aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clang14/lib/AST/VTableBuilder.cpp
diff options
context:
space:
mode:
authorvitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
committervitalyisaev <vitalyisaev@yandex-team.com>2023-06-29 10:00:50 +0300
commit6ffe9e53658409f212834330e13564e4952558f6 (patch)
tree85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/clang14/lib/AST/VTableBuilder.cpp
parent726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff)
downloadydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/clang14/lib/AST/VTableBuilder.cpp')
-rw-r--r--contrib/libs/clang14/lib/AST/VTableBuilder.cpp3796
1 files changed, 3796 insertions, 0 deletions
diff --git a/contrib/libs/clang14/lib/AST/VTableBuilder.cpp b/contrib/libs/clang14/lib/AST/VTableBuilder.cpp
new file mode 100644
index 0000000000..24586d6b70
--- /dev/null
+++ b/contrib/libs/clang14/lib/AST/VTableBuilder.cpp
@@ -0,0 +1,3796 @@
+//===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with generation of the layout of virtual tables.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/VTableBuilder.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTDiagnostic.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstdio>
+
+using namespace clang;
+
+#define DUMP_OVERRIDERS 0
+
+namespace {
+
+/// BaseOffset - Represents an offset from a derived class to a direct or
+/// indirect base class.
+struct BaseOffset {
+ /// DerivedClass - The derived class.
+ const CXXRecordDecl *DerivedClass;
+
+ /// VirtualBase - If the path from the derived class to the base class
+ /// involves virtual base classes, this holds the declaration of the last
+ /// virtual base in this path (i.e. closest to the base class).
+ const CXXRecordDecl *VirtualBase;
+
+ /// NonVirtualOffset - The offset from the derived class to the base class.
+ /// (Or the offset from the virtual base class to the base class, if the
+ /// path from the derived class to the base class involves a virtual base
+ /// class.
+ CharUnits NonVirtualOffset;
+
+ BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
+ NonVirtualOffset(CharUnits::Zero()) { }
+ BaseOffset(const CXXRecordDecl *DerivedClass,
+ const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
+ : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
+ NonVirtualOffset(NonVirtualOffset) { }
+
+ bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
+};
+
+/// FinalOverriders - Contains the final overrider member functions for all
+/// member functions in the base subobjects of a class.
+class FinalOverriders {
+public:
+ /// OverriderInfo - Information about a final overrider.
+ struct OverriderInfo {
+ /// Method - The method decl of the overrider.
+ const CXXMethodDecl *Method;
+
+ /// VirtualBase - The virtual base class subobject of this overrider.
+ /// Note that this records the closest derived virtual base class subobject.
+ const CXXRecordDecl *VirtualBase;
+
+ /// Offset - the base offset of the overrider's parent in the layout class.
+ CharUnits Offset;
+
+ OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
+ Offset(CharUnits::Zero()) { }
+ };
+
+private:
+ /// MostDerivedClass - The most derived class for which the final overriders
+ /// are stored.
+ const CXXRecordDecl *MostDerivedClass;
+
+ /// MostDerivedClassOffset - If we're building final overriders for a
+ /// construction vtable, this holds the offset from the layout class to the
+ /// most derived class.
+ const CharUnits MostDerivedClassOffset;
+
+ /// LayoutClass - The class we're using for layout information. Will be
+ /// different than the most derived class if the final overriders are for a
+ /// construction vtable.
+ const CXXRecordDecl *LayoutClass;
+
+ ASTContext &Context;
+
+ /// MostDerivedClassLayout - the AST record layout of the most derived class.
+ const ASTRecordLayout &MostDerivedClassLayout;
+
+ /// MethodBaseOffsetPairTy - Uniquely identifies a member function
+ /// in a base subobject.
+ typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
+
+ typedef llvm::DenseMap<MethodBaseOffsetPairTy,
+ OverriderInfo> OverridersMapTy;
+
+ /// OverridersMap - The final overriders for all virtual member functions of
+ /// all the base subobjects of the most derived class.
+ OverridersMapTy OverridersMap;
+
+ /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
+ /// as a record decl and a subobject number) and its offsets in the most
+ /// derived class as well as the layout class.
+ typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
+ CharUnits> SubobjectOffsetMapTy;
+
+ typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
+
+ /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
+ /// given base.
+ void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
+ CharUnits OffsetInLayoutClass,
+ SubobjectOffsetMapTy &SubobjectOffsets,
+ SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
+ SubobjectCountMapTy &SubobjectCounts);
+
+ typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
+
+ /// dump - dump the final overriders for a base subobject, and all its direct
+ /// and indirect base subobjects.
+ void dump(raw_ostream &Out, BaseSubobject Base,
+ VisitedVirtualBasesSetTy& VisitedVirtualBases);
+
+public:
+ FinalOverriders(const CXXRecordDecl *MostDerivedClass,
+ CharUnits MostDerivedClassOffset,
+ const CXXRecordDecl *LayoutClass);
+
+ /// getOverrider - Get the final overrider for the given method declaration in
+ /// the subobject with the given base offset.
+ OverriderInfo getOverrider(const CXXMethodDecl *MD,
+ CharUnits BaseOffset) const {
+ assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
+ "Did not find overrider!");
+
+ return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
+ }
+
+ /// dump - dump the final overriders.
+ void dump() {
+ VisitedVirtualBasesSetTy VisitedVirtualBases;
+ dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
+ VisitedVirtualBases);
+ }
+
+};
+
+FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
+ CharUnits MostDerivedClassOffset,
+ const CXXRecordDecl *LayoutClass)
+ : MostDerivedClass(MostDerivedClass),
+ MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
+ Context(MostDerivedClass->getASTContext()),
+ MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
+
+ // Compute base offsets.
+ SubobjectOffsetMapTy SubobjectOffsets;
+ SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
+ SubobjectCountMapTy SubobjectCounts;
+ ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
+ /*IsVirtual=*/false,
+ MostDerivedClassOffset,
+ SubobjectOffsets, SubobjectLayoutClassOffsets,
+ SubobjectCounts);
+
+ // Get the final overriders.
+ CXXFinalOverriderMap FinalOverriders;
+ MostDerivedClass->getFinalOverriders(FinalOverriders);
+
+ for (const auto &Overrider : FinalOverriders) {
+ const CXXMethodDecl *MD = Overrider.first;
+ const OverridingMethods &Methods = Overrider.second;
+
+ for (const auto &M : Methods) {
+ unsigned SubobjectNumber = M.first;
+ assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
+ SubobjectNumber)) &&
+ "Did not find subobject offset!");
+
+ CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
+ SubobjectNumber)];
+
+ assert(M.second.size() == 1 && "Final overrider is not unique!");
+ const UniqueVirtualMethod &Method = M.second.front();
+
+ const CXXRecordDecl *OverriderRD = Method.Method->getParent();
+ assert(SubobjectLayoutClassOffsets.count(
+ std::make_pair(OverriderRD, Method.Subobject))
+ && "Did not find subobject offset!");
+ CharUnits OverriderOffset =
+ SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
+ Method.Subobject)];
+
+ OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
+ assert(!Overrider.Method && "Overrider should not exist yet!");
+
+ Overrider.Offset = OverriderOffset;
+ Overrider.Method = Method.Method;
+ Overrider.VirtualBase = Method.InVirtualSubobject;
+ }
+ }
+
+#if DUMP_OVERRIDERS
+ // And dump them (for now).
+ dump();
+#endif
+}
+
+static BaseOffset ComputeBaseOffset(const ASTContext &Context,
+ const CXXRecordDecl *DerivedRD,
+ const CXXBasePath &Path) {
+ CharUnits NonVirtualOffset = CharUnits::Zero();
+
+ unsigned NonVirtualStart = 0;
+ const CXXRecordDecl *VirtualBase = nullptr;
+
+ // First, look for the virtual base class.
+ for (int I = Path.size(), E = 0; I != E; --I) {
+ const CXXBasePathElement &Element = Path[I - 1];
+
+ if (Element.Base->isVirtual()) {
+ NonVirtualStart = I;
+ QualType VBaseType = Element.Base->getType();
+ VirtualBase = VBaseType->getAsCXXRecordDecl();
+ break;
+ }
+ }
+
+ // Now compute the non-virtual offset.
+ for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
+ const CXXBasePathElement &Element = Path[I];
+
+ // Check the base class offset.
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
+
+ const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
+
+ NonVirtualOffset += Layout.getBaseClassOffset(Base);
+ }
+
+ // FIXME: This should probably use CharUnits or something. Maybe we should
+ // even change the base offsets in ASTRecordLayout to be specified in
+ // CharUnits.
+ return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
+
+}
+
+static BaseOffset ComputeBaseOffset(const ASTContext &Context,
+ const CXXRecordDecl *BaseRD,
+ const CXXRecordDecl *DerivedRD) {
+ CXXBasePaths Paths(/*FindAmbiguities=*/false,
+ /*RecordPaths=*/true, /*DetectVirtual=*/false);
+
+ if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
+ llvm_unreachable("Class must be derived from the passed in base class!");
+
+ return ComputeBaseOffset(Context, DerivedRD, Paths.front());
+}
+
+static BaseOffset
+ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
+ const CXXMethodDecl *DerivedMD,
+ const CXXMethodDecl *BaseMD) {
+ const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>();
+ const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>();
+
+ // Canonicalize the return types.
+ CanQualType CanDerivedReturnType =
+ Context.getCanonicalType(DerivedFT->getReturnType());
+ CanQualType CanBaseReturnType =
+ Context.getCanonicalType(BaseFT->getReturnType());
+
+ assert(CanDerivedReturnType->getTypeClass() ==
+ CanBaseReturnType->getTypeClass() &&
+ "Types must have same type class!");
+
+ if (CanDerivedReturnType == CanBaseReturnType) {
+ // No adjustment needed.
+ return BaseOffset();
+ }
+
+ if (isa<ReferenceType>(CanDerivedReturnType)) {
+ CanDerivedReturnType =
+ CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
+ CanBaseReturnType =
+ CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
+ } else if (isa<PointerType>(CanDerivedReturnType)) {
+ CanDerivedReturnType =
+ CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
+ CanBaseReturnType =
+ CanBaseReturnType->getAs<PointerType>()->getPointeeType();
+ } else {
+ llvm_unreachable("Unexpected return type!");
+ }
+
+ // We need to compare unqualified types here; consider
+ // const T *Base::foo();
+ // T *Derived::foo();
+ if (CanDerivedReturnType.getUnqualifiedType() ==
+ CanBaseReturnType.getUnqualifiedType()) {
+ // No adjustment needed.
+ return BaseOffset();
+ }
+
+ const CXXRecordDecl *DerivedRD =
+ cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
+
+ const CXXRecordDecl *BaseRD =
+ cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
+
+ return ComputeBaseOffset(Context, BaseRD, DerivedRD);
+}
+
+void
+FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
+ CharUnits OffsetInLayoutClass,
+ SubobjectOffsetMapTy &SubobjectOffsets,
+ SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
+ SubobjectCountMapTy &SubobjectCounts) {
+ const CXXRecordDecl *RD = Base.getBase();
+
+ unsigned SubobjectNumber = 0;
+ if (!IsVirtual)
+ SubobjectNumber = ++SubobjectCounts[RD];
+
+ // Set up the subobject to offset mapping.
+ assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
+ && "Subobject offset already exists!");
+ assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
+ && "Subobject offset already exists!");
+
+ SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
+ SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
+ OffsetInLayoutClass;
+
+ // Traverse our bases.
+ for (const auto &B : RD->bases()) {
+ const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
+
+ CharUnits BaseOffset;
+ CharUnits BaseOffsetInLayoutClass;
+ if (B.isVirtual()) {
+ // Check if we've visited this virtual base before.
+ if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
+ continue;
+
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
+ BaseOffsetInLayoutClass =
+ LayoutClassLayout.getVBaseClassOffset(BaseDecl);
+ } else {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
+
+ BaseOffset = Base.getBaseOffset() + Offset;
+ BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
+ }
+
+ ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
+ B.isVirtual(), BaseOffsetInLayoutClass,
+ SubobjectOffsets, SubobjectLayoutClassOffsets,
+ SubobjectCounts);
+ }
+}
+
+void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
+ VisitedVirtualBasesSetTy &VisitedVirtualBases) {
+ const CXXRecordDecl *RD = Base.getBase();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ for (const auto &B : RD->bases()) {
+ const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
+
+ // Ignore bases that don't have any virtual member functions.
+ if (!BaseDecl->isPolymorphic())
+ continue;
+
+ CharUnits BaseOffset;
+ if (B.isVirtual()) {
+ if (!VisitedVirtualBases.insert(BaseDecl).second) {
+ // We've visited this base before.
+ continue;
+ }
+
+ BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
+ } else {
+ BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
+ }
+
+ dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
+ }
+
+ Out << "Final overriders for (";
+ RD->printQualifiedName(Out);
+ Out << ", ";
+ Out << Base.getBaseOffset().getQuantity() << ")\n";
+
+ // Now dump the overriders for this base subobject.
+ for (const auto *MD : RD->methods()) {
+ if (!VTableContextBase::hasVtableSlot(MD))
+ continue;
+ MD = MD->getCanonicalDecl();
+
+ OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
+
+ Out << " ";
+ MD->printQualifiedName(Out);
+ Out << " - (";
+ Overrider.Method->printQualifiedName(Out);
+ Out << ", " << Overrider.Offset.getQuantity() << ')';
+
+ BaseOffset Offset;
+ if (!Overrider.Method->isPure())
+ Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
+
+ if (!Offset.isEmpty()) {
+ Out << " [ret-adj: ";
+ if (Offset.VirtualBase) {
+ Offset.VirtualBase->printQualifiedName(Out);
+ Out << " vbase, ";
+ }
+
+ Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
+ }
+
+ Out << "\n";
+ }
+}
+
+/// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
+struct VCallOffsetMap {
+
+ typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
+
+ /// Offsets - Keeps track of methods and their offsets.
+ // FIXME: This should be a real map and not a vector.
+ SmallVector<MethodAndOffsetPairTy, 16> Offsets;
+
+ /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
+ /// can share the same vcall offset.
+ static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
+ const CXXMethodDecl *RHS);
+
+public:
+ /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
+ /// add was successful, or false if there was already a member function with
+ /// the same signature in the map.
+ bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
+
+ /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
+ /// vtable address point) for the given virtual member function.
+ CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
+
+ // empty - Return whether the offset map is empty or not.
+ bool empty() const { return Offsets.empty(); }
+};
+
+static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
+ const CXXMethodDecl *RHS) {
+ const FunctionProtoType *LT =
+ cast<FunctionProtoType>(LHS->getType().getCanonicalType());
+ const FunctionProtoType *RT =
+ cast<FunctionProtoType>(RHS->getType().getCanonicalType());
+
+ // Fast-path matches in the canonical types.
+ if (LT == RT) return true;
+
+ // Force the signatures to match. We can't rely on the overrides
+ // list here because there isn't necessarily an inheritance
+ // relationship between the two methods.
+ if (LT->getMethodQuals() != RT->getMethodQuals())
+ return false;
+ return LT->getParamTypes() == RT->getParamTypes();
+}
+
+bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
+ const CXXMethodDecl *RHS) {
+ assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!");
+ assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!");
+
+ // A destructor can share a vcall offset with another destructor.
+ if (isa<CXXDestructorDecl>(LHS))
+ return isa<CXXDestructorDecl>(RHS);
+
+ // FIXME: We need to check more things here.
+
+ // The methods must have the same name.
+ DeclarationName LHSName = LHS->getDeclName();
+ DeclarationName RHSName = RHS->getDeclName();
+ if (LHSName != RHSName)
+ return false;
+
+ // And the same signatures.
+ return HasSameVirtualSignature(LHS, RHS);
+}
+
+bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
+ CharUnits OffsetOffset) {
+ // Check if we can reuse an offset.
+ for (const auto &OffsetPair : Offsets) {
+ if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
+ return false;
+ }
+
+ // Add the offset.
+ Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
+ return true;
+}
+
+CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
+ // Look for an offset.
+ for (const auto &OffsetPair : Offsets) {
+ if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
+ return OffsetPair.second;
+ }
+
+ llvm_unreachable("Should always find a vcall offset offset!");
+}
+
+/// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
+class VCallAndVBaseOffsetBuilder {
+public:
+ typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
+ VBaseOffsetOffsetsMapTy;
+
+private:
+ const ItaniumVTableContext &VTables;
+
+ /// MostDerivedClass - The most derived class for which we're building vcall
+ /// and vbase offsets.
+ const CXXRecordDecl *MostDerivedClass;
+
+ /// LayoutClass - The class we're using for layout information. Will be
+ /// different than the most derived class if we're building a construction
+ /// vtable.
+ const CXXRecordDecl *LayoutClass;
+
+ /// Context - The ASTContext which we will use for layout information.
+ ASTContext &Context;
+
+ /// Components - vcall and vbase offset components
+ typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
+ VTableComponentVectorTy Components;
+
+ /// VisitedVirtualBases - Visited virtual bases.
+ llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
+
+ /// VCallOffsets - Keeps track of vcall offsets.
+ VCallOffsetMap VCallOffsets;
+
+
+ /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
+ /// relative to the address point.
+ VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
+
+ /// FinalOverriders - The final overriders of the most derived class.
+ /// (Can be null when we're not building a vtable of the most derived class).
+ const FinalOverriders *Overriders;
+
+ /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
+ /// given base subobject.
+ void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
+ CharUnits RealBaseOffset);
+
+ /// AddVCallOffsets - Add vcall offsets for the given base subobject.
+ void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
+
+ /// AddVBaseOffsets - Add vbase offsets for the given class.
+ void AddVBaseOffsets(const CXXRecordDecl *Base,
+ CharUnits OffsetInLayoutClass);
+
+ /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
+ /// chars, relative to the vtable address point.
+ CharUnits getCurrentOffsetOffset() const;
+
+public:
+ VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables,
+ const CXXRecordDecl *MostDerivedClass,
+ const CXXRecordDecl *LayoutClass,
+ const FinalOverriders *Overriders,
+ BaseSubobject Base, bool BaseIsVirtual,
+ CharUnits OffsetInLayoutClass)
+ : VTables(VTables), MostDerivedClass(MostDerivedClass),
+ LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
+ Overriders(Overriders) {
+
+ // Add vcall and vbase offsets.
+ AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
+ }
+
+ /// Methods for iterating over the components.
+ typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
+ const_iterator components_begin() const { return Components.rbegin(); }
+ const_iterator components_end() const { return Components.rend(); }
+
+ const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
+ const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
+ return VBaseOffsetOffsets;
+ }
+};
+
+void
+VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
+ bool BaseIsVirtual,
+ CharUnits RealBaseOffset) {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
+
+ // Itanium C++ ABI 2.5.2:
+ // ..in classes sharing a virtual table with a primary base class, the vcall
+ // and vbase offsets added by the derived class all come before the vcall
+ // and vbase offsets required by the base class, so that the latter may be
+ // laid out as required by the base class without regard to additions from
+ // the derived class(es).
+
+ // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
+ // emit them for the primary base first).
+ if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
+ bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
+
+ CharUnits PrimaryBaseOffset;
+
+ // Get the base offset of the primary base.
+ if (PrimaryBaseIsVirtual) {
+ assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary vbase should have a zero offset!");
+
+ const ASTRecordLayout &MostDerivedClassLayout =
+ Context.getASTRecordLayout(MostDerivedClass);
+
+ PrimaryBaseOffset =
+ MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
+ } else {
+ assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary base should have a zero offset!");
+
+ PrimaryBaseOffset = Base.getBaseOffset();
+ }
+
+ AddVCallAndVBaseOffsets(
+ BaseSubobject(PrimaryBase,PrimaryBaseOffset),
+ PrimaryBaseIsVirtual, RealBaseOffset);
+ }
+
+ AddVBaseOffsets(Base.getBase(), RealBaseOffset);
+
+ // We only want to add vcall offsets for virtual bases.
+ if (BaseIsVirtual)
+ AddVCallOffsets(Base, RealBaseOffset);
+}
+
+CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
+ // OffsetIndex is the index of this vcall or vbase offset, relative to the
+ // vtable address point. (We subtract 3 to account for the information just
+ // above the address point, the RTTI info, the offset to top, and the
+ // vcall offset itself).
+ int64_t OffsetIndex = -(int64_t)(3 + Components.size());
+
+ // Under the relative ABI, the offset widths are 32-bit ints instead of
+ // pointer widths.
+ CharUnits OffsetWidth = Context.toCharUnitsFromBits(
+ VTables.isRelativeLayout() ? 32
+ : Context.getTargetInfo().getPointerWidth(0));
+ CharUnits OffsetOffset = OffsetWidth * OffsetIndex;
+
+ return OffsetOffset;
+}
+
+void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
+ CharUnits VBaseOffset) {
+ const CXXRecordDecl *RD = Base.getBase();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
+
+ // Handle the primary base first.
+ // We only want to add vcall offsets if the base is non-virtual; a virtual
+ // primary base will have its vcall and vbase offsets emitted already.
+ if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
+ // Get the base offset of the primary base.
+ assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary base should have a zero offset!");
+
+ AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
+ VBaseOffset);
+ }
+
+ // Add the vcall offsets.
+ for (const auto *MD : RD->methods()) {
+ if (!VTableContextBase::hasVtableSlot(MD))
+ continue;
+ MD = MD->getCanonicalDecl();
+
+ CharUnits OffsetOffset = getCurrentOffsetOffset();
+
+ // Don't add a vcall offset if we already have one for this member function
+ // signature.
+ if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
+ continue;
+
+ CharUnits Offset = CharUnits::Zero();
+
+ if (Overriders) {
+ // Get the final overrider.
+ FinalOverriders::OverriderInfo Overrider =
+ Overriders->getOverrider(MD, Base.getBaseOffset());
+
+ /// The vcall offset is the offset from the virtual base to the object
+ /// where the function was overridden.
+ Offset = Overrider.Offset - VBaseOffset;
+ }
+
+ Components.push_back(
+ VTableComponent::MakeVCallOffset(Offset));
+ }
+
+ // And iterate over all non-virtual bases (ignoring the primary base).
+ for (const auto &B : RD->bases()) {
+ if (B.isVirtual())
+ continue;
+
+ const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
+ if (BaseDecl == PrimaryBase)
+ continue;
+
+ // Get the base offset of this base.
+ CharUnits BaseOffset = Base.getBaseOffset() +
+ Layout.getBaseClassOffset(BaseDecl);
+
+ AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
+ VBaseOffset);
+ }
+}
+
+void
+VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
+ CharUnits OffsetInLayoutClass) {
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ // Add vbase offsets.
+ for (const auto &B : RD->bases()) {
+ const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
+
+ // Check if this is a virtual base that we haven't visited before.
+ if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
+ CharUnits Offset =
+ LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
+
+ // Add the vbase offset offset.
+ assert(!VBaseOffsetOffsets.count(BaseDecl) &&
+ "vbase offset offset already exists!");
+
+ CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
+ VBaseOffsetOffsets.insert(
+ std::make_pair(BaseDecl, VBaseOffsetOffset));
+
+ Components.push_back(
+ VTableComponent::MakeVBaseOffset(Offset));
+ }
+
+ // Check the base class looking for more vbase offsets.
+ AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
+ }
+}
+
+/// ItaniumVTableBuilder - Class for building vtable layout information.
+class ItaniumVTableBuilder {
+public:
+ /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
+ /// primary bases.
+ typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
+ PrimaryBasesSetVectorTy;
+
+ typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
+ VBaseOffsetOffsetsMapTy;
+
+ typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy;
+
+ typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
+
+private:
+ /// VTables - Global vtable information.
+ ItaniumVTableContext &VTables;
+
+ /// MostDerivedClass - The most derived class for which we're building this
+ /// vtable.
+ const CXXRecordDecl *MostDerivedClass;
+
+ /// MostDerivedClassOffset - If we're building a construction vtable, this
+ /// holds the offset from the layout class to the most derived class.
+ const CharUnits MostDerivedClassOffset;
+
+ /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
+ /// base. (This only makes sense when building a construction vtable).
+ bool MostDerivedClassIsVirtual;
+
+ /// LayoutClass - The class we're using for layout information. Will be
+ /// different than the most derived class if we're building a construction
+ /// vtable.
+ const CXXRecordDecl *LayoutClass;
+
+ /// Context - The ASTContext which we will use for layout information.
+ ASTContext &Context;
+
+ /// FinalOverriders - The final overriders of the most derived class.
+ const FinalOverriders Overriders;
+
+ /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
+ /// bases in this vtable.
+ llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
+
+ /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
+ /// the most derived class.
+ VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
+
+ /// Components - The components of the vtable being built.
+ SmallVector<VTableComponent, 64> Components;
+
+ /// AddressPoints - Address points for the vtable being built.
+ AddressPointsMapTy AddressPoints;
+
+ /// MethodInfo - Contains information about a method in a vtable.
+ /// (Used for computing 'this' pointer adjustment thunks.
+ struct MethodInfo {
+ /// BaseOffset - The base offset of this method.
+ const CharUnits BaseOffset;
+
+ /// BaseOffsetInLayoutClass - The base offset in the layout class of this
+ /// method.
+ const CharUnits BaseOffsetInLayoutClass;
+
+ /// VTableIndex - The index in the vtable that this method has.
+ /// (For destructors, this is the index of the complete destructor).
+ const uint64_t VTableIndex;
+
+ MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
+ uint64_t VTableIndex)
+ : BaseOffset(BaseOffset),
+ BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
+ VTableIndex(VTableIndex) { }
+
+ MethodInfo()
+ : BaseOffset(CharUnits::Zero()),
+ BaseOffsetInLayoutClass(CharUnits::Zero()),
+ VTableIndex(0) { }
+
+ MethodInfo(MethodInfo const&) = default;
+ };
+
+ typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
+
+ /// MethodInfoMap - The information for all methods in the vtable we're
+ /// currently building.
+ MethodInfoMapTy MethodInfoMap;
+
+ /// MethodVTableIndices - Contains the index (relative to the vtable address
+ /// point) where the function pointer for a virtual function is stored.
+ MethodVTableIndicesTy MethodVTableIndices;
+
+ typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
+
+ /// VTableThunks - The thunks by vtable index in the vtable currently being
+ /// built.
+ VTableThunksMapTy VTableThunks;
+
+ typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
+ typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
+
+ /// Thunks - A map that contains all the thunks needed for all methods in the
+ /// most derived class for which the vtable is currently being built.
+ ThunksMapTy Thunks;
+
+ /// AddThunk - Add a thunk for the given method.
+ void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
+
+ /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
+ /// part of the vtable we're currently building.
+ void ComputeThisAdjustments();
+
+ typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
+
+ /// PrimaryVirtualBases - All known virtual bases who are a primary base of
+ /// some other base.
+ VisitedVirtualBasesSetTy PrimaryVirtualBases;
+
+ /// ComputeReturnAdjustment - Compute the return adjustment given a return
+ /// adjustment base offset.
+ ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
+
+ /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
+ /// the 'this' pointer from the base subobject to the derived subobject.
+ BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
+ BaseSubobject Derived) const;
+
+ /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
+ /// given virtual member function, its offset in the layout class and its
+ /// final overrider.
+ ThisAdjustment
+ ComputeThisAdjustment(const CXXMethodDecl *MD,
+ CharUnits BaseOffsetInLayoutClass,
+ FinalOverriders::OverriderInfo Overrider);
+
+ /// AddMethod - Add a single virtual member function to the vtable
+ /// components vector.
+ void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
+
+ /// IsOverriderUsed - Returns whether the overrider will ever be used in this
+ /// part of the vtable.
+ ///
+ /// Itanium C++ ABI 2.5.2:
+ ///
+ /// struct A { virtual void f(); };
+ /// struct B : virtual public A { int i; };
+ /// struct C : virtual public A { int j; };
+ /// struct D : public B, public C {};
+ ///
+ /// When B and C are declared, A is a primary base in each case, so although
+ /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
+ /// adjustment is required and no thunk is generated. However, inside D
+ /// objects, A is no longer a primary base of C, so if we allowed calls to
+ /// C::f() to use the copy of A's vtable in the C subobject, we would need
+ /// to adjust this from C* to B::A*, which would require a third-party
+ /// thunk. Since we require that a call to C::f() first convert to A*,
+ /// C-in-D's copy of A's vtable is never referenced, so this is not
+ /// necessary.
+ bool IsOverriderUsed(const CXXMethodDecl *Overrider,
+ CharUnits BaseOffsetInLayoutClass,
+ const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
+ CharUnits FirstBaseOffsetInLayoutClass) const;
+
+
+ /// AddMethods - Add the methods of this base subobject and all its
+ /// primary bases to the vtable components vector.
+ void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
+ const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
+ CharUnits FirstBaseOffsetInLayoutClass,
+ PrimaryBasesSetVectorTy &PrimaryBases);
+
+ // LayoutVTable - Layout the vtable for the given base class, including its
+ // secondary vtables and any vtables for virtual bases.
+ void LayoutVTable();
+
+ /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
+ /// given base subobject, as well as all its secondary vtables.
+ ///
+ /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
+ /// or a direct or indirect base of a virtual base.
+ ///
+ /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
+ /// in the layout class.
+ void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
+ bool BaseIsMorallyVirtual,
+ bool BaseIsVirtualInLayoutClass,
+ CharUnits OffsetInLayoutClass);
+
+ /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
+ /// subobject.
+ ///
+ /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
+ /// or a direct or indirect base of a virtual base.
+ void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
+ CharUnits OffsetInLayoutClass);
+
+ /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
+ /// class hierarchy.
+ void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
+ CharUnits OffsetInLayoutClass,
+ VisitedVirtualBasesSetTy &VBases);
+
+ /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
+ /// given base (excluding any primary bases).
+ void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
+ VisitedVirtualBasesSetTy &VBases);
+
+ /// isBuildingConstructionVTable - Return whether this vtable builder is
+ /// building a construction vtable.
+ bool isBuildingConstructorVTable() const {
+ return MostDerivedClass != LayoutClass;
+ }
+
+public:
+ /// Component indices of the first component of each of the vtables in the
+ /// vtable group.
+ SmallVector<size_t, 4> VTableIndices;
+
+ ItaniumVTableBuilder(ItaniumVTableContext &VTables,
+ const CXXRecordDecl *MostDerivedClass,
+ CharUnits MostDerivedClassOffset,
+ bool MostDerivedClassIsVirtual,
+ const CXXRecordDecl *LayoutClass)
+ : VTables(VTables), MostDerivedClass(MostDerivedClass),
+ MostDerivedClassOffset(MostDerivedClassOffset),
+ MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
+ LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
+ Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
+ assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
+
+ LayoutVTable();
+
+ if (Context.getLangOpts().DumpVTableLayouts)
+ dumpLayout(llvm::outs());
+ }
+
+ uint64_t getNumThunks() const {
+ return Thunks.size();
+ }
+
+ ThunksMapTy::const_iterator thunks_begin() const {
+ return Thunks.begin();
+ }
+
+ ThunksMapTy::const_iterator thunks_end() const {
+ return Thunks.end();
+ }
+
+ const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
+ return VBaseOffsetOffsets;
+ }
+
+ const AddressPointsMapTy &getAddressPoints() const {
+ return AddressPoints;
+ }
+
+ MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
+ return MethodVTableIndices.begin();
+ }
+
+ MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
+ return MethodVTableIndices.end();
+ }
+
+ ArrayRef<VTableComponent> vtable_components() const { return Components; }
+
+ AddressPointsMapTy::const_iterator address_points_begin() const {
+ return AddressPoints.begin();
+ }
+
+ AddressPointsMapTy::const_iterator address_points_end() const {
+ return AddressPoints.end();
+ }
+
+ VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
+ return VTableThunks.begin();
+ }
+
+ VTableThunksMapTy::const_iterator vtable_thunks_end() const {
+ return VTableThunks.end();
+ }
+
+ /// dumpLayout - Dump the vtable layout.
+ void dumpLayout(raw_ostream&);
+};
+
+void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
+ const ThunkInfo &Thunk) {
+ assert(!isBuildingConstructorVTable() &&
+ "Can't add thunks for construction vtable");
+
+ SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
+
+ // Check if we have this thunk already.
+ if (llvm::is_contained(ThunksVector, Thunk))
+ return;
+
+ ThunksVector.push_back(Thunk);
+}
+
+typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
+
+/// Visit all the methods overridden by the given method recursively,
+/// in a depth-first pre-order. The Visitor's visitor method returns a bool
+/// indicating whether to continue the recursion for the given overridden
+/// method (i.e. returning false stops the iteration).
+template <class VisitorTy>
+static void
+visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
+ assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!");
+
+ for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
+ if (!Visitor(OverriddenMD))
+ continue;
+ visitAllOverriddenMethods(OverriddenMD, Visitor);
+ }
+}
+
+/// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
+/// the overridden methods that the function decl overrides.
+static void
+ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
+ OverriddenMethodsSetTy& OverriddenMethods) {
+ auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
+ // Don't recurse on this method if we've already collected it.
+ return OverriddenMethods.insert(MD).second;
+ };
+ visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
+}
+
+void ItaniumVTableBuilder::ComputeThisAdjustments() {
+ // Now go through the method info map and see if any of the methods need
+ // 'this' pointer adjustments.
+ for (const auto &MI : MethodInfoMap) {
+ const CXXMethodDecl *MD = MI.first;
+ const MethodInfo &MethodInfo = MI.second;
+
+ // Ignore adjustments for unused function pointers.
+ uint64_t VTableIndex = MethodInfo.VTableIndex;
+ if (Components[VTableIndex].getKind() ==
+ VTableComponent::CK_UnusedFunctionPointer)
+ continue;
+
+ // Get the final overrider for this method.
+ FinalOverriders::OverriderInfo Overrider =
+ Overriders.getOverrider(MD, MethodInfo.BaseOffset);
+
+ // Check if we need an adjustment at all.
+ if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
+ // When a return thunk is needed by a derived class that overrides a
+ // virtual base, gcc uses a virtual 'this' adjustment as well.
+ // While the thunk itself might be needed by vtables in subclasses or
+ // in construction vtables, there doesn't seem to be a reason for using
+ // the thunk in this vtable. Still, we do so to match gcc.
+ if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
+ continue;
+ }
+
+ ThisAdjustment ThisAdjustment =
+ ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
+
+ if (ThisAdjustment.isEmpty())
+ continue;
+
+ // Add it.
+ VTableThunks[VTableIndex].This = ThisAdjustment;
+
+ if (isa<CXXDestructorDecl>(MD)) {
+ // Add an adjustment for the deleting destructor as well.
+ VTableThunks[VTableIndex + 1].This = ThisAdjustment;
+ }
+ }
+
+ /// Clear the method info map.
+ MethodInfoMap.clear();
+
+ if (isBuildingConstructorVTable()) {
+ // We don't need to store thunk information for construction vtables.
+ return;
+ }
+
+ for (const auto &TI : VTableThunks) {
+ const VTableComponent &Component = Components[TI.first];
+ const ThunkInfo &Thunk = TI.second;
+ const CXXMethodDecl *MD;
+
+ switch (Component.getKind()) {
+ default:
+ llvm_unreachable("Unexpected vtable component kind!");
+ case VTableComponent::CK_FunctionPointer:
+ MD = Component.getFunctionDecl();
+ break;
+ case VTableComponent::CK_CompleteDtorPointer:
+ MD = Component.getDestructorDecl();
+ break;
+ case VTableComponent::CK_DeletingDtorPointer:
+ // We've already added the thunk when we saw the complete dtor pointer.
+ continue;
+ }
+
+ if (MD->getParent() == MostDerivedClass)
+ AddThunk(MD, Thunk);
+ }
+}
+
+ReturnAdjustment
+ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
+ ReturnAdjustment Adjustment;
+
+ if (!Offset.isEmpty()) {
+ if (Offset.VirtualBase) {
+ // Get the virtual base offset offset.
+ if (Offset.DerivedClass == MostDerivedClass) {
+ // We can get the offset offset directly from our map.
+ Adjustment.Virtual.Itanium.VBaseOffsetOffset =
+ VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
+ } else {
+ Adjustment.Virtual.Itanium.VBaseOffsetOffset =
+ VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
+ Offset.VirtualBase).getQuantity();
+ }
+ }
+
+ Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
+ }
+
+ return Adjustment;
+}
+
+BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
+ BaseSubobject Base, BaseSubobject Derived) const {
+ const CXXRecordDecl *BaseRD = Base.getBase();
+ const CXXRecordDecl *DerivedRD = Derived.getBase();
+
+ CXXBasePaths Paths(/*FindAmbiguities=*/true,
+ /*RecordPaths=*/true, /*DetectVirtual=*/true);
+
+ if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
+ llvm_unreachable("Class must be derived from the passed in base class!");
+
+ // We have to go through all the paths, and see which one leads us to the
+ // right base subobject.
+ for (const CXXBasePath &Path : Paths) {
+ BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
+
+ CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
+
+ if (Offset.VirtualBase) {
+ // If we have a virtual base class, the non-virtual offset is relative
+ // to the virtual base class offset.
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ /// Get the virtual base offset, relative to the most derived class
+ /// layout.
+ OffsetToBaseSubobject +=
+ LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
+ } else {
+ // Otherwise, the non-virtual offset is relative to the derived class
+ // offset.
+ OffsetToBaseSubobject += Derived.getBaseOffset();
+ }
+
+ // Check if this path gives us the right base subobject.
+ if (OffsetToBaseSubobject == Base.getBaseOffset()) {
+ // Since we're going from the base class _to_ the derived class, we'll
+ // invert the non-virtual offset here.
+ Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
+ return Offset;
+ }
+ }
+
+ return BaseOffset();
+}
+
+ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
+ const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
+ FinalOverriders::OverriderInfo Overrider) {
+ // Ignore adjustments for pure virtual member functions.
+ if (Overrider.Method->isPure())
+ return ThisAdjustment();
+
+ BaseSubobject OverriddenBaseSubobject(MD->getParent(),
+ BaseOffsetInLayoutClass);
+
+ BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
+ Overrider.Offset);
+
+ // Compute the adjustment offset.
+ BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
+ OverriderBaseSubobject);
+ if (Offset.isEmpty())
+ return ThisAdjustment();
+
+ ThisAdjustment Adjustment;
+
+ if (Offset.VirtualBase) {
+ // Get the vcall offset map for this virtual base.
+ VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
+
+ if (VCallOffsets.empty()) {
+ // We don't have vcall offsets for this virtual base, go ahead and
+ // build them.
+ VCallAndVBaseOffsetBuilder Builder(
+ VTables, MostDerivedClass, MostDerivedClass,
+ /*Overriders=*/nullptr,
+ BaseSubobject(Offset.VirtualBase, CharUnits::Zero()),
+ /*BaseIsVirtual=*/true,
+ /*OffsetInLayoutClass=*/
+ CharUnits::Zero());
+
+ VCallOffsets = Builder.getVCallOffsets();
+ }
+
+ Adjustment.Virtual.Itanium.VCallOffsetOffset =
+ VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
+ }
+
+ // Set the non-virtual part of the adjustment.
+ Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
+
+ return Adjustment;
+}
+
+void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
+ ReturnAdjustment ReturnAdjustment) {
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ assert(ReturnAdjustment.isEmpty() &&
+ "Destructor can't have return adjustment!");
+
+ // Add both the complete destructor and the deleting destructor.
+ Components.push_back(VTableComponent::MakeCompleteDtor(DD));
+ Components.push_back(VTableComponent::MakeDeletingDtor(DD));
+ } else {
+ // Add the return adjustment if necessary.
+ if (!ReturnAdjustment.isEmpty())
+ VTableThunks[Components.size()].Return = ReturnAdjustment;
+
+ // Add the function.
+ Components.push_back(VTableComponent::MakeFunction(MD));
+ }
+}
+
+/// OverridesIndirectMethodInBase - Return whether the given member function
+/// overrides any methods in the set of given bases.
+/// Unlike OverridesMethodInBase, this checks "overriders of overriders".
+/// For example, if we have:
+///
+/// struct A { virtual void f(); }
+/// struct B : A { virtual void f(); }
+/// struct C : B { virtual void f(); }
+///
+/// OverridesIndirectMethodInBase will return true if given C::f as the method
+/// and { A } as the set of bases.
+static bool OverridesIndirectMethodInBases(
+ const CXXMethodDecl *MD,
+ ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
+ if (Bases.count(MD->getParent()))
+ return true;
+
+ for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) {
+ // Check "indirect overriders".
+ if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
+ return true;
+ }
+
+ return false;
+}
+
+bool ItaniumVTableBuilder::IsOverriderUsed(
+ const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
+ const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
+ CharUnits FirstBaseOffsetInLayoutClass) const {
+ // If the base and the first base in the primary base chain have the same
+ // offsets, then this overrider will be used.
+ if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
+ return true;
+
+ // We know now that Base (or a direct or indirect base of it) is a primary
+ // base in part of the class hierarchy, but not a primary base in the most
+ // derived class.
+
+ // If the overrider is the first base in the primary base chain, we know
+ // that the overrider will be used.
+ if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
+ return true;
+
+ ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
+
+ const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
+ PrimaryBases.insert(RD);
+
+ // Now traverse the base chain, starting with the first base, until we find
+ // the base that is no longer a primary base.
+ while (true) {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
+
+ if (!PrimaryBase)
+ break;
+
+ if (Layout.isPrimaryBaseVirtual()) {
+ assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary base should always be at offset 0!");
+
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ // Now check if this is the primary base that is not a primary base in the
+ // most derived class.
+ if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
+ FirstBaseOffsetInLayoutClass) {
+ // We found it, stop walking the chain.
+ break;
+ }
+ } else {
+ assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary base should always be at offset 0!");
+ }
+
+ if (!PrimaryBases.insert(PrimaryBase))
+ llvm_unreachable("Found a duplicate primary base!");
+
+ RD = PrimaryBase;
+ }
+
+ // If the final overrider is an override of one of the primary bases,
+ // then we know that it will be used.
+ return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
+}
+
+typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
+
+/// FindNearestOverriddenMethod - Given a method, returns the overridden method
+/// from the nearest base. Returns null if no method was found.
+/// The Bases are expected to be sorted in a base-to-derived order.
+static const CXXMethodDecl *
+FindNearestOverriddenMethod(const CXXMethodDecl *MD,
+ BasesSetVectorTy &Bases) {
+ OverriddenMethodsSetTy OverriddenMethods;
+ ComputeAllOverriddenMethods(MD, OverriddenMethods);
+
+ for (const CXXRecordDecl *PrimaryBase : llvm::reverse(Bases)) {
+ // Now check the overridden methods.
+ for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
+ // We found our overridden method.
+ if (OverriddenMD->getParent() == PrimaryBase)
+ return OverriddenMD;
+ }
+ }
+
+ return nullptr;
+}
+
+void ItaniumVTableBuilder::AddMethods(
+ BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
+ const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
+ CharUnits FirstBaseOffsetInLayoutClass,
+ PrimaryBasesSetVectorTy &PrimaryBases) {
+ // Itanium C++ ABI 2.5.2:
+ // The order of the virtual function pointers in a virtual table is the
+ // order of declaration of the corresponding member functions in the class.
+ //
+ // There is an entry for any virtual function declared in a class,
+ // whether it is a new function or overrides a base class function,
+ // unless it overrides a function from the primary base, and conversion
+ // between their return types does not require an adjustment.
+
+ const CXXRecordDecl *RD = Base.getBase();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
+ CharUnits PrimaryBaseOffset;
+ CharUnits PrimaryBaseOffsetInLayoutClass;
+ if (Layout.isPrimaryBaseVirtual()) {
+ assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary vbase should have a zero offset!");
+
+ const ASTRecordLayout &MostDerivedClassLayout =
+ Context.getASTRecordLayout(MostDerivedClass);
+
+ PrimaryBaseOffset =
+ MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
+
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ PrimaryBaseOffsetInLayoutClass =
+ LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
+ } else {
+ assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
+ "Primary base should have a zero offset!");
+
+ PrimaryBaseOffset = Base.getBaseOffset();
+ PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
+ }
+
+ AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
+ PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
+ FirstBaseOffsetInLayoutClass, PrimaryBases);
+
+ if (!PrimaryBases.insert(PrimaryBase))
+ llvm_unreachable("Found a duplicate primary base!");
+ }
+
+ typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
+ NewVirtualFunctionsTy NewVirtualFunctions;
+
+ llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions;
+
+ // Now go through all virtual member functions and add them.
+ for (const auto *MD : RD->methods()) {
+ if (!ItaniumVTableContext::hasVtableSlot(MD))
+ continue;
+ MD = MD->getCanonicalDecl();
+
+ // Get the final overrider.
+ FinalOverriders::OverriderInfo Overrider =
+ Overriders.getOverrider(MD, Base.getBaseOffset());
+
+ // Check if this virtual member function overrides a method in a primary
+ // base. If this is the case, and the return type doesn't require adjustment
+ // then we can just use the member function from the primary base.
+ if (const CXXMethodDecl *OverriddenMD =
+ FindNearestOverriddenMethod(MD, PrimaryBases)) {
+ if (ComputeReturnAdjustmentBaseOffset(Context, MD,
+ OverriddenMD).isEmpty()) {
+ // Replace the method info of the overridden method with our own
+ // method.
+ assert(MethodInfoMap.count(OverriddenMD) &&
+ "Did not find the overridden method!");
+ MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
+
+ MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
+ OverriddenMethodInfo.VTableIndex);
+
+ assert(!MethodInfoMap.count(MD) &&
+ "Should not have method info for this method yet!");
+
+ MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
+ MethodInfoMap.erase(OverriddenMD);
+
+ // If the overridden method exists in a virtual base class or a direct
+ // or indirect base class of a virtual base class, we need to emit a
+ // thunk if we ever have a class hierarchy where the base class is not
+ // a primary base in the complete object.
+ if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
+ // Compute the this adjustment.
+ ThisAdjustment ThisAdjustment =
+ ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
+ Overrider);
+
+ if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
+ Overrider.Method->getParent() == MostDerivedClass) {
+
+ // There's no return adjustment from OverriddenMD and MD,
+ // but that doesn't mean there isn't one between MD and
+ // the final overrider.
+ BaseOffset ReturnAdjustmentOffset =
+ ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
+ ReturnAdjustment ReturnAdjustment =
+ ComputeReturnAdjustment(ReturnAdjustmentOffset);
+
+ // This is a virtual thunk for the most derived class, add it.
+ AddThunk(Overrider.Method,
+ ThunkInfo(ThisAdjustment, ReturnAdjustment));
+ }
+ }
+
+ continue;
+ }
+ }
+
+ if (MD->isImplicit())
+ NewImplicitVirtualFunctions.push_back(MD);
+ else
+ NewVirtualFunctions.push_back(MD);
+ }
+
+ std::stable_sort(
+ NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(),
+ [](const CXXMethodDecl *A, const CXXMethodDecl *B) {
+ if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator())
+ return A->isCopyAssignmentOperator();
+ if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator())
+ return A->isMoveAssignmentOperator();
+ if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B))
+ return isa<CXXDestructorDecl>(A);
+ assert(A->getOverloadedOperator() == OO_EqualEqual &&
+ B->getOverloadedOperator() == OO_EqualEqual &&
+ "unexpected or duplicate implicit virtual function");
+ // We rely on Sema to have declared the operator== members in the
+ // same order as the corresponding operator<=> members.
+ return false;
+ });
+ NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(),
+ NewImplicitVirtualFunctions.end());
+
+ for (const CXXMethodDecl *MD : NewVirtualFunctions) {
+ // Get the final overrider.
+ FinalOverriders::OverriderInfo Overrider =
+ Overriders.getOverrider(MD, Base.getBaseOffset());
+
+ // Insert the method info for this method.
+ MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
+ Components.size());
+
+ assert(!MethodInfoMap.count(MD) &&
+ "Should not have method info for this method yet!");
+ MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
+
+ // Check if this overrider is going to be used.
+ const CXXMethodDecl *OverriderMD = Overrider.Method;
+ if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
+ FirstBaseInPrimaryBaseChain,
+ FirstBaseOffsetInLayoutClass)) {
+ Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
+ continue;
+ }
+
+ // Check if this overrider needs a return adjustment.
+ // We don't want to do this for pure virtual member functions.
+ BaseOffset ReturnAdjustmentOffset;
+ if (!OverriderMD->isPure()) {
+ ReturnAdjustmentOffset =
+ ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
+ }
+
+ ReturnAdjustment ReturnAdjustment =
+ ComputeReturnAdjustment(ReturnAdjustmentOffset);
+
+ AddMethod(Overrider.Method, ReturnAdjustment);
+ }
+}
+
+void ItaniumVTableBuilder::LayoutVTable() {
+ LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
+ CharUnits::Zero()),
+ /*BaseIsMorallyVirtual=*/false,
+ MostDerivedClassIsVirtual,
+ MostDerivedClassOffset);
+
+ VisitedVirtualBasesSetTy VBases;
+
+ // Determine the primary virtual bases.
+ DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
+ VBases);
+ VBases.clear();
+
+ LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
+
+ // -fapple-kext adds an extra entry at end of vtbl.
+ bool IsAppleKext = Context.getLangOpts().AppleKext;
+ if (IsAppleKext)
+ Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
+}
+
+void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
+ BaseSubobject Base, bool BaseIsMorallyVirtual,
+ bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
+ assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
+
+ unsigned VTableIndex = Components.size();
+ VTableIndices.push_back(VTableIndex);
+
+ // Add vcall and vbase offsets for this vtable.
+ VCallAndVBaseOffsetBuilder Builder(
+ VTables, MostDerivedClass, LayoutClass, &Overriders, Base,
+ BaseIsVirtualInLayoutClass, OffsetInLayoutClass);
+ Components.append(Builder.components_begin(), Builder.components_end());
+
+ // Check if we need to add these vcall offsets.
+ if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
+ VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
+
+ if (VCallOffsets.empty())
+ VCallOffsets = Builder.getVCallOffsets();
+ }
+
+ // If we're laying out the most derived class we want to keep track of the
+ // virtual base class offset offsets.
+ if (Base.getBase() == MostDerivedClass)
+ VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
+
+ // Add the offset to top.
+ CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
+ Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
+
+ // Next, add the RTTI.
+ Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
+
+ uint64_t AddressPoint = Components.size();
+
+ // Now go through all virtual member functions and add them.
+ PrimaryBasesSetVectorTy PrimaryBases;
+ AddMethods(Base, OffsetInLayoutClass,
+ Base.getBase(), OffsetInLayoutClass,
+ PrimaryBases);
+
+ const CXXRecordDecl *RD = Base.getBase();
+ if (RD == MostDerivedClass) {
+ assert(MethodVTableIndices.empty());
+ for (const auto &I : MethodInfoMap) {
+ const CXXMethodDecl *MD = I.first;
+ const MethodInfo &MI = I.second;
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
+ = MI.VTableIndex - AddressPoint;
+ MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
+ = MI.VTableIndex + 1 - AddressPoint;
+ } else {
+ MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
+ }
+ }
+ }
+
+ // Compute 'this' pointer adjustments.
+ ComputeThisAdjustments();
+
+ // Add all address points.
+ while (true) {
+ AddressPoints.insert(
+ std::make_pair(BaseSubobject(RD, OffsetInLayoutClass),
+ VTableLayout::AddressPointLocation{
+ unsigned(VTableIndices.size() - 1),
+ unsigned(AddressPoint - VTableIndex)}));
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
+
+ if (!PrimaryBase)
+ break;
+
+ if (Layout.isPrimaryBaseVirtual()) {
+ // Check if this virtual primary base is a primary base in the layout
+ // class. If it's not, we don't want to add it.
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
+ OffsetInLayoutClass) {
+ // We don't want to add this class (or any of its primary bases).
+ break;
+ }
+ }
+
+ RD = PrimaryBase;
+ }
+
+ // Layout secondary vtables.
+ LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
+}
+
+void
+ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
+ bool BaseIsMorallyVirtual,
+ CharUnits OffsetInLayoutClass) {
+ // Itanium C++ ABI 2.5.2:
+ // Following the primary virtual table of a derived class are secondary
+ // virtual tables for each of its proper base classes, except any primary
+ // base(s) with which it shares its primary virtual table.
+
+ const CXXRecordDecl *RD = Base.getBase();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
+
+ for (const auto &B : RD->bases()) {
+ // Ignore virtual bases, we'll emit them later.
+ if (B.isVirtual())
+ continue;
+
+ const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
+
+ // Ignore bases that don't have a vtable.
+ if (!BaseDecl->isDynamicClass())
+ continue;
+
+ if (isBuildingConstructorVTable()) {
+ // Itanium C++ ABI 2.6.4:
+ // Some of the base class subobjects may not need construction virtual
+ // tables, which will therefore not be present in the construction
+ // virtual table group, even though the subobject virtual tables are
+ // present in the main virtual table group for the complete object.
+ if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
+ continue;
+ }
+
+ // Get the base offset of this base.
+ CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
+ CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
+
+ CharUnits BaseOffsetInLayoutClass =
+ OffsetInLayoutClass + RelativeBaseOffset;
+
+ // Don't emit a secondary vtable for a primary base. We might however want
+ // to emit secondary vtables for other bases of this base.
+ if (BaseDecl == PrimaryBase) {
+ LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
+ BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
+ continue;
+ }
+
+ // Layout the primary vtable (and any secondary vtables) for this base.
+ LayoutPrimaryAndSecondaryVTables(
+ BaseSubobject(BaseDecl, BaseOffset),
+ BaseIsMorallyVirtual,
+ /*BaseIsVirtualInLayoutClass=*/false,
+ BaseOffsetInLayoutClass);
+ }
+}
+
+void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
+ const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
+ VisitedVirtualBasesSetTy &VBases) {
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // Check if this base has a primary base.
+ if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
+
+ // Check if it's virtual.
+ if (Layout.isPrimaryBaseVirtual()) {
+ bool IsPrimaryVirtualBase = true;
+
+ if (isBuildingConstructorVTable()) {
+ // Check if the base is actually a primary base in the class we use for
+ // layout.
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ CharUnits PrimaryBaseOffsetInLayoutClass =
+ LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
+
+ // We know that the base is not a primary base in the layout class if
+ // the base offsets are different.
+ if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
+ IsPrimaryVirtualBase = false;
+ }
+
+ if (IsPrimaryVirtualBase)
+ PrimaryVirtualBases.insert(PrimaryBase);
+ }
+ }
+
+ // Traverse bases, looking for more primary virtual bases.
+ for (const auto &B : RD->bases()) {
+ const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
+
+ CharUnits BaseOffsetInLayoutClass;
+
+ if (B.isVirtual()) {
+ if (!VBases.insert(BaseDecl).second)
+ continue;
+
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+
+ BaseOffsetInLayoutClass =
+ LayoutClassLayout.getVBaseClassOffset(BaseDecl);
+ } else {
+ BaseOffsetInLayoutClass =
+ OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
+ }
+
+ DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
+ }
+}
+
+void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
+ const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
+ // Itanium C++ ABI 2.5.2:
+ // Then come the virtual base virtual tables, also in inheritance graph
+ // order, and again excluding primary bases (which share virtual tables with
+ // the classes for which they are primary).
+ for (const auto &B : RD->bases()) {
+ const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
+
+ // Check if this base needs a vtable. (If it's virtual, not a primary base
+ // of some other class, and we haven't visited it before).
+ if (B.isVirtual() && BaseDecl->isDynamicClass() &&
+ !PrimaryVirtualBases.count(BaseDecl) &&
+ VBases.insert(BaseDecl).second) {
+ const ASTRecordLayout &MostDerivedClassLayout =
+ Context.getASTRecordLayout(MostDerivedClass);
+ CharUnits BaseOffset =
+ MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
+
+ const ASTRecordLayout &LayoutClassLayout =
+ Context.getASTRecordLayout(LayoutClass);
+ CharUnits BaseOffsetInLayoutClass =
+ LayoutClassLayout.getVBaseClassOffset(BaseDecl);
+
+ LayoutPrimaryAndSecondaryVTables(
+ BaseSubobject(BaseDecl, BaseOffset),
+ /*BaseIsMorallyVirtual=*/true,
+ /*BaseIsVirtualInLayoutClass=*/true,
+ BaseOffsetInLayoutClass);
+ }
+
+ // We only need to check the base for virtual base vtables if it actually
+ // has virtual bases.
+ if (BaseDecl->getNumVBases())
+ LayoutVTablesForVirtualBases(BaseDecl, VBases);
+ }
+}
+
+/// dumpLayout - Dump the vtable layout.
+void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
+ // FIXME: write more tests that actually use the dumpLayout output to prevent
+ // ItaniumVTableBuilder regressions.
+
+ if (isBuildingConstructorVTable()) {
+ Out << "Construction vtable for ('";
+ MostDerivedClass->printQualifiedName(Out);
+ Out << "', ";
+ Out << MostDerivedClassOffset.getQuantity() << ") in '";
+ LayoutClass->printQualifiedName(Out);
+ } else {
+ Out << "Vtable for '";
+ MostDerivedClass->printQualifiedName(Out);
+ }
+ Out << "' (" << Components.size() << " entries).\n";
+
+ // Iterate through the address points and insert them into a new map where
+ // they are keyed by the index and not the base object.
+ // Since an address point can be shared by multiple subobjects, we use an
+ // STL multimap.
+ std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
+ for (const auto &AP : AddressPoints) {
+ const BaseSubobject &Base = AP.first;
+ uint64_t Index =
+ VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex;
+
+ AddressPointsByIndex.insert(std::make_pair(Index, Base));
+ }
+
+ for (unsigned I = 0, E = Components.size(); I != E; ++I) {
+ uint64_t Index = I;
+
+ Out << llvm::format("%4d | ", I);
+
+ const VTableComponent &Component = Components[I];
+
+ // Dump the component.
+ switch (Component.getKind()) {
+
+ case VTableComponent::CK_VCallOffset:
+ Out << "vcall_offset ("
+ << Component.getVCallOffset().getQuantity()
+ << ")";
+ break;
+
+ case VTableComponent::CK_VBaseOffset:
+ Out << "vbase_offset ("
+ << Component.getVBaseOffset().getQuantity()
+ << ")";
+ break;
+
+ case VTableComponent::CK_OffsetToTop:
+ Out << "offset_to_top ("
+ << Component.getOffsetToTop().getQuantity()
+ << ")";
+ break;
+
+ case VTableComponent::CK_RTTI:
+ Component.getRTTIDecl()->printQualifiedName(Out);
+ Out << " RTTI";
+ break;
+
+ case VTableComponent::CK_FunctionPointer: {
+ const CXXMethodDecl *MD = Component.getFunctionDecl();
+
+ std::string Str =
+ PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
+ MD);
+ Out << Str;
+ if (MD->isPure())
+ Out << " [pure]";
+
+ if (MD->isDeleted())
+ Out << " [deleted]";
+
+ ThunkInfo Thunk = VTableThunks.lookup(I);
+ if (!Thunk.isEmpty()) {
+ // If this function pointer has a return adjustment, dump it.
+ if (!Thunk.Return.isEmpty()) {
+ Out << "\n [return adjustment: ";
+ Out << Thunk.Return.NonVirtual << " non-virtual";
+
+ if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
+ Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
+ Out << " vbase offset offset";
+ }
+
+ Out << ']';
+ }
+
+ // If this function pointer has a 'this' pointer adjustment, dump it.
+ if (!Thunk.This.isEmpty()) {
+ Out << "\n [this adjustment: ";
+ Out << Thunk.This.NonVirtual << " non-virtual";
+
+ if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
+ Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
+ Out << " vcall offset offset";
+ }
+
+ Out << ']';
+ }
+ }
+
+ break;
+ }
+
+ case VTableComponent::CK_CompleteDtorPointer:
+ case VTableComponent::CK_DeletingDtorPointer: {
+ bool IsComplete =
+ Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
+
+ const CXXDestructorDecl *DD = Component.getDestructorDecl();
+
+ DD->printQualifiedName(Out);
+ if (IsComplete)
+ Out << "() [complete]";
+ else
+ Out << "() [deleting]";
+
+ if (DD->isPure())
+ Out << " [pure]";
+
+ ThunkInfo Thunk = VTableThunks.lookup(I);
+ if (!Thunk.isEmpty()) {
+ // If this destructor has a 'this' pointer adjustment, dump it.
+ if (!Thunk.This.isEmpty()) {
+ Out << "\n [this adjustment: ";
+ Out << Thunk.This.NonVirtual << " non-virtual";
+
+ if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
+ Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
+ Out << " vcall offset offset";
+ }
+
+ Out << ']';
+ }
+ }
+
+ break;
+ }
+
+ case VTableComponent::CK_UnusedFunctionPointer: {
+ const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
+
+ std::string Str =
+ PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
+ MD);
+ Out << "[unused] " << Str;
+ if (MD->isPure())
+ Out << " [pure]";
+ }
+
+ }
+
+ Out << '\n';
+
+ // Dump the next address point.
+ uint64_t NextIndex = Index + 1;
+ if (AddressPointsByIndex.count(NextIndex)) {
+ if (AddressPointsByIndex.count(NextIndex) == 1) {
+ const BaseSubobject &Base =
+ AddressPointsByIndex.find(NextIndex)->second;
+
+ Out << " -- (";
+ Base.getBase()->printQualifiedName(Out);
+ Out << ", " << Base.getBaseOffset().getQuantity();
+ Out << ") vtable address --\n";
+ } else {
+ CharUnits BaseOffset =
+ AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
+
+ // We store the class names in a set to get a stable order.
+ std::set<std::string> ClassNames;
+ for (const auto &I :
+ llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
+ assert(I.second.getBaseOffset() == BaseOffset &&
+ "Invalid base offset!");
+ const CXXRecordDecl *RD = I.second.getBase();
+ ClassNames.insert(RD->getQualifiedNameAsString());
+ }
+
+ for (const std::string &Name : ClassNames) {
+ Out << " -- (" << Name;
+ Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
+ }
+ }
+ }
+ }
+
+ Out << '\n';
+
+ if (isBuildingConstructorVTable())
+ return;
+
+ if (MostDerivedClass->getNumVBases()) {
+ // We store the virtual base class names and their offsets in a map to get
+ // a stable order.
+
+ std::map<std::string, CharUnits> ClassNamesAndOffsets;
+ for (const auto &I : VBaseOffsetOffsets) {
+ std::string ClassName = I.first->getQualifiedNameAsString();
+ CharUnits OffsetOffset = I.second;
+ ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
+ }
+
+ Out << "Virtual base offset offsets for '";
+ MostDerivedClass->printQualifiedName(Out);
+ Out << "' (";
+ Out << ClassNamesAndOffsets.size();
+ Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
+
+ for (const auto &I : ClassNamesAndOffsets)
+ Out << " " << I.first << " | " << I.second.getQuantity() << '\n';
+
+ Out << "\n";
+ }
+
+ if (!Thunks.empty()) {
+ // We store the method names in a map to get a stable order.
+ std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
+
+ for (const auto &I : Thunks) {
+ const CXXMethodDecl *MD = I.first;
+ std::string MethodName =
+ PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
+ MD);
+
+ MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
+ }
+
+ for (const auto &I : MethodNamesAndDecls) {
+ const std::string &MethodName = I.first;
+ const CXXMethodDecl *MD = I.second;
+
+ ThunkInfoVectorTy ThunksVector = Thunks[MD];
+ llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
+ assert(LHS.Method == nullptr && RHS.Method == nullptr);
+ return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
+ });
+
+ Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
+ Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
+
+ for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
+ const ThunkInfo &Thunk = ThunksVector[I];
+
+ Out << llvm::format("%4d | ", I);
+
+ // If this function pointer has a return pointer adjustment, dump it.
+ if (!Thunk.Return.isEmpty()) {
+ Out << "return adjustment: " << Thunk.Return.NonVirtual;
+ Out << " non-virtual";
+ if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
+ Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
+ Out << " vbase offset offset";
+ }
+
+ if (!Thunk.This.isEmpty())
+ Out << "\n ";
+ }
+
+ // If this function pointer has a 'this' pointer adjustment, dump it.
+ if (!Thunk.This.isEmpty()) {
+ Out << "this adjustment: ";
+ Out << Thunk.This.NonVirtual << " non-virtual";
+
+ if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
+ Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
+ Out << " vcall offset offset";
+ }
+ }
+
+ Out << '\n';
+ }
+
+ Out << '\n';
+ }
+ }
+
+ // Compute the vtable indices for all the member functions.
+ // Store them in a map keyed by the index so we'll get a sorted table.
+ std::map<uint64_t, std::string> IndicesMap;
+
+ for (const auto *MD : MostDerivedClass->methods()) {
+ // We only want virtual member functions.
+ if (!ItaniumVTableContext::hasVtableSlot(MD))
+ continue;
+ MD = MD->getCanonicalDecl();
+
+ std::string MethodName =
+ PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
+ MD);
+
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ GlobalDecl GD(DD, Dtor_Complete);
+ assert(MethodVTableIndices.count(GD));
+ uint64_t VTableIndex = MethodVTableIndices[GD];
+ IndicesMap[VTableIndex] = MethodName + " [complete]";
+ IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
+ } else {
+ assert(MethodVTableIndices.count(MD));
+ IndicesMap[MethodVTableIndices[MD]] = MethodName;
+ }
+ }
+
+ // Print the vtable indices for all the member functions.
+ if (!IndicesMap.empty()) {
+ Out << "VTable indices for '";
+ MostDerivedClass->printQualifiedName(Out);
+ Out << "' (" << IndicesMap.size() << " entries).\n";
+
+ for (const auto &I : IndicesMap) {
+ uint64_t VTableIndex = I.first;
+ const std::string &MethodName = I.second;
+
+ Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
+ << '\n';
+ }
+ }
+
+ Out << '\n';
+}
+}
+
+static VTableLayout::AddressPointsIndexMapTy
+MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints,
+ unsigned numVTables) {
+ VTableLayout::AddressPointsIndexMapTy indexMap(numVTables);
+
+ for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) {
+ const auto &addressPointLoc = it->second;
+ unsigned vtableIndex = addressPointLoc.VTableIndex;
+ unsigned addressPoint = addressPointLoc.AddressPointIndex;
+ if (indexMap[vtableIndex]) {
+ // Multiple BaseSubobjects can map to the same AddressPointLocation, but
+ // every vtable index should have a unique address point.
+ assert(indexMap[vtableIndex] == addressPoint &&
+ "Every vtable index should have a unique address point. Found a "
+ "vtable that has two different address points.");
+ } else {
+ indexMap[vtableIndex] = addressPoint;
+ }
+ }
+
+ // Note that by this point, not all the address may be initialized if the
+ // AddressPoints map is empty. This is ok if the map isn't needed. See
+ // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an
+ // emprt map.
+ return indexMap;
+}
+
+VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices,
+ ArrayRef<VTableComponent> VTableComponents,
+ ArrayRef<VTableThunkTy> VTableThunks,
+ const AddressPointsMapTy &AddressPoints)
+ : VTableComponents(VTableComponents), VTableThunks(VTableThunks),
+ AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices(
+ AddressPoints, VTableIndices.size())) {
+ if (VTableIndices.size() <= 1)
+ assert(VTableIndices.size() == 1 && VTableIndices[0] == 0);
+ else
+ this->VTableIndices = OwningArrayRef<size_t>(VTableIndices);
+
+ llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS,
+ const VTableLayout::VTableThunkTy &RHS) {
+ assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
+ "Different thunks should have unique indices!");
+ return LHS.first < RHS.first;
+ });
+}
+
+VTableLayout::~VTableLayout() { }
+
+bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) {
+ return MD->isVirtual() && !MD->isConsteval();
+}
+
+ItaniumVTableContext::ItaniumVTableContext(
+ ASTContext &Context, VTableComponentLayout ComponentLayout)
+ : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {}
+
+ItaniumVTableContext::~ItaniumVTableContext() {}
+
+uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
+ GD = GD.getCanonicalDecl();
+ MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
+ if (I != MethodVTableIndices.end())
+ return I->second;
+
+ const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
+
+ computeVTableRelatedInformation(RD);
+
+ I = MethodVTableIndices.find(GD);
+ assert(I != MethodVTableIndices.end() && "Did not find index!");
+ return I->second;
+}
+
+CharUnits
+ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
+ const CXXRecordDecl *VBase) {
+ ClassPairTy ClassPair(RD, VBase);
+
+ VirtualBaseClassOffsetOffsetsMapTy::iterator I =
+ VirtualBaseClassOffsetOffsets.find(ClassPair);
+ if (I != VirtualBaseClassOffsetOffsets.end())
+ return I->second;
+
+ VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr,
+ BaseSubobject(RD, CharUnits::Zero()),
+ /*BaseIsVirtual=*/false,
+ /*OffsetInLayoutClass=*/CharUnits::Zero());
+
+ for (const auto &I : Builder.getVBaseOffsetOffsets()) {
+ // Insert all types.
+ ClassPairTy ClassPair(RD, I.first);
+
+ VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
+ }
+
+ I = VirtualBaseClassOffsetOffsets.find(ClassPair);
+ assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
+
+ return I->second;
+}
+
+static std::unique_ptr<VTableLayout>
+CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
+ SmallVector<VTableLayout::VTableThunkTy, 1>
+ VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
+
+ return std::make_unique<VTableLayout>(
+ Builder.VTableIndices, Builder.vtable_components(), VTableThunks,
+ Builder.getAddressPoints());
+}
+
+void
+ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
+ std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD];
+
+ // Check if we've computed this information before.
+ if (Entry)
+ return;
+
+ ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
+ /*MostDerivedClassIsVirtual=*/false, RD);
+ Entry = CreateVTableLayout(Builder);
+
+ MethodVTableIndices.insert(Builder.vtable_indices_begin(),
+ Builder.vtable_indices_end());
+
+ // Add the known thunks.
+ Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
+
+ // If we don't have the vbase information for this class, insert it.
+ // getVirtualBaseOffsetOffset will compute it separately without computing
+ // the rest of the vtable related information.
+ if (!RD->getNumVBases())
+ return;
+
+ const CXXRecordDecl *VBase =
+ RD->vbases_begin()->getType()->getAsCXXRecordDecl();
+
+ if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
+ return;
+
+ for (const auto &I : Builder.getVBaseOffsetOffsets()) {
+ // Insert all types.
+ ClassPairTy ClassPair(RD, I.first);
+
+ VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
+ }
+}
+
+std::unique_ptr<VTableLayout>
+ItaniumVTableContext::createConstructionVTableLayout(
+ const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
+ bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
+ ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
+ MostDerivedClassIsVirtual, LayoutClass);
+ return CreateVTableLayout(Builder);
+}
+
+namespace {
+
+// Vtables in the Microsoft ABI are different from the Itanium ABI.
+//
+// The main differences are:
+// 1. Separate vftable and vbtable.
+//
+// 2. Each subobject with a vfptr gets its own vftable rather than an address
+// point in a single vtable shared between all the subobjects.
+// Each vftable is represented by a separate section and virtual calls
+// must be done using the vftable which has a slot for the function to be
+// called.
+//
+// 3. Virtual method definitions expect their 'this' parameter to point to the
+// first vfptr whose table provides a compatible overridden method. In many
+// cases, this permits the original vf-table entry to directly call
+// the method instead of passing through a thunk.
+// See example before VFTableBuilder::ComputeThisOffset below.
+//
+// A compatible overridden method is one which does not have a non-trivial
+// covariant-return adjustment.
+//
+// The first vfptr is the one with the lowest offset in the complete-object
+// layout of the defining class, and the method definition will subtract
+// that constant offset from the parameter value to get the real 'this'
+// value. Therefore, if the offset isn't really constant (e.g. if a virtual
+// function defined in a virtual base is overridden in a more derived
+// virtual base and these bases have a reverse order in the complete
+// object), the vf-table may require a this-adjustment thunk.
+//
+// 4. vftables do not contain new entries for overrides that merely require
+// this-adjustment. Together with #3, this keeps vf-tables smaller and
+// eliminates the need for this-adjustment thunks in many cases, at the cost
+// of often requiring redundant work to adjust the "this" pointer.
+//
+// 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
+// Vtordisps are emitted into the class layout if a class has
+// a) a user-defined ctor/dtor
+// and
+// b) a method overriding a method in a virtual base.
+//
+// To get a better understanding of this code,
+// you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
+
+class VFTableBuilder {
+public:
+ typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
+ MethodVFTableLocationsTy;
+
+ typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
+ method_locations_range;
+
+private:
+ /// VTables - Global vtable information.
+ MicrosoftVTableContext &VTables;
+
+ /// Context - The ASTContext which we will use for layout information.
+ ASTContext &Context;
+
+ /// MostDerivedClass - The most derived class for which we're building this
+ /// vtable.
+ const CXXRecordDecl *MostDerivedClass;
+
+ const ASTRecordLayout &MostDerivedClassLayout;
+
+ const VPtrInfo &WhichVFPtr;
+
+ /// FinalOverriders - The final overriders of the most derived class.
+ const FinalOverriders Overriders;
+
+ /// Components - The components of the vftable being built.
+ SmallVector<VTableComponent, 64> Components;
+
+ MethodVFTableLocationsTy MethodVFTableLocations;
+
+ /// Does this class have an RTTI component?
+ bool HasRTTIComponent = false;
+
+ /// MethodInfo - Contains information about a method in a vtable.
+ /// (Used for computing 'this' pointer adjustment thunks.
+ struct MethodInfo {
+ /// VBTableIndex - The nonzero index in the vbtable that
+ /// this method's base has, or zero.
+ const uint64_t VBTableIndex;
+
+ /// VFTableIndex - The index in the vftable that this method has.
+ const uint64_t VFTableIndex;
+
+ /// Shadowed - Indicates if this vftable slot is shadowed by
+ /// a slot for a covariant-return override. If so, it shouldn't be printed
+ /// or used for vcalls in the most derived class.
+ bool Shadowed;
+
+ /// UsesExtraSlot - Indicates if this vftable slot was created because
+ /// any of the overridden slots required a return adjusting thunk.
+ bool UsesExtraSlot;
+
+ MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
+ bool UsesExtraSlot = false)
+ : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
+ Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
+
+ MethodInfo()
+ : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
+ UsesExtraSlot(false) {}
+ };
+
+ typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
+
+ /// MethodInfoMap - The information for all methods in the vftable we're
+ /// currently building.
+ MethodInfoMapTy MethodInfoMap;
+
+ typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
+
+ /// VTableThunks - The thunks by vftable index in the vftable currently being
+ /// built.
+ VTableThunksMapTy VTableThunks;
+
+ typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
+ typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
+
+ /// Thunks - A map that contains all the thunks needed for all methods in the
+ /// most derived class for which the vftable is currently being built.
+ ThunksMapTy Thunks;
+
+ /// AddThunk - Add a thunk for the given method.
+ void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
+ SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
+
+ // Check if we have this thunk already.
+ if (llvm::is_contained(ThunksVector, Thunk))
+ return;
+
+ ThunksVector.push_back(Thunk);
+ }
+
+ /// ComputeThisOffset - Returns the 'this' argument offset for the given
+ /// method, relative to the beginning of the MostDerivedClass.
+ CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
+
+ void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
+ CharUnits ThisOffset, ThisAdjustment &TA);
+
+ /// AddMethod - Add a single virtual member function to the vftable
+ /// components vector.
+ void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
+ if (!TI.isEmpty()) {
+ VTableThunks[Components.size()] = TI;
+ AddThunk(MD, TI);
+ }
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ assert(TI.Return.isEmpty() &&
+ "Destructor can't have return adjustment!");
+ Components.push_back(VTableComponent::MakeDeletingDtor(DD));
+ } else {
+ Components.push_back(VTableComponent::MakeFunction(MD));
+ }
+ }
+
+ /// AddMethods - Add the methods of this base subobject and the relevant
+ /// subbases to the vftable we're currently laying out.
+ void AddMethods(BaseSubobject Base, unsigned BaseDepth,
+ const CXXRecordDecl *LastVBase,
+ BasesSetVectorTy &VisitedBases);
+
+ void LayoutVFTable() {
+ // RTTI data goes before all other entries.
+ if (HasRTTIComponent)
+ Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
+
+ BasesSetVectorTy VisitedBases;
+ AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
+ VisitedBases);
+ // Note that it is possible for the vftable to contain only an RTTI
+ // pointer, if all virtual functions are constewval.
+ assert(!Components.empty() && "vftable can't be empty");
+
+ assert(MethodVFTableLocations.empty());
+ for (const auto &I : MethodInfoMap) {
+ const CXXMethodDecl *MD = I.first;
+ const MethodInfo &MI = I.second;
+ assert(MD == MD->getCanonicalDecl());
+
+ // Skip the methods that the MostDerivedClass didn't override
+ // and the entries shadowed by return adjusting thunks.
+ if (MD->getParent() != MostDerivedClass || MI.Shadowed)
+ continue;
+ MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
+ WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
+ MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
+ } else {
+ MethodVFTableLocations[MD] = Loc;
+ }
+ }
+ }
+
+public:
+ VFTableBuilder(MicrosoftVTableContext &VTables,
+ const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which)
+ : VTables(VTables),
+ Context(MostDerivedClass->getASTContext()),
+ MostDerivedClass(MostDerivedClass),
+ MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
+ WhichVFPtr(Which),
+ Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
+ // Provide the RTTI component if RTTIData is enabled. If the vftable would
+ // be available externally, we should not provide the RTTI componenent. It
+ // is currently impossible to get available externally vftables with either
+ // dllimport or extern template instantiations, but eventually we may add a
+ // flag to support additional devirtualization that needs this.
+ if (Context.getLangOpts().RTTIData)
+ HasRTTIComponent = true;
+
+ LayoutVFTable();
+
+ if (Context.getLangOpts().DumpVTableLayouts)
+ dumpLayout(llvm::outs());
+ }
+
+ uint64_t getNumThunks() const { return Thunks.size(); }
+
+ ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
+
+ ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
+
+ method_locations_range vtable_locations() const {
+ return method_locations_range(MethodVFTableLocations.begin(),
+ MethodVFTableLocations.end());
+ }
+
+ ArrayRef<VTableComponent> vtable_components() const { return Components; }
+
+ VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
+ return VTableThunks.begin();
+ }
+
+ VTableThunksMapTy::const_iterator vtable_thunks_end() const {
+ return VTableThunks.end();
+ }
+
+ void dumpLayout(raw_ostream &);
+};
+
+} // end namespace
+
+// Let's study one class hierarchy as an example:
+// struct A {
+// virtual void f();
+// int x;
+// };
+//
+// struct B : virtual A {
+// virtual void f();
+// };
+//
+// Record layouts:
+// struct A:
+// 0 | (A vftable pointer)
+// 4 | int x
+//
+// struct B:
+// 0 | (B vbtable pointer)
+// 4 | struct A (virtual base)
+// 4 | (A vftable pointer)
+// 8 | int x
+//
+// Let's assume we have a pointer to the A part of an object of dynamic type B:
+// B b;
+// A *a = (A*)&b;
+// a->f();
+//
+// In this hierarchy, f() belongs to the vftable of A, so B::f() expects
+// "this" parameter to point at the A subobject, which is B+4.
+// In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
+// performed as a *static* adjustment.
+//
+// Interesting thing happens when we alter the relative placement of A and B
+// subobjects in a class:
+// struct C : virtual B { };
+//
+// C c;
+// A *a = (A*)&c;
+// a->f();
+//
+// Respective record layout is:
+// 0 | (C vbtable pointer)
+// 4 | struct A (virtual base)
+// 4 | (A vftable pointer)
+// 8 | int x
+// 12 | struct B (virtual base)
+// 12 | (B vbtable pointer)
+//
+// The final overrider of f() in class C is still B::f(), so B+4 should be
+// passed as "this" to that code. However, "a" points at B-8, so the respective
+// vftable entry should hold a thunk that adds 12 to the "this" argument before
+// performing a tail call to B::f().
+//
+// With this example in mind, we can now calculate the 'this' argument offset
+// for the given method, relative to the beginning of the MostDerivedClass.
+CharUnits
+VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
+ BasesSetVectorTy Bases;
+
+ {
+ // Find the set of least derived bases that define the given method.
+ OverriddenMethodsSetTy VisitedOverriddenMethods;
+ auto InitialOverriddenDefinitionCollector = [&](
+ const CXXMethodDecl *OverriddenMD) {
+ if (OverriddenMD->size_overridden_methods() == 0)
+ Bases.insert(OverriddenMD->getParent());
+ // Don't recurse on this method if we've already collected it.
+ return VisitedOverriddenMethods.insert(OverriddenMD).second;
+ };
+ visitAllOverriddenMethods(Overrider.Method,
+ InitialOverriddenDefinitionCollector);
+ }
+
+ // If there are no overrides then 'this' is located
+ // in the base that defines the method.
+ if (Bases.size() == 0)
+ return Overrider.Offset;
+
+ CXXBasePaths Paths;
+ Overrider.Method->getParent()->lookupInBases(
+ [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
+ return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
+ },
+ Paths);
+
+ // This will hold the smallest this offset among overridees of MD.
+ // This implies that an offset of a non-virtual base will dominate an offset
+ // of a virtual base to potentially reduce the number of thunks required
+ // in the derived classes that inherit this method.
+ CharUnits Ret;
+ bool First = true;
+
+ const ASTRecordLayout &OverriderRDLayout =
+ Context.getASTRecordLayout(Overrider.Method->getParent());
+ for (const CXXBasePath &Path : Paths) {
+ CharUnits ThisOffset = Overrider.Offset;
+ CharUnits LastVBaseOffset;
+
+ // For each path from the overrider to the parents of the overridden
+ // methods, traverse the path, calculating the this offset in the most
+ // derived class.
+ for (const CXXBasePathElement &Element : Path) {
+ QualType CurTy = Element.Base->getType();
+ const CXXRecordDecl *PrevRD = Element.Class,
+ *CurRD = CurTy->getAsCXXRecordDecl();
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
+
+ if (Element.Base->isVirtual()) {
+ // The interesting things begin when you have virtual inheritance.
+ // The final overrider will use a static adjustment equal to the offset
+ // of the vbase in the final overrider class.
+ // For example, if the final overrider is in a vbase B of the most
+ // derived class and it overrides a method of the B's own vbase A,
+ // it uses A* as "this". In its prologue, it can cast A* to B* with
+ // a static offset. This offset is used regardless of the actual
+ // offset of A from B in the most derived class, requiring an
+ // this-adjusting thunk in the vftable if A and B are laid out
+ // differently in the most derived class.
+ LastVBaseOffset = ThisOffset =
+ Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
+ } else {
+ ThisOffset += Layout.getBaseClassOffset(CurRD);
+ }
+ }
+
+ if (isa<CXXDestructorDecl>(Overrider.Method)) {
+ if (LastVBaseOffset.isZero()) {
+ // If a "Base" class has at least one non-virtual base with a virtual
+ // destructor, the "Base" virtual destructor will take the address
+ // of the "Base" subobject as the "this" argument.
+ ThisOffset = Overrider.Offset;
+ } else {
+ // A virtual destructor of a virtual base takes the address of the
+ // virtual base subobject as the "this" argument.
+ ThisOffset = LastVBaseOffset;
+ }
+ }
+
+ if (Ret > ThisOffset || First) {
+ First = false;
+ Ret = ThisOffset;
+ }
+ }
+
+ assert(!First && "Method not found in the given subobject?");
+ return Ret;
+}
+
+// Things are getting even more complex when the "this" adjustment has to
+// use a dynamic offset instead of a static one, or even two dynamic offsets.
+// This is sometimes required when a virtual call happens in the middle of
+// a non-most-derived class construction or destruction.
+//
+// Let's take a look at the following example:
+// struct A {
+// virtual void f();
+// };
+//
+// void foo(A *a) { a->f(); } // Knows nothing about siblings of A.
+//
+// struct B : virtual A {
+// virtual void f();
+// B() {
+// foo(this);
+// }
+// };
+//
+// struct C : virtual B {
+// virtual void f();
+// };
+//
+// Record layouts for these classes are:
+// struct A
+// 0 | (A vftable pointer)
+//
+// struct B
+// 0 | (B vbtable pointer)
+// 4 | (vtordisp for vbase A)
+// 8 | struct A (virtual base)
+// 8 | (A vftable pointer)
+//
+// struct C
+// 0 | (C vbtable pointer)
+// 4 | (vtordisp for vbase A)
+// 8 | struct A (virtual base) // A precedes B!
+// 8 | (A vftable pointer)
+// 12 | struct B (virtual base)
+// 12 | (B vbtable pointer)
+//
+// When one creates an object of type C, the C constructor:
+// - initializes all the vbptrs, then
+// - calls the A subobject constructor
+// (initializes A's vfptr with an address of A vftable), then
+// - calls the B subobject constructor
+// (initializes A's vfptr with an address of B vftable and vtordisp for A),
+// that in turn calls foo(), then
+// - initializes A's vfptr with an address of C vftable and zeroes out the
+// vtordisp
+// FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
+// without vtordisp thunks?
+// FIXME: how are vtordisp handled in the presence of nooverride/final?
+//
+// When foo() is called, an object with a layout of class C has a vftable
+// referencing B::f() that assumes a B layout, so the "this" adjustments are
+// incorrect, unless an extra adjustment is done. This adjustment is called
+// "vtordisp adjustment". Vtordisp basically holds the difference between the
+// actual location of a vbase in the layout class and the location assumed by
+// the vftable of the class being constructed/destructed. Vtordisp is only
+// needed if "this" escapes a
+// structor (or we can't prove otherwise).
+// [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
+// estimation of a dynamic adjustment]
+//
+// foo() gets a pointer to the A vbase and doesn't know anything about B or C,
+// so it just passes that pointer as "this" in a virtual call.
+// If there was no vtordisp, that would just dispatch to B::f().
+// However, B::f() assumes B+8 is passed as "this",
+// yet the pointer foo() passes along is B-4 (i.e. C+8).
+// An extra adjustment is needed, so we emit a thunk into the B vftable.
+// This vtordisp thunk subtracts the value of vtordisp
+// from the "this" argument (-12) before making a tailcall to B::f().
+//
+// Let's consider an even more complex example:
+// struct D : virtual B, virtual C {
+// D() {
+// foo(this);
+// }
+// };
+//
+// struct D
+// 0 | (D vbtable pointer)
+// 4 | (vtordisp for vbase A)
+// 8 | struct A (virtual base) // A precedes both B and C!
+// 8 | (A vftable pointer)
+// 12 | struct B (virtual base) // B precedes C!
+// 12 | (B vbtable pointer)
+// 16 | struct C (virtual base)
+// 16 | (C vbtable pointer)
+//
+// When D::D() calls foo(), we find ourselves in a thunk that should tailcall
+// to C::f(), which assumes C+8 as its "this" parameter. This time, foo()
+// passes along A, which is C-8. The A vtordisp holds
+// "D.vbptr[index_of_A] - offset_of_A_in_D"
+// and we statically know offset_of_A_in_D, so can get a pointer to D.
+// When we know it, we can make an extra vbtable lookup to locate the C vbase
+// and one extra static adjustment to calculate the expected value of C+8.
+void VFTableBuilder::CalculateVtordispAdjustment(
+ FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
+ ThisAdjustment &TA) {
+ const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
+ MostDerivedClassLayout.getVBaseOffsetsMap();
+ const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
+ VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
+ assert(VBaseMapEntry != VBaseMap.end());
+
+ // If there's no vtordisp or the final overrider is defined in the same vbase
+ // as the initial declaration, we don't need any vtordisp adjustment.
+ if (!VBaseMapEntry->second.hasVtorDisp() ||
+ Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
+ return;
+
+ // OK, now we know we need to use a vtordisp thunk.
+ // The implicit vtordisp field is located right before the vbase.
+ CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
+ TA.Virtual.Microsoft.VtordispOffset =
+ (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
+
+ // A simple vtordisp thunk will suffice if the final overrider is defined
+ // in either the most derived class or its non-virtual base.
+ if (Overrider.Method->getParent() == MostDerivedClass ||
+ !Overrider.VirtualBase)
+ return;
+
+ // Otherwise, we need to do use the dynamic offset of the final overrider
+ // in order to get "this" adjustment right.
+ TA.Virtual.Microsoft.VBPtrOffset =
+ (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
+ MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
+ TA.Virtual.Microsoft.VBOffsetOffset =
+ Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
+ VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
+
+ TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
+}
+
+static void GroupNewVirtualOverloads(
+ const CXXRecordDecl *RD,
+ SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
+ // Put the virtual methods into VirtualMethods in the proper order:
+ // 1) Group overloads by declaration name. New groups are added to the
+ // vftable in the order of their first declarations in this class
+ // (including overrides, non-virtual methods and any other named decl that
+ // might be nested within the class).
+ // 2) In each group, new overloads appear in the reverse order of declaration.
+ typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
+ SmallVector<MethodGroup, 10> Groups;
+ typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
+ VisitedGroupIndicesTy VisitedGroupIndices;
+ for (const auto *D : RD->decls()) {
+ const auto *ND = dyn_cast<NamedDecl>(D);
+ if (!ND)
+ continue;
+ VisitedGroupIndicesTy::iterator J;
+ bool Inserted;
+ std::tie(J, Inserted) = VisitedGroupIndices.insert(
+ std::make_pair(ND->getDeclName(), Groups.size()));
+ if (Inserted)
+ Groups.push_back(MethodGroup());
+ if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
+ if (MicrosoftVTableContext::hasVtableSlot(MD))
+ Groups[J->second].push_back(MD->getCanonicalDecl());
+ }
+
+ for (const MethodGroup &Group : Groups)
+ VirtualMethods.append(Group.rbegin(), Group.rend());
+}
+
+static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
+ for (const auto &B : RD->bases()) {
+ if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
+ return true;
+ }
+ return false;
+}
+
+void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
+ const CXXRecordDecl *LastVBase,
+ BasesSetVectorTy &VisitedBases) {
+ const CXXRecordDecl *RD = Base.getBase();
+ if (!RD->isPolymorphic())
+ return;
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // See if this class expands a vftable of the base we look at, which is either
+ // the one defined by the vfptr base path or the primary base of the current
+ // class.
+ const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
+ CharUnits NextBaseOffset;
+ if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) {
+ NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth];
+ if (isDirectVBase(NextBase, RD)) {
+ NextLastVBase = NextBase;
+ NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
+ } else {
+ NextBaseOffset =
+ Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
+ }
+ } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
+ assert(!Layout.isPrimaryBaseVirtual() &&
+ "No primary virtual bases in this ABI");
+ NextBase = PrimaryBase;
+ NextBaseOffset = Base.getBaseOffset();
+ }
+
+ if (NextBase) {
+ AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
+ NextLastVBase, VisitedBases);
+ if (!VisitedBases.insert(NextBase))
+ llvm_unreachable("Found a duplicate primary base!");
+ }
+
+ SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
+ // Put virtual methods in the proper order.
+ GroupNewVirtualOverloads(RD, VirtualMethods);
+
+ // Now go through all virtual member functions and add them to the current
+ // vftable. This is done by
+ // - replacing overridden methods in their existing slots, as long as they
+ // don't require return adjustment; calculating This adjustment if needed.
+ // - adding new slots for methods of the current base not present in any
+ // sub-bases;
+ // - adding new slots for methods that require Return adjustment.
+ // We keep track of the methods visited in the sub-bases in MethodInfoMap.
+ for (const CXXMethodDecl *MD : VirtualMethods) {
+ FinalOverriders::OverriderInfo FinalOverrider =
+ Overriders.getOverrider(MD, Base.getBaseOffset());
+ const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
+ const CXXMethodDecl *OverriddenMD =
+ FindNearestOverriddenMethod(MD, VisitedBases);
+
+ ThisAdjustment ThisAdjustmentOffset;
+ bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
+ CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
+ ThisAdjustmentOffset.NonVirtual =
+ (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
+ if ((OverriddenMD || FinalOverriderMD != MD) &&
+ WhichVFPtr.getVBaseWithVPtr())
+ CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
+ ThisAdjustmentOffset);
+
+ unsigned VBIndex =
+ LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
+
+ if (OverriddenMD) {
+ // If MD overrides anything in this vftable, we need to update the
+ // entries.
+ MethodInfoMapTy::iterator OverriddenMDIterator =
+ MethodInfoMap.find(OverriddenMD);
+
+ // If the overridden method went to a different vftable, skip it.
+ if (OverriddenMDIterator == MethodInfoMap.end())
+ continue;
+
+ MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
+
+ VBIndex = OverriddenMethodInfo.VBTableIndex;
+
+ // Let's check if the overrider requires any return adjustments.
+ // We must create a new slot if the MD's return type is not trivially
+ // convertible to the OverriddenMD's one.
+ // Once a chain of method overrides adds a return adjusting vftable slot,
+ // all subsequent overrides will also use an extra method slot.
+ ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
+ Context, MD, OverriddenMD).isEmpty() ||
+ OverriddenMethodInfo.UsesExtraSlot;
+
+ if (!ReturnAdjustingThunk) {
+ // No return adjustment needed - just replace the overridden method info
+ // with the current info.
+ MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex);
+ MethodInfoMap.erase(OverriddenMDIterator);
+
+ assert(!MethodInfoMap.count(MD) &&
+ "Should not have method info for this method yet!");
+ MethodInfoMap.insert(std::make_pair(MD, MI));
+ continue;
+ }
+
+ // In case we need a return adjustment, we'll add a new slot for
+ // the overrider. Mark the overridden method as shadowed by the new slot.
+ OverriddenMethodInfo.Shadowed = true;
+
+ // Force a special name mangling for a return-adjusting thunk
+ // unless the method is the final overrider without this adjustment.
+ ForceReturnAdjustmentMangling =
+ !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
+ } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
+ MD->size_overridden_methods()) {
+ // Skip methods that don't belong to the vftable of the current class,
+ // e.g. each method that wasn't seen in any of the visited sub-bases
+ // but overrides multiple methods of other sub-bases.
+ continue;
+ }
+
+ // If we got here, MD is a method not seen in any of the sub-bases or
+ // it requires return adjustment. Insert the method info for this method.
+ MethodInfo MI(VBIndex,
+ HasRTTIComponent ? Components.size() - 1 : Components.size(),
+ ReturnAdjustingThunk);
+
+ assert(!MethodInfoMap.count(MD) &&
+ "Should not have method info for this method yet!");
+ MethodInfoMap.insert(std::make_pair(MD, MI));
+
+ // Check if this overrider needs a return adjustment.
+ // We don't want to do this for pure virtual member functions.
+ BaseOffset ReturnAdjustmentOffset;
+ ReturnAdjustment ReturnAdjustment;
+ if (!FinalOverriderMD->isPure()) {
+ ReturnAdjustmentOffset =
+ ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
+ }
+ if (!ReturnAdjustmentOffset.isEmpty()) {
+ ForceReturnAdjustmentMangling = true;
+ ReturnAdjustment.NonVirtual =
+ ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
+ if (ReturnAdjustmentOffset.VirtualBase) {
+ const ASTRecordLayout &DerivedLayout =
+ Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
+ ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
+ DerivedLayout.getVBPtrOffset().getQuantity();
+ ReturnAdjustment.Virtual.Microsoft.VBIndex =
+ VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
+ ReturnAdjustmentOffset.VirtualBase);
+ }
+ }
+
+ AddMethod(FinalOverriderMD,
+ ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
+ ForceReturnAdjustmentMangling ? MD : nullptr));
+ }
+}
+
+static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
+ for (const CXXRecordDecl *Elem : llvm::reverse(Path)) {
+ Out << "'";
+ Elem->printQualifiedName(Out);
+ Out << "' in ";
+ }
+}
+
+static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
+ bool ContinueFirstLine) {
+ const ReturnAdjustment &R = TI.Return;
+ bool Multiline = false;
+ const char *LinePrefix = "\n ";
+ if (!R.isEmpty() || TI.Method) {
+ if (!ContinueFirstLine)
+ Out << LinePrefix;
+ Out << "[return adjustment (to type '"
+ << TI.Method->getReturnType().getCanonicalType().getAsString()
+ << "'): ";
+ if (R.Virtual.Microsoft.VBPtrOffset)
+ Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
+ if (R.Virtual.Microsoft.VBIndex)
+ Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
+ Out << R.NonVirtual << " non-virtual]";
+ Multiline = true;
+ }
+
+ const ThisAdjustment &T = TI.This;
+ if (!T.isEmpty()) {
+ if (Multiline || !ContinueFirstLine)
+ Out << LinePrefix;
+ Out << "[this adjustment: ";
+ if (!TI.This.Virtual.isEmpty()) {
+ assert(T.Virtual.Microsoft.VtordispOffset < 0);
+ Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
+ if (T.Virtual.Microsoft.VBPtrOffset) {
+ Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
+ << " to the left,";
+ assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
+ Out << LinePrefix << " vboffset at "
+ << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
+ }
+ }
+ Out << T.NonVirtual << " non-virtual]";
+ }
+}
+
+void VFTableBuilder::dumpLayout(raw_ostream &Out) {
+ Out << "VFTable for ";
+ PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out);
+ Out << "'";
+ MostDerivedClass->printQualifiedName(Out);
+ Out << "' (" << Components.size()
+ << (Components.size() == 1 ? " entry" : " entries") << ").\n";
+
+ for (unsigned I = 0, E = Components.size(); I != E; ++I) {
+ Out << llvm::format("%4d | ", I);
+
+ const VTableComponent &Component = Components[I];
+
+ // Dump the component.
+ switch (Component.getKind()) {
+ case VTableComponent::CK_RTTI:
+ Component.getRTTIDecl()->printQualifiedName(Out);
+ Out << " RTTI";
+ break;
+
+ case VTableComponent::CK_FunctionPointer: {
+ const CXXMethodDecl *MD = Component.getFunctionDecl();
+
+ // FIXME: Figure out how to print the real thunk type, since they can
+ // differ in the return type.
+ std::string Str = PredefinedExpr::ComputeName(
+ PredefinedExpr::PrettyFunctionNoVirtual, MD);
+ Out << Str;
+ if (MD->isPure())
+ Out << " [pure]";
+
+ if (MD->isDeleted())
+ Out << " [deleted]";
+
+ ThunkInfo Thunk = VTableThunks.lookup(I);
+ if (!Thunk.isEmpty())
+ dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
+
+ break;
+ }
+
+ case VTableComponent::CK_DeletingDtorPointer: {
+ const CXXDestructorDecl *DD = Component.getDestructorDecl();
+
+ DD->printQualifiedName(Out);
+ Out << "() [scalar deleting]";
+
+ if (DD->isPure())
+ Out << " [pure]";
+
+ ThunkInfo Thunk = VTableThunks.lookup(I);
+ if (!Thunk.isEmpty()) {
+ assert(Thunk.Return.isEmpty() &&
+ "No return adjustment needed for destructors!");
+ dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
+ }
+
+ break;
+ }
+
+ default:
+ DiagnosticsEngine &Diags = Context.getDiagnostics();
+ unsigned DiagID = Diags.getCustomDiagID(
+ DiagnosticsEngine::Error,
+ "Unexpected vftable component type %0 for component number %1");
+ Diags.Report(MostDerivedClass->getLocation(), DiagID)
+ << I << Component.getKind();
+ }
+
+ Out << '\n';
+ }
+
+ Out << '\n';
+
+ if (!Thunks.empty()) {
+ // We store the method names in a map to get a stable order.
+ std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
+
+ for (const auto &I : Thunks) {
+ const CXXMethodDecl *MD = I.first;
+ std::string MethodName = PredefinedExpr::ComputeName(
+ PredefinedExpr::PrettyFunctionNoVirtual, MD);
+
+ MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
+ }
+
+ for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
+ const std::string &MethodName = MethodNameAndDecl.first;
+ const CXXMethodDecl *MD = MethodNameAndDecl.second;
+
+ ThunkInfoVectorTy ThunksVector = Thunks[MD];
+ llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS,
+ const ThunkInfo &RHS) {
+ // Keep different thunks with the same adjustments in the order they
+ // were put into the vector.
+ return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
+ });
+
+ Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
+ Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
+
+ for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
+ const ThunkInfo &Thunk = ThunksVector[I];
+
+ Out << llvm::format("%4d | ", I);
+ dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
+ Out << '\n';
+ }
+
+ Out << '\n';
+ }
+ }
+
+ Out.flush();
+}
+
+static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
+ ArrayRef<const CXXRecordDecl *> B) {
+ for (const CXXRecordDecl *Decl : B) {
+ if (A.count(Decl))
+ return true;
+ }
+ return false;
+}
+
+static bool rebucketPaths(VPtrInfoVector &Paths);
+
+/// Produces MSVC-compatible vbtable data. The symbols produced by this
+/// algorithm match those produced by MSVC 2012 and newer, which is different
+/// from MSVC 2010.
+///
+/// MSVC 2012 appears to minimize the vbtable names using the following
+/// algorithm. First, walk the class hierarchy in the usual order, depth first,
+/// left to right, to find all of the subobjects which contain a vbptr field.
+/// Visiting each class node yields a list of inheritance paths to vbptrs. Each
+/// record with a vbptr creates an initially empty path.
+///
+/// To combine paths from child nodes, the paths are compared to check for
+/// ambiguity. Paths are "ambiguous" if multiple paths have the same set of
+/// components in the same order. Each group of ambiguous paths is extended by
+/// appending the class of the base from which it came. If the current class
+/// node produced an ambiguous path, its path is extended with the current class.
+/// After extending paths, MSVC again checks for ambiguity, and extends any
+/// ambiguous path which wasn't already extended. Because each node yields an
+/// unambiguous set of paths, MSVC doesn't need to extend any path more than once
+/// to produce an unambiguous set of paths.
+///
+/// TODO: Presumably vftables use the same algorithm.
+void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
+ const CXXRecordDecl *RD,
+ VPtrInfoVector &Paths) {
+ assert(Paths.empty());
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ // Base case: this subobject has its own vptr.
+ if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
+ Paths.push_back(std::make_unique<VPtrInfo>(RD));
+
+ // Recursive case: get all the vbtables from our bases and remove anything
+ // that shares a virtual base.
+ llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
+ for (const auto &B : RD->bases()) {
+ const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
+ if (B.isVirtual() && VBasesSeen.count(Base))
+ continue;
+
+ if (!Base->isDynamicClass())
+ continue;
+
+ const VPtrInfoVector &BasePaths =
+ ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
+
+ for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) {
+ // Don't include the path if it goes through a virtual base that we've
+ // already included.
+ if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
+ continue;
+
+ // Copy the path and adjust it as necessary.
+ auto P = std::make_unique<VPtrInfo>(*BaseInfo);
+
+ // We mangle Base into the path if the path would've been ambiguous and it
+ // wasn't already extended with Base.
+ if (P->MangledPath.empty() || P->MangledPath.back() != Base)
+ P->NextBaseToMangle = Base;
+
+ // Keep track of which vtable the derived class is going to extend with
+ // new methods or bases. We append to either the vftable of our primary
+ // base, or the first non-virtual base that has a vbtable.
+ if (P->ObjectWithVPtr == Base &&
+ Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
+ : Layout.getPrimaryBase()))
+ P->ObjectWithVPtr = RD;
+
+ // Keep track of the full adjustment from the MDC to this vtable. The
+ // adjustment is captured by an optional vbase and a non-virtual offset.
+ if (B.isVirtual())
+ P->ContainingVBases.push_back(Base);
+ else if (P->ContainingVBases.empty())
+ P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
+
+ // Update the full offset in the MDC.
+ P->FullOffsetInMDC = P->NonVirtualOffset;
+ if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
+ P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
+
+ Paths.push_back(std::move(P));
+ }
+
+ if (B.isVirtual())
+ VBasesSeen.insert(Base);
+
+ // After visiting any direct base, we've transitively visited all of its
+ // morally virtual bases.
+ for (const auto &VB : Base->vbases())
+ VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
+ }
+
+ // Sort the paths into buckets, and if any of them are ambiguous, extend all
+ // paths in ambiguous buckets.
+ bool Changed = true;
+ while (Changed)
+ Changed = rebucketPaths(Paths);
+}
+
+static bool extendPath(VPtrInfo &P) {
+ if (P.NextBaseToMangle) {
+ P.MangledPath.push_back(P.NextBaseToMangle);
+ P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
+ return true;
+ }
+ return false;
+}
+
+static bool rebucketPaths(VPtrInfoVector &Paths) {
+ // What we're essentially doing here is bucketing together ambiguous paths.
+ // Any bucket with more than one path in it gets extended by NextBase, which
+ // is usually the direct base of the inherited the vbptr. This code uses a
+ // sorted vector to implement a multiset to form the buckets. Note that the
+ // ordering is based on pointers, but it doesn't change our output order. The
+ // current algorithm is designed to match MSVC 2012's names.
+ llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted;
+ PathsSorted.reserve(Paths.size());
+ for (auto& P : Paths)
+ PathsSorted.push_back(*P);
+ llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) {
+ return LHS.MangledPath < RHS.MangledPath;
+ });
+ bool Changed = false;
+ for (size_t I = 0, E = PathsSorted.size(); I != E;) {
+ // Scan forward to find the end of the bucket.
+ size_t BucketStart = I;
+ do {
+ ++I;
+ } while (I != E &&
+ PathsSorted[BucketStart].get().MangledPath ==
+ PathsSorted[I].get().MangledPath);
+
+ // If this bucket has multiple paths, extend them all.
+ if (I - BucketStart > 1) {
+ for (size_t II = BucketStart; II != I; ++II)
+ Changed |= extendPath(PathsSorted[II]);
+ assert(Changed && "no paths were extended to fix ambiguity");
+ }
+ }
+ return Changed;
+}
+
+MicrosoftVTableContext::~MicrosoftVTableContext() {}
+
+namespace {
+typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
+ llvm::DenseSet<BaseSubobject>> FullPathTy;
+}
+
+// This recursive function finds all paths from a subobject centered at
+// (RD, Offset) to the subobject located at IntroducingObject.
+static void findPathsToSubobject(ASTContext &Context,
+ const ASTRecordLayout &MostDerivedLayout,
+ const CXXRecordDecl *RD, CharUnits Offset,
+ BaseSubobject IntroducingObject,
+ FullPathTy &FullPath,
+ std::list<FullPathTy> &Paths) {
+ if (BaseSubobject(RD, Offset) == IntroducingObject) {
+ Paths.push_back(FullPath);
+ return;
+ }
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+ for (const CXXBaseSpecifier &BS : RD->bases()) {
+ const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
+ CharUnits NewOffset = BS.isVirtual()
+ ? MostDerivedLayout.getVBaseClassOffset(Base)
+ : Offset + Layout.getBaseClassOffset(Base);
+ FullPath.insert(BaseSubobject(Base, NewOffset));
+ findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
+ IntroducingObject, FullPath, Paths);
+ FullPath.pop_back();
+ }
+}
+
+// Return the paths which are not subsets of other paths.
+static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
+ FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
+ for (const FullPathTy &OtherPath : FullPaths) {
+ if (&SpecificPath == &OtherPath)
+ continue;
+ if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) {
+ return OtherPath.contains(BSO);
+ })) {
+ return true;
+ }
+ }
+ return false;
+ });
+}
+
+static CharUnits getOffsetOfFullPath(ASTContext &Context,
+ const CXXRecordDecl *RD,
+ const FullPathTy &FullPath) {
+ const ASTRecordLayout &MostDerivedLayout =
+ Context.getASTRecordLayout(RD);
+ CharUnits Offset = CharUnits::fromQuantity(-1);
+ for (const BaseSubobject &BSO : FullPath) {
+ const CXXRecordDecl *Base = BSO.getBase();
+ // The first entry in the path is always the most derived record, skip it.
+ if (Base == RD) {
+ assert(Offset.getQuantity() == -1);
+ Offset = CharUnits::Zero();
+ continue;
+ }
+ assert(Offset.getQuantity() != -1);
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ // While we know which base has to be traversed, we don't know if that base
+ // was a virtual base.
+ const CXXBaseSpecifier *BaseBS = std::find_if(
+ RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
+ return BS.getType()->getAsCXXRecordDecl() == Base;
+ });
+ Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
+ : Offset + Layout.getBaseClassOffset(Base);
+ RD = Base;
+ }
+ return Offset;
+}
+
+// We want to select the path which introduces the most covariant overrides. If
+// two paths introduce overrides which the other path doesn't contain, issue a
+// diagnostic.
+static const FullPathTy *selectBestPath(ASTContext &Context,
+ const CXXRecordDecl *RD,
+ const VPtrInfo &Info,
+ std::list<FullPathTy> &FullPaths) {
+ // Handle some easy cases first.
+ if (FullPaths.empty())
+ return nullptr;
+ if (FullPaths.size() == 1)
+ return &FullPaths.front();
+
+ const FullPathTy *BestPath = nullptr;
+ typedef std::set<const CXXMethodDecl *> OverriderSetTy;
+ OverriderSetTy LastOverrides;
+ for (const FullPathTy &SpecificPath : FullPaths) {
+ assert(!SpecificPath.empty());
+ OverriderSetTy CurrentOverrides;
+ const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
+ // Find the distance from the start of the path to the subobject with the
+ // VPtr.
+ CharUnits BaseOffset =
+ getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
+ FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
+ for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) {
+ if (!MicrosoftVTableContext::hasVtableSlot(MD))
+ continue;
+ FinalOverriders::OverriderInfo OI =
+ Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
+ const CXXMethodDecl *OverridingMethod = OI.Method;
+ // Only overriders which have a return adjustment introduce problematic
+ // thunks.
+ if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
+ .isEmpty())
+ continue;
+ // It's possible that the overrider isn't in this path. If so, skip it
+ // because this path didn't introduce it.
+ const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
+ if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) {
+ return BSO.getBase() == OverridingParent;
+ }))
+ continue;
+ CurrentOverrides.insert(OverridingMethod);
+ }
+ OverriderSetTy NewOverrides =
+ llvm::set_difference(CurrentOverrides, LastOverrides);
+ if (NewOverrides.empty())
+ continue;
+ OverriderSetTy MissingOverrides =
+ llvm::set_difference(LastOverrides, CurrentOverrides);
+ if (MissingOverrides.empty()) {
+ // This path is a strict improvement over the last path, let's use it.
+ BestPath = &SpecificPath;
+ std::swap(CurrentOverrides, LastOverrides);
+ } else {
+ // This path introduces an overrider with a conflicting covariant thunk.
+ DiagnosticsEngine &Diags = Context.getDiagnostics();
+ const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
+ const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
+ Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
+ << RD;
+ Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
+ << CovariantMD;
+ Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
+ << ConflictMD;
+ }
+ }
+ // Go with the path that introduced the most covariant overrides. If there is
+ // no such path, pick the first path.
+ return BestPath ? BestPath : &FullPaths.front();
+}
+
+static void computeFullPathsForVFTables(ASTContext &Context,
+ const CXXRecordDecl *RD,
+ VPtrInfoVector &Paths) {
+ const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
+ FullPathTy FullPath;
+ std::list<FullPathTy> FullPaths;
+ for (const std::unique_ptr<VPtrInfo>& Info : Paths) {
+ findPathsToSubobject(
+ Context, MostDerivedLayout, RD, CharUnits::Zero(),
+ BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath,
+ FullPaths);
+ FullPath.clear();
+ removeRedundantPaths(FullPaths);
+ Info->PathToIntroducingObject.clear();
+ if (const FullPathTy *BestPath =
+ selectBestPath(Context, RD, *Info, FullPaths))
+ for (const BaseSubobject &BSO : *BestPath)
+ Info->PathToIntroducingObject.push_back(BSO.getBase());
+ FullPaths.clear();
+ }
+}
+
+static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout,
+ const MethodVFTableLocation &LHS,
+ const MethodVFTableLocation &RHS) {
+ CharUnits L = LHS.VFPtrOffset;
+ CharUnits R = RHS.VFPtrOffset;
+ if (LHS.VBase)
+ L += Layout.getVBaseClassOffset(LHS.VBase);
+ if (RHS.VBase)
+ R += Layout.getVBaseClassOffset(RHS.VBase);
+ return L < R;
+}
+
+void MicrosoftVTableContext::computeVTableRelatedInformation(
+ const CXXRecordDecl *RD) {
+ assert(RD->isDynamicClass());
+
+ // Check if we've computed this information before.
+ if (VFPtrLocations.count(RD))
+ return;
+
+ const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
+
+ {
+ auto VFPtrs = std::make_unique<VPtrInfoVector>();
+ computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
+ computeFullPathsForVFTables(Context, RD, *VFPtrs);
+ VFPtrLocations[RD] = std::move(VFPtrs);
+ }
+
+ MethodVFTableLocationsTy NewMethodLocations;
+ for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) {
+ VFTableBuilder Builder(*this, RD, *VFPtr);
+
+ VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
+ assert(VFTableLayouts.count(id) == 0);
+ SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
+ Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
+ VFTableLayouts[id] = std::make_unique<VTableLayout>(
+ ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks,
+ EmptyAddressPointsMap);
+ Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
+
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ for (const auto &Loc : Builder.vtable_locations()) {
+ auto Insert = NewMethodLocations.insert(Loc);
+ if (!Insert.second) {
+ const MethodVFTableLocation &NewLoc = Loc.second;
+ MethodVFTableLocation &OldLoc = Insert.first->second;
+ if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc))
+ OldLoc = NewLoc;
+ }
+ }
+ }
+
+ MethodVFTableLocations.insert(NewMethodLocations.begin(),
+ NewMethodLocations.end());
+ if (Context.getLangOpts().DumpVTableLayouts)
+ dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
+}
+
+void MicrosoftVTableContext::dumpMethodLocations(
+ const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
+ raw_ostream &Out) {
+ // Compute the vtable indices for all the member functions.
+ // Store them in a map keyed by the location so we'll get a sorted table.
+ std::map<MethodVFTableLocation, std::string> IndicesMap;
+ bool HasNonzeroOffset = false;
+
+ for (const auto &I : NewMethods) {
+ const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
+ assert(hasVtableSlot(MD));
+
+ std::string MethodName = PredefinedExpr::ComputeName(
+ PredefinedExpr::PrettyFunctionNoVirtual, MD);
+
+ if (isa<CXXDestructorDecl>(MD)) {
+ IndicesMap[I.second] = MethodName + " [scalar deleting]";
+ } else {
+ IndicesMap[I.second] = MethodName;
+ }
+
+ if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
+ HasNonzeroOffset = true;
+ }
+
+ // Print the vtable indices for all the member functions.
+ if (!IndicesMap.empty()) {
+ Out << "VFTable indices for ";
+ Out << "'";
+ RD->printQualifiedName(Out);
+ Out << "' (" << IndicesMap.size()
+ << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
+
+ CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
+ uint64_t LastVBIndex = 0;
+ for (const auto &I : IndicesMap) {
+ CharUnits VFPtrOffset = I.first.VFPtrOffset;
+ uint64_t VBIndex = I.first.VBTableIndex;
+ if (HasNonzeroOffset &&
+ (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
+ assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
+ Out << " -- accessible via ";
+ if (VBIndex)
+ Out << "vbtable index " << VBIndex << ", ";
+ Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
+ LastVFPtrOffset = VFPtrOffset;
+ LastVBIndex = VBIndex;
+ }
+
+ uint64_t VTableIndex = I.first.Index;
+ const std::string &MethodName = I.second;
+ Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
+ }
+ Out << '\n';
+ }
+
+ Out.flush();
+}
+
+const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation(
+ const CXXRecordDecl *RD) {
+ VirtualBaseInfo *VBI;
+
+ {
+ // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell,
+ // as it may be modified and rehashed under us.
+ std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD];
+ if (Entry)
+ return *Entry;
+ Entry = std::make_unique<VirtualBaseInfo>();
+ VBI = Entry.get();
+ }
+
+ computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
+
+ // First, see if the Derived class shared the vbptr with a non-virtual base.
+ const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+ if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
+ // If the Derived class shares the vbptr with a non-virtual base, the shared
+ // virtual bases come first so that the layout is the same.
+ const VirtualBaseInfo &BaseInfo =
+ computeVBTableRelatedInformation(VBPtrBase);
+ VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(),
+ BaseInfo.VBTableIndices.end());
+ }
+
+ // New vbases are added to the end of the vbtable.
+ // Skip the self entry and vbases visited in the non-virtual base, if any.
+ unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
+ for (const auto &VB : RD->vbases()) {
+ const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
+ if (!VBI->VBTableIndices.count(CurVBase))
+ VBI->VBTableIndices[CurVBase] = VBTableIndex++;
+ }
+
+ return *VBI;
+}
+
+unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
+ const CXXRecordDecl *VBase) {
+ const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived);
+ assert(VBInfo.VBTableIndices.count(VBase));
+ return VBInfo.VBTableIndices.find(VBase)->second;
+}
+
+const VPtrInfoVector &
+MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
+ return computeVBTableRelatedInformation(RD).VBPtrPaths;
+}
+
+const VPtrInfoVector &
+MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
+ computeVTableRelatedInformation(RD);
+
+ assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
+ return *VFPtrLocations[RD];
+}
+
+const VTableLayout &
+MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
+ CharUnits VFPtrOffset) {
+ computeVTableRelatedInformation(RD);
+
+ VFTableIdTy id(RD, VFPtrOffset);
+ assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
+ return *VFTableLayouts[id];
+}
+
+MethodVFTableLocation
+MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
+ assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) &&
+ "Only use this method for virtual methods or dtors");
+ if (isa<CXXDestructorDecl>(GD.getDecl()))
+ assert(GD.getDtorType() == Dtor_Deleting);
+
+ GD = GD.getCanonicalDecl();
+
+ MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
+ if (I != MethodVFTableLocations.end())
+ return I->second;
+
+ const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
+
+ computeVTableRelatedInformation(RD);
+
+ I = MethodVFTableLocations.find(GD);
+ assert(I != MethodVFTableLocations.end() && "Did not find index!");
+ return I->second;
+}