diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/clang14/lib/AST/VTableBuilder.cpp | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/clang14/lib/AST/VTableBuilder.cpp')
-rw-r--r-- | contrib/libs/clang14/lib/AST/VTableBuilder.cpp | 3796 |
1 files changed, 3796 insertions, 0 deletions
diff --git a/contrib/libs/clang14/lib/AST/VTableBuilder.cpp b/contrib/libs/clang14/lib/AST/VTableBuilder.cpp new file mode 100644 index 0000000000..24586d6b70 --- /dev/null +++ b/contrib/libs/clang14/lib/AST/VTableBuilder.cpp @@ -0,0 +1,3796 @@ +//===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This contains code dealing with generation of the layout of virtual tables. +// +//===----------------------------------------------------------------------===// + +#include "clang/AST/VTableBuilder.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/ASTDiagnostic.h" +#include "clang/AST/CXXInheritance.h" +#include "clang/AST/RecordLayout.h" +#include "clang/Basic/TargetInfo.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cstdio> + +using namespace clang; + +#define DUMP_OVERRIDERS 0 + +namespace { + +/// BaseOffset - Represents an offset from a derived class to a direct or +/// indirect base class. +struct BaseOffset { + /// DerivedClass - The derived class. + const CXXRecordDecl *DerivedClass; + + /// VirtualBase - If the path from the derived class to the base class + /// involves virtual base classes, this holds the declaration of the last + /// virtual base in this path (i.e. closest to the base class). + const CXXRecordDecl *VirtualBase; + + /// NonVirtualOffset - The offset from the derived class to the base class. + /// (Or the offset from the virtual base class to the base class, if the + /// path from the derived class to the base class involves a virtual base + /// class. + CharUnits NonVirtualOffset; + + BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr), + NonVirtualOffset(CharUnits::Zero()) { } + BaseOffset(const CXXRecordDecl *DerivedClass, + const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset) + : DerivedClass(DerivedClass), VirtualBase(VirtualBase), + NonVirtualOffset(NonVirtualOffset) { } + + bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; } +}; + +/// FinalOverriders - Contains the final overrider member functions for all +/// member functions in the base subobjects of a class. +class FinalOverriders { +public: + /// OverriderInfo - Information about a final overrider. + struct OverriderInfo { + /// Method - The method decl of the overrider. + const CXXMethodDecl *Method; + + /// VirtualBase - The virtual base class subobject of this overrider. + /// Note that this records the closest derived virtual base class subobject. + const CXXRecordDecl *VirtualBase; + + /// Offset - the base offset of the overrider's parent in the layout class. + CharUnits Offset; + + OverriderInfo() : Method(nullptr), VirtualBase(nullptr), + Offset(CharUnits::Zero()) { } + }; + +private: + /// MostDerivedClass - The most derived class for which the final overriders + /// are stored. + const CXXRecordDecl *MostDerivedClass; + + /// MostDerivedClassOffset - If we're building final overriders for a + /// construction vtable, this holds the offset from the layout class to the + /// most derived class. + const CharUnits MostDerivedClassOffset; + + /// LayoutClass - The class we're using for layout information. Will be + /// different than the most derived class if the final overriders are for a + /// construction vtable. + const CXXRecordDecl *LayoutClass; + + ASTContext &Context; + + /// MostDerivedClassLayout - the AST record layout of the most derived class. + const ASTRecordLayout &MostDerivedClassLayout; + + /// MethodBaseOffsetPairTy - Uniquely identifies a member function + /// in a base subobject. + typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy; + + typedef llvm::DenseMap<MethodBaseOffsetPairTy, + OverriderInfo> OverridersMapTy; + + /// OverridersMap - The final overriders for all virtual member functions of + /// all the base subobjects of the most derived class. + OverridersMapTy OverridersMap; + + /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented + /// as a record decl and a subobject number) and its offsets in the most + /// derived class as well as the layout class. + typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>, + CharUnits> SubobjectOffsetMapTy; + + typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy; + + /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the + /// given base. + void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, + CharUnits OffsetInLayoutClass, + SubobjectOffsetMapTy &SubobjectOffsets, + SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, + SubobjectCountMapTy &SubobjectCounts); + + typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; + + /// dump - dump the final overriders for a base subobject, and all its direct + /// and indirect base subobjects. + void dump(raw_ostream &Out, BaseSubobject Base, + VisitedVirtualBasesSetTy& VisitedVirtualBases); + +public: + FinalOverriders(const CXXRecordDecl *MostDerivedClass, + CharUnits MostDerivedClassOffset, + const CXXRecordDecl *LayoutClass); + + /// getOverrider - Get the final overrider for the given method declaration in + /// the subobject with the given base offset. + OverriderInfo getOverrider(const CXXMethodDecl *MD, + CharUnits BaseOffset) const { + assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) && + "Did not find overrider!"); + + return OverridersMap.lookup(std::make_pair(MD, BaseOffset)); + } + + /// dump - dump the final overriders. + void dump() { + VisitedVirtualBasesSetTy VisitedVirtualBases; + dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()), + VisitedVirtualBases); + } + +}; + +FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass, + CharUnits MostDerivedClassOffset, + const CXXRecordDecl *LayoutClass) + : MostDerivedClass(MostDerivedClass), + MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass), + Context(MostDerivedClass->getASTContext()), + MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) { + + // Compute base offsets. + SubobjectOffsetMapTy SubobjectOffsets; + SubobjectOffsetMapTy SubobjectLayoutClassOffsets; + SubobjectCountMapTy SubobjectCounts; + ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()), + /*IsVirtual=*/false, + MostDerivedClassOffset, + SubobjectOffsets, SubobjectLayoutClassOffsets, + SubobjectCounts); + + // Get the final overriders. + CXXFinalOverriderMap FinalOverriders; + MostDerivedClass->getFinalOverriders(FinalOverriders); + + for (const auto &Overrider : FinalOverriders) { + const CXXMethodDecl *MD = Overrider.first; + const OverridingMethods &Methods = Overrider.second; + + for (const auto &M : Methods) { + unsigned SubobjectNumber = M.first; + assert(SubobjectOffsets.count(std::make_pair(MD->getParent(), + SubobjectNumber)) && + "Did not find subobject offset!"); + + CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(), + SubobjectNumber)]; + + assert(M.second.size() == 1 && "Final overrider is not unique!"); + const UniqueVirtualMethod &Method = M.second.front(); + + const CXXRecordDecl *OverriderRD = Method.Method->getParent(); + assert(SubobjectLayoutClassOffsets.count( + std::make_pair(OverriderRD, Method.Subobject)) + && "Did not find subobject offset!"); + CharUnits OverriderOffset = + SubobjectLayoutClassOffsets[std::make_pair(OverriderRD, + Method.Subobject)]; + + OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)]; + assert(!Overrider.Method && "Overrider should not exist yet!"); + + Overrider.Offset = OverriderOffset; + Overrider.Method = Method.Method; + Overrider.VirtualBase = Method.InVirtualSubobject; + } + } + +#if DUMP_OVERRIDERS + // And dump them (for now). + dump(); +#endif +} + +static BaseOffset ComputeBaseOffset(const ASTContext &Context, + const CXXRecordDecl *DerivedRD, + const CXXBasePath &Path) { + CharUnits NonVirtualOffset = CharUnits::Zero(); + + unsigned NonVirtualStart = 0; + const CXXRecordDecl *VirtualBase = nullptr; + + // First, look for the virtual base class. + for (int I = Path.size(), E = 0; I != E; --I) { + const CXXBasePathElement &Element = Path[I - 1]; + + if (Element.Base->isVirtual()) { + NonVirtualStart = I; + QualType VBaseType = Element.Base->getType(); + VirtualBase = VBaseType->getAsCXXRecordDecl(); + break; + } + } + + // Now compute the non-virtual offset. + for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) { + const CXXBasePathElement &Element = Path[I]; + + // Check the base class offset. + const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class); + + const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl(); + + NonVirtualOffset += Layout.getBaseClassOffset(Base); + } + + // FIXME: This should probably use CharUnits or something. Maybe we should + // even change the base offsets in ASTRecordLayout to be specified in + // CharUnits. + return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset); + +} + +static BaseOffset ComputeBaseOffset(const ASTContext &Context, + const CXXRecordDecl *BaseRD, + const CXXRecordDecl *DerivedRD) { + CXXBasePaths Paths(/*FindAmbiguities=*/false, + /*RecordPaths=*/true, /*DetectVirtual=*/false); + + if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) + llvm_unreachable("Class must be derived from the passed in base class!"); + + return ComputeBaseOffset(Context, DerivedRD, Paths.front()); +} + +static BaseOffset +ComputeReturnAdjustmentBaseOffset(ASTContext &Context, + const CXXMethodDecl *DerivedMD, + const CXXMethodDecl *BaseMD) { + const auto *BaseFT = BaseMD->getType()->castAs<FunctionType>(); + const auto *DerivedFT = DerivedMD->getType()->castAs<FunctionType>(); + + // Canonicalize the return types. + CanQualType CanDerivedReturnType = + Context.getCanonicalType(DerivedFT->getReturnType()); + CanQualType CanBaseReturnType = + Context.getCanonicalType(BaseFT->getReturnType()); + + assert(CanDerivedReturnType->getTypeClass() == + CanBaseReturnType->getTypeClass() && + "Types must have same type class!"); + + if (CanDerivedReturnType == CanBaseReturnType) { + // No adjustment needed. + return BaseOffset(); + } + + if (isa<ReferenceType>(CanDerivedReturnType)) { + CanDerivedReturnType = + CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType(); + CanBaseReturnType = + CanBaseReturnType->getAs<ReferenceType>()->getPointeeType(); + } else if (isa<PointerType>(CanDerivedReturnType)) { + CanDerivedReturnType = + CanDerivedReturnType->getAs<PointerType>()->getPointeeType(); + CanBaseReturnType = + CanBaseReturnType->getAs<PointerType>()->getPointeeType(); + } else { + llvm_unreachable("Unexpected return type!"); + } + + // We need to compare unqualified types here; consider + // const T *Base::foo(); + // T *Derived::foo(); + if (CanDerivedReturnType.getUnqualifiedType() == + CanBaseReturnType.getUnqualifiedType()) { + // No adjustment needed. + return BaseOffset(); + } + + const CXXRecordDecl *DerivedRD = + cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl()); + + const CXXRecordDecl *BaseRD = + cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl()); + + return ComputeBaseOffset(Context, BaseRD, DerivedRD); +} + +void +FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, + CharUnits OffsetInLayoutClass, + SubobjectOffsetMapTy &SubobjectOffsets, + SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, + SubobjectCountMapTy &SubobjectCounts) { + const CXXRecordDecl *RD = Base.getBase(); + + unsigned SubobjectNumber = 0; + if (!IsVirtual) + SubobjectNumber = ++SubobjectCounts[RD]; + + // Set up the subobject to offset mapping. + assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber)) + && "Subobject offset already exists!"); + assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber)) + && "Subobject offset already exists!"); + + SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset(); + SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] = + OffsetInLayoutClass; + + // Traverse our bases. + for (const auto &B : RD->bases()) { + const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); + + CharUnits BaseOffset; + CharUnits BaseOffsetInLayoutClass; + if (B.isVirtual()) { + // Check if we've visited this virtual base before. + if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0))) + continue; + + const ASTRecordLayout &LayoutClassLayout = + Context.getASTRecordLayout(LayoutClass); + + BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); + BaseOffsetInLayoutClass = + LayoutClassLayout.getVBaseClassOffset(BaseDecl); + } else { + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + CharUnits Offset = Layout.getBaseClassOffset(BaseDecl); + + BaseOffset = Base.getBaseOffset() + Offset; + BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset; + } + + ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset), + B.isVirtual(), BaseOffsetInLayoutClass, + SubobjectOffsets, SubobjectLayoutClassOffsets, + SubobjectCounts); + } +} + +void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base, + VisitedVirtualBasesSetTy &VisitedVirtualBases) { + const CXXRecordDecl *RD = Base.getBase(); + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + + for (const auto &B : RD->bases()) { + const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); + + // Ignore bases that don't have any virtual member functions. + if (!BaseDecl->isPolymorphic()) + continue; + + CharUnits BaseOffset; + if (B.isVirtual()) { + if (!VisitedVirtualBases.insert(BaseDecl).second) { + // We've visited this base before. + continue; + } + + BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); + } else { + BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset(); + } + + dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases); + } + + Out << "Final overriders for ("; + RD->printQualifiedName(Out); + Out << ", "; + Out << Base.getBaseOffset().getQuantity() << ")\n"; + + // Now dump the overriders for this base subobject. + for (const auto *MD : RD->methods()) { + if (!VTableContextBase::hasVtableSlot(MD)) + continue; + MD = MD->getCanonicalDecl(); + + OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset()); + + Out << " "; + MD->printQualifiedName(Out); + Out << " - ("; + Overrider.Method->printQualifiedName(Out); + Out << ", " << Overrider.Offset.getQuantity() << ')'; + + BaseOffset Offset; + if (!Overrider.Method->isPure()) + Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD); + + if (!Offset.isEmpty()) { + Out << " [ret-adj: "; + if (Offset.VirtualBase) { + Offset.VirtualBase->printQualifiedName(Out); + Out << " vbase, "; + } + + Out << Offset.NonVirtualOffset.getQuantity() << " nv]"; + } + + Out << "\n"; + } +} + +/// VCallOffsetMap - Keeps track of vcall offsets when building a vtable. +struct VCallOffsetMap { + + typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy; + + /// Offsets - Keeps track of methods and their offsets. + // FIXME: This should be a real map and not a vector. + SmallVector<MethodAndOffsetPairTy, 16> Offsets; + + /// MethodsCanShareVCallOffset - Returns whether two virtual member functions + /// can share the same vcall offset. + static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, + const CXXMethodDecl *RHS); + +public: + /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the + /// add was successful, or false if there was already a member function with + /// the same signature in the map. + bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset); + + /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the + /// vtable address point) for the given virtual member function. + CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD); + + // empty - Return whether the offset map is empty or not. + bool empty() const { return Offsets.empty(); } +}; + +static bool HasSameVirtualSignature(const CXXMethodDecl *LHS, + const CXXMethodDecl *RHS) { + const FunctionProtoType *LT = + cast<FunctionProtoType>(LHS->getType().getCanonicalType()); + const FunctionProtoType *RT = + cast<FunctionProtoType>(RHS->getType().getCanonicalType()); + + // Fast-path matches in the canonical types. + if (LT == RT) return true; + + // Force the signatures to match. We can't rely on the overrides + // list here because there isn't necessarily an inheritance + // relationship between the two methods. + if (LT->getMethodQuals() != RT->getMethodQuals()) + return false; + return LT->getParamTypes() == RT->getParamTypes(); +} + +bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, + const CXXMethodDecl *RHS) { + assert(VTableContextBase::hasVtableSlot(LHS) && "LHS must be virtual!"); + assert(VTableContextBase::hasVtableSlot(RHS) && "RHS must be virtual!"); + + // A destructor can share a vcall offset with another destructor. + if (isa<CXXDestructorDecl>(LHS)) + return isa<CXXDestructorDecl>(RHS); + + // FIXME: We need to check more things here. + + // The methods must have the same name. + DeclarationName LHSName = LHS->getDeclName(); + DeclarationName RHSName = RHS->getDeclName(); + if (LHSName != RHSName) + return false; + + // And the same signatures. + return HasSameVirtualSignature(LHS, RHS); +} + +bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD, + CharUnits OffsetOffset) { + // Check if we can reuse an offset. + for (const auto &OffsetPair : Offsets) { + if (MethodsCanShareVCallOffset(OffsetPair.first, MD)) + return false; + } + + // Add the offset. + Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset)); + return true; +} + +CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) { + // Look for an offset. + for (const auto &OffsetPair : Offsets) { + if (MethodsCanShareVCallOffset(OffsetPair.first, MD)) + return OffsetPair.second; + } + + llvm_unreachable("Should always find a vcall offset offset!"); +} + +/// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets. +class VCallAndVBaseOffsetBuilder { +public: + typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> + VBaseOffsetOffsetsMapTy; + +private: + const ItaniumVTableContext &VTables; + + /// MostDerivedClass - The most derived class for which we're building vcall + /// and vbase offsets. + const CXXRecordDecl *MostDerivedClass; + + /// LayoutClass - The class we're using for layout information. Will be + /// different than the most derived class if we're building a construction + /// vtable. + const CXXRecordDecl *LayoutClass; + + /// Context - The ASTContext which we will use for layout information. + ASTContext &Context; + + /// Components - vcall and vbase offset components + typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy; + VTableComponentVectorTy Components; + + /// VisitedVirtualBases - Visited virtual bases. + llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; + + /// VCallOffsets - Keeps track of vcall offsets. + VCallOffsetMap VCallOffsets; + + + /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets, + /// relative to the address point. + VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; + + /// FinalOverriders - The final overriders of the most derived class. + /// (Can be null when we're not building a vtable of the most derived class). + const FinalOverriders *Overriders; + + /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the + /// given base subobject. + void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual, + CharUnits RealBaseOffset); + + /// AddVCallOffsets - Add vcall offsets for the given base subobject. + void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset); + + /// AddVBaseOffsets - Add vbase offsets for the given class. + void AddVBaseOffsets(const CXXRecordDecl *Base, + CharUnits OffsetInLayoutClass); + + /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in + /// chars, relative to the vtable address point. + CharUnits getCurrentOffsetOffset() const; + +public: + VCallAndVBaseOffsetBuilder(const ItaniumVTableContext &VTables, + const CXXRecordDecl *MostDerivedClass, + const CXXRecordDecl *LayoutClass, + const FinalOverriders *Overriders, + BaseSubobject Base, bool BaseIsVirtual, + CharUnits OffsetInLayoutClass) + : VTables(VTables), MostDerivedClass(MostDerivedClass), + LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), + Overriders(Overriders) { + + // Add vcall and vbase offsets. + AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass); + } + + /// Methods for iterating over the components. + typedef VTableComponentVectorTy::const_reverse_iterator const_iterator; + const_iterator components_begin() const { return Components.rbegin(); } + const_iterator components_end() const { return Components.rend(); } + + const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; } + const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { + return VBaseOffsetOffsets; + } +}; + +void +VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base, + bool BaseIsVirtual, + CharUnits RealBaseOffset) { + const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase()); + + // Itanium C++ ABI 2.5.2: + // ..in classes sharing a virtual table with a primary base class, the vcall + // and vbase offsets added by the derived class all come before the vcall + // and vbase offsets required by the base class, so that the latter may be + // laid out as required by the base class without regard to additions from + // the derived class(es). + + // (Since we're emitting the vcall and vbase offsets in reverse order, we'll + // emit them for the primary base first). + if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { + bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); + + CharUnits PrimaryBaseOffset; + + // Get the base offset of the primary base. + if (PrimaryBaseIsVirtual) { + assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && + "Primary vbase should have a zero offset!"); + + const ASTRecordLayout &MostDerivedClassLayout = + Context.getASTRecordLayout(MostDerivedClass); + + PrimaryBaseOffset = + MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase); + } else { + assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && + "Primary base should have a zero offset!"); + + PrimaryBaseOffset = Base.getBaseOffset(); + } + + AddVCallAndVBaseOffsets( + BaseSubobject(PrimaryBase,PrimaryBaseOffset), + PrimaryBaseIsVirtual, RealBaseOffset); + } + + AddVBaseOffsets(Base.getBase(), RealBaseOffset); + + // We only want to add vcall offsets for virtual bases. + if (BaseIsVirtual) + AddVCallOffsets(Base, RealBaseOffset); +} + +CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const { + // OffsetIndex is the index of this vcall or vbase offset, relative to the + // vtable address point. (We subtract 3 to account for the information just + // above the address point, the RTTI info, the offset to top, and the + // vcall offset itself). + int64_t OffsetIndex = -(int64_t)(3 + Components.size()); + + // Under the relative ABI, the offset widths are 32-bit ints instead of + // pointer widths. + CharUnits OffsetWidth = Context.toCharUnitsFromBits( + VTables.isRelativeLayout() ? 32 + : Context.getTargetInfo().getPointerWidth(0)); + CharUnits OffsetOffset = OffsetWidth * OffsetIndex; + + return OffsetOffset; +} + +void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base, + CharUnits VBaseOffset) { + const CXXRecordDecl *RD = Base.getBase(); + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + + const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); + + // Handle the primary base first. + // We only want to add vcall offsets if the base is non-virtual; a virtual + // primary base will have its vcall and vbase offsets emitted already. + if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) { + // Get the base offset of the primary base. + assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && + "Primary base should have a zero offset!"); + + AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()), + VBaseOffset); + } + + // Add the vcall offsets. + for (const auto *MD : RD->methods()) { + if (!VTableContextBase::hasVtableSlot(MD)) + continue; + MD = MD->getCanonicalDecl(); + + CharUnits OffsetOffset = getCurrentOffsetOffset(); + + // Don't add a vcall offset if we already have one for this member function + // signature. + if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset)) + continue; + + CharUnits Offset = CharUnits::Zero(); + + if (Overriders) { + // Get the final overrider. + FinalOverriders::OverriderInfo Overrider = + Overriders->getOverrider(MD, Base.getBaseOffset()); + + /// The vcall offset is the offset from the virtual base to the object + /// where the function was overridden. + Offset = Overrider.Offset - VBaseOffset; + } + + Components.push_back( + VTableComponent::MakeVCallOffset(Offset)); + } + + // And iterate over all non-virtual bases (ignoring the primary base). + for (const auto &B : RD->bases()) { + if (B.isVirtual()) + continue; + + const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); + if (BaseDecl == PrimaryBase) + continue; + + // Get the base offset of this base. + CharUnits BaseOffset = Base.getBaseOffset() + + Layout.getBaseClassOffset(BaseDecl); + + AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset), + VBaseOffset); + } +} + +void +VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD, + CharUnits OffsetInLayoutClass) { + const ASTRecordLayout &LayoutClassLayout = + Context.getASTRecordLayout(LayoutClass); + + // Add vbase offsets. + for (const auto &B : RD->bases()) { + const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); + + // Check if this is a virtual base that we haven't visited before. + if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) { + CharUnits Offset = + LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass; + + // Add the vbase offset offset. + assert(!VBaseOffsetOffsets.count(BaseDecl) && + "vbase offset offset already exists!"); + + CharUnits VBaseOffsetOffset = getCurrentOffsetOffset(); + VBaseOffsetOffsets.insert( + std::make_pair(BaseDecl, VBaseOffsetOffset)); + + Components.push_back( + VTableComponent::MakeVBaseOffset(Offset)); + } + + // Check the base class looking for more vbase offsets. + AddVBaseOffsets(BaseDecl, OffsetInLayoutClass); + } +} + +/// ItaniumVTableBuilder - Class for building vtable layout information. +class ItaniumVTableBuilder { +public: + /// PrimaryBasesSetVectorTy - A set vector of direct and indirect + /// primary bases. + typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> + PrimaryBasesSetVectorTy; + + typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> + VBaseOffsetOffsetsMapTy; + + typedef VTableLayout::AddressPointsMapTy AddressPointsMapTy; + + typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy; + +private: + /// VTables - Global vtable information. + ItaniumVTableContext &VTables; + + /// MostDerivedClass - The most derived class for which we're building this + /// vtable. + const CXXRecordDecl *MostDerivedClass; + + /// MostDerivedClassOffset - If we're building a construction vtable, this + /// holds the offset from the layout class to the most derived class. + const CharUnits MostDerivedClassOffset; + + /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual + /// base. (This only makes sense when building a construction vtable). + bool MostDerivedClassIsVirtual; + + /// LayoutClass - The class we're using for layout information. Will be + /// different than the most derived class if we're building a construction + /// vtable. + const CXXRecordDecl *LayoutClass; + + /// Context - The ASTContext which we will use for layout information. + ASTContext &Context; + + /// FinalOverriders - The final overriders of the most derived class. + const FinalOverriders Overriders; + + /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual + /// bases in this vtable. + llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases; + + /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for + /// the most derived class. + VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; + + /// Components - The components of the vtable being built. + SmallVector<VTableComponent, 64> Components; + + /// AddressPoints - Address points for the vtable being built. + AddressPointsMapTy AddressPoints; + + /// MethodInfo - Contains information about a method in a vtable. + /// (Used for computing 'this' pointer adjustment thunks. + struct MethodInfo { + /// BaseOffset - The base offset of this method. + const CharUnits BaseOffset; + + /// BaseOffsetInLayoutClass - The base offset in the layout class of this + /// method. + const CharUnits BaseOffsetInLayoutClass; + + /// VTableIndex - The index in the vtable that this method has. + /// (For destructors, this is the index of the complete destructor). + const uint64_t VTableIndex; + + MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass, + uint64_t VTableIndex) + : BaseOffset(BaseOffset), + BaseOffsetInLayoutClass(BaseOffsetInLayoutClass), + VTableIndex(VTableIndex) { } + + MethodInfo() + : BaseOffset(CharUnits::Zero()), + BaseOffsetInLayoutClass(CharUnits::Zero()), + VTableIndex(0) { } + + MethodInfo(MethodInfo const&) = default; + }; + + typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; + + /// MethodInfoMap - The information for all methods in the vtable we're + /// currently building. + MethodInfoMapTy MethodInfoMap; + + /// MethodVTableIndices - Contains the index (relative to the vtable address + /// point) where the function pointer for a virtual function is stored. + MethodVTableIndicesTy MethodVTableIndices; + + typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; + + /// VTableThunks - The thunks by vtable index in the vtable currently being + /// built. + VTableThunksMapTy VTableThunks; + + typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; + typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; + + /// Thunks - A map that contains all the thunks needed for all methods in the + /// most derived class for which the vtable is currently being built. + ThunksMapTy Thunks; + + /// AddThunk - Add a thunk for the given method. + void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk); + + /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the + /// part of the vtable we're currently building. + void ComputeThisAdjustments(); + + typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; + + /// PrimaryVirtualBases - All known virtual bases who are a primary base of + /// some other base. + VisitedVirtualBasesSetTy PrimaryVirtualBases; + + /// ComputeReturnAdjustment - Compute the return adjustment given a return + /// adjustment base offset. + ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset); + + /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting + /// the 'this' pointer from the base subobject to the derived subobject. + BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base, + BaseSubobject Derived) const; + + /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the + /// given virtual member function, its offset in the layout class and its + /// final overrider. + ThisAdjustment + ComputeThisAdjustment(const CXXMethodDecl *MD, + CharUnits BaseOffsetInLayoutClass, + FinalOverriders::OverriderInfo Overrider); + + /// AddMethod - Add a single virtual member function to the vtable + /// components vector. + void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment); + + /// IsOverriderUsed - Returns whether the overrider will ever be used in this + /// part of the vtable. + /// + /// Itanium C++ ABI 2.5.2: + /// + /// struct A { virtual void f(); }; + /// struct B : virtual public A { int i; }; + /// struct C : virtual public A { int j; }; + /// struct D : public B, public C {}; + /// + /// When B and C are declared, A is a primary base in each case, so although + /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this + /// adjustment is required and no thunk is generated. However, inside D + /// objects, A is no longer a primary base of C, so if we allowed calls to + /// C::f() to use the copy of A's vtable in the C subobject, we would need + /// to adjust this from C* to B::A*, which would require a third-party + /// thunk. Since we require that a call to C::f() first convert to A*, + /// C-in-D's copy of A's vtable is never referenced, so this is not + /// necessary. + bool IsOverriderUsed(const CXXMethodDecl *Overrider, + CharUnits BaseOffsetInLayoutClass, + const CXXRecordDecl *FirstBaseInPrimaryBaseChain, + CharUnits FirstBaseOffsetInLayoutClass) const; + + + /// AddMethods - Add the methods of this base subobject and all its + /// primary bases to the vtable components vector. + void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, + const CXXRecordDecl *FirstBaseInPrimaryBaseChain, + CharUnits FirstBaseOffsetInLayoutClass, + PrimaryBasesSetVectorTy &PrimaryBases); + + // LayoutVTable - Layout the vtable for the given base class, including its + // secondary vtables and any vtables for virtual bases. + void LayoutVTable(); + + /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the + /// given base subobject, as well as all its secondary vtables. + /// + /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base + /// or a direct or indirect base of a virtual base. + /// + /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual + /// in the layout class. + void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base, + bool BaseIsMorallyVirtual, + bool BaseIsVirtualInLayoutClass, + CharUnits OffsetInLayoutClass); + + /// LayoutSecondaryVTables - Layout the secondary vtables for the given base + /// subobject. + /// + /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base + /// or a direct or indirect base of a virtual base. + void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual, + CharUnits OffsetInLayoutClass); + + /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this + /// class hierarchy. + void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD, + CharUnits OffsetInLayoutClass, + VisitedVirtualBasesSetTy &VBases); + + /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the + /// given base (excluding any primary bases). + void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD, + VisitedVirtualBasesSetTy &VBases); + + /// isBuildingConstructionVTable - Return whether this vtable builder is + /// building a construction vtable. + bool isBuildingConstructorVTable() const { + return MostDerivedClass != LayoutClass; + } + +public: + /// Component indices of the first component of each of the vtables in the + /// vtable group. + SmallVector<size_t, 4> VTableIndices; + + ItaniumVTableBuilder(ItaniumVTableContext &VTables, + const CXXRecordDecl *MostDerivedClass, + CharUnits MostDerivedClassOffset, + bool MostDerivedClassIsVirtual, + const CXXRecordDecl *LayoutClass) + : VTables(VTables), MostDerivedClass(MostDerivedClass), + MostDerivedClassOffset(MostDerivedClassOffset), + MostDerivedClassIsVirtual(MostDerivedClassIsVirtual), + LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), + Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) { + assert(!Context.getTargetInfo().getCXXABI().isMicrosoft()); + + LayoutVTable(); + + if (Context.getLangOpts().DumpVTableLayouts) + dumpLayout(llvm::outs()); + } + + uint64_t getNumThunks() const { + return Thunks.size(); + } + + ThunksMapTy::const_iterator thunks_begin() const { + return Thunks.begin(); + } + + ThunksMapTy::const_iterator thunks_end() const { + return Thunks.end(); + } + + const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { + return VBaseOffsetOffsets; + } + + const AddressPointsMapTy &getAddressPoints() const { + return AddressPoints; + } + + MethodVTableIndicesTy::const_iterator vtable_indices_begin() const { + return MethodVTableIndices.begin(); + } + + MethodVTableIndicesTy::const_iterator vtable_indices_end() const { + return MethodVTableIndices.end(); + } + + ArrayRef<VTableComponent> vtable_components() const { return Components; } + + AddressPointsMapTy::const_iterator address_points_begin() const { + return AddressPoints.begin(); + } + + AddressPointsMapTy::const_iterator address_points_end() const { + return AddressPoints.end(); + } + + VTableThunksMapTy::const_iterator vtable_thunks_begin() const { + return VTableThunks.begin(); + } + + VTableThunksMapTy::const_iterator vtable_thunks_end() const { + return VTableThunks.end(); + } + + /// dumpLayout - Dump the vtable layout. + void dumpLayout(raw_ostream&); +}; + +void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD, + const ThunkInfo &Thunk) { + assert(!isBuildingConstructorVTable() && + "Can't add thunks for construction vtable"); + + SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD]; + + // Check if we have this thunk already. + if (llvm::is_contained(ThunksVector, Thunk)) + return; + + ThunksVector.push_back(Thunk); +} + +typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy; + +/// Visit all the methods overridden by the given method recursively, +/// in a depth-first pre-order. The Visitor's visitor method returns a bool +/// indicating whether to continue the recursion for the given overridden +/// method (i.e. returning false stops the iteration). +template <class VisitorTy> +static void +visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) { + assert(VTableContextBase::hasVtableSlot(MD) && "Method is not virtual!"); + + for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { + if (!Visitor(OverriddenMD)) + continue; + visitAllOverriddenMethods(OverriddenMD, Visitor); + } +} + +/// ComputeAllOverriddenMethods - Given a method decl, will return a set of all +/// the overridden methods that the function decl overrides. +static void +ComputeAllOverriddenMethods(const CXXMethodDecl *MD, + OverriddenMethodsSetTy& OverriddenMethods) { + auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) { + // Don't recurse on this method if we've already collected it. + return OverriddenMethods.insert(MD).second; + }; + visitAllOverriddenMethods(MD, OverriddenMethodsCollector); +} + +void ItaniumVTableBuilder::ComputeThisAdjustments() { + // Now go through the method info map and see if any of the methods need + // 'this' pointer adjustments. + for (const auto &MI : MethodInfoMap) { + const CXXMethodDecl *MD = MI.first; + const MethodInfo &MethodInfo = MI.second; + + // Ignore adjustments for unused function pointers. + uint64_t VTableIndex = MethodInfo.VTableIndex; + if (Components[VTableIndex].getKind() == + VTableComponent::CK_UnusedFunctionPointer) + continue; + + // Get the final overrider for this method. + FinalOverriders::OverriderInfo Overrider = + Overriders.getOverrider(MD, MethodInfo.BaseOffset); + + // Check if we need an adjustment at all. + if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) { + // When a return thunk is needed by a derived class that overrides a + // virtual base, gcc uses a virtual 'this' adjustment as well. + // While the thunk itself might be needed by vtables in subclasses or + // in construction vtables, there doesn't seem to be a reason for using + // the thunk in this vtable. Still, we do so to match gcc. + if (VTableThunks.lookup(VTableIndex).Return.isEmpty()) + continue; + } + + ThisAdjustment ThisAdjustment = + ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider); + + if (ThisAdjustment.isEmpty()) + continue; + + // Add it. + VTableThunks[VTableIndex].This = ThisAdjustment; + + if (isa<CXXDestructorDecl>(MD)) { + // Add an adjustment for the deleting destructor as well. + VTableThunks[VTableIndex + 1].This = ThisAdjustment; + } + } + + /// Clear the method info map. + MethodInfoMap.clear(); + + if (isBuildingConstructorVTable()) { + // We don't need to store thunk information for construction vtables. + return; + } + + for (const auto &TI : VTableThunks) { + const VTableComponent &Component = Components[TI.first]; + const ThunkInfo &Thunk = TI.second; + const CXXMethodDecl *MD; + + switch (Component.getKind()) { + default: + llvm_unreachable("Unexpected vtable component kind!"); + case VTableComponent::CK_FunctionPointer: + MD = Component.getFunctionDecl(); + break; + case VTableComponent::CK_CompleteDtorPointer: + MD = Component.getDestructorDecl(); + break; + case VTableComponent::CK_DeletingDtorPointer: + // We've already added the thunk when we saw the complete dtor pointer. + continue; + } + + if (MD->getParent() == MostDerivedClass) + AddThunk(MD, Thunk); + } +} + +ReturnAdjustment +ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) { + ReturnAdjustment Adjustment; + + if (!Offset.isEmpty()) { + if (Offset.VirtualBase) { + // Get the virtual base offset offset. + if (Offset.DerivedClass == MostDerivedClass) { + // We can get the offset offset directly from our map. + Adjustment.Virtual.Itanium.VBaseOffsetOffset = + VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity(); + } else { + Adjustment.Virtual.Itanium.VBaseOffsetOffset = + VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass, + Offset.VirtualBase).getQuantity(); + } + } + + Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); + } + + return Adjustment; +} + +BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset( + BaseSubobject Base, BaseSubobject Derived) const { + const CXXRecordDecl *BaseRD = Base.getBase(); + const CXXRecordDecl *DerivedRD = Derived.getBase(); + + CXXBasePaths Paths(/*FindAmbiguities=*/true, + /*RecordPaths=*/true, /*DetectVirtual=*/true); + + if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) + llvm_unreachable("Class must be derived from the passed in base class!"); + + // We have to go through all the paths, and see which one leads us to the + // right base subobject. + for (const CXXBasePath &Path : Paths) { + BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path); + + CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset; + + if (Offset.VirtualBase) { + // If we have a virtual base class, the non-virtual offset is relative + // to the virtual base class offset. + const ASTRecordLayout &LayoutClassLayout = + Context.getASTRecordLayout(LayoutClass); + + /// Get the virtual base offset, relative to the most derived class + /// layout. + OffsetToBaseSubobject += + LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase); + } else { + // Otherwise, the non-virtual offset is relative to the derived class + // offset. + OffsetToBaseSubobject += Derived.getBaseOffset(); + } + + // Check if this path gives us the right base subobject. + if (OffsetToBaseSubobject == Base.getBaseOffset()) { + // Since we're going from the base class _to_ the derived class, we'll + // invert the non-virtual offset here. + Offset.NonVirtualOffset = -Offset.NonVirtualOffset; + return Offset; + } + } + + return BaseOffset(); +} + +ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment( + const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass, + FinalOverriders::OverriderInfo Overrider) { + // Ignore adjustments for pure virtual member functions. + if (Overrider.Method->isPure()) + return ThisAdjustment(); + + BaseSubobject OverriddenBaseSubobject(MD->getParent(), + BaseOffsetInLayoutClass); + + BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(), + Overrider.Offset); + + // Compute the adjustment offset. + BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject, + OverriderBaseSubobject); + if (Offset.isEmpty()) + return ThisAdjustment(); + + ThisAdjustment Adjustment; + + if (Offset.VirtualBase) { + // Get the vcall offset map for this virtual base. + VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase]; + + if (VCallOffsets.empty()) { + // We don't have vcall offsets for this virtual base, go ahead and + // build them. + VCallAndVBaseOffsetBuilder Builder( + VTables, MostDerivedClass, MostDerivedClass, + /*Overriders=*/nullptr, + BaseSubobject(Offset.VirtualBase, CharUnits::Zero()), + /*BaseIsVirtual=*/true, + /*OffsetInLayoutClass=*/ + CharUnits::Zero()); + + VCallOffsets = Builder.getVCallOffsets(); + } + + Adjustment.Virtual.Itanium.VCallOffsetOffset = + VCallOffsets.getVCallOffsetOffset(MD).getQuantity(); + } + + // Set the non-virtual part of the adjustment. + Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); + + return Adjustment; +} + +void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD, + ReturnAdjustment ReturnAdjustment) { + if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { + assert(ReturnAdjustment.isEmpty() && + "Destructor can't have return adjustment!"); + + // Add both the complete destructor and the deleting destructor. + Components.push_back(VTableComponent::MakeCompleteDtor(DD)); + Components.push_back(VTableComponent::MakeDeletingDtor(DD)); + } else { + // Add the return adjustment if necessary. + if (!ReturnAdjustment.isEmpty()) + VTableThunks[Components.size()].Return = ReturnAdjustment; + + // Add the function. + Components.push_back(VTableComponent::MakeFunction(MD)); + } +} + +/// OverridesIndirectMethodInBase - Return whether the given member function +/// overrides any methods in the set of given bases. +/// Unlike OverridesMethodInBase, this checks "overriders of overriders". +/// For example, if we have: +/// +/// struct A { virtual void f(); } +/// struct B : A { virtual void f(); } +/// struct C : B { virtual void f(); } +/// +/// OverridesIndirectMethodInBase will return true if given C::f as the method +/// and { A } as the set of bases. +static bool OverridesIndirectMethodInBases( + const CXXMethodDecl *MD, + ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) { + if (Bases.count(MD->getParent())) + return true; + + for (const CXXMethodDecl *OverriddenMD : MD->overridden_methods()) { + // Check "indirect overriders". + if (OverridesIndirectMethodInBases(OverriddenMD, Bases)) + return true; + } + + return false; +} + +bool ItaniumVTableBuilder::IsOverriderUsed( + const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass, + const CXXRecordDecl *FirstBaseInPrimaryBaseChain, + CharUnits FirstBaseOffsetInLayoutClass) const { + // If the base and the first base in the primary base chain have the same + // offsets, then this overrider will be used. + if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass) + return true; + + // We know now that Base (or a direct or indirect base of it) is a primary + // base in part of the class hierarchy, but not a primary base in the most + // derived class. + + // If the overrider is the first base in the primary base chain, we know + // that the overrider will be used. + if (Overrider->getParent() == FirstBaseInPrimaryBaseChain) + return true; + + ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases; + + const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain; + PrimaryBases.insert(RD); + + // Now traverse the base chain, starting with the first base, until we find + // the base that is no longer a primary base. + while (true) { + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); + + if (!PrimaryBase) + break; + + if (Layout.isPrimaryBaseVirtual()) { + assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && + "Primary base should always be at offset 0!"); + + const ASTRecordLayout &LayoutClassLayout = + Context.getASTRecordLayout(LayoutClass); + + // Now check if this is the primary base that is not a primary base in the + // most derived class. + if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) != + FirstBaseOffsetInLayoutClass) { + // We found it, stop walking the chain. + break; + } + } else { + assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && + "Primary base should always be at offset 0!"); + } + + if (!PrimaryBases.insert(PrimaryBase)) + llvm_unreachable("Found a duplicate primary base!"); + + RD = PrimaryBase; + } + + // If the final overrider is an override of one of the primary bases, + // then we know that it will be used. + return OverridesIndirectMethodInBases(Overrider, PrimaryBases); +} + +typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy; + +/// FindNearestOverriddenMethod - Given a method, returns the overridden method +/// from the nearest base. Returns null if no method was found. +/// The Bases are expected to be sorted in a base-to-derived order. +static const CXXMethodDecl * +FindNearestOverriddenMethod(const CXXMethodDecl *MD, + BasesSetVectorTy &Bases) { + OverriddenMethodsSetTy OverriddenMethods; + ComputeAllOverriddenMethods(MD, OverriddenMethods); + + for (const CXXRecordDecl *PrimaryBase : llvm::reverse(Bases)) { + // Now check the overridden methods. + for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) { + // We found our overridden method. + if (OverriddenMD->getParent() == PrimaryBase) + return OverriddenMD; + } + } + + return nullptr; +} + +void ItaniumVTableBuilder::AddMethods( + BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, + const CXXRecordDecl *FirstBaseInPrimaryBaseChain, + CharUnits FirstBaseOffsetInLayoutClass, + PrimaryBasesSetVectorTy &PrimaryBases) { + // Itanium C++ ABI 2.5.2: + // The order of the virtual function pointers in a virtual table is the + // order of declaration of the corresponding member functions in the class. + // + // There is an entry for any virtual function declared in a class, + // whether it is a new function or overrides a base class function, + // unless it overrides a function from the primary base, and conversion + // between their return types does not require an adjustment. + + const CXXRecordDecl *RD = Base.getBase(); + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + + if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { + CharUnits PrimaryBaseOffset; + CharUnits PrimaryBaseOffsetInLayoutClass; + if (Layout.isPrimaryBaseVirtual()) { + assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && + "Primary vbase should have a zero offset!"); + + const ASTRecordLayout &MostDerivedClassLayout = + Context.getASTRecordLayout(MostDerivedClass); + + PrimaryBaseOffset = + MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase); + + const ASTRecordLayout &LayoutClassLayout = + Context.getASTRecordLayout(LayoutClass); + + PrimaryBaseOffsetInLayoutClass = + LayoutClassLayout.getVBaseClassOffset(PrimaryBase); + } else { + assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && + "Primary base should have a zero offset!"); + + PrimaryBaseOffset = Base.getBaseOffset(); + PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass; + } + + AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset), + PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain, + FirstBaseOffsetInLayoutClass, PrimaryBases); + + if (!PrimaryBases.insert(PrimaryBase)) + llvm_unreachable("Found a duplicate primary base!"); + } + + typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy; + NewVirtualFunctionsTy NewVirtualFunctions; + + llvm::SmallVector<const CXXMethodDecl*, 4> NewImplicitVirtualFunctions; + + // Now go through all virtual member functions and add them. + for (const auto *MD : RD->methods()) { + if (!ItaniumVTableContext::hasVtableSlot(MD)) + continue; + MD = MD->getCanonicalDecl(); + + // Get the final overrider. + FinalOverriders::OverriderInfo Overrider = + Overriders.getOverrider(MD, Base.getBaseOffset()); + + // Check if this virtual member function overrides a method in a primary + // base. If this is the case, and the return type doesn't require adjustment + // then we can just use the member function from the primary base. + if (const CXXMethodDecl *OverriddenMD = + FindNearestOverriddenMethod(MD, PrimaryBases)) { + if (ComputeReturnAdjustmentBaseOffset(Context, MD, + OverriddenMD).isEmpty()) { + // Replace the method info of the overridden method with our own + // method. + assert(MethodInfoMap.count(OverriddenMD) && + "Did not find the overridden method!"); + MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD]; + + MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, + OverriddenMethodInfo.VTableIndex); + + assert(!MethodInfoMap.count(MD) && + "Should not have method info for this method yet!"); + + MethodInfoMap.insert(std::make_pair(MD, MethodInfo)); + MethodInfoMap.erase(OverriddenMD); + + // If the overridden method exists in a virtual base class or a direct + // or indirect base class of a virtual base class, we need to emit a + // thunk if we ever have a class hierarchy where the base class is not + // a primary base in the complete object. + if (!isBuildingConstructorVTable() && OverriddenMD != MD) { + // Compute the this adjustment. + ThisAdjustment ThisAdjustment = + ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass, + Overrider); + + if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset && + Overrider.Method->getParent() == MostDerivedClass) { + + // There's no return adjustment from OverriddenMD and MD, + // but that doesn't mean there isn't one between MD and + // the final overrider. + BaseOffset ReturnAdjustmentOffset = + ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD); + ReturnAdjustment ReturnAdjustment = + ComputeReturnAdjustment(ReturnAdjustmentOffset); + + // This is a virtual thunk for the most derived class, add it. + AddThunk(Overrider.Method, + ThunkInfo(ThisAdjustment, ReturnAdjustment)); + } + } + + continue; + } + } + + if (MD->isImplicit()) + NewImplicitVirtualFunctions.push_back(MD); + else + NewVirtualFunctions.push_back(MD); + } + + std::stable_sort( + NewImplicitVirtualFunctions.begin(), NewImplicitVirtualFunctions.end(), + [](const CXXMethodDecl *A, const CXXMethodDecl *B) { + if (A->isCopyAssignmentOperator() != B->isCopyAssignmentOperator()) + return A->isCopyAssignmentOperator(); + if (A->isMoveAssignmentOperator() != B->isMoveAssignmentOperator()) + return A->isMoveAssignmentOperator(); + if (isa<CXXDestructorDecl>(A) != isa<CXXDestructorDecl>(B)) + return isa<CXXDestructorDecl>(A); + assert(A->getOverloadedOperator() == OO_EqualEqual && + B->getOverloadedOperator() == OO_EqualEqual && + "unexpected or duplicate implicit virtual function"); + // We rely on Sema to have declared the operator== members in the + // same order as the corresponding operator<=> members. + return false; + }); + NewVirtualFunctions.append(NewImplicitVirtualFunctions.begin(), + NewImplicitVirtualFunctions.end()); + + for (const CXXMethodDecl *MD : NewVirtualFunctions) { + // Get the final overrider. + FinalOverriders::OverriderInfo Overrider = + Overriders.getOverrider(MD, Base.getBaseOffset()); + + // Insert the method info for this method. + MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, + Components.size()); + + assert(!MethodInfoMap.count(MD) && + "Should not have method info for this method yet!"); + MethodInfoMap.insert(std::make_pair(MD, MethodInfo)); + + // Check if this overrider is going to be used. + const CXXMethodDecl *OverriderMD = Overrider.Method; + if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass, + FirstBaseInPrimaryBaseChain, + FirstBaseOffsetInLayoutClass)) { + Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD)); + continue; + } + + // Check if this overrider needs a return adjustment. + // We don't want to do this for pure virtual member functions. + BaseOffset ReturnAdjustmentOffset; + if (!OverriderMD->isPure()) { + ReturnAdjustmentOffset = + ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD); + } + + ReturnAdjustment ReturnAdjustment = + ComputeReturnAdjustment(ReturnAdjustmentOffset); + + AddMethod(Overrider.Method, ReturnAdjustment); + } +} + +void ItaniumVTableBuilder::LayoutVTable() { + LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass, + CharUnits::Zero()), + /*BaseIsMorallyVirtual=*/false, + MostDerivedClassIsVirtual, + MostDerivedClassOffset); + + VisitedVirtualBasesSetTy VBases; + + // Determine the primary virtual bases. + DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset, + VBases); + VBases.clear(); + + LayoutVTablesForVirtualBases(MostDerivedClass, VBases); + + // -fapple-kext adds an extra entry at end of vtbl. + bool IsAppleKext = Context.getLangOpts().AppleKext; + if (IsAppleKext) + Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero())); +} + +void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables( + BaseSubobject Base, bool BaseIsMorallyVirtual, + bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) { + assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!"); + + unsigned VTableIndex = Components.size(); + VTableIndices.push_back(VTableIndex); + + // Add vcall and vbase offsets for this vtable. + VCallAndVBaseOffsetBuilder Builder( + VTables, MostDerivedClass, LayoutClass, &Overriders, Base, + BaseIsVirtualInLayoutClass, OffsetInLayoutClass); + Components.append(Builder.components_begin(), Builder.components_end()); + + // Check if we need to add these vcall offsets. + if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) { + VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()]; + + if (VCallOffsets.empty()) + VCallOffsets = Builder.getVCallOffsets(); + } + + // If we're laying out the most derived class we want to keep track of the + // virtual base class offset offsets. + if (Base.getBase() == MostDerivedClass) + VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets(); + + // Add the offset to top. + CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass; + Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop)); + + // Next, add the RTTI. + Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass)); + + uint64_t AddressPoint = Components.size(); + + // Now go through all virtual member functions and add them. + PrimaryBasesSetVectorTy PrimaryBases; + AddMethods(Base, OffsetInLayoutClass, + Base.getBase(), OffsetInLayoutClass, + PrimaryBases); + + const CXXRecordDecl *RD = Base.getBase(); + if (RD == MostDerivedClass) { + assert(MethodVTableIndices.empty()); + for (const auto &I : MethodInfoMap) { + const CXXMethodDecl *MD = I.first; + const MethodInfo &MI = I.second; + if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { + MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)] + = MI.VTableIndex - AddressPoint; + MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)] + = MI.VTableIndex + 1 - AddressPoint; + } else { + MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint; + } + } + } + + // Compute 'this' pointer adjustments. + ComputeThisAdjustments(); + + // Add all address points. + while (true) { + AddressPoints.insert( + std::make_pair(BaseSubobject(RD, OffsetInLayoutClass), + VTableLayout::AddressPointLocation{ + unsigned(VTableIndices.size() - 1), + unsigned(AddressPoint - VTableIndex)})); + + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); + + if (!PrimaryBase) + break; + + if (Layout.isPrimaryBaseVirtual()) { + // Check if this virtual primary base is a primary base in the layout + // class. If it's not, we don't want to add it. + const ASTRecordLayout &LayoutClassLayout = + Context.getASTRecordLayout(LayoutClass); + + if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) != + OffsetInLayoutClass) { + // We don't want to add this class (or any of its primary bases). + break; + } + } + + RD = PrimaryBase; + } + + // Layout secondary vtables. + LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass); +} + +void +ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base, + bool BaseIsMorallyVirtual, + CharUnits OffsetInLayoutClass) { + // Itanium C++ ABI 2.5.2: + // Following the primary virtual table of a derived class are secondary + // virtual tables for each of its proper base classes, except any primary + // base(s) with which it shares its primary virtual table. + + const CXXRecordDecl *RD = Base.getBase(); + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); + + for (const auto &B : RD->bases()) { + // Ignore virtual bases, we'll emit them later. + if (B.isVirtual()) + continue; + + const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); + + // Ignore bases that don't have a vtable. + if (!BaseDecl->isDynamicClass()) + continue; + + if (isBuildingConstructorVTable()) { + // Itanium C++ ABI 2.6.4: + // Some of the base class subobjects may not need construction virtual + // tables, which will therefore not be present in the construction + // virtual table group, even though the subobject virtual tables are + // present in the main virtual table group for the complete object. + if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases()) + continue; + } + + // Get the base offset of this base. + CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl); + CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset; + + CharUnits BaseOffsetInLayoutClass = + OffsetInLayoutClass + RelativeBaseOffset; + + // Don't emit a secondary vtable for a primary base. We might however want + // to emit secondary vtables for other bases of this base. + if (BaseDecl == PrimaryBase) { + LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset), + BaseIsMorallyVirtual, BaseOffsetInLayoutClass); + continue; + } + + // Layout the primary vtable (and any secondary vtables) for this base. + LayoutPrimaryAndSecondaryVTables( + BaseSubobject(BaseDecl, BaseOffset), + BaseIsMorallyVirtual, + /*BaseIsVirtualInLayoutClass=*/false, + BaseOffsetInLayoutClass); + } +} + +void ItaniumVTableBuilder::DeterminePrimaryVirtualBases( + const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass, + VisitedVirtualBasesSetTy &VBases) { + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + + // Check if this base has a primary base. + if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { + + // Check if it's virtual. + if (Layout.isPrimaryBaseVirtual()) { + bool IsPrimaryVirtualBase = true; + + if (isBuildingConstructorVTable()) { + // Check if the base is actually a primary base in the class we use for + // layout. + const ASTRecordLayout &LayoutClassLayout = + Context.getASTRecordLayout(LayoutClass); + + CharUnits PrimaryBaseOffsetInLayoutClass = + LayoutClassLayout.getVBaseClassOffset(PrimaryBase); + + // We know that the base is not a primary base in the layout class if + // the base offsets are different. + if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass) + IsPrimaryVirtualBase = false; + } + + if (IsPrimaryVirtualBase) + PrimaryVirtualBases.insert(PrimaryBase); + } + } + + // Traverse bases, looking for more primary virtual bases. + for (const auto &B : RD->bases()) { + const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); + + CharUnits BaseOffsetInLayoutClass; + + if (B.isVirtual()) { + if (!VBases.insert(BaseDecl).second) + continue; + + const ASTRecordLayout &LayoutClassLayout = + Context.getASTRecordLayout(LayoutClass); + + BaseOffsetInLayoutClass = + LayoutClassLayout.getVBaseClassOffset(BaseDecl); + } else { + BaseOffsetInLayoutClass = + OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl); + } + + DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases); + } +} + +void ItaniumVTableBuilder::LayoutVTablesForVirtualBases( + const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) { + // Itanium C++ ABI 2.5.2: + // Then come the virtual base virtual tables, also in inheritance graph + // order, and again excluding primary bases (which share virtual tables with + // the classes for which they are primary). + for (const auto &B : RD->bases()) { + const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); + + // Check if this base needs a vtable. (If it's virtual, not a primary base + // of some other class, and we haven't visited it before). + if (B.isVirtual() && BaseDecl->isDynamicClass() && + !PrimaryVirtualBases.count(BaseDecl) && + VBases.insert(BaseDecl).second) { + const ASTRecordLayout &MostDerivedClassLayout = + Context.getASTRecordLayout(MostDerivedClass); + CharUnits BaseOffset = + MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); + + const ASTRecordLayout &LayoutClassLayout = + Context.getASTRecordLayout(LayoutClass); + CharUnits BaseOffsetInLayoutClass = + LayoutClassLayout.getVBaseClassOffset(BaseDecl); + + LayoutPrimaryAndSecondaryVTables( + BaseSubobject(BaseDecl, BaseOffset), + /*BaseIsMorallyVirtual=*/true, + /*BaseIsVirtualInLayoutClass=*/true, + BaseOffsetInLayoutClass); + } + + // We only need to check the base for virtual base vtables if it actually + // has virtual bases. + if (BaseDecl->getNumVBases()) + LayoutVTablesForVirtualBases(BaseDecl, VBases); + } +} + +/// dumpLayout - Dump the vtable layout. +void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) { + // FIXME: write more tests that actually use the dumpLayout output to prevent + // ItaniumVTableBuilder regressions. + + if (isBuildingConstructorVTable()) { + Out << "Construction vtable for ('"; + MostDerivedClass->printQualifiedName(Out); + Out << "', "; + Out << MostDerivedClassOffset.getQuantity() << ") in '"; + LayoutClass->printQualifiedName(Out); + } else { + Out << "Vtable for '"; + MostDerivedClass->printQualifiedName(Out); + } + Out << "' (" << Components.size() << " entries).\n"; + + // Iterate through the address points and insert them into a new map where + // they are keyed by the index and not the base object. + // Since an address point can be shared by multiple subobjects, we use an + // STL multimap. + std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex; + for (const auto &AP : AddressPoints) { + const BaseSubobject &Base = AP.first; + uint64_t Index = + VTableIndices[AP.second.VTableIndex] + AP.second.AddressPointIndex; + + AddressPointsByIndex.insert(std::make_pair(Index, Base)); + } + + for (unsigned I = 0, E = Components.size(); I != E; ++I) { + uint64_t Index = I; + + Out << llvm::format("%4d | ", I); + + const VTableComponent &Component = Components[I]; + + // Dump the component. + switch (Component.getKind()) { + + case VTableComponent::CK_VCallOffset: + Out << "vcall_offset (" + << Component.getVCallOffset().getQuantity() + << ")"; + break; + + case VTableComponent::CK_VBaseOffset: + Out << "vbase_offset (" + << Component.getVBaseOffset().getQuantity() + << ")"; + break; + + case VTableComponent::CK_OffsetToTop: + Out << "offset_to_top (" + << Component.getOffsetToTop().getQuantity() + << ")"; + break; + + case VTableComponent::CK_RTTI: + Component.getRTTIDecl()->printQualifiedName(Out); + Out << " RTTI"; + break; + + case VTableComponent::CK_FunctionPointer: { + const CXXMethodDecl *MD = Component.getFunctionDecl(); + + std::string Str = + PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, + MD); + Out << Str; + if (MD->isPure()) + Out << " [pure]"; + + if (MD->isDeleted()) + Out << " [deleted]"; + + ThunkInfo Thunk = VTableThunks.lookup(I); + if (!Thunk.isEmpty()) { + // If this function pointer has a return adjustment, dump it. + if (!Thunk.Return.isEmpty()) { + Out << "\n [return adjustment: "; + Out << Thunk.Return.NonVirtual << " non-virtual"; + + if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { + Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; + Out << " vbase offset offset"; + } + + Out << ']'; + } + + // If this function pointer has a 'this' pointer adjustment, dump it. + if (!Thunk.This.isEmpty()) { + Out << "\n [this adjustment: "; + Out << Thunk.This.NonVirtual << " non-virtual"; + + if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { + Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; + Out << " vcall offset offset"; + } + + Out << ']'; + } + } + + break; + } + + case VTableComponent::CK_CompleteDtorPointer: + case VTableComponent::CK_DeletingDtorPointer: { + bool IsComplete = + Component.getKind() == VTableComponent::CK_CompleteDtorPointer; + + const CXXDestructorDecl *DD = Component.getDestructorDecl(); + + DD->printQualifiedName(Out); + if (IsComplete) + Out << "() [complete]"; + else + Out << "() [deleting]"; + + if (DD->isPure()) + Out << " [pure]"; + + ThunkInfo Thunk = VTableThunks.lookup(I); + if (!Thunk.isEmpty()) { + // If this destructor has a 'this' pointer adjustment, dump it. + if (!Thunk.This.isEmpty()) { + Out << "\n [this adjustment: "; + Out << Thunk.This.NonVirtual << " non-virtual"; + + if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { + Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; + Out << " vcall offset offset"; + } + + Out << ']'; + } + } + + break; + } + + case VTableComponent::CK_UnusedFunctionPointer: { + const CXXMethodDecl *MD = Component.getUnusedFunctionDecl(); + + std::string Str = + PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, + MD); + Out << "[unused] " << Str; + if (MD->isPure()) + Out << " [pure]"; + } + + } + + Out << '\n'; + + // Dump the next address point. + uint64_t NextIndex = Index + 1; + if (AddressPointsByIndex.count(NextIndex)) { + if (AddressPointsByIndex.count(NextIndex) == 1) { + const BaseSubobject &Base = + AddressPointsByIndex.find(NextIndex)->second; + + Out << " -- ("; + Base.getBase()->printQualifiedName(Out); + Out << ", " << Base.getBaseOffset().getQuantity(); + Out << ") vtable address --\n"; + } else { + CharUnits BaseOffset = + AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset(); + + // We store the class names in a set to get a stable order. + std::set<std::string> ClassNames; + for (const auto &I : + llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) { + assert(I.second.getBaseOffset() == BaseOffset && + "Invalid base offset!"); + const CXXRecordDecl *RD = I.second.getBase(); + ClassNames.insert(RD->getQualifiedNameAsString()); + } + + for (const std::string &Name : ClassNames) { + Out << " -- (" << Name; + Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n"; + } + } + } + } + + Out << '\n'; + + if (isBuildingConstructorVTable()) + return; + + if (MostDerivedClass->getNumVBases()) { + // We store the virtual base class names and their offsets in a map to get + // a stable order. + + std::map<std::string, CharUnits> ClassNamesAndOffsets; + for (const auto &I : VBaseOffsetOffsets) { + std::string ClassName = I.first->getQualifiedNameAsString(); + CharUnits OffsetOffset = I.second; + ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset)); + } + + Out << "Virtual base offset offsets for '"; + MostDerivedClass->printQualifiedName(Out); + Out << "' ("; + Out << ClassNamesAndOffsets.size(); + Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n"; + + for (const auto &I : ClassNamesAndOffsets) + Out << " " << I.first << " | " << I.second.getQuantity() << '\n'; + + Out << "\n"; + } + + if (!Thunks.empty()) { + // We store the method names in a map to get a stable order. + std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; + + for (const auto &I : Thunks) { + const CXXMethodDecl *MD = I.first; + std::string MethodName = + PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, + MD); + + MethodNamesAndDecls.insert(std::make_pair(MethodName, MD)); + } + + for (const auto &I : MethodNamesAndDecls) { + const std::string &MethodName = I.first; + const CXXMethodDecl *MD = I.second; + + ThunkInfoVectorTy ThunksVector = Thunks[MD]; + llvm::sort(ThunksVector, [](const ThunkInfo &LHS, const ThunkInfo &RHS) { + assert(LHS.Method == nullptr && RHS.Method == nullptr); + return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return); + }); + + Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); + Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n"; + + for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { + const ThunkInfo &Thunk = ThunksVector[I]; + + Out << llvm::format("%4d | ", I); + + // If this function pointer has a return pointer adjustment, dump it. + if (!Thunk.Return.isEmpty()) { + Out << "return adjustment: " << Thunk.Return.NonVirtual; + Out << " non-virtual"; + if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { + Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; + Out << " vbase offset offset"; + } + + if (!Thunk.This.isEmpty()) + Out << "\n "; + } + + // If this function pointer has a 'this' pointer adjustment, dump it. + if (!Thunk.This.isEmpty()) { + Out << "this adjustment: "; + Out << Thunk.This.NonVirtual << " non-virtual"; + + if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { + Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; + Out << " vcall offset offset"; + } + } + + Out << '\n'; + } + + Out << '\n'; + } + } + + // Compute the vtable indices for all the member functions. + // Store them in a map keyed by the index so we'll get a sorted table. + std::map<uint64_t, std::string> IndicesMap; + + for (const auto *MD : MostDerivedClass->methods()) { + // We only want virtual member functions. + if (!ItaniumVTableContext::hasVtableSlot(MD)) + continue; + MD = MD->getCanonicalDecl(); + + std::string MethodName = + PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, + MD); + + if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { + GlobalDecl GD(DD, Dtor_Complete); + assert(MethodVTableIndices.count(GD)); + uint64_t VTableIndex = MethodVTableIndices[GD]; + IndicesMap[VTableIndex] = MethodName + " [complete]"; + IndicesMap[VTableIndex + 1] = MethodName + " [deleting]"; + } else { + assert(MethodVTableIndices.count(MD)); + IndicesMap[MethodVTableIndices[MD]] = MethodName; + } + } + + // Print the vtable indices for all the member functions. + if (!IndicesMap.empty()) { + Out << "VTable indices for '"; + MostDerivedClass->printQualifiedName(Out); + Out << "' (" << IndicesMap.size() << " entries).\n"; + + for (const auto &I : IndicesMap) { + uint64_t VTableIndex = I.first; + const std::string &MethodName = I.second; + + Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName + << '\n'; + } + } + + Out << '\n'; +} +} + +static VTableLayout::AddressPointsIndexMapTy +MakeAddressPointIndices(const VTableLayout::AddressPointsMapTy &addressPoints, + unsigned numVTables) { + VTableLayout::AddressPointsIndexMapTy indexMap(numVTables); + + for (auto it = addressPoints.begin(); it != addressPoints.end(); ++it) { + const auto &addressPointLoc = it->second; + unsigned vtableIndex = addressPointLoc.VTableIndex; + unsigned addressPoint = addressPointLoc.AddressPointIndex; + if (indexMap[vtableIndex]) { + // Multiple BaseSubobjects can map to the same AddressPointLocation, but + // every vtable index should have a unique address point. + assert(indexMap[vtableIndex] == addressPoint && + "Every vtable index should have a unique address point. Found a " + "vtable that has two different address points."); + } else { + indexMap[vtableIndex] = addressPoint; + } + } + + // Note that by this point, not all the address may be initialized if the + // AddressPoints map is empty. This is ok if the map isn't needed. See + // MicrosoftVTableContext::computeVTableRelatedInformation() which uses an + // emprt map. + return indexMap; +} + +VTableLayout::VTableLayout(ArrayRef<size_t> VTableIndices, + ArrayRef<VTableComponent> VTableComponents, + ArrayRef<VTableThunkTy> VTableThunks, + const AddressPointsMapTy &AddressPoints) + : VTableComponents(VTableComponents), VTableThunks(VTableThunks), + AddressPoints(AddressPoints), AddressPointIndices(MakeAddressPointIndices( + AddressPoints, VTableIndices.size())) { + if (VTableIndices.size() <= 1) + assert(VTableIndices.size() == 1 && VTableIndices[0] == 0); + else + this->VTableIndices = OwningArrayRef<size_t>(VTableIndices); + + llvm::sort(this->VTableThunks, [](const VTableLayout::VTableThunkTy &LHS, + const VTableLayout::VTableThunkTy &RHS) { + assert((LHS.first != RHS.first || LHS.second == RHS.second) && + "Different thunks should have unique indices!"); + return LHS.first < RHS.first; + }); +} + +VTableLayout::~VTableLayout() { } + +bool VTableContextBase::hasVtableSlot(const CXXMethodDecl *MD) { + return MD->isVirtual() && !MD->isConsteval(); +} + +ItaniumVTableContext::ItaniumVTableContext( + ASTContext &Context, VTableComponentLayout ComponentLayout) + : VTableContextBase(/*MS=*/false), ComponentLayout(ComponentLayout) {} + +ItaniumVTableContext::~ItaniumVTableContext() {} + +uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) { + GD = GD.getCanonicalDecl(); + MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD); + if (I != MethodVTableIndices.end()) + return I->second; + + const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); + + computeVTableRelatedInformation(RD); + + I = MethodVTableIndices.find(GD); + assert(I != MethodVTableIndices.end() && "Did not find index!"); + return I->second; +} + +CharUnits +ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD, + const CXXRecordDecl *VBase) { + ClassPairTy ClassPair(RD, VBase); + + VirtualBaseClassOffsetOffsetsMapTy::iterator I = + VirtualBaseClassOffsetOffsets.find(ClassPair); + if (I != VirtualBaseClassOffsetOffsets.end()) + return I->second; + + VCallAndVBaseOffsetBuilder Builder(*this, RD, RD, /*Overriders=*/nullptr, + BaseSubobject(RD, CharUnits::Zero()), + /*BaseIsVirtual=*/false, + /*OffsetInLayoutClass=*/CharUnits::Zero()); + + for (const auto &I : Builder.getVBaseOffsetOffsets()) { + // Insert all types. + ClassPairTy ClassPair(RD, I.first); + + VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second)); + } + + I = VirtualBaseClassOffsetOffsets.find(ClassPair); + assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!"); + + return I->second; +} + +static std::unique_ptr<VTableLayout> +CreateVTableLayout(const ItaniumVTableBuilder &Builder) { + SmallVector<VTableLayout::VTableThunkTy, 1> + VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); + + return std::make_unique<VTableLayout>( + Builder.VTableIndices, Builder.vtable_components(), VTableThunks, + Builder.getAddressPoints()); +} + +void +ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) { + std::unique_ptr<const VTableLayout> &Entry = VTableLayouts[RD]; + + // Check if we've computed this information before. + if (Entry) + return; + + ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(), + /*MostDerivedClassIsVirtual=*/false, RD); + Entry = CreateVTableLayout(Builder); + + MethodVTableIndices.insert(Builder.vtable_indices_begin(), + Builder.vtable_indices_end()); + + // Add the known thunks. + Thunks.insert(Builder.thunks_begin(), Builder.thunks_end()); + + // If we don't have the vbase information for this class, insert it. + // getVirtualBaseOffsetOffset will compute it separately without computing + // the rest of the vtable related information. + if (!RD->getNumVBases()) + return; + + const CXXRecordDecl *VBase = + RD->vbases_begin()->getType()->getAsCXXRecordDecl(); + + if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase))) + return; + + for (const auto &I : Builder.getVBaseOffsetOffsets()) { + // Insert all types. + ClassPairTy ClassPair(RD, I.first); + + VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second)); + } +} + +std::unique_ptr<VTableLayout> +ItaniumVTableContext::createConstructionVTableLayout( + const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset, + bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) { + ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset, + MostDerivedClassIsVirtual, LayoutClass); + return CreateVTableLayout(Builder); +} + +namespace { + +// Vtables in the Microsoft ABI are different from the Itanium ABI. +// +// The main differences are: +// 1. Separate vftable and vbtable. +// +// 2. Each subobject with a vfptr gets its own vftable rather than an address +// point in a single vtable shared between all the subobjects. +// Each vftable is represented by a separate section and virtual calls +// must be done using the vftable which has a slot for the function to be +// called. +// +// 3. Virtual method definitions expect their 'this' parameter to point to the +// first vfptr whose table provides a compatible overridden method. In many +// cases, this permits the original vf-table entry to directly call +// the method instead of passing through a thunk. +// See example before VFTableBuilder::ComputeThisOffset below. +// +// A compatible overridden method is one which does not have a non-trivial +// covariant-return adjustment. +// +// The first vfptr is the one with the lowest offset in the complete-object +// layout of the defining class, and the method definition will subtract +// that constant offset from the parameter value to get the real 'this' +// value. Therefore, if the offset isn't really constant (e.g. if a virtual +// function defined in a virtual base is overridden in a more derived +// virtual base and these bases have a reverse order in the complete +// object), the vf-table may require a this-adjustment thunk. +// +// 4. vftables do not contain new entries for overrides that merely require +// this-adjustment. Together with #3, this keeps vf-tables smaller and +// eliminates the need for this-adjustment thunks in many cases, at the cost +// of often requiring redundant work to adjust the "this" pointer. +// +// 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used. +// Vtordisps are emitted into the class layout if a class has +// a) a user-defined ctor/dtor +// and +// b) a method overriding a method in a virtual base. +// +// To get a better understanding of this code, +// you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp + +class VFTableBuilder { +public: + typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation> + MethodVFTableLocationsTy; + + typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator> + method_locations_range; + +private: + /// VTables - Global vtable information. + MicrosoftVTableContext &VTables; + + /// Context - The ASTContext which we will use for layout information. + ASTContext &Context; + + /// MostDerivedClass - The most derived class for which we're building this + /// vtable. + const CXXRecordDecl *MostDerivedClass; + + const ASTRecordLayout &MostDerivedClassLayout; + + const VPtrInfo &WhichVFPtr; + + /// FinalOverriders - The final overriders of the most derived class. + const FinalOverriders Overriders; + + /// Components - The components of the vftable being built. + SmallVector<VTableComponent, 64> Components; + + MethodVFTableLocationsTy MethodVFTableLocations; + + /// Does this class have an RTTI component? + bool HasRTTIComponent = false; + + /// MethodInfo - Contains information about a method in a vtable. + /// (Used for computing 'this' pointer adjustment thunks. + struct MethodInfo { + /// VBTableIndex - The nonzero index in the vbtable that + /// this method's base has, or zero. + const uint64_t VBTableIndex; + + /// VFTableIndex - The index in the vftable that this method has. + const uint64_t VFTableIndex; + + /// Shadowed - Indicates if this vftable slot is shadowed by + /// a slot for a covariant-return override. If so, it shouldn't be printed + /// or used for vcalls in the most derived class. + bool Shadowed; + + /// UsesExtraSlot - Indicates if this vftable slot was created because + /// any of the overridden slots required a return adjusting thunk. + bool UsesExtraSlot; + + MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex, + bool UsesExtraSlot = false) + : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex), + Shadowed(false), UsesExtraSlot(UsesExtraSlot) {} + + MethodInfo() + : VBTableIndex(0), VFTableIndex(0), Shadowed(false), + UsesExtraSlot(false) {} + }; + + typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; + + /// MethodInfoMap - The information for all methods in the vftable we're + /// currently building. + MethodInfoMapTy MethodInfoMap; + + typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; + + /// VTableThunks - The thunks by vftable index in the vftable currently being + /// built. + VTableThunksMapTy VTableThunks; + + typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; + typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; + + /// Thunks - A map that contains all the thunks needed for all methods in the + /// most derived class for which the vftable is currently being built. + ThunksMapTy Thunks; + + /// AddThunk - Add a thunk for the given method. + void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) { + SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD]; + + // Check if we have this thunk already. + if (llvm::is_contained(ThunksVector, Thunk)) + return; + + ThunksVector.push_back(Thunk); + } + + /// ComputeThisOffset - Returns the 'this' argument offset for the given + /// method, relative to the beginning of the MostDerivedClass. + CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider); + + void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider, + CharUnits ThisOffset, ThisAdjustment &TA); + + /// AddMethod - Add a single virtual member function to the vftable + /// components vector. + void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) { + if (!TI.isEmpty()) { + VTableThunks[Components.size()] = TI; + AddThunk(MD, TI); + } + if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { + assert(TI.Return.isEmpty() && + "Destructor can't have return adjustment!"); + Components.push_back(VTableComponent::MakeDeletingDtor(DD)); + } else { + Components.push_back(VTableComponent::MakeFunction(MD)); + } + } + + /// AddMethods - Add the methods of this base subobject and the relevant + /// subbases to the vftable we're currently laying out. + void AddMethods(BaseSubobject Base, unsigned BaseDepth, + const CXXRecordDecl *LastVBase, + BasesSetVectorTy &VisitedBases); + + void LayoutVFTable() { + // RTTI data goes before all other entries. + if (HasRTTIComponent) + Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass)); + + BasesSetVectorTy VisitedBases; + AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr, + VisitedBases); + // Note that it is possible for the vftable to contain only an RTTI + // pointer, if all virtual functions are constewval. + assert(!Components.empty() && "vftable can't be empty"); + + assert(MethodVFTableLocations.empty()); + for (const auto &I : MethodInfoMap) { + const CXXMethodDecl *MD = I.first; + const MethodInfo &MI = I.second; + assert(MD == MD->getCanonicalDecl()); + + // Skip the methods that the MostDerivedClass didn't override + // and the entries shadowed by return adjusting thunks. + if (MD->getParent() != MostDerivedClass || MI.Shadowed) + continue; + MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(), + WhichVFPtr.NonVirtualOffset, MI.VFTableIndex); + if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { + MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc; + } else { + MethodVFTableLocations[MD] = Loc; + } + } + } + +public: + VFTableBuilder(MicrosoftVTableContext &VTables, + const CXXRecordDecl *MostDerivedClass, const VPtrInfo &Which) + : VTables(VTables), + Context(MostDerivedClass->getASTContext()), + MostDerivedClass(MostDerivedClass), + MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)), + WhichVFPtr(Which), + Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) { + // Provide the RTTI component if RTTIData is enabled. If the vftable would + // be available externally, we should not provide the RTTI componenent. It + // is currently impossible to get available externally vftables with either + // dllimport or extern template instantiations, but eventually we may add a + // flag to support additional devirtualization that needs this. + if (Context.getLangOpts().RTTIData) + HasRTTIComponent = true; + + LayoutVFTable(); + + if (Context.getLangOpts().DumpVTableLayouts) + dumpLayout(llvm::outs()); + } + + uint64_t getNumThunks() const { return Thunks.size(); } + + ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); } + + ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); } + + method_locations_range vtable_locations() const { + return method_locations_range(MethodVFTableLocations.begin(), + MethodVFTableLocations.end()); + } + + ArrayRef<VTableComponent> vtable_components() const { return Components; } + + VTableThunksMapTy::const_iterator vtable_thunks_begin() const { + return VTableThunks.begin(); + } + + VTableThunksMapTy::const_iterator vtable_thunks_end() const { + return VTableThunks.end(); + } + + void dumpLayout(raw_ostream &); +}; + +} // end namespace + +// Let's study one class hierarchy as an example: +// struct A { +// virtual void f(); +// int x; +// }; +// +// struct B : virtual A { +// virtual void f(); +// }; +// +// Record layouts: +// struct A: +// 0 | (A vftable pointer) +// 4 | int x +// +// struct B: +// 0 | (B vbtable pointer) +// 4 | struct A (virtual base) +// 4 | (A vftable pointer) +// 8 | int x +// +// Let's assume we have a pointer to the A part of an object of dynamic type B: +// B b; +// A *a = (A*)&b; +// a->f(); +// +// In this hierarchy, f() belongs to the vftable of A, so B::f() expects +// "this" parameter to point at the A subobject, which is B+4. +// In the B::f() prologue, it adjusts "this" back to B by subtracting 4, +// performed as a *static* adjustment. +// +// Interesting thing happens when we alter the relative placement of A and B +// subobjects in a class: +// struct C : virtual B { }; +// +// C c; +// A *a = (A*)&c; +// a->f(); +// +// Respective record layout is: +// 0 | (C vbtable pointer) +// 4 | struct A (virtual base) +// 4 | (A vftable pointer) +// 8 | int x +// 12 | struct B (virtual base) +// 12 | (B vbtable pointer) +// +// The final overrider of f() in class C is still B::f(), so B+4 should be +// passed as "this" to that code. However, "a" points at B-8, so the respective +// vftable entry should hold a thunk that adds 12 to the "this" argument before +// performing a tail call to B::f(). +// +// With this example in mind, we can now calculate the 'this' argument offset +// for the given method, relative to the beginning of the MostDerivedClass. +CharUnits +VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) { + BasesSetVectorTy Bases; + + { + // Find the set of least derived bases that define the given method. + OverriddenMethodsSetTy VisitedOverriddenMethods; + auto InitialOverriddenDefinitionCollector = [&]( + const CXXMethodDecl *OverriddenMD) { + if (OverriddenMD->size_overridden_methods() == 0) + Bases.insert(OverriddenMD->getParent()); + // Don't recurse on this method if we've already collected it. + return VisitedOverriddenMethods.insert(OverriddenMD).second; + }; + visitAllOverriddenMethods(Overrider.Method, + InitialOverriddenDefinitionCollector); + } + + // If there are no overrides then 'this' is located + // in the base that defines the method. + if (Bases.size() == 0) + return Overrider.Offset; + + CXXBasePaths Paths; + Overrider.Method->getParent()->lookupInBases( + [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) { + return Bases.count(Specifier->getType()->getAsCXXRecordDecl()); + }, + Paths); + + // This will hold the smallest this offset among overridees of MD. + // This implies that an offset of a non-virtual base will dominate an offset + // of a virtual base to potentially reduce the number of thunks required + // in the derived classes that inherit this method. + CharUnits Ret; + bool First = true; + + const ASTRecordLayout &OverriderRDLayout = + Context.getASTRecordLayout(Overrider.Method->getParent()); + for (const CXXBasePath &Path : Paths) { + CharUnits ThisOffset = Overrider.Offset; + CharUnits LastVBaseOffset; + + // For each path from the overrider to the parents of the overridden + // methods, traverse the path, calculating the this offset in the most + // derived class. + for (const CXXBasePathElement &Element : Path) { + QualType CurTy = Element.Base->getType(); + const CXXRecordDecl *PrevRD = Element.Class, + *CurRD = CurTy->getAsCXXRecordDecl(); + const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD); + + if (Element.Base->isVirtual()) { + // The interesting things begin when you have virtual inheritance. + // The final overrider will use a static adjustment equal to the offset + // of the vbase in the final overrider class. + // For example, if the final overrider is in a vbase B of the most + // derived class and it overrides a method of the B's own vbase A, + // it uses A* as "this". In its prologue, it can cast A* to B* with + // a static offset. This offset is used regardless of the actual + // offset of A from B in the most derived class, requiring an + // this-adjusting thunk in the vftable if A and B are laid out + // differently in the most derived class. + LastVBaseOffset = ThisOffset = + Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD); + } else { + ThisOffset += Layout.getBaseClassOffset(CurRD); + } + } + + if (isa<CXXDestructorDecl>(Overrider.Method)) { + if (LastVBaseOffset.isZero()) { + // If a "Base" class has at least one non-virtual base with a virtual + // destructor, the "Base" virtual destructor will take the address + // of the "Base" subobject as the "this" argument. + ThisOffset = Overrider.Offset; + } else { + // A virtual destructor of a virtual base takes the address of the + // virtual base subobject as the "this" argument. + ThisOffset = LastVBaseOffset; + } + } + + if (Ret > ThisOffset || First) { + First = false; + Ret = ThisOffset; + } + } + + assert(!First && "Method not found in the given subobject?"); + return Ret; +} + +// Things are getting even more complex when the "this" adjustment has to +// use a dynamic offset instead of a static one, or even two dynamic offsets. +// This is sometimes required when a virtual call happens in the middle of +// a non-most-derived class construction or destruction. +// +// Let's take a look at the following example: +// struct A { +// virtual void f(); +// }; +// +// void foo(A *a) { a->f(); } // Knows nothing about siblings of A. +// +// struct B : virtual A { +// virtual void f(); +// B() { +// foo(this); +// } +// }; +// +// struct C : virtual B { +// virtual void f(); +// }; +// +// Record layouts for these classes are: +// struct A +// 0 | (A vftable pointer) +// +// struct B +// 0 | (B vbtable pointer) +// 4 | (vtordisp for vbase A) +// 8 | struct A (virtual base) +// 8 | (A vftable pointer) +// +// struct C +// 0 | (C vbtable pointer) +// 4 | (vtordisp for vbase A) +// 8 | struct A (virtual base) // A precedes B! +// 8 | (A vftable pointer) +// 12 | struct B (virtual base) +// 12 | (B vbtable pointer) +// +// When one creates an object of type C, the C constructor: +// - initializes all the vbptrs, then +// - calls the A subobject constructor +// (initializes A's vfptr with an address of A vftable), then +// - calls the B subobject constructor +// (initializes A's vfptr with an address of B vftable and vtordisp for A), +// that in turn calls foo(), then +// - initializes A's vfptr with an address of C vftable and zeroes out the +// vtordisp +// FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable +// without vtordisp thunks? +// FIXME: how are vtordisp handled in the presence of nooverride/final? +// +// When foo() is called, an object with a layout of class C has a vftable +// referencing B::f() that assumes a B layout, so the "this" adjustments are +// incorrect, unless an extra adjustment is done. This adjustment is called +// "vtordisp adjustment". Vtordisp basically holds the difference between the +// actual location of a vbase in the layout class and the location assumed by +// the vftable of the class being constructed/destructed. Vtordisp is only +// needed if "this" escapes a +// structor (or we can't prove otherwise). +// [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an +// estimation of a dynamic adjustment] +// +// foo() gets a pointer to the A vbase and doesn't know anything about B or C, +// so it just passes that pointer as "this" in a virtual call. +// If there was no vtordisp, that would just dispatch to B::f(). +// However, B::f() assumes B+8 is passed as "this", +// yet the pointer foo() passes along is B-4 (i.e. C+8). +// An extra adjustment is needed, so we emit a thunk into the B vftable. +// This vtordisp thunk subtracts the value of vtordisp +// from the "this" argument (-12) before making a tailcall to B::f(). +// +// Let's consider an even more complex example: +// struct D : virtual B, virtual C { +// D() { +// foo(this); +// } +// }; +// +// struct D +// 0 | (D vbtable pointer) +// 4 | (vtordisp for vbase A) +// 8 | struct A (virtual base) // A precedes both B and C! +// 8 | (A vftable pointer) +// 12 | struct B (virtual base) // B precedes C! +// 12 | (B vbtable pointer) +// 16 | struct C (virtual base) +// 16 | (C vbtable pointer) +// +// When D::D() calls foo(), we find ourselves in a thunk that should tailcall +// to C::f(), which assumes C+8 as its "this" parameter. This time, foo() +// passes along A, which is C-8. The A vtordisp holds +// "D.vbptr[index_of_A] - offset_of_A_in_D" +// and we statically know offset_of_A_in_D, so can get a pointer to D. +// When we know it, we can make an extra vbtable lookup to locate the C vbase +// and one extra static adjustment to calculate the expected value of C+8. +void VFTableBuilder::CalculateVtordispAdjustment( + FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset, + ThisAdjustment &TA) { + const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap = + MostDerivedClassLayout.getVBaseOffsetsMap(); + const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry = + VBaseMap.find(WhichVFPtr.getVBaseWithVPtr()); + assert(VBaseMapEntry != VBaseMap.end()); + + // If there's no vtordisp or the final overrider is defined in the same vbase + // as the initial declaration, we don't need any vtordisp adjustment. + if (!VBaseMapEntry->second.hasVtorDisp() || + Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr()) + return; + + // OK, now we know we need to use a vtordisp thunk. + // The implicit vtordisp field is located right before the vbase. + CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset; + TA.Virtual.Microsoft.VtordispOffset = + (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4; + + // A simple vtordisp thunk will suffice if the final overrider is defined + // in either the most derived class or its non-virtual base. + if (Overrider.Method->getParent() == MostDerivedClass || + !Overrider.VirtualBase) + return; + + // Otherwise, we need to do use the dynamic offset of the final overrider + // in order to get "this" adjustment right. + TA.Virtual.Microsoft.VBPtrOffset = + (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset - + MostDerivedClassLayout.getVBPtrOffset()).getQuantity(); + TA.Virtual.Microsoft.VBOffsetOffset = + Context.getTypeSizeInChars(Context.IntTy).getQuantity() * + VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase); + + TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity(); +} + +static void GroupNewVirtualOverloads( + const CXXRecordDecl *RD, + SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) { + // Put the virtual methods into VirtualMethods in the proper order: + // 1) Group overloads by declaration name. New groups are added to the + // vftable in the order of their first declarations in this class + // (including overrides, non-virtual methods and any other named decl that + // might be nested within the class). + // 2) In each group, new overloads appear in the reverse order of declaration. + typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup; + SmallVector<MethodGroup, 10> Groups; + typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy; + VisitedGroupIndicesTy VisitedGroupIndices; + for (const auto *D : RD->decls()) { + const auto *ND = dyn_cast<NamedDecl>(D); + if (!ND) + continue; + VisitedGroupIndicesTy::iterator J; + bool Inserted; + std::tie(J, Inserted) = VisitedGroupIndices.insert( + std::make_pair(ND->getDeclName(), Groups.size())); + if (Inserted) + Groups.push_back(MethodGroup()); + if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) + if (MicrosoftVTableContext::hasVtableSlot(MD)) + Groups[J->second].push_back(MD->getCanonicalDecl()); + } + + for (const MethodGroup &Group : Groups) + VirtualMethods.append(Group.rbegin(), Group.rend()); +} + +static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) { + for (const auto &B : RD->bases()) { + if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base) + return true; + } + return false; +} + +void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth, + const CXXRecordDecl *LastVBase, + BasesSetVectorTy &VisitedBases) { + const CXXRecordDecl *RD = Base.getBase(); + if (!RD->isPolymorphic()) + return; + + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + + // See if this class expands a vftable of the base we look at, which is either + // the one defined by the vfptr base path or the primary base of the current + // class. + const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase; + CharUnits NextBaseOffset; + if (BaseDepth < WhichVFPtr.PathToIntroducingObject.size()) { + NextBase = WhichVFPtr.PathToIntroducingObject[BaseDepth]; + if (isDirectVBase(NextBase, RD)) { + NextLastVBase = NextBase; + NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase); + } else { + NextBaseOffset = + Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase); + } + } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { + assert(!Layout.isPrimaryBaseVirtual() && + "No primary virtual bases in this ABI"); + NextBase = PrimaryBase; + NextBaseOffset = Base.getBaseOffset(); + } + + if (NextBase) { + AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1, + NextLastVBase, VisitedBases); + if (!VisitedBases.insert(NextBase)) + llvm_unreachable("Found a duplicate primary base!"); + } + + SmallVector<const CXXMethodDecl*, 10> VirtualMethods; + // Put virtual methods in the proper order. + GroupNewVirtualOverloads(RD, VirtualMethods); + + // Now go through all virtual member functions and add them to the current + // vftable. This is done by + // - replacing overridden methods in their existing slots, as long as they + // don't require return adjustment; calculating This adjustment if needed. + // - adding new slots for methods of the current base not present in any + // sub-bases; + // - adding new slots for methods that require Return adjustment. + // We keep track of the methods visited in the sub-bases in MethodInfoMap. + for (const CXXMethodDecl *MD : VirtualMethods) { + FinalOverriders::OverriderInfo FinalOverrider = + Overriders.getOverrider(MD, Base.getBaseOffset()); + const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method; + const CXXMethodDecl *OverriddenMD = + FindNearestOverriddenMethod(MD, VisitedBases); + + ThisAdjustment ThisAdjustmentOffset; + bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false; + CharUnits ThisOffset = ComputeThisOffset(FinalOverrider); + ThisAdjustmentOffset.NonVirtual = + (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity(); + if ((OverriddenMD || FinalOverriderMD != MD) && + WhichVFPtr.getVBaseWithVPtr()) + CalculateVtordispAdjustment(FinalOverrider, ThisOffset, + ThisAdjustmentOffset); + + unsigned VBIndex = + LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0; + + if (OverriddenMD) { + // If MD overrides anything in this vftable, we need to update the + // entries. + MethodInfoMapTy::iterator OverriddenMDIterator = + MethodInfoMap.find(OverriddenMD); + + // If the overridden method went to a different vftable, skip it. + if (OverriddenMDIterator == MethodInfoMap.end()) + continue; + + MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second; + + VBIndex = OverriddenMethodInfo.VBTableIndex; + + // Let's check if the overrider requires any return adjustments. + // We must create a new slot if the MD's return type is not trivially + // convertible to the OverriddenMD's one. + // Once a chain of method overrides adds a return adjusting vftable slot, + // all subsequent overrides will also use an extra method slot. + ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset( + Context, MD, OverriddenMD).isEmpty() || + OverriddenMethodInfo.UsesExtraSlot; + + if (!ReturnAdjustingThunk) { + // No return adjustment needed - just replace the overridden method info + // with the current info. + MethodInfo MI(VBIndex, OverriddenMethodInfo.VFTableIndex); + MethodInfoMap.erase(OverriddenMDIterator); + + assert(!MethodInfoMap.count(MD) && + "Should not have method info for this method yet!"); + MethodInfoMap.insert(std::make_pair(MD, MI)); + continue; + } + + // In case we need a return adjustment, we'll add a new slot for + // the overrider. Mark the overridden method as shadowed by the new slot. + OverriddenMethodInfo.Shadowed = true; + + // Force a special name mangling for a return-adjusting thunk + // unless the method is the final overrider without this adjustment. + ForceReturnAdjustmentMangling = + !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty()); + } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC || + MD->size_overridden_methods()) { + // Skip methods that don't belong to the vftable of the current class, + // e.g. each method that wasn't seen in any of the visited sub-bases + // but overrides multiple methods of other sub-bases. + continue; + } + + // If we got here, MD is a method not seen in any of the sub-bases or + // it requires return adjustment. Insert the method info for this method. + MethodInfo MI(VBIndex, + HasRTTIComponent ? Components.size() - 1 : Components.size(), + ReturnAdjustingThunk); + + assert(!MethodInfoMap.count(MD) && + "Should not have method info for this method yet!"); + MethodInfoMap.insert(std::make_pair(MD, MI)); + + // Check if this overrider needs a return adjustment. + // We don't want to do this for pure virtual member functions. + BaseOffset ReturnAdjustmentOffset; + ReturnAdjustment ReturnAdjustment; + if (!FinalOverriderMD->isPure()) { + ReturnAdjustmentOffset = + ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD); + } + if (!ReturnAdjustmentOffset.isEmpty()) { + ForceReturnAdjustmentMangling = true; + ReturnAdjustment.NonVirtual = + ReturnAdjustmentOffset.NonVirtualOffset.getQuantity(); + if (ReturnAdjustmentOffset.VirtualBase) { + const ASTRecordLayout &DerivedLayout = + Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass); + ReturnAdjustment.Virtual.Microsoft.VBPtrOffset = + DerivedLayout.getVBPtrOffset().getQuantity(); + ReturnAdjustment.Virtual.Microsoft.VBIndex = + VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass, + ReturnAdjustmentOffset.VirtualBase); + } + } + + AddMethod(FinalOverriderMD, + ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment, + ForceReturnAdjustmentMangling ? MD : nullptr)); + } +} + +static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) { + for (const CXXRecordDecl *Elem : llvm::reverse(Path)) { + Out << "'"; + Elem->printQualifiedName(Out); + Out << "' in "; + } +} + +static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out, + bool ContinueFirstLine) { + const ReturnAdjustment &R = TI.Return; + bool Multiline = false; + const char *LinePrefix = "\n "; + if (!R.isEmpty() || TI.Method) { + if (!ContinueFirstLine) + Out << LinePrefix; + Out << "[return adjustment (to type '" + << TI.Method->getReturnType().getCanonicalType().getAsString() + << "'): "; + if (R.Virtual.Microsoft.VBPtrOffset) + Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", "; + if (R.Virtual.Microsoft.VBIndex) + Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", "; + Out << R.NonVirtual << " non-virtual]"; + Multiline = true; + } + + const ThisAdjustment &T = TI.This; + if (!T.isEmpty()) { + if (Multiline || !ContinueFirstLine) + Out << LinePrefix; + Out << "[this adjustment: "; + if (!TI.This.Virtual.isEmpty()) { + assert(T.Virtual.Microsoft.VtordispOffset < 0); + Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", "; + if (T.Virtual.Microsoft.VBPtrOffset) { + Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset + << " to the left,"; + assert(T.Virtual.Microsoft.VBOffsetOffset > 0); + Out << LinePrefix << " vboffset at " + << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, "; + } + } + Out << T.NonVirtual << " non-virtual]"; + } +} + +void VFTableBuilder::dumpLayout(raw_ostream &Out) { + Out << "VFTable for "; + PrintBasePath(WhichVFPtr.PathToIntroducingObject, Out); + Out << "'"; + MostDerivedClass->printQualifiedName(Out); + Out << "' (" << Components.size() + << (Components.size() == 1 ? " entry" : " entries") << ").\n"; + + for (unsigned I = 0, E = Components.size(); I != E; ++I) { + Out << llvm::format("%4d | ", I); + + const VTableComponent &Component = Components[I]; + + // Dump the component. + switch (Component.getKind()) { + case VTableComponent::CK_RTTI: + Component.getRTTIDecl()->printQualifiedName(Out); + Out << " RTTI"; + break; + + case VTableComponent::CK_FunctionPointer: { + const CXXMethodDecl *MD = Component.getFunctionDecl(); + + // FIXME: Figure out how to print the real thunk type, since they can + // differ in the return type. + std::string Str = PredefinedExpr::ComputeName( + PredefinedExpr::PrettyFunctionNoVirtual, MD); + Out << Str; + if (MD->isPure()) + Out << " [pure]"; + + if (MD->isDeleted()) + Out << " [deleted]"; + + ThunkInfo Thunk = VTableThunks.lookup(I); + if (!Thunk.isEmpty()) + dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false); + + break; + } + + case VTableComponent::CK_DeletingDtorPointer: { + const CXXDestructorDecl *DD = Component.getDestructorDecl(); + + DD->printQualifiedName(Out); + Out << "() [scalar deleting]"; + + if (DD->isPure()) + Out << " [pure]"; + + ThunkInfo Thunk = VTableThunks.lookup(I); + if (!Thunk.isEmpty()) { + assert(Thunk.Return.isEmpty() && + "No return adjustment needed for destructors!"); + dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false); + } + + break; + } + + default: + DiagnosticsEngine &Diags = Context.getDiagnostics(); + unsigned DiagID = Diags.getCustomDiagID( + DiagnosticsEngine::Error, + "Unexpected vftable component type %0 for component number %1"); + Diags.Report(MostDerivedClass->getLocation(), DiagID) + << I << Component.getKind(); + } + + Out << '\n'; + } + + Out << '\n'; + + if (!Thunks.empty()) { + // We store the method names in a map to get a stable order. + std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; + + for (const auto &I : Thunks) { + const CXXMethodDecl *MD = I.first; + std::string MethodName = PredefinedExpr::ComputeName( + PredefinedExpr::PrettyFunctionNoVirtual, MD); + + MethodNamesAndDecls.insert(std::make_pair(MethodName, MD)); + } + + for (const auto &MethodNameAndDecl : MethodNamesAndDecls) { + const std::string &MethodName = MethodNameAndDecl.first; + const CXXMethodDecl *MD = MethodNameAndDecl.second; + + ThunkInfoVectorTy ThunksVector = Thunks[MD]; + llvm::stable_sort(ThunksVector, [](const ThunkInfo &LHS, + const ThunkInfo &RHS) { + // Keep different thunks with the same adjustments in the order they + // were put into the vector. + return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return); + }); + + Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); + Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n"; + + for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { + const ThunkInfo &Thunk = ThunksVector[I]; + + Out << llvm::format("%4d | ", I); + dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true); + Out << '\n'; + } + + Out << '\n'; + } + } + + Out.flush(); +} + +static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A, + ArrayRef<const CXXRecordDecl *> B) { + for (const CXXRecordDecl *Decl : B) { + if (A.count(Decl)) + return true; + } + return false; +} + +static bool rebucketPaths(VPtrInfoVector &Paths); + +/// Produces MSVC-compatible vbtable data. The symbols produced by this +/// algorithm match those produced by MSVC 2012 and newer, which is different +/// from MSVC 2010. +/// +/// MSVC 2012 appears to minimize the vbtable names using the following +/// algorithm. First, walk the class hierarchy in the usual order, depth first, +/// left to right, to find all of the subobjects which contain a vbptr field. +/// Visiting each class node yields a list of inheritance paths to vbptrs. Each +/// record with a vbptr creates an initially empty path. +/// +/// To combine paths from child nodes, the paths are compared to check for +/// ambiguity. Paths are "ambiguous" if multiple paths have the same set of +/// components in the same order. Each group of ambiguous paths is extended by +/// appending the class of the base from which it came. If the current class +/// node produced an ambiguous path, its path is extended with the current class. +/// After extending paths, MSVC again checks for ambiguity, and extends any +/// ambiguous path which wasn't already extended. Because each node yields an +/// unambiguous set of paths, MSVC doesn't need to extend any path more than once +/// to produce an unambiguous set of paths. +/// +/// TODO: Presumably vftables use the same algorithm. +void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables, + const CXXRecordDecl *RD, + VPtrInfoVector &Paths) { + assert(Paths.empty()); + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + + // Base case: this subobject has its own vptr. + if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr()) + Paths.push_back(std::make_unique<VPtrInfo>(RD)); + + // Recursive case: get all the vbtables from our bases and remove anything + // that shares a virtual base. + llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen; + for (const auto &B : RD->bases()) { + const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl(); + if (B.isVirtual() && VBasesSeen.count(Base)) + continue; + + if (!Base->isDynamicClass()) + continue; + + const VPtrInfoVector &BasePaths = + ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base); + + for (const std::unique_ptr<VPtrInfo> &BaseInfo : BasePaths) { + // Don't include the path if it goes through a virtual base that we've + // already included. + if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases)) + continue; + + // Copy the path and adjust it as necessary. + auto P = std::make_unique<VPtrInfo>(*BaseInfo); + + // We mangle Base into the path if the path would've been ambiguous and it + // wasn't already extended with Base. + if (P->MangledPath.empty() || P->MangledPath.back() != Base) + P->NextBaseToMangle = Base; + + // Keep track of which vtable the derived class is going to extend with + // new methods or bases. We append to either the vftable of our primary + // base, or the first non-virtual base that has a vbtable. + if (P->ObjectWithVPtr == Base && + Base == (ForVBTables ? Layout.getBaseSharingVBPtr() + : Layout.getPrimaryBase())) + P->ObjectWithVPtr = RD; + + // Keep track of the full adjustment from the MDC to this vtable. The + // adjustment is captured by an optional vbase and a non-virtual offset. + if (B.isVirtual()) + P->ContainingVBases.push_back(Base); + else if (P->ContainingVBases.empty()) + P->NonVirtualOffset += Layout.getBaseClassOffset(Base); + + // Update the full offset in the MDC. + P->FullOffsetInMDC = P->NonVirtualOffset; + if (const CXXRecordDecl *VB = P->getVBaseWithVPtr()) + P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB); + + Paths.push_back(std::move(P)); + } + + if (B.isVirtual()) + VBasesSeen.insert(Base); + + // After visiting any direct base, we've transitively visited all of its + // morally virtual bases. + for (const auto &VB : Base->vbases()) + VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl()); + } + + // Sort the paths into buckets, and if any of them are ambiguous, extend all + // paths in ambiguous buckets. + bool Changed = true; + while (Changed) + Changed = rebucketPaths(Paths); +} + +static bool extendPath(VPtrInfo &P) { + if (P.NextBaseToMangle) { + P.MangledPath.push_back(P.NextBaseToMangle); + P.NextBaseToMangle = nullptr;// Prevent the path from being extended twice. + return true; + } + return false; +} + +static bool rebucketPaths(VPtrInfoVector &Paths) { + // What we're essentially doing here is bucketing together ambiguous paths. + // Any bucket with more than one path in it gets extended by NextBase, which + // is usually the direct base of the inherited the vbptr. This code uses a + // sorted vector to implement a multiset to form the buckets. Note that the + // ordering is based on pointers, but it doesn't change our output order. The + // current algorithm is designed to match MSVC 2012's names. + llvm::SmallVector<std::reference_wrapper<VPtrInfo>, 2> PathsSorted; + PathsSorted.reserve(Paths.size()); + for (auto& P : Paths) + PathsSorted.push_back(*P); + llvm::sort(PathsSorted, [](const VPtrInfo &LHS, const VPtrInfo &RHS) { + return LHS.MangledPath < RHS.MangledPath; + }); + bool Changed = false; + for (size_t I = 0, E = PathsSorted.size(); I != E;) { + // Scan forward to find the end of the bucket. + size_t BucketStart = I; + do { + ++I; + } while (I != E && + PathsSorted[BucketStart].get().MangledPath == + PathsSorted[I].get().MangledPath); + + // If this bucket has multiple paths, extend them all. + if (I - BucketStart > 1) { + for (size_t II = BucketStart; II != I; ++II) + Changed |= extendPath(PathsSorted[II]); + assert(Changed && "no paths were extended to fix ambiguity"); + } + } + return Changed; +} + +MicrosoftVTableContext::~MicrosoftVTableContext() {} + +namespace { +typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>, + llvm::DenseSet<BaseSubobject>> FullPathTy; +} + +// This recursive function finds all paths from a subobject centered at +// (RD, Offset) to the subobject located at IntroducingObject. +static void findPathsToSubobject(ASTContext &Context, + const ASTRecordLayout &MostDerivedLayout, + const CXXRecordDecl *RD, CharUnits Offset, + BaseSubobject IntroducingObject, + FullPathTy &FullPath, + std::list<FullPathTy> &Paths) { + if (BaseSubobject(RD, Offset) == IntroducingObject) { + Paths.push_back(FullPath); + return; + } + + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + + for (const CXXBaseSpecifier &BS : RD->bases()) { + const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl(); + CharUnits NewOffset = BS.isVirtual() + ? MostDerivedLayout.getVBaseClassOffset(Base) + : Offset + Layout.getBaseClassOffset(Base); + FullPath.insert(BaseSubobject(Base, NewOffset)); + findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset, + IntroducingObject, FullPath, Paths); + FullPath.pop_back(); + } +} + +// Return the paths which are not subsets of other paths. +static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) { + FullPaths.remove_if([&](const FullPathTy &SpecificPath) { + for (const FullPathTy &OtherPath : FullPaths) { + if (&SpecificPath == &OtherPath) + continue; + if (llvm::all_of(SpecificPath, [&](const BaseSubobject &BSO) { + return OtherPath.contains(BSO); + })) { + return true; + } + } + return false; + }); +} + +static CharUnits getOffsetOfFullPath(ASTContext &Context, + const CXXRecordDecl *RD, + const FullPathTy &FullPath) { + const ASTRecordLayout &MostDerivedLayout = + Context.getASTRecordLayout(RD); + CharUnits Offset = CharUnits::fromQuantity(-1); + for (const BaseSubobject &BSO : FullPath) { + const CXXRecordDecl *Base = BSO.getBase(); + // The first entry in the path is always the most derived record, skip it. + if (Base == RD) { + assert(Offset.getQuantity() == -1); + Offset = CharUnits::Zero(); + continue; + } + assert(Offset.getQuantity() != -1); + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + // While we know which base has to be traversed, we don't know if that base + // was a virtual base. + const CXXBaseSpecifier *BaseBS = std::find_if( + RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) { + return BS.getType()->getAsCXXRecordDecl() == Base; + }); + Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base) + : Offset + Layout.getBaseClassOffset(Base); + RD = Base; + } + return Offset; +} + +// We want to select the path which introduces the most covariant overrides. If +// two paths introduce overrides which the other path doesn't contain, issue a +// diagnostic. +static const FullPathTy *selectBestPath(ASTContext &Context, + const CXXRecordDecl *RD, + const VPtrInfo &Info, + std::list<FullPathTy> &FullPaths) { + // Handle some easy cases first. + if (FullPaths.empty()) + return nullptr; + if (FullPaths.size() == 1) + return &FullPaths.front(); + + const FullPathTy *BestPath = nullptr; + typedef std::set<const CXXMethodDecl *> OverriderSetTy; + OverriderSetTy LastOverrides; + for (const FullPathTy &SpecificPath : FullPaths) { + assert(!SpecificPath.empty()); + OverriderSetTy CurrentOverrides; + const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase(); + // Find the distance from the start of the path to the subobject with the + // VPtr. + CharUnits BaseOffset = + getOffsetOfFullPath(Context, TopLevelRD, SpecificPath); + FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD); + for (const CXXMethodDecl *MD : Info.IntroducingObject->methods()) { + if (!MicrosoftVTableContext::hasVtableSlot(MD)) + continue; + FinalOverriders::OverriderInfo OI = + Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset); + const CXXMethodDecl *OverridingMethod = OI.Method; + // Only overriders which have a return adjustment introduce problematic + // thunks. + if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD) + .isEmpty()) + continue; + // It's possible that the overrider isn't in this path. If so, skip it + // because this path didn't introduce it. + const CXXRecordDecl *OverridingParent = OverridingMethod->getParent(); + if (llvm::none_of(SpecificPath, [&](const BaseSubobject &BSO) { + return BSO.getBase() == OverridingParent; + })) + continue; + CurrentOverrides.insert(OverridingMethod); + } + OverriderSetTy NewOverrides = + llvm::set_difference(CurrentOverrides, LastOverrides); + if (NewOverrides.empty()) + continue; + OverriderSetTy MissingOverrides = + llvm::set_difference(LastOverrides, CurrentOverrides); + if (MissingOverrides.empty()) { + // This path is a strict improvement over the last path, let's use it. + BestPath = &SpecificPath; + std::swap(CurrentOverrides, LastOverrides); + } else { + // This path introduces an overrider with a conflicting covariant thunk. + DiagnosticsEngine &Diags = Context.getDiagnostics(); + const CXXMethodDecl *CovariantMD = *NewOverrides.begin(); + const CXXMethodDecl *ConflictMD = *MissingOverrides.begin(); + Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component) + << RD; + Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk) + << CovariantMD; + Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk) + << ConflictMD; + } + } + // Go with the path that introduced the most covariant overrides. If there is + // no such path, pick the first path. + return BestPath ? BestPath : &FullPaths.front(); +} + +static void computeFullPathsForVFTables(ASTContext &Context, + const CXXRecordDecl *RD, + VPtrInfoVector &Paths) { + const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD); + FullPathTy FullPath; + std::list<FullPathTy> FullPaths; + for (const std::unique_ptr<VPtrInfo>& Info : Paths) { + findPathsToSubobject( + Context, MostDerivedLayout, RD, CharUnits::Zero(), + BaseSubobject(Info->IntroducingObject, Info->FullOffsetInMDC), FullPath, + FullPaths); + FullPath.clear(); + removeRedundantPaths(FullPaths); + Info->PathToIntroducingObject.clear(); + if (const FullPathTy *BestPath = + selectBestPath(Context, RD, *Info, FullPaths)) + for (const BaseSubobject &BSO : *BestPath) + Info->PathToIntroducingObject.push_back(BSO.getBase()); + FullPaths.clear(); + } +} + +static bool vfptrIsEarlierInMDC(const ASTRecordLayout &Layout, + const MethodVFTableLocation &LHS, + const MethodVFTableLocation &RHS) { + CharUnits L = LHS.VFPtrOffset; + CharUnits R = RHS.VFPtrOffset; + if (LHS.VBase) + L += Layout.getVBaseClassOffset(LHS.VBase); + if (RHS.VBase) + R += Layout.getVBaseClassOffset(RHS.VBase); + return L < R; +} + +void MicrosoftVTableContext::computeVTableRelatedInformation( + const CXXRecordDecl *RD) { + assert(RD->isDynamicClass()); + + // Check if we've computed this information before. + if (VFPtrLocations.count(RD)) + return; + + const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap; + + { + auto VFPtrs = std::make_unique<VPtrInfoVector>(); + computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs); + computeFullPathsForVFTables(Context, RD, *VFPtrs); + VFPtrLocations[RD] = std::move(VFPtrs); + } + + MethodVFTableLocationsTy NewMethodLocations; + for (const std::unique_ptr<VPtrInfo> &VFPtr : *VFPtrLocations[RD]) { + VFTableBuilder Builder(*this, RD, *VFPtr); + + VFTableIdTy id(RD, VFPtr->FullOffsetInMDC); + assert(VFTableLayouts.count(id) == 0); + SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks( + Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); + VFTableLayouts[id] = std::make_unique<VTableLayout>( + ArrayRef<size_t>{0}, Builder.vtable_components(), VTableThunks, + EmptyAddressPointsMap); + Thunks.insert(Builder.thunks_begin(), Builder.thunks_end()); + + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + for (const auto &Loc : Builder.vtable_locations()) { + auto Insert = NewMethodLocations.insert(Loc); + if (!Insert.second) { + const MethodVFTableLocation &NewLoc = Loc.second; + MethodVFTableLocation &OldLoc = Insert.first->second; + if (vfptrIsEarlierInMDC(Layout, NewLoc, OldLoc)) + OldLoc = NewLoc; + } + } + } + + MethodVFTableLocations.insert(NewMethodLocations.begin(), + NewMethodLocations.end()); + if (Context.getLangOpts().DumpVTableLayouts) + dumpMethodLocations(RD, NewMethodLocations, llvm::outs()); +} + +void MicrosoftVTableContext::dumpMethodLocations( + const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods, + raw_ostream &Out) { + // Compute the vtable indices for all the member functions. + // Store them in a map keyed by the location so we'll get a sorted table. + std::map<MethodVFTableLocation, std::string> IndicesMap; + bool HasNonzeroOffset = false; + + for (const auto &I : NewMethods) { + const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl()); + assert(hasVtableSlot(MD)); + + std::string MethodName = PredefinedExpr::ComputeName( + PredefinedExpr::PrettyFunctionNoVirtual, MD); + + if (isa<CXXDestructorDecl>(MD)) { + IndicesMap[I.second] = MethodName + " [scalar deleting]"; + } else { + IndicesMap[I.second] = MethodName; + } + + if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0) + HasNonzeroOffset = true; + } + + // Print the vtable indices for all the member functions. + if (!IndicesMap.empty()) { + Out << "VFTable indices for "; + Out << "'"; + RD->printQualifiedName(Out); + Out << "' (" << IndicesMap.size() + << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n"; + + CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1); + uint64_t LastVBIndex = 0; + for (const auto &I : IndicesMap) { + CharUnits VFPtrOffset = I.first.VFPtrOffset; + uint64_t VBIndex = I.first.VBTableIndex; + if (HasNonzeroOffset && + (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) { + assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset); + Out << " -- accessible via "; + if (VBIndex) + Out << "vbtable index " << VBIndex << ", "; + Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n"; + LastVFPtrOffset = VFPtrOffset; + LastVBIndex = VBIndex; + } + + uint64_t VTableIndex = I.first.Index; + const std::string &MethodName = I.second; + Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n'; + } + Out << '\n'; + } + + Out.flush(); +} + +const VirtualBaseInfo &MicrosoftVTableContext::computeVBTableRelatedInformation( + const CXXRecordDecl *RD) { + VirtualBaseInfo *VBI; + + { + // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell, + // as it may be modified and rehashed under us. + std::unique_ptr<VirtualBaseInfo> &Entry = VBaseInfo[RD]; + if (Entry) + return *Entry; + Entry = std::make_unique<VirtualBaseInfo>(); + VBI = Entry.get(); + } + + computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths); + + // First, see if the Derived class shared the vbptr with a non-virtual base. + const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); + if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) { + // If the Derived class shares the vbptr with a non-virtual base, the shared + // virtual bases come first so that the layout is the same. + const VirtualBaseInfo &BaseInfo = + computeVBTableRelatedInformation(VBPtrBase); + VBI->VBTableIndices.insert(BaseInfo.VBTableIndices.begin(), + BaseInfo.VBTableIndices.end()); + } + + // New vbases are added to the end of the vbtable. + // Skip the self entry and vbases visited in the non-virtual base, if any. + unsigned VBTableIndex = 1 + VBI->VBTableIndices.size(); + for (const auto &VB : RD->vbases()) { + const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl(); + if (!VBI->VBTableIndices.count(CurVBase)) + VBI->VBTableIndices[CurVBase] = VBTableIndex++; + } + + return *VBI; +} + +unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived, + const CXXRecordDecl *VBase) { + const VirtualBaseInfo &VBInfo = computeVBTableRelatedInformation(Derived); + assert(VBInfo.VBTableIndices.count(VBase)); + return VBInfo.VBTableIndices.find(VBase)->second; +} + +const VPtrInfoVector & +MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) { + return computeVBTableRelatedInformation(RD).VBPtrPaths; +} + +const VPtrInfoVector & +MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) { + computeVTableRelatedInformation(RD); + + assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations"); + return *VFPtrLocations[RD]; +} + +const VTableLayout & +MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD, + CharUnits VFPtrOffset) { + computeVTableRelatedInformation(RD); + + VFTableIdTy id(RD, VFPtrOffset); + assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset"); + return *VFTableLayouts[id]; +} + +MethodVFTableLocation +MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) { + assert(hasVtableSlot(cast<CXXMethodDecl>(GD.getDecl())) && + "Only use this method for virtual methods or dtors"); + if (isa<CXXDestructorDecl>(GD.getDecl())) + assert(GD.getDtorType() == Dtor_Deleting); + + GD = GD.getCanonicalDecl(); + + MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD); + if (I != MethodVFTableLocations.end()) + return I->second; + + const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); + + computeVTableRelatedInformation(RD); + + I = MethodVFTableLocations.find(GD); + assert(I != MethodVFTableLocations.end() && "Did not find index!"); + return I->second; +} |