initialization statements.
+ Block = createBlock();
+ addStmt(S->getBeginStmt());
+ addStmt(S->getEndStmt());
+ CFGBlock *Head = addStmt(S->getRangeStmt());
+ if (S->getInit())
+ Head = addStmt(S->getInit());
+ return Head;
+}
+
+CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
+ AddStmtChoice asc, bool ExternallyDestructed) {
+ if (BuildOpts.AddTemporaryDtors) {
+ // If adding implicit destructors visit the full expression for adding
+ // destructors of temporaries.
+ TempDtorContext Context;
+ VisitForTemporaryDtors(E->getSubExpr(), ExternallyDestructed, Context);
+
+ // Full expression has to be added as CFGStmt so it will be sequenced
+ // before destructors of it's temporaries.
+ asc = asc.withAlwaysAdd(true);
+ }
+ return Visit(E->getSubExpr(), asc);
+}
+
+CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
+ AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, E)) {
+ autoCreateBlock();
+ appendStmt(Block, E);
+
+ findConstructionContexts(
+ ConstructionContextLayer::create(cfg->getBumpVectorContext(), E),
+ E->getSubExpr());
+
+ // We do not want to propagate the AlwaysAdd property.
+ asc = asc.withAlwaysAdd(false);
+ }
+ return Visit(E->getSubExpr(), asc);
+}
+
+CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
+ AddStmtChoice asc) {
+ // If the constructor takes objects as arguments by value, we need to properly
+ // construct these objects. Construction contexts we find here aren't for the
+ // constructor C, they're for its arguments only.
+ findConstructionContextsForArguments(C);
+
+ autoCreateBlock();
+ appendConstructor(Block, C);
+
+ return VisitChildren(C);
+}
+
+CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
+ AddStmtChoice asc) {
+ autoCreateBlock();
+ appendStmt(Block, NE);
+
+ findConstructionContexts(
+ ConstructionContextLayer::create(cfg->getBumpVectorContext(), NE),
+ const_cast<CXXConstructExpr *>(NE->getConstructExpr()));
+
+ if (NE->getInitializer())
+ Block = Visit(NE->getInitializer());
+
+ if (BuildOpts.AddCXXNewAllocator)
+ appendNewAllocator(Block, NE);
+
+ if (NE->isArray() && *NE->getArraySize())
+ Block = Visit(*NE->getArraySize());
+
+ for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
+ E = NE->placement_arg_end(); I != E; ++I)
+ Block = Visit(*I);
+
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
+ AddStmtChoice asc) {
+ autoCreateBlock();
+ appendStmt(Block, DE);
+ QualType DTy = DE->getDestroyedType();
+ if (!DTy.isNull()) {
+ DTy = DTy.getNonReferenceType();
+ CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
+ if (RD) {
+ if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
+ appendDeleteDtor(Block, RD, DE);
+ }
+ }
+
+ return VisitChildren(DE);
+}
+
+CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
+ AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, E)) {
+ autoCreateBlock();
+ appendStmt(Block, E);
+ // We do not want to propagate the AlwaysAdd property.
+ asc = asc.withAlwaysAdd(false);
+ }
+ return Visit(E->getSubExpr(), asc);
+}
+
+CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
+ AddStmtChoice asc) {
+ // If the constructor takes objects as arguments by value, we need to properly
+ // construct these objects. Construction contexts we find here aren't for the
+ // constructor C, they're for its arguments only.
+ findConstructionContextsForArguments(C);
+
+ autoCreateBlock();
+ appendConstructor(Block, C);
+ return VisitChildren(C);
+}
+
+CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
+ AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, E)) {
+ autoCreateBlock();
+ appendStmt(Block, E);
+ }
+
+ if (E->getCastKind() == CK_IntegralToBoolean)
+ tryEvaluateBool(E->getSubExpr()->IgnoreParens());
+
+ return Visit(E->getSubExpr(), AddStmtChoice());
+}
+
+CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) {
+ return Visit(E->getSubExpr(), AddStmtChoice());
+}
+
+CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
+ // Lazily create the indirect-goto dispatch block if there isn't one already.
+ CFGBlock *IBlock = cfg->getIndirectGotoBlock();
+
+ if (!IBlock) {
+ IBlock = createBlock(false);
+ cfg->setIndirectGotoBlock(IBlock);
+ }
+
+ // IndirectGoto is a control-flow statement. Thus we stop processing the
+ // current block and create a new one.
+ if (badCFG)
+ return nullptr;
+
+ Block = createBlock(false);
+ Block->setTerminator(I);
+ addSuccessor(Block, IBlock);
+ return addStmt(I->getTarget());
+}
+
+CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
+ TempDtorContext &Context) {
+ assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
+
+tryAgain:
+ if (!E) {
+ badCFG = true;
+ return nullptr;
+ }
+ switch (E->getStmtClass()) {
+ default:
+ return VisitChildrenForTemporaryDtors(E, false, Context);
+
+ case Stmt::InitListExprClass:
+ return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
+
+ case Stmt::BinaryOperatorClass:
+ return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
+ ExternallyDestructed,
+ Context);
+
+ case Stmt::CXXBindTemporaryExprClass:
+ return VisitCXXBindTemporaryExprForTemporaryDtors(
+ cast<CXXBindTemporaryExpr>(E), ExternallyDestructed, Context);
+
+ case Stmt::BinaryConditionalOperatorClass:
+ case Stmt::ConditionalOperatorClass:
+ return VisitConditionalOperatorForTemporaryDtors(
+ cast<AbstractConditionalOperator>(E), ExternallyDestructed, Context);
+
+ case Stmt::ImplicitCastExprClass:
+ // For implicit cast we want ExternallyDestructed to be passed further.
+ E = cast<CastExpr>(E)->getSubExpr();
+ goto tryAgain;
+
+ case Stmt::CXXFunctionalCastExprClass:
+ // For functional cast we want ExternallyDestructed to be passed further.
+ E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
+ goto tryAgain;
+
+ case Stmt::ConstantExprClass:
+ E = cast<ConstantExpr>(E)->getSubExpr();
+ goto tryAgain;
+
+ case Stmt::ParenExprClass:
+ E = cast<ParenExpr>(E)->getSubExpr();
+ goto tryAgain;
+
+ case Stmt::MaterializeTemporaryExprClass: {
+ const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
+ ExternallyDestructed = (MTE->getStorageDuration() != SD_FullExpression);
+ SmallVector<const Expr *, 2> CommaLHSs;
+ SmallVector<SubobjectAdjustment, 2> Adjustments;
+ // Find the expression whose lifetime needs to be extended.
+ E = const_cast<Expr *>(
+ cast<MaterializeTemporaryExpr>(E)
+ ->getSubExpr()
+ ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
+ // Visit the skipped comma operator left-hand sides for other temporaries.
+ for (const Expr *CommaLHS : CommaLHSs) {
+ VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
+ /*ExternallyDestructed=*/false, Context);
+ }
+ goto tryAgain;
+ }
+
+ case Stmt::BlockExprClass:
+ // Don't recurse into blocks; their subexpressions don't get evaluated
+ // here.
+ return Block;
+
+ case Stmt::LambdaExprClass: {
+ // For lambda expressions, only recurse into the capture initializers,
+ // and not the body.
+ auto *LE = cast<LambdaExpr>(E);
+ CFGBlock *B = Block;
+ for (Expr *Init : LE->capture_inits()) {
+ if (Init) {
+ if (CFGBlock *R = VisitForTemporaryDtors(
+ Init, /*ExternallyDestructed=*/true, Context))
+ B = R;
+ }
+ }
+ return B;
+ }
+
+ case Stmt::StmtExprClass:
+ // Don't recurse into statement expressions; any cleanups inside them
+ // will be wrapped in their own ExprWithCleanups.
+ return Block;
+
+ case Stmt::CXXDefaultArgExprClass:
+ E = cast<CXXDefaultArgExpr>(E)->getExpr();
+ goto tryAgain;
+
+ case Stmt::CXXDefaultInitExprClass:
+ E = cast<CXXDefaultInitExpr>(E)->getExpr();
+ goto tryAgain;
+ }
+}
+
+CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
+ bool ExternallyDestructed,
+ TempDtorContext &Context) {
+ if (isa<LambdaExpr>(E)) {
+ // Do not visit the children of lambdas; they have their own CFGs.
+ return Block;
+ }
+
+ // When visiting children for destructors we want to visit them in reverse
+ // order that they will appear in the CFG. Because the CFG is built
+ // bottom-up, this means we visit them in their natural order, which
+ // reverses them in the CFG.
+ CFGBlock *B = Block;
+ for (Stmt *Child : E->children())
+ if (Child)
+ if (CFGBlock *R = VisitForTemporaryDtors(Child, ExternallyDestructed, Context))
+ B = R;
+
+ return B;
+}
+
+CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
+ BinaryOperator *E, bool ExternallyDestructed, TempDtorContext &Context) {
+ if (E->isCommaOp()) {
+ // For the comma operator, the LHS expression is evaluated before the RHS
+ // expression, so prepend temporary destructors for the LHS first.
+ CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
+ CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), ExternallyDestructed, Context);
+ return RHSBlock ? RHSBlock : LHSBlock;
+ }
+
+ if (E->isLogicalOp()) {
+ VisitForTemporaryDtors(E->getLHS(), false, Context);
+ TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
+ if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
+ RHSExecuted.negate();
+
+ // We do not know at CFG-construction time whether the right-hand-side was
+ // executed, thus we add a branch node that depends on the temporary
+ // constructor call.
+ TempDtorContext RHSContext(
+ bothKnownTrue(Context.KnownExecuted, RHSExecuted));
+ VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
+ InsertTempDtorDecisionBlock(RHSContext);
+
+ return Block;
+ }
+
+ if (E->isAssignmentOp()) {
+ // For assignment operators, the RHS expression is evaluated before the LHS
+ // expression, so prepend temporary destructors for the RHS first.
+ CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
+ CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
+ return LHSBlock ? LHSBlock : RHSBlock;
+ }
+
+ // Any other operator is visited normally.
+ return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
+}
+
+CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
+ CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context) {
+ // First add destructors for temporaries in subexpression.
+ // Because VisitCXXBindTemporaryExpr calls setDestructed:
+ CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), true, Context);
+ if (!ExternallyDestructed) {
+ // If lifetime of temporary is not prolonged (by assigning to constant
+ // reference) add destructor for it.
+
+ const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
+
+ if (Dtor->getParent()->isAnyDestructorNoReturn()) {
+ // If the destructor is marked as a no-return destructor, we need to
+ // create a new block for the destructor which does not have as a
+ // successor anything built thus far. Control won't flow out of this
+ // block.
+ if (B) Succ = B;
+ Block = createNoReturnBlock();
+ } else if (Context.needsTempDtorBranch()) {
+ // If we need to introduce a branch, we add a new block that we will hook
+ // up to a decision block later.
+ if (B) Succ = B;
+ Block = createBlock();
+ } else {
+ autoCreateBlock();
+ }
+ if (Context.needsTempDtorBranch()) {
+ Context.setDecisionPoint(Succ, E);
+ }
+ appendTemporaryDtor(Block, E);
+
+ B = Block;
+ }
+ return B;
+}
+
+void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
+ CFGBlock *FalseSucc) {
+ if (!Context.TerminatorExpr) {
+ // If no temporary was found, we do not need to insert a decision point.
+ return;
+ }
+ assert(Context.TerminatorExpr);
+ CFGBlock *Decision = createBlock(false);
+ Decision->setTerminator(CFGTerminator(Context.TerminatorExpr,
+ CFGTerminator::TemporaryDtorsBranch));
+ addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
+ addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
+ !Context.KnownExecuted.isTrue());
+ Block = Decision;
+}
+
+CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
+ AbstractConditionalOperator *E, bool ExternallyDestructed,
+ TempDtorContext &Context) {
+ VisitForTemporaryDtors(E->getCond(), false, Context);
+ CFGBlock *ConditionBlock = Block;
+ CFGBlock *ConditionSucc = Succ;
+ TryResult ConditionVal = tryEvaluateBool(E->getCond());
+ TryResult NegatedVal = ConditionVal;
+ if (NegatedVal.isKnown()) NegatedVal.negate();
+
+ TempDtorContext TrueContext(
+ bothKnownTrue(Context.KnownExecuted, ConditionVal));
+ VisitForTemporaryDtors(E->getTrueExpr(), ExternallyDestructed, TrueContext);
+ CFGBlock *TrueBlock = Block;
+
+ Block = ConditionBlock;
+ Succ = ConditionSucc;
+ TempDtorContext FalseContext(
+ bothKnownTrue(Context.KnownExecuted, NegatedVal));
+ VisitForTemporaryDtors(E->getFalseExpr(), ExternallyDestructed, FalseContext);
+
+ if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
+ InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
+ } else if (TrueContext.TerminatorExpr) {
+ Block = TrueBlock;
+ InsertTempDtorDecisionBlock(TrueContext);
+ } else {
+ InsertTempDtorDecisionBlock(FalseContext);
+ }
+ return Block;
+}
+
+CFGBlock *CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective *D,
+ AddStmtChoice asc) {
+ if (asc.alwaysAdd(*this, D)) {
+ autoCreateBlock();
+ appendStmt(Block, D);
+ }
+
+ // Iterate over all used expression in clauses.
+ CFGBlock *B = Block;
+
+ // Reverse the elements to process them in natural order. Iterators are not
+ // bidirectional, so we need to create temp vector.
+ SmallVector<Stmt *, 8> Used(
+ OMPExecutableDirective::used_clauses_children(D->clauses()));
+ for (Stmt *S : llvm::reverse(Used)) {
+ assert(S && "Expected non-null used-in-clause child.");
+ if (CFGBlock *R = Visit(S))
+ B = R;
+ }
+ // Visit associated structured block if any.
+ if (!D->isStandaloneDirective()) {
+ Stmt *S = D->getRawStmt();
+ if (!isa<CompoundStmt>(S))
+ addLocalScopeAndDtors(S);
+ if (CFGBlock *R = addStmt(S))
+ B = R;
+ }
+
+ return B;
+}
+
+/// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has
+/// no successors or predecessors. If this is the first block created in the
+/// CFG, it is automatically set to be the Entry and Exit of the CFG.
+CFGBlock *CFG::createBlock() {
+ bool first_block = begin() == end();
+
+ // Create the block.
+ CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
+ new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
+ Blocks.push_back(Mem, BlkBVC);
+
+ // If this is the first block, set it as the Entry and Exit.
+ if (first_block)
+ Entry = Exit = &back();
+
+ // Return the block.
+ return &back();
+}
+
+/// buildCFG - Constructs a CFG from an AST.
+std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
+ ASTContext *C, const BuildOptions &BO) {
+ CFGBuilder Builder(C, BO);
+ return Builder.buildCFG(D, Statement);
+}
+
+bool CFG::isLinear() const {
+ // Quick path: if we only have the ENTRY block, the EXIT block, and some code
+ // in between, then we have no room for control flow.
+ if (size() <= 3)
+ return true;
+
+ // Traverse the CFG until we find a branch.
+ // TODO: While this should still be very fast,
+ // maybe we should cache the answer.
+ llvm::SmallPtrSet<const CFGBlock *, 4> Visited;
+ const CFGBlock *B = Entry;
+ while (B != Exit) {
+ auto IteratorAndFlag = Visited.insert(B);
+ if (!IteratorAndFlag.second) {
+ // We looped back to a block that we've already visited. Not linear.
+ return false;
+ }
+
+ // Iterate over reachable successors.
+ const CFGBlock *FirstReachableB = nullptr;
+ for (const CFGBlock::AdjacentBlock &AB : B->succs()) {
+ if (!AB.isReachable())
+ continue;
+
+ if (FirstReachableB == nullptr) {
+ FirstReachableB = &*AB;
+ } else {
+ // We've encountered a branch. It's not a linear CFG.
+ return false;
+ }
+ }
+
+ if (!FirstReachableB) {
+ // We reached a dead end. EXIT is unreachable. This is linear enough.
+ return true;
+ }
+
+ // There's only one way to move forward. Proceed.
+ B = FirstReachableB;
+ }
+
+ // We reached EXIT and found no branches.
+ return true;
+}
+
+const CXXDestructorDecl *
+CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
+ switch (getKind()) {
+ case CFGElement::Initializer:
+ case CFGElement::NewAllocator:
+ case CFGElement::LoopExit:
+ case CFGElement::LifetimeEnds:
+ case CFGElement::Statement:
+ case CFGElement::Constructor:
+ case CFGElement::CXXRecordTypedCall:
+ case CFGElement::ScopeBegin:
+ case CFGElement::ScopeEnd:
+ llvm_unreachable("getDestructorDecl should only be used with "
+ "ImplicitDtors");
+ case CFGElement::AutomaticObjectDtor: {
+ const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
+ QualType ty = var->getType();
+
+ // FIXME: See CFGBuilder::addLocalScopeForVarDecl.
+ //
+ // Lifetime-extending constructs are handled here. This works for a single
+ // temporary in an initializer expression.
+ if (ty->isReferenceType()) {
+ if (const Expr *Init = var->getInit()) {
+ ty = getReferenceInitTemporaryType(Init);
+ }
+ }
+
+ while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
+ ty = arrayType->getElementType();
+ }
+
+ // The situation when the type of the lifetime-extending reference
+ // does not correspond to the type of the object is supposed
+ // to be handled by now. In particular, 'ty' is now the unwrapped
+ // record type.
+ const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl();
+ assert(classDecl);
+ return classDecl->getDestructor();
+ }
+ case CFGElement::DeleteDtor: {
+ const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
+ QualType DTy = DE->getDestroyedType();
+ DTy = DTy.getNonReferenceType();
+ const CXXRecordDecl *classDecl =
+ astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
+ return classDecl->getDestructor();
+ }
+ case CFGElement::TemporaryDtor: {
+ const CXXBindTemporaryExpr *bindExpr =
+ castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
+ const CXXTemporary *temp = bindExpr->getTemporary();
+ return temp->getDestructor();
+ }
+ case CFGElement::BaseDtor:
+ case CFGElement::MemberDtor:
+ // Not yet supported.
+ return nullptr;
+ }
+ llvm_unreachable("getKind() returned bogus value");
+}
+
+//===----------------------------------------------------------------------===//
+// CFGBlock operations.
+//===----------------------------------------------------------------------===//
+
+CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
+ : ReachableBlock(IsReachable ? B : nullptr),
+ UnreachableBlock(!IsReachable ? B : nullptr,
+ B && IsReachable ? AB_Normal : AB_Unreachable) {}
+
+CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
+ : ReachableBlock(B),
+ UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
+ B == AlternateBlock ? AB_Alternate : AB_Normal) {}
+
+void CFGBlock::addSuccessor(AdjacentBlock Succ,
+ BumpVectorContext &C) {
+ if (CFGBlock *B = Succ.getReachableBlock())
+ B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
+
+ if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
+ UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
+
+ Succs.push_back(Succ, C);
+}
+
+bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
+ const CFGBlock *From, const CFGBlock *To) {
+ if (F.IgnoreNullPredecessors && !From)
+ return true;
+
+ if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
+ // If the 'To' has no label or is labeled but the label isn't a
+ // CaseStmt then filter this edge.
+ if (const SwitchStmt *S =
+ dyn_cast_or_null<SwitchStmt>(From->getTerminatorStmt())) {
+ if (S->isAllEnumCasesCovered()) {
+ const Stmt *L = To->getLabel();
+ if (!L || !isa<CaseStmt>(L))
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// CFG pretty printing
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class StmtPrinterHelper : public PrinterHelper {
+ using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>;
+ using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>;
+
+ StmtMapTy StmtMap;
+ DeclMapTy DeclMap;
+ signed currentBlock = 0;
+ unsigned currStmt = 0;
+ const LangOptions &LangOpts;
+
+public:
+ StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
+ : LangOpts(LO) {
+ if (!cfg)
+ return;
+ for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
+ unsigned j = 1;
+ for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
+ BI != BEnd; ++BI, ++j ) {
+ if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
+ const Stmt *stmt= SE->getStmt();
+ std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
+ StmtMap[stmt] = P;
+
+ switch (stmt->getStmtClass()) {
+ case Stmt::DeclStmtClass:
+ DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
+ break;
+ case Stmt::IfStmtClass: {
+ const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
+ if (var)
+ DeclMap[var] = P;
+ break;
+ }
+ case Stmt::ForStmtClass: {
+ const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
+ if (var)
+ DeclMap[var] = P;
+ break;
+ }
+ case Stmt::WhileStmtClass: {
+ const VarDecl *var =
+ cast<WhileStmt>(stmt)->getConditionVariable();
+ if (var)
+ DeclMap[var] = P;
+ break;
+ }
+ case Stmt::SwitchStmtClass: {
+ const VarDecl *var =
+ cast<SwitchStmt>(stmt)->getConditionVariable();
+ if (var)
+ DeclMap[var] = P;
+ break;
+ }
+ case Stmt::CXXCatchStmtClass: {
+ const VarDecl *var =
+ cast<CXXCatchStmt>(stmt)->getExceptionDecl();
+ if (var)
+ DeclMap[var] = P;
+ break;
+ }
+ default:
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ ~StmtPrinterHelper() override = default;
+
+ const LangOptions &getLangOpts() const { return LangOpts; }
+ void setBlockID(signed i) { currentBlock = i; }
+ void setStmtID(unsigned i) { currStmt = i; }
+
+ bool handledStmt(Stmt *S, raw_ostream &OS) override {
+ StmtMapTy::iterator I = StmtMap.find(S);
+
+ if (I == StmtMap.end())
+ return false;
+
+ if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
+ && I->second.second == currStmt) {
+ return false;
+ }
+
+ OS << "[B" << I->second.first << "." << I->second.second << "]";
+ return true;
+ }
+
+ bool handleDecl(const Decl *D, raw_ostream &OS) {
+ DeclMapTy::iterator I = DeclMap.find(D);
+
+ if (I == DeclMap.end())
+ return false;
+
+ if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
+ && I->second.second == currStmt) {
+ return false;
+ }
+
+ OS << "[B" << I->second.first << "." << I->second.second << "]";
+ return true;
+ }
+};
+
+class CFGBlockTerminatorPrint
+ : public StmtVisitor<CFGBlockTerminatorPrint,void> {
+ raw_ostream &OS;
+ StmtPrinterHelper* Helper;
+ PrintingPolicy Policy;
+
+public:
+ CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
+ const PrintingPolicy &Policy)
+ : OS(os), Helper(helper), Policy(Policy) {
+ this->Policy.IncludeNewlines = false;
+ }
+
+ void VisitIfStmt(IfStmt *I) {
+ OS << "if ";
+ if (Stmt *C = I->getCond())
+ C->printPretty(OS, Helper, Policy);
+ }
+
+ // Default case.
+ void VisitStmt(Stmt *Terminator) {
+ Terminator->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitDeclStmt(DeclStmt *DS) {
+ VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
+ OS << "static init " << VD->getName();
+ }
+
+ void VisitForStmt(ForStmt *F) {
+ OS << "for (" ;
+ if (F->getInit())
+ OS << "...";
+ OS << "; ";
+ if (Stmt *C = F->getCond())
+ C->printPretty(OS, Helper, Policy);
+ OS << "; ";
+ if (F->getInc())
+ OS << "...";
+ OS << ")";
+ }
+
+ void VisitWhileStmt(WhileStmt *W) {
+ OS << "while " ;
+ if (Stmt *C = W->getCond())
+ C->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitDoStmt(DoStmt *D) {
+ OS << "do ... while ";
+ if (Stmt *C = D->getCond())
+ C->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitSwitchStmt(SwitchStmt *Terminator) {
+ OS << "switch ";
+ Terminator->getCond()->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitCXXTryStmt(CXXTryStmt *) { OS << "try ..."; }
+
+ void VisitObjCAtTryStmt(ObjCAtTryStmt *) { OS << "@try ..."; }
+
+ void VisitSEHTryStmt(SEHTryStmt *CS) { OS << "__try ..."; }
+
+ void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
+ if (Stmt *Cond = C->getCond())
+ Cond->printPretty(OS, Helper, Policy);
+ OS << " ? ... : ...";
+ }
+
+ void VisitChooseExpr(ChooseExpr *C) {
+ OS << "__builtin_choose_expr( ";
+ if (Stmt *Cond = C->getCond())
+ Cond->printPretty(OS, Helper, Policy);
+ OS << " )";
+ }
+
+ void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
+ OS << "goto *";
+ if (Stmt *T = I->getTarget())
+ T->printPretty(OS, Helper, Policy);
+ }
+
+ void VisitBinaryOperator(BinaryOperator* B) {
+ if (!B->isLogicalOp()) {
+ VisitExpr(B);
+ return;
+ }
+
+ if (B->getLHS())
+ B->getLHS()->printPretty(OS, Helper, Policy);
+
+ switch (B->getOpcode()) {
+ case BO_LOr:
+ OS << " || ...";
+ return;
+ case BO_LAnd:
+ OS << " && ...";
+ return;
+ default:
+ llvm_unreachable("Invalid logical operator.");
+ }
+ }
+
+ void VisitExpr(Expr *E) {
+ E->printPretty(OS, Helper, Policy);
+ }
+
+public:
+ void print(CFGTerminator T) {
+ switch (T.getKind()) {
+ case CFGTerminator::StmtBranch:
+ Visit(T.getStmt());
+ break;
+ case CFGTerminator::TemporaryDtorsBranch:
+ OS << "(Temp Dtor) ";
+ Visit(T.getStmt());
+ break;
+ case CFGTerminator::VirtualBaseBranch:
+ OS << "(See if most derived ctor has already initialized vbases)";
+ break;
+ }
+ }
+};
+
+} // namespace
+
+static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper,
+ const CXXCtorInitializer *I) {
+ if (I->isBaseInitializer())
+ OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
+ else if (I->isDelegatingInitializer())
+ OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
+ else
+ OS << I->getAnyMember()->getName();
+ OS << "(";
+ if (Expr *IE = I->getInit())
+ IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
+ OS << ")";
+
+ if (I->isBaseInitializer())
+ OS << " (Base initializer)";
+ else if (I->isDelegatingInitializer())
+ OS << " (Delegating initializer)";
+ else
+ OS << " (Member initializer)";
+}
+
+static void print_construction_context(raw_ostream &OS,
+ StmtPrinterHelper &Helper,
+ const ConstructionContext *CC) {
+ SmallVector<const Stmt *, 3> Stmts;
+ switch (CC->getKind()) {
+ case ConstructionContext::SimpleConstructorInitializerKind: {
+ OS << ", ";
+ const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(CC);
+ print_initializer(OS, Helper, SICC->getCXXCtorInitializer());
+ return;
+ }
+ case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: {
+ OS << ", ";
+ const auto *CICC =
+ cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(CC);
+ print_initializer(OS, Helper, CICC->getCXXCtorInitializer());
+ Stmts.push_back(CICC->getCXXBindTemporaryExpr());
+ break;
+ }
+ case ConstructionContext::SimpleVariableKind: {
+ const auto *SDSCC = cast<SimpleVariableConstructionContext>(CC);
+ Stmts.push_back(SDSCC->getDeclStmt());
+ break;
+ }
+ case ConstructionContext::CXX17ElidedCopyVariableKind: {
+ const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(CC);
+ Stmts.push_back(CDSCC->getDeclStmt());
+ Stmts.push_back(CDSCC->getCXXBindTemporaryExpr());
+ break;
+ }
+ case ConstructionContext::NewAllocatedObjectKind: {
+ const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC);
+ Stmts.push_back(NECC->getCXXNewExpr());
+ break;
+ }
+ case ConstructionContext::SimpleReturnedValueKind: {
+ const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(CC);
+ Stmts.push_back(RSCC->getReturnStmt());
+ break;
+ }
+ case ConstructionContext::CXX17ElidedCopyReturnedValueKind: {
+ const auto *RSCC =
+ cast<CXX17ElidedCopyReturnedValueConstructionContext>(CC);
+ Stmts.push_back(RSCC->getReturnStmt());
+ Stmts.push_back(RSCC->getCXXBindTemporaryExpr());
+ break;
+ }
+ case ConstructionContext::SimpleTemporaryObjectKind: {
+ const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(CC);
+ Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
+ Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
+ break;
+ }
+ case ConstructionContext::ElidedTemporaryObjectKind: {
+ const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(CC);
+ Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
+ Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
+ Stmts.push_back(TOCC->getConstructorAfterElision());
+ break;
+ }
+ case ConstructionContext::ArgumentKind: {
+ const auto *ACC = cast<ArgumentConstructionContext>(CC);
+ if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) {
+ OS << ", ";
+ Helper.handledStmt(const_cast<Stmt *>(BTE), OS);
+ }
+ OS << ", ";
+ Helper.handledStmt(const_cast<Expr *>(ACC->getCallLikeExpr()), OS);
+ OS << "+" << ACC->getIndex();
+ return;
+ }
+ }
+ for (auto I: Stmts)
+ if (I) {
+ OS << ", ";
+ Helper.handledStmt(const_cast<Stmt *>(I), OS);
+ }
+}
+
+static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
+ const CFGElement &E);
+
+void CFGElement::dumpToStream(llvm::raw_ostream &OS) const {
+ StmtPrinterHelper Helper(nullptr, {});
+ print_elem(OS, Helper, *this);
+}
+
+static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
+ const CFGElement &E) {
+ switch (E.getKind()) {
+ case CFGElement::Kind::Statement:
+ case CFGElement::Kind::CXXRecordTypedCall:
+ case CFGElement::Kind::Constructor: {
+ CFGStmt CS = E.castAs<CFGStmt>();
+ const Stmt *S = CS.getStmt();
+ assert(S != nullptr && "Expecting non-null Stmt");
+
+ // special printing for statement-expressions.
+ if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
+ const CompoundStmt *Sub = SE->getSubStmt();
+
+ auto Children = Sub->children();
+ if (Children.begin() != Children.end()) {
+ OS << "({ ... ; ";
+ Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
+ OS << " })\n";
+ return;
+ }
+ }
+ // special printing for comma expressions.
+ if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
+ if (B->getOpcode() == BO_Comma) {
+ OS << "... , ";
+ Helper.handledStmt(B->getRHS(),OS);
+ OS << '\n';
+ return;
+ }
+ }
+ S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
+
+ if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) {
+ if (isa<CXXOperatorCallExpr>(S))
+ OS << " (OperatorCall)";
+ OS << " (CXXRecordTypedCall";
+ print_construction_context(OS, Helper, VTC->getConstructionContext());
+ OS << ")";
+ } else if (isa<CXXOperatorCallExpr>(S)) {
+ OS << " (OperatorCall)";
+ } else if (isa<CXXBindTemporaryExpr>(S)) {
+ OS << " (BindTemporary)";
+ } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
+ OS << " (CXXConstructExpr";
+ if (Optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) {
+ print_construction_context(OS, Helper, CE->getConstructionContext());
+ }
+ OS << ", " << CCE->getType().getAsString() << ")";
+ } else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
+ OS << " (" << CE->getStmtClassName() << ", "
+ << CE->getCastKindName()
+ << ", " << CE->getType().getAsString()
+ << ")";
+ }
+
+ // Expressions need a newline.
+ if (isa<Expr>(S))
+ OS << '\n';
+
+ break;
+ }
+
+ case CFGElement::Kind::Initializer:
+ print_initializer(OS, Helper, E.castAs<CFGInitializer>().getInitializer());
+ OS << '\n';
+ break;
+
+ case CFGElement::Kind::AutomaticObjectDtor: {
+ CFGAutomaticObjDtor DE = E.castAs<CFGAutomaticObjDtor>();
+ const VarDecl *VD = DE.getVarDecl();
+ Helper.handleDecl(VD, OS);
+
+ QualType T = VD->getType();
+ if (T->isReferenceType())
+ T = getReferenceInitTemporaryType(VD->getInit(), nullptr);
+
+ OS << ".~";
+ T.getUnqualifiedType().print(OS, PrintingPolicy(Helper.getLangOpts()));
+ OS << "() (Implicit destructor)\n";
+ break;
+ }
+
+ case CFGElement::Kind::LifetimeEnds:
+ Helper.handleDecl(E.castAs<CFGLifetimeEnds>().getVarDecl(), OS);
+ OS << " (Lifetime ends)\n";
+ break;
+
+ case CFGElement::Kind::LoopExit:
+ OS << E.castAs<CFGLoopExit>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n";
+ break;
+
+ case CFGElement::Kind::ScopeBegin:
+ OS << "CFGScopeBegin(";
+ if (const VarDecl *VD = E.castAs<CFGScopeBegin>().getVarDecl())
+ OS << VD->getQualifiedNameAsString();
+ OS << ")\n";
+ break;
+
+ case CFGElement::Kind::ScopeEnd:
+ OS << "CFGScopeEnd(";
+ if (const VarDecl *VD = E.castAs<CFGScopeEnd>().getVarDecl())
+ OS << VD->getQualifiedNameAsString();
+ OS << ")\n";
+ break;
+
+ case CFGElement::Kind::NewAllocator:
+ OS << "CFGNewAllocator(";
+ if (const CXXNewExpr *AllocExpr = E.castAs<CFGNewAllocator>().getAllocatorExpr())
+ AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
+ OS << ")\n";
+ break;
+
+ case CFGElement::Kind::DeleteDtor: {
+ CFGDeleteDtor DE = E.castAs<CFGDeleteDtor>();
+ const CXXRecordDecl *RD = DE.getCXXRecordDecl();
+ if (!RD)
+ return;
+ CXXDeleteExpr *DelExpr =
+ const_cast<CXXDeleteExpr*>(DE.getDeleteExpr());
+ Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
+ OS << "->~" << RD->getName().str() << "()";
+ OS << " (Implicit destructor)\n";
+ break;
+ }
+
+ case CFGElement::Kind::BaseDtor: {
+ const CXXBaseSpecifier *BS = E.castAs<CFGBaseDtor>().getBaseSpecifier();
+ OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
+ OS << " (Base object destructor)\n";
+ break;
+ }
+
+ case CFGElement::Kind::MemberDtor: {
+ const FieldDecl *FD = E.castAs<CFGMemberDtor>().getFieldDecl();
+ const Type *T = FD->getType()->getBaseElementTypeUnsafe();
+ OS << "this->" << FD->getName();
+ OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
+ OS << " (Member object destructor)\n";
+ break;
+ }
+
+ case CFGElement::Kind::TemporaryDtor: {
+ const CXXBindTemporaryExpr *BT =
+ E.castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
+ OS << "~";
+ BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
+ OS << "() (Temporary object destructor)\n";
+ break;
+ }
+ }
+}
+
+static void print_block(raw_ostream &OS, const CFG* cfg,
+ const CFGBlock &B,
+ StmtPrinterHelper &Helper, bool print_edges,
+ bool ShowColors) {
+ Helper.setBlockID(B.getBlockID());
+
+ // Print the header.
+ if (ShowColors)
+ OS.changeColor(raw_ostream::YELLOW, true);
+
+ OS << "\n [B" << B.getBlockID();
+
+ if (&B == &cfg->getEntry())
+ OS << " (ENTRY)]\n";
+ else if (&B == &cfg->getExit())
+ OS << " (EXIT)]\n";
+ else if (&B == cfg->getIndirectGotoBlock())
+ OS << " (INDIRECT GOTO DISPATCH)]\n";
+ else if (B.hasNoReturnElement())
+ OS << " (NORETURN)]\n";
+ else
+ OS << "]\n";
+
+ if (ShowColors)
+ OS.resetColor();
+
+ // Print the label of this block.
+ if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
+ if (print_edges)
+ OS << " ";
+
+ if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
+ OS << L->getName();
+ else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
+ OS << "case ";
+ if (const Expr *LHS = C->getLHS())
+ LHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
+ if (const Expr *RHS = C->getRHS()) {
+ OS << " ... ";
+ RHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
+ }
+ } else if (isa<DefaultStmt>(Label))
+ OS << "default";
+ else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
+ OS << "catch (";
+ if (const VarDecl *ED = CS->getExceptionDecl())
+ ED->print(OS, PrintingPolicy(Helper.getLangOpts()), 0);
+ else
+ OS << "...";
+ OS << ")";
+ } else if (ObjCAtCatchStmt *CS = dyn_cast<ObjCAtCatchStmt>(Label)) {
+ OS << "@catch (";
+ if (const VarDecl *PD = CS->getCatchParamDecl())
+ PD->print(OS, PrintingPolicy(Helper.getLangOpts()), 0);
+ else
+ OS << "...";
+ OS << ")";
+ } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Label)) {
+ OS << "__except (";
+ ES->getFilterExpr()->printPretty(OS, &Helper,
+ PrintingPolicy(Helper.getLangOpts()), 0);
+ OS << ")";
+ } else
+ llvm_unreachable("Invalid label statement in CFGBlock.");
+
+ OS << ":\n";
+ }
+
+ // Iterate through the statements in the block and print them.
+ unsigned j = 1;
+
+ for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
+ I != E ; ++I, ++j ) {
+ // Print the statement # in the basic block and the statement itself.
+ if (print_edges)
+ OS << " ";
+
+ OS << llvm::format("%3d", j) << ": ";
+
+ Helper.setStmtID(j);
+
+ print_elem(OS, Helper, *I);
+ }
+
+ // Print the terminator of this block.
+ if (B.getTerminator().isValid()) {
+ if (ShowColors)
+ OS.changeColor(raw_ostream::GREEN);
+
+ OS << " T: ";
+
+ Helper.setBlockID(-1);
+
+ PrintingPolicy PP(Helper.getLangOpts());
+ CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
+ TPrinter.print(B.getTerminator());
+ OS << '\n';
+
+ if (ShowColors)
+ OS.resetColor();
+ }
+
+ if (print_edges) {
+ // Print the predecessors of this block.
+ if (!B.pred_empty()) {
+ const raw_ostream::Colors Color = raw_ostream::BLUE;
+ if (ShowColors)
+ OS.changeColor(Color);
+ OS << " Preds " ;
+ if (ShowColors)
+ OS.resetColor();
+ OS << '(' << B.pred_size() << "):";
+ unsigned i = 0;
+
+ if (ShowColors)
+ OS.changeColor(Color);
+
+ for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
+ I != E; ++I, ++i) {
+ if (i % 10 == 8)
+ OS << "\n ";
+
+ CFGBlock *B = *I;
+ bool Reachable = true;
+ if (!B) {
+ Reachable = false;
+ B = I->getPossiblyUnreachableBlock();
+ }
+
+ OS << " B" << B->getBlockID();
+ if (!Reachable)
+ OS << "(Unreachable)";
+ }
+
+ if (ShowColors)
+ OS.resetColor();
+
+ OS << '\n';
+ }
+
+ // Print the successors of this block.
+ if (!B.succ_empty()) {
+ const raw_ostream::Colors Color = raw_ostream::MAGENTA;
+ if (ShowColors)
+ OS.changeColor(Color);
+ OS << " Succs ";
+ if (ShowColors)
+ OS.resetColor();
+ OS << '(' << B.succ_size() << "):";
+ unsigned i = 0;
+
+ if (ShowColors)
+ OS.changeColor(Color);
+
+ for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
+ I != E; ++I, ++i) {
+ if (i % 10 == 8)
+ OS << "\n ";
+
+ CFGBlock *B = *I;
+
+ bool Reachable = true;
+ if (!B) {
+ Reachable = false;
+ B = I->getPossiblyUnreachableBlock();
+ }
+
+ if (B) {
+ OS << " B" << B->getBlockID();
+ if (!Reachable)
+ OS << "(Unreachable)";
+ }
+ else {
+ OS << " NULL";
+ }
+ }
+
+ if (ShowColors)
+ OS.resetColor();
+ OS << '\n';
+ }
+ }
+}
+
+/// dump - A simple pretty printer of a CFG that outputs to stderr.
+void CFG::dump(const LangOptions &LO, bool ShowColors) const {
+ print(llvm::errs(), LO, ShowColors);
+}
+
+/// print - A simple pretty printer of a CFG that outputs to an ostream.
+void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
+ StmtPrinterHelper Helper(this, LO);
+
+ // Print the entry block.
+ print_block(OS, this, getEntry(), Helper, true, ShowColors);
+
+ // Iterate through the CFGBlocks and print them one by one.
+ for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
+ // Skip the entry block, because we already printed it.
+ if (&(**I) == &getEntry() || &(**I) == &getExit())
+ continue;
+
+ print_block(OS, this, **I, Helper, true, ShowColors);
+ }
+
+ // Print the exit block.
+ print_block(OS, this, getExit(), Helper, true, ShowColors);
+ OS << '\n';
+ OS.flush();
+}
+
+size_t CFGBlock::getIndexInCFG() const {
+ return llvm::find(*getParent(), this) - getParent()->begin();
+}
+
+/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
+void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
+ bool ShowColors) const {
+ print(llvm::errs(), cfg, LO, ShowColors);
+}
+
+LLVM_DUMP_METHOD void CFGBlock::dump() const {
+ dump(getParent(), LangOptions(), false);
+}
+
+/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
+/// Generally this will only be called from CFG::print.
+void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
+ const LangOptions &LO, bool ShowColors) const {
+ StmtPrinterHelper Helper(cfg, LO);
+ print_block(OS, cfg, *this, Helper, true, ShowColors);
+ OS << '\n';
+}
+
+/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
+void CFGBlock::printTerminator(raw_ostream &OS,
+ const LangOptions &LO) const {
+ CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
+ TPrinter.print(getTerminator());
+}
+
+/// printTerminatorJson - Pretty-prints the terminator in JSON format.
+void CFGBlock::printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
+ bool AddQuotes) const {
+ std::string Buf;
+ llvm::raw_string_ostream TempOut(Buf);
+
+ printTerminator(TempOut, LO);
+
+ Out << JsonFormat(TempOut.str(), AddQuotes);
+}
+
+// Returns true if by simply looking at the block, we can be sure that it
+// results in a sink during analysis. This is useful to know when the analysis
+// was interrupted, and we try to figure out if it would sink eventually.
+// There may be many more reasons why a sink would appear during analysis
+// (eg. checkers may generate sinks arbitrarily), but here we only consider
+// sinks that would be obvious by looking at the CFG.
+static bool isImmediateSinkBlock(const CFGBlock *Blk) {
+ if (Blk->hasNoReturnElement())
+ return true;
+
+ // FIXME: Throw-expressions are currently generating sinks during analysis:
+ // they're not supported yet, and also often used for actually terminating
+ // the program. So we should treat them as sinks in this analysis as well,
+ // at least for now, but once we have better support for exceptions,
+ // we'd need to carefully handle the case when the throw is being
+ // immediately caught.
+ if (llvm::any_of(*Blk, [](const CFGElement &Elm) {
+ if (Optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>())
+ if (isa<CXXThrowExpr>(StmtElm->getStmt()))
+ return true;
+ return false;
+ }))
+ return true;
+
+ return false;
+}
+
+bool CFGBlock::isInevitablySinking() const {
+ const CFG &Cfg = *getParent();
+
+ const CFGBlock *StartBlk = this;
+ if (isImmediateSinkBlock(StartBlk))
+ return true;
+
+ llvm::SmallVector<const CFGBlock *, 32> DFSWorkList;
+ llvm::SmallPtrSet<const CFGBlock *, 32> Visited;
+
+ DFSWorkList.push_back(StartBlk);
+ while (!DFSWorkList.empty()) {
+ const CFGBlock *Blk = DFSWorkList.back();
+ DFSWorkList.pop_back();
+ Visited.insert(Blk);
+
+ // If at least one path reaches the CFG exit, it means that control is
+ // returned to the caller. For now, say that we are not sure what
+ // happens next. If necessary, this can be improved to analyze
+ // the parent StackFrameContext's call site in a similar manner.
+ if (Blk == &Cfg.getExit())
+ return false;
+
+ for (const auto &Succ : Blk->succs()) {
+ if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) {
+ if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) {
+ // If the block has reachable child blocks that aren't no-return,
+ // add them to the worklist.
+ DFSWorkList.push_back(SuccBlk);
+ }
+ }
+ }
+ }
+
+ // Nothing reached the exit. It can only mean one thing: there's no return.
+ return true;
+}
+
+const Expr *CFGBlock::getLastCondition() const {
+ // If the terminator is a temporary dtor or a virtual base, etc, we can't
+ // retrieve a meaningful condition, bail out.
+ if (Terminator.getKind() != CFGTerminator::StmtBranch)
+ return nullptr;
+
+ // Also, if this method was called on a block that doesn't have 2 successors,
+ // this block doesn't have retrievable condition.
+ if (succ_size() < 2)
+ return nullptr;
+
+ // FIXME: Is there a better condition expression we can return in this case?
+ if (size() == 0)
+ return nullptr;
+
+ auto StmtElem = rbegin()->getAs<CFGStmt>();
+ if (!StmtElem)
+ return nullptr;
+
+ const Stmt *Cond = StmtElem->getStmt();
+ if (isa<ObjCForCollectionStmt>(Cond) || isa<DeclStmt>(Cond))
+ return nullptr;
+
+ // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence
+ // the cast<>.
+ return cast<Expr>(Cond)->IgnoreParens();
+}
+
+Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
+ Stmt *Terminator = getTerminatorStmt();
+ if (!Terminator)
+ return nullptr;
+
+ Expr *E = nullptr;
+
+ switch (Terminator->getStmtClass()) {
+ default:
+ break;
+
+ case Stmt::CXXForRangeStmtClass:
+ E = cast<CXXForRangeStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::ForStmtClass:
+ E = cast<ForStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::WhileStmtClass:
+ E = cast<WhileStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::DoStmtClass:
+ E = cast<DoStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::IfStmtClass:
+ E = cast<IfStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::ChooseExprClass:
+ E = cast<ChooseExpr>(Terminator)->getCond();
+ break;
+
+ case Stmt::IndirectGotoStmtClass:
+ E = cast<IndirectGotoStmt>(Terminator)->getTarget();
+ break;
+
+ case Stmt::SwitchStmtClass:
+ E = cast<SwitchStmt>(Terminator)->getCond();
+ break;
+
+ case Stmt::BinaryConditionalOperatorClass:
+ E = cast<BinaryConditionalOperator>(Terminator)->getCond();
+ break;
+
+ case Stmt::ConditionalOperatorClass:
+ E = cast<ConditionalOperator>(Terminator)->getCond();
+ break;
+
+ case Stmt::BinaryOperatorClass: // '&&' and '||'
+ E = cast<BinaryOperator>(Terminator)->getLHS();
+ break;
+
+ case Stmt::ObjCForCollectionStmtClass:
+ return Terminator;
+ }
+
+ if (!StripParens)
+ return E;
+
+ return E ? E->IgnoreParens() : nullptr;
+}
+
+//===----------------------------------------------------------------------===//
+// CFG Graphviz Visualization
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+static StmtPrinterHelper* GraphHelper;
+#endif
+
+void CFG::viewCFG(const LangOptions &LO) const {
+#ifndef NDEBUG
+ StmtPrinterHelper H(this, LO);
+ GraphHelper = &H;
+ llvm::ViewGraph(this,"CFG");
+ GraphHelper = nullptr;
+#endif
+}
+
+namespace llvm {
+
+template<>
+struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
+ DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
+
+ static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
+#ifndef NDEBUG
+ std::string OutSStr;
+ llvm::raw_string_ostream Out(OutSStr);
+ print_block(Out,Graph, *Node, *GraphHelper, false, false);
+ std::string& OutStr = Out.str();
+
+ if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
+
+ // Process string output to make it nicer...
+ for (unsigned i = 0; i != OutStr.length(); ++i)
+ if (OutStr[i] == '\n') { // Left justify
+ OutStr[i] = '\\';
+ OutStr.insert(OutStr.begin()+i+1, 'l');
+ }
+
+ return OutStr;
+#else
+ return {};
+#endif
+ }
+};
+
+} // namespace llvm