diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/clang14/lib/Analysis/CFG.cpp | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/clang14/lib/Analysis/CFG.cpp')
-rw-r--r-- | contrib/libs/clang14/lib/Analysis/CFG.cpp | 6175 |
1 files changed, 6175 insertions, 0 deletions
diff --git a/contrib/libs/clang14/lib/Analysis/CFG.cpp b/contrib/libs/clang14/lib/Analysis/CFG.cpp new file mode 100644 index 0000000000..8246854dc1 --- /dev/null +++ b/contrib/libs/clang14/lib/Analysis/CFG.cpp @@ -0,0 +1,6175 @@ +//===- CFG.cpp - Classes for representing and building CFGs ---------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the CFG and CFGBuilder classes for representing and +// building Control-Flow Graphs (CFGs) from ASTs. +// +//===----------------------------------------------------------------------===// + +#include "clang/Analysis/CFG.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/Attr.h" +#include "clang/AST/Decl.h" +#include "clang/AST/DeclBase.h" +#include "clang/AST/DeclCXX.h" +#include "clang/AST/DeclGroup.h" +#include "clang/AST/Expr.h" +#include "clang/AST/ExprCXX.h" +#include "clang/AST/OperationKinds.h" +#include "clang/AST/PrettyPrinter.h" +#include "clang/AST/Stmt.h" +#include "clang/AST/StmtCXX.h" +#include "clang/AST/StmtObjC.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/AST/Type.h" +#include "clang/Analysis/ConstructionContext.h" +#include "clang/Analysis/Support/BumpVector.h" +#include "clang/Basic/Builtins.h" +#include "clang/Basic/ExceptionSpecificationType.h" +#include "clang/Basic/JsonSupport.h" +#include "clang/Basic/LLVM.h" +#include "clang/Basic/LangOptions.h" +#include "clang/Basic/SourceLocation.h" +#include "clang/Basic/Specifiers.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/APSInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/DOTGraphTraits.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/GraphWriter.h" +#include "llvm/Support/SaveAndRestore.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <memory> +#include <string> +#include <tuple> +#include <utility> +#include <vector> + +using namespace clang; + +static SourceLocation GetEndLoc(Decl *D) { + if (VarDecl *VD = dyn_cast<VarDecl>(D)) + if (Expr *Ex = VD->getInit()) + return Ex->getSourceRange().getEnd(); + return D->getLocation(); +} + +/// Returns true on constant values based around a single IntegerLiteral. +/// Allow for use of parentheses, integer casts, and negative signs. +static bool IsIntegerLiteralConstantExpr(const Expr *E) { + // Allow parentheses + E = E->IgnoreParens(); + + // Allow conversions to different integer kind. + if (const auto *CE = dyn_cast<CastExpr>(E)) { + if (CE->getCastKind() != CK_IntegralCast) + return false; + E = CE->getSubExpr(); + } + + // Allow negative numbers. + if (const auto *UO = dyn_cast<UnaryOperator>(E)) { + if (UO->getOpcode() != UO_Minus) + return false; + E = UO->getSubExpr(); + } + + return isa<IntegerLiteral>(E); +} + +/// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral +/// constant expression or EnumConstantDecl from the given Expr. If it fails, +/// returns nullptr. +static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) { + E = E->IgnoreParens(); + if (IsIntegerLiteralConstantExpr(E)) + return E; + if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) + return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr; + return nullptr; +} + +/// Tries to interpret a binary operator into `Expr Op NumExpr` form, if +/// NumExpr is an integer literal or an enum constant. +/// +/// If this fails, at least one of the returned DeclRefExpr or Expr will be +/// null. +static std::tuple<const Expr *, BinaryOperatorKind, const Expr *> +tryNormalizeBinaryOperator(const BinaryOperator *B) { + BinaryOperatorKind Op = B->getOpcode(); + + const Expr *MaybeDecl = B->getLHS(); + const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS()); + // Expr looked like `0 == Foo` instead of `Foo == 0` + if (Constant == nullptr) { + // Flip the operator + if (Op == BO_GT) + Op = BO_LT; + else if (Op == BO_GE) + Op = BO_LE; + else if (Op == BO_LT) + Op = BO_GT; + else if (Op == BO_LE) + Op = BO_GE; + + MaybeDecl = B->getRHS(); + Constant = tryTransformToIntOrEnumConstant(B->getLHS()); + } + + return std::make_tuple(MaybeDecl, Op, Constant); +} + +/// For an expression `x == Foo && x == Bar`, this determines whether the +/// `Foo` and `Bar` are either of the same enumeration type, or both integer +/// literals. +/// +/// It's an error to pass this arguments that are not either IntegerLiterals +/// or DeclRefExprs (that have decls of type EnumConstantDecl) +static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) { + // User intent isn't clear if they're mixing int literals with enum + // constants. + if (isa<DeclRefExpr>(E1) != isa<DeclRefExpr>(E2)) + return false; + + // Integer literal comparisons, regardless of literal type, are acceptable. + if (!isa<DeclRefExpr>(E1)) + return true; + + // IntegerLiterals are handled above and only EnumConstantDecls are expected + // beyond this point + assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2)); + auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl(); + auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl(); + + assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2)); + const DeclContext *DC1 = Decl1->getDeclContext(); + const DeclContext *DC2 = Decl2->getDeclContext(); + + assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2)); + return DC1 == DC2; +} + +namespace { + +class CFGBuilder; + +/// The CFG builder uses a recursive algorithm to build the CFG. When +/// we process an expression, sometimes we know that we must add the +/// subexpressions as block-level expressions. For example: +/// +/// exp1 || exp2 +/// +/// When processing the '||' expression, we know that exp1 and exp2 +/// need to be added as block-level expressions, even though they +/// might not normally need to be. AddStmtChoice records this +/// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then +/// the builder has an option not to add a subexpression as a +/// block-level expression. +class AddStmtChoice { +public: + enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 }; + + AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {} + + bool alwaysAdd(CFGBuilder &builder, + const Stmt *stmt) const; + + /// Return a copy of this object, except with the 'always-add' bit + /// set as specified. + AddStmtChoice withAlwaysAdd(bool alwaysAdd) const { + return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd); + } + +private: + Kind kind; +}; + +/// LocalScope - Node in tree of local scopes created for C++ implicit +/// destructor calls generation. It contains list of automatic variables +/// declared in the scope and link to position in previous scope this scope +/// began in. +/// +/// The process of creating local scopes is as follows: +/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null), +/// - Before processing statements in scope (e.g. CompoundStmt) create +/// LocalScope object using CFGBuilder::ScopePos as link to previous scope +/// and set CFGBuilder::ScopePos to the end of new scope, +/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points +/// at this VarDecl, +/// - For every normal (without jump) end of scope add to CFGBlock destructors +/// for objects in the current scope, +/// - For every jump add to CFGBlock destructors for objects +/// between CFGBuilder::ScopePos and local scope position saved for jump +/// target. Thanks to C++ restrictions on goto jumps we can be sure that +/// jump target position will be on the path to root from CFGBuilder::ScopePos +/// (adding any variable that doesn't need constructor to be called to +/// LocalScope can break this assumption), +/// +class LocalScope { +public: + using AutomaticVarsTy = BumpVector<VarDecl *>; + + /// const_iterator - Iterates local scope backwards and jumps to previous + /// scope on reaching the beginning of currently iterated scope. + class const_iterator { + const LocalScope* Scope = nullptr; + + /// VarIter is guaranteed to be greater then 0 for every valid iterator. + /// Invalid iterator (with null Scope) has VarIter equal to 0. + unsigned VarIter = 0; + + public: + /// Create invalid iterator. Dereferencing invalid iterator is not allowed. + /// Incrementing invalid iterator is allowed and will result in invalid + /// iterator. + const_iterator() = default; + + /// Create valid iterator. In case when S.Prev is an invalid iterator and + /// I is equal to 0, this will create invalid iterator. + const_iterator(const LocalScope& S, unsigned I) + : Scope(&S), VarIter(I) { + // Iterator to "end" of scope is not allowed. Handle it by going up + // in scopes tree possibly up to invalid iterator in the root. + if (VarIter == 0 && Scope) + *this = Scope->Prev; + } + + VarDecl *const* operator->() const { + assert(Scope && "Dereferencing invalid iterator is not allowed"); + assert(VarIter != 0 && "Iterator has invalid value of VarIter member"); + return &Scope->Vars[VarIter - 1]; + } + + const VarDecl *getFirstVarInScope() const { + assert(Scope && "Dereferencing invalid iterator is not allowed"); + assert(VarIter != 0 && "Iterator has invalid value of VarIter member"); + return Scope->Vars[0]; + } + + VarDecl *operator*() const { + return *this->operator->(); + } + + const_iterator &operator++() { + if (!Scope) + return *this; + + assert(VarIter != 0 && "Iterator has invalid value of VarIter member"); + --VarIter; + if (VarIter == 0) + *this = Scope->Prev; + return *this; + } + const_iterator operator++(int) { + const_iterator P = *this; + ++*this; + return P; + } + + bool operator==(const const_iterator &rhs) const { + return Scope == rhs.Scope && VarIter == rhs.VarIter; + } + bool operator!=(const const_iterator &rhs) const { + return !(*this == rhs); + } + + explicit operator bool() const { + return *this != const_iterator(); + } + + int distance(const_iterator L); + const_iterator shared_parent(const_iterator L); + bool pointsToFirstDeclaredVar() { return VarIter == 1; } + }; + +private: + BumpVectorContext ctx; + + /// Automatic variables in order of declaration. + AutomaticVarsTy Vars; + + /// Iterator to variable in previous scope that was declared just before + /// begin of this scope. + const_iterator Prev; + +public: + /// Constructs empty scope linked to previous scope in specified place. + LocalScope(BumpVectorContext ctx, const_iterator P) + : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {} + + /// Begin of scope in direction of CFG building (backwards). + const_iterator begin() const { return const_iterator(*this, Vars.size()); } + + void addVar(VarDecl *VD) { + Vars.push_back(VD, ctx); + } +}; + +} // namespace + +/// distance - Calculates distance from this to L. L must be reachable from this +/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t. +/// number of scopes between this and L. +int LocalScope::const_iterator::distance(LocalScope::const_iterator L) { + int D = 0; + const_iterator F = *this; + while (F.Scope != L.Scope) { + assert(F != const_iterator() && + "L iterator is not reachable from F iterator."); + D += F.VarIter; + F = F.Scope->Prev; + } + D += F.VarIter - L.VarIter; + return D; +} + +/// Calculates the closest parent of this iterator +/// that is in a scope reachable through the parents of L. +/// I.e. when using 'goto' from this to L, the lifetime of all variables +/// between this and shared_parent(L) end. +LocalScope::const_iterator +LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) { + llvm::SmallPtrSet<const LocalScope *, 4> ScopesOfL; + while (true) { + ScopesOfL.insert(L.Scope); + if (L == const_iterator()) + break; + L = L.Scope->Prev; + } + + const_iterator F = *this; + while (true) { + if (ScopesOfL.count(F.Scope)) + return F; + assert(F != const_iterator() && + "L iterator is not reachable from F iterator."); + F = F.Scope->Prev; + } +} + +namespace { + +/// Structure for specifying position in CFG during its build process. It +/// consists of CFGBlock that specifies position in CFG and +/// LocalScope::const_iterator that specifies position in LocalScope graph. +struct BlockScopePosPair { + CFGBlock *block = nullptr; + LocalScope::const_iterator scopePosition; + + BlockScopePosPair() = default; + BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos) + : block(b), scopePosition(scopePos) {} +}; + +/// TryResult - a class representing a variant over the values +/// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool, +/// and is used by the CFGBuilder to decide if a branch condition +/// can be decided up front during CFG construction. +class TryResult { + int X = -1; + +public: + TryResult() = default; + TryResult(bool b) : X(b ? 1 : 0) {} + + bool isTrue() const { return X == 1; } + bool isFalse() const { return X == 0; } + bool isKnown() const { return X >= 0; } + + void negate() { + assert(isKnown()); + X ^= 0x1; + } +}; + +} // namespace + +static TryResult bothKnownTrue(TryResult R1, TryResult R2) { + if (!R1.isKnown() || !R2.isKnown()) + return TryResult(); + return TryResult(R1.isTrue() && R2.isTrue()); +} + +namespace { + +class reverse_children { + llvm::SmallVector<Stmt *, 12> childrenBuf; + ArrayRef<Stmt *> children; + +public: + reverse_children(Stmt *S); + + using iterator = ArrayRef<Stmt *>::reverse_iterator; + + iterator begin() const { return children.rbegin(); } + iterator end() const { return children.rend(); } +}; + +} // namespace + +reverse_children::reverse_children(Stmt *S) { + if (CallExpr *CE = dyn_cast<CallExpr>(S)) { + children = CE->getRawSubExprs(); + return; + } + switch (S->getStmtClass()) { + // Note: Fill in this switch with more cases we want to optimize. + case Stmt::InitListExprClass: { + InitListExpr *IE = cast<InitListExpr>(S); + children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()), + IE->getNumInits()); + return; + } + default: + break; + } + + // Default case for all other statements. + for (Stmt *SubStmt : S->children()) + childrenBuf.push_back(SubStmt); + + // This needs to be done *after* childrenBuf has been populated. + children = childrenBuf; +} + +namespace { + +/// CFGBuilder - This class implements CFG construction from an AST. +/// The builder is stateful: an instance of the builder should be used to only +/// construct a single CFG. +/// +/// Example usage: +/// +/// CFGBuilder builder; +/// std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1); +/// +/// CFG construction is done via a recursive walk of an AST. We actually parse +/// the AST in reverse order so that the successor of a basic block is +/// constructed prior to its predecessor. This allows us to nicely capture +/// implicit fall-throughs without extra basic blocks. +class CFGBuilder { + using JumpTarget = BlockScopePosPair; + using JumpSource = BlockScopePosPair; + + ASTContext *Context; + std::unique_ptr<CFG> cfg; + + // Current block. + CFGBlock *Block = nullptr; + + // Block after the current block. + CFGBlock *Succ = nullptr; + + JumpTarget ContinueJumpTarget; + JumpTarget BreakJumpTarget; + JumpTarget SEHLeaveJumpTarget; + CFGBlock *SwitchTerminatedBlock = nullptr; + CFGBlock *DefaultCaseBlock = nullptr; + + // This can point to either a C++ try, an Objective-C @try, or an SEH __try. + // try and @try can be mixed and generally work the same. + // The frontend forbids mixing SEH __try with either try or @try. + // So having one for all three is enough. + CFGBlock *TryTerminatedBlock = nullptr; + + // Current position in local scope. + LocalScope::const_iterator ScopePos; + + // LabelMap records the mapping from Label expressions to their jump targets. + using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>; + LabelMapTy LabelMap; + + // A list of blocks that end with a "goto" that must be backpatched to their + // resolved targets upon completion of CFG construction. + using BackpatchBlocksTy = std::vector<JumpSource>; + BackpatchBlocksTy BackpatchBlocks; + + // A list of labels whose address has been taken (for indirect gotos). + using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>; + LabelSetTy AddressTakenLabels; + + // Information about the currently visited C++ object construction site. + // This is set in the construction trigger and read when the constructor + // or a function that returns an object by value is being visited. + llvm::DenseMap<Expr *, const ConstructionContextLayer *> + ConstructionContextMap; + + using DeclsWithEndedScopeSetTy = llvm::SmallSetVector<VarDecl *, 16>; + DeclsWithEndedScopeSetTy DeclsWithEndedScope; + + bool badCFG = false; + const CFG::BuildOptions &BuildOpts; + + // State to track for building switch statements. + bool switchExclusivelyCovered = false; + Expr::EvalResult *switchCond = nullptr; + + CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr; + const Stmt *lastLookup = nullptr; + + // Caches boolean evaluations of expressions to avoid multiple re-evaluations + // during construction of branches for chained logical operators. + using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>; + CachedBoolEvalsTy CachedBoolEvals; + +public: + explicit CFGBuilder(ASTContext *astContext, + const CFG::BuildOptions &buildOpts) + : Context(astContext), cfg(new CFG()), BuildOpts(buildOpts) {} + + // buildCFG - Used by external clients to construct the CFG. + std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement); + + bool alwaysAdd(const Stmt *stmt); + +private: + // Visitors to walk an AST and construct the CFG. + CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc); + CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc); + CFGBlock *VisitAttributedStmt(AttributedStmt *A, AddStmtChoice asc); + CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc); + CFGBlock *VisitBreakStmt(BreakStmt *B); + CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc); + CFGBlock *VisitCaseStmt(CaseStmt *C); + CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc); + CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed); + CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C, + AddStmtChoice asc); + CFGBlock *VisitContinueStmt(ContinueStmt *C); + CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E, + AddStmtChoice asc); + CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S); + CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc); + CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc); + CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc); + CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S); + CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E, + AddStmtChoice asc); + CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C, + AddStmtChoice asc); + CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T); + CFGBlock *VisitCXXTryStmt(CXXTryStmt *S); + CFGBlock *VisitDeclStmt(DeclStmt *DS); + CFGBlock *VisitDeclSubExpr(DeclStmt *DS); + CFGBlock *VisitDefaultStmt(DefaultStmt *D); + CFGBlock *VisitDoStmt(DoStmt *D); + CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, + AddStmtChoice asc, bool ExternallyDestructed); + CFGBlock *VisitForStmt(ForStmt *F); + CFGBlock *VisitGotoStmt(GotoStmt *G); + CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc); + CFGBlock *VisitIfStmt(IfStmt *I); + CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc); + CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc); + CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I); + CFGBlock *VisitLabelStmt(LabelStmt *L); + CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc); + CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc); + CFGBlock *VisitLogicalOperator(BinaryOperator *B); + std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B, + Stmt *Term, + CFGBlock *TrueBlock, + CFGBlock *FalseBlock); + CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE, + AddStmtChoice asc); + CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc); + CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S); + CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S); + CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S); + CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S); + CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S); + CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S); + CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc); + CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E); + CFGBlock *VisitReturnStmt(Stmt *S); + CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S); + CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S); + CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S); + CFGBlock *VisitSEHTryStmt(SEHTryStmt *S); + CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc); + CFGBlock *VisitSwitchStmt(SwitchStmt *S); + CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E, + AddStmtChoice asc); + CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc); + CFGBlock *VisitWhileStmt(WhileStmt *W); + + CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd, + bool ExternallyDestructed = false); + CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc); + CFGBlock *VisitChildren(Stmt *S); + CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc); + CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D, + AddStmtChoice asc); + + void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD, + const Stmt *S) { + if (ScopePos && (VD == ScopePos.getFirstVarInScope())) + appendScopeBegin(B, VD, S); + } + + /// When creating the CFG for temporary destructors, we want to mirror the + /// branch structure of the corresponding constructor calls. + /// Thus, while visiting a statement for temporary destructors, we keep a + /// context to keep track of the following information: + /// - whether a subexpression is executed unconditionally + /// - if a subexpression is executed conditionally, the first + /// CXXBindTemporaryExpr we encounter in that subexpression (which + /// corresponds to the last temporary destructor we have to call for this + /// subexpression) and the CFG block at that point (which will become the + /// successor block when inserting the decision point). + /// + /// That way, we can build the branch structure for temporary destructors as + /// follows: + /// 1. If a subexpression is executed unconditionally, we add the temporary + /// destructor calls to the current block. + /// 2. If a subexpression is executed conditionally, when we encounter a + /// CXXBindTemporaryExpr: + /// a) If it is the first temporary destructor call in the subexpression, + /// we remember the CXXBindTemporaryExpr and the current block in the + /// TempDtorContext; we start a new block, and insert the temporary + /// destructor call. + /// b) Otherwise, add the temporary destructor call to the current block. + /// 3. When we finished visiting a conditionally executed subexpression, + /// and we found at least one temporary constructor during the visitation + /// (2.a has executed), we insert a decision block that uses the + /// CXXBindTemporaryExpr as terminator, and branches to the current block + /// if the CXXBindTemporaryExpr was marked executed, and otherwise + /// branches to the stored successor. + struct TempDtorContext { + TempDtorContext() = default; + TempDtorContext(TryResult KnownExecuted) + : IsConditional(true), KnownExecuted(KnownExecuted) {} + + /// Returns whether we need to start a new branch for a temporary destructor + /// call. This is the case when the temporary destructor is + /// conditionally executed, and it is the first one we encounter while + /// visiting a subexpression - other temporary destructors at the same level + /// will be added to the same block and are executed under the same + /// condition. + bool needsTempDtorBranch() const { + return IsConditional && !TerminatorExpr; + } + + /// Remember the successor S of a temporary destructor decision branch for + /// the corresponding CXXBindTemporaryExpr E. + void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) { + Succ = S; + TerminatorExpr = E; + } + + const bool IsConditional = false; + const TryResult KnownExecuted = true; + CFGBlock *Succ = nullptr; + CXXBindTemporaryExpr *TerminatorExpr = nullptr; + }; + + // Visitors to walk an AST and generate destructors of temporaries in + // full expression. + CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed, + TempDtorContext &Context); + CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, bool ExternallyDestructed, + TempDtorContext &Context); + CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E, + bool ExternallyDestructed, + TempDtorContext &Context); + CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors( + CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context); + CFGBlock *VisitConditionalOperatorForTemporaryDtors( + AbstractConditionalOperator *E, bool ExternallyDestructed, + TempDtorContext &Context); + void InsertTempDtorDecisionBlock(const TempDtorContext &Context, + CFGBlock *FalseSucc = nullptr); + + // NYS == Not Yet Supported + CFGBlock *NYS() { + badCFG = true; + return Block; + } + + // Remember to apply the construction context based on the current \p Layer + // when constructing the CFG element for \p CE. + void consumeConstructionContext(const ConstructionContextLayer *Layer, + Expr *E); + + // Scan \p Child statement to find constructors in it, while keeping in mind + // that its parent statement is providing a partial construction context + // described by \p Layer. If a constructor is found, it would be assigned + // the context based on the layer. If an additional construction context layer + // is found, the function recurses into that. + void findConstructionContexts(const ConstructionContextLayer *Layer, + Stmt *Child); + + // Scan all arguments of a call expression for a construction context. + // These sorts of call expressions don't have a common superclass, + // hence strict duck-typing. + template <typename CallLikeExpr, + typename = std::enable_if_t< + std::is_base_of<CallExpr, CallLikeExpr>::value || + std::is_base_of<CXXConstructExpr, CallLikeExpr>::value || + std::is_base_of<ObjCMessageExpr, CallLikeExpr>::value>> + void findConstructionContextsForArguments(CallLikeExpr *E) { + for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { + Expr *Arg = E->getArg(i); + if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue()) + findConstructionContexts( + ConstructionContextLayer::create(cfg->getBumpVectorContext(), + ConstructionContextItem(E, i)), + Arg); + } + } + + // Unset the construction context after consuming it. This is done immediately + // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so + // there's no need to do this manually in every Visit... function. + void cleanupConstructionContext(Expr *E); + + void autoCreateBlock() { if (!Block) Block = createBlock(); } + CFGBlock *createBlock(bool add_successor = true); + CFGBlock *createNoReturnBlock(); + + CFGBlock *addStmt(Stmt *S) { + return Visit(S, AddStmtChoice::AlwaysAdd); + } + + CFGBlock *addInitializer(CXXCtorInitializer *I); + void addLoopExit(const Stmt *LoopStmt); + void addAutomaticObjDtors(LocalScope::const_iterator B, + LocalScope::const_iterator E, Stmt *S); + void addLifetimeEnds(LocalScope::const_iterator B, + LocalScope::const_iterator E, Stmt *S); + void addAutomaticObjHandling(LocalScope::const_iterator B, + LocalScope::const_iterator E, Stmt *S); + void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD); + void addScopesEnd(LocalScope::const_iterator B, LocalScope::const_iterator E, + Stmt *S); + + void getDeclsWithEndedScope(LocalScope::const_iterator B, + LocalScope::const_iterator E, Stmt *S); + + // Local scopes creation. + LocalScope* createOrReuseLocalScope(LocalScope* Scope); + + void addLocalScopeForStmt(Stmt *S); + LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, + LocalScope* Scope = nullptr); + LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr); + + void addLocalScopeAndDtors(Stmt *S); + + const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) { + if (!BuildOpts.AddRichCXXConstructors) + return nullptr; + + const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(E); + if (!Layer) + return nullptr; + + cleanupConstructionContext(E); + return ConstructionContext::createFromLayers(cfg->getBumpVectorContext(), + Layer); + } + + // Interface to CFGBlock - adding CFGElements. + + void appendStmt(CFGBlock *B, const Stmt *S) { + if (alwaysAdd(S) && cachedEntry) + cachedEntry->second = B; + + // All block-level expressions should have already been IgnoreParens()ed. + assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S); + B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext()); + } + + void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) { + if (const ConstructionContext *CC = + retrieveAndCleanupConstructionContext(CE)) { + B->appendConstructor(CE, CC, cfg->getBumpVectorContext()); + return; + } + + // No valid construction context found. Fall back to statement. + B->appendStmt(CE, cfg->getBumpVectorContext()); + } + + void appendCall(CFGBlock *B, CallExpr *CE) { + if (alwaysAdd(CE) && cachedEntry) + cachedEntry->second = B; + + if (const ConstructionContext *CC = + retrieveAndCleanupConstructionContext(CE)) { + B->appendCXXRecordTypedCall(CE, CC, cfg->getBumpVectorContext()); + return; + } + + // No valid construction context found. Fall back to statement. + B->appendStmt(CE, cfg->getBumpVectorContext()); + } + + void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) { + B->appendInitializer(I, cfg->getBumpVectorContext()); + } + + void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) { + B->appendNewAllocator(NE, cfg->getBumpVectorContext()); + } + + void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) { + B->appendBaseDtor(BS, cfg->getBumpVectorContext()); + } + + void appendMemberDtor(CFGBlock *B, FieldDecl *FD) { + B->appendMemberDtor(FD, cfg->getBumpVectorContext()); + } + + void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) { + if (alwaysAdd(ME) && cachedEntry) + cachedEntry->second = B; + + if (const ConstructionContext *CC = + retrieveAndCleanupConstructionContext(ME)) { + B->appendCXXRecordTypedCall(ME, CC, cfg->getBumpVectorContext()); + return; + } + + B->appendStmt(const_cast<ObjCMessageExpr *>(ME), + cfg->getBumpVectorContext()); + } + + void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) { + B->appendTemporaryDtor(E, cfg->getBumpVectorContext()); + } + + void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) { + B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext()); + } + + void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) { + B->appendLifetimeEnds(VD, S, cfg->getBumpVectorContext()); + } + + void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) { + B->appendLoopExit(LoopStmt, cfg->getBumpVectorContext()); + } + + void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) { + B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext()); + } + + void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk, + LocalScope::const_iterator B, LocalScope::const_iterator E); + + void prependAutomaticObjLifetimeWithTerminator(CFGBlock *Blk, + LocalScope::const_iterator B, + LocalScope::const_iterator E); + + const VarDecl * + prependAutomaticObjScopeEndWithTerminator(CFGBlock *Blk, + LocalScope::const_iterator B, + LocalScope::const_iterator E); + + void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) { + B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable), + cfg->getBumpVectorContext()); + } + + /// Add a reachable successor to a block, with the alternate variant that is + /// unreachable. + void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) { + B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock), + cfg->getBumpVectorContext()); + } + + void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) { + if (BuildOpts.AddScopes) + B->appendScopeBegin(VD, S, cfg->getBumpVectorContext()); + } + + void prependScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) { + if (BuildOpts.AddScopes) + B->prependScopeBegin(VD, S, cfg->getBumpVectorContext()); + } + + void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) { + if (BuildOpts.AddScopes) + B->appendScopeEnd(VD, S, cfg->getBumpVectorContext()); + } + + void prependScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) { + if (BuildOpts.AddScopes) + B->prependScopeEnd(VD, S, cfg->getBumpVectorContext()); + } + + /// Find a relational comparison with an expression evaluating to a + /// boolean and a constant other than 0 and 1. + /// e.g. if ((x < y) == 10) + TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) { + const Expr *LHSExpr = B->getLHS()->IgnoreParens(); + const Expr *RHSExpr = B->getRHS()->IgnoreParens(); + + const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr); + const Expr *BoolExpr = RHSExpr; + bool IntFirst = true; + if (!IntLiteral) { + IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr); + BoolExpr = LHSExpr; + IntFirst = false; + } + + if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue()) + return TryResult(); + + llvm::APInt IntValue = IntLiteral->getValue(); + if ((IntValue == 1) || (IntValue == 0)) + return TryResult(); + + bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() || + !IntValue.isNegative(); + + BinaryOperatorKind Bok = B->getOpcode(); + if (Bok == BO_GT || Bok == BO_GE) { + // Always true for 10 > bool and bool > -1 + // Always false for -1 > bool and bool > 10 + return TryResult(IntFirst == IntLarger); + } else { + // Always true for -1 < bool and bool < 10 + // Always false for 10 < bool and bool < -1 + return TryResult(IntFirst != IntLarger); + } + } + + /// Find an incorrect equality comparison. Either with an expression + /// evaluating to a boolean and a constant other than 0 and 1. + /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to + /// true/false e.q. (x & 8) == 4. + TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) { + const Expr *LHSExpr = B->getLHS()->IgnoreParens(); + const Expr *RHSExpr = B->getRHS()->IgnoreParens(); + + const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr); + const Expr *BoolExpr = RHSExpr; + + if (!IntLiteral) { + IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr); + BoolExpr = LHSExpr; + } + + if (!IntLiteral) + return TryResult(); + + const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr); + if (BitOp && (BitOp->getOpcode() == BO_And || + BitOp->getOpcode() == BO_Or)) { + const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens(); + const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens(); + + const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2); + + if (!IntLiteral2) + IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2); + + if (!IntLiteral2) + return TryResult(); + + llvm::APInt L1 = IntLiteral->getValue(); + llvm::APInt L2 = IntLiteral2->getValue(); + if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) || + (BitOp->getOpcode() == BO_Or && (L2 | L1) != L1)) { + if (BuildOpts.Observer) + BuildOpts.Observer->compareBitwiseEquality(B, + B->getOpcode() != BO_EQ); + TryResult(B->getOpcode() != BO_EQ); + } + } else if (BoolExpr->isKnownToHaveBooleanValue()) { + llvm::APInt IntValue = IntLiteral->getValue(); + if ((IntValue == 1) || (IntValue == 0)) { + return TryResult(); + } + return TryResult(B->getOpcode() != BO_EQ); + } + + return TryResult(); + } + + TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation, + const llvm::APSInt &Value1, + const llvm::APSInt &Value2) { + assert(Value1.isSigned() == Value2.isSigned()); + switch (Relation) { + default: + return TryResult(); + case BO_EQ: + return TryResult(Value1 == Value2); + case BO_NE: + return TryResult(Value1 != Value2); + case BO_LT: + return TryResult(Value1 < Value2); + case BO_LE: + return TryResult(Value1 <= Value2); + case BO_GT: + return TryResult(Value1 > Value2); + case BO_GE: + return TryResult(Value1 >= Value2); + } + } + + /// Find a pair of comparison expressions with or without parentheses + /// with a shared variable and constants and a logical operator between them + /// that always evaluates to either true or false. + /// e.g. if (x != 3 || x != 4) + TryResult checkIncorrectLogicOperator(const BinaryOperator *B) { + assert(B->isLogicalOp()); + const BinaryOperator *LHS = + dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens()); + const BinaryOperator *RHS = + dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens()); + if (!LHS || !RHS) + return {}; + + if (!LHS->isComparisonOp() || !RHS->isComparisonOp()) + return {}; + + const Expr *DeclExpr1; + const Expr *NumExpr1; + BinaryOperatorKind BO1; + std::tie(DeclExpr1, BO1, NumExpr1) = tryNormalizeBinaryOperator(LHS); + + if (!DeclExpr1 || !NumExpr1) + return {}; + + const Expr *DeclExpr2; + const Expr *NumExpr2; + BinaryOperatorKind BO2; + std::tie(DeclExpr2, BO2, NumExpr2) = tryNormalizeBinaryOperator(RHS); + + if (!DeclExpr2 || !NumExpr2) + return {}; + + // Check that it is the same variable on both sides. + if (!Expr::isSameComparisonOperand(DeclExpr1, DeclExpr2)) + return {}; + + // Make sure the user's intent is clear (e.g. they're comparing against two + // int literals, or two things from the same enum) + if (!areExprTypesCompatible(NumExpr1, NumExpr2)) + return {}; + + Expr::EvalResult L1Result, L2Result; + if (!NumExpr1->EvaluateAsInt(L1Result, *Context) || + !NumExpr2->EvaluateAsInt(L2Result, *Context)) + return {}; + + llvm::APSInt L1 = L1Result.Val.getInt(); + llvm::APSInt L2 = L2Result.Val.getInt(); + + // Can't compare signed with unsigned or with different bit width. + if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth()) + return {}; + + // Values that will be used to determine if result of logical + // operator is always true/false + const llvm::APSInt Values[] = { + // Value less than both Value1 and Value2 + llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()), + // L1 + L1, + // Value between Value1 and Value2 + ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1), + L1.isUnsigned()), + // L2 + L2, + // Value greater than both Value1 and Value2 + llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()), + }; + + // Check whether expression is always true/false by evaluating the following + // * variable x is less than the smallest literal. + // * variable x is equal to the smallest literal. + // * Variable x is between smallest and largest literal. + // * Variable x is equal to the largest literal. + // * Variable x is greater than largest literal. + bool AlwaysTrue = true, AlwaysFalse = true; + // Track value of both subexpressions. If either side is always + // true/false, another warning should have already been emitted. + bool LHSAlwaysTrue = true, LHSAlwaysFalse = true; + bool RHSAlwaysTrue = true, RHSAlwaysFalse = true; + for (const llvm::APSInt &Value : Values) { + TryResult Res1, Res2; + Res1 = analyzeLogicOperatorCondition(BO1, Value, L1); + Res2 = analyzeLogicOperatorCondition(BO2, Value, L2); + + if (!Res1.isKnown() || !Res2.isKnown()) + return {}; + + if (B->getOpcode() == BO_LAnd) { + AlwaysTrue &= (Res1.isTrue() && Res2.isTrue()); + AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue()); + } else { + AlwaysTrue &= (Res1.isTrue() || Res2.isTrue()); + AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue()); + } + + LHSAlwaysTrue &= Res1.isTrue(); + LHSAlwaysFalse &= Res1.isFalse(); + RHSAlwaysTrue &= Res2.isTrue(); + RHSAlwaysFalse &= Res2.isFalse(); + } + + if (AlwaysTrue || AlwaysFalse) { + if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue && + !RHSAlwaysFalse && BuildOpts.Observer) + BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue); + return TryResult(AlwaysTrue); + } + return {}; + } + + /// A bitwise-or with a non-zero constant always evaluates to true. + TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) { + const Expr *LHSConstant = + tryTransformToIntOrEnumConstant(B->getLHS()->IgnoreParenImpCasts()); + const Expr *RHSConstant = + tryTransformToIntOrEnumConstant(B->getRHS()->IgnoreParenImpCasts()); + + if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant)) + return {}; + + const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant; + + Expr::EvalResult Result; + if (!Constant->EvaluateAsInt(Result, *Context)) + return {}; + + if (Result.Val.getInt() == 0) + return {}; + + if (BuildOpts.Observer) + BuildOpts.Observer->compareBitwiseOr(B); + + return TryResult(true); + } + + /// Try and evaluate an expression to an integer constant. + bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) { + if (!BuildOpts.PruneTriviallyFalseEdges) + return false; + return !S->isTypeDependent() && + !S->isValueDependent() && + S->EvaluateAsRValue(outResult, *Context); + } + + /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1 + /// if we can evaluate to a known value, otherwise return -1. + TryResult tryEvaluateBool(Expr *S) { + if (!BuildOpts.PruneTriviallyFalseEdges || + S->isTypeDependent() || S->isValueDependent()) + return {}; + + if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) { + if (Bop->isLogicalOp() || Bop->isEqualityOp()) { + // Check the cache first. + CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S); + if (I != CachedBoolEvals.end()) + return I->second; // already in map; + + // Retrieve result at first, or the map might be updated. + TryResult Result = evaluateAsBooleanConditionNoCache(S); + CachedBoolEvals[S] = Result; // update or insert + return Result; + } + else { + switch (Bop->getOpcode()) { + default: break; + // For 'x & 0' and 'x * 0', we can determine that + // the value is always false. + case BO_Mul: + case BO_And: { + // If either operand is zero, we know the value + // must be false. + Expr::EvalResult LHSResult; + if (Bop->getLHS()->EvaluateAsInt(LHSResult, *Context)) { + llvm::APSInt IntVal = LHSResult.Val.getInt(); + if (!IntVal.getBoolValue()) { + return TryResult(false); + } + } + Expr::EvalResult RHSResult; + if (Bop->getRHS()->EvaluateAsInt(RHSResult, *Context)) { + llvm::APSInt IntVal = RHSResult.Val.getInt(); + if (!IntVal.getBoolValue()) { + return TryResult(false); + } + } + } + break; + } + } + } + + return evaluateAsBooleanConditionNoCache(S); + } + + /// Evaluate as boolean \param E without using the cache. + TryResult evaluateAsBooleanConditionNoCache(Expr *E) { + if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) { + if (Bop->isLogicalOp()) { + TryResult LHS = tryEvaluateBool(Bop->getLHS()); + if (LHS.isKnown()) { + // We were able to evaluate the LHS, see if we can get away with not + // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 + if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr)) + return LHS.isTrue(); + + TryResult RHS = tryEvaluateBool(Bop->getRHS()); + if (RHS.isKnown()) { + if (Bop->getOpcode() == BO_LOr) + return LHS.isTrue() || RHS.isTrue(); + else + return LHS.isTrue() && RHS.isTrue(); + } + } else { + TryResult RHS = tryEvaluateBool(Bop->getRHS()); + if (RHS.isKnown()) { + // We can't evaluate the LHS; however, sometimes the result + // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. + if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr)) + return RHS.isTrue(); + } else { + TryResult BopRes = checkIncorrectLogicOperator(Bop); + if (BopRes.isKnown()) + return BopRes.isTrue(); + } + } + + return {}; + } else if (Bop->isEqualityOp()) { + TryResult BopRes = checkIncorrectEqualityOperator(Bop); + if (BopRes.isKnown()) + return BopRes.isTrue(); + } else if (Bop->isRelationalOp()) { + TryResult BopRes = checkIncorrectRelationalOperator(Bop); + if (BopRes.isKnown()) + return BopRes.isTrue(); + } else if (Bop->getOpcode() == BO_Or) { + TryResult BopRes = checkIncorrectBitwiseOrOperator(Bop); + if (BopRes.isKnown()) + return BopRes.isTrue(); + } + } + + bool Result; + if (E->EvaluateAsBooleanCondition(Result, *Context)) + return Result; + + return {}; + } + + bool hasTrivialDestructor(VarDecl *VD); +}; + +} // namespace + +inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder, + const Stmt *stmt) const { + return builder.alwaysAdd(stmt) || kind == AlwaysAdd; +} + +bool CFGBuilder::alwaysAdd(const Stmt *stmt) { + bool shouldAdd = BuildOpts.alwaysAdd(stmt); + + if (!BuildOpts.forcedBlkExprs) + return shouldAdd; + + if (lastLookup == stmt) { + if (cachedEntry) { + assert(cachedEntry->first == stmt); + return true; + } + return shouldAdd; + } + + lastLookup = stmt; + + // Perform the lookup! + CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs; + + if (!fb) { + // No need to update 'cachedEntry', since it will always be null. + assert(!cachedEntry); + return shouldAdd; + } + + CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt); + if (itr == fb->end()) { + cachedEntry = nullptr; + return shouldAdd; + } + + cachedEntry = &*itr; + return true; +} + +// FIXME: Add support for dependent-sized array types in C++? +// Does it even make sense to build a CFG for an uninstantiated template? +static const VariableArrayType *FindVA(const Type *t) { + while (const ArrayType *vt = dyn_cast<ArrayType>(t)) { + if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt)) + if (vat->getSizeExpr()) + return vat; + + t = vt->getElementType().getTypePtr(); + } + + return nullptr; +} + +void CFGBuilder::consumeConstructionContext( + const ConstructionContextLayer *Layer, Expr *E) { + assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) || + isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!"); + if (const ConstructionContextLayer *PreviouslyStoredLayer = + ConstructionContextMap.lookup(E)) { + (void)PreviouslyStoredLayer; + // We might have visited this child when we were finding construction + // contexts within its parents. + assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) && + "Already within a different construction context!"); + } else { + ConstructionContextMap[E] = Layer; + } +} + +void CFGBuilder::findConstructionContexts( + const ConstructionContextLayer *Layer, Stmt *Child) { + if (!BuildOpts.AddRichCXXConstructors) + return; + + if (!Child) + return; + + auto withExtraLayer = [this, Layer](const ConstructionContextItem &Item) { + return ConstructionContextLayer::create(cfg->getBumpVectorContext(), Item, + Layer); + }; + + switch(Child->getStmtClass()) { + case Stmt::CXXConstructExprClass: + case Stmt::CXXTemporaryObjectExprClass: { + // Support pre-C++17 copy elision AST. + auto *CE = cast<CXXConstructExpr>(Child); + if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) { + findConstructionContexts(withExtraLayer(CE), CE->getArg(0)); + } + + consumeConstructionContext(Layer, CE); + break; + } + // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr. + // FIXME: An isa<> would look much better but this whole switch is a + // workaround for an internal compiler error in MSVC 2015 (see r326021). + case Stmt::CallExprClass: + case Stmt::CXXMemberCallExprClass: + case Stmt::CXXOperatorCallExprClass: + case Stmt::UserDefinedLiteralClass: + case Stmt::ObjCMessageExprClass: { + auto *E = cast<Expr>(Child); + if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E)) + consumeConstructionContext(Layer, E); + break; + } + case Stmt::ExprWithCleanupsClass: { + auto *Cleanups = cast<ExprWithCleanups>(Child); + findConstructionContexts(Layer, Cleanups->getSubExpr()); + break; + } + case Stmt::CXXFunctionalCastExprClass: { + auto *Cast = cast<CXXFunctionalCastExpr>(Child); + findConstructionContexts(Layer, Cast->getSubExpr()); + break; + } + case Stmt::ImplicitCastExprClass: { + auto *Cast = cast<ImplicitCastExpr>(Child); + // Should we support other implicit cast kinds? + switch (Cast->getCastKind()) { + case CK_NoOp: + case CK_ConstructorConversion: + findConstructionContexts(Layer, Cast->getSubExpr()); + break; + default: + break; + } + break; + } + case Stmt::CXXBindTemporaryExprClass: { + auto *BTE = cast<CXXBindTemporaryExpr>(Child); + findConstructionContexts(withExtraLayer(BTE), BTE->getSubExpr()); + break; + } + case Stmt::MaterializeTemporaryExprClass: { + // Normally we don't want to search in MaterializeTemporaryExpr because + // it indicates the beginning of a temporary object construction context, + // so it shouldn't be found in the middle. However, if it is the beginning + // of an elidable copy or move construction context, we need to include it. + if (Layer->getItem().getKind() == + ConstructionContextItem::ElidableConstructorKind) { + auto *MTE = cast<MaterializeTemporaryExpr>(Child); + findConstructionContexts(withExtraLayer(MTE), MTE->getSubExpr()); + } + break; + } + case Stmt::ConditionalOperatorClass: { + auto *CO = cast<ConditionalOperator>(Child); + if (Layer->getItem().getKind() != + ConstructionContextItem::MaterializationKind) { + // If the object returned by the conditional operator is not going to be a + // temporary object that needs to be immediately materialized, then + // it must be C++17 with its mandatory copy elision. Do not yet promise + // to support this case. + assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() || + Context->getLangOpts().CPlusPlus17); + break; + } + findConstructionContexts(Layer, CO->getLHS()); + findConstructionContexts(Layer, CO->getRHS()); + break; + } + case Stmt::InitListExprClass: { + auto *ILE = cast<InitListExpr>(Child); + if (ILE->isTransparent()) { + findConstructionContexts(Layer, ILE->getInit(0)); + break; + } + // TODO: Handle other cases. For now, fail to find construction contexts. + break; + } + case Stmt::ParenExprClass: { + // If expression is placed into parenthesis we should propagate the parent + // construction context to subexpressions. + auto *PE = cast<ParenExpr>(Child); + findConstructionContexts(Layer, PE->getSubExpr()); + break; + } + default: + break; + } +} + +void CFGBuilder::cleanupConstructionContext(Expr *E) { + assert(BuildOpts.AddRichCXXConstructors && + "We should not be managing construction contexts!"); + assert(ConstructionContextMap.count(E) && + "Cannot exit construction context without the context!"); + ConstructionContextMap.erase(E); +} + + +/// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an +/// arbitrary statement. Examples include a single expression or a function +/// body (compound statement). The ownership of the returned CFG is +/// transferred to the caller. If CFG construction fails, this method returns +/// NULL. +std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) { + assert(cfg.get()); + if (!Statement) + return nullptr; + + // Create an empty block that will serve as the exit block for the CFG. Since + // this is the first block added to the CFG, it will be implicitly registered + // as the exit block. + Succ = createBlock(); + assert(Succ == &cfg->getExit()); + Block = nullptr; // the EXIT block is empty. Create all other blocks lazily. + + assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) && + "AddImplicitDtors and AddLifetime cannot be used at the same time"); + + if (BuildOpts.AddImplicitDtors) + if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D)) + addImplicitDtorsForDestructor(DD); + + // Visit the statements and create the CFG. + CFGBlock *B = addStmt(Statement); + + if (badCFG) + return nullptr; + + // For C++ constructor add initializers to CFG. Constructors of virtual bases + // are ignored unless the object is of the most derived class. + // class VBase { VBase() = default; VBase(int) {} }; + // class A : virtual public VBase { A() : VBase(0) {} }; + // class B : public A {}; + // B b; // Constructor calls in order: VBase(), A(), B(). + // // VBase(0) is ignored because A isn't the most derived class. + // This may result in the virtual base(s) being already initialized at this + // point, in which case we should jump right onto non-virtual bases and + // fields. To handle this, make a CFG branch. We only need to add one such + // branch per constructor, since the Standard states that all virtual bases + // shall be initialized before non-virtual bases and direct data members. + if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) { + CFGBlock *VBaseSucc = nullptr; + for (auto *I : llvm::reverse(CD->inits())) { + if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc && + I->isBaseInitializer() && I->isBaseVirtual()) { + // We've reached the first virtual base init while iterating in reverse + // order. Make a new block for virtual base initializers so that we + // could skip them. + VBaseSucc = Succ = B ? B : &cfg->getExit(); + Block = createBlock(); + } + B = addInitializer(I); + if (badCFG) + return nullptr; + } + if (VBaseSucc) { + // Make a branch block for potentially skipping virtual base initializers. + Succ = VBaseSucc; + B = createBlock(); + B->setTerminator( + CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch)); + addSuccessor(B, Block, true); + } + } + + if (B) + Succ = B; + + // Backpatch the gotos whose label -> block mappings we didn't know when we + // encountered them. + for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(), + E = BackpatchBlocks.end(); I != E; ++I ) { + + CFGBlock *B = I->block; + if (auto *G = dyn_cast<GotoStmt>(B->getTerminator())) { + LabelMapTy::iterator LI = LabelMap.find(G->getLabel()); + // If there is no target for the goto, then we are looking at an + // incomplete AST. Handle this by not registering a successor. + if (LI == LabelMap.end()) + continue; + JumpTarget JT = LI->second; + prependAutomaticObjLifetimeWithTerminator(B, I->scopePosition, + JT.scopePosition); + prependAutomaticObjDtorsWithTerminator(B, I->scopePosition, + JT.scopePosition); + const VarDecl *VD = prependAutomaticObjScopeEndWithTerminator( + B, I->scopePosition, JT.scopePosition); + appendScopeBegin(JT.block, VD, G); + addSuccessor(B, JT.block); + }; + if (auto *G = dyn_cast<GCCAsmStmt>(B->getTerminator())) { + CFGBlock *Successor = (I+1)->block; + for (auto *L : G->labels()) { + LabelMapTy::iterator LI = LabelMap.find(L->getLabel()); + // If there is no target for the goto, then we are looking at an + // incomplete AST. Handle this by not registering a successor. + if (LI == LabelMap.end()) + continue; + JumpTarget JT = LI->second; + // Successor has been added, so skip it. + if (JT.block == Successor) + continue; + addSuccessor(B, JT.block); + } + I++; + } + } + + // Add successors to the Indirect Goto Dispatch block (if we have one). + if (CFGBlock *B = cfg->getIndirectGotoBlock()) + for (LabelSetTy::iterator I = AddressTakenLabels.begin(), + E = AddressTakenLabels.end(); I != E; ++I ) { + // Lookup the target block. + LabelMapTy::iterator LI = LabelMap.find(*I); + + // If there is no target block that contains label, then we are looking + // at an incomplete AST. Handle this by not registering a successor. + if (LI == LabelMap.end()) continue; + + addSuccessor(B, LI->second.block); + } + + // Create an empty entry block that has no predecessors. + cfg->setEntry(createBlock()); + + if (BuildOpts.AddRichCXXConstructors) + assert(ConstructionContextMap.empty() && + "Not all construction contexts were cleaned up!"); + + return std::move(cfg); +} + +/// createBlock - Used to lazily create blocks that are connected +/// to the current (global) succcessor. +CFGBlock *CFGBuilder::createBlock(bool add_successor) { + CFGBlock *B = cfg->createBlock(); + if (add_successor && Succ) + addSuccessor(B, Succ); + return B; +} + +/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the +/// CFG. It is *not* connected to the current (global) successor, and instead +/// directly tied to the exit block in order to be reachable. +CFGBlock *CFGBuilder::createNoReturnBlock() { + CFGBlock *B = createBlock(false); + B->setHasNoReturnElement(); + addSuccessor(B, &cfg->getExit(), Succ); + return B; +} + +/// addInitializer - Add C++ base or member initializer element to CFG. +CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) { + if (!BuildOpts.AddInitializers) + return Block; + + bool HasTemporaries = false; + + // Destructors of temporaries in initialization expression should be called + // after initialization finishes. + Expr *Init = I->getInit(); + if (Init) { + HasTemporaries = isa<ExprWithCleanups>(Init); + + if (BuildOpts.AddTemporaryDtors && HasTemporaries) { + // Generate destructors for temporaries in initialization expression. + TempDtorContext Context; + VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(), + /*ExternallyDestructed=*/false, Context); + } + } + + autoCreateBlock(); + appendInitializer(Block, I); + + if (Init) { + findConstructionContexts( + ConstructionContextLayer::create(cfg->getBumpVectorContext(), I), + Init); + + if (HasTemporaries) { + // For expression with temporaries go directly to subexpression to omit + // generating destructors for the second time. + return Visit(cast<ExprWithCleanups>(Init)->getSubExpr()); + } + if (BuildOpts.AddCXXDefaultInitExprInCtors) { + if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) { + // In general, appending the expression wrapped by a CXXDefaultInitExpr + // may cause the same Expr to appear more than once in the CFG. Doing it + // here is safe because there's only one initializer per field. + autoCreateBlock(); + appendStmt(Block, Default); + if (Stmt *Child = Default->getExpr()) + if (CFGBlock *R = Visit(Child)) + Block = R; + return Block; + } + } + return Visit(Init); + } + + return Block; +} + +/// Retrieve the type of the temporary object whose lifetime was +/// extended by a local reference with the given initializer. +static QualType getReferenceInitTemporaryType(const Expr *Init, + bool *FoundMTE = nullptr) { + while (true) { + // Skip parentheses. + Init = Init->IgnoreParens(); + + // Skip through cleanups. + if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) { + Init = EWC->getSubExpr(); + continue; + } + + // Skip through the temporary-materialization expression. + if (const MaterializeTemporaryExpr *MTE + = dyn_cast<MaterializeTemporaryExpr>(Init)) { + Init = MTE->getSubExpr(); + if (FoundMTE) + *FoundMTE = true; + continue; + } + + // Skip sub-object accesses into rvalues. + SmallVector<const Expr *, 2> CommaLHSs; + SmallVector<SubobjectAdjustment, 2> Adjustments; + const Expr *SkippedInit = + Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); + if (SkippedInit != Init) { + Init = SkippedInit; + continue; + } + + break; + } + + return Init->getType(); +} + +// TODO: Support adding LoopExit element to the CFG in case where the loop is +// ended by ReturnStmt, GotoStmt or ThrowExpr. +void CFGBuilder::addLoopExit(const Stmt *LoopStmt){ + if(!BuildOpts.AddLoopExit) + return; + autoCreateBlock(); + appendLoopExit(Block, LoopStmt); +} + +void CFGBuilder::getDeclsWithEndedScope(LocalScope::const_iterator B, + LocalScope::const_iterator E, Stmt *S) { + if (!BuildOpts.AddScopes) + return; + + if (B == E) + return; + + // To go from B to E, one first goes up the scopes from B to P + // then sideways in one scope from P to P' and then down + // the scopes from P' to E. + // The lifetime of all objects between B and P end. + LocalScope::const_iterator P = B.shared_parent(E); + int Dist = B.distance(P); + if (Dist <= 0) + return; + + for (LocalScope::const_iterator I = B; I != P; ++I) + if (I.pointsToFirstDeclaredVar()) + DeclsWithEndedScope.insert(*I); +} + +void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B, + LocalScope::const_iterator E, + Stmt *S) { + getDeclsWithEndedScope(B, E, S); + if (BuildOpts.AddScopes) + addScopesEnd(B, E, S); + if (BuildOpts.AddImplicitDtors) + addAutomaticObjDtors(B, E, S); + if (BuildOpts.AddLifetime) + addLifetimeEnds(B, E, S); +} + +/// Add to current block automatic objects that leave the scope. +void CFGBuilder::addLifetimeEnds(LocalScope::const_iterator B, + LocalScope::const_iterator E, Stmt *S) { + if (!BuildOpts.AddLifetime) + return; + + if (B == E) + return; + + // To go from B to E, one first goes up the scopes from B to P + // then sideways in one scope from P to P' and then down + // the scopes from P' to E. + // The lifetime of all objects between B and P end. + LocalScope::const_iterator P = B.shared_parent(E); + int dist = B.distance(P); + if (dist <= 0) + return; + + // We need to perform the scope leaving in reverse order + SmallVector<VarDecl *, 10> DeclsTrivial; + SmallVector<VarDecl *, 10> DeclsNonTrivial; + DeclsTrivial.reserve(dist); + DeclsNonTrivial.reserve(dist); + + for (LocalScope::const_iterator I = B; I != P; ++I) + if (hasTrivialDestructor(*I)) + DeclsTrivial.push_back(*I); + else + DeclsNonTrivial.push_back(*I); + + autoCreateBlock(); + // object with trivial destructor end their lifetime last (when storage + // duration ends) + for (VarDecl *VD : llvm::reverse(DeclsTrivial)) + appendLifetimeEnds(Block, VD, S); + + for (VarDecl *VD : llvm::reverse(DeclsNonTrivial)) + appendLifetimeEnds(Block, VD, S); +} + +/// Add to current block markers for ending scopes. +void CFGBuilder::addScopesEnd(LocalScope::const_iterator B, + LocalScope::const_iterator E, Stmt *S) { + // If implicit destructors are enabled, we'll add scope ends in + // addAutomaticObjDtors. + if (BuildOpts.AddImplicitDtors) + return; + + autoCreateBlock(); + + for (VarDecl *VD : llvm::reverse(DeclsWithEndedScope)) + appendScopeEnd(Block, VD, S); +} + +/// addAutomaticObjDtors - Add to current block automatic objects destructors +/// for objects in range of local scope positions. Use S as trigger statement +/// for destructors. +void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B, + LocalScope::const_iterator E, Stmt *S) { + if (!BuildOpts.AddImplicitDtors) + return; + + if (B == E) + return; + + // We need to append the destructors in reverse order, but any one of them + // may be a no-return destructor which changes the CFG. As a result, buffer + // this sequence up and replay them in reverse order when appending onto the + // CFGBlock(s). + SmallVector<VarDecl*, 10> Decls; + Decls.reserve(B.distance(E)); + for (LocalScope::const_iterator I = B; I != E; ++I) + Decls.push_back(*I); + + for (VarDecl *VD : llvm::reverse(Decls)) { + if (hasTrivialDestructor(VD)) { + // If AddScopes is enabled and *I is a first variable in a scope, add a + // ScopeEnd marker in a Block. + if (BuildOpts.AddScopes && DeclsWithEndedScope.count(VD)) { + autoCreateBlock(); + appendScopeEnd(Block, VD, S); + } + continue; + } + // If this destructor is marked as a no-return destructor, we need to + // create a new block for the destructor which does not have as a successor + // anything built thus far: control won't flow out of this block. + QualType Ty = VD->getType(); + if (Ty->isReferenceType()) { + Ty = getReferenceInitTemporaryType(VD->getInit()); + } + Ty = Context->getBaseElementType(Ty); + + if (Ty->getAsCXXRecordDecl()->isAnyDestructorNoReturn()) + Block = createNoReturnBlock(); + else + autoCreateBlock(); + + // Add ScopeEnd just after automatic obj destructor. + if (BuildOpts.AddScopes && DeclsWithEndedScope.count(VD)) + appendScopeEnd(Block, VD, S); + appendAutomaticObjDtor(Block, VD, S); + } +} + +/// addImplicitDtorsForDestructor - Add implicit destructors generated for +/// base and member objects in destructor. +void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) { + assert(BuildOpts.AddImplicitDtors && + "Can be called only when dtors should be added"); + const CXXRecordDecl *RD = DD->getParent(); + + // At the end destroy virtual base objects. + for (const auto &VI : RD->vbases()) { + // TODO: Add a VirtualBaseBranch to see if the most derived class + // (which is different from the current class) is responsible for + // destroying them. + const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl(); + if (!CD->hasTrivialDestructor()) { + autoCreateBlock(); + appendBaseDtor(Block, &VI); + } + } + + // Before virtual bases destroy direct base objects. + for (const auto &BI : RD->bases()) { + if (!BI.isVirtual()) { + const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl(); + if (!CD->hasTrivialDestructor()) { + autoCreateBlock(); + appendBaseDtor(Block, &BI); + } + } + } + + // First destroy member objects. + for (auto *FI : RD->fields()) { + // Check for constant size array. Set type to array element type. + QualType QT = FI->getType(); + if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) { + if (AT->getSize() == 0) + continue; + QT = AT->getElementType(); + } + + if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl()) + if (!CD->hasTrivialDestructor()) { + autoCreateBlock(); + appendMemberDtor(Block, FI); + } + } +} + +/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either +/// way return valid LocalScope object. +LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) { + if (Scope) + return Scope; + llvm::BumpPtrAllocator &alloc = cfg->getAllocator(); + return new (alloc.Allocate<LocalScope>()) + LocalScope(BumpVectorContext(alloc), ScopePos); +} + +/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement +/// that should create implicit scope (e.g. if/else substatements). +void CFGBuilder::addLocalScopeForStmt(Stmt *S) { + if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && + !BuildOpts.AddScopes) + return; + + LocalScope *Scope = nullptr; + + // For compound statement we will be creating explicit scope. + if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { + for (auto *BI : CS->body()) { + Stmt *SI = BI->stripLabelLikeStatements(); + if (DeclStmt *DS = dyn_cast<DeclStmt>(SI)) + Scope = addLocalScopeForDeclStmt(DS, Scope); + } + return; + } + + // For any other statement scope will be implicit and as such will be + // interesting only for DeclStmt. + if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements())) + addLocalScopeForDeclStmt(DS); +} + +/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will +/// reuse Scope if not NULL. +LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS, + LocalScope* Scope) { + if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && + !BuildOpts.AddScopes) + return Scope; + + for (auto *DI : DS->decls()) + if (VarDecl *VD = dyn_cast<VarDecl>(DI)) + Scope = addLocalScopeForVarDecl(VD, Scope); + return Scope; +} + +bool CFGBuilder::hasTrivialDestructor(VarDecl *VD) { + // Check for const references bound to temporary. Set type to pointee. + QualType QT = VD->getType(); + if (QT->isReferenceType()) { + // Attempt to determine whether this declaration lifetime-extends a + // temporary. + // + // FIXME: This is incorrect. Non-reference declarations can lifetime-extend + // temporaries, and a single declaration can extend multiple temporaries. + // We should look at the storage duration on each nested + // MaterializeTemporaryExpr instead. + + const Expr *Init = VD->getInit(); + if (!Init) { + // Probably an exception catch-by-reference variable. + // FIXME: It doesn't really mean that the object has a trivial destructor. + // Also are there other cases? + return true; + } + + // Lifetime-extending a temporary? + bool FoundMTE = false; + QT = getReferenceInitTemporaryType(Init, &FoundMTE); + if (!FoundMTE) + return true; + } + + // Check for constant size array. Set type to array element type. + while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) { + if (AT->getSize() == 0) + return true; + QT = AT->getElementType(); + } + + // Check if type is a C++ class with non-trivial destructor. + if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl()) + return !CD->hasDefinition() || CD->hasTrivialDestructor(); + return true; +} + +/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will +/// create add scope for automatic objects and temporary objects bound to +/// const reference. Will reuse Scope if not NULL. +LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD, + LocalScope* Scope) { + assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) && + "AddImplicitDtors and AddLifetime cannot be used at the same time"); + if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && + !BuildOpts.AddScopes) + return Scope; + + // Check if variable is local. + switch (VD->getStorageClass()) { + case SC_None: + case SC_Auto: + case SC_Register: + break; + default: return Scope; + } + + if (BuildOpts.AddImplicitDtors) { + if (!hasTrivialDestructor(VD) || BuildOpts.AddScopes) { + // Add the variable to scope + Scope = createOrReuseLocalScope(Scope); + Scope->addVar(VD); + ScopePos = Scope->begin(); + } + return Scope; + } + + assert(BuildOpts.AddLifetime); + // Add the variable to scope + Scope = createOrReuseLocalScope(Scope); + Scope->addVar(VD); + ScopePos = Scope->begin(); + return Scope; +} + +/// addLocalScopeAndDtors - For given statement add local scope for it and +/// add destructors that will cleanup the scope. Will reuse Scope if not NULL. +void CFGBuilder::addLocalScopeAndDtors(Stmt *S) { + LocalScope::const_iterator scopeBeginPos = ScopePos; + addLocalScopeForStmt(S); + addAutomaticObjHandling(ScopePos, scopeBeginPos, S); +} + +/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for +/// variables with automatic storage duration to CFGBlock's elements vector. +/// Elements will be prepended to physical beginning of the vector which +/// happens to be logical end. Use blocks terminator as statement that specifies +/// destructors call site. +/// FIXME: This mechanism for adding automatic destructors doesn't handle +/// no-return destructors properly. +void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk, + LocalScope::const_iterator B, LocalScope::const_iterator E) { + if (!BuildOpts.AddImplicitDtors) + return; + BumpVectorContext &C = cfg->getBumpVectorContext(); + CFGBlock::iterator InsertPos + = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C); + for (LocalScope::const_iterator I = B; I != E; ++I) + InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I, + Blk->getTerminatorStmt()); +} + +/// prependAutomaticObjLifetimeWithTerminator - Prepend lifetime CFGElements for +/// variables with automatic storage duration to CFGBlock's elements vector. +/// Elements will be prepended to physical beginning of the vector which +/// happens to be logical end. Use blocks terminator as statement that specifies +/// where lifetime ends. +void CFGBuilder::prependAutomaticObjLifetimeWithTerminator( + CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) { + if (!BuildOpts.AddLifetime) + return; + BumpVectorContext &C = cfg->getBumpVectorContext(); + CFGBlock::iterator InsertPos = + Blk->beginLifetimeEndsInsert(Blk->end(), B.distance(E), C); + for (LocalScope::const_iterator I = B; I != E; ++I) { + InsertPos = + Blk->insertLifetimeEnds(InsertPos, *I, Blk->getTerminatorStmt()); + } +} + +/// prependAutomaticObjScopeEndWithTerminator - Prepend scope end CFGElements for +/// variables with automatic storage duration to CFGBlock's elements vector. +/// Elements will be prepended to physical beginning of the vector which +/// happens to be logical end. Use blocks terminator as statement that specifies +/// where scope ends. +const VarDecl * +CFGBuilder::prependAutomaticObjScopeEndWithTerminator( + CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) { + if (!BuildOpts.AddScopes) + return nullptr; + BumpVectorContext &C = cfg->getBumpVectorContext(); + CFGBlock::iterator InsertPos = + Blk->beginScopeEndInsert(Blk->end(), 1, C); + LocalScope::const_iterator PlaceToInsert = B; + for (LocalScope::const_iterator I = B; I != E; ++I) + PlaceToInsert = I; + Blk->insertScopeEnd(InsertPos, *PlaceToInsert, Blk->getTerminatorStmt()); + return *PlaceToInsert; +} + +/// Visit - Walk the subtree of a statement and add extra +/// blocks for ternary operators, &&, and ||. We also process "," and +/// DeclStmts (which may contain nested control-flow). +CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc, + bool ExternallyDestructed) { + if (!S) { + badCFG = true; + return nullptr; + } + + if (Expr *E = dyn_cast<Expr>(S)) + S = E->IgnoreParens(); + + if (Context->getLangOpts().OpenMP) + if (auto *D = dyn_cast<OMPExecutableDirective>(S)) + return VisitOMPExecutableDirective(D, asc); + + switch (S->getStmtClass()) { + default: + return VisitStmt(S, asc); + + case Stmt::ImplicitValueInitExprClass: + if (BuildOpts.OmitImplicitValueInitializers) + return Block; + return VisitStmt(S, asc); + + case Stmt::InitListExprClass: + return VisitInitListExpr(cast<InitListExpr>(S), asc); + + case Stmt::AttributedStmtClass: + return VisitAttributedStmt(cast<AttributedStmt>(S), asc); + + case Stmt::AddrLabelExprClass: + return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc); + + case Stmt::BinaryConditionalOperatorClass: + return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc); + + case Stmt::BinaryOperatorClass: + return VisitBinaryOperator(cast<BinaryOperator>(S), asc); + + case Stmt::BlockExprClass: + return VisitBlockExpr(cast<BlockExpr>(S), asc); + + case Stmt::BreakStmtClass: + return VisitBreakStmt(cast<BreakStmt>(S)); + + case Stmt::CallExprClass: + case Stmt::CXXOperatorCallExprClass: + case Stmt::CXXMemberCallExprClass: + case Stmt::UserDefinedLiteralClass: + return VisitCallExpr(cast<CallExpr>(S), asc); + + case Stmt::CaseStmtClass: + return VisitCaseStmt(cast<CaseStmt>(S)); + + case Stmt::ChooseExprClass: + return VisitChooseExpr(cast<ChooseExpr>(S), asc); + + case Stmt::CompoundStmtClass: + return VisitCompoundStmt(cast<CompoundStmt>(S), ExternallyDestructed); + + case Stmt::ConditionalOperatorClass: + return VisitConditionalOperator(cast<ConditionalOperator>(S), asc); + + case Stmt::ContinueStmtClass: + return VisitContinueStmt(cast<ContinueStmt>(S)); + + case Stmt::CXXCatchStmtClass: + return VisitCXXCatchStmt(cast<CXXCatchStmt>(S)); + + case Stmt::ExprWithCleanupsClass: + return VisitExprWithCleanups(cast<ExprWithCleanups>(S), + asc, ExternallyDestructed); + + case Stmt::CXXDefaultArgExprClass: + case Stmt::CXXDefaultInitExprClass: + // FIXME: The expression inside a CXXDefaultArgExpr is owned by the + // called function's declaration, not by the caller. If we simply add + // this expression to the CFG, we could end up with the same Expr + // appearing multiple times. + // PR13385 / <rdar://problem/12156507> + // + // It's likewise possible for multiple CXXDefaultInitExprs for the same + // expression to be used in the same function (through aggregate + // initialization). + return VisitStmt(S, asc); + + case Stmt::CXXBindTemporaryExprClass: + return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc); + + case Stmt::CXXConstructExprClass: + return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc); + + case Stmt::CXXNewExprClass: + return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc); + + case Stmt::CXXDeleteExprClass: + return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc); + + case Stmt::CXXFunctionalCastExprClass: + return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc); + + case Stmt::CXXTemporaryObjectExprClass: + return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc); + + case Stmt::CXXThrowExprClass: + return VisitCXXThrowExpr(cast<CXXThrowExpr>(S)); + + case Stmt::CXXTryStmtClass: + return VisitCXXTryStmt(cast<CXXTryStmt>(S)); + + case Stmt::CXXForRangeStmtClass: + return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); + + case Stmt::DeclStmtClass: + return VisitDeclStmt(cast<DeclStmt>(S)); + + case Stmt::DefaultStmtClass: + return VisitDefaultStmt(cast<DefaultStmt>(S)); + + case Stmt::DoStmtClass: + return VisitDoStmt(cast<DoStmt>(S)); + + case Stmt::ForStmtClass: + return VisitForStmt(cast<ForStmt>(S)); + + case Stmt::GotoStmtClass: + return VisitGotoStmt(cast<GotoStmt>(S)); + + case Stmt::GCCAsmStmtClass: + return VisitGCCAsmStmt(cast<GCCAsmStmt>(S), asc); + + case Stmt::IfStmtClass: + return VisitIfStmt(cast<IfStmt>(S)); + + case Stmt::ImplicitCastExprClass: + return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc); + + case Stmt::ConstantExprClass: + return VisitConstantExpr(cast<ConstantExpr>(S), asc); + + case Stmt::IndirectGotoStmtClass: + return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S)); + + case Stmt::LabelStmtClass: + return VisitLabelStmt(cast<LabelStmt>(S)); + + case Stmt::LambdaExprClass: + return VisitLambdaExpr(cast<LambdaExpr>(S), asc); + + case Stmt::MaterializeTemporaryExprClass: + return VisitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(S), + asc); + + case Stmt::MemberExprClass: + return VisitMemberExpr(cast<MemberExpr>(S), asc); + + case Stmt::NullStmtClass: + return Block; + + case Stmt::ObjCAtCatchStmtClass: + return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S)); + + case Stmt::ObjCAutoreleasePoolStmtClass: + return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S)); + + case Stmt::ObjCAtSynchronizedStmtClass: + return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S)); + + case Stmt::ObjCAtThrowStmtClass: + return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S)); + + case Stmt::ObjCAtTryStmtClass: + return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S)); + + case Stmt::ObjCForCollectionStmtClass: + return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S)); + + case Stmt::ObjCMessageExprClass: + return VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), asc); + + case Stmt::OpaqueValueExprClass: + return Block; + + case Stmt::PseudoObjectExprClass: + return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S)); + + case Stmt::ReturnStmtClass: + case Stmt::CoreturnStmtClass: + return VisitReturnStmt(S); + + case Stmt::SEHExceptStmtClass: + return VisitSEHExceptStmt(cast<SEHExceptStmt>(S)); + + case Stmt::SEHFinallyStmtClass: + return VisitSEHFinallyStmt(cast<SEHFinallyStmt>(S)); + + case Stmt::SEHLeaveStmtClass: + return VisitSEHLeaveStmt(cast<SEHLeaveStmt>(S)); + + case Stmt::SEHTryStmtClass: + return VisitSEHTryStmt(cast<SEHTryStmt>(S)); + + case Stmt::UnaryExprOrTypeTraitExprClass: + return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S), + asc); + + case Stmt::StmtExprClass: + return VisitStmtExpr(cast<StmtExpr>(S), asc); + + case Stmt::SwitchStmtClass: + return VisitSwitchStmt(cast<SwitchStmt>(S)); + + case Stmt::UnaryOperatorClass: + return VisitUnaryOperator(cast<UnaryOperator>(S), asc); + + case Stmt::WhileStmtClass: + return VisitWhileStmt(cast<WhileStmt>(S)); + } +} + +CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) { + if (asc.alwaysAdd(*this, S)) { + autoCreateBlock(); + appendStmt(Block, S); + } + + return VisitChildren(S); +} + +/// VisitChildren - Visit the children of a Stmt. +CFGBlock *CFGBuilder::VisitChildren(Stmt *S) { + CFGBlock *B = Block; + + // Visit the children in their reverse order so that they appear in + // left-to-right (natural) order in the CFG. + reverse_children RChildren(S); + for (Stmt *Child : RChildren) { + if (Child) + if (CFGBlock *R = Visit(Child)) + B = R; + } + return B; +} + +CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) { + if (asc.alwaysAdd(*this, ILE)) { + autoCreateBlock(); + appendStmt(Block, ILE); + } + CFGBlock *B = Block; + + reverse_children RChildren(ILE); + for (Stmt *Child : RChildren) { + if (!Child) + continue; + if (CFGBlock *R = Visit(Child)) + B = R; + if (BuildOpts.AddCXXDefaultInitExprInAggregates) { + if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Child)) + if (Stmt *Child = DIE->getExpr()) + if (CFGBlock *R = Visit(Child)) + B = R; + } + } + return B; +} + +CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A, + AddStmtChoice asc) { + AddressTakenLabels.insert(A->getLabel()); + + if (asc.alwaysAdd(*this, A)) { + autoCreateBlock(); + appendStmt(Block, A); + } + + return Block; +} + +static bool isFallthroughStatement(const AttributedStmt *A) { + bool isFallthrough = hasSpecificAttr<FallThroughAttr>(A->getAttrs()); + assert((!isFallthrough || isa<NullStmt>(A->getSubStmt())) && + "expected fallthrough not to have children"); + return isFallthrough; +} + +CFGBlock *CFGBuilder::VisitAttributedStmt(AttributedStmt *A, + AddStmtChoice asc) { + // AttributedStmts for [[likely]] can have arbitrary statements as children, + // and the current visitation order here would add the AttributedStmts + // for [[likely]] after the child nodes, which is undesirable: For example, + // if the child contains an unconditional return, the [[likely]] would be + // considered unreachable. + // So only add the AttributedStmt for FallThrough, which has CFG effects and + // also no children, and omit the others. None of the other current StmtAttrs + // have semantic meaning for the CFG. + if (isFallthroughStatement(A) && asc.alwaysAdd(*this, A)) { + autoCreateBlock(); + appendStmt(Block, A); + } + + return VisitChildren(A); +} + +CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc) { + if (asc.alwaysAdd(*this, U)) { + autoCreateBlock(); + appendStmt(Block, U); + } + + if (U->getOpcode() == UO_LNot) + tryEvaluateBool(U->getSubExpr()->IgnoreParens()); + + return Visit(U->getSubExpr(), AddStmtChoice()); +} + +CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) { + CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); + appendStmt(ConfluenceBlock, B); + + if (badCFG) + return nullptr; + + return VisitLogicalOperator(B, nullptr, ConfluenceBlock, + ConfluenceBlock).first; +} + +std::pair<CFGBlock*, CFGBlock*> +CFGBuilder::VisitLogicalOperator(BinaryOperator *B, + Stmt *Term, + CFGBlock *TrueBlock, + CFGBlock *FalseBlock) { + // Introspect the RHS. If it is a nested logical operation, we recursively + // build the CFG using this function. Otherwise, resort to default + // CFG construction behavior. + Expr *RHS = B->getRHS()->IgnoreParens(); + CFGBlock *RHSBlock, *ExitBlock; + + do { + if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS)) + if (B_RHS->isLogicalOp()) { + std::tie(RHSBlock, ExitBlock) = + VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock); + break; + } + + // The RHS is not a nested logical operation. Don't push the terminator + // down further, but instead visit RHS and construct the respective + // pieces of the CFG, and link up the RHSBlock with the terminator + // we have been provided. + ExitBlock = RHSBlock = createBlock(false); + + // Even though KnownVal is only used in the else branch of the next + // conditional, tryEvaluateBool performs additional checking on the + // Expr, so it should be called unconditionally. + TryResult KnownVal = tryEvaluateBool(RHS); + if (!KnownVal.isKnown()) + KnownVal = tryEvaluateBool(B); + + if (!Term) { + assert(TrueBlock == FalseBlock); + addSuccessor(RHSBlock, TrueBlock); + } + else { + RHSBlock->setTerminator(Term); + addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse()); + addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue()); + } + + Block = RHSBlock; + RHSBlock = addStmt(RHS); + } + while (false); + + if (badCFG) + return std::make_pair(nullptr, nullptr); + + // Generate the blocks for evaluating the LHS. + Expr *LHS = B->getLHS()->IgnoreParens(); + + if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS)) + if (B_LHS->isLogicalOp()) { + if (B->getOpcode() == BO_LOr) + FalseBlock = RHSBlock; + else + TrueBlock = RHSBlock; + + // For the LHS, treat 'B' as the terminator that we want to sink + // into the nested branch. The RHS always gets the top-most + // terminator. + return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock); + } + + // Create the block evaluating the LHS. + // This contains the '&&' or '||' as the terminator. + CFGBlock *LHSBlock = createBlock(false); + LHSBlock->setTerminator(B); + + Block = LHSBlock; + CFGBlock *EntryLHSBlock = addStmt(LHS); + + if (badCFG) + return std::make_pair(nullptr, nullptr); + + // See if this is a known constant. + TryResult KnownVal = tryEvaluateBool(LHS); + + // Now link the LHSBlock with RHSBlock. + if (B->getOpcode() == BO_LOr) { + addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse()); + addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue()); + } else { + assert(B->getOpcode() == BO_LAnd); + addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse()); + addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue()); + } + + return std::make_pair(EntryLHSBlock, ExitBlock); +} + +CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B, + AddStmtChoice asc) { + // && or || + if (B->isLogicalOp()) + return VisitLogicalOperator(B); + + if (B->getOpcode() == BO_Comma) { // , + autoCreateBlock(); + appendStmt(Block, B); + addStmt(B->getRHS()); + return addStmt(B->getLHS()); + } + + if (B->isAssignmentOp()) { + if (asc.alwaysAdd(*this, B)) { + autoCreateBlock(); + appendStmt(Block, B); + } + Visit(B->getLHS()); + return Visit(B->getRHS()); + } + + if (asc.alwaysAdd(*this, B)) { + autoCreateBlock(); + appendStmt(Block, B); + } + + if (B->isEqualityOp() || B->isRelationalOp()) + tryEvaluateBool(B); + + CFGBlock *RBlock = Visit(B->getRHS()); + CFGBlock *LBlock = Visit(B->getLHS()); + // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr + // containing a DoStmt, and the LHS doesn't create a new block, then we should + // return RBlock. Otherwise we'll incorrectly return NULL. + return (LBlock ? LBlock : RBlock); +} + +CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) { + if (asc.alwaysAdd(*this, E)) { + autoCreateBlock(); + appendStmt(Block, E); + } + return Block; +} + +CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) { + // "break" is a control-flow statement. Thus we stop processing the current + // block. + if (badCFG) + return nullptr; + + // Now create a new block that ends with the break statement. + Block = createBlock(false); + Block->setTerminator(B); + + // If there is no target for the break, then we are looking at an incomplete + // AST. This means that the CFG cannot be constructed. + if (BreakJumpTarget.block) { + addAutomaticObjHandling(ScopePos, BreakJumpTarget.scopePosition, B); + addSuccessor(Block, BreakJumpTarget.block); + } else + badCFG = true; + + return Block; +} + +static bool CanThrow(Expr *E, ASTContext &Ctx) { + QualType Ty = E->getType(); + if (Ty->isFunctionPointerType() || Ty->isBlockPointerType()) + Ty = Ty->getPointeeType(); + + const FunctionType *FT = Ty->getAs<FunctionType>(); + if (FT) { + if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) + if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) && + Proto->isNothrow()) + return false; + } + return true; +} + +CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) { + // Compute the callee type. + QualType calleeType = C->getCallee()->getType(); + if (calleeType == Context->BoundMemberTy) { + QualType boundType = Expr::findBoundMemberType(C->getCallee()); + + // We should only get a null bound type if processing a dependent + // CFG. Recover by assuming nothing. + if (!boundType.isNull()) calleeType = boundType; + } + + // If this is a call to a no-return function, this stops the block here. + bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn(); + + bool AddEHEdge = false; + + // Languages without exceptions are assumed to not throw. + if (Context->getLangOpts().Exceptions) { + if (BuildOpts.AddEHEdges) + AddEHEdge = true; + } + + // If this is a call to a builtin function, it might not actually evaluate + // its arguments. Don't add them to the CFG if this is the case. + bool OmitArguments = false; + + if (FunctionDecl *FD = C->getDirectCallee()) { + // TODO: Support construction contexts for variadic function arguments. + // These are a bit problematic and not very useful because passing + // C++ objects as C-style variadic arguments doesn't work in general + // (see [expr.call]). + if (!FD->isVariadic()) + findConstructionContextsForArguments(C); + + if (FD->isNoReturn() || C->isBuiltinAssumeFalse(*Context)) + NoReturn = true; + if (FD->hasAttr<NoThrowAttr>()) + AddEHEdge = false; + if (FD->getBuiltinID() == Builtin::BI__builtin_object_size || + FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size) + OmitArguments = true; + } + + if (!CanThrow(C->getCallee(), *Context)) + AddEHEdge = false; + + if (OmitArguments) { + assert(!NoReturn && "noreturn calls with unevaluated args not implemented"); + assert(!AddEHEdge && "EH calls with unevaluated args not implemented"); + autoCreateBlock(); + appendStmt(Block, C); + return Visit(C->getCallee()); + } + + if (!NoReturn && !AddEHEdge) { + autoCreateBlock(); + appendCall(Block, C); + + return VisitChildren(C); + } + + if (Block) { + Succ = Block; + if (badCFG) + return nullptr; + } + + if (NoReturn) + Block = createNoReturnBlock(); + else + Block = createBlock(); + + appendCall(Block, C); + + if (AddEHEdge) { + // Add exceptional edges. + if (TryTerminatedBlock) + addSuccessor(Block, TryTerminatedBlock); + else + addSuccessor(Block, &cfg->getExit()); + } + + return VisitChildren(C); +} + +CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C, + AddStmtChoice asc) { + CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); + appendStmt(ConfluenceBlock, C); + if (badCFG) + return nullptr; + + AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true); + Succ = ConfluenceBlock; + Block = nullptr; + CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd); + if (badCFG) + return nullptr; + + Succ = ConfluenceBlock; + Block = nullptr; + CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd); + if (badCFG) + return nullptr; + + Block = createBlock(false); + // See if this is a known constant. + const TryResult& KnownVal = tryEvaluateBool(C->getCond()); + addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock); + addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock); + Block->setTerminator(C); + return addStmt(C->getCond()); +} + +CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C, + bool ExternallyDestructed) { + LocalScope::const_iterator scopeBeginPos = ScopePos; + addLocalScopeForStmt(C); + + if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) { + // If the body ends with a ReturnStmt, the dtors will be added in + // VisitReturnStmt. + addAutomaticObjHandling(ScopePos, scopeBeginPos, C); + } + + CFGBlock *LastBlock = Block; + + for (Stmt *S : llvm::reverse(C->body())) { + // If we hit a segment of code just containing ';' (NullStmts), we can + // get a null block back. In such cases, just use the LastBlock + CFGBlock *newBlock = Visit(S, AddStmtChoice::AlwaysAdd, + ExternallyDestructed); + + if (newBlock) + LastBlock = newBlock; + + if (badCFG) + return nullptr; + + ExternallyDestructed = false; + } + + return LastBlock; +} + +CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C, + AddStmtChoice asc) { + const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C); + const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr); + + // Create the confluence block that will "merge" the results of the ternary + // expression. + CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); + appendStmt(ConfluenceBlock, C); + if (badCFG) + return nullptr; + + AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true); + + // Create a block for the LHS expression if there is an LHS expression. A + // GCC extension allows LHS to be NULL, causing the condition to be the + // value that is returned instead. + // e.g: x ?: y is shorthand for: x ? x : y; + Succ = ConfluenceBlock; + Block = nullptr; + CFGBlock *LHSBlock = nullptr; + const Expr *trueExpr = C->getTrueExpr(); + if (trueExpr != opaqueValue) { + LHSBlock = Visit(C->getTrueExpr(), alwaysAdd); + if (badCFG) + return nullptr; + Block = nullptr; + } + else + LHSBlock = ConfluenceBlock; + + // Create the block for the RHS expression. + Succ = ConfluenceBlock; + CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd); + if (badCFG) + return nullptr; + + // If the condition is a logical '&&' or '||', build a more accurate CFG. + if (BinaryOperator *Cond = + dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens())) + if (Cond->isLogicalOp()) + return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first; + + // Create the block that will contain the condition. + Block = createBlock(false); + + // See if this is a known constant. + const TryResult& KnownVal = tryEvaluateBool(C->getCond()); + addSuccessor(Block, LHSBlock, !KnownVal.isFalse()); + addSuccessor(Block, RHSBlock, !KnownVal.isTrue()); + Block->setTerminator(C); + Expr *condExpr = C->getCond(); + + if (opaqueValue) { + // Run the condition expression if it's not trivially expressed in + // terms of the opaque value (or if there is no opaque value). + if (condExpr != opaqueValue) + addStmt(condExpr); + + // Before that, run the common subexpression if there was one. + // At least one of this or the above will be run. + return addStmt(BCO->getCommon()); + } + + return addStmt(condExpr); +} + +CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) { + // Check if the Decl is for an __label__. If so, elide it from the + // CFG entirely. + if (isa<LabelDecl>(*DS->decl_begin())) + return Block; + + // This case also handles static_asserts. + if (DS->isSingleDecl()) + return VisitDeclSubExpr(DS); + + CFGBlock *B = nullptr; + + // Build an individual DeclStmt for each decl. + for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(), + E = DS->decl_rend(); + I != E; ++I) { + + // Allocate the DeclStmt using the BumpPtrAllocator. It will get + // automatically freed with the CFG. + DeclGroupRef DG(*I); + Decl *D = *I; + DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D)); + cfg->addSyntheticDeclStmt(DSNew, DS); + + // Append the fake DeclStmt to block. + B = VisitDeclSubExpr(DSNew); + } + + return B; +} + +/// VisitDeclSubExpr - Utility method to add block-level expressions for +/// DeclStmts and initializers in them. +CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) { + assert(DS->isSingleDecl() && "Can handle single declarations only."); + + if (const auto *TND = dyn_cast<TypedefNameDecl>(DS->getSingleDecl())) { + // If we encounter a VLA, process its size expressions. + const Type *T = TND->getUnderlyingType().getTypePtr(); + if (!T->isVariablyModifiedType()) + return Block; + + autoCreateBlock(); + appendStmt(Block, DS); + + CFGBlock *LastBlock = Block; + for (const VariableArrayType *VA = FindVA(T); VA != nullptr; + VA = FindVA(VA->getElementType().getTypePtr())) { + if (CFGBlock *NewBlock = addStmt(VA->getSizeExpr())) + LastBlock = NewBlock; + } + return LastBlock; + } + + VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl()); + + if (!VD) { + // Of everything that can be declared in a DeclStmt, only VarDecls and the + // exceptions above impact runtime semantics. + return Block; + } + + bool HasTemporaries = false; + + // Guard static initializers under a branch. + CFGBlock *blockAfterStaticInit = nullptr; + + if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) { + // For static variables, we need to create a branch to track + // whether or not they are initialized. + if (Block) { + Succ = Block; + Block = nullptr; + if (badCFG) + return nullptr; + } + blockAfterStaticInit = Succ; + } + + // Destructors of temporaries in initialization expression should be called + // after initialization finishes. + Expr *Init = VD->getInit(); + if (Init) { + HasTemporaries = isa<ExprWithCleanups>(Init); + + if (BuildOpts.AddTemporaryDtors && HasTemporaries) { + // Generate destructors for temporaries in initialization expression. + TempDtorContext Context; + VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(), + /*ExternallyDestructed=*/true, Context); + } + } + + autoCreateBlock(); + appendStmt(Block, DS); + + findConstructionContexts( + ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS), + Init); + + // Keep track of the last non-null block, as 'Block' can be nulled out + // if the initializer expression is something like a 'while' in a + // statement-expression. + CFGBlock *LastBlock = Block; + + if (Init) { + if (HasTemporaries) { + // For expression with temporaries go directly to subexpression to omit + // generating destructors for the second time. + ExprWithCleanups *EC = cast<ExprWithCleanups>(Init); + if (CFGBlock *newBlock = Visit(EC->getSubExpr())) + LastBlock = newBlock; + } + else { + if (CFGBlock *newBlock = Visit(Init)) + LastBlock = newBlock; + } + } + + // If the type of VD is a VLA, then we must process its size expressions. + // FIXME: This does not find the VLA if it is embedded in other types, + // like here: `int (*p_vla)[x];` + for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); + VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) { + if (CFGBlock *newBlock = addStmt(VA->getSizeExpr())) + LastBlock = newBlock; + } + + maybeAddScopeBeginForVarDecl(Block, VD, DS); + + // Remove variable from local scope. + if (ScopePos && VD == *ScopePos) + ++ScopePos; + + CFGBlock *B = LastBlock; + if (blockAfterStaticInit) { + Succ = B; + Block = createBlock(false); + Block->setTerminator(DS); + addSuccessor(Block, blockAfterStaticInit); + addSuccessor(Block, B); + B = Block; + } + + return B; +} + +CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) { + // We may see an if statement in the middle of a basic block, or it may be the + // first statement we are processing. In either case, we create a new basic + // block. First, we create the blocks for the then...else statements, and + // then we create the block containing the if statement. If we were in the + // middle of a block, we stop processing that block. That block is then the + // implicit successor for the "then" and "else" clauses. + + // Save local scope position because in case of condition variable ScopePos + // won't be restored when traversing AST. + SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); + + // Create local scope for C++17 if init-stmt if one exists. + if (Stmt *Init = I->getInit()) + addLocalScopeForStmt(Init); + + // Create local scope for possible condition variable. + // Store scope position. Add implicit destructor. + if (VarDecl *VD = I->getConditionVariable()) + addLocalScopeForVarDecl(VD); + + addAutomaticObjHandling(ScopePos, save_scope_pos.get(), I); + + // The block we were processing is now finished. Make it the successor + // block. + if (Block) { + Succ = Block; + if (badCFG) + return nullptr; + } + + // Process the false branch. + CFGBlock *ElseBlock = Succ; + + if (Stmt *Else = I->getElse()) { + SaveAndRestore<CFGBlock*> sv(Succ); + + // NULL out Block so that the recursive call to Visit will + // create a new basic block. + Block = nullptr; + + // If branch is not a compound statement create implicit scope + // and add destructors. + if (!isa<CompoundStmt>(Else)) + addLocalScopeAndDtors(Else); + + ElseBlock = addStmt(Else); + + if (!ElseBlock) // Can occur when the Else body has all NullStmts. + ElseBlock = sv.get(); + else if (Block) { + if (badCFG) + return nullptr; + } + } + + // Process the true branch. + CFGBlock *ThenBlock; + { + Stmt *Then = I->getThen(); + assert(Then); + SaveAndRestore<CFGBlock*> sv(Succ); + Block = nullptr; + + // If branch is not a compound statement create implicit scope + // and add destructors. + if (!isa<CompoundStmt>(Then)) + addLocalScopeAndDtors(Then); + + ThenBlock = addStmt(Then); + + if (!ThenBlock) { + // We can reach here if the "then" body has all NullStmts. + // Create an empty block so we can distinguish between true and false + // branches in path-sensitive analyses. + ThenBlock = createBlock(false); + addSuccessor(ThenBlock, sv.get()); + } else if (Block) { + if (badCFG) + return nullptr; + } + } + + // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by + // having these handle the actual control-flow jump. Note that + // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)" + // we resort to the old control-flow behavior. This special handling + // removes infeasible paths from the control-flow graph by having the + // control-flow transfer of '&&' or '||' go directly into the then/else + // blocks directly. + BinaryOperator *Cond = + (I->isConsteval() || I->getConditionVariable()) + ? nullptr + : dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()); + CFGBlock *LastBlock; + if (Cond && Cond->isLogicalOp()) + LastBlock = VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first; + else { + // Now create a new block containing the if statement. + Block = createBlock(false); + + // Set the terminator of the new block to the If statement. + Block->setTerminator(I); + + // See if this is a known constant. + TryResult KnownVal; + if (!I->isConsteval()) + KnownVal = tryEvaluateBool(I->getCond()); + + // Add the successors. If we know that specific branches are + // unreachable, inform addSuccessor() of that knowledge. + addSuccessor(Block, ThenBlock, /* IsReachable = */ !KnownVal.isFalse()); + addSuccessor(Block, ElseBlock, /* IsReachable = */ !KnownVal.isTrue()); + + // Add the condition as the last statement in the new block. This may + // create new blocks as the condition may contain control-flow. Any newly + // created blocks will be pointed to be "Block". + LastBlock = addStmt(I->getCond()); + + // If the IfStmt contains a condition variable, add it and its + // initializer to the CFG. + if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) { + autoCreateBlock(); + LastBlock = addStmt(const_cast<DeclStmt *>(DS)); + } + } + + // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG. + if (Stmt *Init = I->getInit()) { + autoCreateBlock(); + LastBlock = addStmt(Init); + } + + return LastBlock; +} + +CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) { + // If we were in the middle of a block we stop processing that block. + // + // NOTE: If a "return" or "co_return" appears in the middle of a block, this + // means that the code afterwards is DEAD (unreachable). We still keep + // a basic block for that code; a simple "mark-and-sweep" from the entry + // block will be able to report such dead blocks. + assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)); + + // Create the new block. + Block = createBlock(false); + + addAutomaticObjHandling(ScopePos, LocalScope::const_iterator(), S); + + if (auto *R = dyn_cast<ReturnStmt>(S)) + findConstructionContexts( + ConstructionContextLayer::create(cfg->getBumpVectorContext(), R), + R->getRetValue()); + + // If the one of the destructors does not return, we already have the Exit + // block as a successor. + if (!Block->hasNoReturnElement()) + addSuccessor(Block, &cfg->getExit()); + + // Add the return statement to the block. + appendStmt(Block, S); + + // Visit children + if (ReturnStmt *RS = dyn_cast<ReturnStmt>(S)) { + if (Expr *O = RS->getRetValue()) + return Visit(O, AddStmtChoice::AlwaysAdd, /*ExternallyDestructed=*/true); + return Block; + } + // co_return + return VisitChildren(S); +} + +CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) { + // SEHExceptStmt are treated like labels, so they are the first statement in a + // block. + + // Save local scope position because in case of exception variable ScopePos + // won't be restored when traversing AST. + SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); + + addStmt(ES->getBlock()); + CFGBlock *SEHExceptBlock = Block; + if (!SEHExceptBlock) + SEHExceptBlock = createBlock(); + + appendStmt(SEHExceptBlock, ES); + + // Also add the SEHExceptBlock as a label, like with regular labels. + SEHExceptBlock->setLabel(ES); + + // Bail out if the CFG is bad. + if (badCFG) + return nullptr; + + // We set Block to NULL to allow lazy creation of a new block (if necessary). + Block = nullptr; + + return SEHExceptBlock; +} + +CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) { + return VisitCompoundStmt(FS->getBlock(), /*ExternallyDestructed=*/false); +} + +CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) { + // "__leave" is a control-flow statement. Thus we stop processing the current + // block. + if (badCFG) + return nullptr; + + // Now create a new block that ends with the __leave statement. + Block = createBlock(false); + Block->setTerminator(LS); + + // If there is no target for the __leave, then we are looking at an incomplete + // AST. This means that the CFG cannot be constructed. + if (SEHLeaveJumpTarget.block) { + addAutomaticObjHandling(ScopePos, SEHLeaveJumpTarget.scopePosition, LS); + addSuccessor(Block, SEHLeaveJumpTarget.block); + } else + badCFG = true; + + return Block; +} + +CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) { + // "__try"/"__except"/"__finally" is a control-flow statement. Thus we stop + // processing the current block. + CFGBlock *SEHTrySuccessor = nullptr; + + if (Block) { + if (badCFG) + return nullptr; + SEHTrySuccessor = Block; + } else SEHTrySuccessor = Succ; + + // FIXME: Implement __finally support. + if (Terminator->getFinallyHandler()) + return NYS(); + + CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock; + + // Create a new block that will contain the __try statement. + CFGBlock *NewTryTerminatedBlock = createBlock(false); + + // Add the terminator in the __try block. + NewTryTerminatedBlock->setTerminator(Terminator); + + if (SEHExceptStmt *Except = Terminator->getExceptHandler()) { + // The code after the try is the implicit successor if there's an __except. + Succ = SEHTrySuccessor; + Block = nullptr; + CFGBlock *ExceptBlock = VisitSEHExceptStmt(Except); + if (!ExceptBlock) + return nullptr; + // Add this block to the list of successors for the block with the try + // statement. + addSuccessor(NewTryTerminatedBlock, ExceptBlock); + } + if (PrevSEHTryTerminatedBlock) + addSuccessor(NewTryTerminatedBlock, PrevSEHTryTerminatedBlock); + else + addSuccessor(NewTryTerminatedBlock, &cfg->getExit()); + + // The code after the try is the implicit successor. + Succ = SEHTrySuccessor; + + // Save the current "__try" context. + SaveAndRestore<CFGBlock *> SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); + cfg->addTryDispatchBlock(TryTerminatedBlock); + + // Save the current value for the __leave target. + // All __leaves should go to the code following the __try + // (FIXME: or if the __try has a __finally, to the __finally.) + SaveAndRestore<JumpTarget> save_break(SEHLeaveJumpTarget); + SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos); + + assert(Terminator->getTryBlock() && "__try must contain a non-NULL body"); + Block = nullptr; + return addStmt(Terminator->getTryBlock()); +} + +CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) { + // Get the block of the labeled statement. Add it to our map. + addStmt(L->getSubStmt()); + CFGBlock *LabelBlock = Block; + + if (!LabelBlock) // This can happen when the body is empty, i.e. + LabelBlock = createBlock(); // scopes that only contains NullStmts. + + assert(LabelMap.find(L->getDecl()) == LabelMap.end() && + "label already in map"); + LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos); + + // Labels partition blocks, so this is the end of the basic block we were + // processing (L is the block's label). Because this is label (and we have + // already processed the substatement) there is no extra control-flow to worry + // about. + LabelBlock->setLabel(L); + if (badCFG) + return nullptr; + + // We set Block to NULL to allow lazy creation of a new block (if necessary). + Block = nullptr; + + // This block is now the implicit successor of other blocks. + Succ = LabelBlock; + + return LabelBlock; +} + +CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) { + CFGBlock *LastBlock = VisitNoRecurse(E, asc); + for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) { + if (Expr *CopyExpr = CI.getCopyExpr()) { + CFGBlock *Tmp = Visit(CopyExpr); + if (Tmp) + LastBlock = Tmp; + } + } + return LastBlock; +} + +CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) { + CFGBlock *LastBlock = VisitNoRecurse(E, asc); + for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(), + et = E->capture_init_end(); it != et; ++it) { + if (Expr *Init = *it) { + CFGBlock *Tmp = Visit(Init); + if (Tmp) + LastBlock = Tmp; + } + } + return LastBlock; +} + +CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) { + // Goto is a control-flow statement. Thus we stop processing the current + // block and create a new one. + + Block = createBlock(false); + Block->setTerminator(G); + + // If we already know the mapping to the label block add the successor now. + LabelMapTy::iterator I = LabelMap.find(G->getLabel()); + + if (I == LabelMap.end()) + // We will need to backpatch this block later. + BackpatchBlocks.push_back(JumpSource(Block, ScopePos)); + else { + JumpTarget JT = I->second; + addAutomaticObjHandling(ScopePos, JT.scopePosition, G); + addSuccessor(Block, JT.block); + } + + return Block; +} + +CFGBlock *CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc) { + // Goto is a control-flow statement. Thus we stop processing the current + // block and create a new one. + + if (!G->isAsmGoto()) + return VisitStmt(G, asc); + + if (Block) { + Succ = Block; + if (badCFG) + return nullptr; + } + Block = createBlock(); + Block->setTerminator(G); + // We will backpatch this block later for all the labels. + BackpatchBlocks.push_back(JumpSource(Block, ScopePos)); + // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is + // used to avoid adding "Succ" again. + BackpatchBlocks.push_back(JumpSource(Succ, ScopePos)); + return VisitChildren(G); +} + +CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) { + CFGBlock *LoopSuccessor = nullptr; + + // Save local scope position because in case of condition variable ScopePos + // won't be restored when traversing AST. + SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); + + // Create local scope for init statement and possible condition variable. + // Add destructor for init statement and condition variable. + // Store scope position for continue statement. + if (Stmt *Init = F->getInit()) + addLocalScopeForStmt(Init); + LocalScope::const_iterator LoopBeginScopePos = ScopePos; + + if (VarDecl *VD = F->getConditionVariable()) + addLocalScopeForVarDecl(VD); + LocalScope::const_iterator ContinueScopePos = ScopePos; + + addAutomaticObjHandling(ScopePos, save_scope_pos.get(), F); + + addLoopExit(F); + + // "for" is a control-flow statement. Thus we stop processing the current + // block. + if (Block) { + if (badCFG) + return nullptr; + LoopSuccessor = Block; + } else + LoopSuccessor = Succ; + + // Save the current value for the break targets. + // All breaks should go to the code following the loop. + SaveAndRestore<JumpTarget> save_break(BreakJumpTarget); + BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); + + CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr; + + // Now create the loop body. + { + assert(F->getBody()); + + // Save the current values for Block, Succ, continue and break targets. + SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ); + SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget); + + // Create an empty block to represent the transition block for looping back + // to the head of the loop. If we have increment code, it will + // go in this block as well. + Block = Succ = TransitionBlock = createBlock(false); + TransitionBlock->setLoopTarget(F); + + if (Stmt *I = F->getInc()) { + // Generate increment code in its own basic block. This is the target of + // continue statements. + Succ = addStmt(I); + } + + // Finish up the increment (or empty) block if it hasn't been already. + if (Block) { + assert(Block == Succ); + if (badCFG) + return nullptr; + Block = nullptr; + } + + // The starting block for the loop increment is the block that should + // represent the 'loop target' for looping back to the start of the loop. + ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos); + ContinueJumpTarget.block->setLoopTarget(F); + + // Loop body should end with destructor of Condition variable (if any). + addAutomaticObjHandling(ScopePos, LoopBeginScopePos, F); + + // If body is not a compound statement create implicit scope + // and add destructors. + if (!isa<CompoundStmt>(F->getBody())) + addLocalScopeAndDtors(F->getBody()); + + // Now populate the body block, and in the process create new blocks as we + // walk the body of the loop. + BodyBlock = addStmt(F->getBody()); + + if (!BodyBlock) { + // In the case of "for (...;...;...);" we can have a null BodyBlock. + // Use the continue jump target as the proxy for the body. + BodyBlock = ContinueJumpTarget.block; + } + else if (badCFG) + return nullptr; + } + + // Because of short-circuit evaluation, the condition of the loop can span + // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that + // evaluate the condition. + CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr; + + do { + Expr *C = F->getCond(); + SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); + + // Specially handle logical operators, which have a slightly + // more optimal CFG representation. + if (BinaryOperator *Cond = + dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr)) + if (Cond->isLogicalOp()) { + std::tie(EntryConditionBlock, ExitConditionBlock) = + VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor); + break; + } + + // The default case when not handling logical operators. + EntryConditionBlock = ExitConditionBlock = createBlock(false); + ExitConditionBlock->setTerminator(F); + + // See if this is a known constant. + TryResult KnownVal(true); + + if (C) { + // Now add the actual condition to the condition block. + // Because the condition itself may contain control-flow, new blocks may + // be created. Thus we update "Succ" after adding the condition. + Block = ExitConditionBlock; + EntryConditionBlock = addStmt(C); + + // If this block contains a condition variable, add both the condition + // variable and initializer to the CFG. + if (VarDecl *VD = F->getConditionVariable()) { + if (Expr *Init = VD->getInit()) { + autoCreateBlock(); + const DeclStmt *DS = F->getConditionVariableDeclStmt(); + assert(DS->isSingleDecl()); + findConstructionContexts( + ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS), + Init); + appendStmt(Block, DS); + EntryConditionBlock = addStmt(Init); + assert(Block == EntryConditionBlock); + maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C); + } + } + + if (Block && badCFG) + return nullptr; + + KnownVal = tryEvaluateBool(C); + } + + // Add the loop body entry as a successor to the condition. + addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock); + // Link up the condition block with the code that follows the loop. (the + // false branch). + addSuccessor(ExitConditionBlock, + KnownVal.isTrue() ? nullptr : LoopSuccessor); + } while (false); + + // Link up the loop-back block to the entry condition block. + addSuccessor(TransitionBlock, EntryConditionBlock); + + // The condition block is the implicit successor for any code above the loop. + Succ = EntryConditionBlock; + + // If the loop contains initialization, create a new block for those + // statements. This block can also contain statements that precede the loop. + if (Stmt *I = F->getInit()) { + SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); + ScopePos = LoopBeginScopePos; + Block = createBlock(); + return addStmt(I); + } + + // There is no loop initialization. We are thus basically a while loop. + // NULL out Block to force lazy block construction. + Block = nullptr; + Succ = EntryConditionBlock; + return EntryConditionBlock; +} + +CFGBlock * +CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE, + AddStmtChoice asc) { + findConstructionContexts( + ConstructionContextLayer::create(cfg->getBumpVectorContext(), MTE), + MTE->getSubExpr()); + + return VisitStmt(MTE, asc); +} + +CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) { + if (asc.alwaysAdd(*this, M)) { + autoCreateBlock(); + appendStmt(Block, M); + } + return Visit(M->getBase()); +} + +CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) { + // Objective-C fast enumeration 'for' statements: + // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC + // + // for ( Type newVariable in collection_expression ) { statements } + // + // becomes: + // + // prologue: + // 1. collection_expression + // T. jump to loop_entry + // loop_entry: + // 1. side-effects of element expression + // 1. ObjCForCollectionStmt [performs binding to newVariable] + // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil] + // TB: + // statements + // T. jump to loop_entry + // FB: + // what comes after + // + // and + // + // Type existingItem; + // for ( existingItem in expression ) { statements } + // + // becomes: + // + // the same with newVariable replaced with existingItem; the binding works + // the same except that for one ObjCForCollectionStmt::getElement() returns + // a DeclStmt and the other returns a DeclRefExpr. + + CFGBlock *LoopSuccessor = nullptr; + + if (Block) { + if (badCFG) + return nullptr; + LoopSuccessor = Block; + Block = nullptr; + } else + LoopSuccessor = Succ; + + // Build the condition blocks. + CFGBlock *ExitConditionBlock = createBlock(false); + + // Set the terminator for the "exit" condition block. + ExitConditionBlock->setTerminator(S); + + // The last statement in the block should be the ObjCForCollectionStmt, which + // performs the actual binding to 'element' and determines if there are any + // more items in the collection. + appendStmt(ExitConditionBlock, S); + Block = ExitConditionBlock; + + // Walk the 'element' expression to see if there are any side-effects. We + // generate new blocks as necessary. We DON'T add the statement by default to + // the CFG unless it contains control-flow. + CFGBlock *EntryConditionBlock = Visit(S->getElement(), + AddStmtChoice::NotAlwaysAdd); + if (Block) { + if (badCFG) + return nullptr; + Block = nullptr; + } + + // The condition block is the implicit successor for the loop body as well as + // any code above the loop. + Succ = EntryConditionBlock; + + // Now create the true branch. + { + // Save the current values for Succ, continue and break targets. + SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ); + SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget), + save_break(BreakJumpTarget); + + // Add an intermediate block between the BodyBlock and the + // EntryConditionBlock to represent the "loop back" transition, for looping + // back to the head of the loop. + CFGBlock *LoopBackBlock = nullptr; + Succ = LoopBackBlock = createBlock(); + LoopBackBlock->setLoopTarget(S); + + BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); + ContinueJumpTarget = JumpTarget(Succ, ScopePos); + + CFGBlock *BodyBlock = addStmt(S->getBody()); + + if (!BodyBlock) + BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;" + else if (Block) { + if (badCFG) + return nullptr; + } + + // This new body block is a successor to our "exit" condition block. + addSuccessor(ExitConditionBlock, BodyBlock); + } + + // Link up the condition block with the code that follows the loop. + // (the false branch). + addSuccessor(ExitConditionBlock, LoopSuccessor); + + // Now create a prologue block to contain the collection expression. + Block = createBlock(); + return addStmt(S->getCollection()); +} + +CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) { + // Inline the body. + return addStmt(S->getSubStmt()); + // TODO: consider adding cleanups for the end of @autoreleasepool scope. +} + +CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) { + // FIXME: Add locking 'primitives' to CFG for @synchronized. + + // Inline the body. + CFGBlock *SyncBlock = addStmt(S->getSynchBody()); + + // The sync body starts its own basic block. This makes it a little easier + // for diagnostic clients. + if (SyncBlock) { + if (badCFG) + return nullptr; + + Block = nullptr; + Succ = SyncBlock; + } + + // Add the @synchronized to the CFG. + autoCreateBlock(); + appendStmt(Block, S); + + // Inline the sync expression. + return addStmt(S->getSynchExpr()); +} + +CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) { + autoCreateBlock(); + + // Add the PseudoObject as the last thing. + appendStmt(Block, E); + + CFGBlock *lastBlock = Block; + + // Before that, evaluate all of the semantics in order. In + // CFG-land, that means appending them in reverse order. + for (unsigned i = E->getNumSemanticExprs(); i != 0; ) { + Expr *Semantic = E->getSemanticExpr(--i); + + // If the semantic is an opaque value, we're being asked to bind + // it to its source expression. + if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic)) + Semantic = OVE->getSourceExpr(); + + if (CFGBlock *B = Visit(Semantic)) + lastBlock = B; + } + + return lastBlock; +} + +CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) { + CFGBlock *LoopSuccessor = nullptr; + + // Save local scope position because in case of condition variable ScopePos + // won't be restored when traversing AST. + SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); + + // Create local scope for possible condition variable. + // Store scope position for continue statement. + LocalScope::const_iterator LoopBeginScopePos = ScopePos; + if (VarDecl *VD = W->getConditionVariable()) { + addLocalScopeForVarDecl(VD); + addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W); + } + addLoopExit(W); + + // "while" is a control-flow statement. Thus we stop processing the current + // block. + if (Block) { + if (badCFG) + return nullptr; + LoopSuccessor = Block; + Block = nullptr; + } else { + LoopSuccessor = Succ; + } + + CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr; + + // Process the loop body. + { + assert(W->getBody()); + + // Save the current values for Block, Succ, continue and break targets. + SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ); + SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget), + save_break(BreakJumpTarget); + + // Create an empty block to represent the transition block for looping back + // to the head of the loop. + Succ = TransitionBlock = createBlock(false); + TransitionBlock->setLoopTarget(W); + ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos); + + // All breaks should go to the code following the loop. + BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); + + // Loop body should end with destructor of Condition variable (if any). + addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W); + + // If body is not a compound statement create implicit scope + // and add destructors. + if (!isa<CompoundStmt>(W->getBody())) + addLocalScopeAndDtors(W->getBody()); + + // Create the body. The returned block is the entry to the loop body. + BodyBlock = addStmt(W->getBody()); + + if (!BodyBlock) + BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;" + else if (Block && badCFG) + return nullptr; + } + + // Because of short-circuit evaluation, the condition of the loop can span + // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that + // evaluate the condition. + CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr; + + do { + Expr *C = W->getCond(); + + // Specially handle logical operators, which have a slightly + // more optimal CFG representation. + if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens())) + if (Cond->isLogicalOp()) { + std::tie(EntryConditionBlock, ExitConditionBlock) = + VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor); + break; + } + + // The default case when not handling logical operators. + ExitConditionBlock = createBlock(false); + ExitConditionBlock->setTerminator(W); + + // Now add the actual condition to the condition block. + // Because the condition itself may contain control-flow, new blocks may + // be created. Thus we update "Succ" after adding the condition. + Block = ExitConditionBlock; + Block = EntryConditionBlock = addStmt(C); + + // If this block contains a condition variable, add both the condition + // variable and initializer to the CFG. + if (VarDecl *VD = W->getConditionVariable()) { + if (Expr *Init = VD->getInit()) { + autoCreateBlock(); + const DeclStmt *DS = W->getConditionVariableDeclStmt(); + assert(DS->isSingleDecl()); + findConstructionContexts( + ConstructionContextLayer::create(cfg->getBumpVectorContext(), + const_cast<DeclStmt *>(DS)), + Init); + appendStmt(Block, DS); + EntryConditionBlock = addStmt(Init); + assert(Block == EntryConditionBlock); + maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C); + } + } + + if (Block && badCFG) + return nullptr; + + // See if this is a known constant. + const TryResult& KnownVal = tryEvaluateBool(C); + + // Add the loop body entry as a successor to the condition. + addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock); + // Link up the condition block with the code that follows the loop. (the + // false branch). + addSuccessor(ExitConditionBlock, + KnownVal.isTrue() ? nullptr : LoopSuccessor); + } while(false); + + // Link up the loop-back block to the entry condition block. + addSuccessor(TransitionBlock, EntryConditionBlock); + + // There can be no more statements in the condition block since we loop back + // to this block. NULL out Block to force lazy creation of another block. + Block = nullptr; + + // Return the condition block, which is the dominating block for the loop. + Succ = EntryConditionBlock; + return EntryConditionBlock; +} + +CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *CS) { + // ObjCAtCatchStmt are treated like labels, so they are the first statement + // in a block. + + // Save local scope position because in case of exception variable ScopePos + // won't be restored when traversing AST. + SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); + + if (CS->getCatchBody()) + addStmt(CS->getCatchBody()); + + CFGBlock *CatchBlock = Block; + if (!CatchBlock) + CatchBlock = createBlock(); + + appendStmt(CatchBlock, CS); + + // Also add the ObjCAtCatchStmt as a label, like with regular labels. + CatchBlock->setLabel(CS); + + // Bail out if the CFG is bad. + if (badCFG) + return nullptr; + + // We set Block to NULL to allow lazy creation of a new block (if necessary). + Block = nullptr; + + return CatchBlock; +} + +CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) { + // If we were in the middle of a block we stop processing that block. + if (badCFG) + return nullptr; + + // Create the new block. + Block = createBlock(false); + + if (TryTerminatedBlock) + // The current try statement is the only successor. + addSuccessor(Block, TryTerminatedBlock); + else + // otherwise the Exit block is the only successor. + addSuccessor(Block, &cfg->getExit()); + + // Add the statement to the block. This may create new blocks if S contains + // control-flow (short-circuit operations). + return VisitStmt(S, AddStmtChoice::AlwaysAdd); +} + +CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *Terminator) { + // "@try"/"@catch" is a control-flow statement. Thus we stop processing the + // current block. + CFGBlock *TrySuccessor = nullptr; + + if (Block) { + if (badCFG) + return nullptr; + TrySuccessor = Block; + } else + TrySuccessor = Succ; + + // FIXME: Implement @finally support. + if (Terminator->getFinallyStmt()) + return NYS(); + + CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock; + + // Create a new block that will contain the try statement. + CFGBlock *NewTryTerminatedBlock = createBlock(false); + // Add the terminator in the try block. + NewTryTerminatedBlock->setTerminator(Terminator); + + bool HasCatchAll = false; + for (ObjCAtCatchStmt *CS : Terminator->catch_stmts()) { + // The code after the try is the implicit successor. + Succ = TrySuccessor; + if (CS->hasEllipsis()) { + HasCatchAll = true; + } + Block = nullptr; + CFGBlock *CatchBlock = VisitObjCAtCatchStmt(CS); + if (!CatchBlock) + return nullptr; + // Add this block to the list of successors for the block with the try + // statement. + addSuccessor(NewTryTerminatedBlock, CatchBlock); + } + + // FIXME: This needs updating when @finally support is added. + if (!HasCatchAll) { + if (PrevTryTerminatedBlock) + addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock); + else + addSuccessor(NewTryTerminatedBlock, &cfg->getExit()); + } + + // The code after the try is the implicit successor. + Succ = TrySuccessor; + + // Save the current "try" context. + SaveAndRestore<CFGBlock *> SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); + cfg->addTryDispatchBlock(TryTerminatedBlock); + + assert(Terminator->getTryBody() && "try must contain a non-NULL body"); + Block = nullptr; + return addStmt(Terminator->getTryBody()); +} + +CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME, + AddStmtChoice asc) { + findConstructionContextsForArguments(ME); + + autoCreateBlock(); + appendObjCMessage(Block, ME); + + return VisitChildren(ME); +} + +CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) { + // If we were in the middle of a block we stop processing that block. + if (badCFG) + return nullptr; + + // Create the new block. + Block = createBlock(false); + + if (TryTerminatedBlock) + // The current try statement is the only successor. + addSuccessor(Block, TryTerminatedBlock); + else + // otherwise the Exit block is the only successor. + addSuccessor(Block, &cfg->getExit()); + + // Add the statement to the block. This may create new blocks if S contains + // control-flow (short-circuit operations). + return VisitStmt(T, AddStmtChoice::AlwaysAdd); +} + +CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) { + CFGBlock *LoopSuccessor = nullptr; + + addLoopExit(D); + + // "do...while" is a control-flow statement. Thus we stop processing the + // current block. + if (Block) { + if (badCFG) + return nullptr; + LoopSuccessor = Block; + } else + LoopSuccessor = Succ; + + // Because of short-circuit evaluation, the condition of the loop can span + // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that + // evaluate the condition. + CFGBlock *ExitConditionBlock = createBlock(false); + CFGBlock *EntryConditionBlock = ExitConditionBlock; + + // Set the terminator for the "exit" condition block. + ExitConditionBlock->setTerminator(D); + + // Now add the actual condition to the condition block. Because the condition + // itself may contain control-flow, new blocks may be created. + if (Stmt *C = D->getCond()) { + Block = ExitConditionBlock; + EntryConditionBlock = addStmt(C); + if (Block) { + if (badCFG) + return nullptr; + } + } + + // The condition block is the implicit successor for the loop body. + Succ = EntryConditionBlock; + + // See if this is a known constant. + const TryResult &KnownVal = tryEvaluateBool(D->getCond()); + + // Process the loop body. + CFGBlock *BodyBlock = nullptr; + { + assert(D->getBody()); + + // Save the current values for Block, Succ, and continue and break targets + SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ); + SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget), + save_break(BreakJumpTarget); + + // All continues within this loop should go to the condition block + ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos); + + // All breaks should go to the code following the loop. + BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); + + // NULL out Block to force lazy instantiation of blocks for the body. + Block = nullptr; + + // If body is not a compound statement create implicit scope + // and add destructors. + if (!isa<CompoundStmt>(D->getBody())) + addLocalScopeAndDtors(D->getBody()); + + // Create the body. The returned block is the entry to the loop body. + BodyBlock = addStmt(D->getBody()); + + if (!BodyBlock) + BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)" + else if (Block) { + if (badCFG) + return nullptr; + } + + // Add an intermediate block between the BodyBlock and the + // ExitConditionBlock to represent the "loop back" transition. Create an + // empty block to represent the transition block for looping back to the + // head of the loop. + // FIXME: Can we do this more efficiently without adding another block? + Block = nullptr; + Succ = BodyBlock; + CFGBlock *LoopBackBlock = createBlock(); + LoopBackBlock->setLoopTarget(D); + + if (!KnownVal.isFalse()) + // Add the loop body entry as a successor to the condition. + addSuccessor(ExitConditionBlock, LoopBackBlock); + else + addSuccessor(ExitConditionBlock, nullptr); + } + + // Link up the condition block with the code that follows the loop. + // (the false branch). + addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor); + + // There can be no more statements in the body block(s) since we loop back to + // the body. NULL out Block to force lazy creation of another block. + Block = nullptr; + + // Return the loop body, which is the dominating block for the loop. + Succ = BodyBlock; + return BodyBlock; +} + +CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) { + // "continue" is a control-flow statement. Thus we stop processing the + // current block. + if (badCFG) + return nullptr; + + // Now create a new block that ends with the continue statement. + Block = createBlock(false); + Block->setTerminator(C); + + // If there is no target for the continue, then we are looking at an + // incomplete AST. This means the CFG cannot be constructed. + if (ContinueJumpTarget.block) { + addAutomaticObjHandling(ScopePos, ContinueJumpTarget.scopePosition, C); + addSuccessor(Block, ContinueJumpTarget.block); + } else + badCFG = true; + + return Block; +} + +CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E, + AddStmtChoice asc) { + if (asc.alwaysAdd(*this, E)) { + autoCreateBlock(); + appendStmt(Block, E); + } + + // VLA types have expressions that must be evaluated. + // Evaluation is done only for `sizeof`. + + if (E->getKind() != UETT_SizeOf) + return Block; + + CFGBlock *lastBlock = Block; + + if (E->isArgumentType()) { + for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr()); + VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) + lastBlock = addStmt(VA->getSizeExpr()); + } + return lastBlock; +} + +/// VisitStmtExpr - Utility method to handle (nested) statement +/// expressions (a GCC extension). +CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) { + if (asc.alwaysAdd(*this, SE)) { + autoCreateBlock(); + appendStmt(Block, SE); + } + return VisitCompoundStmt(SE->getSubStmt(), /*ExternallyDestructed=*/true); +} + +CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) { + // "switch" is a control-flow statement. Thus we stop processing the current + // block. + CFGBlock *SwitchSuccessor = nullptr; + + // Save local scope position because in case of condition variable ScopePos + // won't be restored when traversing AST. + SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); + + // Create local scope for C++17 switch init-stmt if one exists. + if (Stmt *Init = Terminator->getInit()) + addLocalScopeForStmt(Init); + + // Create local scope for possible condition variable. + // Store scope position. Add implicit destructor. + if (VarDecl *VD = Terminator->getConditionVariable()) + addLocalScopeForVarDecl(VD); + + addAutomaticObjHandling(ScopePos, save_scope_pos.get(), Terminator); + + if (Block) { + if (badCFG) + return nullptr; + SwitchSuccessor = Block; + } else SwitchSuccessor = Succ; + + // Save the current "switch" context. + SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock), + save_default(DefaultCaseBlock); + SaveAndRestore<JumpTarget> save_break(BreakJumpTarget); + + // Set the "default" case to be the block after the switch statement. If the + // switch statement contains a "default:", this value will be overwritten with + // the block for that code. + DefaultCaseBlock = SwitchSuccessor; + + // Create a new block that will contain the switch statement. + SwitchTerminatedBlock = createBlock(false); + + // Now process the switch body. The code after the switch is the implicit + // successor. + Succ = SwitchSuccessor; + BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos); + + // When visiting the body, the case statements should automatically get linked + // up to the switch. We also don't keep a pointer to the body, since all + // control-flow from the switch goes to case/default statements. + assert(Terminator->getBody() && "switch must contain a non-NULL body"); + Block = nullptr; + + // For pruning unreachable case statements, save the current state + // for tracking the condition value. + SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered, + false); + + // Determine if the switch condition can be explicitly evaluated. + assert(Terminator->getCond() && "switch condition must be non-NULL"); + Expr::EvalResult result; + bool b = tryEvaluate(Terminator->getCond(), result); + SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond, + b ? &result : nullptr); + + // If body is not a compound statement create implicit scope + // and add destructors. + if (!isa<CompoundStmt>(Terminator->getBody())) + addLocalScopeAndDtors(Terminator->getBody()); + + addStmt(Terminator->getBody()); + if (Block) { + if (badCFG) + return nullptr; + } + + // If we have no "default:" case, the default transition is to the code + // following the switch body. Moreover, take into account if all the + // cases of a switch are covered (e.g., switching on an enum value). + // + // Note: We add a successor to a switch that is considered covered yet has no + // case statements if the enumeration has no enumerators. + bool SwitchAlwaysHasSuccessor = false; + SwitchAlwaysHasSuccessor |= switchExclusivelyCovered; + SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() && + Terminator->getSwitchCaseList(); + addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock, + !SwitchAlwaysHasSuccessor); + + // Add the terminator and condition in the switch block. + SwitchTerminatedBlock->setTerminator(Terminator); + Block = SwitchTerminatedBlock; + CFGBlock *LastBlock = addStmt(Terminator->getCond()); + + // If the SwitchStmt contains a condition variable, add both the + // SwitchStmt and the condition variable initialization to the CFG. + if (VarDecl *VD = Terminator->getConditionVariable()) { + if (Expr *Init = VD->getInit()) { + autoCreateBlock(); + appendStmt(Block, Terminator->getConditionVariableDeclStmt()); + LastBlock = addStmt(Init); + maybeAddScopeBeginForVarDecl(LastBlock, VD, Init); + } + } + + // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG. + if (Stmt *Init = Terminator->getInit()) { + autoCreateBlock(); + LastBlock = addStmt(Init); + } + + return LastBlock; +} + +static bool shouldAddCase(bool &switchExclusivelyCovered, + const Expr::EvalResult *switchCond, + const CaseStmt *CS, + ASTContext &Ctx) { + if (!switchCond) + return true; + + bool addCase = false; + + if (!switchExclusivelyCovered) { + if (switchCond->Val.isInt()) { + // Evaluate the LHS of the case value. + const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx); + const llvm::APSInt &condInt = switchCond->Val.getInt(); + + if (condInt == lhsInt) { + addCase = true; + switchExclusivelyCovered = true; + } + else if (condInt > lhsInt) { + if (const Expr *RHS = CS->getRHS()) { + // Evaluate the RHS of the case value. + const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx); + if (V2 >= condInt) { + addCase = true; + switchExclusivelyCovered = true; + } + } + } + } + else + addCase = true; + } + return addCase; +} + +CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) { + // CaseStmts are essentially labels, so they are the first statement in a + // block. + CFGBlock *TopBlock = nullptr, *LastBlock = nullptr; + + if (Stmt *Sub = CS->getSubStmt()) { + // For deeply nested chains of CaseStmts, instead of doing a recursion + // (which can blow out the stack), manually unroll and create blocks + // along the way. + while (isa<CaseStmt>(Sub)) { + CFGBlock *currentBlock = createBlock(false); + currentBlock->setLabel(CS); + + if (TopBlock) + addSuccessor(LastBlock, currentBlock); + else + TopBlock = currentBlock; + + addSuccessor(SwitchTerminatedBlock, + shouldAddCase(switchExclusivelyCovered, switchCond, + CS, *Context) + ? currentBlock : nullptr); + + LastBlock = currentBlock; + CS = cast<CaseStmt>(Sub); + Sub = CS->getSubStmt(); + } + + addStmt(Sub); + } + + CFGBlock *CaseBlock = Block; + if (!CaseBlock) + CaseBlock = createBlock(); + + // Cases statements partition blocks, so this is the top of the basic block we + // were processing (the "case XXX:" is the label). + CaseBlock->setLabel(CS); + + if (badCFG) + return nullptr; + + // Add this block to the list of successors for the block with the switch + // statement. + assert(SwitchTerminatedBlock); + addSuccessor(SwitchTerminatedBlock, CaseBlock, + shouldAddCase(switchExclusivelyCovered, switchCond, + CS, *Context)); + + // We set Block to NULL to allow lazy creation of a new block (if necessary). + Block = nullptr; + + if (TopBlock) { + addSuccessor(LastBlock, CaseBlock); + Succ = TopBlock; + } else { + // This block is now the implicit successor of other blocks. + Succ = CaseBlock; + } + + return Succ; +} + +CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) { + if (Terminator->getSubStmt()) + addStmt(Terminator->getSubStmt()); + + DefaultCaseBlock = Block; + + if (!DefaultCaseBlock) + DefaultCaseBlock = createBlock(); + + // Default statements partition blocks, so this is the top of the basic block + // we were processing (the "default:" is the label). + DefaultCaseBlock->setLabel(Terminator); + + if (badCFG) + return nullptr; + + // Unlike case statements, we don't add the default block to the successors + // for the switch statement immediately. This is done when we finish + // processing the switch statement. This allows for the default case + // (including a fall-through to the code after the switch statement) to always + // be the last successor of a switch-terminated block. + + // We set Block to NULL to allow lazy creation of a new block (if necessary). + Block = nullptr; + + // This block is now the implicit successor of other blocks. + Succ = DefaultCaseBlock; + + return DefaultCaseBlock; +} + +CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) { + // "try"/"catch" is a control-flow statement. Thus we stop processing the + // current block. + CFGBlock *TrySuccessor = nullptr; + + if (Block) { + if (badCFG) + return nullptr; + TrySuccessor = Block; + } else + TrySuccessor = Succ; + + CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock; + + // Create a new block that will contain the try statement. + CFGBlock *NewTryTerminatedBlock = createBlock(false); + // Add the terminator in the try block. + NewTryTerminatedBlock->setTerminator(Terminator); + + bool HasCatchAll = false; + for (unsigned I = 0, E = Terminator->getNumHandlers(); I != E; ++I) { + // The code after the try is the implicit successor. + Succ = TrySuccessor; + CXXCatchStmt *CS = Terminator->getHandler(I); + if (CS->getExceptionDecl() == nullptr) { + HasCatchAll = true; + } + Block = nullptr; + CFGBlock *CatchBlock = VisitCXXCatchStmt(CS); + if (!CatchBlock) + return nullptr; + // Add this block to the list of successors for the block with the try + // statement. + addSuccessor(NewTryTerminatedBlock, CatchBlock); + } + if (!HasCatchAll) { + if (PrevTryTerminatedBlock) + addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock); + else + addSuccessor(NewTryTerminatedBlock, &cfg->getExit()); + } + + // The code after the try is the implicit successor. + Succ = TrySuccessor; + + // Save the current "try" context. + SaveAndRestore<CFGBlock *> SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); + cfg->addTryDispatchBlock(TryTerminatedBlock); + + assert(Terminator->getTryBlock() && "try must contain a non-NULL body"); + Block = nullptr; + return addStmt(Terminator->getTryBlock()); +} + +CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) { + // CXXCatchStmt are treated like labels, so they are the first statement in a + // block. + + // Save local scope position because in case of exception variable ScopePos + // won't be restored when traversing AST. + SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); + + // Create local scope for possible exception variable. + // Store scope position. Add implicit destructor. + if (VarDecl *VD = CS->getExceptionDecl()) { + LocalScope::const_iterator BeginScopePos = ScopePos; + addLocalScopeForVarDecl(VD); + addAutomaticObjHandling(ScopePos, BeginScopePos, CS); + } + + if (CS->getHandlerBlock()) + addStmt(CS->getHandlerBlock()); + + CFGBlock *CatchBlock = Block; + if (!CatchBlock) + CatchBlock = createBlock(); + + // CXXCatchStmt is more than just a label. They have semantic meaning + // as well, as they implicitly "initialize" the catch variable. Add + // it to the CFG as a CFGElement so that the control-flow of these + // semantics gets captured. + appendStmt(CatchBlock, CS); + + // Also add the CXXCatchStmt as a label, to mirror handling of regular + // labels. + CatchBlock->setLabel(CS); + + // Bail out if the CFG is bad. + if (badCFG) + return nullptr; + + // We set Block to NULL to allow lazy creation of a new block (if necessary). + Block = nullptr; + + return CatchBlock; +} + +CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) { + // C++0x for-range statements are specified as [stmt.ranged]: + // + // { + // auto && __range = range-init; + // for ( auto __begin = begin-expr, + // __end = end-expr; + // __begin != __end; + // ++__begin ) { + // for-range-declaration = *__begin; + // statement + // } + // } + + // Save local scope position before the addition of the implicit variables. + SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos); + + // Create local scopes and destructors for range, begin and end variables. + if (Stmt *Range = S->getRangeStmt()) + addLocalScopeForStmt(Range); + if (Stmt *Begin = S->getBeginStmt()) + addLocalScopeForStmt(Begin); + if (Stmt *End = S->getEndStmt()) + addLocalScopeForStmt(End); + addAutomaticObjHandling(ScopePos, save_scope_pos.get(), S); + + LocalScope::const_iterator ContinueScopePos = ScopePos; + + // "for" is a control-flow statement. Thus we stop processing the current + // block. + CFGBlock *LoopSuccessor = nullptr; + if (Block) { + if (badCFG) + return nullptr; + LoopSuccessor = Block; + } else + LoopSuccessor = Succ; + + // Save the current value for the break targets. + // All breaks should go to the code following the loop. + SaveAndRestore<JumpTarget> save_break(BreakJumpTarget); + BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); + + // The block for the __begin != __end expression. + CFGBlock *ConditionBlock = createBlock(false); + ConditionBlock->setTerminator(S); + + // Now add the actual condition to the condition block. + if (Expr *C = S->getCond()) { + Block = ConditionBlock; + CFGBlock *BeginConditionBlock = addStmt(C); + if (badCFG) + return nullptr; + assert(BeginConditionBlock == ConditionBlock && + "condition block in for-range was unexpectedly complex"); + (void)BeginConditionBlock; + } + + // The condition block is the implicit successor for the loop body as well as + // any code above the loop. + Succ = ConditionBlock; + + // See if this is a known constant. + TryResult KnownVal(true); + + if (S->getCond()) + KnownVal = tryEvaluateBool(S->getCond()); + + // Now create the loop body. + { + assert(S->getBody()); + + // Save the current values for Block, Succ, and continue targets. + SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ); + SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget); + + // Generate increment code in its own basic block. This is the target of + // continue statements. + Block = nullptr; + Succ = addStmt(S->getInc()); + if (badCFG) + return nullptr; + ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos); + + // The starting block for the loop increment is the block that should + // represent the 'loop target' for looping back to the start of the loop. + ContinueJumpTarget.block->setLoopTarget(S); + + // Finish up the increment block and prepare to start the loop body. + assert(Block); + if (badCFG) + return nullptr; + Block = nullptr; + + // Add implicit scope and dtors for loop variable. + addLocalScopeAndDtors(S->getLoopVarStmt()); + + // If body is not a compound statement create implicit scope + // and add destructors. + if (!isa<CompoundStmt>(S->getBody())) + addLocalScopeAndDtors(S->getBody()); + + // Populate a new block to contain the loop body and loop variable. + addStmt(S->getBody()); + + if (badCFG) + return nullptr; + CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt()); + if (badCFG) + return nullptr; + + // This new body block is a successor to our condition block. + addSuccessor(ConditionBlock, + KnownVal.isFalse() ? nullptr : LoopVarStmtBlock); + } + + // Link up the condition block with the code that follows the loop (the + // false branch). + addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor); + + // Add the initialization statements. + Block = createBlock(); + addStmt(S->getBeginStmt()); + addStmt(S->getEndStmt()); + CFGBlock *Head = addStmt(S->getRangeStmt()); + if (S->getInit()) + Head = addStmt(S->getInit()); + return Head; +} + +CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E, + AddStmtChoice asc, bool ExternallyDestructed) { + if (BuildOpts.AddTemporaryDtors) { + // If adding implicit destructors visit the full expression for adding + // destructors of temporaries. + TempDtorContext Context; + VisitForTemporaryDtors(E->getSubExpr(), ExternallyDestructed, Context); + + // Full expression has to be added as CFGStmt so it will be sequenced + // before destructors of it's temporaries. + asc = asc.withAlwaysAdd(true); + } + return Visit(E->getSubExpr(), asc); +} + +CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E, + AddStmtChoice asc) { + if (asc.alwaysAdd(*this, E)) { + autoCreateBlock(); + appendStmt(Block, E); + + findConstructionContexts( + ConstructionContextLayer::create(cfg->getBumpVectorContext(), E), + E->getSubExpr()); + + // We do not want to propagate the AlwaysAdd property. + asc = asc.withAlwaysAdd(false); + } + return Visit(E->getSubExpr(), asc); +} + +CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C, + AddStmtChoice asc) { + // If the constructor takes objects as arguments by value, we need to properly + // construct these objects. Construction contexts we find here aren't for the + // constructor C, they're for its arguments only. + findConstructionContextsForArguments(C); + + autoCreateBlock(); + appendConstructor(Block, C); + + return VisitChildren(C); +} + +CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE, + AddStmtChoice asc) { + autoCreateBlock(); + appendStmt(Block, NE); + + findConstructionContexts( + ConstructionContextLayer::create(cfg->getBumpVectorContext(), NE), + const_cast<CXXConstructExpr *>(NE->getConstructExpr())); + + if (NE->getInitializer()) + Block = Visit(NE->getInitializer()); + + if (BuildOpts.AddCXXNewAllocator) + appendNewAllocator(Block, NE); + + if (NE->isArray() && *NE->getArraySize()) + Block = Visit(*NE->getArraySize()); + + for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(), + E = NE->placement_arg_end(); I != E; ++I) + Block = Visit(*I); + + return Block; +} + +CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE, + AddStmtChoice asc) { + autoCreateBlock(); + appendStmt(Block, DE); + QualType DTy = DE->getDestroyedType(); + if (!DTy.isNull()) { + DTy = DTy.getNonReferenceType(); + CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl(); + if (RD) { + if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor()) + appendDeleteDtor(Block, RD, DE); + } + } + + return VisitChildren(DE); +} + +CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E, + AddStmtChoice asc) { + if (asc.alwaysAdd(*this, E)) { + autoCreateBlock(); + appendStmt(Block, E); + // We do not want to propagate the AlwaysAdd property. + asc = asc.withAlwaysAdd(false); + } + return Visit(E->getSubExpr(), asc); +} + +CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C, + AddStmtChoice asc) { + // If the constructor takes objects as arguments by value, we need to properly + // construct these objects. Construction contexts we find here aren't for the + // constructor C, they're for its arguments only. + findConstructionContextsForArguments(C); + + autoCreateBlock(); + appendConstructor(Block, C); + return VisitChildren(C); +} + +CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E, + AddStmtChoice asc) { + if (asc.alwaysAdd(*this, E)) { + autoCreateBlock(); + appendStmt(Block, E); + } + + if (E->getCastKind() == CK_IntegralToBoolean) + tryEvaluateBool(E->getSubExpr()->IgnoreParens()); + + return Visit(E->getSubExpr(), AddStmtChoice()); +} + +CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) { + return Visit(E->getSubExpr(), AddStmtChoice()); +} + +CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) { + // Lazily create the indirect-goto dispatch block if there isn't one already. + CFGBlock *IBlock = cfg->getIndirectGotoBlock(); + + if (!IBlock) { + IBlock = createBlock(false); + cfg->setIndirectGotoBlock(IBlock); + } + + // IndirectGoto is a control-flow statement. Thus we stop processing the + // current block and create a new one. + if (badCFG) + return nullptr; + + Block = createBlock(false); + Block->setTerminator(I); + addSuccessor(Block, IBlock); + return addStmt(I->getTarget()); +} + +CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed, + TempDtorContext &Context) { + assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors); + +tryAgain: + if (!E) { + badCFG = true; + return nullptr; + } + switch (E->getStmtClass()) { + default: + return VisitChildrenForTemporaryDtors(E, false, Context); + + case Stmt::InitListExprClass: + return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context); + + case Stmt::BinaryOperatorClass: + return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E), + ExternallyDestructed, + Context); + + case Stmt::CXXBindTemporaryExprClass: + return VisitCXXBindTemporaryExprForTemporaryDtors( + cast<CXXBindTemporaryExpr>(E), ExternallyDestructed, Context); + + case Stmt::BinaryConditionalOperatorClass: + case Stmt::ConditionalOperatorClass: + return VisitConditionalOperatorForTemporaryDtors( + cast<AbstractConditionalOperator>(E), ExternallyDestructed, Context); + + case Stmt::ImplicitCastExprClass: + // For implicit cast we want ExternallyDestructed to be passed further. + E = cast<CastExpr>(E)->getSubExpr(); + goto tryAgain; + + case Stmt::CXXFunctionalCastExprClass: + // For functional cast we want ExternallyDestructed to be passed further. + E = cast<CXXFunctionalCastExpr>(E)->getSubExpr(); + goto tryAgain; + + case Stmt::ConstantExprClass: + E = cast<ConstantExpr>(E)->getSubExpr(); + goto tryAgain; + + case Stmt::ParenExprClass: + E = cast<ParenExpr>(E)->getSubExpr(); + goto tryAgain; + + case Stmt::MaterializeTemporaryExprClass: { + const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E); + ExternallyDestructed = (MTE->getStorageDuration() != SD_FullExpression); + SmallVector<const Expr *, 2> CommaLHSs; + SmallVector<SubobjectAdjustment, 2> Adjustments; + // Find the expression whose lifetime needs to be extended. + E = const_cast<Expr *>( + cast<MaterializeTemporaryExpr>(E) + ->getSubExpr() + ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); + // Visit the skipped comma operator left-hand sides for other temporaries. + for (const Expr *CommaLHS : CommaLHSs) { + VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS), + /*ExternallyDestructed=*/false, Context); + } + goto tryAgain; + } + + case Stmt::BlockExprClass: + // Don't recurse into blocks; their subexpressions don't get evaluated + // here. + return Block; + + case Stmt::LambdaExprClass: { + // For lambda expressions, only recurse into the capture initializers, + // and not the body. + auto *LE = cast<LambdaExpr>(E); + CFGBlock *B = Block; + for (Expr *Init : LE->capture_inits()) { + if (Init) { + if (CFGBlock *R = VisitForTemporaryDtors( + Init, /*ExternallyDestructed=*/true, Context)) + B = R; + } + } + return B; + } + + case Stmt::StmtExprClass: + // Don't recurse into statement expressions; any cleanups inside them + // will be wrapped in their own ExprWithCleanups. + return Block; + + case Stmt::CXXDefaultArgExprClass: + E = cast<CXXDefaultArgExpr>(E)->getExpr(); + goto tryAgain; + + case Stmt::CXXDefaultInitExprClass: + E = cast<CXXDefaultInitExpr>(E)->getExpr(); + goto tryAgain; + } +} + +CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E, + bool ExternallyDestructed, + TempDtorContext &Context) { + if (isa<LambdaExpr>(E)) { + // Do not visit the children of lambdas; they have their own CFGs. + return Block; + } + + // When visiting children for destructors we want to visit them in reverse + // order that they will appear in the CFG. Because the CFG is built + // bottom-up, this means we visit them in their natural order, which + // reverses them in the CFG. + CFGBlock *B = Block; + for (Stmt *Child : E->children()) + if (Child) + if (CFGBlock *R = VisitForTemporaryDtors(Child, ExternallyDestructed, Context)) + B = R; + + return B; +} + +CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors( + BinaryOperator *E, bool ExternallyDestructed, TempDtorContext &Context) { + if (E->isCommaOp()) { + // For the comma operator, the LHS expression is evaluated before the RHS + // expression, so prepend temporary destructors for the LHS first. + CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context); + CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), ExternallyDestructed, Context); + return RHSBlock ? RHSBlock : LHSBlock; + } + + if (E->isLogicalOp()) { + VisitForTemporaryDtors(E->getLHS(), false, Context); + TryResult RHSExecuted = tryEvaluateBool(E->getLHS()); + if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr) + RHSExecuted.negate(); + + // We do not know at CFG-construction time whether the right-hand-side was + // executed, thus we add a branch node that depends on the temporary + // constructor call. + TempDtorContext RHSContext( + bothKnownTrue(Context.KnownExecuted, RHSExecuted)); + VisitForTemporaryDtors(E->getRHS(), false, RHSContext); + InsertTempDtorDecisionBlock(RHSContext); + + return Block; + } + + if (E->isAssignmentOp()) { + // For assignment operators, the RHS expression is evaluated before the LHS + // expression, so prepend temporary destructors for the RHS first. + CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context); + CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context); + return LHSBlock ? LHSBlock : RHSBlock; + } + + // Any other operator is visited normally. + return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context); +} + +CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors( + CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context) { + // First add destructors for temporaries in subexpression. + // Because VisitCXXBindTemporaryExpr calls setDestructed: + CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), true, Context); + if (!ExternallyDestructed) { + // If lifetime of temporary is not prolonged (by assigning to constant + // reference) add destructor for it. + + const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor(); + + if (Dtor->getParent()->isAnyDestructorNoReturn()) { + // If the destructor is marked as a no-return destructor, we need to + // create a new block for the destructor which does not have as a + // successor anything built thus far. Control won't flow out of this + // block. + if (B) Succ = B; + Block = createNoReturnBlock(); + } else if (Context.needsTempDtorBranch()) { + // If we need to introduce a branch, we add a new block that we will hook + // up to a decision block later. + if (B) Succ = B; + Block = createBlock(); + } else { + autoCreateBlock(); + } + if (Context.needsTempDtorBranch()) { + Context.setDecisionPoint(Succ, E); + } + appendTemporaryDtor(Block, E); + + B = Block; + } + return B; +} + +void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context, + CFGBlock *FalseSucc) { + if (!Context.TerminatorExpr) { + // If no temporary was found, we do not need to insert a decision point. + return; + } + assert(Context.TerminatorExpr); + CFGBlock *Decision = createBlock(false); + Decision->setTerminator(CFGTerminator(Context.TerminatorExpr, + CFGTerminator::TemporaryDtorsBranch)); + addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse()); + addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ, + !Context.KnownExecuted.isTrue()); + Block = Decision; +} + +CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors( + AbstractConditionalOperator *E, bool ExternallyDestructed, + TempDtorContext &Context) { + VisitForTemporaryDtors(E->getCond(), false, Context); + CFGBlock *ConditionBlock = Block; + CFGBlock *ConditionSucc = Succ; + TryResult ConditionVal = tryEvaluateBool(E->getCond()); + TryResult NegatedVal = ConditionVal; + if (NegatedVal.isKnown()) NegatedVal.negate(); + + TempDtorContext TrueContext( + bothKnownTrue(Context.KnownExecuted, ConditionVal)); + VisitForTemporaryDtors(E->getTrueExpr(), ExternallyDestructed, TrueContext); + CFGBlock *TrueBlock = Block; + + Block = ConditionBlock; + Succ = ConditionSucc; + TempDtorContext FalseContext( + bothKnownTrue(Context.KnownExecuted, NegatedVal)); + VisitForTemporaryDtors(E->getFalseExpr(), ExternallyDestructed, FalseContext); + + if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) { + InsertTempDtorDecisionBlock(FalseContext, TrueBlock); + } else if (TrueContext.TerminatorExpr) { + Block = TrueBlock; + InsertTempDtorDecisionBlock(TrueContext); + } else { + InsertTempDtorDecisionBlock(FalseContext); + } + return Block; +} + +CFGBlock *CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective *D, + AddStmtChoice asc) { + if (asc.alwaysAdd(*this, D)) { + autoCreateBlock(); + appendStmt(Block, D); + } + + // Iterate over all used expression in clauses. + CFGBlock *B = Block; + + // Reverse the elements to process them in natural order. Iterators are not + // bidirectional, so we need to create temp vector. + SmallVector<Stmt *, 8> Used( + OMPExecutableDirective::used_clauses_children(D->clauses())); + for (Stmt *S : llvm::reverse(Used)) { + assert(S && "Expected non-null used-in-clause child."); + if (CFGBlock *R = Visit(S)) + B = R; + } + // Visit associated structured block if any. + if (!D->isStandaloneDirective()) { + Stmt *S = D->getRawStmt(); + if (!isa<CompoundStmt>(S)) + addLocalScopeAndDtors(S); + if (CFGBlock *R = addStmt(S)) + B = R; + } + + return B; +} + +/// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has +/// no successors or predecessors. If this is the first block created in the +/// CFG, it is automatically set to be the Entry and Exit of the CFG. +CFGBlock *CFG::createBlock() { + bool first_block = begin() == end(); + + // Create the block. + CFGBlock *Mem = getAllocator().Allocate<CFGBlock>(); + new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this); + Blocks.push_back(Mem, BlkBVC); + + // If this is the first block, set it as the Entry and Exit. + if (first_block) + Entry = Exit = &back(); + + // Return the block. + return &back(); +} + +/// buildCFG - Constructs a CFG from an AST. +std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement, + ASTContext *C, const BuildOptions &BO) { + CFGBuilder Builder(C, BO); + return Builder.buildCFG(D, Statement); +} + +bool CFG::isLinear() const { + // Quick path: if we only have the ENTRY block, the EXIT block, and some code + // in between, then we have no room for control flow. + if (size() <= 3) + return true; + + // Traverse the CFG until we find a branch. + // TODO: While this should still be very fast, + // maybe we should cache the answer. + llvm::SmallPtrSet<const CFGBlock *, 4> Visited; + const CFGBlock *B = Entry; + while (B != Exit) { + auto IteratorAndFlag = Visited.insert(B); + if (!IteratorAndFlag.second) { + // We looped back to a block that we've already visited. Not linear. + return false; + } + + // Iterate over reachable successors. + const CFGBlock *FirstReachableB = nullptr; + for (const CFGBlock::AdjacentBlock &AB : B->succs()) { + if (!AB.isReachable()) + continue; + + if (FirstReachableB == nullptr) { + FirstReachableB = &*AB; + } else { + // We've encountered a branch. It's not a linear CFG. + return false; + } + } + + if (!FirstReachableB) { + // We reached a dead end. EXIT is unreachable. This is linear enough. + return true; + } + + // There's only one way to move forward. Proceed. + B = FirstReachableB; + } + + // We reached EXIT and found no branches. + return true; +} + +const CXXDestructorDecl * +CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const { + switch (getKind()) { + case CFGElement::Initializer: + case CFGElement::NewAllocator: + case CFGElement::LoopExit: + case CFGElement::LifetimeEnds: + case CFGElement::Statement: + case CFGElement::Constructor: + case CFGElement::CXXRecordTypedCall: + case CFGElement::ScopeBegin: + case CFGElement::ScopeEnd: + llvm_unreachable("getDestructorDecl should only be used with " + "ImplicitDtors"); + case CFGElement::AutomaticObjectDtor: { + const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl(); + QualType ty = var->getType(); + + // FIXME: See CFGBuilder::addLocalScopeForVarDecl. + // + // Lifetime-extending constructs are handled here. This works for a single + // temporary in an initializer expression. + if (ty->isReferenceType()) { + if (const Expr *Init = var->getInit()) { + ty = getReferenceInitTemporaryType(Init); + } + } + + while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) { + ty = arrayType->getElementType(); + } + + // The situation when the type of the lifetime-extending reference + // does not correspond to the type of the object is supposed + // to be handled by now. In particular, 'ty' is now the unwrapped + // record type. + const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl(); + assert(classDecl); + return classDecl->getDestructor(); + } + case CFGElement::DeleteDtor: { + const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr(); + QualType DTy = DE->getDestroyedType(); + DTy = DTy.getNonReferenceType(); + const CXXRecordDecl *classDecl = + astContext.getBaseElementType(DTy)->getAsCXXRecordDecl(); + return classDecl->getDestructor(); + } + case CFGElement::TemporaryDtor: { + const CXXBindTemporaryExpr *bindExpr = + castAs<CFGTemporaryDtor>().getBindTemporaryExpr(); + const CXXTemporary *temp = bindExpr->getTemporary(); + return temp->getDestructor(); + } + case CFGElement::BaseDtor: + case CFGElement::MemberDtor: + // Not yet supported. + return nullptr; + } + llvm_unreachable("getKind() returned bogus value"); +} + +//===----------------------------------------------------------------------===// +// CFGBlock operations. +//===----------------------------------------------------------------------===// + +CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable) + : ReachableBlock(IsReachable ? B : nullptr), + UnreachableBlock(!IsReachable ? B : nullptr, + B && IsReachable ? AB_Normal : AB_Unreachable) {} + +CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock) + : ReachableBlock(B), + UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock, + B == AlternateBlock ? AB_Alternate : AB_Normal) {} + +void CFGBlock::addSuccessor(AdjacentBlock Succ, + BumpVectorContext &C) { + if (CFGBlock *B = Succ.getReachableBlock()) + B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C); + + if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock()) + UnreachableB->Preds.push_back(AdjacentBlock(this, false), C); + + Succs.push_back(Succ, C); +} + +bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F, + const CFGBlock *From, const CFGBlock *To) { + if (F.IgnoreNullPredecessors && !From) + return true; + + if (To && From && F.IgnoreDefaultsWithCoveredEnums) { + // If the 'To' has no label or is labeled but the label isn't a + // CaseStmt then filter this edge. + if (const SwitchStmt *S = + dyn_cast_or_null<SwitchStmt>(From->getTerminatorStmt())) { + if (S->isAllEnumCasesCovered()) { + const Stmt *L = To->getLabel(); + if (!L || !isa<CaseStmt>(L)) + return true; + } + } + } + + return false; +} + +//===----------------------------------------------------------------------===// +// CFG pretty printing +//===----------------------------------------------------------------------===// + +namespace { + +class StmtPrinterHelper : public PrinterHelper { + using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>; + using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>; + + StmtMapTy StmtMap; + DeclMapTy DeclMap; + signed currentBlock = 0; + unsigned currStmt = 0; + const LangOptions &LangOpts; + +public: + StmtPrinterHelper(const CFG* cfg, const LangOptions &LO) + : LangOpts(LO) { + if (!cfg) + return; + for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) { + unsigned j = 1; + for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ; + BI != BEnd; ++BI, ++j ) { + if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) { + const Stmt *stmt= SE->getStmt(); + std::pair<unsigned, unsigned> P((*I)->getBlockID(), j); + StmtMap[stmt] = P; + + switch (stmt->getStmtClass()) { + case Stmt::DeclStmtClass: + DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P; + break; + case Stmt::IfStmtClass: { + const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable(); + if (var) + DeclMap[var] = P; + break; + } + case Stmt::ForStmtClass: { + const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable(); + if (var) + DeclMap[var] = P; + break; + } + case Stmt::WhileStmtClass: { + const VarDecl *var = + cast<WhileStmt>(stmt)->getConditionVariable(); + if (var) + DeclMap[var] = P; + break; + } + case Stmt::SwitchStmtClass: { + const VarDecl *var = + cast<SwitchStmt>(stmt)->getConditionVariable(); + if (var) + DeclMap[var] = P; + break; + } + case Stmt::CXXCatchStmtClass: { + const VarDecl *var = + cast<CXXCatchStmt>(stmt)->getExceptionDecl(); + if (var) + DeclMap[var] = P; + break; + } + default: + break; + } + } + } + } + } + + ~StmtPrinterHelper() override = default; + + const LangOptions &getLangOpts() const { return LangOpts; } + void setBlockID(signed i) { currentBlock = i; } + void setStmtID(unsigned i) { currStmt = i; } + + bool handledStmt(Stmt *S, raw_ostream &OS) override { + StmtMapTy::iterator I = StmtMap.find(S); + + if (I == StmtMap.end()) + return false; + + if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock + && I->second.second == currStmt) { + return false; + } + + OS << "[B" << I->second.first << "." << I->second.second << "]"; + return true; + } + + bool handleDecl(const Decl *D, raw_ostream &OS) { + DeclMapTy::iterator I = DeclMap.find(D); + + if (I == DeclMap.end()) + return false; + + if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock + && I->second.second == currStmt) { + return false; + } + + OS << "[B" << I->second.first << "." << I->second.second << "]"; + return true; + } +}; + +class CFGBlockTerminatorPrint + : public StmtVisitor<CFGBlockTerminatorPrint,void> { + raw_ostream &OS; + StmtPrinterHelper* Helper; + PrintingPolicy Policy; + +public: + CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper, + const PrintingPolicy &Policy) + : OS(os), Helper(helper), Policy(Policy) { + this->Policy.IncludeNewlines = false; + } + + void VisitIfStmt(IfStmt *I) { + OS << "if "; + if (Stmt *C = I->getCond()) + C->printPretty(OS, Helper, Policy); + } + + // Default case. + void VisitStmt(Stmt *Terminator) { + Terminator->printPretty(OS, Helper, Policy); + } + + void VisitDeclStmt(DeclStmt *DS) { + VarDecl *VD = cast<VarDecl>(DS->getSingleDecl()); + OS << "static init " << VD->getName(); + } + + void VisitForStmt(ForStmt *F) { + OS << "for (" ; + if (F->getInit()) + OS << "..."; + OS << "; "; + if (Stmt *C = F->getCond()) + C->printPretty(OS, Helper, Policy); + OS << "; "; + if (F->getInc()) + OS << "..."; + OS << ")"; + } + + void VisitWhileStmt(WhileStmt *W) { + OS << "while " ; + if (Stmt *C = W->getCond()) + C->printPretty(OS, Helper, Policy); + } + + void VisitDoStmt(DoStmt *D) { + OS << "do ... while "; + if (Stmt *C = D->getCond()) + C->printPretty(OS, Helper, Policy); + } + + void VisitSwitchStmt(SwitchStmt *Terminator) { + OS << "switch "; + Terminator->getCond()->printPretty(OS, Helper, Policy); + } + + void VisitCXXTryStmt(CXXTryStmt *) { OS << "try ..."; } + + void VisitObjCAtTryStmt(ObjCAtTryStmt *) { OS << "@try ..."; } + + void VisitSEHTryStmt(SEHTryStmt *CS) { OS << "__try ..."; } + + void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) { + if (Stmt *Cond = C->getCond()) + Cond->printPretty(OS, Helper, Policy); + OS << " ? ... : ..."; + } + + void VisitChooseExpr(ChooseExpr *C) { + OS << "__builtin_choose_expr( "; + if (Stmt *Cond = C->getCond()) + Cond->printPretty(OS, Helper, Policy); + OS << " )"; + } + + void VisitIndirectGotoStmt(IndirectGotoStmt *I) { + OS << "goto *"; + if (Stmt *T = I->getTarget()) + T->printPretty(OS, Helper, Policy); + } + + void VisitBinaryOperator(BinaryOperator* B) { + if (!B->isLogicalOp()) { + VisitExpr(B); + return; + } + + if (B->getLHS()) + B->getLHS()->printPretty(OS, Helper, Policy); + + switch (B->getOpcode()) { + case BO_LOr: + OS << " || ..."; + return; + case BO_LAnd: + OS << " && ..."; + return; + default: + llvm_unreachable("Invalid logical operator."); + } + } + + void VisitExpr(Expr *E) { + E->printPretty(OS, Helper, Policy); + } + +public: + void print(CFGTerminator T) { + switch (T.getKind()) { + case CFGTerminator::StmtBranch: + Visit(T.getStmt()); + break; + case CFGTerminator::TemporaryDtorsBranch: + OS << "(Temp Dtor) "; + Visit(T.getStmt()); + break; + case CFGTerminator::VirtualBaseBranch: + OS << "(See if most derived ctor has already initialized vbases)"; + break; + } + } +}; + +} // namespace + +static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper, + const CXXCtorInitializer *I) { + if (I->isBaseInitializer()) + OS << I->getBaseClass()->getAsCXXRecordDecl()->getName(); + else if (I->isDelegatingInitializer()) + OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName(); + else + OS << I->getAnyMember()->getName(); + OS << "("; + if (Expr *IE = I->getInit()) + IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); + OS << ")"; + + if (I->isBaseInitializer()) + OS << " (Base initializer)"; + else if (I->isDelegatingInitializer()) + OS << " (Delegating initializer)"; + else + OS << " (Member initializer)"; +} + +static void print_construction_context(raw_ostream &OS, + StmtPrinterHelper &Helper, + const ConstructionContext *CC) { + SmallVector<const Stmt *, 3> Stmts; + switch (CC->getKind()) { + case ConstructionContext::SimpleConstructorInitializerKind: { + OS << ", "; + const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(CC); + print_initializer(OS, Helper, SICC->getCXXCtorInitializer()); + return; + } + case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: { + OS << ", "; + const auto *CICC = + cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(CC); + print_initializer(OS, Helper, CICC->getCXXCtorInitializer()); + Stmts.push_back(CICC->getCXXBindTemporaryExpr()); + break; + } + case ConstructionContext::SimpleVariableKind: { + const auto *SDSCC = cast<SimpleVariableConstructionContext>(CC); + Stmts.push_back(SDSCC->getDeclStmt()); + break; + } + case ConstructionContext::CXX17ElidedCopyVariableKind: { + const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(CC); + Stmts.push_back(CDSCC->getDeclStmt()); + Stmts.push_back(CDSCC->getCXXBindTemporaryExpr()); + break; + } + case ConstructionContext::NewAllocatedObjectKind: { + const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC); + Stmts.push_back(NECC->getCXXNewExpr()); + break; + } + case ConstructionContext::SimpleReturnedValueKind: { + const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(CC); + Stmts.push_back(RSCC->getReturnStmt()); + break; + } + case ConstructionContext::CXX17ElidedCopyReturnedValueKind: { + const auto *RSCC = + cast<CXX17ElidedCopyReturnedValueConstructionContext>(CC); + Stmts.push_back(RSCC->getReturnStmt()); + Stmts.push_back(RSCC->getCXXBindTemporaryExpr()); + break; + } + case ConstructionContext::SimpleTemporaryObjectKind: { + const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(CC); + Stmts.push_back(TOCC->getCXXBindTemporaryExpr()); + Stmts.push_back(TOCC->getMaterializedTemporaryExpr()); + break; + } + case ConstructionContext::ElidedTemporaryObjectKind: { + const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(CC); + Stmts.push_back(TOCC->getCXXBindTemporaryExpr()); + Stmts.push_back(TOCC->getMaterializedTemporaryExpr()); + Stmts.push_back(TOCC->getConstructorAfterElision()); + break; + } + case ConstructionContext::ArgumentKind: { + const auto *ACC = cast<ArgumentConstructionContext>(CC); + if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) { + OS << ", "; + Helper.handledStmt(const_cast<Stmt *>(BTE), OS); + } + OS << ", "; + Helper.handledStmt(const_cast<Expr *>(ACC->getCallLikeExpr()), OS); + OS << "+" << ACC->getIndex(); + return; + } + } + for (auto I: Stmts) + if (I) { + OS << ", "; + Helper.handledStmt(const_cast<Stmt *>(I), OS); + } +} + +static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper, + const CFGElement &E); + +void CFGElement::dumpToStream(llvm::raw_ostream &OS) const { + StmtPrinterHelper Helper(nullptr, {}); + print_elem(OS, Helper, *this); +} + +static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper, + const CFGElement &E) { + switch (E.getKind()) { + case CFGElement::Kind::Statement: + case CFGElement::Kind::CXXRecordTypedCall: + case CFGElement::Kind::Constructor: { + CFGStmt CS = E.castAs<CFGStmt>(); + const Stmt *S = CS.getStmt(); + assert(S != nullptr && "Expecting non-null Stmt"); + + // special printing for statement-expressions. + if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) { + const CompoundStmt *Sub = SE->getSubStmt(); + + auto Children = Sub->children(); + if (Children.begin() != Children.end()) { + OS << "({ ... ; "; + Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS); + OS << " })\n"; + return; + } + } + // special printing for comma expressions. + if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) { + if (B->getOpcode() == BO_Comma) { + OS << "... , "; + Helper.handledStmt(B->getRHS(),OS); + OS << '\n'; + return; + } + } + S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); + + if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) { + if (isa<CXXOperatorCallExpr>(S)) + OS << " (OperatorCall)"; + OS << " (CXXRecordTypedCall"; + print_construction_context(OS, Helper, VTC->getConstructionContext()); + OS << ")"; + } else if (isa<CXXOperatorCallExpr>(S)) { + OS << " (OperatorCall)"; + } else if (isa<CXXBindTemporaryExpr>(S)) { + OS << " (BindTemporary)"; + } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) { + OS << " (CXXConstructExpr"; + if (Optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) { + print_construction_context(OS, Helper, CE->getConstructionContext()); + } + OS << ", " << CCE->getType().getAsString() << ")"; + } else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) { + OS << " (" << CE->getStmtClassName() << ", " + << CE->getCastKindName() + << ", " << CE->getType().getAsString() + << ")"; + } + + // Expressions need a newline. + if (isa<Expr>(S)) + OS << '\n'; + + break; + } + + case CFGElement::Kind::Initializer: + print_initializer(OS, Helper, E.castAs<CFGInitializer>().getInitializer()); + OS << '\n'; + break; + + case CFGElement::Kind::AutomaticObjectDtor: { + CFGAutomaticObjDtor DE = E.castAs<CFGAutomaticObjDtor>(); + const VarDecl *VD = DE.getVarDecl(); + Helper.handleDecl(VD, OS); + + QualType T = VD->getType(); + if (T->isReferenceType()) + T = getReferenceInitTemporaryType(VD->getInit(), nullptr); + + OS << ".~"; + T.getUnqualifiedType().print(OS, PrintingPolicy(Helper.getLangOpts())); + OS << "() (Implicit destructor)\n"; + break; + } + + case CFGElement::Kind::LifetimeEnds: + Helper.handleDecl(E.castAs<CFGLifetimeEnds>().getVarDecl(), OS); + OS << " (Lifetime ends)\n"; + break; + + case CFGElement::Kind::LoopExit: + OS << E.castAs<CFGLoopExit>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n"; + break; + + case CFGElement::Kind::ScopeBegin: + OS << "CFGScopeBegin("; + if (const VarDecl *VD = E.castAs<CFGScopeBegin>().getVarDecl()) + OS << VD->getQualifiedNameAsString(); + OS << ")\n"; + break; + + case CFGElement::Kind::ScopeEnd: + OS << "CFGScopeEnd("; + if (const VarDecl *VD = E.castAs<CFGScopeEnd>().getVarDecl()) + OS << VD->getQualifiedNameAsString(); + OS << ")\n"; + break; + + case CFGElement::Kind::NewAllocator: + OS << "CFGNewAllocator("; + if (const CXXNewExpr *AllocExpr = E.castAs<CFGNewAllocator>().getAllocatorExpr()) + AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts())); + OS << ")\n"; + break; + + case CFGElement::Kind::DeleteDtor: { + CFGDeleteDtor DE = E.castAs<CFGDeleteDtor>(); + const CXXRecordDecl *RD = DE.getCXXRecordDecl(); + if (!RD) + return; + CXXDeleteExpr *DelExpr = + const_cast<CXXDeleteExpr*>(DE.getDeleteExpr()); + Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS); + OS << "->~" << RD->getName().str() << "()"; + OS << " (Implicit destructor)\n"; + break; + } + + case CFGElement::Kind::BaseDtor: { + const CXXBaseSpecifier *BS = E.castAs<CFGBaseDtor>().getBaseSpecifier(); + OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()"; + OS << " (Base object destructor)\n"; + break; + } + + case CFGElement::Kind::MemberDtor: { + const FieldDecl *FD = E.castAs<CFGMemberDtor>().getFieldDecl(); + const Type *T = FD->getType()->getBaseElementTypeUnsafe(); + OS << "this->" << FD->getName(); + OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()"; + OS << " (Member object destructor)\n"; + break; + } + + case CFGElement::Kind::TemporaryDtor: { + const CXXBindTemporaryExpr *BT = + E.castAs<CFGTemporaryDtor>().getBindTemporaryExpr(); + OS << "~"; + BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts())); + OS << "() (Temporary object destructor)\n"; + break; + } + } +} + +static void print_block(raw_ostream &OS, const CFG* cfg, + const CFGBlock &B, + StmtPrinterHelper &Helper, bool print_edges, + bool ShowColors) { + Helper.setBlockID(B.getBlockID()); + + // Print the header. + if (ShowColors) + OS.changeColor(raw_ostream::YELLOW, true); + + OS << "\n [B" << B.getBlockID(); + + if (&B == &cfg->getEntry()) + OS << " (ENTRY)]\n"; + else if (&B == &cfg->getExit()) + OS << " (EXIT)]\n"; + else if (&B == cfg->getIndirectGotoBlock()) + OS << " (INDIRECT GOTO DISPATCH)]\n"; + else if (B.hasNoReturnElement()) + OS << " (NORETURN)]\n"; + else + OS << "]\n"; + + if (ShowColors) + OS.resetColor(); + + // Print the label of this block. + if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) { + if (print_edges) + OS << " "; + + if (LabelStmt *L = dyn_cast<LabelStmt>(Label)) + OS << L->getName(); + else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) { + OS << "case "; + if (const Expr *LHS = C->getLHS()) + LHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); + if (const Expr *RHS = C->getRHS()) { + OS << " ... "; + RHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); + } + } else if (isa<DefaultStmt>(Label)) + OS << "default"; + else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) { + OS << "catch ("; + if (const VarDecl *ED = CS->getExceptionDecl()) + ED->print(OS, PrintingPolicy(Helper.getLangOpts()), 0); + else + OS << "..."; + OS << ")"; + } else if (ObjCAtCatchStmt *CS = dyn_cast<ObjCAtCatchStmt>(Label)) { + OS << "@catch ("; + if (const VarDecl *PD = CS->getCatchParamDecl()) + PD->print(OS, PrintingPolicy(Helper.getLangOpts()), 0); + else + OS << "..."; + OS << ")"; + } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Label)) { + OS << "__except ("; + ES->getFilterExpr()->printPretty(OS, &Helper, + PrintingPolicy(Helper.getLangOpts()), 0); + OS << ")"; + } else + llvm_unreachable("Invalid label statement in CFGBlock."); + + OS << ":\n"; + } + + // Iterate through the statements in the block and print them. + unsigned j = 1; + + for (CFGBlock::const_iterator I = B.begin(), E = B.end() ; + I != E ; ++I, ++j ) { + // Print the statement # in the basic block and the statement itself. + if (print_edges) + OS << " "; + + OS << llvm::format("%3d", j) << ": "; + + Helper.setStmtID(j); + + print_elem(OS, Helper, *I); + } + + // Print the terminator of this block. + if (B.getTerminator().isValid()) { + if (ShowColors) + OS.changeColor(raw_ostream::GREEN); + + OS << " T: "; + + Helper.setBlockID(-1); + + PrintingPolicy PP(Helper.getLangOpts()); + CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP); + TPrinter.print(B.getTerminator()); + OS << '\n'; + + if (ShowColors) + OS.resetColor(); + } + + if (print_edges) { + // Print the predecessors of this block. + if (!B.pred_empty()) { + const raw_ostream::Colors Color = raw_ostream::BLUE; + if (ShowColors) + OS.changeColor(Color); + OS << " Preds " ; + if (ShowColors) + OS.resetColor(); + OS << '(' << B.pred_size() << "):"; + unsigned i = 0; + + if (ShowColors) + OS.changeColor(Color); + + for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end(); + I != E; ++I, ++i) { + if (i % 10 == 8) + OS << "\n "; + + CFGBlock *B = *I; + bool Reachable = true; + if (!B) { + Reachable = false; + B = I->getPossiblyUnreachableBlock(); + } + + OS << " B" << B->getBlockID(); + if (!Reachable) + OS << "(Unreachable)"; + } + + if (ShowColors) + OS.resetColor(); + + OS << '\n'; + } + + // Print the successors of this block. + if (!B.succ_empty()) { + const raw_ostream::Colors Color = raw_ostream::MAGENTA; + if (ShowColors) + OS.changeColor(Color); + OS << " Succs "; + if (ShowColors) + OS.resetColor(); + OS << '(' << B.succ_size() << "):"; + unsigned i = 0; + + if (ShowColors) + OS.changeColor(Color); + + for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end(); + I != E; ++I, ++i) { + if (i % 10 == 8) + OS << "\n "; + + CFGBlock *B = *I; + + bool Reachable = true; + if (!B) { + Reachable = false; + B = I->getPossiblyUnreachableBlock(); + } + + if (B) { + OS << " B" << B->getBlockID(); + if (!Reachable) + OS << "(Unreachable)"; + } + else { + OS << " NULL"; + } + } + + if (ShowColors) + OS.resetColor(); + OS << '\n'; + } + } +} + +/// dump - A simple pretty printer of a CFG that outputs to stderr. +void CFG::dump(const LangOptions &LO, bool ShowColors) const { + print(llvm::errs(), LO, ShowColors); +} + +/// print - A simple pretty printer of a CFG that outputs to an ostream. +void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const { + StmtPrinterHelper Helper(this, LO); + + // Print the entry block. + print_block(OS, this, getEntry(), Helper, true, ShowColors); + + // Iterate through the CFGBlocks and print them one by one. + for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) { + // Skip the entry block, because we already printed it. + if (&(**I) == &getEntry() || &(**I) == &getExit()) + continue; + + print_block(OS, this, **I, Helper, true, ShowColors); + } + + // Print the exit block. + print_block(OS, this, getExit(), Helper, true, ShowColors); + OS << '\n'; + OS.flush(); +} + +size_t CFGBlock::getIndexInCFG() const { + return llvm::find(*getParent(), this) - getParent()->begin(); +} + +/// dump - A simply pretty printer of a CFGBlock that outputs to stderr. +void CFGBlock::dump(const CFG* cfg, const LangOptions &LO, + bool ShowColors) const { + print(llvm::errs(), cfg, LO, ShowColors); +} + +LLVM_DUMP_METHOD void CFGBlock::dump() const { + dump(getParent(), LangOptions(), false); +} + +/// print - A simple pretty printer of a CFGBlock that outputs to an ostream. +/// Generally this will only be called from CFG::print. +void CFGBlock::print(raw_ostream &OS, const CFG* cfg, + const LangOptions &LO, bool ShowColors) const { + StmtPrinterHelper Helper(cfg, LO); + print_block(OS, cfg, *this, Helper, true, ShowColors); + OS << '\n'; +} + +/// printTerminator - A simple pretty printer of the terminator of a CFGBlock. +void CFGBlock::printTerminator(raw_ostream &OS, + const LangOptions &LO) const { + CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO)); + TPrinter.print(getTerminator()); +} + +/// printTerminatorJson - Pretty-prints the terminator in JSON format. +void CFGBlock::printTerminatorJson(raw_ostream &Out, const LangOptions &LO, + bool AddQuotes) const { + std::string Buf; + llvm::raw_string_ostream TempOut(Buf); + + printTerminator(TempOut, LO); + + Out << JsonFormat(TempOut.str(), AddQuotes); +} + +// Returns true if by simply looking at the block, we can be sure that it +// results in a sink during analysis. This is useful to know when the analysis +// was interrupted, and we try to figure out if it would sink eventually. +// There may be many more reasons why a sink would appear during analysis +// (eg. checkers may generate sinks arbitrarily), but here we only consider +// sinks that would be obvious by looking at the CFG. +static bool isImmediateSinkBlock(const CFGBlock *Blk) { + if (Blk->hasNoReturnElement()) + return true; + + // FIXME: Throw-expressions are currently generating sinks during analysis: + // they're not supported yet, and also often used for actually terminating + // the program. So we should treat them as sinks in this analysis as well, + // at least for now, but once we have better support for exceptions, + // we'd need to carefully handle the case when the throw is being + // immediately caught. + if (llvm::any_of(*Blk, [](const CFGElement &Elm) { + if (Optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>()) + if (isa<CXXThrowExpr>(StmtElm->getStmt())) + return true; + return false; + })) + return true; + + return false; +} + +bool CFGBlock::isInevitablySinking() const { + const CFG &Cfg = *getParent(); + + const CFGBlock *StartBlk = this; + if (isImmediateSinkBlock(StartBlk)) + return true; + + llvm::SmallVector<const CFGBlock *, 32> DFSWorkList; + llvm::SmallPtrSet<const CFGBlock *, 32> Visited; + + DFSWorkList.push_back(StartBlk); + while (!DFSWorkList.empty()) { + const CFGBlock *Blk = DFSWorkList.back(); + DFSWorkList.pop_back(); + Visited.insert(Blk); + + // If at least one path reaches the CFG exit, it means that control is + // returned to the caller. For now, say that we are not sure what + // happens next. If necessary, this can be improved to analyze + // the parent StackFrameContext's call site in a similar manner. + if (Blk == &Cfg.getExit()) + return false; + + for (const auto &Succ : Blk->succs()) { + if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) { + if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) { + // If the block has reachable child blocks that aren't no-return, + // add them to the worklist. + DFSWorkList.push_back(SuccBlk); + } + } + } + } + + // Nothing reached the exit. It can only mean one thing: there's no return. + return true; +} + +const Expr *CFGBlock::getLastCondition() const { + // If the terminator is a temporary dtor or a virtual base, etc, we can't + // retrieve a meaningful condition, bail out. + if (Terminator.getKind() != CFGTerminator::StmtBranch) + return nullptr; + + // Also, if this method was called on a block that doesn't have 2 successors, + // this block doesn't have retrievable condition. + if (succ_size() < 2) + return nullptr; + + // FIXME: Is there a better condition expression we can return in this case? + if (size() == 0) + return nullptr; + + auto StmtElem = rbegin()->getAs<CFGStmt>(); + if (!StmtElem) + return nullptr; + + const Stmt *Cond = StmtElem->getStmt(); + if (isa<ObjCForCollectionStmt>(Cond) || isa<DeclStmt>(Cond)) + return nullptr; + + // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence + // the cast<>. + return cast<Expr>(Cond)->IgnoreParens(); +} + +Stmt *CFGBlock::getTerminatorCondition(bool StripParens) { + Stmt *Terminator = getTerminatorStmt(); + if (!Terminator) + return nullptr; + + Expr *E = nullptr; + + switch (Terminator->getStmtClass()) { + default: + break; + + case Stmt::CXXForRangeStmtClass: + E = cast<CXXForRangeStmt>(Terminator)->getCond(); + break; + + case Stmt::ForStmtClass: + E = cast<ForStmt>(Terminator)->getCond(); + break; + + case Stmt::WhileStmtClass: + E = cast<WhileStmt>(Terminator)->getCond(); + break; + + case Stmt::DoStmtClass: + E = cast<DoStmt>(Terminator)->getCond(); + break; + + case Stmt::IfStmtClass: + E = cast<IfStmt>(Terminator)->getCond(); + break; + + case Stmt::ChooseExprClass: + E = cast<ChooseExpr>(Terminator)->getCond(); + break; + + case Stmt::IndirectGotoStmtClass: + E = cast<IndirectGotoStmt>(Terminator)->getTarget(); + break; + + case Stmt::SwitchStmtClass: + E = cast<SwitchStmt>(Terminator)->getCond(); + break; + + case Stmt::BinaryConditionalOperatorClass: + E = cast<BinaryConditionalOperator>(Terminator)->getCond(); + break; + + case Stmt::ConditionalOperatorClass: + E = cast<ConditionalOperator>(Terminator)->getCond(); + break; + + case Stmt::BinaryOperatorClass: // '&&' and '||' + E = cast<BinaryOperator>(Terminator)->getLHS(); + break; + + case Stmt::ObjCForCollectionStmtClass: + return Terminator; + } + + if (!StripParens) + return E; + + return E ? E->IgnoreParens() : nullptr; +} + +//===----------------------------------------------------------------------===// +// CFG Graphviz Visualization +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +static StmtPrinterHelper* GraphHelper; +#endif + +void CFG::viewCFG(const LangOptions &LO) const { +#ifndef NDEBUG + StmtPrinterHelper H(this, LO); + GraphHelper = &H; + llvm::ViewGraph(this,"CFG"); + GraphHelper = nullptr; +#endif +} + +namespace llvm { + +template<> +struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits { + DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} + + static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) { +#ifndef NDEBUG + std::string OutSStr; + llvm::raw_string_ostream Out(OutSStr); + print_block(Out,Graph, *Node, *GraphHelper, false, false); + std::string& OutStr = Out.str(); + + if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); + + // Process string output to make it nicer... + for (unsigned i = 0; i != OutStr.length(); ++i) + if (OutStr[i] == '\n') { // Left justify + OutStr[i] = '\\'; + OutStr.insert(OutStr.begin()+i+1, 'l'); + } + + return OutStr; +#else + return {}; +#endif + } +}; + +} // namespace llvm |