aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/apache/arrow
diff options
context:
space:
mode:
authorArtem Zuikov <chertus@gmail.com>2022-02-10 16:46:27 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:46:27 +0300
commitd23c9e2333524245de2f721e04136f51c31411ef (patch)
tree841eba1726e3db80e41401053939b3f5ef86ab2d /contrib/libs/apache/arrow
parent6f0f263753da4db2175d8b66d02619f6a476d319 (diff)
downloadydb-d23c9e2333524245de2f721e04136f51c31411ef.tar.gz
Restoring authorship annotation for Artem Zuikov <chertus@gmail.com>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/apache/arrow')
-rw-r--r--contrib/libs/apache/arrow/.yandex_meta/devtools.licenses.report38
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/api.h88
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/array/builder_binary.h2
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/array/builder_dict.h6
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/array/builder_primitive.h2
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/api.h70
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/api_aggregate.cc102
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/api_aggregate.h290
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/api_scalar.cc246
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/api_scalar.h570
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/api_vector.cc270
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/api_vector.h480
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/cast.cc368
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/cast.h270
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/cast_internal.h84
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/exec.cc1362
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/exec.h466
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/exec_internal.h256
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/function.cc284
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/function.h518
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernel.cc914
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernel.h1312
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_basic.cc312
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_basic_internal.h696
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_internal.h102
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_mode.cc178
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_var_std.cc312
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/codegen_internal.cc358
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/codegen_internal.h1956
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/common.h108
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_arithmetic.cc546
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_boolean.cc246
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_boolean.cc130
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_internal.cc456
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_internal.h150
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_nested.cc146
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_numeric.cc1094
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_string.cc246
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_temporal.cc748
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_compare.cc294
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_fill_null.cc326
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_nested.cc132
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_set_lookup.cc740
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_string.cc1540
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_validity.cc228
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/util_internal.cc122
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/util_internal.h110
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_hash.cc1224
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_nested.cc152
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_selection.cc3788
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_sort.cc410
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/registry.cc290
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/registry.h166
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/registry_internal.h98
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/type_fwd.h70
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/compute/util_internal.h64
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/api.h52
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/chunker.cc600
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/chunker.h72
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/column_builder.cc734
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/column_builder.h156
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/column_decoder.cc486
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/column_decoder.h128
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/converter.cc1384
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/converter.h164
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/inference_internal.h300
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/options.cc166
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/options.h378
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/parser.cc1162
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/parser.h404
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/reader.cc2558
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/reader.h246
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/type_fwd.h56
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/writer.cc920
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/csv/writer.h146
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/util/int128_internal.h2
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/util/logging.cc2
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/util/optional.h10
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/ios.h106
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/ios.mm680
-rw-r--r--contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/tz.cpp8
-rw-r--r--contrib/libs/apache/arrow/src/arrow/util/config.h2
-rw-r--r--contrib/libs/apache/arrow/ya.make34
83 files changed, 18246 insertions, 18246 deletions
diff --git a/contrib/libs/apache/arrow/.yandex_meta/devtools.licenses.report b/contrib/libs/apache/arrow/.yandex_meta/devtools.licenses.report
index 1f1bbe7849..f3f9e90568 100644
--- a/contrib/libs/apache/arrow/.yandex_meta/devtools.licenses.report
+++ b/contrib/libs/apache/arrow/.yandex_meta/devtools.licenses.report
@@ -1308,25 +1308,25 @@ BELONGS ya.make
cpp/src/arrow/compute/util_internal.h [1:16]
cpp/src/arrow/config.cc [1:16]
cpp/src/arrow/config.h [1:16]
- cpp/src/arrow/csv/api.h [1:16]
- cpp/src/arrow/csv/chunker.cc [1:16]
- cpp/src/arrow/csv/chunker.h [1:16]
- cpp/src/arrow/csv/column_builder.cc [1:16]
- cpp/src/arrow/csv/column_builder.h [1:16]
- cpp/src/arrow/csv/column_decoder.cc [1:16]
- cpp/src/arrow/csv/column_decoder.h [1:16]
- cpp/src/arrow/csv/converter.cc [1:16]
- cpp/src/arrow/csv/converter.h [1:16]
- cpp/src/arrow/csv/inference_internal.h [1:16]
- cpp/src/arrow/csv/options.cc [1:16]
- cpp/src/arrow/csv/options.h [1:16]
- cpp/src/arrow/csv/parser.cc [1:16]
- cpp/src/arrow/csv/parser.h [1:16]
- cpp/src/arrow/csv/reader.cc [1:16]
- cpp/src/arrow/csv/reader.h [1:16]
- cpp/src/arrow/csv/type_fwd.h [1:16]
- cpp/src/arrow/csv/writer.cc [1:16]
- cpp/src/arrow/csv/writer.h [1:16]
+ cpp/src/arrow/csv/api.h [1:16]
+ cpp/src/arrow/csv/chunker.cc [1:16]
+ cpp/src/arrow/csv/chunker.h [1:16]
+ cpp/src/arrow/csv/column_builder.cc [1:16]
+ cpp/src/arrow/csv/column_builder.h [1:16]
+ cpp/src/arrow/csv/column_decoder.cc [1:16]
+ cpp/src/arrow/csv/column_decoder.h [1:16]
+ cpp/src/arrow/csv/converter.cc [1:16]
+ cpp/src/arrow/csv/converter.h [1:16]
+ cpp/src/arrow/csv/inference_internal.h [1:16]
+ cpp/src/arrow/csv/options.cc [1:16]
+ cpp/src/arrow/csv/options.h [1:16]
+ cpp/src/arrow/csv/parser.cc [1:16]
+ cpp/src/arrow/csv/parser.h [1:16]
+ cpp/src/arrow/csv/reader.cc [1:16]
+ cpp/src/arrow/csv/reader.h [1:16]
+ cpp/src/arrow/csv/type_fwd.h [1:16]
+ cpp/src/arrow/csv/writer.cc [1:16]
+ cpp/src/arrow/csv/writer.h [1:16]
cpp/src/arrow/datum.cc [1:16]
cpp/src/arrow/datum.h [1:16]
cpp/src/arrow/device.cc [1:16]
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/api.h b/contrib/libs/apache/arrow/cpp/src/arrow/api.h
index 8958eaf1c9..1ac5b20893 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/api.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/api.h
@@ -1,44 +1,44 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-// Coarse public API while the library is in development
-
-#pragma once
-
-#include "arrow/array.h" // IYWU pragma: export
-#include "arrow/array/concatenate.h" // IYWU pragma: export
-#include "arrow/buffer.h" // IYWU pragma: export
-#include "arrow/builder.h" // IYWU pragma: export
-#include "arrow/chunked_array.h" // IYWU pragma: export
-#include "arrow/compare.h" // IYWU pragma: export
-#include "arrow/config.h" // IYWU pragma: export
-#include "arrow/datum.h" // IYWU pragma: export
-#include "arrow/extension_type.h" // IYWU pragma: export
-#include "arrow/memory_pool.h" // IYWU pragma: export
-#include "arrow/pretty_print.h" // IYWU pragma: export
-#include "arrow/record_batch.h" // IYWU pragma: export
-#include "arrow/result.h" // IYWU pragma: export
-#include "arrow/status.h" // IYWU pragma: export
-#include "arrow/table.h" // IYWU pragma: export
-#include "arrow/table_builder.h" // IYWU pragma: export
-#include "arrow/tensor.h" // IYWU pragma: export
-#include "arrow/type.h" // IYWU pragma: export
-#include "arrow/util/key_value_metadata.h" // IWYU pragma: export
-#include "arrow/visitor.h" // IYWU pragma: export
-
-/// \brief Top-level namespace for Apache Arrow C++ API
-namespace arrow {}
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// Coarse public API while the library is in development
+
+#pragma once
+
+#include "arrow/array.h" // IYWU pragma: export
+#include "arrow/array/concatenate.h" // IYWU pragma: export
+#include "arrow/buffer.h" // IYWU pragma: export
+#include "arrow/builder.h" // IYWU pragma: export
+#include "arrow/chunked_array.h" // IYWU pragma: export
+#include "arrow/compare.h" // IYWU pragma: export
+#include "arrow/config.h" // IYWU pragma: export
+#include "arrow/datum.h" // IYWU pragma: export
+#include "arrow/extension_type.h" // IYWU pragma: export
+#include "arrow/memory_pool.h" // IYWU pragma: export
+#include "arrow/pretty_print.h" // IYWU pragma: export
+#include "arrow/record_batch.h" // IYWU pragma: export
+#include "arrow/result.h" // IYWU pragma: export
+#include "arrow/status.h" // IYWU pragma: export
+#include "arrow/table.h" // IYWU pragma: export
+#include "arrow/table_builder.h" // IYWU pragma: export
+#include "arrow/tensor.h" // IYWU pragma: export
+#include "arrow/type.h" // IYWU pragma: export
+#include "arrow/util/key_value_metadata.h" // IWYU pragma: export
+#include "arrow/visitor.h" // IYWU pragma: export
+
+/// \brief Top-level namespace for Apache Arrow C++ API
+namespace arrow {}
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/array/builder_binary.h b/contrib/libs/apache/arrow/cpp/src/arrow/array/builder_binary.h
index 62edc69fb8..c895240e23 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/array/builder_binary.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/array/builder_binary.h
@@ -53,7 +53,7 @@ class BaseBinaryBuilder : public ArrayBuilder {
explicit BaseBinaryBuilder(MemoryPool* pool = default_memory_pool())
: ArrayBuilder(pool), offsets_builder_(pool), value_data_builder_(pool) {}
- BaseBinaryBuilder(const std::shared_ptr<DataType>& /*type*/, MemoryPool* pool)
+ BaseBinaryBuilder(const std::shared_ptr<DataType>& /*type*/, MemoryPool* pool)
: BaseBinaryBuilder(pool) {}
Status Append(const uint8_t* value, offset_type length) {
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/array/builder_dict.h b/contrib/libs/apache/arrow/cpp/src/arrow/array/builder_dict.h
index eb96482dbf..bb43658868 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/array/builder_dict.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/array/builder_dict.h
@@ -421,11 +421,11 @@ class DictionaryBuilderBase<BuilderType, NullType> : public ArrayBuilder {
DictionaryBuilderBase(
enable_if_t<std::is_base_of<AdaptiveIntBuilderBase, B>::value, uint8_t>
start_int_size,
- const std::shared_ptr<DataType>& /*value_type*/,
+ const std::shared_ptr<DataType>& /*value_type*/,
MemoryPool* pool = default_memory_pool())
: ArrayBuilder(pool), indices_builder_(start_int_size, pool) {}
- explicit DictionaryBuilderBase(const std::shared_ptr<DataType>& /*value_type*/,
+ explicit DictionaryBuilderBase(const std::shared_ptr<DataType>& /*value_type*/,
MemoryPool* pool = default_memory_pool())
: ArrayBuilder(pool), indices_builder_(pool) {}
@@ -439,7 +439,7 @@ class DictionaryBuilderBase<BuilderType, NullType> : public ArrayBuilder {
explicit DictionaryBuilderBase(MemoryPool* pool = default_memory_pool())
: ArrayBuilder(pool), indices_builder_(pool) {}
- explicit DictionaryBuilderBase(const std::shared_ptr<Array>& /*dictionary*/,
+ explicit DictionaryBuilderBase(const std::shared_ptr<Array>& /*dictionary*/,
MemoryPool* pool = default_memory_pool())
: ArrayBuilder(pool), indices_builder_(pool) {}
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/array/builder_primitive.h b/contrib/libs/apache/arrow/cpp/src/arrow/array/builder_primitive.h
index 80cfc4061b..9bd7a52c34 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/array/builder_primitive.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/array/builder_primitive.h
@@ -32,7 +32,7 @@ namespace arrow {
class ARROW_EXPORT NullBuilder : public ArrayBuilder {
public:
explicit NullBuilder(MemoryPool* pool = default_memory_pool()) : ArrayBuilder(pool) {}
- explicit NullBuilder(const std::shared_ptr<DataType>& /*type*/,
+ explicit NullBuilder(const std::shared_ptr<DataType>& /*type*/,
MemoryPool* pool = default_memory_pool())
: NullBuilder(pool) {}
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/api.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/api.h
index a890cd362f..13f1ea762a 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/api.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/api.h
@@ -1,35 +1,35 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-// NOTE: API is EXPERIMENTAL and will change without going through a
-// deprecation cycle
-
-#pragma once
-
-/// \defgroup compute-concrete-options Concrete option classes for compute functions
-/// @{
-/// @}
-
-#include "arrow/compute/api_aggregate.h" // IWYU pragma: export
-#include "arrow/compute/api_scalar.h" // IWYU pragma: export
-#include "arrow/compute/api_vector.h" // IWYU pragma: export
-#include "arrow/compute/cast.h" // IWYU pragma: export
-#include "arrow/compute/exec.h" // IWYU pragma: export
-#include "arrow/compute/function.h" // IWYU pragma: export
-#include "arrow/compute/kernel.h" // IWYU pragma: export
-#include "arrow/compute/registry.h" // IWYU pragma: export
-#include "arrow/datum.h" // IWYU pragma: export
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// NOTE: API is EXPERIMENTAL and will change without going through a
+// deprecation cycle
+
+#pragma once
+
+/// \defgroup compute-concrete-options Concrete option classes for compute functions
+/// @{
+/// @}
+
+#include "arrow/compute/api_aggregate.h" // IWYU pragma: export
+#include "arrow/compute/api_scalar.h" // IWYU pragma: export
+#include "arrow/compute/api_vector.h" // IWYU pragma: export
+#include "arrow/compute/cast.h" // IWYU pragma: export
+#include "arrow/compute/exec.h" // IWYU pragma: export
+#include "arrow/compute/function.h" // IWYU pragma: export
+#include "arrow/compute/kernel.h" // IWYU pragma: export
+#include "arrow/compute/registry.h" // IWYU pragma: export
+#include "arrow/datum.h" // IWYU pragma: export
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_aggregate.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_aggregate.cc
index 1b00c366bf..6e9d9de0c5 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_aggregate.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_aggregate.cc
@@ -1,30 +1,30 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/compute/api_aggregate.h"
-
-#include "arrow/compute/exec.h"
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/compute/api_aggregate.h"
+
+#include "arrow/compute/exec.h"
#include "arrow/compute/function_internal.h"
#include "arrow/compute/registry.h"
#include "arrow/compute/util_internal.h"
#include "arrow/util/checked_cast.h"
#include "arrow/util/logging.h"
-
-namespace arrow {
+
+namespace arrow {
namespace internal {
template <>
@@ -52,9 +52,9 @@ struct EnumTraits<compute::QuantileOptions::Interpolation>
};
} // namespace internal
-namespace compute {
-
-// ----------------------------------------------------------------------
+namespace compute {
+
+// ----------------------------------------------------------------------
// Function options
using ::arrow::internal::checked_cast;
@@ -133,33 +133,33 @@ void RegisterAggregateOptions(FunctionRegistry* registry) {
} // namespace internal
// ----------------------------------------------------------------------
-// Scalar aggregates
-
+// Scalar aggregates
+
Result<Datum> Count(const Datum& value, const ScalarAggregateOptions& options,
ExecContext* ctx) {
- return CallFunction("count", {value}, &options, ctx);
-}
-
+ return CallFunction("count", {value}, &options, ctx);
+}
+
Result<Datum> Mean(const Datum& value, const ScalarAggregateOptions& options,
ExecContext* ctx) {
return CallFunction("mean", {value}, &options, ctx);
-}
-
+}
+
Result<Datum> Sum(const Datum& value, const ScalarAggregateOptions& options,
ExecContext* ctx) {
return CallFunction("sum", {value}, &options, ctx);
-}
-
+}
+
Result<Datum> MinMax(const Datum& value, const ScalarAggregateOptions& options,
ExecContext* ctx) {
- return CallFunction("min_max", {value}, &options, ctx);
-}
-
+ return CallFunction("min_max", {value}, &options, ctx);
+}
+
Result<Datum> Any(const Datum& value, const ScalarAggregateOptions& options,
ExecContext* ctx) {
return CallFunction("any", {value}, &options, ctx);
-}
-
+}
+
Result<Datum> All(const Datum& value, const ScalarAggregateOptions& options,
ExecContext* ctx) {
return CallFunction("all", {value}, &options, ctx);
@@ -169,16 +169,16 @@ Result<Datum> Mode(const Datum& value, const ModeOptions& options, ExecContext*
return CallFunction("mode", {value}, &options, ctx);
}
-Result<Datum> Stddev(const Datum& value, const VarianceOptions& options,
- ExecContext* ctx) {
- return CallFunction("stddev", {value}, &options, ctx);
-}
-
-Result<Datum> Variance(const Datum& value, const VarianceOptions& options,
- ExecContext* ctx) {
- return CallFunction("variance", {value}, &options, ctx);
-}
-
+Result<Datum> Stddev(const Datum& value, const VarianceOptions& options,
+ ExecContext* ctx) {
+ return CallFunction("stddev", {value}, &options, ctx);
+}
+
+Result<Datum> Variance(const Datum& value, const VarianceOptions& options,
+ ExecContext* ctx) {
+ return CallFunction("variance", {value}, &options, ctx);
+}
+
Result<Datum> Quantile(const Datum& value, const QuantileOptions& options,
ExecContext* ctx) {
return CallFunction("quantile", {value}, &options, ctx);
@@ -193,5 +193,5 @@ Result<Datum> Index(const Datum& value, const IndexOptions& options, ExecContext
return CallFunction("index", {value}, &options, ctx);
}
-} // namespace compute
-} // namespace arrow
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_aggregate.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_aggregate.h
index 7a6c44bd92..99ea33f7bf 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_aggregate.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_aggregate.h
@@ -1,58 +1,58 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-// Eager evaluation convenience APIs for invoking common functions, including
-// necessary memory allocations
-
-#pragma once
-
-#include "arrow/compute/function.h"
-#include "arrow/datum.h"
-#include "arrow/result.h"
-#include "arrow/util/macros.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-
-class Array;
-
-namespace compute {
-
-class ExecContext;
-
-// ----------------------------------------------------------------------
-// Aggregate functions
-
-/// \addtogroup compute-concrete-options
-/// @{
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// Eager evaluation convenience APIs for invoking common functions, including
+// necessary memory allocations
+
+#pragma once
+
+#include "arrow/compute/function.h"
+#include "arrow/datum.h"
+#include "arrow/result.h"
+#include "arrow/util/macros.h"
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+
+class Array;
+
+namespace compute {
+
+class ExecContext;
+
+// ----------------------------------------------------------------------
+// Aggregate functions
+
+/// \addtogroup compute-concrete-options
+/// @{
+
/// \brief Control general scalar aggregate kernel behavior
-///
+///
/// By default, null values are ignored
class ARROW_EXPORT ScalarAggregateOptions : public FunctionOptions {
public:
explicit ScalarAggregateOptions(bool skip_nulls = true, uint32_t min_count = 1);
constexpr static char const kTypeName[] = "ScalarAggregateOptions";
static ScalarAggregateOptions Defaults() { return ScalarAggregateOptions{}; }
-
+
bool skip_nulls;
uint32_t min_count;
};
-
+
/// \brief Control Mode kernel behavior
///
/// Returns top-n common values and counts.
@@ -62,12 +62,12 @@ class ARROW_EXPORT ModeOptions : public FunctionOptions {
explicit ModeOptions(int64_t n = 1);
constexpr static char const kTypeName[] = "ModeOptions";
static ModeOptions Defaults() { return ModeOptions{}; }
-
+
int64_t n = 1;
-};
-
+};
+
/// \brief Control Delta Degrees of Freedom (ddof) of Variance and Stddev kernel
-///
+///
/// The divisor used in calculations is N - ddof, where N is the number of elements.
/// By default, ddof is zero, and population variance or stddev is returned.
class ARROW_EXPORT VarianceOptions : public FunctionOptions {
@@ -91,23 +91,23 @@ class ARROW_EXPORT QuantileOptions : public FunctionOptions {
HIGHER,
NEAREST,
MIDPOINT,
- };
-
+ };
+
explicit QuantileOptions(double q = 0.5, enum Interpolation interpolation = LINEAR);
-
+
explicit QuantileOptions(std::vector<double> q,
enum Interpolation interpolation = LINEAR);
-
+
constexpr static char const kTypeName[] = "QuantileOptions";
static QuantileOptions Defaults() { return QuantileOptions{}; }
/// quantile must be between 0 and 1 inclusive
std::vector<double> q;
enum Interpolation interpolation;
-};
-
+};
+
/// \brief Control TDigest approximate quantile kernel behavior
-///
+///
/// By default, returns the median value.
class ARROW_EXPORT TDigestOptions : public FunctionOptions {
public:
@@ -117,7 +117,7 @@ class ARROW_EXPORT TDigestOptions : public FunctionOptions {
uint32_t buffer_size = 500);
constexpr static char const kTypeName[] = "TDigestOptions";
static TDigestOptions Defaults() { return TDigestOptions{}; }
-
+
/// quantile must be between 0 and 1 inclusive
std::vector<double> q;
/// compression parameter, default 100
@@ -125,7 +125,7 @@ class ARROW_EXPORT TDigestOptions : public FunctionOptions {
/// input buffer size, default 500
uint32_t buffer_size;
};
-
+
/// \brief Control Index kernel behavior
class ARROW_EXPORT IndexOptions : public FunctionOptions {
public:
@@ -135,73 +135,73 @@ class ARROW_EXPORT IndexOptions : public FunctionOptions {
constexpr static char const kTypeName[] = "IndexOptions";
std::shared_ptr<Scalar> value;
-};
-
-/// @}
-
-/// \brief Count non-null (or null) values in an array.
-///
+};
+
+/// @}
+
+/// \brief Count non-null (or null) values in an array.
+///
/// \param[in] options counting options, see ScalarAggregateOptions for more information
-/// \param[in] datum to count
-/// \param[in] ctx the function execution context, optional
-/// \return out resulting datum
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
+/// \param[in] datum to count
+/// \param[in] ctx the function execution context, optional
+/// \return out resulting datum
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
Result<Datum> Count(
const Datum& datum,
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
ExecContext* ctx = NULLPTR);
-
-/// \brief Compute the mean of a numeric array.
-///
-/// \param[in] value datum to compute the mean, expecting Array
+
+/// \brief Compute the mean of a numeric array.
+///
+/// \param[in] value datum to compute the mean, expecting Array
/// \param[in] options see ScalarAggregateOptions for more information
-/// \param[in] ctx the function execution context, optional
-/// \return datum of the computed mean as a DoubleScalar
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
+/// \param[in] ctx the function execution context, optional
+/// \return datum of the computed mean as a DoubleScalar
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
Result<Datum> Mean(
const Datum& value,
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
ExecContext* ctx = NULLPTR);
-
-/// \brief Sum values of a numeric array.
-///
-/// \param[in] value datum to sum, expecting Array or ChunkedArray
+
+/// \brief Sum values of a numeric array.
+///
+/// \param[in] value datum to sum, expecting Array or ChunkedArray
/// \param[in] options see ScalarAggregateOptions for more information
-/// \param[in] ctx the function execution context, optional
-/// \return datum of the computed sum as a Scalar
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
+/// \param[in] ctx the function execution context, optional
+/// \return datum of the computed sum as a Scalar
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
Result<Datum> Sum(
const Datum& value,
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
ExecContext* ctx = NULLPTR);
-
-/// \brief Calculate the min / max of a numeric array
-///
-/// This function returns both the min and max as a struct scalar, with type
-/// struct<min: T, max: T>, where T is the input type
-///
-/// \param[in] value input datum, expecting Array or ChunkedArray
+
+/// \brief Calculate the min / max of a numeric array
+///
+/// This function returns both the min and max as a struct scalar, with type
+/// struct<min: T, max: T>, where T is the input type
+///
+/// \param[in] value input datum, expecting Array or ChunkedArray
/// \param[in] options see ScalarAggregateOptions for more information
-/// \param[in] ctx the function execution context, optional
-/// \return resulting datum as a struct<min: T, max: T> scalar
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
+/// \param[in] ctx the function execution context, optional
+/// \return resulting datum as a struct<min: T, max: T> scalar
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
Result<Datum> MinMax(
const Datum& value,
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
ExecContext* ctx = NULLPTR);
-
+
/// \brief Test whether any element in a boolean array evaluates to true.
///
/// This function returns true if any of the elements in the array evaluates
@@ -244,53 +244,53 @@ Result<Datum> All(
const ScalarAggregateOptions& options = ScalarAggregateOptions::Defaults(),
ExecContext* ctx = NULLPTR);
-/// \brief Calculate the modal (most common) value of a numeric array
-///
+/// \brief Calculate the modal (most common) value of a numeric array
+///
/// This function returns top-n most common values and number of times they occur as
/// an array of `struct<mode: T, count: int64>`, where T is the input type.
/// Values with larger counts are returned before smaller ones.
/// If there are more than one values with same count, smaller value is returned first.
-///
-/// \param[in] value input datum, expecting Array or ChunkedArray
+///
+/// \param[in] value input datum, expecting Array or ChunkedArray
/// \param[in] options see ModeOptions for more information
-/// \param[in] ctx the function execution context, optional
+/// \param[in] ctx the function execution context, optional
/// \return resulting datum as an array of struct<mode: T, count: int64>
-///
-/// \since 2.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
+///
+/// \since 2.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
Result<Datum> Mode(const Datum& value,
const ModeOptions& options = ModeOptions::Defaults(),
ExecContext* ctx = NULLPTR);
-
-/// \brief Calculate the standard deviation of a numeric array
-///
-/// \param[in] value input datum, expecting Array or ChunkedArray
-/// \param[in] options see VarianceOptions for more information
-/// \param[in] ctx the function execution context, optional
-/// \return datum of the computed standard deviation as a DoubleScalar
-///
-/// \since 2.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<Datum> Stddev(const Datum& value,
- const VarianceOptions& options = VarianceOptions::Defaults(),
- ExecContext* ctx = NULLPTR);
-
-/// \brief Calculate the variance of a numeric array
-///
-/// \param[in] value input datum, expecting Array or ChunkedArray
-/// \param[in] options see VarianceOptions for more information
-/// \param[in] ctx the function execution context, optional
-/// \return datum of the computed variance as a DoubleScalar
-///
-/// \since 2.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<Datum> Variance(const Datum& value,
- const VarianceOptions& options = VarianceOptions::Defaults(),
- ExecContext* ctx = NULLPTR);
-
+
+/// \brief Calculate the standard deviation of a numeric array
+///
+/// \param[in] value input datum, expecting Array or ChunkedArray
+/// \param[in] options see VarianceOptions for more information
+/// \param[in] ctx the function execution context, optional
+/// \return datum of the computed standard deviation as a DoubleScalar
+///
+/// \since 2.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<Datum> Stddev(const Datum& value,
+ const VarianceOptions& options = VarianceOptions::Defaults(),
+ ExecContext* ctx = NULLPTR);
+
+/// \brief Calculate the variance of a numeric array
+///
+/// \param[in] value input datum, expecting Array or ChunkedArray
+/// \param[in] options see VarianceOptions for more information
+/// \param[in] ctx the function execution context, optional
+/// \return datum of the computed variance as a DoubleScalar
+///
+/// \since 2.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<Datum> Variance(const Datum& value,
+ const VarianceOptions& options = VarianceOptions::Defaults(),
+ ExecContext* ctx = NULLPTR);
+
/// \brief Calculate the quantiles of a numeric array
///
/// \param[in] value input datum, expecting Array or ChunkedArray
@@ -429,5 +429,5 @@ Result<Datum> GroupBy(const std::vector<Datum>& arguments, const std::vector<Dat
ExecContext* ctx = default_exec_context());
} // namespace internal
-} // namespace compute
-} // namespace arrow
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_scalar.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_scalar.cc
index 1feb4e7eee..1d374cb915 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_scalar.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_scalar.cc
@@ -1,37 +1,37 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/compute/api_scalar.h"
-
-#include <memory>
-#include <sstream>
-#include <string>
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/compute/api_scalar.h"
+
+#include <memory>
+#include <sstream>
+#include <string>
+
#include "arrow/array/array_base.h"
-#include "arrow/compute/exec.h"
+#include "arrow/compute/exec.h"
#include "arrow/compute/function_internal.h"
#include "arrow/compute/registry.h"
#include "arrow/compute/util_internal.h"
-#include "arrow/status.h"
-#include "arrow/type.h"
+#include "arrow/status.h"
+#include "arrow/type.h"
#include "arrow/util/checked_cast.h"
#include "arrow/util/logging.h"
-
-namespace arrow {
+
+namespace arrow {
namespace internal {
template <>
@@ -100,8 +100,8 @@ struct EnumTraits<compute::CompareOperator>
};
} // namespace internal
-namespace compute {
-
+namespace compute {
+
// ----------------------------------------------------------------------
// Function options
@@ -302,19 +302,19 @@ void RegisterScalarOptions(FunctionRegistry* registry) {
}
} // namespace internal
-#define SCALAR_EAGER_UNARY(NAME, REGISTRY_NAME) \
- Result<Datum> NAME(const Datum& value, ExecContext* ctx) { \
- return CallFunction(REGISTRY_NAME, {value}, ctx); \
- }
-
-#define SCALAR_EAGER_BINARY(NAME, REGISTRY_NAME) \
- Result<Datum> NAME(const Datum& left, const Datum& right, ExecContext* ctx) { \
- return CallFunction(REGISTRY_NAME, {left, right}, ctx); \
- }
-
-// ----------------------------------------------------------------------
-// Arithmetic
-
+#define SCALAR_EAGER_UNARY(NAME, REGISTRY_NAME) \
+ Result<Datum> NAME(const Datum& value, ExecContext* ctx) { \
+ return CallFunction(REGISTRY_NAME, {value}, ctx); \
+ }
+
+#define SCALAR_EAGER_BINARY(NAME, REGISTRY_NAME) \
+ Result<Datum> NAME(const Datum& left, const Datum& right, ExecContext* ctx) { \
+ return CallFunction(REGISTRY_NAME, {left, right}, ctx); \
+ }
+
+// ----------------------------------------------------------------------
+// Arithmetic
+
#define SCALAR_ARITHMETIC_UNARY(NAME, REGISTRY_NAME, REGISTRY_CHECKED_NAME) \
Result<Datum> NAME(const Datum& arg, ArithmeticOptions options, ExecContext* ctx) { \
auto func_name = (options.check_overflow) ? REGISTRY_CHECKED_NAME : REGISTRY_NAME; \
@@ -335,17 +335,17 @@ SCALAR_ARITHMETIC_UNARY(Log10, "log10", "log10_checked")
SCALAR_ARITHMETIC_UNARY(Log2, "log2", "log2_checked")
SCALAR_ARITHMETIC_UNARY(Log1p, "log1p", "log1p_checked")
-#define SCALAR_ARITHMETIC_BINARY(NAME, REGISTRY_NAME, REGISTRY_CHECKED_NAME) \
- Result<Datum> NAME(const Datum& left, const Datum& right, ArithmeticOptions options, \
- ExecContext* ctx) { \
- auto func_name = (options.check_overflow) ? REGISTRY_CHECKED_NAME : REGISTRY_NAME; \
- return CallFunction(func_name, {left, right}, ctx); \
- }
-
-SCALAR_ARITHMETIC_BINARY(Add, "add", "add_checked")
-SCALAR_ARITHMETIC_BINARY(Subtract, "subtract", "subtract_checked")
-SCALAR_ARITHMETIC_BINARY(Multiply, "multiply", "multiply_checked")
-SCALAR_ARITHMETIC_BINARY(Divide, "divide", "divide_checked")
+#define SCALAR_ARITHMETIC_BINARY(NAME, REGISTRY_NAME, REGISTRY_CHECKED_NAME) \
+ Result<Datum> NAME(const Datum& left, const Datum& right, ArithmeticOptions options, \
+ ExecContext* ctx) { \
+ auto func_name = (options.check_overflow) ? REGISTRY_CHECKED_NAME : REGISTRY_NAME; \
+ return CallFunction(func_name, {left, right}, ctx); \
+ }
+
+SCALAR_ARITHMETIC_BINARY(Add, "add", "add_checked")
+SCALAR_ARITHMETIC_BINARY(Subtract, "subtract", "subtract_checked")
+SCALAR_ARITHMETIC_BINARY(Multiply, "multiply", "multiply_checked")
+SCALAR_ARITHMETIC_BINARY(Divide, "divide", "divide_checked")
SCALAR_ARITHMETIC_BINARY(Power, "power", "power_checked")
SCALAR_ARITHMETIC_BINARY(ShiftLeft, "shift_left", "shift_left_checked")
SCALAR_ARITHMETIC_BINARY(ShiftRight, "shift_right", "shift_right_checked")
@@ -353,7 +353,7 @@ SCALAR_EAGER_BINARY(Atan2, "atan2")
SCALAR_EAGER_UNARY(Floor, "floor")
SCALAR_EAGER_UNARY(Ceil, "ceil")
SCALAR_EAGER_UNARY(Trunc, "trunc")
-
+
Result<Datum> MaxElementWise(const std::vector<Datum>& args,
ElementWiseAggregateOptions options, ExecContext* ctx) {
return CallFunction("max_element_wise", args, &options, ctx);
@@ -364,14 +364,14 @@ Result<Datum> MinElementWise(const std::vector<Datum>& args,
return CallFunction("min_element_wise", args, &options, ctx);
}
-// ----------------------------------------------------------------------
-// Set-related operations
-
-static Result<Datum> ExecSetLookup(const std::string& func_name, const Datum& data,
+// ----------------------------------------------------------------------
+// Set-related operations
+
+static Result<Datum> ExecSetLookup(const std::string& func_name, const Datum& data,
const SetLookupOptions& options, ExecContext* ctx) {
if (!options.value_set.is_arraylike()) {
- return Status::Invalid("Set lookup value set must be Array or ChunkedArray");
- }
+ return Status::Invalid("Set lookup value set must be Array or ChunkedArray");
+ }
std::shared_ptr<DataType> data_type;
if (data.type()->id() == Type::DICTIONARY) {
data_type =
@@ -379,85 +379,85 @@ static Result<Datum> ExecSetLookup(const std::string& func_name, const Datum& da
} else {
data_type = data.type();
}
-
+
if (options.value_set.length() > 0 && !data_type->Equals(options.value_set.type())) {
- std::stringstream ss;
+ std::stringstream ss;
ss << "Array type didn't match type of values set: " << data_type->ToString()
<< " vs " << options.value_set.type()->ToString();
- return Status::Invalid(ss.str());
- }
- return CallFunction(func_name, {data}, &options, ctx);
-}
-
+ return Status::Invalid(ss.str());
+ }
+ return CallFunction(func_name, {data}, &options, ctx);
+}
+
Result<Datum> IsIn(const Datum& values, const SetLookupOptions& options,
ExecContext* ctx) {
return ExecSetLookup("is_in", values, options, ctx);
}
-Result<Datum> IsIn(const Datum& values, const Datum& value_set, ExecContext* ctx) {
+Result<Datum> IsIn(const Datum& values, const Datum& value_set, ExecContext* ctx) {
return ExecSetLookup("is_in", values, SetLookupOptions{value_set}, ctx);
-}
-
+}
+
Result<Datum> IndexIn(const Datum& values, const SetLookupOptions& options,
ExecContext* ctx) {
return ExecSetLookup("index_in", values, options, ctx);
}
-Result<Datum> IndexIn(const Datum& values, const Datum& value_set, ExecContext* ctx) {
+Result<Datum> IndexIn(const Datum& values, const Datum& value_set, ExecContext* ctx) {
return ExecSetLookup("index_in", values, SetLookupOptions{value_set}, ctx);
-}
-
-// ----------------------------------------------------------------------
-// Boolean functions
-
-SCALAR_EAGER_UNARY(Invert, "invert")
-SCALAR_EAGER_BINARY(And, "and")
-SCALAR_EAGER_BINARY(KleeneAnd, "and_kleene")
-SCALAR_EAGER_BINARY(Or, "or")
-SCALAR_EAGER_BINARY(KleeneOr, "or_kleene")
-SCALAR_EAGER_BINARY(Xor, "xor")
+}
+
+// ----------------------------------------------------------------------
+// Boolean functions
+
+SCALAR_EAGER_UNARY(Invert, "invert")
+SCALAR_EAGER_BINARY(And, "and")
+SCALAR_EAGER_BINARY(KleeneAnd, "and_kleene")
+SCALAR_EAGER_BINARY(Or, "or")
+SCALAR_EAGER_BINARY(KleeneOr, "or_kleene")
+SCALAR_EAGER_BINARY(Xor, "xor")
SCALAR_EAGER_BINARY(AndNot, "and_not")
SCALAR_EAGER_BINARY(KleeneAndNot, "and_not_kleene")
-
-// ----------------------------------------------------------------------
-
-Result<Datum> Compare(const Datum& left, const Datum& right, CompareOptions options,
- ExecContext* ctx) {
- std::string func_name;
- switch (options.op) {
- case CompareOperator::EQUAL:
- func_name = "equal";
- break;
- case CompareOperator::NOT_EQUAL:
- func_name = "not_equal";
- break;
- case CompareOperator::GREATER:
- func_name = "greater";
- break;
- case CompareOperator::GREATER_EQUAL:
- func_name = "greater_equal";
- break;
- case CompareOperator::LESS:
- func_name = "less";
- break;
- case CompareOperator::LESS_EQUAL:
- func_name = "less_equal";
- break;
- }
+
+// ----------------------------------------------------------------------
+
+Result<Datum> Compare(const Datum& left, const Datum& right, CompareOptions options,
+ ExecContext* ctx) {
+ std::string func_name;
+ switch (options.op) {
+ case CompareOperator::EQUAL:
+ func_name = "equal";
+ break;
+ case CompareOperator::NOT_EQUAL:
+ func_name = "not_equal";
+ break;
+ case CompareOperator::GREATER:
+ func_name = "greater";
+ break;
+ case CompareOperator::GREATER_EQUAL:
+ func_name = "greater_equal";
+ break;
+ case CompareOperator::LESS:
+ func_name = "less";
+ break;
+ case CompareOperator::LESS_EQUAL:
+ func_name = "less_equal";
+ break;
+ }
return CallFunction(func_name, {left, right}, nullptr, ctx);
-}
-
-// ----------------------------------------------------------------------
-// Validity functions
-
-SCALAR_EAGER_UNARY(IsValid, "is_valid")
-SCALAR_EAGER_UNARY(IsNull, "is_null")
+}
+
+// ----------------------------------------------------------------------
+// Validity functions
+
+SCALAR_EAGER_UNARY(IsValid, "is_valid")
+SCALAR_EAGER_UNARY(IsNull, "is_null")
SCALAR_EAGER_UNARY(IsNan, "is_nan")
-
-Result<Datum> FillNull(const Datum& values, const Datum& fill_value, ExecContext* ctx) {
- return CallFunction("fill_null", {values, fill_value}, ctx);
-}
-
+
+Result<Datum> FillNull(const Datum& values, const Datum& fill_value, ExecContext* ctx) {
+ return CallFunction("fill_null", {values, fill_value}, ctx);
+}
+
Result<Datum> IfElse(const Datum& cond, const Datum& if_true, const Datum& if_false,
ExecContext* ctx) {
return CallFunction("if_else", {cond, if_true, if_false}, ctx);
@@ -494,5 +494,5 @@ Result<Datum> DayOfWeek(const Datum& arg, DayOfWeekOptions options, ExecContext*
return CallFunction("day_of_week", {arg}, &options, ctx);
}
-} // namespace compute
-} // namespace arrow
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_scalar.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_scalar.h
index e07e41569a..edad35f53d 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_scalar.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_scalar.h
@@ -1,55 +1,55 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-// Eager evaluation convenience APIs for invoking common functions, including
-// necessary memory allocations
-
-#pragma once
-
-#include <string>
-#include <utility>
-
-#include "arrow/compute/exec.h" // IWYU pragma: keep
-#include "arrow/compute/function.h"
-#include "arrow/datum.h"
-#include "arrow/result.h"
-#include "arrow/util/macros.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-namespace compute {
-
-/// \addtogroup compute-concrete-options
-///
-/// @{
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// Eager evaluation convenience APIs for invoking common functions, including
+// necessary memory allocations
+
+#pragma once
+
+#include <string>
+#include <utility>
+
+#include "arrow/compute/exec.h" // IWYU pragma: keep
+#include "arrow/compute/function.h"
+#include "arrow/datum.h"
+#include "arrow/result.h"
+#include "arrow/util/macros.h"
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+namespace compute {
+
+/// \addtogroup compute-concrete-options
+///
+/// @{
+
class ARROW_EXPORT ArithmeticOptions : public FunctionOptions {
public:
explicit ArithmeticOptions(bool check_overflow = false);
constexpr static char const kTypeName[] = "ArithmeticOptions";
- bool check_overflow;
-};
-
+ bool check_overflow;
+};
+
class ARROW_EXPORT ElementWiseAggregateOptions : public FunctionOptions {
public:
explicit ElementWiseAggregateOptions(bool skip_nulls = true);
constexpr static char const kTypeName[] = "ElementWiseAggregateOptions";
static ElementWiseAggregateOptions Defaults() { return ElementWiseAggregateOptions{}; }
-
+
bool skip_nulls;
};
@@ -80,11 +80,11 @@ class ARROW_EXPORT MatchSubstringOptions : public FunctionOptions {
constexpr static char const kTypeName[] = "MatchSubstringOptions";
/// The exact substring (or regex, depending on kernel) to look for inside input values.
- std::string pattern;
+ std::string pattern;
/// Whether to perform a case-insensitive match.
bool ignore_case = false;
-};
-
+};
+
class ARROW_EXPORT SplitOptions : public FunctionOptions {
public:
explicit SplitOptions(int64_t max_splits = -1, bool reverse = false);
@@ -150,34 +150,34 @@ class ARROW_EXPORT ExtractRegexOptions : public FunctionOptions {
std::string pattern;
};
-/// Options for IsIn and IndexIn functions
+/// Options for IsIn and IndexIn functions
class ARROW_EXPORT SetLookupOptions : public FunctionOptions {
public:
explicit SetLookupOptions(Datum value_set, bool skip_nulls = false);
SetLookupOptions();
constexpr static char const kTypeName[] = "SetLookupOptions";
-
- /// The set of values to look up input values into.
- Datum value_set;
- /// Whether nulls in `value_set` count for lookup.
- ///
- /// If true, any null in `value_set` is ignored and nulls in the input
- /// produce null (IndexIn) or false (IsIn) values in the output.
- /// If false, any null in `value_set` is successfully matched in
- /// the input.
- bool skip_nulls;
-};
-
+
+ /// The set of values to look up input values into.
+ Datum value_set;
+ /// Whether nulls in `value_set` count for lookup.
+ ///
+ /// If true, any null in `value_set` is ignored and nulls in the input
+ /// produce null (IndexIn) or false (IsIn) values in the output.
+ /// If false, any null in `value_set` is successfully matched in
+ /// the input.
+ bool skip_nulls;
+};
+
class ARROW_EXPORT StrptimeOptions : public FunctionOptions {
public:
explicit StrptimeOptions(std::string format, TimeUnit::type unit);
StrptimeOptions();
constexpr static char const kTypeName[] = "StrptimeOptions";
-
- std::string format;
- TimeUnit::type unit;
-};
-
+
+ std::string format;
+ TimeUnit::type unit;
+};
+
class ARROW_EXPORT PadOptions : public FunctionOptions {
public:
explicit PadOptions(int64_t width, std::string padding = " ");
@@ -209,21 +209,21 @@ class ARROW_EXPORT SliceOptions : public FunctionOptions {
int64_t start, stop, step;
};
-enum CompareOperator : int8_t {
- EQUAL,
- NOT_EQUAL,
- GREATER,
- GREATER_EQUAL,
- LESS,
- LESS_EQUAL,
-};
-
+enum CompareOperator : int8_t {
+ EQUAL,
+ NOT_EQUAL,
+ GREATER,
+ GREATER_EQUAL,
+ LESS,
+ LESS_EQUAL,
+};
+
struct ARROW_EXPORT CompareOptions {
- explicit CompareOptions(CompareOperator op) : op(op) {}
+ explicit CompareOptions(CompareOperator op) : op(op) {}
CompareOptions() : CompareOptions(CompareOperator::EQUAL) {}
- enum CompareOperator op;
-};
-
+ enum CompareOperator op;
+};
+
class ARROW_EXPORT MakeStructOptions : public FunctionOptions {
public:
MakeStructOptions(std::vector<std::string> n, std::vector<bool> r,
@@ -254,8 +254,8 @@ struct ARROW_EXPORT DayOfWeekOptions : public FunctionOptions {
uint32_t week_start;
};
-/// @}
-
+/// @}
+
/// \brief Get the absolute value of a value.
///
/// If argument is null the result will be null.
@@ -269,59 +269,59 @@ Result<Datum> AbsoluteValue(const Datum& arg,
ArithmeticOptions options = ArithmeticOptions(),
ExecContext* ctx = NULLPTR);
-/// \brief Add two values together. Array values must be the same length. If
-/// either addend is null the result will be null.
-///
-/// \param[in] left the first addend
-/// \param[in] right the second addend
-/// \param[in] options arithmetic options (overflow handling), optional
-/// \param[in] ctx the function execution context, optional
-/// \return the elementwise sum
-ARROW_EXPORT
-Result<Datum> Add(const Datum& left, const Datum& right,
- ArithmeticOptions options = ArithmeticOptions(),
- ExecContext* ctx = NULLPTR);
-
-/// \brief Subtract two values. Array values must be the same length. If the
-/// minuend or subtrahend is null the result will be null.
-///
-/// \param[in] left the value subtracted from (minuend)
-/// \param[in] right the value by which the minuend is reduced (subtrahend)
-/// \param[in] options arithmetic options (overflow handling), optional
-/// \param[in] ctx the function execution context, optional
-/// \return the elementwise difference
-ARROW_EXPORT
-Result<Datum> Subtract(const Datum& left, const Datum& right,
- ArithmeticOptions options = ArithmeticOptions(),
- ExecContext* ctx = NULLPTR);
-
-/// \brief Multiply two values. Array values must be the same length. If either
-/// factor is null the result will be null.
-///
-/// \param[in] left the first factor
-/// \param[in] right the second factor
-/// \param[in] options arithmetic options (overflow handling), optional
-/// \param[in] ctx the function execution context, optional
-/// \return the elementwise product
-ARROW_EXPORT
-Result<Datum> Multiply(const Datum& left, const Datum& right,
- ArithmeticOptions options = ArithmeticOptions(),
- ExecContext* ctx = NULLPTR);
-
-/// \brief Divide two values. Array values must be the same length. If either
-/// argument is null the result will be null. For integer types, if there is
-/// a zero divisor, an error will be raised.
-///
-/// \param[in] left the dividend
-/// \param[in] right the divisor
-/// \param[in] options arithmetic options (enable/disable overflow checking), optional
-/// \param[in] ctx the function execution context, optional
-/// \return the elementwise quotient
-ARROW_EXPORT
-Result<Datum> Divide(const Datum& left, const Datum& right,
- ArithmeticOptions options = ArithmeticOptions(),
- ExecContext* ctx = NULLPTR);
-
+/// \brief Add two values together. Array values must be the same length. If
+/// either addend is null the result will be null.
+///
+/// \param[in] left the first addend
+/// \param[in] right the second addend
+/// \param[in] options arithmetic options (overflow handling), optional
+/// \param[in] ctx the function execution context, optional
+/// \return the elementwise sum
+ARROW_EXPORT
+Result<Datum> Add(const Datum& left, const Datum& right,
+ ArithmeticOptions options = ArithmeticOptions(),
+ ExecContext* ctx = NULLPTR);
+
+/// \brief Subtract two values. Array values must be the same length. If the
+/// minuend or subtrahend is null the result will be null.
+///
+/// \param[in] left the value subtracted from (minuend)
+/// \param[in] right the value by which the minuend is reduced (subtrahend)
+/// \param[in] options arithmetic options (overflow handling), optional
+/// \param[in] ctx the function execution context, optional
+/// \return the elementwise difference
+ARROW_EXPORT
+Result<Datum> Subtract(const Datum& left, const Datum& right,
+ ArithmeticOptions options = ArithmeticOptions(),
+ ExecContext* ctx = NULLPTR);
+
+/// \brief Multiply two values. Array values must be the same length. If either
+/// factor is null the result will be null.
+///
+/// \param[in] left the first factor
+/// \param[in] right the second factor
+/// \param[in] options arithmetic options (overflow handling), optional
+/// \param[in] ctx the function execution context, optional
+/// \return the elementwise product
+ARROW_EXPORT
+Result<Datum> Multiply(const Datum& left, const Datum& right,
+ ArithmeticOptions options = ArithmeticOptions(),
+ ExecContext* ctx = NULLPTR);
+
+/// \brief Divide two values. Array values must be the same length. If either
+/// argument is null the result will be null. For integer types, if there is
+/// a zero divisor, an error will be raised.
+///
+/// \param[in] left the dividend
+/// \param[in] right the divisor
+/// \param[in] options arithmetic options (enable/disable overflow checking), optional
+/// \param[in] ctx the function execution context, optional
+/// \return the elementwise quotient
+ARROW_EXPORT
+Result<Datum> Divide(const Datum& left, const Datum& right,
+ ArithmeticOptions options = ArithmeticOptions(),
+ ExecContext* ctx = NULLPTR);
+
/// \brief Negate values.
///
/// If argument is null the result will be null.
@@ -549,98 +549,98 @@ Result<Datum> MinElementWise(
ARROW_EXPORT
Result<Datum> Sign(const Datum& arg, ExecContext* ctx = NULLPTR);
-/// \brief Compare a numeric array with a scalar.
-///
-/// \param[in] left datum to compare, must be an Array
-/// \param[in] right datum to compare, must be a Scalar of the same type than
-/// left Datum.
-/// \param[in] options compare options
-/// \param[in] ctx the function execution context, optional
-/// \return resulting datum
-///
-/// Note on floating point arrays, this uses ieee-754 compare semantics.
-///
-/// \since 1.0.0
-/// \note API not yet finalized
+/// \brief Compare a numeric array with a scalar.
+///
+/// \param[in] left datum to compare, must be an Array
+/// \param[in] right datum to compare, must be a Scalar of the same type than
+/// left Datum.
+/// \param[in] options compare options
+/// \param[in] ctx the function execution context, optional
+/// \return resulting datum
+///
+/// Note on floating point arrays, this uses ieee-754 compare semantics.
+///
+/// \since 1.0.0
+/// \note API not yet finalized
ARROW_DEPRECATED("Deprecated in 5.0.0. Use each compare function directly")
-ARROW_EXPORT
+ARROW_EXPORT
Result<Datum> Compare(const Datum& left, const Datum& right, CompareOptions options,
ExecContext* ctx = NULLPTR);
-
-/// \brief Invert the values of a boolean datum
-/// \param[in] value datum to invert
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting datum
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<Datum> Invert(const Datum& value, ExecContext* ctx = NULLPTR);
-
-/// \brief Element-wise AND of two boolean datums which always propagates nulls
-/// (null and false is null).
-///
+
+/// \brief Invert the values of a boolean datum
+/// \param[in] value datum to invert
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting datum
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<Datum> Invert(const Datum& value, ExecContext* ctx = NULLPTR);
+
+/// \brief Element-wise AND of two boolean datums which always propagates nulls
+/// (null and false is null).
+///
/// \param[in] left left operand
/// \param[in] right right operand
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting datum
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<Datum> And(const Datum& left, const Datum& right, ExecContext* ctx = NULLPTR);
-
-/// \brief Element-wise AND of two boolean datums with a Kleene truth table
-/// (null and false is false).
-///
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting datum
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<Datum> And(const Datum& left, const Datum& right, ExecContext* ctx = NULLPTR);
+
+/// \brief Element-wise AND of two boolean datums with a Kleene truth table
+/// (null and false is false).
+///
/// \param[in] left left operand
/// \param[in] right right operand
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting datum
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<Datum> KleeneAnd(const Datum& left, const Datum& right,
- ExecContext* ctx = NULLPTR);
-
-/// \brief Element-wise OR of two boolean datums which always propagates nulls
-/// (null and true is null).
-///
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting datum
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<Datum> KleeneAnd(const Datum& left, const Datum& right,
+ ExecContext* ctx = NULLPTR);
+
+/// \brief Element-wise OR of two boolean datums which always propagates nulls
+/// (null and true is null).
+///
/// \param[in] left left operand
/// \param[in] right right operand
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting datum
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<Datum> Or(const Datum& left, const Datum& right, ExecContext* ctx = NULLPTR);
-
-/// \brief Element-wise OR of two boolean datums with a Kleene truth table
-/// (null or true is true).
-///
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting datum
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<Datum> Or(const Datum& left, const Datum& right, ExecContext* ctx = NULLPTR);
+
+/// \brief Element-wise OR of two boolean datums with a Kleene truth table
+/// (null or true is true).
+///
/// \param[in] left left operand
/// \param[in] right right operand
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting datum
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<Datum> KleeneOr(const Datum& left, const Datum& right, ExecContext* ctx = NULLPTR);
-
-/// \brief Element-wise XOR of two boolean datums
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting datum
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<Datum> KleeneOr(const Datum& left, const Datum& right, ExecContext* ctx = NULLPTR);
+
+/// \brief Element-wise XOR of two boolean datums
/// \param[in] left left operand
/// \param[in] right right operand
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting datum
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<Datum> Xor(const Datum& left, const Datum& right, ExecContext* ctx = NULLPTR);
-
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting datum
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<Datum> Xor(const Datum& left, const Datum& right, ExecContext* ctx = NULLPTR);
+
/// \brief Element-wise AND NOT of two boolean datums which always propagates nulls
/// (null and not true is null).
///
@@ -668,73 +668,73 @@ ARROW_EXPORT
Result<Datum> KleeneAndNot(const Datum& left, const Datum& right,
ExecContext* ctx = NULLPTR);
-/// \brief IsIn returns true for each element of `values` that is contained in
-/// `value_set`
-///
+/// \brief IsIn returns true for each element of `values` that is contained in
+/// `value_set`
+///
/// Behaviour of nulls is governed by SetLookupOptions::skip_nulls.
-///
-/// \param[in] values array-like input to look up in value_set
+///
+/// \param[in] values array-like input to look up in value_set
/// \param[in] options SetLookupOptions
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting datum
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting datum
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
Result<Datum> IsIn(const Datum& values, const SetLookupOptions& options,
ExecContext* ctx = NULLPTR);
ARROW_EXPORT
-Result<Datum> IsIn(const Datum& values, const Datum& value_set,
- ExecContext* ctx = NULLPTR);
-
-/// \brief IndexIn examines each slot in the values against a value_set array.
-/// If the value is not found in value_set, null will be output.
-/// If found, the index of occurrence within value_set (ignoring duplicates)
-/// will be output.
-///
-/// For example given values = [99, 42, 3, null] and
-/// value_set = [3, 3, 99], the output will be = [1, null, 0, null]
-///
+Result<Datum> IsIn(const Datum& values, const Datum& value_set,
+ ExecContext* ctx = NULLPTR);
+
+/// \brief IndexIn examines each slot in the values against a value_set array.
+/// If the value is not found in value_set, null will be output.
+/// If found, the index of occurrence within value_set (ignoring duplicates)
+/// will be output.
+///
+/// For example given values = [99, 42, 3, null] and
+/// value_set = [3, 3, 99], the output will be = [1, null, 0, null]
+///
/// Behaviour of nulls is governed by SetLookupOptions::skip_nulls.
-///
-/// \param[in] values array-like input
+///
+/// \param[in] values array-like input
/// \param[in] options SetLookupOptions
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting datum
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting datum
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
Result<Datum> IndexIn(const Datum& values, const SetLookupOptions& options,
ExecContext* ctx = NULLPTR);
ARROW_EXPORT
-Result<Datum> IndexIn(const Datum& values, const Datum& value_set,
- ExecContext* ctx = NULLPTR);
-
-/// \brief IsValid returns true for each element of `values` that is not null,
-/// false otherwise
-///
-/// \param[in] values input to examine for validity
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting datum
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<Datum> IsValid(const Datum& values, ExecContext* ctx = NULLPTR);
-
-/// \brief IsNull returns true for each element of `values` that is null,
-/// false otherwise
-///
-/// \param[in] values input to examine for nullity
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting datum
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<Datum> IsNull(const Datum& values, ExecContext* ctx = NULLPTR);
-
+Result<Datum> IndexIn(const Datum& values, const Datum& value_set,
+ ExecContext* ctx = NULLPTR);
+
+/// \brief IsValid returns true for each element of `values` that is not null,
+/// false otherwise
+///
+/// \param[in] values input to examine for validity
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting datum
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<Datum> IsValid(const Datum& values, ExecContext* ctx = NULLPTR);
+
+/// \brief IsNull returns true for each element of `values` that is null,
+/// false otherwise
+///
+/// \param[in] values input to examine for nullity
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting datum
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<Datum> IsNull(const Datum& values, ExecContext* ctx = NULLPTR);
+
/// \brief IsNan returns true for each element of `values` that is NaN,
/// false otherwise
///
@@ -747,21 +747,21 @@ Result<Datum> IsNull(const Datum& values, ExecContext* ctx = NULLPTR);
ARROW_EXPORT
Result<Datum> IsNan(const Datum& values, ExecContext* ctx = NULLPTR);
-/// \brief FillNull replaces each null element in `values`
-/// with `fill_value`
-///
-/// \param[in] values input to examine for nullity
-/// \param[in] fill_value scalar
-/// \param[in] ctx the function execution context, optional
-///
-/// \return the resulting datum
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<Datum> FillNull(const Datum& values, const Datum& fill_value,
- ExecContext* ctx = NULLPTR);
-
+/// \brief FillNull replaces each null element in `values`
+/// with `fill_value`
+///
+/// \param[in] values input to examine for nullity
+/// \param[in] fill_value scalar
+/// \param[in] ctx the function execution context, optional
+///
+/// \return the resulting datum
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<Datum> FillNull(const Datum& values, const Datum& fill_value,
+ ExecContext* ctx = NULLPTR);
+
/// \brief IfElse returns elements chosen from `left` or `right`
/// depending on `cond`. `null` values in `cond` will be promoted to the result
///
@@ -985,5 +985,5 @@ Result<Datum> Nanosecond(const Datum& values, ExecContext* ctx = NULLPTR);
/// \note API not yet finalized
ARROW_EXPORT Result<Datum> Subsecond(const Datum& values, ExecContext* ctx = NULLPTR);
-} // namespace compute
-} // namespace arrow
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_vector.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_vector.cc
index a68969b2ee..967829f425 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_vector.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_vector.cc
@@ -1,43 +1,43 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/compute/api_vector.h"
-
-#include <memory>
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/compute/api_vector.h"
+
+#include <memory>
#include <sstream>
-#include <utility>
-#include <vector>
-
-#include "arrow/array/array_nested.h"
-#include "arrow/array/builder_primitive.h"
-#include "arrow/compute/exec.h"
+#include <utility>
+#include <vector>
+
+#include "arrow/array/array_nested.h"
+#include "arrow/array/builder_primitive.h"
+#include "arrow/compute/exec.h"
#include "arrow/compute/function_internal.h"
#include "arrow/compute/registry.h"
-#include "arrow/datum.h"
-#include "arrow/record_batch.h"
-#include "arrow/result.h"
-#include "arrow/util/checked_cast.h"
+#include "arrow/datum.h"
+#include "arrow/record_batch.h"
+#include "arrow/result.h"
+#include "arrow/util/checked_cast.h"
#include "arrow/util/logging.h"
-
-namespace arrow {
-
+
+namespace arrow {
+
using internal::checked_cast;
-using internal::checked_pointer_cast;
-
+using internal::checked_pointer_cast;
+
namespace internal {
using compute::DictionaryEncodeOptions;
using compute::FilterOptions;
@@ -73,9 +73,9 @@ struct EnumTraits<DictionaryEncodeOptions::NullEncodingBehavior>
};
} // namespace internal
-namespace compute {
-
-// ----------------------------------------------------------------------
+namespace compute {
+
+// ----------------------------------------------------------------------
// Function options
bool SortKey::Equals(const SortKey& other) const {
@@ -152,16 +152,16 @@ void RegisterVectorOptions(FunctionRegistry* registry) {
} // namespace internal
// ----------------------------------------------------------------------
-// Direct exec interface to kernels
-
-Result<std::shared_ptr<Array>> NthToIndices(const Array& values, int64_t n,
- ExecContext* ctx) {
- PartitionNthOptions options(/*pivot=*/n);
- ARROW_ASSIGN_OR_RAISE(Datum result, CallFunction("partition_nth_indices",
- {Datum(values)}, &options, ctx));
- return result.make_array();
-}
-
+// Direct exec interface to kernels
+
+Result<std::shared_ptr<Array>> NthToIndices(const Array& values, int64_t n,
+ ExecContext* ctx) {
+ PartitionNthOptions options(/*pivot=*/n);
+ ARROW_ASSIGN_OR_RAISE(Datum result, CallFunction("partition_nth_indices",
+ {Datum(values)}, &options, ctx));
+ return result.make_array();
+}
+
Result<Datum> ReplaceWithMask(const Datum& values, const Datum& mask,
const Datum& replacements, ExecContext* ctx) {
return CallFunction("replace_with_mask", {values, mask, replacements}, ctx);
@@ -172,9 +172,9 @@ Result<std::shared_ptr<Array>> SortIndices(const Array& values, SortOrder order,
ArraySortOptions options(order);
ARROW_ASSIGN_OR_RAISE(
Datum result, CallFunction("array_sort_indices", {Datum(values)}, &options, ctx));
- return result.make_array();
-}
-
+ return result.make_array();
+}
+
Result<std::shared_ptr<Array>> SortIndices(const ChunkedArray& chunked_array,
SortOrder order, ExecContext* ctx) {
SortOptions options({SortKey("not-used", order)});
@@ -190,94 +190,94 @@ Result<std::shared_ptr<Array>> SortIndices(const Datum& datum, const SortOptions
return result.make_array();
}
-Result<std::shared_ptr<Array>> Unique(const Datum& value, ExecContext* ctx) {
- ARROW_ASSIGN_OR_RAISE(Datum result, CallFunction("unique", {value}, ctx));
- return result.make_array();
-}
-
+Result<std::shared_ptr<Array>> Unique(const Datum& value, ExecContext* ctx) {
+ ARROW_ASSIGN_OR_RAISE(Datum result, CallFunction("unique", {value}, ctx));
+ return result.make_array();
+}
+
Result<Datum> DictionaryEncode(const Datum& value, const DictionaryEncodeOptions& options,
ExecContext* ctx) {
return CallFunction("dictionary_encode", {value}, &options, ctx);
-}
-
-const char kValuesFieldName[] = "values";
-const char kCountsFieldName[] = "counts";
-const int32_t kValuesFieldIndex = 0;
-const int32_t kCountsFieldIndex = 1;
-
-Result<std::shared_ptr<StructArray>> ValueCounts(const Datum& value, ExecContext* ctx) {
- ARROW_ASSIGN_OR_RAISE(Datum result, CallFunction("value_counts", {value}, ctx));
- return checked_pointer_cast<StructArray>(result.make_array());
-}
-
-// ----------------------------------------------------------------------
-// Filter- and take-related selection functions
-
-Result<Datum> Filter(const Datum& values, const Datum& filter,
- const FilterOptions& options, ExecContext* ctx) {
- // Invoke metafunction which deals with Datum kinds other than just Array,
- // ChunkedArray.
- return CallFunction("filter", {values, filter}, &options, ctx);
-}
-
-Result<Datum> Take(const Datum& values, const Datum& filter, const TakeOptions& options,
- ExecContext* ctx) {
- // Invoke metafunction which deals with Datum kinds other than just Array,
- // ChunkedArray.
- return CallFunction("take", {values, filter}, &options, ctx);
-}
-
-Result<std::shared_ptr<Array>> Take(const Array& values, const Array& indices,
- const TakeOptions& options, ExecContext* ctx) {
- ARROW_ASSIGN_OR_RAISE(Datum out, Take(Datum(values), Datum(indices), options, ctx));
- return out.make_array();
-}
-
-// ----------------------------------------------------------------------
-// Deprecated functions
-
-Result<std::shared_ptr<ChunkedArray>> Take(const ChunkedArray& values,
- const Array& indices,
- const TakeOptions& options, ExecContext* ctx) {
- ARROW_ASSIGN_OR_RAISE(Datum result, Take(Datum(values), Datum(indices), options, ctx));
- return result.chunked_array();
-}
-
-Result<std::shared_ptr<ChunkedArray>> Take(const ChunkedArray& values,
- const ChunkedArray& indices,
- const TakeOptions& options, ExecContext* ctx) {
- ARROW_ASSIGN_OR_RAISE(Datum result, Take(Datum(values), Datum(indices), options, ctx));
- return result.chunked_array();
-}
-
-Result<std::shared_ptr<ChunkedArray>> Take(const Array& values,
- const ChunkedArray& indices,
- const TakeOptions& options, ExecContext* ctx) {
- ARROW_ASSIGN_OR_RAISE(Datum result, Take(Datum(values), Datum(indices), options, ctx));
- return result.chunked_array();
-}
-
-Result<std::shared_ptr<RecordBatch>> Take(const RecordBatch& batch, const Array& indices,
- const TakeOptions& options, ExecContext* ctx) {
- ARROW_ASSIGN_OR_RAISE(Datum result, Take(Datum(batch), Datum(indices), options, ctx));
- return result.record_batch();
-}
-
-Result<std::shared_ptr<Table>> Take(const Table& table, const Array& indices,
- const TakeOptions& options, ExecContext* ctx) {
- ARROW_ASSIGN_OR_RAISE(Datum result, Take(Datum(table), Datum(indices), options, ctx));
- return result.table();
-}
-
-Result<std::shared_ptr<Table>> Take(const Table& table, const ChunkedArray& indices,
- const TakeOptions& options, ExecContext* ctx) {
- ARROW_ASSIGN_OR_RAISE(Datum result, Take(Datum(table), Datum(indices), options, ctx));
- return result.table();
-}
-
+}
+
+const char kValuesFieldName[] = "values";
+const char kCountsFieldName[] = "counts";
+const int32_t kValuesFieldIndex = 0;
+const int32_t kCountsFieldIndex = 1;
+
+Result<std::shared_ptr<StructArray>> ValueCounts(const Datum& value, ExecContext* ctx) {
+ ARROW_ASSIGN_OR_RAISE(Datum result, CallFunction("value_counts", {value}, ctx));
+ return checked_pointer_cast<StructArray>(result.make_array());
+}
+
+// ----------------------------------------------------------------------
+// Filter- and take-related selection functions
+
+Result<Datum> Filter(const Datum& values, const Datum& filter,
+ const FilterOptions& options, ExecContext* ctx) {
+ // Invoke metafunction which deals with Datum kinds other than just Array,
+ // ChunkedArray.
+ return CallFunction("filter", {values, filter}, &options, ctx);
+}
+
+Result<Datum> Take(const Datum& values, const Datum& filter, const TakeOptions& options,
+ ExecContext* ctx) {
+ // Invoke metafunction which deals with Datum kinds other than just Array,
+ // ChunkedArray.
+ return CallFunction("take", {values, filter}, &options, ctx);
+}
+
+Result<std::shared_ptr<Array>> Take(const Array& values, const Array& indices,
+ const TakeOptions& options, ExecContext* ctx) {
+ ARROW_ASSIGN_OR_RAISE(Datum out, Take(Datum(values), Datum(indices), options, ctx));
+ return out.make_array();
+}
+
+// ----------------------------------------------------------------------
+// Deprecated functions
+
+Result<std::shared_ptr<ChunkedArray>> Take(const ChunkedArray& values,
+ const Array& indices,
+ const TakeOptions& options, ExecContext* ctx) {
+ ARROW_ASSIGN_OR_RAISE(Datum result, Take(Datum(values), Datum(indices), options, ctx));
+ return result.chunked_array();
+}
+
+Result<std::shared_ptr<ChunkedArray>> Take(const ChunkedArray& values,
+ const ChunkedArray& indices,
+ const TakeOptions& options, ExecContext* ctx) {
+ ARROW_ASSIGN_OR_RAISE(Datum result, Take(Datum(values), Datum(indices), options, ctx));
+ return result.chunked_array();
+}
+
+Result<std::shared_ptr<ChunkedArray>> Take(const Array& values,
+ const ChunkedArray& indices,
+ const TakeOptions& options, ExecContext* ctx) {
+ ARROW_ASSIGN_OR_RAISE(Datum result, Take(Datum(values), Datum(indices), options, ctx));
+ return result.chunked_array();
+}
+
+Result<std::shared_ptr<RecordBatch>> Take(const RecordBatch& batch, const Array& indices,
+ const TakeOptions& options, ExecContext* ctx) {
+ ARROW_ASSIGN_OR_RAISE(Datum result, Take(Datum(batch), Datum(indices), options, ctx));
+ return result.record_batch();
+}
+
+Result<std::shared_ptr<Table>> Take(const Table& table, const Array& indices,
+ const TakeOptions& options, ExecContext* ctx) {
+ ARROW_ASSIGN_OR_RAISE(Datum result, Take(Datum(table), Datum(indices), options, ctx));
+ return result.table();
+}
+
+Result<std::shared_ptr<Table>> Take(const Table& table, const ChunkedArray& indices,
+ const TakeOptions& options, ExecContext* ctx) {
+ ARROW_ASSIGN_OR_RAISE(Datum result, Take(Datum(table), Datum(indices), options, ctx));
+ return result.table();
+}
+
Result<std::shared_ptr<Array>> SortToIndices(const Array& values, ExecContext* ctx) {
return SortIndices(values, SortOrder::Ascending, ctx);
}
-} // namespace compute
-} // namespace arrow
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_vector.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_vector.h
index 9d8d4271db..4a804e4a57 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_vector.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/api_vector.h
@@ -1,65 +1,65 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <memory>
-
-#include "arrow/compute/function.h"
-#include "arrow/datum.h"
-#include "arrow/result.h"
-#include "arrow/type_fwd.h"
-
-namespace arrow {
-namespace compute {
-
-class ExecContext;
-
-/// \addtogroup compute-concrete-options
-/// @{
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <memory>
+
+#include "arrow/compute/function.h"
+#include "arrow/datum.h"
+#include "arrow/result.h"
+#include "arrow/type_fwd.h"
+
+namespace arrow {
+namespace compute {
+
+class ExecContext;
+
+/// \addtogroup compute-concrete-options
+/// @{
+
class ARROW_EXPORT FilterOptions : public FunctionOptions {
public:
- /// Configure the action taken when a slot of the selection mask is null
- enum NullSelectionBehavior {
- /// the corresponding filtered value will be removed in the output
- DROP,
- /// the corresponding filtered value will be null in the output
- EMIT_NULL,
- };
-
+ /// Configure the action taken when a slot of the selection mask is null
+ enum NullSelectionBehavior {
+ /// the corresponding filtered value will be removed in the output
+ DROP,
+ /// the corresponding filtered value will be null in the output
+ EMIT_NULL,
+ };
+
explicit FilterOptions(NullSelectionBehavior null_selection = DROP);
constexpr static char const kTypeName[] = "FilterOptions";
- static FilterOptions Defaults() { return FilterOptions(); }
-
- NullSelectionBehavior null_selection_behavior = DROP;
-};
-
+ static FilterOptions Defaults() { return FilterOptions(); }
+
+ NullSelectionBehavior null_selection_behavior = DROP;
+};
+
class ARROW_EXPORT TakeOptions : public FunctionOptions {
public:
explicit TakeOptions(bool boundscheck = true);
constexpr static char const kTypeName[] = "TakeOptions";
- static TakeOptions BoundsCheck() { return TakeOptions(true); }
- static TakeOptions NoBoundsCheck() { return TakeOptions(false); }
- static TakeOptions Defaults() { return BoundsCheck(); }
+ static TakeOptions BoundsCheck() { return TakeOptions(true); }
+ static TakeOptions NoBoundsCheck() { return TakeOptions(false); }
+ static TakeOptions Defaults() { return BoundsCheck(); }
bool boundscheck = true;
-};
-
+};
+
/// \brief Options for the dictionary encode function
class ARROW_EXPORT DictionaryEncodeOptions : public FunctionOptions {
public:
@@ -119,58 +119,58 @@ class ARROW_EXPORT SortOptions : public FunctionOptions {
std::vector<SortKey> sort_keys;
};
-/// \brief Partitioning options for NthToIndices
+/// \brief Partitioning options for NthToIndices
class ARROW_EXPORT PartitionNthOptions : public FunctionOptions {
public:
explicit PartitionNthOptions(int64_t pivot);
PartitionNthOptions() : PartitionNthOptions(0) {}
constexpr static char const kTypeName[] = "PartitionNthOptions";
-
- /// The index into the equivalent sorted array of the partition pivot element.
- int64_t pivot;
-};
-
-/// @}
-
-/// \brief Filter with a boolean selection filter
-///
-/// The output will be populated with values from the input at positions
-/// where the selection filter is not 0. Nulls in the filter will be handled
-/// based on options.null_selection_behavior.
-///
-/// For example given values = ["a", "b", "c", null, "e", "f"] and
-/// filter = [0, 1, 1, 0, null, 1], the output will be
-/// (null_selection_behavior == DROP) = ["b", "c", "f"]
-/// (null_selection_behavior == EMIT_NULL) = ["b", "c", null, "f"]
-///
-/// \param[in] values array to filter
-/// \param[in] filter indicates which values should be filtered out
-/// \param[in] options configures null_selection_behavior
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting datum
-ARROW_EXPORT
-Result<Datum> Filter(const Datum& values, const Datum& filter,
- const FilterOptions& options = FilterOptions::Defaults(),
- ExecContext* ctx = NULLPTR);
-
-namespace internal {
-
-// These internal functions are implemented in kernels/vector_selection.cc
-
-/// \brief Return the number of selected indices in the boolean filter
-ARROW_EXPORT
-int64_t GetFilterOutputSize(const ArrayData& filter,
- FilterOptions::NullSelectionBehavior null_selection);
-
-/// \brief Compute uint64 selection indices for use with Take given a boolean
-/// filter
-ARROW_EXPORT
-Result<std::shared_ptr<ArrayData>> GetTakeIndices(
- const ArrayData& filter, FilterOptions::NullSelectionBehavior null_selection,
- MemoryPool* memory_pool = default_memory_pool());
-
-} // namespace internal
-
+
+ /// The index into the equivalent sorted array of the partition pivot element.
+ int64_t pivot;
+};
+
+/// @}
+
+/// \brief Filter with a boolean selection filter
+///
+/// The output will be populated with values from the input at positions
+/// where the selection filter is not 0. Nulls in the filter will be handled
+/// based on options.null_selection_behavior.
+///
+/// For example given values = ["a", "b", "c", null, "e", "f"] and
+/// filter = [0, 1, 1, 0, null, 1], the output will be
+/// (null_selection_behavior == DROP) = ["b", "c", "f"]
+/// (null_selection_behavior == EMIT_NULL) = ["b", "c", null, "f"]
+///
+/// \param[in] values array to filter
+/// \param[in] filter indicates which values should be filtered out
+/// \param[in] options configures null_selection_behavior
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting datum
+ARROW_EXPORT
+Result<Datum> Filter(const Datum& values, const Datum& filter,
+ const FilterOptions& options = FilterOptions::Defaults(),
+ ExecContext* ctx = NULLPTR);
+
+namespace internal {
+
+// These internal functions are implemented in kernels/vector_selection.cc
+
+/// \brief Return the number of selected indices in the boolean filter
+ARROW_EXPORT
+int64_t GetFilterOutputSize(const ArrayData& filter,
+ FilterOptions::NullSelectionBehavior null_selection);
+
+/// \brief Compute uint64 selection indices for use with Take given a boolean
+/// filter
+ARROW_EXPORT
+Result<std::shared_ptr<ArrayData>> GetTakeIndices(
+ const ArrayData& filter, FilterOptions::NullSelectionBehavior null_selection,
+ MemoryPool* memory_pool = default_memory_pool());
+
+} // namespace internal
+
/// \brief ReplaceWithMask replaces each value in the array corresponding
/// to a true value in the mask with the next element from `replacements`.
///
@@ -188,72 +188,72 @@ ARROW_EXPORT
Result<Datum> ReplaceWithMask(const Datum& values, const Datum& mask,
const Datum& replacements, ExecContext* ctx = NULLPTR);
-/// \brief Take from an array of values at indices in another array
-///
-/// The output array will be of the same type as the input values
-/// array, with elements taken from the values array at the given
-/// indices. If an index is null then the taken element will be null.
-///
-/// For example given values = ["a", "b", "c", null, "e", "f"] and
-/// indices = [2, 1, null, 3], the output will be
-/// = [values[2], values[1], null, values[3]]
-/// = ["c", "b", null, null]
-///
-/// \param[in] values datum from which to take
-/// \param[in] indices which values to take
-/// \param[in] options options
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting datum
-ARROW_EXPORT
-Result<Datum> Take(const Datum& values, const Datum& indices,
- const TakeOptions& options = TakeOptions::Defaults(),
- ExecContext* ctx = NULLPTR);
-
-/// \brief Take with Array inputs and output
-ARROW_EXPORT
-Result<std::shared_ptr<Array>> Take(const Array& values, const Array& indices,
- const TakeOptions& options = TakeOptions::Defaults(),
- ExecContext* ctx = NULLPTR);
-
-/// \brief Returns indices that partition an array around n-th
-/// sorted element.
-///
-/// Find index of n-th(0 based) smallest value and perform indirect
-/// partition of an array around that element. Output indices[0 ~ n-1]
-/// holds values no greater than n-th element, and indices[n+1 ~ end]
-/// holds values no less than n-th element. Elements in each partition
-/// is not sorted. Nulls will be partitioned to the end of the output.
-/// Output is not guaranteed to be stable.
-///
-/// \param[in] values array to be partitioned
-/// \param[in] n pivot array around sorted n-th element
-/// \param[in] ctx the function execution context, optional
-/// \return offsets indices that would partition an array
-ARROW_EXPORT
-Result<std::shared_ptr<Array>> NthToIndices(const Array& values, int64_t n,
- ExecContext* ctx = NULLPTR);
-
+/// \brief Take from an array of values at indices in another array
+///
+/// The output array will be of the same type as the input values
+/// array, with elements taken from the values array at the given
+/// indices. If an index is null then the taken element will be null.
+///
+/// For example given values = ["a", "b", "c", null, "e", "f"] and
+/// indices = [2, 1, null, 3], the output will be
+/// = [values[2], values[1], null, values[3]]
+/// = ["c", "b", null, null]
+///
+/// \param[in] values datum from which to take
+/// \param[in] indices which values to take
+/// \param[in] options options
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting datum
+ARROW_EXPORT
+Result<Datum> Take(const Datum& values, const Datum& indices,
+ const TakeOptions& options = TakeOptions::Defaults(),
+ ExecContext* ctx = NULLPTR);
+
+/// \brief Take with Array inputs and output
+ARROW_EXPORT
+Result<std::shared_ptr<Array>> Take(const Array& values, const Array& indices,
+ const TakeOptions& options = TakeOptions::Defaults(),
+ ExecContext* ctx = NULLPTR);
+
+/// \brief Returns indices that partition an array around n-th
+/// sorted element.
+///
+/// Find index of n-th(0 based) smallest value and perform indirect
+/// partition of an array around that element. Output indices[0 ~ n-1]
+/// holds values no greater than n-th element, and indices[n+1 ~ end]
+/// holds values no less than n-th element. Elements in each partition
+/// is not sorted. Nulls will be partitioned to the end of the output.
+/// Output is not guaranteed to be stable.
+///
+/// \param[in] values array to be partitioned
+/// \param[in] n pivot array around sorted n-th element
+/// \param[in] ctx the function execution context, optional
+/// \return offsets indices that would partition an array
+ARROW_EXPORT
+Result<std::shared_ptr<Array>> NthToIndices(const Array& values, int64_t n,
+ ExecContext* ctx = NULLPTR);
+
/// \brief Returns the indices that would sort an array in the
/// specified order.
-///
-/// Perform an indirect sort of array. The output array will contain
-/// indices that would sort an array, which would be the same length
+///
+/// Perform an indirect sort of array. The output array will contain
+/// indices that would sort an array, which would be the same length
/// as input. Nulls will be stably partitioned to the end of the output
/// regardless of order.
-///
+///
/// For example given array = [null, 1, 3.3, null, 2, 5.3] and order
/// = SortOrder::DESCENDING, the output will be [5, 2, 4, 1, 0,
/// 3].
-///
+///
/// \param[in] array array to sort
/// \param[in] order ascending or descending
-/// \param[in] ctx the function execution context, optional
-/// \return offsets indices that would sort an array
-ARROW_EXPORT
+/// \param[in] ctx the function execution context, optional
+/// \return offsets indices that would sort an array
+ARROW_EXPORT
Result<std::shared_ptr<Array>> SortIndices(const Array& array,
SortOrder order = SortOrder::Ascending,
ExecContext* ctx = NULLPTR);
-
+
/// \brief Returns the indices that would sort a chunked array in the
/// specified order.
///
@@ -300,44 +300,44 @@ ARROW_EXPORT
Result<std::shared_ptr<Array>> SortIndices(const Datum& datum, const SortOptions& options,
ExecContext* ctx = NULLPTR);
-/// \brief Compute unique elements from an array-like object
-///
-/// Note if a null occurs in the input it will NOT be included in the output.
-///
-/// \param[in] datum array-like input
-/// \param[in] ctx the function execution context, optional
-/// \return result as Array
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<std::shared_ptr<Array>> Unique(const Datum& datum, ExecContext* ctx = NULLPTR);
-
-// Constants for accessing the output of ValueCounts
-ARROW_EXPORT extern const char kValuesFieldName[];
-ARROW_EXPORT extern const char kCountsFieldName[];
-ARROW_EXPORT extern const int32_t kValuesFieldIndex;
-ARROW_EXPORT extern const int32_t kCountsFieldIndex;
-
-/// \brief Return counts of unique elements from an array-like object.
-///
-/// Note that the counts do not include counts for nulls in the array. These can be
-/// obtained separately from metadata.
-///
-/// For floating point arrays there is no attempt to normalize -0.0, 0.0 and NaN values
-/// which can lead to unexpected results if the input Array has these values.
-///
-/// \param[in] value array-like input
-/// \param[in] ctx the function execution context, optional
-/// \return counts An array of <input type "Values", int64_t "Counts"> structs.
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<std::shared_ptr<StructArray>> ValueCounts(const Datum& value,
- ExecContext* ctx = NULLPTR);
-
-/// \brief Dictionary-encode values in an array-like object
+/// \brief Compute unique elements from an array-like object
+///
+/// Note if a null occurs in the input it will NOT be included in the output.
+///
+/// \param[in] datum array-like input
+/// \param[in] ctx the function execution context, optional
+/// \return result as Array
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<std::shared_ptr<Array>> Unique(const Datum& datum, ExecContext* ctx = NULLPTR);
+
+// Constants for accessing the output of ValueCounts
+ARROW_EXPORT extern const char kValuesFieldName[];
+ARROW_EXPORT extern const char kCountsFieldName[];
+ARROW_EXPORT extern const int32_t kValuesFieldIndex;
+ARROW_EXPORT extern const int32_t kCountsFieldIndex;
+
+/// \brief Return counts of unique elements from an array-like object.
+///
+/// Note that the counts do not include counts for nulls in the array. These can be
+/// obtained separately from metadata.
+///
+/// For floating point arrays there is no attempt to normalize -0.0, 0.0 and NaN values
+/// which can lead to unexpected results if the input Array has these values.
+///
+/// \param[in] value array-like input
+/// \param[in] ctx the function execution context, optional
+/// \return counts An array of <input type "Values", int64_t "Counts"> structs.
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<std::shared_ptr<StructArray>> ValueCounts(const Datum& value,
+ ExecContext* ctx = NULLPTR);
+
+/// \brief Dictionary-encode values in an array-like object
///
/// Any nulls encountered in the dictionary will be handled according to the
/// specified null encoding behavior.
@@ -349,62 +349,62 @@ Result<std::shared_ptr<StructArray>> ValueCounts(const Datum& value,
/// If the input is already dictionary encoded this function is a no-op unless
/// it needs to modify the null_encoding (TODO)
///
-/// \param[in] data array-like input
-/// \param[in] ctx the function execution context, optional
+/// \param[in] data array-like input
+/// \param[in] ctx the function execution context, optional
/// \param[in] options configures null encoding behavior
-/// \return result with same shape and type as input
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
+/// \return result with same shape and type as input
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
Result<Datum> DictionaryEncode(
const Datum& data,
const DictionaryEncodeOptions& options = DictionaryEncodeOptions::Defaults(),
ExecContext* ctx = NULLPTR);
-
-// ----------------------------------------------------------------------
-// Deprecated functions
-
-ARROW_DEPRECATED("Deprecated in 1.0.0. Use Datum-based version")
-ARROW_EXPORT
-Result<std::shared_ptr<ChunkedArray>> Take(
- const ChunkedArray& values, const Array& indices,
- const TakeOptions& options = TakeOptions::Defaults(), ExecContext* context = NULLPTR);
-
-ARROW_DEPRECATED("Deprecated in 1.0.0. Use Datum-based version")
-ARROW_EXPORT
-Result<std::shared_ptr<ChunkedArray>> Take(
- const ChunkedArray& values, const ChunkedArray& indices,
- const TakeOptions& options = TakeOptions::Defaults(), ExecContext* context = NULLPTR);
-
-ARROW_DEPRECATED("Deprecated in 1.0.0. Use Datum-based version")
-ARROW_EXPORT
-Result<std::shared_ptr<ChunkedArray>> Take(
- const Array& values, const ChunkedArray& indices,
- const TakeOptions& options = TakeOptions::Defaults(), ExecContext* context = NULLPTR);
-
-ARROW_DEPRECATED("Deprecated in 1.0.0. Use Datum-based version")
-ARROW_EXPORT
-Result<std::shared_ptr<RecordBatch>> Take(
- const RecordBatch& batch, const Array& indices,
- const TakeOptions& options = TakeOptions::Defaults(), ExecContext* context = NULLPTR);
-
-ARROW_DEPRECATED("Deprecated in 1.0.0. Use Datum-based version")
-ARROW_EXPORT
-Result<std::shared_ptr<Table>> Take(const Table& table, const Array& indices,
- const TakeOptions& options = TakeOptions::Defaults(),
- ExecContext* context = NULLPTR);
-
-ARROW_DEPRECATED("Deprecated in 1.0.0. Use Datum-based version")
-ARROW_EXPORT
-Result<std::shared_ptr<Table>> Take(const Table& table, const ChunkedArray& indices,
- const TakeOptions& options = TakeOptions::Defaults(),
- ExecContext* context = NULLPTR);
-
+
+// ----------------------------------------------------------------------
+// Deprecated functions
+
+ARROW_DEPRECATED("Deprecated in 1.0.0. Use Datum-based version")
+ARROW_EXPORT
+Result<std::shared_ptr<ChunkedArray>> Take(
+ const ChunkedArray& values, const Array& indices,
+ const TakeOptions& options = TakeOptions::Defaults(), ExecContext* context = NULLPTR);
+
+ARROW_DEPRECATED("Deprecated in 1.0.0. Use Datum-based version")
+ARROW_EXPORT
+Result<std::shared_ptr<ChunkedArray>> Take(
+ const ChunkedArray& values, const ChunkedArray& indices,
+ const TakeOptions& options = TakeOptions::Defaults(), ExecContext* context = NULLPTR);
+
+ARROW_DEPRECATED("Deprecated in 1.0.0. Use Datum-based version")
+ARROW_EXPORT
+Result<std::shared_ptr<ChunkedArray>> Take(
+ const Array& values, const ChunkedArray& indices,
+ const TakeOptions& options = TakeOptions::Defaults(), ExecContext* context = NULLPTR);
+
+ARROW_DEPRECATED("Deprecated in 1.0.0. Use Datum-based version")
+ARROW_EXPORT
+Result<std::shared_ptr<RecordBatch>> Take(
+ const RecordBatch& batch, const Array& indices,
+ const TakeOptions& options = TakeOptions::Defaults(), ExecContext* context = NULLPTR);
+
+ARROW_DEPRECATED("Deprecated in 1.0.0. Use Datum-based version")
+ARROW_EXPORT
+Result<std::shared_ptr<Table>> Take(const Table& table, const Array& indices,
+ const TakeOptions& options = TakeOptions::Defaults(),
+ ExecContext* context = NULLPTR);
+
+ARROW_DEPRECATED("Deprecated in 1.0.0. Use Datum-based version")
+ARROW_EXPORT
+Result<std::shared_ptr<Table>> Take(const Table& table, const ChunkedArray& indices,
+ const TakeOptions& options = TakeOptions::Defaults(),
+ ExecContext* context = NULLPTR);
+
ARROW_DEPRECATED("Deprecated in 3.0.0. Use SortIndices()")
ARROW_EXPORT
Result<std::shared_ptr<Array>> SortToIndices(const Array& values,
ExecContext* ctx = NULLPTR);
-} // namespace compute
-} // namespace arrow
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/cast.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/cast.cc
index 4de68ba8d9..d92079cde8 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/cast.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/cast.cc
@@ -1,128 +1,128 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/compute/cast.h"
-
-#include <mutex>
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/compute/cast.h"
+
+#include <mutex>
#include <sstream>
-#include <string>
-#include <unordered_map>
-#include <unordered_set>
-#include <utility>
-#include <vector>
-
-#include "arrow/compute/cast_internal.h"
-#include "arrow/compute/exec.h"
+#include <string>
+#include <unordered_map>
+#include <unordered_set>
+#include <utility>
+#include <vector>
+
+#include "arrow/compute/cast_internal.h"
+#include "arrow/compute/exec.h"
#include "arrow/compute/function_internal.h"
-#include "arrow/compute/kernel.h"
-#include "arrow/compute/kernels/codegen_internal.h"
-#include "arrow/compute/registry.h"
-#include "arrow/util/logging.h"
+#include "arrow/compute/kernel.h"
+#include "arrow/compute/kernels/codegen_internal.h"
+#include "arrow/compute/registry.h"
+#include "arrow/util/logging.h"
#include "arrow/util/reflection_internal.h"
-
-namespace arrow {
-
-using internal::ToTypeName;
-
-namespace compute {
-namespace internal {
-
+
+namespace arrow {
+
+using internal::ToTypeName;
+
+namespace compute {
+namespace internal {
+
// ----------------------------------------------------------------------
// Function options
namespace {
-std::unordered_map<int, std::shared_ptr<CastFunction>> g_cast_table;
+std::unordered_map<int, std::shared_ptr<CastFunction>> g_cast_table;
std::once_flag cast_table_initialized;
-
-void AddCastFunctions(const std::vector<std::shared_ptr<CastFunction>>& funcs) {
- for (const auto& func : funcs) {
- g_cast_table[static_cast<int>(func->out_type_id())] = func;
- }
-}
-
-void InitCastTable() {
- AddCastFunctions(GetBooleanCasts());
- AddCastFunctions(GetBinaryLikeCasts());
- AddCastFunctions(GetNestedCasts());
- AddCastFunctions(GetNumericCasts());
- AddCastFunctions(GetTemporalCasts());
+
+void AddCastFunctions(const std::vector<std::shared_ptr<CastFunction>>& funcs) {
+ for (const auto& func : funcs) {
+ g_cast_table[static_cast<int>(func->out_type_id())] = func;
+ }
+}
+
+void InitCastTable() {
+ AddCastFunctions(GetBooleanCasts());
+ AddCastFunctions(GetBinaryLikeCasts());
+ AddCastFunctions(GetNestedCasts());
+ AddCastFunctions(GetNumericCasts());
+ AddCastFunctions(GetTemporalCasts());
AddCastFunctions(GetDictionaryCasts());
-}
-
-void EnsureInitCastTable() { std::call_once(cast_table_initialized, InitCastTable); }
-
-// Private version of GetCastFunction with better error reporting
-// if the input type is known.
-Result<std::shared_ptr<CastFunction>> GetCastFunctionInternal(
- const std::shared_ptr<DataType>& to_type, const DataType* from_type = nullptr) {
- internal::EnsureInitCastTable();
- auto it = internal::g_cast_table.find(static_cast<int>(to_type->id()));
- if (it == internal::g_cast_table.end()) {
- if (from_type != nullptr) {
- return Status::NotImplemented("Unsupported cast from ", *from_type, " to ",
- *to_type,
- " (no available cast function for target type)");
- } else {
- return Status::NotImplemented("Unsupported cast to ", *to_type,
- " (no available cast function for target type)");
- }
- }
- return it->second;
-}
-
+}
+
+void EnsureInitCastTable() { std::call_once(cast_table_initialized, InitCastTable); }
+
+// Private version of GetCastFunction with better error reporting
+// if the input type is known.
+Result<std::shared_ptr<CastFunction>> GetCastFunctionInternal(
+ const std::shared_ptr<DataType>& to_type, const DataType* from_type = nullptr) {
+ internal::EnsureInitCastTable();
+ auto it = internal::g_cast_table.find(static_cast<int>(to_type->id()));
+ if (it == internal::g_cast_table.end()) {
+ if (from_type != nullptr) {
+ return Status::NotImplemented("Unsupported cast from ", *from_type, " to ",
+ *to_type,
+ " (no available cast function for target type)");
+ } else {
+ return Status::NotImplemented("Unsupported cast to ", *to_type,
+ " (no available cast function for target type)");
+ }
+ }
+ return it->second;
+}
+
const FunctionDoc cast_doc{"Cast values to another data type",
("Behavior when values wouldn't fit in the target type\n"
"can be controlled through CastOptions."),
{"input"},
"CastOptions"};
-
+
// Metafunction for dispatching to appropriate CastFunction. This corresponds
-// to the standard SQL CAST(expr AS target_type)
-class CastMetaFunction : public MetaFunction {
- public:
+// to the standard SQL CAST(expr AS target_type)
+class CastMetaFunction : public MetaFunction {
+ public:
CastMetaFunction() : MetaFunction("cast", Arity::Unary(), &cast_doc) {}
-
- Result<const CastOptions*> ValidateOptions(const FunctionOptions* options) const {
- auto cast_options = static_cast<const CastOptions*>(options);
-
- if (cast_options == nullptr || cast_options->to_type == nullptr) {
- return Status::Invalid(
- "Cast requires that options be passed with "
- "the to_type populated");
- }
-
- return cast_options;
- }
-
- Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
- const FunctionOptions* options,
- ExecContext* ctx) const override {
- ARROW_ASSIGN_OR_RAISE(auto cast_options, ValidateOptions(options));
- if (args[0].type()->Equals(*cast_options->to_type)) {
- return args[0];
- }
- ARROW_ASSIGN_OR_RAISE(
- std::shared_ptr<CastFunction> cast_func,
- GetCastFunctionInternal(cast_options->to_type, args[0].type().get()));
- return cast_func->Execute(args, options, ctx);
- }
-};
-
+
+ Result<const CastOptions*> ValidateOptions(const FunctionOptions* options) const {
+ auto cast_options = static_cast<const CastOptions*>(options);
+
+ if (cast_options == nullptr || cast_options->to_type == nullptr) {
+ return Status::Invalid(
+ "Cast requires that options be passed with "
+ "the to_type populated");
+ }
+
+ return cast_options;
+ }
+
+ Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
+ const FunctionOptions* options,
+ ExecContext* ctx) const override {
+ ARROW_ASSIGN_OR_RAISE(auto cast_options, ValidateOptions(options));
+ if (args[0].type()->Equals(*cast_options->to_type)) {
+ return args[0];
+ }
+ ARROW_ASSIGN_OR_RAISE(
+ std::shared_ptr<CastFunction> cast_func,
+ GetCastFunctionInternal(cast_options->to_type, args[0].type().get()));
+ return cast_func->Execute(args, options, ctx);
+ }
+};
+
static auto kCastOptionsType = GetFunctionOptionsType<CastOptions>(
arrow::internal::DataMember("to_type", &CastOptions::to_type),
arrow::internal::DataMember("allow_int_overflow", &CastOptions::allow_int_overflow),
@@ -135,12 +135,12 @@ static auto kCastOptionsType = GetFunctionOptionsType<CastOptions>(
arrow::internal::DataMember("allow_invalid_utf8", &CastOptions::allow_invalid_utf8));
} // namespace
-void RegisterScalarCast(FunctionRegistry* registry) {
- DCHECK_OK(registry->AddFunction(std::make_shared<CastMetaFunction>()));
+void RegisterScalarCast(FunctionRegistry* registry) {
+ DCHECK_OK(registry->AddFunction(std::make_shared<CastMetaFunction>()));
DCHECK_OK(registry->AddFunctionOptionsType(kCastOptionsType));
-}
-} // namespace internal
-
+}
+} // namespace internal
+
CastOptions::CastOptions(bool safe)
: FunctionOptions(internal::kCastOptionsType),
allow_int_overflow(!safe),
@@ -149,53 +149,53 @@ CastOptions::CastOptions(bool safe)
allow_decimal_truncate(!safe),
allow_float_truncate(!safe),
allow_invalid_utf8(!safe) {}
-
+
constexpr char CastOptions::kTypeName[];
-
+
CastFunction::CastFunction(std::string name, Type::type out_type_id)
: ScalarFunction(std::move(name), Arity::Unary(), /*doc=*/nullptr),
out_type_id_(out_type_id) {}
-
-Status CastFunction::AddKernel(Type::type in_type_id, ScalarKernel kernel) {
- // We use the same KernelInit for every cast
- kernel.init = internal::CastState::Init;
- RETURN_NOT_OK(ScalarFunction::AddKernel(kernel));
+
+Status CastFunction::AddKernel(Type::type in_type_id, ScalarKernel kernel) {
+ // We use the same KernelInit for every cast
+ kernel.init = internal::CastState::Init;
+ RETURN_NOT_OK(ScalarFunction::AddKernel(kernel));
in_type_ids_.push_back(in_type_id);
- return Status::OK();
-}
-
-Status CastFunction::AddKernel(Type::type in_type_id, std::vector<InputType> in_types,
- OutputType out_type, ArrayKernelExec exec,
- NullHandling::type null_handling,
- MemAllocation::type mem_allocation) {
- ScalarKernel kernel;
- kernel.signature = KernelSignature::Make(std::move(in_types), std::move(out_type));
- kernel.exec = exec;
- kernel.null_handling = null_handling;
- kernel.mem_allocation = mem_allocation;
- return AddKernel(in_type_id, std::move(kernel));
-}
-
+ return Status::OK();
+}
+
+Status CastFunction::AddKernel(Type::type in_type_id, std::vector<InputType> in_types,
+ OutputType out_type, ArrayKernelExec exec,
+ NullHandling::type null_handling,
+ MemAllocation::type mem_allocation) {
+ ScalarKernel kernel;
+ kernel.signature = KernelSignature::Make(std::move(in_types), std::move(out_type));
+ kernel.exec = exec;
+ kernel.null_handling = null_handling;
+ kernel.mem_allocation = mem_allocation;
+ return AddKernel(in_type_id, std::move(kernel));
+}
+
Result<const Kernel*> CastFunction::DispatchExact(
- const std::vector<ValueDescr>& values) const {
+ const std::vector<ValueDescr>& values) const {
RETURN_NOT_OK(CheckArity(values));
-
- std::vector<const ScalarKernel*> candidate_kernels;
- for (const auto& kernel : kernels_) {
- if (kernel.signature->MatchesInputs(values)) {
- candidate_kernels.push_back(&kernel);
- }
- }
-
- if (candidate_kernels.size() == 0) {
- return Status::NotImplemented("Unsupported cast from ", values[0].type->ToString(),
+
+ std::vector<const ScalarKernel*> candidate_kernels;
+ for (const auto& kernel : kernels_) {
+ if (kernel.signature->MatchesInputs(values)) {
+ candidate_kernels.push_back(&kernel);
+ }
+ }
+
+ if (candidate_kernels.size() == 0) {
+ return Status::NotImplemented("Unsupported cast from ", values[0].type->ToString(),
" to ", ToTypeName(out_type_id_), " using function ",
- this->name());
+ this->name());
}
if (candidate_kernels.size() == 1) {
- // One match, return it
- return candidate_kernels[0];
+ // One match, return it
+ return candidate_kernels[0];
}
// Now we are in a casting scenario where we may have both a EXACT_TYPE and
@@ -206,41 +206,41 @@ Result<const Kernel*> CastFunction::DispatchExact(
if (arg0.kind() == InputType::EXACT_TYPE) {
// Bingo. Return it
return kernel;
- }
- }
+ }
+ }
// We didn't find an exact match. So just return some kernel that matches
return candidate_kernels[0];
-}
-
-Result<Datum> Cast(const Datum& value, const CastOptions& options, ExecContext* ctx) {
- return CallFunction("cast", {value}, &options, ctx);
-}
-
-Result<Datum> Cast(const Datum& value, std::shared_ptr<DataType> to_type,
- const CastOptions& options, ExecContext* ctx) {
- CastOptions options_with_to_type = options;
- options_with_to_type.to_type = to_type;
- return Cast(value, options_with_to_type, ctx);
-}
-
-Result<std::shared_ptr<Array>> Cast(const Array& value, std::shared_ptr<DataType> to_type,
- const CastOptions& options, ExecContext* ctx) {
- ARROW_ASSIGN_OR_RAISE(Datum result, Cast(Datum(value), to_type, options, ctx));
- return result.make_array();
-}
-
-Result<std::shared_ptr<CastFunction>> GetCastFunction(
- const std::shared_ptr<DataType>& to_type) {
- return internal::GetCastFunctionInternal(to_type);
-}
-
-bool CanCast(const DataType& from_type, const DataType& to_type) {
- internal::EnsureInitCastTable();
+}
+
+Result<Datum> Cast(const Datum& value, const CastOptions& options, ExecContext* ctx) {
+ return CallFunction("cast", {value}, &options, ctx);
+}
+
+Result<Datum> Cast(const Datum& value, std::shared_ptr<DataType> to_type,
+ const CastOptions& options, ExecContext* ctx) {
+ CastOptions options_with_to_type = options;
+ options_with_to_type.to_type = to_type;
+ return Cast(value, options_with_to_type, ctx);
+}
+
+Result<std::shared_ptr<Array>> Cast(const Array& value, std::shared_ptr<DataType> to_type,
+ const CastOptions& options, ExecContext* ctx) {
+ ARROW_ASSIGN_OR_RAISE(Datum result, Cast(Datum(value), to_type, options, ctx));
+ return result.make_array();
+}
+
+Result<std::shared_ptr<CastFunction>> GetCastFunction(
+ const std::shared_ptr<DataType>& to_type) {
+ return internal::GetCastFunctionInternal(to_type);
+}
+
+bool CanCast(const DataType& from_type, const DataType& to_type) {
+ internal::EnsureInitCastTable();
auto it = internal::g_cast_table.find(static_cast<int>(to_type.id()));
- if (it == internal::g_cast_table.end()) {
- return false;
- }
+ if (it == internal::g_cast_table.end()) {
+ return false;
+ }
const CastFunction* function = it->second.get();
DCHECK_EQ(function->out_type_id(), to_type.id());
@@ -251,8 +251,8 @@ bool CanCast(const DataType& from_type, const DataType& to_type) {
}
return false;
-}
-
+}
+
Result<std::vector<Datum>> Cast(std::vector<Datum> datums, std::vector<ValueDescr> descrs,
ExecContext* ctx) {
for (size_t i = 0; i != datums.size(); ++i) {
@@ -269,5 +269,5 @@ Result<std::vector<Datum>> Cast(std::vector<Datum> datums, std::vector<ValueDesc
return datums;
}
-} // namespace compute
-} // namespace arrow
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/cast.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/cast.h
index 131f57f892..a0944ac721 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/cast.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/cast.h
@@ -1,156 +1,156 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <memory>
-#include <string>
-#include <vector>
-
-#include "arrow/compute/function.h"
-#include "arrow/compute/kernel.h"
-#include "arrow/datum.h"
-#include "arrow/result.h"
-#include "arrow/status.h"
-#include "arrow/type.h"
-#include "arrow/util/macros.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-
-class Array;
-
-namespace compute {
-
-class ExecContext;
-
-/// \addtogroup compute-concrete-options
-/// @{
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <memory>
+#include <string>
+#include <vector>
+
+#include "arrow/compute/function.h"
+#include "arrow/compute/kernel.h"
+#include "arrow/datum.h"
+#include "arrow/result.h"
+#include "arrow/status.h"
+#include "arrow/type.h"
+#include "arrow/util/macros.h"
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+
+class Array;
+
+namespace compute {
+
+class ExecContext;
+
+/// \addtogroup compute-concrete-options
+/// @{
+
class ARROW_EXPORT CastOptions : public FunctionOptions {
public:
explicit CastOptions(bool safe = true);
-
+
constexpr static char const kTypeName[] = "CastOptions";
static CastOptions Safe(std::shared_ptr<DataType> to_type = NULLPTR) {
CastOptions safe(true);
safe.to_type = std::move(to_type);
return safe;
}
-
+
static CastOptions Unsafe(std::shared_ptr<DataType> to_type = NULLPTR) {
CastOptions unsafe(false);
unsafe.to_type = std::move(to_type);
return unsafe;
}
-
- // Type being casted to. May be passed separate to eager function
- // compute::Cast
- std::shared_ptr<DataType> to_type;
-
- bool allow_int_overflow;
- bool allow_time_truncate;
- bool allow_time_overflow;
- bool allow_decimal_truncate;
- bool allow_float_truncate;
- // Indicate if conversions from Binary/FixedSizeBinary to string must
- // validate the utf8 payload.
- bool allow_invalid_utf8;
-};
-
-/// @}
-
-// Cast functions are _not_ registered in the FunctionRegistry, though they use
-// the same execution machinery
-class CastFunction : public ScalarFunction {
- public:
+
+ // Type being casted to. May be passed separate to eager function
+ // compute::Cast
+ std::shared_ptr<DataType> to_type;
+
+ bool allow_int_overflow;
+ bool allow_time_truncate;
+ bool allow_time_overflow;
+ bool allow_decimal_truncate;
+ bool allow_float_truncate;
+ // Indicate if conversions from Binary/FixedSizeBinary to string must
+ // validate the utf8 payload.
+ bool allow_invalid_utf8;
+};
+
+/// @}
+
+// Cast functions are _not_ registered in the FunctionRegistry, though they use
+// the same execution machinery
+class CastFunction : public ScalarFunction {
+ public:
CastFunction(std::string name, Type::type out_type_id);
-
+
Type::type out_type_id() const { return out_type_id_; }
const std::vector<Type::type>& in_type_ids() const { return in_type_ids_; }
-
- Status AddKernel(Type::type in_type_id, std::vector<InputType> in_types,
- OutputType out_type, ArrayKernelExec exec,
- NullHandling::type = NullHandling::INTERSECTION,
- MemAllocation::type = MemAllocation::PREALLOCATE);
-
- // Note, this function toggles off memory allocation and sets the init
- // function to CastInit
- Status AddKernel(Type::type in_type_id, ScalarKernel kernel);
-
+
+ Status AddKernel(Type::type in_type_id, std::vector<InputType> in_types,
+ OutputType out_type, ArrayKernelExec exec,
+ NullHandling::type = NullHandling::INTERSECTION,
+ MemAllocation::type = MemAllocation::PREALLOCATE);
+
+ // Note, this function toggles off memory allocation and sets the init
+ // function to CastInit
+ Status AddKernel(Type::type in_type_id, ScalarKernel kernel);
+
Result<const Kernel*> DispatchExact(
- const std::vector<ValueDescr>& values) const override;
-
- private:
+ const std::vector<ValueDescr>& values) const override;
+
+ private:
std::vector<Type::type> in_type_ids_;
const Type::type out_type_id_;
-};
-
-ARROW_EXPORT
-Result<std::shared_ptr<CastFunction>> GetCastFunction(
- const std::shared_ptr<DataType>& to_type);
-
-/// \brief Return true if a cast function is defined
-ARROW_EXPORT
-bool CanCast(const DataType& from_type, const DataType& to_type);
-
-// ----------------------------------------------------------------------
-// Convenience invocation APIs for a number of kernels
-
-/// \brief Cast from one array type to another
-/// \param[in] value array to cast
-/// \param[in] to_type type to cast to
-/// \param[in] options casting options
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting array
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<std::shared_ptr<Array>> Cast(const Array& value, std::shared_ptr<DataType> to_type,
- const CastOptions& options = CastOptions::Safe(),
- ExecContext* ctx = NULLPTR);
-
-/// \brief Cast from one array type to another
-/// \param[in] value array to cast
-/// \param[in] options casting options. The "to_type" field must be populated
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting array
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<Datum> Cast(const Datum& value, const CastOptions& options,
- ExecContext* ctx = NULLPTR);
-
-/// \brief Cast from one value to another
-/// \param[in] value datum to cast
-/// \param[in] to_type type to cast to
-/// \param[in] options casting options
-/// \param[in] ctx the function execution context, optional
-/// \return the resulting datum
-///
-/// \since 1.0.0
-/// \note API not yet finalized
-ARROW_EXPORT
-Result<Datum> Cast(const Datum& value, std::shared_ptr<DataType> to_type,
- const CastOptions& options = CastOptions::Safe(),
- ExecContext* ctx = NULLPTR);
-
+};
+
+ARROW_EXPORT
+Result<std::shared_ptr<CastFunction>> GetCastFunction(
+ const std::shared_ptr<DataType>& to_type);
+
+/// \brief Return true if a cast function is defined
+ARROW_EXPORT
+bool CanCast(const DataType& from_type, const DataType& to_type);
+
+// ----------------------------------------------------------------------
+// Convenience invocation APIs for a number of kernels
+
+/// \brief Cast from one array type to another
+/// \param[in] value array to cast
+/// \param[in] to_type type to cast to
+/// \param[in] options casting options
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting array
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<std::shared_ptr<Array>> Cast(const Array& value, std::shared_ptr<DataType> to_type,
+ const CastOptions& options = CastOptions::Safe(),
+ ExecContext* ctx = NULLPTR);
+
+/// \brief Cast from one array type to another
+/// \param[in] value array to cast
+/// \param[in] options casting options. The "to_type" field must be populated
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting array
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<Datum> Cast(const Datum& value, const CastOptions& options,
+ ExecContext* ctx = NULLPTR);
+
+/// \brief Cast from one value to another
+/// \param[in] value datum to cast
+/// \param[in] to_type type to cast to
+/// \param[in] options casting options
+/// \param[in] ctx the function execution context, optional
+/// \return the resulting datum
+///
+/// \since 1.0.0
+/// \note API not yet finalized
+ARROW_EXPORT
+Result<Datum> Cast(const Datum& value, std::shared_ptr<DataType> to_type,
+ const CastOptions& options = CastOptions::Safe(),
+ ExecContext* ctx = NULLPTR);
+
/// \brief Cast several values simultaneously. Safe cast options are used.
/// \param[in] values datums to cast
/// \param[in] descrs ValueDescrs to cast to
@@ -163,5 +163,5 @@ ARROW_EXPORT
Result<std::vector<Datum>> Cast(std::vector<Datum> values, std::vector<ValueDescr> descrs,
ExecContext* ctx = NULLPTR);
-} // namespace compute
-} // namespace arrow
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/cast_internal.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/cast_internal.h
index 0105d08a57..97975b8006 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/cast_internal.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/cast_internal.h
@@ -1,43 +1,43 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <memory>
-#include <vector>
-
-#include "arrow/compute/cast.h" // IWYU pragma: keep
-#include "arrow/compute/kernel.h" // IWYU pragma: keep
-#include "arrow/compute/kernels/codegen_internal.h" // IWYU pragma: keep
-
-namespace arrow {
-namespace compute {
-namespace internal {
-
-using CastState = OptionsWrapper<CastOptions>;
-
-// See kernels/scalar_cast_*.cc for these
-std::vector<std::shared_ptr<CastFunction>> GetBooleanCasts();
-std::vector<std::shared_ptr<CastFunction>> GetNumericCasts();
-std::vector<std::shared_ptr<CastFunction>> GetTemporalCasts();
-std::vector<std::shared_ptr<CastFunction>> GetBinaryLikeCasts();
-std::vector<std::shared_ptr<CastFunction>> GetNestedCasts();
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <memory>
+#include <vector>
+
+#include "arrow/compute/cast.h" // IWYU pragma: keep
+#include "arrow/compute/kernel.h" // IWYU pragma: keep
+#include "arrow/compute/kernels/codegen_internal.h" // IWYU pragma: keep
+
+namespace arrow {
+namespace compute {
+namespace internal {
+
+using CastState = OptionsWrapper<CastOptions>;
+
+// See kernels/scalar_cast_*.cc for these
+std::vector<std::shared_ptr<CastFunction>> GetBooleanCasts();
+std::vector<std::shared_ptr<CastFunction>> GetNumericCasts();
+std::vector<std::shared_ptr<CastFunction>> GetTemporalCasts();
+std::vector<std::shared_ptr<CastFunction>> GetBinaryLikeCasts();
+std::vector<std::shared_ptr<CastFunction>> GetNestedCasts();
std::vector<std::shared_ptr<CastFunction>> GetDictionaryCasts();
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/exec.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/exec.cc
index 63f8d39f55..55fb256a36 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/exec.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/exec.cc
@@ -1,64 +1,64 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/compute/exec.h"
-
-#include <algorithm>
-#include <cstddef>
-#include <cstdint>
-#include <memory>
-#include <utility>
-#include <vector>
-
-#include "arrow/array/array_base.h"
-#include "arrow/array/array_primitive.h"
-#include "arrow/array/data.h"
-#include "arrow/array/util.h"
-#include "arrow/buffer.h"
-#include "arrow/chunked_array.h"
-#include "arrow/compute/exec_internal.h"
-#include "arrow/compute/function.h"
-#include "arrow/compute/kernel.h"
-#include "arrow/compute/registry.h"
-#include "arrow/compute/util_internal.h"
-#include "arrow/datum.h"
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/compute/exec.h"
+
+#include <algorithm>
+#include <cstddef>
+#include <cstdint>
+#include <memory>
+#include <utility>
+#include <vector>
+
+#include "arrow/array/array_base.h"
+#include "arrow/array/array_primitive.h"
+#include "arrow/array/data.h"
+#include "arrow/array/util.h"
+#include "arrow/buffer.h"
+#include "arrow/chunked_array.h"
+#include "arrow/compute/exec_internal.h"
+#include "arrow/compute/function.h"
+#include "arrow/compute/kernel.h"
+#include "arrow/compute/registry.h"
+#include "arrow/compute/util_internal.h"
+#include "arrow/datum.h"
#include "arrow/pretty_print.h"
#include "arrow/record_batch.h"
-#include "arrow/scalar.h"
-#include "arrow/status.h"
-#include "arrow/type.h"
-#include "arrow/type_traits.h"
-#include "arrow/util/bit_util.h"
-#include "arrow/util/bitmap_ops.h"
-#include "arrow/util/checked_cast.h"
-#include "arrow/util/cpu_info.h"
-#include "arrow/util/logging.h"
+#include "arrow/scalar.h"
+#include "arrow/status.h"
+#include "arrow/type.h"
+#include "arrow/type_traits.h"
+#include "arrow/util/bit_util.h"
+#include "arrow/util/bitmap_ops.h"
+#include "arrow/util/checked_cast.h"
+#include "arrow/util/cpu_info.h"
+#include "arrow/util/logging.h"
#include "arrow/util/make_unique.h"
#include "arrow/util/vector.h"
-
-namespace arrow {
-
-using internal::BitmapAnd;
-using internal::checked_cast;
-using internal::CopyBitmap;
-using internal::CpuInfo;
-
-namespace compute {
-
+
+namespace arrow {
+
+using internal::BitmapAnd;
+using internal::checked_cast;
+using internal::CopyBitmap;
+using internal::CpuInfo;
+
+namespace compute {
+
ExecContext* default_exec_context() {
static ExecContext default_ctx;
return &default_ctx;
@@ -157,22 +157,22 @@ Result<std::shared_ptr<RecordBatch>> ExecBatch::ToRecordBatch(
return RecordBatch::Make(std::move(schema), length, std::move(columns));
}
-namespace {
-
-Result<std::shared_ptr<Buffer>> AllocateDataBuffer(KernelContext* ctx, int64_t length,
- int bit_width) {
- if (bit_width == 1) {
- return ctx->AllocateBitmap(length);
- } else {
+namespace {
+
+Result<std::shared_ptr<Buffer>> AllocateDataBuffer(KernelContext* ctx, int64_t length,
+ int bit_width) {
+ if (bit_width == 1) {
+ return ctx->AllocateBitmap(length);
+ } else {
int64_t buffer_size = BitUtil::BytesForBits(length * bit_width);
- return ctx->Allocate(buffer_size);
- }
-}
-
+ return ctx->Allocate(buffer_size);
+ }
+}
+
struct BufferPreallocation {
explicit BufferPreallocation(int bit_width = -1, int added_length = 0)
: bit_width(bit_width), added_length(added_length) {}
-
+
int bit_width;
int added_length;
};
@@ -182,7 +182,7 @@ void ComputeDataPreallocate(const DataType& type,
if (is_fixed_width(type.id()) && type.id() != Type::NA) {
widths->emplace_back(checked_cast<const FixedWidthType&>(type).bit_width());
return;
- }
+ }
// Preallocate binary and list offsets
switch (type.id()) {
case Type::BINARY:
@@ -199,12 +199,12 @@ void ComputeDataPreallocate(const DataType& type,
default:
break;
}
-}
-
-} // namespace
-
-namespace detail {
-
+}
+
+} // namespace
+
+namespace detail {
+
Status CheckAllValues(const std::vector<Datum>& values) {
for (const auto& value : values) {
if (!value.is_value()) {
@@ -215,102 +215,102 @@ Status CheckAllValues(const std::vector<Datum>& values) {
return Status::OK();
}
-ExecBatchIterator::ExecBatchIterator(std::vector<Datum> args, int64_t length,
- int64_t max_chunksize)
- : args_(std::move(args)),
- position_(0),
- length_(length),
- max_chunksize_(max_chunksize) {
- chunk_indexes_.resize(args_.size(), 0);
- chunk_positions_.resize(args_.size(), 0);
-}
-
-Result<std::unique_ptr<ExecBatchIterator>> ExecBatchIterator::Make(
- std::vector<Datum> args, int64_t max_chunksize) {
- for (const auto& arg : args) {
- if (!(arg.is_arraylike() || arg.is_scalar())) {
- return Status::Invalid(
- "ExecBatchIterator only works with Scalar, Array, and "
- "ChunkedArray arguments");
- }
- }
-
- // If the arguments are all scalars, then the length is 1
- int64_t length = 1;
-
- bool length_set = false;
- for (auto& arg : args) {
- if (arg.is_scalar()) {
- continue;
- }
- if (!length_set) {
- length = arg.length();
- length_set = true;
- } else {
- if (arg.length() != length) {
- return Status::Invalid("Array arguments must all be the same length");
- }
- }
- }
-
- max_chunksize = std::min(length, max_chunksize);
-
- return std::unique_ptr<ExecBatchIterator>(
- new ExecBatchIterator(std::move(args), length, max_chunksize));
-}
-
-bool ExecBatchIterator::Next(ExecBatch* batch) {
- if (position_ == length_) {
- return false;
- }
-
- // Determine how large the common contiguous "slice" of all the arguments is
- int64_t iteration_size = std::min(length_ - position_, max_chunksize_);
-
- // If length_ is 0, then this loop will never execute
- for (size_t i = 0; i < args_.size() && iteration_size > 0; ++i) {
- // If the argument is not a chunked array, it's either a Scalar or Array,
- // in which case it doesn't influence the size of this batch. Note that if
- // the args are all scalars the batch length is 1
- if (args_[i].kind() != Datum::CHUNKED_ARRAY) {
- continue;
- }
- const ChunkedArray& arg = *args_[i].chunked_array();
- std::shared_ptr<Array> current_chunk;
- while (true) {
- current_chunk = arg.chunk(chunk_indexes_[i]);
- if (chunk_positions_[i] == current_chunk->length()) {
- // Chunk is zero-length, or was exhausted in the previous iteration
- chunk_positions_[i] = 0;
- ++chunk_indexes_[i];
- continue;
- }
- break;
- }
- iteration_size =
- std::min(current_chunk->length() - chunk_positions_[i], iteration_size);
- }
-
- // Now, fill the batch
- batch->values.resize(args_.size());
- batch->length = iteration_size;
- for (size_t i = 0; i < args_.size(); ++i) {
- if (args_[i].is_scalar()) {
- batch->values[i] = args_[i].scalar();
- } else if (args_[i].is_array()) {
- batch->values[i] = args_[i].array()->Slice(position_, iteration_size);
- } else {
- const ChunkedArray& carr = *args_[i].chunked_array();
- const auto& chunk = carr.chunk(chunk_indexes_[i]);
- batch->values[i] = chunk->data()->Slice(chunk_positions_[i], iteration_size);
- chunk_positions_[i] += iteration_size;
- }
- }
- position_ += iteration_size;
- DCHECK_LE(position_, length_);
- return true;
-}
-
+ExecBatchIterator::ExecBatchIterator(std::vector<Datum> args, int64_t length,
+ int64_t max_chunksize)
+ : args_(std::move(args)),
+ position_(0),
+ length_(length),
+ max_chunksize_(max_chunksize) {
+ chunk_indexes_.resize(args_.size(), 0);
+ chunk_positions_.resize(args_.size(), 0);
+}
+
+Result<std::unique_ptr<ExecBatchIterator>> ExecBatchIterator::Make(
+ std::vector<Datum> args, int64_t max_chunksize) {
+ for (const auto& arg : args) {
+ if (!(arg.is_arraylike() || arg.is_scalar())) {
+ return Status::Invalid(
+ "ExecBatchIterator only works with Scalar, Array, and "
+ "ChunkedArray arguments");
+ }
+ }
+
+ // If the arguments are all scalars, then the length is 1
+ int64_t length = 1;
+
+ bool length_set = false;
+ for (auto& arg : args) {
+ if (arg.is_scalar()) {
+ continue;
+ }
+ if (!length_set) {
+ length = arg.length();
+ length_set = true;
+ } else {
+ if (arg.length() != length) {
+ return Status::Invalid("Array arguments must all be the same length");
+ }
+ }
+ }
+
+ max_chunksize = std::min(length, max_chunksize);
+
+ return std::unique_ptr<ExecBatchIterator>(
+ new ExecBatchIterator(std::move(args), length, max_chunksize));
+}
+
+bool ExecBatchIterator::Next(ExecBatch* batch) {
+ if (position_ == length_) {
+ return false;
+ }
+
+ // Determine how large the common contiguous "slice" of all the arguments is
+ int64_t iteration_size = std::min(length_ - position_, max_chunksize_);
+
+ // If length_ is 0, then this loop will never execute
+ for (size_t i = 0; i < args_.size() && iteration_size > 0; ++i) {
+ // If the argument is not a chunked array, it's either a Scalar or Array,
+ // in which case it doesn't influence the size of this batch. Note that if
+ // the args are all scalars the batch length is 1
+ if (args_[i].kind() != Datum::CHUNKED_ARRAY) {
+ continue;
+ }
+ const ChunkedArray& arg = *args_[i].chunked_array();
+ std::shared_ptr<Array> current_chunk;
+ while (true) {
+ current_chunk = arg.chunk(chunk_indexes_[i]);
+ if (chunk_positions_[i] == current_chunk->length()) {
+ // Chunk is zero-length, or was exhausted in the previous iteration
+ chunk_positions_[i] = 0;
+ ++chunk_indexes_[i];
+ continue;
+ }
+ break;
+ }
+ iteration_size =
+ std::min(current_chunk->length() - chunk_positions_[i], iteration_size);
+ }
+
+ // Now, fill the batch
+ batch->values.resize(args_.size());
+ batch->length = iteration_size;
+ for (size_t i = 0; i < args_.size(); ++i) {
+ if (args_[i].is_scalar()) {
+ batch->values[i] = args_[i].scalar();
+ } else if (args_[i].is_array()) {
+ batch->values[i] = args_[i].array()->Slice(position_, iteration_size);
+ } else {
+ const ChunkedArray& carr = *args_[i].chunked_array();
+ const auto& chunk = carr.chunk(chunk_indexes_[i]);
+ batch->values[i] = chunk->data()->Slice(chunk_positions_[i], iteration_size);
+ chunk_positions_[i] += iteration_size;
+ }
+ }
+ position_ += iteration_size;
+ DCHECK_LE(position_, length_);
+ return true;
+}
+
namespace {
struct NullGeneralization {
@@ -327,7 +327,7 @@ struct NullGeneralization {
const auto& arr = *datum.array();
- // Do not count the bits if they haven't been counted already
+ // Do not count the bits if they haven't been counted already
const int64_t known_null_count = arr.null_count.load();
if ((known_null_count == 0) || (arr.buffers[0] == NULLPTR)) {
return ALL_VALID;
@@ -338,88 +338,88 @@ struct NullGeneralization {
}
return PERHAPS_NULL;
- }
+ }
};
-
-// Null propagation implementation that deals both with preallocated bitmaps
-// and maybe-to-be allocated bitmaps
-//
-// If the bitmap is preallocated, it MUST be populated (since it might be a
-// view of a much larger bitmap). If it isn't preallocated, then we have
-// more flexibility.
-//
-// * If the batch has no nulls, then we do nothing
-// * If only a single array has nulls, and its offset is a multiple of 8,
-// then we can zero-copy the bitmap into the output
-// * Otherwise, we allocate the bitmap and populate it
-class NullPropagator {
- public:
- NullPropagator(KernelContext* ctx, const ExecBatch& batch, ArrayData* output)
- : ctx_(ctx), batch_(batch), output_(output) {
+
+// Null propagation implementation that deals both with preallocated bitmaps
+// and maybe-to-be allocated bitmaps
+//
+// If the bitmap is preallocated, it MUST be populated (since it might be a
+// view of a much larger bitmap). If it isn't preallocated, then we have
+// more flexibility.
+//
+// * If the batch has no nulls, then we do nothing
+// * If only a single array has nulls, and its offset is a multiple of 8,
+// then we can zero-copy the bitmap into the output
+// * Otherwise, we allocate the bitmap and populate it
+class NullPropagator {
+ public:
+ NullPropagator(KernelContext* ctx, const ExecBatch& batch, ArrayData* output)
+ : ctx_(ctx), batch_(batch), output_(output) {
for (const Datum& datum : batch_.values) {
auto null_generalization = NullGeneralization::Get(datum);
if (null_generalization == NullGeneralization::ALL_NULL) {
is_all_null_ = true;
- }
+ }
if (null_generalization != NullGeneralization::ALL_VALID &&
datum.kind() == Datum::ARRAY) {
arrays_with_nulls_.push_back(datum.array().get());
}
- }
-
- if (output->buffers[0] != nullptr) {
- bitmap_preallocated_ = true;
- SetBitmap(output_->buffers[0].get());
- }
- }
-
- void SetBitmap(Buffer* bitmap) { bitmap_ = bitmap->mutable_data(); }
-
- Status EnsureAllocated() {
- if (bitmap_preallocated_) {
- return Status::OK();
- }
- ARROW_ASSIGN_OR_RAISE(output_->buffers[0], ctx_->AllocateBitmap(output_->length));
- SetBitmap(output_->buffers[0].get());
- return Status::OK();
- }
-
+ }
+
+ if (output->buffers[0] != nullptr) {
+ bitmap_preallocated_ = true;
+ SetBitmap(output_->buffers[0].get());
+ }
+ }
+
+ void SetBitmap(Buffer* bitmap) { bitmap_ = bitmap->mutable_data(); }
+
+ Status EnsureAllocated() {
+ if (bitmap_preallocated_) {
+ return Status::OK();
+ }
+ ARROW_ASSIGN_OR_RAISE(output_->buffers[0], ctx_->AllocateBitmap(output_->length));
+ SetBitmap(output_->buffers[0].get());
+ return Status::OK();
+ }
+
Status AllNullShortCircuit() {
// OK, the output should be all null
output_->null_count = output_->length;
-
+
if (bitmap_preallocated_) {
BitUtil::SetBitsTo(bitmap_, output_->offset, output_->length, false);
return Status::OK();
}
- // Walk all the values with nulls instead of breaking on the first in case
- // we find a bitmap that can be reused in the non-preallocated case
+ // Walk all the values with nulls instead of breaking on the first in case
+ // we find a bitmap that can be reused in the non-preallocated case
for (const ArrayData* arr : arrays_with_nulls_) {
if (arr->null_count.load() == arr->length && arr->buffers[0] != nullptr) {
// Reuse this all null bitmap
output_->buffers[0] = arr->buffers[0];
return Status::OK();
- }
- }
-
+ }
+ }
+
RETURN_NOT_OK(EnsureAllocated());
BitUtil::SetBitsTo(bitmap_, output_->offset, output_->length, false);
return Status::OK();
- }
-
- Status PropagateSingle() {
- // One array
+ }
+
+ Status PropagateSingle() {
+ // One array
const ArrayData& arr = *arrays_with_nulls_[0];
- const std::shared_ptr<Buffer>& arr_bitmap = arr.buffers[0];
-
- // Reuse the null count if it's known
- output_->null_count = arr.null_count.load();
-
- if (bitmap_preallocated_) {
- CopyBitmap(arr_bitmap->data(), arr.offset, arr.length, bitmap_, output_->offset);
+ const std::shared_ptr<Buffer>& arr_bitmap = arr.buffers[0];
+
+ // Reuse the null count if it's known
+ output_->null_count = arr.null_count.load();
+
+ if (bitmap_preallocated_) {
+ CopyBitmap(arr_bitmap->data(), arr.offset, arr.length, bitmap_, output_->offset);
return Status::OK();
}
@@ -437,144 +437,144 @@ class NullPropagator {
} else if (arr.offset % 8 == 0) {
output_->buffers[0] =
SliceBuffer(arr_bitmap, arr.offset / 8, BitUtil::BytesForBits(arr.length));
- } else {
+ } else {
RETURN_NOT_OK(EnsureAllocated());
CopyBitmap(arr_bitmap->data(), arr.offset, arr.length, bitmap_,
/*dst_offset=*/0);
- }
- return Status::OK();
- }
-
- Status PropagateMultiple() {
- // More than one array. We use BitmapAnd to intersect their bitmaps
-
- // Do not compute the intersection null count until it's needed
- RETURN_NOT_OK(EnsureAllocated());
-
- auto Accumulate = [&](const ArrayData& left, const ArrayData& right) {
- DCHECK(left.buffers[0]);
- DCHECK(right.buffers[0]);
- BitmapAnd(left.buffers[0]->data(), left.offset, right.buffers[0]->data(),
- right.offset, output_->length, output_->offset,
- output_->buffers[0]->mutable_data());
- };
-
+ }
+ return Status::OK();
+ }
+
+ Status PropagateMultiple() {
+ // More than one array. We use BitmapAnd to intersect their bitmaps
+
+ // Do not compute the intersection null count until it's needed
+ RETURN_NOT_OK(EnsureAllocated());
+
+ auto Accumulate = [&](const ArrayData& left, const ArrayData& right) {
+ DCHECK(left.buffers[0]);
+ DCHECK(right.buffers[0]);
+ BitmapAnd(left.buffers[0]->data(), left.offset, right.buffers[0]->data(),
+ right.offset, output_->length, output_->offset,
+ output_->buffers[0]->mutable_data());
+ };
+
DCHECK_GT(arrays_with_nulls_.size(), 1);
-
- // Seed the output bitmap with the & of the first two bitmaps
+
+ // Seed the output bitmap with the & of the first two bitmaps
Accumulate(*arrays_with_nulls_[0], *arrays_with_nulls_[1]);
-
- // Accumulate the rest
+
+ // Accumulate the rest
for (size_t i = 2; i < arrays_with_nulls_.size(); ++i) {
Accumulate(*output_, *arrays_with_nulls_[i]);
- }
- return Status::OK();
- }
-
- Status Execute() {
+ }
+ return Status::OK();
+ }
+
+ Status Execute() {
if (is_all_null_) {
// An all-null value (scalar null or all-null array) gives us a short
// circuit opportunity
return AllNullShortCircuit();
- }
-
- // At this point, by construction we know that all of the values in
+ }
+
+ // At this point, by construction we know that all of the values in
// arrays_with_nulls_ are arrays that are not all null. So there are a
- // few cases:
- //
- // * No arrays. This is a no-op w/o preallocation but when the bitmap is
- // pre-allocated we have to fill it with 1's
- // * One array, whose bitmap can be zero-copied (w/o preallocation, and
- // when no byte is split) or copied (split byte or w/ preallocation)
- // * More than one array, we must compute the intersection of all the
- // bitmaps
- //
- // BUT, if the output offset is nonzero for some reason, we copy into the
- // output unconditionally
-
- output_->null_count = kUnknownNullCount;
-
+ // few cases:
+ //
+ // * No arrays. This is a no-op w/o preallocation but when the bitmap is
+ // pre-allocated we have to fill it with 1's
+ // * One array, whose bitmap can be zero-copied (w/o preallocation, and
+ // when no byte is split) or copied (split byte or w/ preallocation)
+ // * More than one array, we must compute the intersection of all the
+ // bitmaps
+ //
+ // BUT, if the output offset is nonzero for some reason, we copy into the
+ // output unconditionally
+
+ output_->null_count = kUnknownNullCount;
+
if (arrays_with_nulls_.empty()) {
- // No arrays with nulls case
- output_->null_count = 0;
- if (bitmap_preallocated_) {
- BitUtil::SetBitsTo(bitmap_, output_->offset, output_->length, true);
- }
- return Status::OK();
+ // No arrays with nulls case
+ output_->null_count = 0;
+ if (bitmap_preallocated_) {
+ BitUtil::SetBitsTo(bitmap_, output_->offset, output_->length, true);
+ }
+ return Status::OK();
}
if (arrays_with_nulls_.size() == 1) {
- return PropagateSingle();
- }
+ return PropagateSingle();
+ }
return PropagateMultiple();
- }
-
- private:
- KernelContext* ctx_;
- const ExecBatch& batch_;
+ }
+
+ private:
+ KernelContext* ctx_;
+ const ExecBatch& batch_;
std::vector<const ArrayData*> arrays_with_nulls_;
bool is_all_null_ = false;
- ArrayData* output_;
- uint8_t* bitmap_;
- bool bitmap_preallocated_ = false;
-};
-
-std::shared_ptr<ChunkedArray> ToChunkedArray(const std::vector<Datum>& values,
- const std::shared_ptr<DataType>& type) {
- std::vector<std::shared_ptr<Array>> arrays;
+ ArrayData* output_;
+ uint8_t* bitmap_;
+ bool bitmap_preallocated_ = false;
+};
+
+std::shared_ptr<ChunkedArray> ToChunkedArray(const std::vector<Datum>& values,
+ const std::shared_ptr<DataType>& type) {
+ std::vector<std::shared_ptr<Array>> arrays;
arrays.reserve(values.size());
for (const Datum& val : values) {
if (val.length() == 0) {
- // Skip empty chunks
- continue;
- }
+ // Skip empty chunks
+ continue;
+ }
arrays.emplace_back(val.make_array());
- }
+ }
return std::make_shared<ChunkedArray>(std::move(arrays), type);
-}
-
-bool HaveChunkedArray(const std::vector<Datum>& values) {
- for (const auto& value : values) {
- if (value.kind() == Datum::CHUNKED_ARRAY) {
- return true;
- }
- }
- return false;
-}
-
+}
+
+bool HaveChunkedArray(const std::vector<Datum>& values) {
+ for (const auto& value : values) {
+ if (value.kind() == Datum::CHUNKED_ARRAY) {
+ return true;
+ }
+ }
+ return false;
+}
+
template <typename KernelType>
class KernelExecutorImpl : public KernelExecutor {
- public:
+ public:
Status Init(KernelContext* kernel_ctx, KernelInitArgs args) override {
kernel_ctx_ = kernel_ctx;
kernel_ = static_cast<const KernelType*>(args.kernel);
-
+
// Resolve the output descriptor for this kernel
ARROW_ASSIGN_OR_RAISE(
output_descr_, kernel_->signature->out_type().Resolve(kernel_ctx_, args.inputs));
-
- return Status::OK();
- }
-
+
+ return Status::OK();
+ }
+
protected:
- // This is overridden by the VectorExecutor
- virtual Status SetupArgIteration(const std::vector<Datum>& args) {
+ // This is overridden by the VectorExecutor
+ virtual Status SetupArgIteration(const std::vector<Datum>& args) {
ARROW_ASSIGN_OR_RAISE(
batch_iterator_, ExecBatchIterator::Make(args, exec_context()->exec_chunksize()));
- return Status::OK();
- }
-
- Result<std::shared_ptr<ArrayData>> PrepareOutput(int64_t length) {
- auto out = std::make_shared<ArrayData>(output_descr_.type, length);
- out->buffers.resize(output_num_buffers_);
-
- if (validity_preallocated_) {
+ return Status::OK();
+ }
+
+ Result<std::shared_ptr<ArrayData>> PrepareOutput(int64_t length) {
+ auto out = std::make_shared<ArrayData>(output_descr_.type, length);
+ out->buffers.resize(output_num_buffers_);
+
+ if (validity_preallocated_) {
ARROW_ASSIGN_OR_RAISE(out->buffers[0], kernel_ctx_->AllocateBitmap(length));
- }
+ }
if (kernel_->null_handling == NullHandling::OUTPUT_NOT_NULL) {
out->null_count = 0;
- }
+ }
for (size_t i = 0; i < data_preallocated_.size(); ++i) {
const auto& prealloc = data_preallocated_[i];
if (prealloc.bit_width >= 0) {
@@ -584,183 +584,183 @@ class KernelExecutorImpl : public KernelExecutor {
prealloc.bit_width));
}
}
- return out;
- }
-
+ return out;
+ }
+
ExecContext* exec_context() { return kernel_ctx_->exec_context(); }
KernelState* state() { return kernel_ctx_->state(); }
-
- // Not all of these members are used for every executor type
-
+
+ // Not all of these members are used for every executor type
+
KernelContext* kernel_ctx_;
- const KernelType* kernel_;
- std::unique_ptr<ExecBatchIterator> batch_iterator_;
- ValueDescr output_descr_;
-
- int output_num_buffers_;
-
- // If true, then memory is preallocated for the validity bitmap with the same
- // strategy as the data buffer(s).
- bool validity_preallocated_ = false;
+ const KernelType* kernel_;
+ std::unique_ptr<ExecBatchIterator> batch_iterator_;
+ ValueDescr output_descr_;
+
+ int output_num_buffers_;
+
+ // If true, then memory is preallocated for the validity bitmap with the same
+ // strategy as the data buffer(s).
+ bool validity_preallocated_ = false;
// The kernel writes into data buffers preallocated for these bit widths
// (0 indicates no preallocation);
std::vector<BufferPreallocation> data_preallocated_;
-};
-
+};
+
class ScalarExecutor : public KernelExecutorImpl<ScalarKernel> {
- public:
- Status Execute(const std::vector<Datum>& args, ExecListener* listener) override {
- RETURN_NOT_OK(PrepareExecute(args));
- ExecBatch batch;
- while (batch_iterator_->Next(&batch)) {
- RETURN_NOT_OK(ExecuteBatch(batch, listener));
- }
- if (preallocate_contiguous_) {
- // If we preallocated one big chunk, since the kernel execution is
- // completed, we can now emit it
- RETURN_NOT_OK(listener->OnResult(std::move(preallocated_)));
- }
- return Status::OK();
- }
-
- Datum WrapResults(const std::vector<Datum>& inputs,
- const std::vector<Datum>& outputs) override {
- if (output_descr_.shape == ValueDescr::SCALAR) {
- DCHECK_GT(outputs.size(), 0);
- if (outputs.size() == 1) {
- // Return as SCALAR
- return outputs[0];
- } else {
- // Return as COLLECTION
- return outputs;
- }
- } else {
- // If execution yielded multiple chunks (because large arrays were split
- // based on the ExecContext parameters, then the result is a ChunkedArray
- if (HaveChunkedArray(inputs) || outputs.size() > 1) {
- return ToChunkedArray(outputs, output_descr_.type);
- } else if (outputs.size() == 1) {
- // Outputs have just one element
- return outputs[0];
- } else {
- // XXX: In the case where no outputs are omitted, is returning a 0-length
- // array always the correct move?
+ public:
+ Status Execute(const std::vector<Datum>& args, ExecListener* listener) override {
+ RETURN_NOT_OK(PrepareExecute(args));
+ ExecBatch batch;
+ while (batch_iterator_->Next(&batch)) {
+ RETURN_NOT_OK(ExecuteBatch(batch, listener));
+ }
+ if (preallocate_contiguous_) {
+ // If we preallocated one big chunk, since the kernel execution is
+ // completed, we can now emit it
+ RETURN_NOT_OK(listener->OnResult(std::move(preallocated_)));
+ }
+ return Status::OK();
+ }
+
+ Datum WrapResults(const std::vector<Datum>& inputs,
+ const std::vector<Datum>& outputs) override {
+ if (output_descr_.shape == ValueDescr::SCALAR) {
+ DCHECK_GT(outputs.size(), 0);
+ if (outputs.size() == 1) {
+ // Return as SCALAR
+ return outputs[0];
+ } else {
+ // Return as COLLECTION
+ return outputs;
+ }
+ } else {
+ // If execution yielded multiple chunks (because large arrays were split
+ // based on the ExecContext parameters, then the result is a ChunkedArray
+ if (HaveChunkedArray(inputs) || outputs.size() > 1) {
+ return ToChunkedArray(outputs, output_descr_.type);
+ } else if (outputs.size() == 1) {
+ // Outputs have just one element
+ return outputs[0];
+ } else {
+ // XXX: In the case where no outputs are omitted, is returning a 0-length
+ // array always the correct move?
return MakeArrayOfNull(output_descr_.type, /*length=*/0,
exec_context()->memory_pool())
.ValueOrDie();
- }
- }
- }
-
- protected:
- Status ExecuteBatch(const ExecBatch& batch, ExecListener* listener) {
- Datum out;
- RETURN_NOT_OK(PrepareNextOutput(batch, &out));
-
- if (output_descr_.shape == ValueDescr::ARRAY) {
- ArrayData* out_arr = out.mutable_array();
- if (kernel_->null_handling == NullHandling::INTERSECTION) {
+ }
+ }
+ }
+
+ protected:
+ Status ExecuteBatch(const ExecBatch& batch, ExecListener* listener) {
+ Datum out;
+ RETURN_NOT_OK(PrepareNextOutput(batch, &out));
+
+ if (output_descr_.shape == ValueDescr::ARRAY) {
+ ArrayData* out_arr = out.mutable_array();
+ if (kernel_->null_handling == NullHandling::INTERSECTION) {
RETURN_NOT_OK(PropagateNulls(kernel_ctx_, batch, out_arr));
- } else if (kernel_->null_handling == NullHandling::OUTPUT_NOT_NULL) {
- out_arr->null_count = 0;
- }
- } else {
- if (kernel_->null_handling == NullHandling::INTERSECTION) {
- // set scalar validity
- out.scalar()->is_valid =
- std::all_of(batch.values.begin(), batch.values.end(),
- [](const Datum& input) { return input.scalar()->is_valid; });
- } else if (kernel_->null_handling == NullHandling::OUTPUT_NOT_NULL) {
- out.scalar()->is_valid = true;
- }
- }
-
+ } else if (kernel_->null_handling == NullHandling::OUTPUT_NOT_NULL) {
+ out_arr->null_count = 0;
+ }
+ } else {
+ if (kernel_->null_handling == NullHandling::INTERSECTION) {
+ // set scalar validity
+ out.scalar()->is_valid =
+ std::all_of(batch.values.begin(), batch.values.end(),
+ [](const Datum& input) { return input.scalar()->is_valid; });
+ } else if (kernel_->null_handling == NullHandling::OUTPUT_NOT_NULL) {
+ out.scalar()->is_valid = true;
+ }
+ }
+
RETURN_NOT_OK(kernel_->exec(kernel_ctx_, batch, &out));
- if (!preallocate_contiguous_) {
- // If we are producing chunked output rather than one big array, then
- // emit each chunk as soon as it's available
- RETURN_NOT_OK(listener->OnResult(std::move(out)));
- }
- return Status::OK();
- }
-
- Status PrepareExecute(const std::vector<Datum>& args) {
+ if (!preallocate_contiguous_) {
+ // If we are producing chunked output rather than one big array, then
+ // emit each chunk as soon as it's available
+ RETURN_NOT_OK(listener->OnResult(std::move(out)));
+ }
+ return Status::OK();
+ }
+
+ Status PrepareExecute(const std::vector<Datum>& args) {
RETURN_NOT_OK(this->SetupArgIteration(args));
-
- if (output_descr_.shape == ValueDescr::ARRAY) {
- // If the executor is configured to produce a single large Array output for
- // kernels supporting preallocation, then we do so up front and then
- // iterate over slices of that large array. Otherwise, we preallocate prior
- // to processing each batch emitted from the ExecBatchIterator
- RETURN_NOT_OK(SetupPreallocation(batch_iterator_->length()));
- }
- return Status::OK();
- }
-
- // We must accommodate two different modes of execution for preallocated
- // execution
- //
- // * A single large ("contiguous") allocation that we populate with results
- // on a chunkwise basis according to the ExecBatchIterator. This permits
- // parallelization even if the objective is to obtain a single Array or
- // ChunkedArray at the end
- // * A standalone buffer preallocation for each chunk emitted from the
- // ExecBatchIterator
- //
- // When data buffer preallocation is not possible (e.g. with BINARY / STRING
- // outputs), then contiguous results are only possible if the input is
- // contiguous.
-
- Status PrepareNextOutput(const ExecBatch& batch, Datum* out) {
- if (output_descr_.shape == ValueDescr::ARRAY) {
- if (preallocate_contiguous_) {
- // The output is already fully preallocated
- const int64_t batch_start_position = batch_iterator_->position() - batch.length;
-
- if (batch.length < batch_iterator_->length()) {
- // If this is a partial execution, then we write into a slice of
- // preallocated_
- out->value = preallocated_->Slice(batch_start_position, batch.length);
- } else {
- // Otherwise write directly into preallocated_. The main difference
- // computationally (versus the Slice approach) is that the null_count
- // may not need to be recomputed in the result
- out->value = preallocated_;
- }
- } else {
- // We preallocate (maybe) only for the output of processing the current
- // batch
- ARROW_ASSIGN_OR_RAISE(out->value, PrepareOutput(batch.length));
- }
- } else {
- // For scalar outputs, we set a null scalar of the correct type to
- // communicate the output type to the kernel if needed
- //
- // XXX: Is there some way to avoid this step?
- out->value = MakeNullScalar(output_descr_.type);
- }
- return Status::OK();
- }
-
- Status SetupPreallocation(int64_t total_length) {
- output_num_buffers_ = static_cast<int>(output_descr_.type->layout().buffers.size());
-
- // Decide if we need to preallocate memory for this kernel
- validity_preallocated_ =
- (kernel_->null_handling != NullHandling::COMPUTED_NO_PREALLOCATE &&
+
+ if (output_descr_.shape == ValueDescr::ARRAY) {
+ // If the executor is configured to produce a single large Array output for
+ // kernels supporting preallocation, then we do so up front and then
+ // iterate over slices of that large array. Otherwise, we preallocate prior
+ // to processing each batch emitted from the ExecBatchIterator
+ RETURN_NOT_OK(SetupPreallocation(batch_iterator_->length()));
+ }
+ return Status::OK();
+ }
+
+ // We must accommodate two different modes of execution for preallocated
+ // execution
+ //
+ // * A single large ("contiguous") allocation that we populate with results
+ // on a chunkwise basis according to the ExecBatchIterator. This permits
+ // parallelization even if the objective is to obtain a single Array or
+ // ChunkedArray at the end
+ // * A standalone buffer preallocation for each chunk emitted from the
+ // ExecBatchIterator
+ //
+ // When data buffer preallocation is not possible (e.g. with BINARY / STRING
+ // outputs), then contiguous results are only possible if the input is
+ // contiguous.
+
+ Status PrepareNextOutput(const ExecBatch& batch, Datum* out) {
+ if (output_descr_.shape == ValueDescr::ARRAY) {
+ if (preallocate_contiguous_) {
+ // The output is already fully preallocated
+ const int64_t batch_start_position = batch_iterator_->position() - batch.length;
+
+ if (batch.length < batch_iterator_->length()) {
+ // If this is a partial execution, then we write into a slice of
+ // preallocated_
+ out->value = preallocated_->Slice(batch_start_position, batch.length);
+ } else {
+ // Otherwise write directly into preallocated_. The main difference
+ // computationally (versus the Slice approach) is that the null_count
+ // may not need to be recomputed in the result
+ out->value = preallocated_;
+ }
+ } else {
+ // We preallocate (maybe) only for the output of processing the current
+ // batch
+ ARROW_ASSIGN_OR_RAISE(out->value, PrepareOutput(batch.length));
+ }
+ } else {
+ // For scalar outputs, we set a null scalar of the correct type to
+ // communicate the output type to the kernel if needed
+ //
+ // XXX: Is there some way to avoid this step?
+ out->value = MakeNullScalar(output_descr_.type);
+ }
+ return Status::OK();
+ }
+
+ Status SetupPreallocation(int64_t total_length) {
+ output_num_buffers_ = static_cast<int>(output_descr_.type->layout().buffers.size());
+
+ // Decide if we need to preallocate memory for this kernel
+ validity_preallocated_ =
+ (kernel_->null_handling != NullHandling::COMPUTED_NO_PREALLOCATE &&
kernel_->null_handling != NullHandling::OUTPUT_NOT_NULL &&
output_descr_.type->id() != Type::NA);
if (kernel_->mem_allocation == MemAllocation::PREALLOCATE) {
ComputeDataPreallocate(*output_descr_.type, &data_preallocated_);
}
-
+
// Contiguous preallocation only possible on non-nested types if all
// buffers are preallocated. Otherwise, we must go chunk-by-chunk.
- //
+ //
// Some kernels are also unable to write into sliced outputs, so we respect the
// kernel's attributes.
- preallocate_contiguous_ =
+ preallocate_contiguous_ =
(exec_context()->preallocate_contiguous() && kernel_->can_write_into_slices &&
validity_preallocated_ && !is_nested(output_descr_.type->id()) &&
!is_dictionary(output_descr_.type->id()) &&
@@ -769,202 +769,202 @@ class ScalarExecutor : public KernelExecutorImpl<ScalarKernel> {
[](const BufferPreallocation& prealloc) {
return prealloc.bit_width >= 0;
}));
- if (preallocate_contiguous_) {
- ARROW_ASSIGN_OR_RAISE(preallocated_, PrepareOutput(total_length));
- }
- return Status::OK();
- }
-
- // If true, and the kernel and output type supports preallocation (for both
- // the validity and data buffers), then we allocate one big array and then
- // iterate through it while executing the kernel in chunks
- bool preallocate_contiguous_ = false;
-
- // For storing a contiguous preallocation per above. Unused otherwise
- std::shared_ptr<ArrayData> preallocated_;
-};
-
-Status PackBatchNoChunks(const std::vector<Datum>& args, ExecBatch* out) {
- int64_t length = 0;
- for (const auto& arg : args) {
- switch (arg.kind()) {
- case Datum::SCALAR:
- case Datum::ARRAY:
+ if (preallocate_contiguous_) {
+ ARROW_ASSIGN_OR_RAISE(preallocated_, PrepareOutput(total_length));
+ }
+ return Status::OK();
+ }
+
+ // If true, and the kernel and output type supports preallocation (for both
+ // the validity and data buffers), then we allocate one big array and then
+ // iterate through it while executing the kernel in chunks
+ bool preallocate_contiguous_ = false;
+
+ // For storing a contiguous preallocation per above. Unused otherwise
+ std::shared_ptr<ArrayData> preallocated_;
+};
+
+Status PackBatchNoChunks(const std::vector<Datum>& args, ExecBatch* out) {
+ int64_t length = 0;
+ for (const auto& arg : args) {
+ switch (arg.kind()) {
+ case Datum::SCALAR:
+ case Datum::ARRAY:
case Datum::CHUNKED_ARRAY:
- length = std::max(arg.length(), length);
- break;
- default:
- DCHECK(false);
- break;
- }
- }
- out->length = length;
- out->values = args;
- return Status::OK();
-}
-
+ length = std::max(arg.length(), length);
+ break;
+ default:
+ DCHECK(false);
+ break;
+ }
+ }
+ out->length = length;
+ out->values = args;
+ return Status::OK();
+}
+
class VectorExecutor : public KernelExecutorImpl<VectorKernel> {
- public:
- Status Execute(const std::vector<Datum>& args, ExecListener* listener) override {
- RETURN_NOT_OK(PrepareExecute(args));
- ExecBatch batch;
- if (kernel_->can_execute_chunkwise) {
- while (batch_iterator_->Next(&batch)) {
- RETURN_NOT_OK(ExecuteBatch(batch, listener));
- }
- } else {
- RETURN_NOT_OK(PackBatchNoChunks(args, &batch));
- RETURN_NOT_OK(ExecuteBatch(batch, listener));
- }
- return Finalize(listener);
- }
-
- Datum WrapResults(const std::vector<Datum>& inputs,
- const std::vector<Datum>& outputs) override {
- // If execution yielded multiple chunks (because large arrays were split
- // based on the ExecContext parameters, then the result is a ChunkedArray
+ public:
+ Status Execute(const std::vector<Datum>& args, ExecListener* listener) override {
+ RETURN_NOT_OK(PrepareExecute(args));
+ ExecBatch batch;
+ if (kernel_->can_execute_chunkwise) {
+ while (batch_iterator_->Next(&batch)) {
+ RETURN_NOT_OK(ExecuteBatch(batch, listener));
+ }
+ } else {
+ RETURN_NOT_OK(PackBatchNoChunks(args, &batch));
+ RETURN_NOT_OK(ExecuteBatch(batch, listener));
+ }
+ return Finalize(listener);
+ }
+
+ Datum WrapResults(const std::vector<Datum>& inputs,
+ const std::vector<Datum>& outputs) override {
+ // If execution yielded multiple chunks (because large arrays were split
+ // based on the ExecContext parameters, then the result is a ChunkedArray
if (kernel_->output_chunked && (HaveChunkedArray(inputs) || outputs.size() > 1)) {
return ToChunkedArray(outputs, output_descr_.type);
} else if (outputs.size() == 1) {
// Outputs have just one element
return outputs[0];
- } else {
+ } else {
// XXX: In the case where no outputs are omitted, is returning a 0-length
// array always the correct move?
return MakeArrayOfNull(output_descr_.type, /*length=*/0).ValueOrDie();
- }
- }
-
- protected:
- Status ExecuteBatch(const ExecBatch& batch, ExecListener* listener) {
- if (batch.length == 0) {
- // Skip empty batches. This may only happen when not using
- // ExecBatchIterator
- return Status::OK();
- }
- Datum out;
- if (output_descr_.shape == ValueDescr::ARRAY) {
- // We preallocate (maybe) only for the output of processing the current
- // batch
- ARROW_ASSIGN_OR_RAISE(out.value, PrepareOutput(batch.length));
- }
-
- if (kernel_->null_handling == NullHandling::INTERSECTION &&
- output_descr_.shape == ValueDescr::ARRAY) {
+ }
+ }
+
+ protected:
+ Status ExecuteBatch(const ExecBatch& batch, ExecListener* listener) {
+ if (batch.length == 0) {
+ // Skip empty batches. This may only happen when not using
+ // ExecBatchIterator
+ return Status::OK();
+ }
+ Datum out;
+ if (output_descr_.shape == ValueDescr::ARRAY) {
+ // We preallocate (maybe) only for the output of processing the current
+ // batch
+ ARROW_ASSIGN_OR_RAISE(out.value, PrepareOutput(batch.length));
+ }
+
+ if (kernel_->null_handling == NullHandling::INTERSECTION &&
+ output_descr_.shape == ValueDescr::ARRAY) {
RETURN_NOT_OK(PropagateNulls(kernel_ctx_, batch, out.mutable_array()));
- }
+ }
RETURN_NOT_OK(kernel_->exec(kernel_ctx_, batch, &out));
- if (!kernel_->finalize) {
- // If there is no result finalizer (e.g. for hash-based functions, we can
- // emit the processed batch right away rather than waiting
- RETURN_NOT_OK(listener->OnResult(std::move(out)));
- } else {
- results_.emplace_back(std::move(out));
- }
- return Status::OK();
- }
-
- Status Finalize(ExecListener* listener) {
- if (kernel_->finalize) {
- // Intermediate results require post-processing after the execution is
- // completed (possibly involving some accumulated state)
+ if (!kernel_->finalize) {
+ // If there is no result finalizer (e.g. for hash-based functions, we can
+ // emit the processed batch right away rather than waiting
+ RETURN_NOT_OK(listener->OnResult(std::move(out)));
+ } else {
+ results_.emplace_back(std::move(out));
+ }
+ return Status::OK();
+ }
+
+ Status Finalize(ExecListener* listener) {
+ if (kernel_->finalize) {
+ // Intermediate results require post-processing after the execution is
+ // completed (possibly involving some accumulated state)
RETURN_NOT_OK(kernel_->finalize(kernel_ctx_, &results_));
- for (const auto& result : results_) {
- RETURN_NOT_OK(listener->OnResult(result));
- }
- }
- return Status::OK();
- }
-
- Status SetupArgIteration(const std::vector<Datum>& args) override {
- if (kernel_->can_execute_chunkwise) {
+ for (const auto& result : results_) {
+ RETURN_NOT_OK(listener->OnResult(result));
+ }
+ }
+ return Status::OK();
+ }
+
+ Status SetupArgIteration(const std::vector<Datum>& args) override {
+ if (kernel_->can_execute_chunkwise) {
ARROW_ASSIGN_OR_RAISE(batch_iterator_, ExecBatchIterator::Make(
args, exec_context()->exec_chunksize()));
- }
- return Status::OK();
- }
-
- Status PrepareExecute(const std::vector<Datum>& args) {
+ }
+ return Status::OK();
+ }
+
+ Status PrepareExecute(const std::vector<Datum>& args) {
RETURN_NOT_OK(this->SetupArgIteration(args));
- output_num_buffers_ = static_cast<int>(output_descr_.type->layout().buffers.size());
-
- // Decide if we need to preallocate memory for this kernel
- validity_preallocated_ =
- (kernel_->null_handling != NullHandling::COMPUTED_NO_PREALLOCATE &&
- kernel_->null_handling != NullHandling::OUTPUT_NOT_NULL);
+ output_num_buffers_ = static_cast<int>(output_descr_.type->layout().buffers.size());
+
+ // Decide if we need to preallocate memory for this kernel
+ validity_preallocated_ =
+ (kernel_->null_handling != NullHandling::COMPUTED_NO_PREALLOCATE &&
+ kernel_->null_handling != NullHandling::OUTPUT_NOT_NULL);
if (kernel_->mem_allocation == MemAllocation::PREALLOCATE) {
ComputeDataPreallocate(*output_descr_.type, &data_preallocated_);
}
- return Status::OK();
- }
-
- std::vector<Datum> results_;
-};
-
+ return Status::OK();
+ }
+
+ std::vector<Datum> results_;
+};
+
class ScalarAggExecutor : public KernelExecutorImpl<ScalarAggregateKernel> {
- public:
+ public:
Status Init(KernelContext* ctx, KernelInitArgs args) override {
input_descrs_ = &args.inputs;
options_ = args.options;
return KernelExecutorImpl<ScalarAggregateKernel>::Init(ctx, args);
}
-
- Status Execute(const std::vector<Datum>& args, ExecListener* listener) override {
+
+ Status Execute(const std::vector<Datum>& args, ExecListener* listener) override {
RETURN_NOT_OK(this->SetupArgIteration(args));
-
- ExecBatch batch;
- while (batch_iterator_->Next(&batch)) {
- // TODO: implement parallelism
- if (batch.length > 0) {
- RETURN_NOT_OK(Consume(batch));
- }
- }
-
- Datum out;
+
+ ExecBatch batch;
+ while (batch_iterator_->Next(&batch)) {
+ // TODO: implement parallelism
+ if (batch.length > 0) {
+ RETURN_NOT_OK(Consume(batch));
+ }
+ }
+
+ Datum out;
RETURN_NOT_OK(kernel_->finalize(kernel_ctx_, &out));
- RETURN_NOT_OK(listener->OnResult(std::move(out)));
- return Status::OK();
- }
-
- Datum WrapResults(const std::vector<Datum>&,
- const std::vector<Datum>& outputs) override {
- DCHECK_EQ(1, outputs.size());
- return outputs[0];
- }
-
- private:
- Status Consume(const ExecBatch& batch) {
+ RETURN_NOT_OK(listener->OnResult(std::move(out)));
+ return Status::OK();
+ }
+
+ Datum WrapResults(const std::vector<Datum>&,
+ const std::vector<Datum>& outputs) override {
+ DCHECK_EQ(1, outputs.size());
+ return outputs[0];
+ }
+
+ private:
+ Status Consume(const ExecBatch& batch) {
// FIXME(ARROW-11840) don't merge *any* aggegates for every batch
ARROW_ASSIGN_OR_RAISE(
auto batch_state,
kernel_->init(kernel_ctx_, {kernel_, *input_descrs_, options_}));
-
- if (batch_state == nullptr) {
+
+ if (batch_state == nullptr) {
return Status::Invalid("ScalarAggregation requires non-null kernel state");
- }
-
+ }
+
KernelContext batch_ctx(exec_context());
- batch_ctx.SetState(batch_state.get());
-
+ batch_ctx.SetState(batch_state.get());
+
RETURN_NOT_OK(kernel_->consume(&batch_ctx, batch));
RETURN_NOT_OK(kernel_->merge(kernel_ctx_, std::move(*batch_state), state()));
- return Status::OK();
- }
+ return Status::OK();
+ }
const std::vector<ValueDescr>* input_descrs_;
const FunctionOptions* options_;
-};
-
-template <typename ExecutorType,
- typename FunctionType = typename ExecutorType::FunctionType>
+};
+
+template <typename ExecutorType,
+ typename FunctionType = typename ExecutorType::FunctionType>
Result<std::unique_ptr<KernelExecutor>> MakeExecutor(ExecContext* ctx,
const Function* func,
const FunctionOptions* options) {
- DCHECK_EQ(ExecutorType::function_kind, func->kind());
- auto typed_func = checked_cast<const FunctionType*>(func);
+ DCHECK_EQ(ExecutorType::function_kind, func->kind());
+ auto typed_func = checked_cast<const FunctionType*>(func);
return std::unique_ptr<KernelExecutor>(new ExecutorType(ctx, typed_func, options));
-}
-
+}
+
} // namespace
Status PropagateNulls(KernelContext* ctx, const ExecBatch& batch, ArrayData* output) {
@@ -975,7 +975,7 @@ Status PropagateNulls(KernelContext* ctx, const ExecBatch& batch, ArrayData* out
// Null output type is a no-op (rare when this would happen but we at least
// will test for it)
return Status::OK();
- }
+ }
// This function is ONLY able to write into output with non-zero offset
// when the bitmap is preallocated. This could be a DCHECK but returning
@@ -987,8 +987,8 @@ Status PropagateNulls(KernelContext* ctx, const ExecBatch& batch, ArrayData* out
}
NullPropagator propagator(ctx, batch, output);
return propagator.Execute();
-}
-
+}
+
std::unique_ptr<KernelExecutor> KernelExecutor::MakeScalar() {
return ::arrow::internal::make_unique<detail::ScalarExecutor>();
}
@@ -1001,50 +1001,50 @@ std::unique_ptr<KernelExecutor> KernelExecutor::MakeScalarAggregate() {
return ::arrow::internal::make_unique<detail::ScalarAggExecutor>();
}
-} // namespace detail
-
+} // namespace detail
+
ExecContext::ExecContext(MemoryPool* pool, ::arrow::internal::Executor* executor,
FunctionRegistry* func_registry)
: pool_(pool), executor_(executor) {
- this->func_registry_ = func_registry == nullptr ? GetFunctionRegistry() : func_registry;
-}
-
-CpuInfo* ExecContext::cpu_info() const { return CpuInfo::GetInstance(); }
-
-// ----------------------------------------------------------------------
-// SelectionVector
-
-SelectionVector::SelectionVector(std::shared_ptr<ArrayData> data)
- : data_(std::move(data)) {
- DCHECK_EQ(Type::INT32, data_->type->id());
- DCHECK_EQ(0, data_->GetNullCount());
- indices_ = data_->GetValues<int32_t>(1);
-}
-
-SelectionVector::SelectionVector(const Array& arr) : SelectionVector(arr.data()) {}
-
-int32_t SelectionVector::length() const { return static_cast<int32_t>(data_->length); }
-
-Result<std::shared_ptr<SelectionVector>> SelectionVector::FromMask(
- const BooleanArray& arr) {
- return Status::NotImplemented("FromMask");
-}
-
-Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
- const FunctionOptions* options, ExecContext* ctx) {
- if (ctx == nullptr) {
- ExecContext default_ctx;
- return CallFunction(func_name, args, options, &default_ctx);
- }
- ARROW_ASSIGN_OR_RAISE(std::shared_ptr<const Function> func,
- ctx->func_registry()->GetFunction(func_name));
- return func->Execute(args, options, ctx);
-}
-
-Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
- ExecContext* ctx) {
- return CallFunction(func_name, args, /*options=*/nullptr, ctx);
-}
-
-} // namespace compute
-} // namespace arrow
+ this->func_registry_ = func_registry == nullptr ? GetFunctionRegistry() : func_registry;
+}
+
+CpuInfo* ExecContext::cpu_info() const { return CpuInfo::GetInstance(); }
+
+// ----------------------------------------------------------------------
+// SelectionVector
+
+SelectionVector::SelectionVector(std::shared_ptr<ArrayData> data)
+ : data_(std::move(data)) {
+ DCHECK_EQ(Type::INT32, data_->type->id());
+ DCHECK_EQ(0, data_->GetNullCount());
+ indices_ = data_->GetValues<int32_t>(1);
+}
+
+SelectionVector::SelectionVector(const Array& arr) : SelectionVector(arr.data()) {}
+
+int32_t SelectionVector::length() const { return static_cast<int32_t>(data_->length); }
+
+Result<std::shared_ptr<SelectionVector>> SelectionVector::FromMask(
+ const BooleanArray& arr) {
+ return Status::NotImplemented("FromMask");
+}
+
+Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
+ const FunctionOptions* options, ExecContext* ctx) {
+ if (ctx == nullptr) {
+ ExecContext default_ctx;
+ return CallFunction(func_name, args, options, &default_ctx);
+ }
+ ARROW_ASSIGN_OR_RAISE(std::shared_ptr<const Function> func,
+ ctx->func_registry()->GetFunction(func_name));
+ return func->Execute(args, options, ctx);
+}
+
+Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
+ ExecContext* ctx) {
+ return CallFunction(func_name, args, /*options=*/nullptr, ctx);
+}
+
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/exec.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/exec.h
index de1b695de4..227d0c76ad 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/exec.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/exec.h
@@ -1,183 +1,183 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-// NOTE: API is EXPERIMENTAL and will change without going through a
-// deprecation cycle
-
-#pragma once
-
-#include <cstdint>
-#include <limits>
-#include <memory>
-#include <string>
-#include <utility>
-#include <vector>
-
-#include "arrow/array/data.h"
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// NOTE: API is EXPERIMENTAL and will change without going through a
+// deprecation cycle
+
+#pragma once
+
+#include <cstdint>
+#include <limits>
+#include <memory>
+#include <string>
+#include <utility>
+#include <vector>
+
+#include "arrow/array/data.h"
#include "arrow/compute/exec/expression.h"
-#include "arrow/datum.h"
-#include "arrow/memory_pool.h"
-#include "arrow/result.h"
-#include "arrow/type_fwd.h"
-#include "arrow/util/macros.h"
+#include "arrow/datum.h"
+#include "arrow/memory_pool.h"
+#include "arrow/result.h"
+#include "arrow/type_fwd.h"
+#include "arrow/util/macros.h"
#include "arrow/util/type_fwd.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-namespace internal {
-
-class CpuInfo;
-
-} // namespace internal
-
-namespace compute {
-
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+namespace internal {
+
+class CpuInfo;
+
+} // namespace internal
+
+namespace compute {
+
class FunctionOptions;
-class FunctionRegistry;
-
-// It seems like 64K might be a good default chunksize to use for execution
-// based on the experience of other query processing systems. The current
-// default is not to chunk contiguous arrays, though, but this may change in
-// the future once parallel execution is implemented
-static constexpr int64_t kDefaultExecChunksize = UINT16_MAX;
-
-/// \brief Context for expression-global variables and options used by
-/// function evaluation
-class ARROW_EXPORT ExecContext {
- public:
- // If no function registry passed, the default is used.
- explicit ExecContext(MemoryPool* pool = default_memory_pool(),
+class FunctionRegistry;
+
+// It seems like 64K might be a good default chunksize to use for execution
+// based on the experience of other query processing systems. The current
+// default is not to chunk contiguous arrays, though, but this may change in
+// the future once parallel execution is implemented
+static constexpr int64_t kDefaultExecChunksize = UINT16_MAX;
+
+/// \brief Context for expression-global variables and options used by
+/// function evaluation
+class ARROW_EXPORT ExecContext {
+ public:
+ // If no function registry passed, the default is used.
+ explicit ExecContext(MemoryPool* pool = default_memory_pool(),
::arrow::internal::Executor* executor = NULLPTR,
- FunctionRegistry* func_registry = NULLPTR);
-
- /// \brief The MemoryPool used for allocations, default is
- /// default_memory_pool().
- MemoryPool* memory_pool() const { return pool_; }
-
- ::arrow::internal::CpuInfo* cpu_info() const;
-
+ FunctionRegistry* func_registry = NULLPTR);
+
+ /// \brief The MemoryPool used for allocations, default is
+ /// default_memory_pool().
+ MemoryPool* memory_pool() const { return pool_; }
+
+ ::arrow::internal::CpuInfo* cpu_info() const;
+
/// \brief An Executor which may be used to parallelize execution.
::arrow::internal::Executor* executor() const { return executor_; }
- /// \brief The FunctionRegistry for looking up functions by name and
- /// selecting kernels for execution. Defaults to the library-global function
- /// registry provided by GetFunctionRegistry.
- FunctionRegistry* func_registry() const { return func_registry_; }
-
- // \brief Set maximum length unit of work for kernel execution. Larger
- // contiguous array inputs will be split into smaller chunks, and, if
- // possible and enabled, processed in parallel. The default chunksize is
- // INT64_MAX, so contiguous arrays are not split.
- void set_exec_chunksize(int64_t chunksize) { exec_chunksize_ = chunksize; }
-
- // \brief Maximum length for ExecBatch data chunks processed by
- // kernels. Contiguous array inputs with longer length will be split into
- // smaller chunks.
- int64_t exec_chunksize() const { return exec_chunksize_; }
-
- /// \brief Set whether to use multiple threads for function execution. This
- /// is not yet used.
- void set_use_threads(bool use_threads = true) { use_threads_ = use_threads; }
-
- /// \brief If true, then utilize multiple threads where relevant for function
- /// execution. This is not yet used.
- bool use_threads() const { return use_threads_; }
-
- // Set the preallocation strategy for kernel execution as it relates to
- // chunked execution. For chunked execution, whether via ChunkedArray inputs
- // or splitting larger Array arguments into smaller pieces, contiguous
- // allocation (if permitted by the kernel) will allocate one large array to
- // write output into yielding it to the caller at the end. If this option is
- // set to off, then preallocations will be performed independently for each
- // chunk of execution
- //
- // TODO: At some point we might want the limit the size of contiguous
- // preallocations. For example, even if the exec_chunksize is 64K or less, we
- // might limit contiguous allocations to 1M records, say.
- void set_preallocate_contiguous(bool preallocate) {
- preallocate_contiguous_ = preallocate;
- }
-
- /// \brief If contiguous preallocations should be used when doing chunked
- /// execution as specified by exec_chunksize(). See
- /// set_preallocate_contiguous() for more information.
- bool preallocate_contiguous() const { return preallocate_contiguous_; }
-
- private:
- MemoryPool* pool_;
+ /// \brief The FunctionRegistry for looking up functions by name and
+ /// selecting kernels for execution. Defaults to the library-global function
+ /// registry provided by GetFunctionRegistry.
+ FunctionRegistry* func_registry() const { return func_registry_; }
+
+ // \brief Set maximum length unit of work for kernel execution. Larger
+ // contiguous array inputs will be split into smaller chunks, and, if
+ // possible and enabled, processed in parallel. The default chunksize is
+ // INT64_MAX, so contiguous arrays are not split.
+ void set_exec_chunksize(int64_t chunksize) { exec_chunksize_ = chunksize; }
+
+ // \brief Maximum length for ExecBatch data chunks processed by
+ // kernels. Contiguous array inputs with longer length will be split into
+ // smaller chunks.
+ int64_t exec_chunksize() const { return exec_chunksize_; }
+
+ /// \brief Set whether to use multiple threads for function execution. This
+ /// is not yet used.
+ void set_use_threads(bool use_threads = true) { use_threads_ = use_threads; }
+
+ /// \brief If true, then utilize multiple threads where relevant for function
+ /// execution. This is not yet used.
+ bool use_threads() const { return use_threads_; }
+
+ // Set the preallocation strategy for kernel execution as it relates to
+ // chunked execution. For chunked execution, whether via ChunkedArray inputs
+ // or splitting larger Array arguments into smaller pieces, contiguous
+ // allocation (if permitted by the kernel) will allocate one large array to
+ // write output into yielding it to the caller at the end. If this option is
+ // set to off, then preallocations will be performed independently for each
+ // chunk of execution
+ //
+ // TODO: At some point we might want the limit the size of contiguous
+ // preallocations. For example, even if the exec_chunksize is 64K or less, we
+ // might limit contiguous allocations to 1M records, say.
+ void set_preallocate_contiguous(bool preallocate) {
+ preallocate_contiguous_ = preallocate;
+ }
+
+ /// \brief If contiguous preallocations should be used when doing chunked
+ /// execution as specified by exec_chunksize(). See
+ /// set_preallocate_contiguous() for more information.
+ bool preallocate_contiguous() const { return preallocate_contiguous_; }
+
+ private:
+ MemoryPool* pool_;
::arrow::internal::Executor* executor_;
- FunctionRegistry* func_registry_;
- int64_t exec_chunksize_ = std::numeric_limits<int64_t>::max();
- bool preallocate_contiguous_ = true;
- bool use_threads_ = true;
-};
-
+ FunctionRegistry* func_registry_;
+ int64_t exec_chunksize_ = std::numeric_limits<int64_t>::max();
+ bool preallocate_contiguous_ = true;
+ bool use_threads_ = true;
+};
+
ARROW_EXPORT ExecContext* default_exec_context();
-// TODO: Consider standardizing on uint16 selection vectors and only use them
-// when we can ensure that each value is 64K length or smaller
-
-/// \brief Container for an array of value selection indices that were
-/// materialized from a filter.
-///
-/// Columnar query engines (see e.g. [1]) have found that rather than
-/// materializing filtered data, the filter can instead be converted to an
-/// array of the "on" indices and then "fusing" these indices in operator
-/// implementations. This is especially relevant for aggregations but also
-/// applies to scalar operations.
-///
-/// We are not yet using this so this is mostly a placeholder for now.
-///
-/// [1]: http://cidrdb.org/cidr2005/papers/P19.pdf
-class ARROW_EXPORT SelectionVector {
- public:
- explicit SelectionVector(std::shared_ptr<ArrayData> data);
-
- explicit SelectionVector(const Array& arr);
-
- /// \brief Create SelectionVector from boolean mask
- static Result<std::shared_ptr<SelectionVector>> FromMask(const BooleanArray& arr);
-
- const int32_t* indices() const { return indices_; }
- int32_t length() const;
-
- private:
- std::shared_ptr<ArrayData> data_;
- const int32_t* indices_;
-};
-
-/// \brief A unit of work for kernel execution. It contains a collection of
-/// Array and Scalar values and an optional SelectionVector indicating that
-/// there is an unmaterialized filter that either must be materialized, or (if
-/// the kernel supports it) pushed down into the kernel implementation.
-///
-/// ExecBatch is semantically similar to RecordBatch in that in a SQL context
-/// it represents a collection of records, but constant "columns" are
-/// represented by Scalar values rather than having to be converted into arrays
-/// with repeated values.
-///
-/// TODO: Datum uses arrow/util/variant.h which may be a bit heavier-weight
-/// than is desirable for this class. Microbenchmarks would help determine for
-/// sure. See ARROW-8928.
+// TODO: Consider standardizing on uint16 selection vectors and only use them
+// when we can ensure that each value is 64K length or smaller
+
+/// \brief Container for an array of value selection indices that were
+/// materialized from a filter.
+///
+/// Columnar query engines (see e.g. [1]) have found that rather than
+/// materializing filtered data, the filter can instead be converted to an
+/// array of the "on" indices and then "fusing" these indices in operator
+/// implementations. This is especially relevant for aggregations but also
+/// applies to scalar operations.
+///
+/// We are not yet using this so this is mostly a placeholder for now.
+///
+/// [1]: http://cidrdb.org/cidr2005/papers/P19.pdf
+class ARROW_EXPORT SelectionVector {
+ public:
+ explicit SelectionVector(std::shared_ptr<ArrayData> data);
+
+ explicit SelectionVector(const Array& arr);
+
+ /// \brief Create SelectionVector from boolean mask
+ static Result<std::shared_ptr<SelectionVector>> FromMask(const BooleanArray& arr);
+
+ const int32_t* indices() const { return indices_; }
+ int32_t length() const;
+
+ private:
+ std::shared_ptr<ArrayData> data_;
+ const int32_t* indices_;
+};
+
+/// \brief A unit of work for kernel execution. It contains a collection of
+/// Array and Scalar values and an optional SelectionVector indicating that
+/// there is an unmaterialized filter that either must be materialized, or (if
+/// the kernel supports it) pushed down into the kernel implementation.
+///
+/// ExecBatch is semantically similar to RecordBatch in that in a SQL context
+/// it represents a collection of records, but constant "columns" are
+/// represented by Scalar values rather than having to be converted into arrays
+/// with repeated values.
+///
+/// TODO: Datum uses arrow/util/variant.h which may be a bit heavier-weight
+/// than is desirable for this class. Microbenchmarks would help determine for
+/// sure. See ARROW-8928.
struct ARROW_EXPORT ExecBatch {
ExecBatch() = default;
- ExecBatch(std::vector<Datum> values, int64_t length)
- : values(std::move(values)), length(length) {}
-
+ ExecBatch(std::vector<Datum> values, int64_t length)
+ : values(std::move(values)), length(length) {}
+
explicit ExecBatch(const RecordBatch& batch);
static Result<ExecBatch> Make(std::vector<Datum> values);
@@ -185,80 +185,80 @@ struct ARROW_EXPORT ExecBatch {
Result<std::shared_ptr<RecordBatch>> ToRecordBatch(
std::shared_ptr<Schema> schema, MemoryPool* pool = default_memory_pool()) const;
- /// The values representing positional arguments to be passed to a kernel's
- /// exec function for processing.
- std::vector<Datum> values;
-
- /// A deferred filter represented as an array of indices into the values.
- ///
- /// For example, the filter [true, true, false, true] would be represented as
- /// the selection vector [0, 1, 3]. When the selection vector is set,
- /// ExecBatch::length is equal to the length of this array.
- std::shared_ptr<SelectionVector> selection_vector;
-
+ /// The values representing positional arguments to be passed to a kernel's
+ /// exec function for processing.
+ std::vector<Datum> values;
+
+ /// A deferred filter represented as an array of indices into the values.
+ ///
+ /// For example, the filter [true, true, false, true] would be represented as
+ /// the selection vector [0, 1, 3]. When the selection vector is set,
+ /// ExecBatch::length is equal to the length of this array.
+ std::shared_ptr<SelectionVector> selection_vector;
+
/// A predicate Expression guaranteed to evaluate to true for all rows in this batch.
Expression guarantee = literal(true);
- /// The semantic length of the ExecBatch. When the values are all scalars,
- /// the length should be set to 1, otherwise the length is taken from the
- /// array values, except when there is a selection vector. When there is a
- /// selection vector set, the length of the batch is the length of the
- /// selection.
- ///
- /// If the array values are of length 0 then the length is 0 regardless of
- /// whether any values are Scalar. In general ExecBatch objects are produced
- /// by ExecBatchIterator which by design does not yield length-0 batches.
- int64_t length;
-
- /// \brief Return the value at the i-th index
- template <typename index_type>
- inline const Datum& operator[](index_type i) const {
- return values[i];
- }
-
+ /// The semantic length of the ExecBatch. When the values are all scalars,
+ /// the length should be set to 1, otherwise the length is taken from the
+ /// array values, except when there is a selection vector. When there is a
+ /// selection vector set, the length of the batch is the length of the
+ /// selection.
+ ///
+ /// If the array values are of length 0 then the length is 0 regardless of
+ /// whether any values are Scalar. In general ExecBatch objects are produced
+ /// by ExecBatchIterator which by design does not yield length-0 batches.
+ int64_t length;
+
+ /// \brief Return the value at the i-th index
+ template <typename index_type>
+ inline const Datum& operator[](index_type i) const {
+ return values[i];
+ }
+
bool Equals(const ExecBatch& other) const;
- /// \brief A convenience for the number of values / arguments.
- int num_values() const { return static_cast<int>(values.size()); }
-
+ /// \brief A convenience for the number of values / arguments.
+ int num_values() const { return static_cast<int>(values.size()); }
+
ExecBatch Slice(int64_t offset, int64_t length) const;
- /// \brief A convenience for returning the ValueDescr objects (types and
- /// shapes) from the batch.
- std::vector<ValueDescr> GetDescriptors() const {
- std::vector<ValueDescr> result;
- for (const auto& value : this->values) {
- result.emplace_back(value.descr());
- }
- return result;
- }
+ /// \brief A convenience for returning the ValueDescr objects (types and
+ /// shapes) from the batch.
+ std::vector<ValueDescr> GetDescriptors() const {
+ std::vector<ValueDescr> result;
+ for (const auto& value : this->values) {
+ result.emplace_back(value.descr());
+ }
+ return result;
+ }
ARROW_EXPORT friend void PrintTo(const ExecBatch&, std::ostream*);
-};
-
+};
+
inline bool operator==(const ExecBatch& l, const ExecBatch& r) { return l.Equals(r); }
inline bool operator!=(const ExecBatch& l, const ExecBatch& r) { return !l.Equals(r); }
-/// \defgroup compute-call-function One-shot calls to compute functions
-///
-/// @{
-
-/// \brief One-shot invoker for all types of functions.
-///
-/// Does kernel dispatch, argument checking, iteration of ChunkedArray inputs,
-/// and wrapping of outputs.
-ARROW_EXPORT
-Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
- const FunctionOptions* options, ExecContext* ctx = NULLPTR);
-
-/// \brief Variant of CallFunction which uses a function's default options.
-///
-/// NB: Some functions require FunctionOptions be provided.
-ARROW_EXPORT
-Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
- ExecContext* ctx = NULLPTR);
-
-/// @}
-
-} // namespace compute
-} // namespace arrow
+/// \defgroup compute-call-function One-shot calls to compute functions
+///
+/// @{
+
+/// \brief One-shot invoker for all types of functions.
+///
+/// Does kernel dispatch, argument checking, iteration of ChunkedArray inputs,
+/// and wrapping of outputs.
+ARROW_EXPORT
+Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
+ const FunctionOptions* options, ExecContext* ctx = NULLPTR);
+
+/// \brief Variant of CallFunction which uses a function's default options.
+///
+/// NB: Some functions require FunctionOptions be provided.
+ARROW_EXPORT
+Result<Datum> CallFunction(const std::string& func_name, const std::vector<Datum>& args,
+ ExecContext* ctx = NULLPTR);
+
+/// @}
+
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/exec_internal.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/exec_internal.h
index 55daa243cd..e2872e6141 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/exec_internal.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/exec_internal.h
@@ -1,111 +1,111 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <cstdint>
-#include <limits>
-#include <memory>
-#include <string>
-#include <vector>
-
-#include "arrow/array.h"
-#include "arrow/buffer.h"
-#include "arrow/compute/exec.h"
-#include "arrow/compute/kernel.h"
-#include "arrow/status.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-namespace compute {
-
-class Function;
-
-static constexpr int64_t kDefaultMaxChunksize = std::numeric_limits<int64_t>::max();
-
-namespace detail {
-
-/// \brief Break std::vector<Datum> into a sequence of ExecBatch for kernel
-/// execution
-class ARROW_EXPORT ExecBatchIterator {
- public:
- /// \brief Construct iterator and do basic argument validation
- ///
- /// \param[in] args the Datum argument, must be all array-like or scalar
- /// \param[in] max_chunksize the maximum length of each ExecBatch. Depending
- /// on the chunk layout of ChunkedArray.
- static Result<std::unique_ptr<ExecBatchIterator>> Make(
- std::vector<Datum> args, int64_t max_chunksize = kDefaultMaxChunksize);
-
- /// \brief Compute the next batch. Always returns at least one batch. Return
- /// false if the iterator is exhausted
- bool Next(ExecBatch* batch);
-
- int64_t length() const { return length_; }
-
- int64_t position() const { return position_; }
-
- int64_t max_chunksize() const { return max_chunksize_; }
-
- private:
- ExecBatchIterator(std::vector<Datum> args, int64_t length, int64_t max_chunksize);
-
- std::vector<Datum> args_;
- std::vector<int> chunk_indexes_;
- std::vector<int64_t> chunk_positions_;
- int64_t position_;
- int64_t length_;
- int64_t max_chunksize_;
-};
-
-// "Push" / listener API like IPC reader so that consumers can receive
-// processed chunks as soon as they're available.
-
-class ARROW_EXPORT ExecListener {
- public:
- virtual ~ExecListener() = default;
-
- virtual Status OnResult(Datum) { return Status::NotImplemented("OnResult"); }
-};
-
-class DatumAccumulator : public ExecListener {
- public:
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <cstdint>
+#include <limits>
+#include <memory>
+#include <string>
+#include <vector>
+
+#include "arrow/array.h"
+#include "arrow/buffer.h"
+#include "arrow/compute/exec.h"
+#include "arrow/compute/kernel.h"
+#include "arrow/status.h"
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+namespace compute {
+
+class Function;
+
+static constexpr int64_t kDefaultMaxChunksize = std::numeric_limits<int64_t>::max();
+
+namespace detail {
+
+/// \brief Break std::vector<Datum> into a sequence of ExecBatch for kernel
+/// execution
+class ARROW_EXPORT ExecBatchIterator {
+ public:
+ /// \brief Construct iterator and do basic argument validation
+ ///
+ /// \param[in] args the Datum argument, must be all array-like or scalar
+ /// \param[in] max_chunksize the maximum length of each ExecBatch. Depending
+ /// on the chunk layout of ChunkedArray.
+ static Result<std::unique_ptr<ExecBatchIterator>> Make(
+ std::vector<Datum> args, int64_t max_chunksize = kDefaultMaxChunksize);
+
+ /// \brief Compute the next batch. Always returns at least one batch. Return
+ /// false if the iterator is exhausted
+ bool Next(ExecBatch* batch);
+
+ int64_t length() const { return length_; }
+
+ int64_t position() const { return position_; }
+
+ int64_t max_chunksize() const { return max_chunksize_; }
+
+ private:
+ ExecBatchIterator(std::vector<Datum> args, int64_t length, int64_t max_chunksize);
+
+ std::vector<Datum> args_;
+ std::vector<int> chunk_indexes_;
+ std::vector<int64_t> chunk_positions_;
+ int64_t position_;
+ int64_t length_;
+ int64_t max_chunksize_;
+};
+
+// "Push" / listener API like IPC reader so that consumers can receive
+// processed chunks as soon as they're available.
+
+class ARROW_EXPORT ExecListener {
+ public:
+ virtual ~ExecListener() = default;
+
+ virtual Status OnResult(Datum) { return Status::NotImplemented("OnResult"); }
+};
+
+class DatumAccumulator : public ExecListener {
+ public:
DatumAccumulator() = default;
-
- Status OnResult(Datum value) override {
- values_.emplace_back(value);
- return Status::OK();
- }
-
+
+ Status OnResult(Datum value) override {
+ values_.emplace_back(value);
+ return Status::OK();
+ }
+
std::vector<Datum> values() { return std::move(values_); }
-
- private:
- std::vector<Datum> values_;
-};
-
-/// \brief Check that each Datum is of a "value" type, which means either
-/// SCALAR, ARRAY, or CHUNKED_ARRAY. If there are chunked inputs, then these
-/// inputs will be split into non-chunked ExecBatch values for execution
-Status CheckAllValues(const std::vector<Datum>& values);
-
+
+ private:
+ std::vector<Datum> values_;
+};
+
+/// \brief Check that each Datum is of a "value" type, which means either
+/// SCALAR, ARRAY, or CHUNKED_ARRAY. If there are chunked inputs, then these
+/// inputs will be split into non-chunked ExecBatch values for execution
+Status CheckAllValues(const std::vector<Datum>& values);
+
class ARROW_EXPORT KernelExecutor {
- public:
+ public:
virtual ~KernelExecutor() = default;
-
+
/// The Kernel's `init` method must be called and any KernelState set in the
/// KernelContext *before* KernelExecutor::Init is called. This is to facilitate
/// the case where init may be expensive and does not need to be called again for
@@ -113,30 +113,30 @@ class ARROW_EXPORT KernelExecutor {
/// for all scanned batches in a dataset filter.
virtual Status Init(KernelContext*, KernelInitArgs) = 0;
- /// XXX: Better configurability for listener
- /// Not thread-safe
- virtual Status Execute(const std::vector<Datum>& args, ExecListener* listener) = 0;
-
- virtual Datum WrapResults(const std::vector<Datum>& args,
- const std::vector<Datum>& outputs) = 0;
-
+ /// XXX: Better configurability for listener
+ /// Not thread-safe
+ virtual Status Execute(const std::vector<Datum>& args, ExecListener* listener) = 0;
+
+ virtual Datum WrapResults(const std::vector<Datum>& args,
+ const std::vector<Datum>& outputs) = 0;
+
static std::unique_ptr<KernelExecutor> MakeScalar();
static std::unique_ptr<KernelExecutor> MakeVector();
static std::unique_ptr<KernelExecutor> MakeScalarAggregate();
-};
-
-/// \brief Populate validity bitmap with the intersection of the nullity of the
-/// arguments. If a preallocated bitmap is not provided, then one will be
-/// allocated if needed (in some cases a bitmap can be zero-copied from the
-/// arguments). If any Scalar value is null, then the entire validity bitmap
-/// will be set to null.
-///
-/// \param[in] ctx kernel execution context, for memory allocation etc.
-/// \param[in] batch the data batch
-/// \param[in] out the output ArrayData, must not be null
-ARROW_EXPORT
-Status PropagateNulls(KernelContext* ctx, const ExecBatch& batch, ArrayData* out);
-
-} // namespace detail
-} // namespace compute
-} // namespace arrow
+};
+
+/// \brief Populate validity bitmap with the intersection of the nullity of the
+/// arguments. If a preallocated bitmap is not provided, then one will be
+/// allocated if needed (in some cases a bitmap can be zero-copied from the
+/// arguments). If any Scalar value is null, then the entire validity bitmap
+/// will be set to null.
+///
+/// \param[in] ctx kernel execution context, for memory allocation etc.
+/// \param[in] batch the data batch
+/// \param[in] out the output ArrayData, must not be null
+ARROW_EXPORT
+Status PropagateNulls(KernelContext* ctx, const ExecBatch& batch, ArrayData* out);
+
+} // namespace detail
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/function.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/function.cc
index 05d14d03b1..3eefb327c1 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/function.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/function.cc
@@ -1,46 +1,46 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/compute/function.h"
-
-#include <cstddef>
-#include <memory>
-#include <sstream>
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/compute/function.h"
+
+#include <cstddef>
+#include <memory>
+#include <sstream>
+
#include "arrow/compute/api_scalar.h"
#include "arrow/compute/cast.h"
-#include "arrow/compute/exec.h"
-#include "arrow/compute/exec_internal.h"
+#include "arrow/compute/exec.h"
+#include "arrow/compute/exec_internal.h"
#include "arrow/compute/function_internal.h"
#include "arrow/compute/kernels/common.h"
#include "arrow/compute/registry.h"
-#include "arrow/datum.h"
-#include "arrow/util/cpu_info.h"
-
-namespace arrow {
+#include "arrow/datum.h"
+#include "arrow/util/cpu_info.h"
+
+namespace arrow {
using internal::checked_cast;
-namespace compute {
+namespace compute {
Result<std::shared_ptr<Buffer>> FunctionOptionsType::Serialize(
const FunctionOptions&) const {
return Status::NotImplemented("Serialize for ", type_name());
}
-
+
Result<std::unique_ptr<FunctionOptions>> FunctionOptionsType::Deserialize(
const Buffer& buffer) const {
return Status::NotImplemented("Deserialize for ", type_name());
@@ -79,7 +79,7 @@ static Status CheckArityImpl(const Function* function, int passed_num_args,
return Status::Invalid("VarArgs function ", function->name(), " needs at least ",
function->arity().num_args, " arguments but ",
passed_num_args_label, " only ", passed_num_args);
- }
+ }
if (!function->arity().is_varargs && passed_num_args != function->arity().num_args) {
return Status::Invalid("Function ", function->name(), " accepts ",
@@ -87,18 +87,18 @@ static Status CheckArityImpl(const Function* function, int passed_num_args,
passed_num_args_label, " ", passed_num_args);
}
- return Status::OK();
-}
-
+ return Status::OK();
+}
+
Status Function::CheckArity(const std::vector<InputType>& in_types) const {
return CheckArityImpl(this, static_cast<int>(in_types.size()), "kernel accepts");
-}
-
+}
+
Status Function::CheckArity(const std::vector<ValueDescr>& descrs) const {
return CheckArityImpl(this, static_cast<int>(descrs.size()),
"attempted to look up kernel(s) with");
}
-
+
namespace detail {
Status NoMatchingKernel(const Function* func, const std::vector<ValueDescr>& descrs) {
@@ -112,38 +112,38 @@ const KernelType* DispatchExactImpl(const std::vector<KernelType*>& kernels,
const std::vector<ValueDescr>& values) {
const KernelType* kernel_matches[SimdLevel::MAX] = {nullptr};
- // Validate arity
- for (const auto& kernel : kernels) {
+ // Validate arity
+ for (const auto& kernel : kernels) {
if (kernel->signature->MatchesInputs(values)) {
kernel_matches[kernel->simd_level] = kernel;
- }
- }
-
- // Dispatch as the CPU feature
+ }
+ }
+
+ // Dispatch as the CPU feature
#if defined(ARROW_HAVE_RUNTIME_AVX512) || defined(ARROW_HAVE_RUNTIME_AVX2)
- auto cpu_info = arrow::internal::CpuInfo::GetInstance();
-#endif
-#if defined(ARROW_HAVE_RUNTIME_AVX512)
- if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX512)) {
- if (kernel_matches[SimdLevel::AVX512]) {
- return kernel_matches[SimdLevel::AVX512];
- }
- }
+ auto cpu_info = arrow::internal::CpuInfo::GetInstance();
#endif
-#if defined(ARROW_HAVE_RUNTIME_AVX2)
- if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX2)) {
- if (kernel_matches[SimdLevel::AVX2]) {
- return kernel_matches[SimdLevel::AVX2];
- }
- }
-#endif
- if (kernel_matches[SimdLevel::NONE]) {
- return kernel_matches[SimdLevel::NONE];
- }
-
+#if defined(ARROW_HAVE_RUNTIME_AVX512)
+ if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX512)) {
+ if (kernel_matches[SimdLevel::AVX512]) {
+ return kernel_matches[SimdLevel::AVX512];
+ }
+ }
+#endif
+#if defined(ARROW_HAVE_RUNTIME_AVX2)
+ if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX2)) {
+ if (kernel_matches[SimdLevel::AVX2]) {
+ return kernel_matches[SimdLevel::AVX2];
+ }
+ }
+#endif
+ if (kernel_matches[SimdLevel::NONE]) {
+ return kernel_matches[SimdLevel::NONE];
+ }
+
return nullptr;
-}
-
+}
+
const Kernel* DispatchExactImpl(const Function* func,
const std::vector<ValueDescr>& values) {
if (func->kind() == Function::SCALAR) {
@@ -189,19 +189,19 @@ Result<const Kernel*> Function::DispatchBest(std::vector<ValueDescr>* values) co
return DispatchExact(*values);
}
-Result<Datum> Function::Execute(const std::vector<Datum>& args,
- const FunctionOptions* options, ExecContext* ctx) const {
- if (options == nullptr) {
- options = default_options();
- }
- if (ctx == nullptr) {
- ExecContext default_ctx;
- return Execute(args, options, &default_ctx);
- }
-
- // type-check Datum arguments here. Really we'd like to avoid this as much as
- // possible
- RETURN_NOT_OK(detail::CheckAllValues(args));
+Result<Datum> Function::Execute(const std::vector<Datum>& args,
+ const FunctionOptions* options, ExecContext* ctx) const {
+ if (options == nullptr) {
+ options = default_options();
+ }
+ if (ctx == nullptr) {
+ ExecContext default_ctx;
+ return Execute(args, options, &default_ctx);
+ }
+
+ // type-check Datum arguments here. Really we'd like to avoid this as much as
+ // possible
+ RETURN_NOT_OK(detail::CheckAllValues(args));
std::vector<ValueDescr> inputs(args.size());
for (size_t i = 0; i != args.size(); ++i) {
inputs[i] = args[i].descr();
@@ -230,11 +230,11 @@ Result<Datum> Function::Execute(const std::vector<Datum>& args,
}
RETURN_NOT_OK(executor->Init(&kernel_ctx, {kernel, inputs, options}));
- auto listener = std::make_shared<detail::DatumAccumulator>();
+ auto listener = std::make_shared<detail::DatumAccumulator>();
RETURN_NOT_OK(executor->Execute(implicitly_cast_args, listener.get()));
return executor->WrapResults(implicitly_cast_args, listener->values());
-}
-
+}
+
Status Function::Validate() const {
if (!doc_->summary.empty()) {
// Documentation given, check its contents
@@ -252,59 +252,59 @@ Status Function::Validate() const {
return Status::OK();
}
-Status ScalarFunction::AddKernel(std::vector<InputType> in_types, OutputType out_type,
- ArrayKernelExec exec, KernelInit init) {
+Status ScalarFunction::AddKernel(std::vector<InputType> in_types, OutputType out_type,
+ ArrayKernelExec exec, KernelInit init) {
RETURN_NOT_OK(CheckArity(in_types));
-
- if (arity_.is_varargs && in_types.size() != 1) {
- return Status::Invalid("VarArgs signatures must have exactly one input type");
- }
- auto sig =
- KernelSignature::Make(std::move(in_types), std::move(out_type), arity_.is_varargs);
- kernels_.emplace_back(std::move(sig), exec, init);
- return Status::OK();
-}
-
-Status ScalarFunction::AddKernel(ScalarKernel kernel) {
+
+ if (arity_.is_varargs && in_types.size() != 1) {
+ return Status::Invalid("VarArgs signatures must have exactly one input type");
+ }
+ auto sig =
+ KernelSignature::Make(std::move(in_types), std::move(out_type), arity_.is_varargs);
+ kernels_.emplace_back(std::move(sig), exec, init);
+ return Status::OK();
+}
+
+Status ScalarFunction::AddKernel(ScalarKernel kernel) {
RETURN_NOT_OK(CheckArity(kernel.signature->in_types()));
- if (arity_.is_varargs && !kernel.signature->is_varargs()) {
- return Status::Invalid("Function accepts varargs but kernel signature does not");
- }
- kernels_.emplace_back(std::move(kernel));
- return Status::OK();
-}
-
-Status VectorFunction::AddKernel(std::vector<InputType> in_types, OutputType out_type,
- ArrayKernelExec exec, KernelInit init) {
+ if (arity_.is_varargs && !kernel.signature->is_varargs()) {
+ return Status::Invalid("Function accepts varargs but kernel signature does not");
+ }
+ kernels_.emplace_back(std::move(kernel));
+ return Status::OK();
+}
+
+Status VectorFunction::AddKernel(std::vector<InputType> in_types, OutputType out_type,
+ ArrayKernelExec exec, KernelInit init) {
RETURN_NOT_OK(CheckArity(in_types));
-
- if (arity_.is_varargs && in_types.size() != 1) {
- return Status::Invalid("VarArgs signatures must have exactly one input type");
- }
- auto sig =
- KernelSignature::Make(std::move(in_types), std::move(out_type), arity_.is_varargs);
- kernels_.emplace_back(std::move(sig), exec, init);
- return Status::OK();
-}
-
-Status VectorFunction::AddKernel(VectorKernel kernel) {
+
+ if (arity_.is_varargs && in_types.size() != 1) {
+ return Status::Invalid("VarArgs signatures must have exactly one input type");
+ }
+ auto sig =
+ KernelSignature::Make(std::move(in_types), std::move(out_type), arity_.is_varargs);
+ kernels_.emplace_back(std::move(sig), exec, init);
+ return Status::OK();
+}
+
+Status VectorFunction::AddKernel(VectorKernel kernel) {
RETURN_NOT_OK(CheckArity(kernel.signature->in_types()));
- if (arity_.is_varargs && !kernel.signature->is_varargs()) {
- return Status::Invalid("Function accepts varargs but kernel signature does not");
- }
- kernels_.emplace_back(std::move(kernel));
- return Status::OK();
-}
-
-Status ScalarAggregateFunction::AddKernel(ScalarAggregateKernel kernel) {
+ if (arity_.is_varargs && !kernel.signature->is_varargs()) {
+ return Status::Invalid("Function accepts varargs but kernel signature does not");
+ }
+ kernels_.emplace_back(std::move(kernel));
+ return Status::OK();
+}
+
+Status ScalarAggregateFunction::AddKernel(ScalarAggregateKernel kernel) {
RETURN_NOT_OK(CheckArity(kernel.signature->in_types()));
- if (arity_.is_varargs && !kernel.signature->is_varargs()) {
- return Status::Invalid("Function accepts varargs but kernel signature does not");
- }
- kernels_.emplace_back(std::move(kernel));
- return Status::OK();
-}
-
+ if (arity_.is_varargs && !kernel.signature->is_varargs()) {
+ return Status::Invalid("Function accepts varargs but kernel signature does not");
+ }
+ kernels_.emplace_back(std::move(kernel));
+ return Status::OK();
+}
+
Status HashAggregateFunction::AddKernel(HashAggregateKernel kernel) {
RETURN_NOT_OK(CheckArity(kernel.signature->in_types()));
if (arity_.is_varargs && !kernel.signature->is_varargs()) {
@@ -312,19 +312,19 @@ Status HashAggregateFunction::AddKernel(HashAggregateKernel kernel) {
}
kernels_.emplace_back(std::move(kernel));
return Status::OK();
-}
-
-Result<Datum> MetaFunction::Execute(const std::vector<Datum>& args,
- const FunctionOptions* options,
- ExecContext* ctx) const {
+}
+
+Result<Datum> MetaFunction::Execute(const std::vector<Datum>& args,
+ const FunctionOptions* options,
+ ExecContext* ctx) const {
RETURN_NOT_OK(
CheckArityImpl(this, static_cast<int>(args.size()), "attempted to Execute with"));
- if (options == nullptr) {
- options = default_options();
- }
- return ExecuteImpl(args, options, ctx);
-}
-
-} // namespace compute
-} // namespace arrow
+ if (options == nullptr) {
+ options = default_options();
+ }
+ return ExecuteImpl(args, options, ctx);
+}
+
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/function.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/function.h
index bd854bbb28..69c55cd998 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/function.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/function.h
@@ -1,45 +1,45 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-// NOTE: API is EXPERIMENTAL and will change without going through a
-// deprecation cycle.
-
-#pragma once
-
-#include <string>
-#include <utility>
-#include <vector>
-
-#include "arrow/compute/kernel.h"
-#include "arrow/compute/type_fwd.h"
-#include "arrow/datum.h"
-#include "arrow/result.h"
-#include "arrow/status.h"
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// NOTE: API is EXPERIMENTAL and will change without going through a
+// deprecation cycle.
+
+#pragma once
+
+#include <string>
+#include <utility>
+#include <vector>
+
+#include "arrow/compute/kernel.h"
+#include "arrow/compute/type_fwd.h"
+#include "arrow/datum.h"
+#include "arrow/result.h"
+#include "arrow/status.h"
#include "arrow/util/compare.h"
-#include "arrow/util/macros.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-namespace compute {
-
-/// \defgroup compute-functions Abstract compute function API
-///
-/// @{
-
+#include "arrow/util/macros.h"
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+namespace compute {
+
+/// \defgroup compute-functions Abstract compute function API
+///
+/// @{
+
/// \brief Extension point for defining options outside libarrow (but
/// still within this project).
class ARROW_EXPORT FunctionOptionsType {
@@ -54,12 +54,12 @@ class ARROW_EXPORT FunctionOptionsType {
const Buffer& buffer) const;
};
-/// \brief Base class for specifying options configuring a function's behavior,
-/// such as error handling.
+/// \brief Base class for specifying options configuring a function's behavior,
+/// such as error handling.
class ARROW_EXPORT FunctionOptions : public util::EqualityComparable<FunctionOptions> {
public:
virtual ~FunctionOptions() = default;
-
+
const FunctionOptionsType* options_type() const { return options_type_; }
const char* type_name() const { return options_type()->type_name(); }
@@ -84,40 +84,40 @@ class ARROW_EXPORT FunctionOptions : public util::EqualityComparable<FunctionOpt
ARROW_EXPORT void PrintTo(const FunctionOptions&, std::ostream*);
-/// \brief Contains the number of required arguments for the function.
-///
-/// Naming conventions taken from https://en.wikipedia.org/wiki/Arity.
-struct ARROW_EXPORT Arity {
- /// \brief A function taking no arguments
- static Arity Nullary() { return Arity(0, false); }
-
- /// \brief A function taking 1 argument
- static Arity Unary() { return Arity(1, false); }
-
- /// \brief A function taking 2 arguments
- static Arity Binary() { return Arity(2, false); }
-
- /// \brief A function taking 3 arguments
- static Arity Ternary() { return Arity(3, false); }
-
- /// \brief A function taking a variable number of arguments
- ///
- /// \param[in] min_args the minimum number of arguments required when
- /// invoking the function
- static Arity VarArgs(int min_args = 0) { return Arity(min_args, true); }
-
- // NOTE: the 0-argument form (default constructor) is required for Cython
- explicit Arity(int num_args = 0, bool is_varargs = false)
- : num_args(num_args), is_varargs(is_varargs) {}
-
- /// The number of required arguments (or the minimum number for varargs
- /// functions).
- int num_args;
-
- /// If true, then the num_args is the minimum number of required arguments.
- bool is_varargs = false;
-};
-
+/// \brief Contains the number of required arguments for the function.
+///
+/// Naming conventions taken from https://en.wikipedia.org/wiki/Arity.
+struct ARROW_EXPORT Arity {
+ /// \brief A function taking no arguments
+ static Arity Nullary() { return Arity(0, false); }
+
+ /// \brief A function taking 1 argument
+ static Arity Unary() { return Arity(1, false); }
+
+ /// \brief A function taking 2 arguments
+ static Arity Binary() { return Arity(2, false); }
+
+ /// \brief A function taking 3 arguments
+ static Arity Ternary() { return Arity(3, false); }
+
+ /// \brief A function taking a variable number of arguments
+ ///
+ /// \param[in] min_args the minimum number of arguments required when
+ /// invoking the function
+ static Arity VarArgs(int min_args = 0) { return Arity(min_args, true); }
+
+ // NOTE: the 0-argument form (default constructor) is required for Cython
+ explicit Arity(int num_args = 0, bool is_varargs = false)
+ : num_args(num_args), is_varargs(is_varargs) {}
+
+ /// The number of required arguments (or the minimum number for varargs
+ /// functions).
+ int num_args;
+
+ /// If true, then the num_args is the minimum number of required arguments.
+ bool is_varargs = false;
+};
+
struct ARROW_EXPORT FunctionDoc {
/// \brief A one-line summary of the function, using a verb.
///
@@ -149,57 +149,57 @@ struct ARROW_EXPORT FunctionDoc {
static const FunctionDoc& Empty();
};
-/// \brief Base class for compute functions. Function implementations contain a
-/// collection of "kernels" which are implementations of the function for
-/// specific argument types. Selecting a viable kernel for executing a function
-/// is referred to as "dispatching".
-class ARROW_EXPORT Function {
- public:
- /// \brief The kind of function, which indicates in what contexts it is
- /// valid for use.
- enum Kind {
- /// A function that performs scalar data operations on whole arrays of
- /// data. Can generally process Array or Scalar values. The size of the
- /// output will be the same as the size (or broadcasted size, in the case
- /// of mixing Array and Scalar inputs) of the input.
- SCALAR,
-
- /// A function with array input and output whose behavior depends on the
- /// values of the entire arrays passed, rather than the value of each scalar
- /// value.
- VECTOR,
-
- /// A function that computes scalar summary statistics from array input.
- SCALAR_AGGREGATE,
-
+/// \brief Base class for compute functions. Function implementations contain a
+/// collection of "kernels" which are implementations of the function for
+/// specific argument types. Selecting a viable kernel for executing a function
+/// is referred to as "dispatching".
+class ARROW_EXPORT Function {
+ public:
+ /// \brief The kind of function, which indicates in what contexts it is
+ /// valid for use.
+ enum Kind {
+ /// A function that performs scalar data operations on whole arrays of
+ /// data. Can generally process Array or Scalar values. The size of the
+ /// output will be the same as the size (or broadcasted size, in the case
+ /// of mixing Array and Scalar inputs) of the input.
+ SCALAR,
+
+ /// A function with array input and output whose behavior depends on the
+ /// values of the entire arrays passed, rather than the value of each scalar
+ /// value.
+ VECTOR,
+
+ /// A function that computes scalar summary statistics from array input.
+ SCALAR_AGGREGATE,
+
/// A function that computes grouped summary statistics from array input
/// and an array of group identifiers.
HASH_AGGREGATE,
- /// A function that dispatches to other functions and does not contain its
- /// own kernels.
- META
- };
-
- virtual ~Function() = default;
-
- /// \brief The name of the kernel. The registry enforces uniqueness of names.
- const std::string& name() const { return name_; }
-
- /// \brief The kind of kernel, which indicates in what contexts it is valid
- /// for use.
- Function::Kind kind() const { return kind_; }
-
- /// \brief Contains the number of arguments the function requires, or if the
- /// function accepts variable numbers of arguments.
- const Arity& arity() const { return arity_; }
-
+ /// A function that dispatches to other functions and does not contain its
+ /// own kernels.
+ META
+ };
+
+ virtual ~Function() = default;
+
+ /// \brief The name of the kernel. The registry enforces uniqueness of names.
+ const std::string& name() const { return name_; }
+
+ /// \brief The kind of kernel, which indicates in what contexts it is valid
+ /// for use.
+ Function::Kind kind() const { return kind_; }
+
+ /// \brief Contains the number of arguments the function requires, or if the
+ /// function accepts variable numbers of arguments.
+ const Arity& arity() const { return arity_; }
+
/// \brief Return the function documentation
const FunctionDoc& doc() const { return *doc_; }
- /// \brief Returns the number of registered kernels for this function.
- virtual int num_kernels() const = 0;
-
+ /// \brief Returns the number of registered kernels for this function.
+ virtual int num_kernels() const = 0;
+
/// \brief Return a kernel that can execute the function given the exact
/// argument types (without implicit type casts or scalar->array promotions).
///
@@ -215,67 +215,67 @@ class ARROW_EXPORT Function {
/// are responsible for casting inputs to the type and shape required by the kernel.
virtual Result<const Kernel*> DispatchBest(std::vector<ValueDescr>* values) const;
- /// \brief Execute the function eagerly with the passed input arguments with
- /// kernel dispatch, batch iteration, and memory allocation details taken
- /// care of.
- ///
- /// If the `options` pointer is null, then `default_options()` will be used.
- ///
- /// This function can be overridden in subclasses.
- virtual Result<Datum> Execute(const std::vector<Datum>& args,
- const FunctionOptions* options, ExecContext* ctx) const;
-
- /// \brief Returns a the default options for this function.
- ///
- /// Whatever option semantics a Function has, implementations must guarantee
- /// that default_options() is valid to pass to Execute as options.
- const FunctionOptions* default_options() const { return default_options_; }
-
+ /// \brief Execute the function eagerly with the passed input arguments with
+ /// kernel dispatch, batch iteration, and memory allocation details taken
+ /// care of.
+ ///
+ /// If the `options` pointer is null, then `default_options()` will be used.
+ ///
+ /// This function can be overridden in subclasses.
+ virtual Result<Datum> Execute(const std::vector<Datum>& args,
+ const FunctionOptions* options, ExecContext* ctx) const;
+
+ /// \brief Returns a the default options for this function.
+ ///
+ /// Whatever option semantics a Function has, implementations must guarantee
+ /// that default_options() is valid to pass to Execute as options.
+ const FunctionOptions* default_options() const { return default_options_; }
+
virtual Status Validate() const;
- protected:
- Function(std::string name, Function::Kind kind, const Arity& arity,
+ protected:
+ Function(std::string name, Function::Kind kind, const Arity& arity,
const FunctionDoc* doc, const FunctionOptions* default_options)
- : name_(std::move(name)),
- kind_(kind),
- arity_(arity),
+ : name_(std::move(name)),
+ kind_(kind),
+ arity_(arity),
doc_(doc ? doc : &FunctionDoc::Empty()),
- default_options_(default_options) {}
-
+ default_options_(default_options) {}
+
Status CheckArity(const std::vector<InputType>&) const;
Status CheckArity(const std::vector<ValueDescr>&) const;
-
- std::string name_;
- Function::Kind kind_;
- Arity arity_;
+
+ std::string name_;
+ Function::Kind kind_;
+ Arity arity_;
const FunctionDoc* doc_;
- const FunctionOptions* default_options_ = NULLPTR;
-};
-
-namespace detail {
-
-template <typename KernelType>
-class FunctionImpl : public Function {
- public:
- /// \brief Return pointers to current-available kernels for inspection
- std::vector<const KernelType*> kernels() const {
- std::vector<const KernelType*> result;
- for (const auto& kernel : kernels_) {
- result.push_back(&kernel);
- }
- return result;
- }
-
- int num_kernels() const override { return static_cast<int>(kernels_.size()); }
-
- protected:
- FunctionImpl(std::string name, Function::Kind kind, const Arity& arity,
+ const FunctionOptions* default_options_ = NULLPTR;
+};
+
+namespace detail {
+
+template <typename KernelType>
+class FunctionImpl : public Function {
+ public:
+ /// \brief Return pointers to current-available kernels for inspection
+ std::vector<const KernelType*> kernels() const {
+ std::vector<const KernelType*> result;
+ for (const auto& kernel : kernels_) {
+ result.push_back(&kernel);
+ }
+ return result;
+ }
+
+ int num_kernels() const override { return static_cast<int>(kernels_.size()); }
+
+ protected:
+ FunctionImpl(std::string name, Function::Kind kind, const Arity& arity,
const FunctionDoc* doc, const FunctionOptions* default_options)
: Function(std::move(name), kind, arity, doc, default_options) {}
-
- std::vector<KernelType> kernels_;
-};
-
+
+ std::vector<KernelType> kernels_;
+};
+
/// \brief Look up a kernel in a function. If no Kernel is found, nullptr is returned.
ARROW_EXPORT
const Kernel* DispatchExactImpl(const Function* func, const std::vector<ValueDescr>&);
@@ -284,72 +284,72 @@ const Kernel* DispatchExactImpl(const Function* func, const std::vector<ValueDes
ARROW_EXPORT
Status NoMatchingKernel(const Function* func, const std::vector<ValueDescr>&);
-} // namespace detail
-
-/// \brief A function that executes elementwise operations on arrays or
-/// scalars, and therefore whose results generally do not depend on the order
-/// of the values in the arguments. Accepts and returns arrays that are all of
-/// the same size. These functions roughly correspond to the functions used in
-/// SQL expressions.
-class ARROW_EXPORT ScalarFunction : public detail::FunctionImpl<ScalarKernel> {
- public:
- using KernelType = ScalarKernel;
-
+} // namespace detail
+
+/// \brief A function that executes elementwise operations on arrays or
+/// scalars, and therefore whose results generally do not depend on the order
+/// of the values in the arguments. Accepts and returns arrays that are all of
+/// the same size. These functions roughly correspond to the functions used in
+/// SQL expressions.
+class ARROW_EXPORT ScalarFunction : public detail::FunctionImpl<ScalarKernel> {
+ public:
+ using KernelType = ScalarKernel;
+
ScalarFunction(std::string name, const Arity& arity, const FunctionDoc* doc,
- const FunctionOptions* default_options = NULLPTR)
+ const FunctionOptions* default_options = NULLPTR)
: detail::FunctionImpl<ScalarKernel>(std::move(name), Function::SCALAR, arity, doc,
- default_options) {}
-
- /// \brief Add a kernel with given input/output types, no required state
- /// initialization, preallocation for fixed-width types, and default null
- /// handling (intersect validity bitmaps of inputs).
- Status AddKernel(std::vector<InputType> in_types, OutputType out_type,
- ArrayKernelExec exec, KernelInit init = NULLPTR);
-
- /// \brief Add a kernel (function implementation). Returns error if the
- /// kernel's signature does not match the function's arity.
- Status AddKernel(ScalarKernel kernel);
-};
-
-/// \brief A function that executes general array operations that may yield
-/// outputs of different sizes or have results that depend on the whole array
-/// contents. These functions roughly correspond to the functions found in
-/// non-SQL array languages like APL and its derivatives.
-class ARROW_EXPORT VectorFunction : public detail::FunctionImpl<VectorKernel> {
- public:
- using KernelType = VectorKernel;
-
+ default_options) {}
+
+ /// \brief Add a kernel with given input/output types, no required state
+ /// initialization, preallocation for fixed-width types, and default null
+ /// handling (intersect validity bitmaps of inputs).
+ Status AddKernel(std::vector<InputType> in_types, OutputType out_type,
+ ArrayKernelExec exec, KernelInit init = NULLPTR);
+
+ /// \brief Add a kernel (function implementation). Returns error if the
+ /// kernel's signature does not match the function's arity.
+ Status AddKernel(ScalarKernel kernel);
+};
+
+/// \brief A function that executes general array operations that may yield
+/// outputs of different sizes or have results that depend on the whole array
+/// contents. These functions roughly correspond to the functions found in
+/// non-SQL array languages like APL and its derivatives.
+class ARROW_EXPORT VectorFunction : public detail::FunctionImpl<VectorKernel> {
+ public:
+ using KernelType = VectorKernel;
+
VectorFunction(std::string name, const Arity& arity, const FunctionDoc* doc,
- const FunctionOptions* default_options = NULLPTR)
+ const FunctionOptions* default_options = NULLPTR)
: detail::FunctionImpl<VectorKernel>(std::move(name), Function::VECTOR, arity, doc,
- default_options) {}
-
- /// \brief Add a simple kernel with given input/output types, no required
- /// state initialization, no data preallocation, and no preallocation of the
- /// validity bitmap.
- Status AddKernel(std::vector<InputType> in_types, OutputType out_type,
- ArrayKernelExec exec, KernelInit init = NULLPTR);
-
- /// \brief Add a kernel (function implementation). Returns error if the
- /// kernel's signature does not match the function's arity.
- Status AddKernel(VectorKernel kernel);
-};
-
-class ARROW_EXPORT ScalarAggregateFunction
- : public detail::FunctionImpl<ScalarAggregateKernel> {
- public:
- using KernelType = ScalarAggregateKernel;
-
+ default_options) {}
+
+ /// \brief Add a simple kernel with given input/output types, no required
+ /// state initialization, no data preallocation, and no preallocation of the
+ /// validity bitmap.
+ Status AddKernel(std::vector<InputType> in_types, OutputType out_type,
+ ArrayKernelExec exec, KernelInit init = NULLPTR);
+
+ /// \brief Add a kernel (function implementation). Returns error if the
+ /// kernel's signature does not match the function's arity.
+ Status AddKernel(VectorKernel kernel);
+};
+
+class ARROW_EXPORT ScalarAggregateFunction
+ : public detail::FunctionImpl<ScalarAggregateKernel> {
+ public:
+ using KernelType = ScalarAggregateKernel;
+
ScalarAggregateFunction(std::string name, const Arity& arity, const FunctionDoc* doc,
- const FunctionOptions* default_options = NULLPTR)
- : detail::FunctionImpl<ScalarAggregateKernel>(
+ const FunctionOptions* default_options = NULLPTR)
+ : detail::FunctionImpl<ScalarAggregateKernel>(
std::move(name), Function::SCALAR_AGGREGATE, arity, doc, default_options) {}
-
- /// \brief Add a kernel (function implementation). Returns error if the
- /// kernel's signature does not match the function's arity.
- Status AddKernel(ScalarAggregateKernel kernel);
+
+ /// \brief Add a kernel (function implementation). Returns error if the
+ /// kernel's signature does not match the function's arity.
+ Status AddKernel(ScalarAggregateKernel kernel);
};
-
+
class ARROW_EXPORT HashAggregateFunction
: public detail::FunctionImpl<HashAggregateKernel> {
public:
@@ -363,31 +363,31 @@ class ARROW_EXPORT HashAggregateFunction
/// \brief Add a kernel (function implementation). Returns error if the
/// kernel's signature does not match the function's arity.
Status AddKernel(HashAggregateKernel kernel);
-};
-
-/// \brief A function that dispatches to other functions. Must implement
-/// MetaFunction::ExecuteImpl.
-///
-/// For Array, ChunkedArray, and Scalar Datum kinds, may rely on the execution
-/// of concrete Function types, but must handle other Datum kinds on its own.
-class ARROW_EXPORT MetaFunction : public Function {
- public:
- int num_kernels() const override { return 0; }
-
- Result<Datum> Execute(const std::vector<Datum>& args, const FunctionOptions* options,
- ExecContext* ctx) const override;
-
- protected:
- virtual Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
- const FunctionOptions* options,
- ExecContext* ctx) const = 0;
-
+};
+
+/// \brief A function that dispatches to other functions. Must implement
+/// MetaFunction::ExecuteImpl.
+///
+/// For Array, ChunkedArray, and Scalar Datum kinds, may rely on the execution
+/// of concrete Function types, but must handle other Datum kinds on its own.
+class ARROW_EXPORT MetaFunction : public Function {
+ public:
+ int num_kernels() const override { return 0; }
+
+ Result<Datum> Execute(const std::vector<Datum>& args, const FunctionOptions* options,
+ ExecContext* ctx) const override;
+
+ protected:
+ virtual Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
+ const FunctionOptions* options,
+ ExecContext* ctx) const = 0;
+
MetaFunction(std::string name, const Arity& arity, const FunctionDoc* doc,
- const FunctionOptions* default_options = NULLPTR)
+ const FunctionOptions* default_options = NULLPTR)
: Function(std::move(name), Function::META, arity, doc, default_options) {}
-};
-
-/// @}
-
-} // namespace compute
-} // namespace arrow
+};
+
+/// @}
+
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernel.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernel.cc
index f131f524d2..6d6dbb5ee5 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernel.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernel.cc
@@ -1,72 +1,72 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/compute/kernel.h"
-
-#include <cstddef>
-#include <memory>
-#include <sstream>
-#include <string>
-
-#include "arrow/buffer.h"
-#include "arrow/compute/exec.h"
-#include "arrow/compute/util_internal.h"
-#include "arrow/result.h"
-#include "arrow/type_traits.h"
-#include "arrow/util/bit_util.h"
-#include "arrow/util/checked_cast.h"
-#include "arrow/util/hash_util.h"
-#include "arrow/util/logging.h"
-#include "arrow/util/macros.h"
-
-namespace arrow {
-
-using internal::checked_cast;
-using internal::hash_combine;
-
-static constexpr size_t kHashSeed = 0;
-
-namespace compute {
-
-// ----------------------------------------------------------------------
-// KernelContext
-
-Result<std::shared_ptr<ResizableBuffer>> KernelContext::Allocate(int64_t nbytes) {
- return AllocateResizableBuffer(nbytes, exec_ctx_->memory_pool());
-}
-
-Result<std::shared_ptr<ResizableBuffer>> KernelContext::AllocateBitmap(int64_t num_bits) {
- const int64_t nbytes = BitUtil::BytesForBits(num_bits);
- ARROW_ASSIGN_OR_RAISE(std::shared_ptr<ResizableBuffer> result,
- AllocateResizableBuffer(nbytes, exec_ctx_->memory_pool()));
- // Since bitmaps are typically written bit by bit, we could leak uninitialized bits.
- // Make sure all memory is initialized (this also appeases Valgrind).
- internal::ZeroMemory(result.get());
- return result;
-}
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/compute/kernel.h"
+
+#include <cstddef>
+#include <memory>
+#include <sstream>
+#include <string>
+
+#include "arrow/buffer.h"
+#include "arrow/compute/exec.h"
+#include "arrow/compute/util_internal.h"
+#include "arrow/result.h"
+#include "arrow/type_traits.h"
+#include "arrow/util/bit_util.h"
+#include "arrow/util/checked_cast.h"
+#include "arrow/util/hash_util.h"
+#include "arrow/util/logging.h"
+#include "arrow/util/macros.h"
+
+namespace arrow {
+
+using internal::checked_cast;
+using internal::hash_combine;
+
+static constexpr size_t kHashSeed = 0;
+
+namespace compute {
+
+// ----------------------------------------------------------------------
+// KernelContext
+
+Result<std::shared_ptr<ResizableBuffer>> KernelContext::Allocate(int64_t nbytes) {
+ return AllocateResizableBuffer(nbytes, exec_ctx_->memory_pool());
+}
+
+Result<std::shared_ptr<ResizableBuffer>> KernelContext::AllocateBitmap(int64_t num_bits) {
+ const int64_t nbytes = BitUtil::BytesForBits(num_bits);
+ ARROW_ASSIGN_OR_RAISE(std::shared_ptr<ResizableBuffer> result,
+ AllocateResizableBuffer(nbytes, exec_ctx_->memory_pool()));
+ // Since bitmaps are typically written bit by bit, we could leak uninitialized bits.
+ // Make sure all memory is initialized (this also appeases Valgrind).
+ internal::ZeroMemory(result.get());
+ return result;
+}
+
Status Kernel::InitAll(KernelContext* ctx, const KernelInitArgs& args,
std::vector<std::unique_ptr<KernelState>>* states) {
for (auto& state : *states) {
ARROW_ASSIGN_OR_RAISE(state, args.kernel->init(ctx, args));
- }
+ }
return Status::OK();
-}
-
+}
+
Result<std::unique_ptr<KernelState>> ScalarAggregateKernel::MergeAll(
const ScalarAggregateKernel* kernel, KernelContext* ctx,
std::vector<std::unique_ptr<KernelState>> states) {
@@ -78,409 +78,409 @@ Result<std::unique_ptr<KernelState>> ScalarAggregateKernel::MergeAll(
}
return std::move(out);
}
-
-// ----------------------------------------------------------------------
-// Some basic TypeMatcher implementations
-
-namespace match {
-
-class SameTypeIdMatcher : public TypeMatcher {
- public:
- explicit SameTypeIdMatcher(Type::type accepted_id) : accepted_id_(accepted_id) {}
-
- bool Matches(const DataType& type) const override { return type.id() == accepted_id_; }
-
- std::string ToString() const override {
- std::stringstream ss;
- ss << "Type::" << ::arrow::internal::ToString(accepted_id_);
- return ss.str();
- }
-
- bool Equals(const TypeMatcher& other) const override {
- if (this == &other) {
- return true;
- }
- auto casted = dynamic_cast<const SameTypeIdMatcher*>(&other);
- if (casted == nullptr) {
- return false;
- }
- return this->accepted_id_ == casted->accepted_id_;
- }
-
- private:
- Type::type accepted_id_;
-};
-
-std::shared_ptr<TypeMatcher> SameTypeId(Type::type type_id) {
- return std::make_shared<SameTypeIdMatcher>(type_id);
-}
-
-template <typename ArrowType>
-class TimeUnitMatcher : public TypeMatcher {
- using ThisType = TimeUnitMatcher<ArrowType>;
-
- public:
- explicit TimeUnitMatcher(TimeUnit::type accepted_unit)
- : accepted_unit_(accepted_unit) {}
-
- bool Matches(const DataType& type) const override {
- if (type.id() != ArrowType::type_id) {
- return false;
- }
- const auto& time_type = checked_cast<const ArrowType&>(type);
- return time_type.unit() == accepted_unit_;
- }
-
- bool Equals(const TypeMatcher& other) const override {
- if (this == &other) {
- return true;
- }
- auto casted = dynamic_cast<const ThisType*>(&other);
- if (casted == nullptr) {
- return false;
- }
- return this->accepted_unit_ == casted->accepted_unit_;
- }
-
- std::string ToString() const override {
- std::stringstream ss;
- ss << ArrowType::type_name() << "(" << ::arrow::internal::ToString(accepted_unit_)
- << ")";
- return ss.str();
- }
-
- private:
- TimeUnit::type accepted_unit_;
-};
-
-using DurationTypeUnitMatcher = TimeUnitMatcher<DurationType>;
-using Time32TypeUnitMatcher = TimeUnitMatcher<Time32Type>;
-using Time64TypeUnitMatcher = TimeUnitMatcher<Time64Type>;
-using TimestampTypeUnitMatcher = TimeUnitMatcher<TimestampType>;
-
-std::shared_ptr<TypeMatcher> TimestampTypeUnit(TimeUnit::type unit) {
- return std::make_shared<TimestampTypeUnitMatcher>(unit);
-}
-
-std::shared_ptr<TypeMatcher> Time32TypeUnit(TimeUnit::type unit) {
- return std::make_shared<Time32TypeUnitMatcher>(unit);
-}
-
-std::shared_ptr<TypeMatcher> Time64TypeUnit(TimeUnit::type unit) {
- return std::make_shared<Time64TypeUnitMatcher>(unit);
-}
-
-std::shared_ptr<TypeMatcher> DurationTypeUnit(TimeUnit::type unit) {
- return std::make_shared<DurationTypeUnitMatcher>(unit);
-}
-
-class IntegerMatcher : public TypeMatcher {
- public:
- IntegerMatcher() {}
-
- bool Matches(const DataType& type) const override { return is_integer(type.id()); }
-
- bool Equals(const TypeMatcher& other) const override {
- if (this == &other) {
- return true;
- }
- auto casted = dynamic_cast<const IntegerMatcher*>(&other);
- return casted != nullptr;
- }
-
- std::string ToString() const override { return "integer"; }
-};
-
-std::shared_ptr<TypeMatcher> Integer() { return std::make_shared<IntegerMatcher>(); }
-
-class PrimitiveMatcher : public TypeMatcher {
- public:
- PrimitiveMatcher() {}
-
- bool Matches(const DataType& type) const override { return is_primitive(type.id()); }
-
- bool Equals(const TypeMatcher& other) const override {
- if (this == &other) {
- return true;
- }
- auto casted = dynamic_cast<const PrimitiveMatcher*>(&other);
- return casted != nullptr;
- }
-
- std::string ToString() const override { return "primitive"; }
-};
-
-std::shared_ptr<TypeMatcher> Primitive() { return std::make_shared<PrimitiveMatcher>(); }
-
-class BinaryLikeMatcher : public TypeMatcher {
- public:
- BinaryLikeMatcher() {}
-
- bool Matches(const DataType& type) const override { return is_binary_like(type.id()); }
-
- bool Equals(const TypeMatcher& other) const override {
- if (this == &other) {
- return true;
- }
- auto casted = dynamic_cast<const BinaryLikeMatcher*>(&other);
- return casted != nullptr;
- }
- std::string ToString() const override { return "binary-like"; }
-};
-
-std::shared_ptr<TypeMatcher> BinaryLike() {
- return std::make_shared<BinaryLikeMatcher>();
-}
-
-class LargeBinaryLikeMatcher : public TypeMatcher {
- public:
- LargeBinaryLikeMatcher() {}
-
- bool Matches(const DataType& type) const override {
- return is_large_binary_like(type.id());
- }
-
- bool Equals(const TypeMatcher& other) const override {
- if (this == &other) {
- return true;
- }
- auto casted = dynamic_cast<const LargeBinaryLikeMatcher*>(&other);
- return casted != nullptr;
- }
- std::string ToString() const override { return "large-binary-like"; }
-};
-
-std::shared_ptr<TypeMatcher> LargeBinaryLike() {
- return std::make_shared<LargeBinaryLikeMatcher>();
-}
-
-} // namespace match
-
-// ----------------------------------------------------------------------
-// InputType
-
-size_t InputType::Hash() const {
- size_t result = kHashSeed;
- hash_combine(result, static_cast<int>(shape_));
- hash_combine(result, static_cast<int>(kind_));
- switch (kind_) {
- case InputType::EXACT_TYPE:
- hash_combine(result, type_->Hash());
- break;
- default:
- break;
- }
- return result;
-}
-
-std::string InputType::ToString() const {
- std::stringstream ss;
- switch (shape_) {
- case ValueDescr::ANY:
- ss << "any";
- break;
- case ValueDescr::ARRAY:
- ss << "array";
- break;
- case ValueDescr::SCALAR:
- ss << "scalar";
- break;
- default:
- DCHECK(false);
- break;
- }
- ss << "[";
- switch (kind_) {
- case InputType::ANY_TYPE:
- ss << "any";
- break;
- case InputType::EXACT_TYPE:
- ss << type_->ToString();
- break;
- case InputType::USE_TYPE_MATCHER: {
- ss << type_matcher_->ToString();
- } break;
- default:
- DCHECK(false);
- break;
- }
- ss << "]";
- return ss.str();
-}
-
-bool InputType::Equals(const InputType& other) const {
- if (this == &other) {
- return true;
- }
- if (kind_ != other.kind_ || shape_ != other.shape_) {
- return false;
- }
- switch (kind_) {
- case InputType::ANY_TYPE:
- return true;
- case InputType::EXACT_TYPE:
- return type_->Equals(*other.type_);
- case InputType::USE_TYPE_MATCHER:
- return type_matcher_->Equals(*other.type_matcher_);
- default:
- return false;
- }
-}
-
-bool InputType::Matches(const ValueDescr& descr) const {
- if (shape_ != ValueDescr::ANY && descr.shape != shape_) {
- return false;
- }
- switch (kind_) {
- case InputType::EXACT_TYPE:
- return type_->Equals(*descr.type);
- case InputType::USE_TYPE_MATCHER:
- return type_matcher_->Matches(*descr.type);
- default:
- // ANY_TYPE
- return true;
- }
-}
-
-bool InputType::Matches(const Datum& value) const { return Matches(value.descr()); }
-
-const std::shared_ptr<DataType>& InputType::type() const {
- DCHECK_EQ(InputType::EXACT_TYPE, kind_);
- return type_;
-}
-
-const TypeMatcher& InputType::type_matcher() const {
- DCHECK_EQ(InputType::USE_TYPE_MATCHER, kind_);
- return *type_matcher_;
-}
-
-// ----------------------------------------------------------------------
-// OutputType
-
-OutputType::OutputType(ValueDescr descr) : OutputType(descr.type) {
- shape_ = descr.shape;
-}
-
-Result<ValueDescr> OutputType::Resolve(KernelContext* ctx,
- const std::vector<ValueDescr>& args) const {
- ValueDescr::Shape broadcasted_shape = GetBroadcastShape(args);
- if (kind_ == OutputType::FIXED) {
- return ValueDescr(type_, shape_ == ValueDescr::ANY ? broadcasted_shape : shape_);
- } else {
- ARROW_ASSIGN_OR_RAISE(ValueDescr resolved_descr, resolver_(ctx, args));
- if (resolved_descr.shape == ValueDescr::ANY) {
- resolved_descr.shape = broadcasted_shape;
- }
- return resolved_descr;
- }
-}
-
-const std::shared_ptr<DataType>& OutputType::type() const {
- DCHECK_EQ(FIXED, kind_);
- return type_;
-}
-
-const OutputType::Resolver& OutputType::resolver() const {
- DCHECK_EQ(COMPUTED, kind_);
- return resolver_;
-}
-
-std::string OutputType::ToString() const {
- if (kind_ == OutputType::FIXED) {
- return type_->ToString();
- } else {
- return "computed";
- }
-}
-
-// ----------------------------------------------------------------------
-// KernelSignature
-
-KernelSignature::KernelSignature(std::vector<InputType> in_types, OutputType out_type,
- bool is_varargs)
- : in_types_(std::move(in_types)),
- out_type_(std::move(out_type)),
- is_varargs_(is_varargs),
- hash_code_(0) {
+
+// ----------------------------------------------------------------------
+// Some basic TypeMatcher implementations
+
+namespace match {
+
+class SameTypeIdMatcher : public TypeMatcher {
+ public:
+ explicit SameTypeIdMatcher(Type::type accepted_id) : accepted_id_(accepted_id) {}
+
+ bool Matches(const DataType& type) const override { return type.id() == accepted_id_; }
+
+ std::string ToString() const override {
+ std::stringstream ss;
+ ss << "Type::" << ::arrow::internal::ToString(accepted_id_);
+ return ss.str();
+ }
+
+ bool Equals(const TypeMatcher& other) const override {
+ if (this == &other) {
+ return true;
+ }
+ auto casted = dynamic_cast<const SameTypeIdMatcher*>(&other);
+ if (casted == nullptr) {
+ return false;
+ }
+ return this->accepted_id_ == casted->accepted_id_;
+ }
+
+ private:
+ Type::type accepted_id_;
+};
+
+std::shared_ptr<TypeMatcher> SameTypeId(Type::type type_id) {
+ return std::make_shared<SameTypeIdMatcher>(type_id);
+}
+
+template <typename ArrowType>
+class TimeUnitMatcher : public TypeMatcher {
+ using ThisType = TimeUnitMatcher<ArrowType>;
+
+ public:
+ explicit TimeUnitMatcher(TimeUnit::type accepted_unit)
+ : accepted_unit_(accepted_unit) {}
+
+ bool Matches(const DataType& type) const override {
+ if (type.id() != ArrowType::type_id) {
+ return false;
+ }
+ const auto& time_type = checked_cast<const ArrowType&>(type);
+ return time_type.unit() == accepted_unit_;
+ }
+
+ bool Equals(const TypeMatcher& other) const override {
+ if (this == &other) {
+ return true;
+ }
+ auto casted = dynamic_cast<const ThisType*>(&other);
+ if (casted == nullptr) {
+ return false;
+ }
+ return this->accepted_unit_ == casted->accepted_unit_;
+ }
+
+ std::string ToString() const override {
+ std::stringstream ss;
+ ss << ArrowType::type_name() << "(" << ::arrow::internal::ToString(accepted_unit_)
+ << ")";
+ return ss.str();
+ }
+
+ private:
+ TimeUnit::type accepted_unit_;
+};
+
+using DurationTypeUnitMatcher = TimeUnitMatcher<DurationType>;
+using Time32TypeUnitMatcher = TimeUnitMatcher<Time32Type>;
+using Time64TypeUnitMatcher = TimeUnitMatcher<Time64Type>;
+using TimestampTypeUnitMatcher = TimeUnitMatcher<TimestampType>;
+
+std::shared_ptr<TypeMatcher> TimestampTypeUnit(TimeUnit::type unit) {
+ return std::make_shared<TimestampTypeUnitMatcher>(unit);
+}
+
+std::shared_ptr<TypeMatcher> Time32TypeUnit(TimeUnit::type unit) {
+ return std::make_shared<Time32TypeUnitMatcher>(unit);
+}
+
+std::shared_ptr<TypeMatcher> Time64TypeUnit(TimeUnit::type unit) {
+ return std::make_shared<Time64TypeUnitMatcher>(unit);
+}
+
+std::shared_ptr<TypeMatcher> DurationTypeUnit(TimeUnit::type unit) {
+ return std::make_shared<DurationTypeUnitMatcher>(unit);
+}
+
+class IntegerMatcher : public TypeMatcher {
+ public:
+ IntegerMatcher() {}
+
+ bool Matches(const DataType& type) const override { return is_integer(type.id()); }
+
+ bool Equals(const TypeMatcher& other) const override {
+ if (this == &other) {
+ return true;
+ }
+ auto casted = dynamic_cast<const IntegerMatcher*>(&other);
+ return casted != nullptr;
+ }
+
+ std::string ToString() const override { return "integer"; }
+};
+
+std::shared_ptr<TypeMatcher> Integer() { return std::make_shared<IntegerMatcher>(); }
+
+class PrimitiveMatcher : public TypeMatcher {
+ public:
+ PrimitiveMatcher() {}
+
+ bool Matches(const DataType& type) const override { return is_primitive(type.id()); }
+
+ bool Equals(const TypeMatcher& other) const override {
+ if (this == &other) {
+ return true;
+ }
+ auto casted = dynamic_cast<const PrimitiveMatcher*>(&other);
+ return casted != nullptr;
+ }
+
+ std::string ToString() const override { return "primitive"; }
+};
+
+std::shared_ptr<TypeMatcher> Primitive() { return std::make_shared<PrimitiveMatcher>(); }
+
+class BinaryLikeMatcher : public TypeMatcher {
+ public:
+ BinaryLikeMatcher() {}
+
+ bool Matches(const DataType& type) const override { return is_binary_like(type.id()); }
+
+ bool Equals(const TypeMatcher& other) const override {
+ if (this == &other) {
+ return true;
+ }
+ auto casted = dynamic_cast<const BinaryLikeMatcher*>(&other);
+ return casted != nullptr;
+ }
+ std::string ToString() const override { return "binary-like"; }
+};
+
+std::shared_ptr<TypeMatcher> BinaryLike() {
+ return std::make_shared<BinaryLikeMatcher>();
+}
+
+class LargeBinaryLikeMatcher : public TypeMatcher {
+ public:
+ LargeBinaryLikeMatcher() {}
+
+ bool Matches(const DataType& type) const override {
+ return is_large_binary_like(type.id());
+ }
+
+ bool Equals(const TypeMatcher& other) const override {
+ if (this == &other) {
+ return true;
+ }
+ auto casted = dynamic_cast<const LargeBinaryLikeMatcher*>(&other);
+ return casted != nullptr;
+ }
+ std::string ToString() const override { return "large-binary-like"; }
+};
+
+std::shared_ptr<TypeMatcher> LargeBinaryLike() {
+ return std::make_shared<LargeBinaryLikeMatcher>();
+}
+
+} // namespace match
+
+// ----------------------------------------------------------------------
+// InputType
+
+size_t InputType::Hash() const {
+ size_t result = kHashSeed;
+ hash_combine(result, static_cast<int>(shape_));
+ hash_combine(result, static_cast<int>(kind_));
+ switch (kind_) {
+ case InputType::EXACT_TYPE:
+ hash_combine(result, type_->Hash());
+ break;
+ default:
+ break;
+ }
+ return result;
+}
+
+std::string InputType::ToString() const {
+ std::stringstream ss;
+ switch (shape_) {
+ case ValueDescr::ANY:
+ ss << "any";
+ break;
+ case ValueDescr::ARRAY:
+ ss << "array";
+ break;
+ case ValueDescr::SCALAR:
+ ss << "scalar";
+ break;
+ default:
+ DCHECK(false);
+ break;
+ }
+ ss << "[";
+ switch (kind_) {
+ case InputType::ANY_TYPE:
+ ss << "any";
+ break;
+ case InputType::EXACT_TYPE:
+ ss << type_->ToString();
+ break;
+ case InputType::USE_TYPE_MATCHER: {
+ ss << type_matcher_->ToString();
+ } break;
+ default:
+ DCHECK(false);
+ break;
+ }
+ ss << "]";
+ return ss.str();
+}
+
+bool InputType::Equals(const InputType& other) const {
+ if (this == &other) {
+ return true;
+ }
+ if (kind_ != other.kind_ || shape_ != other.shape_) {
+ return false;
+ }
+ switch (kind_) {
+ case InputType::ANY_TYPE:
+ return true;
+ case InputType::EXACT_TYPE:
+ return type_->Equals(*other.type_);
+ case InputType::USE_TYPE_MATCHER:
+ return type_matcher_->Equals(*other.type_matcher_);
+ default:
+ return false;
+ }
+}
+
+bool InputType::Matches(const ValueDescr& descr) const {
+ if (shape_ != ValueDescr::ANY && descr.shape != shape_) {
+ return false;
+ }
+ switch (kind_) {
+ case InputType::EXACT_TYPE:
+ return type_->Equals(*descr.type);
+ case InputType::USE_TYPE_MATCHER:
+ return type_matcher_->Matches(*descr.type);
+ default:
+ // ANY_TYPE
+ return true;
+ }
+}
+
+bool InputType::Matches(const Datum& value) const { return Matches(value.descr()); }
+
+const std::shared_ptr<DataType>& InputType::type() const {
+ DCHECK_EQ(InputType::EXACT_TYPE, kind_);
+ return type_;
+}
+
+const TypeMatcher& InputType::type_matcher() const {
+ DCHECK_EQ(InputType::USE_TYPE_MATCHER, kind_);
+ return *type_matcher_;
+}
+
+// ----------------------------------------------------------------------
+// OutputType
+
+OutputType::OutputType(ValueDescr descr) : OutputType(descr.type) {
+ shape_ = descr.shape;
+}
+
+Result<ValueDescr> OutputType::Resolve(KernelContext* ctx,
+ const std::vector<ValueDescr>& args) const {
+ ValueDescr::Shape broadcasted_shape = GetBroadcastShape(args);
+ if (kind_ == OutputType::FIXED) {
+ return ValueDescr(type_, shape_ == ValueDescr::ANY ? broadcasted_shape : shape_);
+ } else {
+ ARROW_ASSIGN_OR_RAISE(ValueDescr resolved_descr, resolver_(ctx, args));
+ if (resolved_descr.shape == ValueDescr::ANY) {
+ resolved_descr.shape = broadcasted_shape;
+ }
+ return resolved_descr;
+ }
+}
+
+const std::shared_ptr<DataType>& OutputType::type() const {
+ DCHECK_EQ(FIXED, kind_);
+ return type_;
+}
+
+const OutputType::Resolver& OutputType::resolver() const {
+ DCHECK_EQ(COMPUTED, kind_);
+ return resolver_;
+}
+
+std::string OutputType::ToString() const {
+ if (kind_ == OutputType::FIXED) {
+ return type_->ToString();
+ } else {
+ return "computed";
+ }
+}
+
+// ----------------------------------------------------------------------
+// KernelSignature
+
+KernelSignature::KernelSignature(std::vector<InputType> in_types, OutputType out_type,
+ bool is_varargs)
+ : in_types_(std::move(in_types)),
+ out_type_(std::move(out_type)),
+ is_varargs_(is_varargs),
+ hash_code_(0) {
DCHECK(!is_varargs || (is_varargs && (in_types_.size() >= 1)));
-}
-
-std::shared_ptr<KernelSignature> KernelSignature::Make(std::vector<InputType> in_types,
- OutputType out_type,
- bool is_varargs) {
- return std::make_shared<KernelSignature>(std::move(in_types), std::move(out_type),
- is_varargs);
-}
-
-bool KernelSignature::Equals(const KernelSignature& other) const {
- if (is_varargs_ != other.is_varargs_) {
- return false;
- }
- if (in_types_.size() != other.in_types_.size()) {
- return false;
- }
- for (size_t i = 0; i < in_types_.size(); ++i) {
- if (!in_types_[i].Equals(other.in_types_[i])) {
- return false;
- }
- }
- return true;
-}
-
-bool KernelSignature::MatchesInputs(const std::vector<ValueDescr>& args) const {
- if (is_varargs_) {
+}
+
+std::shared_ptr<KernelSignature> KernelSignature::Make(std::vector<InputType> in_types,
+ OutputType out_type,
+ bool is_varargs) {
+ return std::make_shared<KernelSignature>(std::move(in_types), std::move(out_type),
+ is_varargs);
+}
+
+bool KernelSignature::Equals(const KernelSignature& other) const {
+ if (is_varargs_ != other.is_varargs_) {
+ return false;
+ }
+ if (in_types_.size() != other.in_types_.size()) {
+ return false;
+ }
+ for (size_t i = 0; i < in_types_.size(); ++i) {
+ if (!in_types_[i].Equals(other.in_types_[i])) {
+ return false;
+ }
+ }
+ return true;
+}
+
+bool KernelSignature::MatchesInputs(const std::vector<ValueDescr>& args) const {
+ if (is_varargs_) {
for (size_t i = 0; i < args.size(); ++i) {
if (!in_types_[std::min(i, in_types_.size() - 1)].Matches(args[i])) {
- return false;
- }
- }
- } else {
- if (args.size() != in_types_.size()) {
- return false;
- }
- for (size_t i = 0; i < in_types_.size(); ++i) {
- if (!in_types_[i].Matches(args[i])) {
- return false;
- }
- }
- }
- return true;
-}
-
-size_t KernelSignature::Hash() const {
- if (hash_code_ != 0) {
- return hash_code_;
- }
- size_t result = kHashSeed;
- for (const auto& in_type : in_types_) {
- hash_combine(result, in_type.Hash());
- }
- hash_code_ = result;
- return result;
-}
-
-std::string KernelSignature::ToString() const {
- std::stringstream ss;
-
- if (is_varargs_) {
+ return false;
+ }
+ }
+ } else {
+ if (args.size() != in_types_.size()) {
+ return false;
+ }
+ for (size_t i = 0; i < in_types_.size(); ++i) {
+ if (!in_types_[i].Matches(args[i])) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+size_t KernelSignature::Hash() const {
+ if (hash_code_ != 0) {
+ return hash_code_;
+ }
+ size_t result = kHashSeed;
+ for (const auto& in_type : in_types_) {
+ hash_combine(result, in_type.Hash());
+ }
+ hash_code_ = result;
+ return result;
+}
+
+std::string KernelSignature::ToString() const {
+ std::stringstream ss;
+
+ if (is_varargs_) {
ss << "varargs[";
- } else {
- ss << "(";
+ } else {
+ ss << "(";
}
for (size_t i = 0; i < in_types_.size(); ++i) {
if (i > 0) {
ss << ", ";
- }
+ }
ss << in_types_[i].ToString();
}
if (is_varargs_) {
ss << "]";
} else {
- ss << ")";
- }
- ss << " -> " << out_type_.ToString();
- return ss.str();
-}
-
-} // namespace compute
-} // namespace arrow
+ ss << ")";
+ }
+ ss << " -> " << out_type_.ToString();
+ return ss.str();
+}
+
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernel.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernel.h
index 36d20c7289..6cea5558e9 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernel.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernel.h
@@ -1,695 +1,695 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-// NOTE: API is EXPERIMENTAL and will change without going through a
-// deprecation cycle
-
-#pragma once
-
-#include <cstddef>
-#include <cstdint>
-#include <functional>
-#include <memory>
-#include <string>
-#include <utility>
-#include <vector>
-
-#include "arrow/buffer.h"
-#include "arrow/compute/exec.h"
-#include "arrow/datum.h"
-#include "arrow/memory_pool.h"
-#include "arrow/result.h"
-#include "arrow/status.h"
-#include "arrow/type.h"
-#include "arrow/util/macros.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-namespace compute {
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// NOTE: API is EXPERIMENTAL and will change without going through a
+// deprecation cycle
+
+#pragma once
+
+#include <cstddef>
+#include <cstdint>
+#include <functional>
+#include <memory>
+#include <string>
+#include <utility>
+#include <vector>
+
+#include "arrow/buffer.h"
+#include "arrow/compute/exec.h"
+#include "arrow/datum.h"
+#include "arrow/memory_pool.h"
+#include "arrow/result.h"
+#include "arrow/status.h"
+#include "arrow/type.h"
+#include "arrow/util/macros.h"
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+namespace compute {
+
class FunctionOptions;
-
-/// \brief Base class for opaque kernel-specific state. For example, if there
-/// is some kind of initialization required.
-struct ARROW_EXPORT KernelState {
- virtual ~KernelState() = default;
-};
-
-/// \brief Context/state for the execution of a particular kernel.
-class ARROW_EXPORT KernelContext {
- public:
+
+/// \brief Base class for opaque kernel-specific state. For example, if there
+/// is some kind of initialization required.
+struct ARROW_EXPORT KernelState {
+ virtual ~KernelState() = default;
+};
+
+/// \brief Context/state for the execution of a particular kernel.
+class ARROW_EXPORT KernelContext {
+ public:
explicit KernelContext(ExecContext* exec_ctx) : exec_ctx_(exec_ctx), state_() {}
-
- /// \brief Allocate buffer from the context's memory pool. The contents are
- /// not initialized.
- Result<std::shared_ptr<ResizableBuffer>> Allocate(int64_t nbytes);
-
- /// \brief Allocate buffer for bitmap from the context's memory pool. Like
- /// Allocate, the contents of the buffer are not initialized but the last
- /// byte is preemptively zeroed to help avoid ASAN or valgrind issues.
- Result<std::shared_ptr<ResizableBuffer>> AllocateBitmap(int64_t num_bits);
-
- /// \brief Assign the active KernelState to be utilized for each stage of
- /// kernel execution. Ownership and memory lifetime of the KernelState must
- /// be minded separately.
- void SetState(KernelState* state) { state_ = state; }
-
- KernelState* state() { return state_; }
-
- /// \brief Configuration related to function execution that is to be shared
- /// across multiple kernels.
- ExecContext* exec_context() { return exec_ctx_; }
-
- /// \brief The memory pool to use for allocations. For now, it uses the
- /// MemoryPool contained in the ExecContext used to create the KernelContext.
- MemoryPool* memory_pool() { return exec_ctx_->memory_pool(); }
-
- private:
- ExecContext* exec_ctx_;
- KernelState* state_;
-};
-
-/// \brief The standard kernel execution API that must be implemented for
-/// SCALAR and VECTOR kernel types. This includes both stateless and stateful
-/// kernels. Kernels depending on some execution state access that state via
-/// subclasses of KernelState set on the KernelContext object. May be used for
-/// SCALAR and VECTOR kernel kinds. Implementations should endeavor to write
-/// into pre-allocated memory if they are able, though for some kernels
-/// (e.g. in cases when a builder like StringBuilder) must be employed this may
-/// not be possible.
+
+ /// \brief Allocate buffer from the context's memory pool. The contents are
+ /// not initialized.
+ Result<std::shared_ptr<ResizableBuffer>> Allocate(int64_t nbytes);
+
+ /// \brief Allocate buffer for bitmap from the context's memory pool. Like
+ /// Allocate, the contents of the buffer are not initialized but the last
+ /// byte is preemptively zeroed to help avoid ASAN or valgrind issues.
+ Result<std::shared_ptr<ResizableBuffer>> AllocateBitmap(int64_t num_bits);
+
+ /// \brief Assign the active KernelState to be utilized for each stage of
+ /// kernel execution. Ownership and memory lifetime of the KernelState must
+ /// be minded separately.
+ void SetState(KernelState* state) { state_ = state; }
+
+ KernelState* state() { return state_; }
+
+ /// \brief Configuration related to function execution that is to be shared
+ /// across multiple kernels.
+ ExecContext* exec_context() { return exec_ctx_; }
+
+ /// \brief The memory pool to use for allocations. For now, it uses the
+ /// MemoryPool contained in the ExecContext used to create the KernelContext.
+ MemoryPool* memory_pool() { return exec_ctx_->memory_pool(); }
+
+ private:
+ ExecContext* exec_ctx_;
+ KernelState* state_;
+};
+
+/// \brief The standard kernel execution API that must be implemented for
+/// SCALAR and VECTOR kernel types. This includes both stateless and stateful
+/// kernels. Kernels depending on some execution state access that state via
+/// subclasses of KernelState set on the KernelContext object. May be used for
+/// SCALAR and VECTOR kernel kinds. Implementations should endeavor to write
+/// into pre-allocated memory if they are able, though for some kernels
+/// (e.g. in cases when a builder like StringBuilder) must be employed this may
+/// not be possible.
using ArrayKernelExec = std::function<Status(KernelContext*, const ExecBatch&, Datum*)>;
-
-/// \brief An type-checking interface to permit customizable validation rules
-/// for use with InputType and KernelSignature. This is for scenarios where the
-/// acceptance is not an exact type instance, such as a TIMESTAMP type for a
-/// specific TimeUnit, but permitting any time zone.
-struct ARROW_EXPORT TypeMatcher {
- virtual ~TypeMatcher() = default;
-
- /// \brief Return true if this matcher accepts the data type.
- virtual bool Matches(const DataType& type) const = 0;
-
- /// \brief A human-interpretable string representation of what the type
- /// matcher checks for, usable when printing KernelSignature or formatting
- /// error messages.
- virtual std::string ToString() const = 0;
-
- /// \brief Return true if this TypeMatcher contains the same matching rule as
- /// the other. Currently depends on RTTI.
- virtual bool Equals(const TypeMatcher& other) const = 0;
-};
-
-namespace match {
-
-/// \brief Match any DataType instance having the same DataType::id.
-ARROW_EXPORT std::shared_ptr<TypeMatcher> SameTypeId(Type::type type_id);
-
-/// \brief Match any TimestampType instance having the same unit, but the time
-/// zones can be different.
-ARROW_EXPORT std::shared_ptr<TypeMatcher> TimestampTypeUnit(TimeUnit::type unit);
-ARROW_EXPORT std::shared_ptr<TypeMatcher> Time32TypeUnit(TimeUnit::type unit);
-ARROW_EXPORT std::shared_ptr<TypeMatcher> Time64TypeUnit(TimeUnit::type unit);
-ARROW_EXPORT std::shared_ptr<TypeMatcher> DurationTypeUnit(TimeUnit::type unit);
-
-// \brief Match any integer type
-ARROW_EXPORT std::shared_ptr<TypeMatcher> Integer();
-
-// Match types using 32-bit varbinary representation
-ARROW_EXPORT std::shared_ptr<TypeMatcher> BinaryLike();
-
-// Match types using 64-bit varbinary representation
-ARROW_EXPORT std::shared_ptr<TypeMatcher> LargeBinaryLike();
-
-// \brief Match any primitive type (boolean or any type representable as a C
-// Type)
-ARROW_EXPORT std::shared_ptr<TypeMatcher> Primitive();
-
-} // namespace match
-
-/// \brief An object used for type- and shape-checking arguments to be passed
-/// to a kernel and stored in a KernelSignature. Distinguishes between ARRAY
-/// and SCALAR arguments using ValueDescr::Shape. The type-checking rule can be
-/// supplied either with an exact DataType instance or a custom TypeMatcher.
-class ARROW_EXPORT InputType {
- public:
- /// \brief The kind of type-checking rule that the InputType contains.
- enum Kind {
- /// \brief Accept any value type.
- ANY_TYPE,
-
- /// \brief A fixed arrow::DataType and will only exact match having this
- /// exact type (e.g. same TimestampType unit, same decimal scale and
- /// precision, or same nested child types).
- EXACT_TYPE,
-
- /// \brief Uses a TypeMatcher implementation to check the type.
- USE_TYPE_MATCHER
- };
-
- /// \brief Accept any value type but with a specific shape (e.g. any Array or
- /// any Scalar).
- InputType(ValueDescr::Shape shape = ValueDescr::ANY) // NOLINT implicit construction
- : kind_(ANY_TYPE), shape_(shape) {}
-
- /// \brief Accept an exact value type.
- InputType(std::shared_ptr<DataType> type, // NOLINT implicit construction
- ValueDescr::Shape shape = ValueDescr::ANY)
- : kind_(EXACT_TYPE), shape_(shape), type_(std::move(type)) {}
-
- /// \brief Accept an exact value type and shape provided by a ValueDescr.
- InputType(const ValueDescr& descr) // NOLINT implicit construction
- : InputType(descr.type, descr.shape) {}
-
- /// \brief Use the passed TypeMatcher to type check.
- InputType(std::shared_ptr<TypeMatcher> type_matcher, // NOLINT implicit construction
- ValueDescr::Shape shape = ValueDescr::ANY)
- : kind_(USE_TYPE_MATCHER), shape_(shape), type_matcher_(std::move(type_matcher)) {}
-
- /// \brief Match any type with the given Type::type. Uses a TypeMatcher for
- /// its implementation.
- explicit InputType(Type::type type_id, ValueDescr::Shape shape = ValueDescr::ANY)
- : InputType(match::SameTypeId(type_id), shape) {}
-
- InputType(const InputType& other) { CopyInto(other); }
-
- void operator=(const InputType& other) { CopyInto(other); }
-
- InputType(InputType&& other) { MoveInto(std::forward<InputType>(other)); }
-
- void operator=(InputType&& other) { MoveInto(std::forward<InputType>(other)); }
-
- // \brief Match an array with the given exact type. Convenience constructor.
- static InputType Array(std::shared_ptr<DataType> type) {
- return InputType(std::move(type), ValueDescr::ARRAY);
- }
-
- // \brief Match a scalar with the given exact type. Convenience constructor.
- static InputType Scalar(std::shared_ptr<DataType> type) {
- return InputType(std::move(type), ValueDescr::SCALAR);
- }
-
- // \brief Match an array with the given Type::type id. Convenience
- // constructor.
- static InputType Array(Type::type id) { return InputType(id, ValueDescr::ARRAY); }
-
- // \brief Match a scalar with the given Type::type id. Convenience
- // constructor.
- static InputType Scalar(Type::type id) { return InputType(id, ValueDescr::SCALAR); }
-
- /// \brief Return true if this input type matches the same type cases as the
- /// other.
- bool Equals(const InputType& other) const;
-
- bool operator==(const InputType& other) const { return this->Equals(other); }
-
- bool operator!=(const InputType& other) const { return !(*this == other); }
-
- /// \brief Return hash code.
- size_t Hash() const;
-
- /// \brief Render a human-readable string representation.
- std::string ToString() const;
-
- /// \brief Return true if the value matches this argument kind in type
- /// and shape.
- bool Matches(const Datum& value) const;
-
- /// \brief Return true if the value descriptor matches this argument kind in
- /// type and shape.
- bool Matches(const ValueDescr& value) const;
-
- /// \brief The type matching rule that this InputType uses.
- Kind kind() const { return kind_; }
-
- /// \brief Indicates whether this InputType matches Array (ValueDescr::ARRAY),
- /// Scalar (ValueDescr::SCALAR) values, or both (ValueDescr::ANY).
- ValueDescr::Shape shape() const { return shape_; }
-
- /// \brief For InputType::EXACT_TYPE kind, the exact type that this InputType
- /// must match. Otherwise this function should not be used and will assert in
- /// debug builds.
- const std::shared_ptr<DataType>& type() const;
-
- /// \brief For InputType::USE_TYPE_MATCHER, the TypeMatcher to be used for
- /// checking the type of a value. Otherwise this function should not be used
- /// and will assert in debug builds.
- const TypeMatcher& type_matcher() const;
-
- private:
- void CopyInto(const InputType& other) {
- this->kind_ = other.kind_;
- this->shape_ = other.shape_;
- this->type_ = other.type_;
- this->type_matcher_ = other.type_matcher_;
- }
-
- void MoveInto(InputType&& other) {
- this->kind_ = other.kind_;
- this->shape_ = other.shape_;
- this->type_ = std::move(other.type_);
- this->type_matcher_ = std::move(other.type_matcher_);
- }
-
- Kind kind_;
-
- ValueDescr::Shape shape_ = ValueDescr::ANY;
-
- // For EXACT_TYPE Kind
- std::shared_ptr<DataType> type_;
-
- // For USE_TYPE_MATCHER Kind
- std::shared_ptr<TypeMatcher> type_matcher_;
-};
-
-/// \brief Container to capture both exact and input-dependent output types.
-///
-/// The value shape returned by Resolve will be determined by broadcasting the
-/// shapes of the input arguments, otherwise this is handled by the
-/// user-defined resolver function:
-///
-/// * Any ARRAY shape -> output shape is ARRAY
-/// * All SCALAR shapes -> output shape is SCALAR
-class ARROW_EXPORT OutputType {
- public:
- /// \brief An enum indicating whether the value type is an invariant fixed
- /// value or one that's computed by a kernel-defined resolver function.
- enum ResolveKind { FIXED, COMPUTED };
-
- /// Type resolution function. Given input types and shapes, return output
- /// type and shape. This function SHOULD _not_ be used to check for arity,
- /// that is to be performed one or more layers above. May make use of kernel
- /// state to know what type to output in some cases.
- using Resolver =
- std::function<Result<ValueDescr>(KernelContext*, const std::vector<ValueDescr>&)>;
-
- /// \brief Output an exact type, but with shape determined by promoting the
- /// shapes of the inputs (any ARRAY argument yields ARRAY).
- OutputType(std::shared_ptr<DataType> type) // NOLINT implicit construction
- : kind_(FIXED), type_(std::move(type)) {}
-
- /// \brief Output the exact type and shape provided by a ValueDescr
- OutputType(ValueDescr descr); // NOLINT implicit construction
-
- explicit OutputType(Resolver resolver)
- : kind_(COMPUTED), resolver_(std::move(resolver)) {}
-
- OutputType(const OutputType& other) {
- this->kind_ = other.kind_;
- this->shape_ = other.shape_;
- this->type_ = other.type_;
- this->resolver_ = other.resolver_;
- }
-
- OutputType(OutputType&& other) {
- this->kind_ = other.kind_;
- this->type_ = std::move(other.type_);
- this->shape_ = other.shape_;
- this->resolver_ = other.resolver_;
- }
-
+
+/// \brief An type-checking interface to permit customizable validation rules
+/// for use with InputType and KernelSignature. This is for scenarios where the
+/// acceptance is not an exact type instance, such as a TIMESTAMP type for a
+/// specific TimeUnit, but permitting any time zone.
+struct ARROW_EXPORT TypeMatcher {
+ virtual ~TypeMatcher() = default;
+
+ /// \brief Return true if this matcher accepts the data type.
+ virtual bool Matches(const DataType& type) const = 0;
+
+ /// \brief A human-interpretable string representation of what the type
+ /// matcher checks for, usable when printing KernelSignature or formatting
+ /// error messages.
+ virtual std::string ToString() const = 0;
+
+ /// \brief Return true if this TypeMatcher contains the same matching rule as
+ /// the other. Currently depends on RTTI.
+ virtual bool Equals(const TypeMatcher& other) const = 0;
+};
+
+namespace match {
+
+/// \brief Match any DataType instance having the same DataType::id.
+ARROW_EXPORT std::shared_ptr<TypeMatcher> SameTypeId(Type::type type_id);
+
+/// \brief Match any TimestampType instance having the same unit, but the time
+/// zones can be different.
+ARROW_EXPORT std::shared_ptr<TypeMatcher> TimestampTypeUnit(TimeUnit::type unit);
+ARROW_EXPORT std::shared_ptr<TypeMatcher> Time32TypeUnit(TimeUnit::type unit);
+ARROW_EXPORT std::shared_ptr<TypeMatcher> Time64TypeUnit(TimeUnit::type unit);
+ARROW_EXPORT std::shared_ptr<TypeMatcher> DurationTypeUnit(TimeUnit::type unit);
+
+// \brief Match any integer type
+ARROW_EXPORT std::shared_ptr<TypeMatcher> Integer();
+
+// Match types using 32-bit varbinary representation
+ARROW_EXPORT std::shared_ptr<TypeMatcher> BinaryLike();
+
+// Match types using 64-bit varbinary representation
+ARROW_EXPORT std::shared_ptr<TypeMatcher> LargeBinaryLike();
+
+// \brief Match any primitive type (boolean or any type representable as a C
+// Type)
+ARROW_EXPORT std::shared_ptr<TypeMatcher> Primitive();
+
+} // namespace match
+
+/// \brief An object used for type- and shape-checking arguments to be passed
+/// to a kernel and stored in a KernelSignature. Distinguishes between ARRAY
+/// and SCALAR arguments using ValueDescr::Shape. The type-checking rule can be
+/// supplied either with an exact DataType instance or a custom TypeMatcher.
+class ARROW_EXPORT InputType {
+ public:
+ /// \brief The kind of type-checking rule that the InputType contains.
+ enum Kind {
+ /// \brief Accept any value type.
+ ANY_TYPE,
+
+ /// \brief A fixed arrow::DataType and will only exact match having this
+ /// exact type (e.g. same TimestampType unit, same decimal scale and
+ /// precision, or same nested child types).
+ EXACT_TYPE,
+
+ /// \brief Uses a TypeMatcher implementation to check the type.
+ USE_TYPE_MATCHER
+ };
+
+ /// \brief Accept any value type but with a specific shape (e.g. any Array or
+ /// any Scalar).
+ InputType(ValueDescr::Shape shape = ValueDescr::ANY) // NOLINT implicit construction
+ : kind_(ANY_TYPE), shape_(shape) {}
+
+ /// \brief Accept an exact value type.
+ InputType(std::shared_ptr<DataType> type, // NOLINT implicit construction
+ ValueDescr::Shape shape = ValueDescr::ANY)
+ : kind_(EXACT_TYPE), shape_(shape), type_(std::move(type)) {}
+
+ /// \brief Accept an exact value type and shape provided by a ValueDescr.
+ InputType(const ValueDescr& descr) // NOLINT implicit construction
+ : InputType(descr.type, descr.shape) {}
+
+ /// \brief Use the passed TypeMatcher to type check.
+ InputType(std::shared_ptr<TypeMatcher> type_matcher, // NOLINT implicit construction
+ ValueDescr::Shape shape = ValueDescr::ANY)
+ : kind_(USE_TYPE_MATCHER), shape_(shape), type_matcher_(std::move(type_matcher)) {}
+
+ /// \brief Match any type with the given Type::type. Uses a TypeMatcher for
+ /// its implementation.
+ explicit InputType(Type::type type_id, ValueDescr::Shape shape = ValueDescr::ANY)
+ : InputType(match::SameTypeId(type_id), shape) {}
+
+ InputType(const InputType& other) { CopyInto(other); }
+
+ void operator=(const InputType& other) { CopyInto(other); }
+
+ InputType(InputType&& other) { MoveInto(std::forward<InputType>(other)); }
+
+ void operator=(InputType&& other) { MoveInto(std::forward<InputType>(other)); }
+
+ // \brief Match an array with the given exact type. Convenience constructor.
+ static InputType Array(std::shared_ptr<DataType> type) {
+ return InputType(std::move(type), ValueDescr::ARRAY);
+ }
+
+ // \brief Match a scalar with the given exact type. Convenience constructor.
+ static InputType Scalar(std::shared_ptr<DataType> type) {
+ return InputType(std::move(type), ValueDescr::SCALAR);
+ }
+
+ // \brief Match an array with the given Type::type id. Convenience
+ // constructor.
+ static InputType Array(Type::type id) { return InputType(id, ValueDescr::ARRAY); }
+
+ // \brief Match a scalar with the given Type::type id. Convenience
+ // constructor.
+ static InputType Scalar(Type::type id) { return InputType(id, ValueDescr::SCALAR); }
+
+ /// \brief Return true if this input type matches the same type cases as the
+ /// other.
+ bool Equals(const InputType& other) const;
+
+ bool operator==(const InputType& other) const { return this->Equals(other); }
+
+ bool operator!=(const InputType& other) const { return !(*this == other); }
+
+ /// \brief Return hash code.
+ size_t Hash() const;
+
+ /// \brief Render a human-readable string representation.
+ std::string ToString() const;
+
+ /// \brief Return true if the value matches this argument kind in type
+ /// and shape.
+ bool Matches(const Datum& value) const;
+
+ /// \brief Return true if the value descriptor matches this argument kind in
+ /// type and shape.
+ bool Matches(const ValueDescr& value) const;
+
+ /// \brief The type matching rule that this InputType uses.
+ Kind kind() const { return kind_; }
+
+ /// \brief Indicates whether this InputType matches Array (ValueDescr::ARRAY),
+ /// Scalar (ValueDescr::SCALAR) values, or both (ValueDescr::ANY).
+ ValueDescr::Shape shape() const { return shape_; }
+
+ /// \brief For InputType::EXACT_TYPE kind, the exact type that this InputType
+ /// must match. Otherwise this function should not be used and will assert in
+ /// debug builds.
+ const std::shared_ptr<DataType>& type() const;
+
+ /// \brief For InputType::USE_TYPE_MATCHER, the TypeMatcher to be used for
+ /// checking the type of a value. Otherwise this function should not be used
+ /// and will assert in debug builds.
+ const TypeMatcher& type_matcher() const;
+
+ private:
+ void CopyInto(const InputType& other) {
+ this->kind_ = other.kind_;
+ this->shape_ = other.shape_;
+ this->type_ = other.type_;
+ this->type_matcher_ = other.type_matcher_;
+ }
+
+ void MoveInto(InputType&& other) {
+ this->kind_ = other.kind_;
+ this->shape_ = other.shape_;
+ this->type_ = std::move(other.type_);
+ this->type_matcher_ = std::move(other.type_matcher_);
+ }
+
+ Kind kind_;
+
+ ValueDescr::Shape shape_ = ValueDescr::ANY;
+
+ // For EXACT_TYPE Kind
+ std::shared_ptr<DataType> type_;
+
+ // For USE_TYPE_MATCHER Kind
+ std::shared_ptr<TypeMatcher> type_matcher_;
+};
+
+/// \brief Container to capture both exact and input-dependent output types.
+///
+/// The value shape returned by Resolve will be determined by broadcasting the
+/// shapes of the input arguments, otherwise this is handled by the
+/// user-defined resolver function:
+///
+/// * Any ARRAY shape -> output shape is ARRAY
+/// * All SCALAR shapes -> output shape is SCALAR
+class ARROW_EXPORT OutputType {
+ public:
+ /// \brief An enum indicating whether the value type is an invariant fixed
+ /// value or one that's computed by a kernel-defined resolver function.
+ enum ResolveKind { FIXED, COMPUTED };
+
+ /// Type resolution function. Given input types and shapes, return output
+ /// type and shape. This function SHOULD _not_ be used to check for arity,
+ /// that is to be performed one or more layers above. May make use of kernel
+ /// state to know what type to output in some cases.
+ using Resolver =
+ std::function<Result<ValueDescr>(KernelContext*, const std::vector<ValueDescr>&)>;
+
+ /// \brief Output an exact type, but with shape determined by promoting the
+ /// shapes of the inputs (any ARRAY argument yields ARRAY).
+ OutputType(std::shared_ptr<DataType> type) // NOLINT implicit construction
+ : kind_(FIXED), type_(std::move(type)) {}
+
+ /// \brief Output the exact type and shape provided by a ValueDescr
+ OutputType(ValueDescr descr); // NOLINT implicit construction
+
+ explicit OutputType(Resolver resolver)
+ : kind_(COMPUTED), resolver_(std::move(resolver)) {}
+
+ OutputType(const OutputType& other) {
+ this->kind_ = other.kind_;
+ this->shape_ = other.shape_;
+ this->type_ = other.type_;
+ this->resolver_ = other.resolver_;
+ }
+
+ OutputType(OutputType&& other) {
+ this->kind_ = other.kind_;
+ this->type_ = std::move(other.type_);
+ this->shape_ = other.shape_;
+ this->resolver_ = other.resolver_;
+ }
+
OutputType& operator=(const OutputType&) = default;
OutputType& operator=(OutputType&&) = default;
- /// \brief Return the shape and type of the expected output value of the
- /// kernel given the value descriptors (shapes and types) of the input
- /// arguments. The resolver may make use of state information kept in the
- /// KernelContext.
- Result<ValueDescr> Resolve(KernelContext* ctx,
- const std::vector<ValueDescr>& args) const;
-
- /// \brief The exact output value type for the FIXED kind.
- const std::shared_ptr<DataType>& type() const;
-
- /// \brief For use with COMPUTED resolution strategy. It may be more
- /// convenient to invoke this with OutputType::Resolve returned from this
- /// method.
- const Resolver& resolver() const;
-
- /// \brief Render a human-readable string representation.
- std::string ToString() const;
-
- /// \brief Return the kind of type resolution of this output type, whether
- /// fixed/invariant or computed by a resolver.
- ResolveKind kind() const { return kind_; }
-
- /// \brief If the shape is ANY, then Resolve will compute the shape based on
- /// the input arguments.
- ValueDescr::Shape shape() const { return shape_; }
-
- private:
- ResolveKind kind_;
-
- // For FIXED resolution
- std::shared_ptr<DataType> type_;
-
- /// \brief The shape of the output type to return when using Resolve. If ANY
- /// will promote the input shapes.
- ValueDescr::Shape shape_ = ValueDescr::ANY;
-
- // For COMPUTED resolution
- Resolver resolver_;
-};
-
-/// \brief Holds the input types and output type of the kernel.
-///
+ /// \brief Return the shape and type of the expected output value of the
+ /// kernel given the value descriptors (shapes and types) of the input
+ /// arguments. The resolver may make use of state information kept in the
+ /// KernelContext.
+ Result<ValueDescr> Resolve(KernelContext* ctx,
+ const std::vector<ValueDescr>& args) const;
+
+ /// \brief The exact output value type for the FIXED kind.
+ const std::shared_ptr<DataType>& type() const;
+
+ /// \brief For use with COMPUTED resolution strategy. It may be more
+ /// convenient to invoke this with OutputType::Resolve returned from this
+ /// method.
+ const Resolver& resolver() const;
+
+ /// \brief Render a human-readable string representation.
+ std::string ToString() const;
+
+ /// \brief Return the kind of type resolution of this output type, whether
+ /// fixed/invariant or computed by a resolver.
+ ResolveKind kind() const { return kind_; }
+
+ /// \brief If the shape is ANY, then Resolve will compute the shape based on
+ /// the input arguments.
+ ValueDescr::Shape shape() const { return shape_; }
+
+ private:
+ ResolveKind kind_;
+
+ // For FIXED resolution
+ std::shared_ptr<DataType> type_;
+
+ /// \brief The shape of the output type to return when using Resolve. If ANY
+ /// will promote the input shapes.
+ ValueDescr::Shape shape_ = ValueDescr::ANY;
+
+ // For COMPUTED resolution
+ Resolver resolver_;
+};
+
+/// \brief Holds the input types and output type of the kernel.
+///
/// VarArgs functions with minimum N arguments should pass up to N input types to be
/// used to validate the input types of a function invocation. The first N-1 types
/// will be matched against the first N-1 arguments, and the last type will be
/// matched against the remaining arguments.
-class ARROW_EXPORT KernelSignature {
- public:
- KernelSignature(std::vector<InputType> in_types, OutputType out_type,
- bool is_varargs = false);
-
- /// \brief Convenience ctor since make_shared can be awkward
- static std::shared_ptr<KernelSignature> Make(std::vector<InputType> in_types,
- OutputType out_type,
- bool is_varargs = false);
-
- /// \brief Return true if the signature if compatible with the list of input
- /// value descriptors.
- bool MatchesInputs(const std::vector<ValueDescr>& descriptors) const;
-
- /// \brief Returns true if the input types of each signature are
- /// equal. Well-formed functions should have a deterministic output type
- /// given input types, but currently it is the responsibility of the
- /// developer to ensure this.
- bool Equals(const KernelSignature& other) const;
-
- bool operator==(const KernelSignature& other) const { return this->Equals(other); }
-
- bool operator!=(const KernelSignature& other) const { return !(*this == other); }
-
- /// \brief Compute a hash code for the signature
- size_t Hash() const;
-
- /// \brief The input types for the kernel. For VarArgs functions, this should
- /// generally contain a single validator to use for validating all of the
- /// function arguments.
- const std::vector<InputType>& in_types() const { return in_types_; }
-
- /// \brief The output type for the kernel. Use Resolve to return the exact
- /// output given input argument ValueDescrs, since many kernels' output types
- /// depend on their input types (or their type metadata).
- const OutputType& out_type() const { return out_type_; }
-
- /// \brief Render a human-readable string representation
- std::string ToString() const;
-
- bool is_varargs() const { return is_varargs_; }
-
- private:
- std::vector<InputType> in_types_;
- OutputType out_type_;
- bool is_varargs_;
-
- // For caching the hash code after it's computed the first time
- mutable uint64_t hash_code_;
-};
-
-/// \brief A function may contain multiple variants of a kernel for a given
-/// type combination for different SIMD levels. Based on the active system's
-/// CPU info or the user's preferences, we can elect to use one over the other.
-struct SimdLevel {
- enum type { NONE = 0, SSE4_2, AVX, AVX2, AVX512, NEON, MAX };
-};
-
-/// \brief The strategy to use for propagating or otherwise populating the
-/// validity bitmap of a kernel output.
-struct NullHandling {
- enum type {
- /// Compute the output validity bitmap by intersecting the validity bitmaps
- /// of the arguments using bitwise-and operations. This means that values
- /// in the output are valid/non-null only if the corresponding values in
- /// all input arguments were valid/non-null. Kernel generally need not
- /// touch the bitmap thereafter, but a kernel's exec function is permitted
- /// to alter the bitmap after the null intersection is computed if it needs
- /// to.
- INTERSECTION,
-
- /// Kernel expects a pre-allocated buffer to write the result bitmap
- /// into. The preallocated memory is not zeroed (except for the last byte),
- /// so the kernel should ensure to completely populate the bitmap.
- COMPUTED_PREALLOCATE,
-
- /// Kernel allocates and sets the validity bitmap of the output.
- COMPUTED_NO_PREALLOCATE,
-
- /// Kernel output is never null and a validity bitmap does not need to be
- /// allocated.
- OUTPUT_NOT_NULL
- };
-};
-
-/// \brief The preference for memory preallocation of fixed-width type outputs
-/// in kernel execution.
-struct MemAllocation {
- enum type {
- // For data types that support pre-allocation (i.e. fixed-width), the
- // kernel expects to be provided a pre-allocated data buffer to write
- // into. Non-fixed-width types must always allocate their own data
- // buffers. The allocation made for the same length as the execution batch,
- // so vector kernels yielding differently sized output should not use this.
- //
- // It is valid for the data to not be preallocated but the validity bitmap
- // is (or is computed using the intersection/bitwise-and method).
- //
- // For variable-size output types like BinaryType or StringType, or for
- // nested types, this option has no effect.
- PREALLOCATE,
-
- // The kernel is responsible for allocating its own data buffer for
- // fixed-width type outputs.
- NO_PREALLOCATE
- };
-};
-
-struct Kernel;
-
-/// \brief Arguments to pass to a KernelInit function. A struct is used to help
-/// avoid API breakage should the arguments passed need to be expanded.
-struct KernelInitArgs {
- /// \brief A pointer to the kernel being initialized. The init function may
- /// depend on the kernel's KernelSignature or other data contained there.
- const Kernel* kernel;
-
- /// \brief The types and shapes of the input arguments that the kernel is
- /// about to be executed against.
- ///
- /// TODO: should this be const std::vector<ValueDescr>*? const-ref is being
- /// used to avoid the cost of copying the struct into the args struct.
- const std::vector<ValueDescr>& inputs;
-
- /// \brief Opaque options specific to this kernel. May be nullptr for functions
- /// that do not require options.
- const FunctionOptions* options;
-};
-
-/// \brief Common initializer function for all kernel types.
+class ARROW_EXPORT KernelSignature {
+ public:
+ KernelSignature(std::vector<InputType> in_types, OutputType out_type,
+ bool is_varargs = false);
+
+ /// \brief Convenience ctor since make_shared can be awkward
+ static std::shared_ptr<KernelSignature> Make(std::vector<InputType> in_types,
+ OutputType out_type,
+ bool is_varargs = false);
+
+ /// \brief Return true if the signature if compatible with the list of input
+ /// value descriptors.
+ bool MatchesInputs(const std::vector<ValueDescr>& descriptors) const;
+
+ /// \brief Returns true if the input types of each signature are
+ /// equal. Well-formed functions should have a deterministic output type
+ /// given input types, but currently it is the responsibility of the
+ /// developer to ensure this.
+ bool Equals(const KernelSignature& other) const;
+
+ bool operator==(const KernelSignature& other) const { return this->Equals(other); }
+
+ bool operator!=(const KernelSignature& other) const { return !(*this == other); }
+
+ /// \brief Compute a hash code for the signature
+ size_t Hash() const;
+
+ /// \brief The input types for the kernel. For VarArgs functions, this should
+ /// generally contain a single validator to use for validating all of the
+ /// function arguments.
+ const std::vector<InputType>& in_types() const { return in_types_; }
+
+ /// \brief The output type for the kernel. Use Resolve to return the exact
+ /// output given input argument ValueDescrs, since many kernels' output types
+ /// depend on their input types (or their type metadata).
+ const OutputType& out_type() const { return out_type_; }
+
+ /// \brief Render a human-readable string representation
+ std::string ToString() const;
+
+ bool is_varargs() const { return is_varargs_; }
+
+ private:
+ std::vector<InputType> in_types_;
+ OutputType out_type_;
+ bool is_varargs_;
+
+ // For caching the hash code after it's computed the first time
+ mutable uint64_t hash_code_;
+};
+
+/// \brief A function may contain multiple variants of a kernel for a given
+/// type combination for different SIMD levels. Based on the active system's
+/// CPU info or the user's preferences, we can elect to use one over the other.
+struct SimdLevel {
+ enum type { NONE = 0, SSE4_2, AVX, AVX2, AVX512, NEON, MAX };
+};
+
+/// \brief The strategy to use for propagating or otherwise populating the
+/// validity bitmap of a kernel output.
+struct NullHandling {
+ enum type {
+ /// Compute the output validity bitmap by intersecting the validity bitmaps
+ /// of the arguments using bitwise-and operations. This means that values
+ /// in the output are valid/non-null only if the corresponding values in
+ /// all input arguments were valid/non-null. Kernel generally need not
+ /// touch the bitmap thereafter, but a kernel's exec function is permitted
+ /// to alter the bitmap after the null intersection is computed if it needs
+ /// to.
+ INTERSECTION,
+
+ /// Kernel expects a pre-allocated buffer to write the result bitmap
+ /// into. The preallocated memory is not zeroed (except for the last byte),
+ /// so the kernel should ensure to completely populate the bitmap.
+ COMPUTED_PREALLOCATE,
+
+ /// Kernel allocates and sets the validity bitmap of the output.
+ COMPUTED_NO_PREALLOCATE,
+
+ /// Kernel output is never null and a validity bitmap does not need to be
+ /// allocated.
+ OUTPUT_NOT_NULL
+ };
+};
+
+/// \brief The preference for memory preallocation of fixed-width type outputs
+/// in kernel execution.
+struct MemAllocation {
+ enum type {
+ // For data types that support pre-allocation (i.e. fixed-width), the
+ // kernel expects to be provided a pre-allocated data buffer to write
+ // into. Non-fixed-width types must always allocate their own data
+ // buffers. The allocation made for the same length as the execution batch,
+ // so vector kernels yielding differently sized output should not use this.
+ //
+ // It is valid for the data to not be preallocated but the validity bitmap
+ // is (or is computed using the intersection/bitwise-and method).
+ //
+ // For variable-size output types like BinaryType or StringType, or for
+ // nested types, this option has no effect.
+ PREALLOCATE,
+
+ // The kernel is responsible for allocating its own data buffer for
+ // fixed-width type outputs.
+ NO_PREALLOCATE
+ };
+};
+
+struct Kernel;
+
+/// \brief Arguments to pass to a KernelInit function. A struct is used to help
+/// avoid API breakage should the arguments passed need to be expanded.
+struct KernelInitArgs {
+ /// \brief A pointer to the kernel being initialized. The init function may
+ /// depend on the kernel's KernelSignature or other data contained there.
+ const Kernel* kernel;
+
+ /// \brief The types and shapes of the input arguments that the kernel is
+ /// about to be executed against.
+ ///
+ /// TODO: should this be const std::vector<ValueDescr>*? const-ref is being
+ /// used to avoid the cost of copying the struct into the args struct.
+ const std::vector<ValueDescr>& inputs;
+
+ /// \brief Opaque options specific to this kernel. May be nullptr for functions
+ /// that do not require options.
+ const FunctionOptions* options;
+};
+
+/// \brief Common initializer function for all kernel types.
using KernelInit = std::function<Result<std::unique_ptr<KernelState>>(
KernelContext*, const KernelInitArgs&)>;
-
-/// \brief Base type for kernels. Contains the function signature and
-/// optionally the state initialization function, along with some common
-/// attributes
-struct Kernel {
- Kernel() = default;
-
- Kernel(std::shared_ptr<KernelSignature> sig, KernelInit init)
- : signature(std::move(sig)), init(std::move(init)) {}
-
- Kernel(std::vector<InputType> in_types, OutputType out_type, KernelInit init)
+
+/// \brief Base type for kernels. Contains the function signature and
+/// optionally the state initialization function, along with some common
+/// attributes
+struct Kernel {
+ Kernel() = default;
+
+ Kernel(std::shared_ptr<KernelSignature> sig, KernelInit init)
+ : signature(std::move(sig)), init(std::move(init)) {}
+
+ Kernel(std::vector<InputType> in_types, OutputType out_type, KernelInit init)
: Kernel(KernelSignature::Make(std::move(in_types), std::move(out_type)),
std::move(init)) {}
-
- /// \brief The "signature" of the kernel containing the InputType input
- /// argument validators and OutputType output type and shape resolver.
- std::shared_ptr<KernelSignature> signature;
-
- /// \brief Create a new KernelState for invocations of this kernel, e.g. to
- /// set up any options or state relevant for execution.
- KernelInit init;
-
+
+ /// \brief The "signature" of the kernel containing the InputType input
+ /// argument validators and OutputType output type and shape resolver.
+ std::shared_ptr<KernelSignature> signature;
+
+ /// \brief Create a new KernelState for invocations of this kernel, e.g. to
+ /// set up any options or state relevant for execution.
+ KernelInit init;
+
/// \brief Create a vector of new KernelState for invocations of this kernel.
static Status InitAll(KernelContext*, const KernelInitArgs&,
std::vector<std::unique_ptr<KernelState>>*);
- /// \brief Indicates whether execution can benefit from parallelization
- /// (splitting large chunks into smaller chunks and using multiple
- /// threads). Some kernels may not support parallel execution at
- /// all. Synchronization and concurrency-related issues are currently the
- /// responsibility of the Kernel's implementation.
- bool parallelizable = true;
-
- /// \brief Indicates the level of SIMD instruction support in the host CPU is
- /// required to use the function. The intention is for functions to be able to
- /// contain multiple kernels with the same signature but different levels of SIMD,
- /// so that the most optimized kernel supported on a host's processor can be chosen.
- SimdLevel::type simd_level = SimdLevel::NONE;
-};
-
-/// \brief Common kernel base data structure for ScalarKernel and
-/// VectorKernel. It is called "ArrayKernel" in that the functions generally
-/// output array values (as opposed to scalar values in the case of aggregate
-/// functions).
-struct ArrayKernel : public Kernel {
+ /// \brief Indicates whether execution can benefit from parallelization
+ /// (splitting large chunks into smaller chunks and using multiple
+ /// threads). Some kernels may not support parallel execution at
+ /// all. Synchronization and concurrency-related issues are currently the
+ /// responsibility of the Kernel's implementation.
+ bool parallelizable = true;
+
+ /// \brief Indicates the level of SIMD instruction support in the host CPU is
+ /// required to use the function. The intention is for functions to be able to
+ /// contain multiple kernels with the same signature but different levels of SIMD,
+ /// so that the most optimized kernel supported on a host's processor can be chosen.
+ SimdLevel::type simd_level = SimdLevel::NONE;
+};
+
+/// \brief Common kernel base data structure for ScalarKernel and
+/// VectorKernel. It is called "ArrayKernel" in that the functions generally
+/// output array values (as opposed to scalar values in the case of aggregate
+/// functions).
+struct ArrayKernel : public Kernel {
ArrayKernel() = default;
-
- ArrayKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec,
- KernelInit init = NULLPTR)
- : Kernel(std::move(sig), init), exec(std::move(exec)) {}
-
- ArrayKernel(std::vector<InputType> in_types, OutputType out_type, ArrayKernelExec exec,
- KernelInit init = NULLPTR)
+
+ ArrayKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec,
+ KernelInit init = NULLPTR)
+ : Kernel(std::move(sig), init), exec(std::move(exec)) {}
+
+ ArrayKernel(std::vector<InputType> in_types, OutputType out_type, ArrayKernelExec exec,
+ KernelInit init = NULLPTR)
: Kernel(std::move(in_types), std::move(out_type), std::move(init)),
exec(std::move(exec)) {}
-
- /// \brief Perform a single invocation of this kernel. Depending on the
- /// implementation, it may only write into preallocated memory, while in some
- /// cases it will allocate its own memory. Any required state is managed
- /// through the KernelContext.
- ArrayKernelExec exec;
-
- /// \brief Writing execution results into larger contiguous allocations
- /// requires that the kernel be able to write into sliced output ArrayData*,
- /// including sliced output validity bitmaps. Some kernel implementations may
- /// not be able to do this, so setting this to false disables this
- /// functionality.
- bool can_write_into_slices = true;
-};
-
-/// \brief Kernel data structure for implementations of ScalarFunction. In
-/// addition to the members found in ArrayKernel, contains the null handling
-/// and memory pre-allocation preferences.
-struct ScalarKernel : public ArrayKernel {
- using ArrayKernel::ArrayKernel;
-
- // For scalar functions preallocated data and intersecting arg validity
- // bitmaps is a reasonable default
- NullHandling::type null_handling = NullHandling::INTERSECTION;
- MemAllocation::type mem_allocation = MemAllocation::PREALLOCATE;
-};
-
-// ----------------------------------------------------------------------
-// VectorKernel (for VectorFunction)
-
-/// \brief See VectorKernel::finalize member for usage
+
+ /// \brief Perform a single invocation of this kernel. Depending on the
+ /// implementation, it may only write into preallocated memory, while in some
+ /// cases it will allocate its own memory. Any required state is managed
+ /// through the KernelContext.
+ ArrayKernelExec exec;
+
+ /// \brief Writing execution results into larger contiguous allocations
+ /// requires that the kernel be able to write into sliced output ArrayData*,
+ /// including sliced output validity bitmaps. Some kernel implementations may
+ /// not be able to do this, so setting this to false disables this
+ /// functionality.
+ bool can_write_into_slices = true;
+};
+
+/// \brief Kernel data structure for implementations of ScalarFunction. In
+/// addition to the members found in ArrayKernel, contains the null handling
+/// and memory pre-allocation preferences.
+struct ScalarKernel : public ArrayKernel {
+ using ArrayKernel::ArrayKernel;
+
+ // For scalar functions preallocated data and intersecting arg validity
+ // bitmaps is a reasonable default
+ NullHandling::type null_handling = NullHandling::INTERSECTION;
+ MemAllocation::type mem_allocation = MemAllocation::PREALLOCATE;
+};
+
+// ----------------------------------------------------------------------
+// VectorKernel (for VectorFunction)
+
+/// \brief See VectorKernel::finalize member for usage
using VectorFinalize = std::function<Status(KernelContext*, std::vector<Datum>*)>;
-
-/// \brief Kernel data structure for implementations of VectorFunction. In
-/// addition to the members found in ArrayKernel, contains an optional
-/// finalizer function, the null handling and memory pre-allocation preferences
-/// (which have different defaults from ScalarKernel), and some other
-/// execution-related options.
-struct VectorKernel : public ArrayKernel {
+
+/// \brief Kernel data structure for implementations of VectorFunction. In
+/// addition to the members found in ArrayKernel, contains an optional
+/// finalizer function, the null handling and memory pre-allocation preferences
+/// (which have different defaults from ScalarKernel), and some other
+/// execution-related options.
+struct VectorKernel : public ArrayKernel {
VectorKernel() = default;
-
- VectorKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec)
+
+ VectorKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec)
: ArrayKernel(std::move(sig), std::move(exec)) {}
-
- VectorKernel(std::vector<InputType> in_types, OutputType out_type, ArrayKernelExec exec,
- KernelInit init = NULLPTR, VectorFinalize finalize = NULLPTR)
- : ArrayKernel(std::move(in_types), std::move(out_type), std::move(exec),
- std::move(init)),
- finalize(std::move(finalize)) {}
-
- VectorKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec,
- KernelInit init = NULLPTR, VectorFinalize finalize = NULLPTR)
- : ArrayKernel(std::move(sig), std::move(exec), std::move(init)),
- finalize(std::move(finalize)) {}
-
- /// \brief For VectorKernel, convert intermediate results into finalized
- /// results. Mutates input argument. Some kernels may accumulate state
- /// (example: hashing-related functions) through processing chunked inputs, and
- /// then need to attach some accumulated state to each of the outputs of
- /// processing each chunk of data.
- VectorFinalize finalize;
-
- /// Since vector kernels generally are implemented rather differently from
- /// scalar/elementwise kernels (and they may not even yield arrays of the same
- /// size), so we make the developer opt-in to any memory preallocation rather
- /// than having to turn it off.
- NullHandling::type null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
- MemAllocation::type mem_allocation = MemAllocation::NO_PREALLOCATE;
-
- /// Some vector kernels can do chunkwise execution using ExecBatchIterator,
- /// in some cases accumulating some state. Other kernels (like Take) need to
- /// be passed whole arrays and don't work on ChunkedArray inputs
- bool can_execute_chunkwise = true;
-
- /// Some kernels (like unique and value_counts) yield non-chunked output from
- /// chunked-array inputs. This option controls how the results are boxed when
- /// returned from ExecVectorFunction
- ///
- /// true -> ChunkedArray
- /// false -> Array
- bool output_chunked = true;
-};
-
-// ----------------------------------------------------------------------
-// ScalarAggregateKernel (for ScalarAggregateFunction)
-
+
+ VectorKernel(std::vector<InputType> in_types, OutputType out_type, ArrayKernelExec exec,
+ KernelInit init = NULLPTR, VectorFinalize finalize = NULLPTR)
+ : ArrayKernel(std::move(in_types), std::move(out_type), std::move(exec),
+ std::move(init)),
+ finalize(std::move(finalize)) {}
+
+ VectorKernel(std::shared_ptr<KernelSignature> sig, ArrayKernelExec exec,
+ KernelInit init = NULLPTR, VectorFinalize finalize = NULLPTR)
+ : ArrayKernel(std::move(sig), std::move(exec), std::move(init)),
+ finalize(std::move(finalize)) {}
+
+ /// \brief For VectorKernel, convert intermediate results into finalized
+ /// results. Mutates input argument. Some kernels may accumulate state
+ /// (example: hashing-related functions) through processing chunked inputs, and
+ /// then need to attach some accumulated state to each of the outputs of
+ /// processing each chunk of data.
+ VectorFinalize finalize;
+
+ /// Since vector kernels generally are implemented rather differently from
+ /// scalar/elementwise kernels (and they may not even yield arrays of the same
+ /// size), so we make the developer opt-in to any memory preallocation rather
+ /// than having to turn it off.
+ NullHandling::type null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
+ MemAllocation::type mem_allocation = MemAllocation::NO_PREALLOCATE;
+
+ /// Some vector kernels can do chunkwise execution using ExecBatchIterator,
+ /// in some cases accumulating some state. Other kernels (like Take) need to
+ /// be passed whole arrays and don't work on ChunkedArray inputs
+ bool can_execute_chunkwise = true;
+
+ /// Some kernels (like unique and value_counts) yield non-chunked output from
+ /// chunked-array inputs. This option controls how the results are boxed when
+ /// returned from ExecVectorFunction
+ ///
+ /// true -> ChunkedArray
+ /// false -> Array
+ bool output_chunked = true;
+};
+
+// ----------------------------------------------------------------------
+// ScalarAggregateKernel (for ScalarAggregateFunction)
+
using ScalarAggregateConsume = std::function<Status(KernelContext*, const ExecBatch&)>;
-
-using ScalarAggregateMerge =
+
+using ScalarAggregateMerge =
std::function<Status(KernelContext*, KernelState&&, KernelState*)>;
-
-// Finalize returns Datum to permit multiple return values
+
+// Finalize returns Datum to permit multiple return values
using ScalarAggregateFinalize = std::function<Status(KernelContext*, Datum*)>;
-
-/// \brief Kernel data structure for implementations of
-/// ScalarAggregateFunction. The four necessary components of an aggregation
-/// kernel are the init, consume, merge, and finalize functions.
-///
-/// * init: creates a new KernelState for a kernel.
-/// * consume: processes an ExecBatch and updates the KernelState found in the
-/// KernelContext.
-/// * merge: combines one KernelState with another.
-/// * finalize: produces the end result of the aggregation using the
-/// KernelState in the KernelContext.
-struct ScalarAggregateKernel : public Kernel {
+
+/// \brief Kernel data structure for implementations of
+/// ScalarAggregateFunction. The four necessary components of an aggregation
+/// kernel are the init, consume, merge, and finalize functions.
+///
+/// * init: creates a new KernelState for a kernel.
+/// * consume: processes an ExecBatch and updates the KernelState found in the
+/// KernelContext.
+/// * merge: combines one KernelState with another.
+/// * finalize: produces the end result of the aggregation using the
+/// KernelState in the KernelContext.
+struct ScalarAggregateKernel : public Kernel {
ScalarAggregateKernel() = default;
-
- ScalarAggregateKernel(std::shared_ptr<KernelSignature> sig, KernelInit init,
- ScalarAggregateConsume consume, ScalarAggregateMerge merge,
- ScalarAggregateFinalize finalize)
+
+ ScalarAggregateKernel(std::shared_ptr<KernelSignature> sig, KernelInit init,
+ ScalarAggregateConsume consume, ScalarAggregateMerge merge,
+ ScalarAggregateFinalize finalize)
: Kernel(std::move(sig), std::move(init)),
- consume(std::move(consume)),
- merge(std::move(merge)),
- finalize(std::move(finalize)) {}
-
- ScalarAggregateKernel(std::vector<InputType> in_types, OutputType out_type,
- KernelInit init, ScalarAggregateConsume consume,
- ScalarAggregateMerge merge, ScalarAggregateFinalize finalize)
+ consume(std::move(consume)),
+ merge(std::move(merge)),
+ finalize(std::move(finalize)) {}
+
+ ScalarAggregateKernel(std::vector<InputType> in_types, OutputType out_type,
+ KernelInit init, ScalarAggregateConsume consume,
+ ScalarAggregateMerge merge, ScalarAggregateFinalize finalize)
: ScalarAggregateKernel(
KernelSignature::Make(std::move(in_types), std::move(out_type)),
std::move(init), std::move(consume), std::move(merge), std::move(finalize)) {}
-
+
/// \brief Merge a vector of KernelStates into a single KernelState.
/// The merged state will be returned and will be set on the KernelContext.
static Result<std::unique_ptr<KernelState>> MergeAll(
const ScalarAggregateKernel* kernel, KernelContext* ctx,
std::vector<std::unique_ptr<KernelState>> states);
- ScalarAggregateConsume consume;
- ScalarAggregateMerge merge;
- ScalarAggregateFinalize finalize;
-};
-
+ ScalarAggregateConsume consume;
+ ScalarAggregateMerge merge;
+ ScalarAggregateFinalize finalize;
+};
+
// ----------------------------------------------------------------------
// HashAggregateKernel (for HashAggregateFunction)
@@ -735,5 +735,5 @@ struct HashAggregateKernel : public Kernel {
HashAggregateFinalize finalize;
};
-} // namespace compute
-} // namespace arrow
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_basic.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_basic.cc
index a7df66695b..88f3b87d9e 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_basic.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_basic.cc
@@ -1,44 +1,44 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/compute/api_aggregate.h"
-#include "arrow/compute/kernels/aggregate_basic_internal.h"
-#include "arrow/compute/kernels/aggregate_internal.h"
-#include "arrow/compute/kernels/common.h"
-#include "arrow/util/cpu_info.h"
-#include "arrow/util/make_unique.h"
-
-namespace arrow {
-namespace compute {
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/compute/api_aggregate.h"
+#include "arrow/compute/kernels/aggregate_basic_internal.h"
+#include "arrow/compute/kernels/aggregate_internal.h"
+#include "arrow/compute/kernels/common.h"
+#include "arrow/util/cpu_info.h"
+#include "arrow/util/make_unique.h"
+
+namespace arrow {
+namespace compute {
+
namespace {
Status AggregateConsume(KernelContext* ctx, const ExecBatch& batch) {
return checked_cast<ScalarAggregator*>(ctx->state())->Consume(ctx, batch);
-}
-
+}
+
Status AggregateMerge(KernelContext* ctx, KernelState&& src, KernelState* dst) {
return checked_cast<ScalarAggregator*>(dst)->MergeFrom(ctx, std::move(src));
-}
-
+}
+
Status AggregateFinalize(KernelContext* ctx, Datum* out) {
return checked_cast<ScalarAggregator*>(ctx->state())->Finalize(ctx, out);
-}
-
+}
+
} // namespace
void AddAggKernel(std::shared_ptr<KernelSignature> sig, KernelInit init,
@@ -52,12 +52,12 @@ void AddAggKernel(std::shared_ptr<KernelSignature> sig, KernelInit init,
namespace aggregate {
-// ----------------------------------------------------------------------
-// Count implementation
-
-struct CountImpl : public ScalarAggregator {
+// ----------------------------------------------------------------------
+// Count implementation
+
+struct CountImpl : public ScalarAggregator {
explicit CountImpl(ScalarAggregateOptions options) : options(std::move(options)) {}
-
+
Status Consume(KernelContext*, const ExecBatch& batch) override {
if (batch[0].is_array()) {
const ArrayData& input = *batch[0].array();
@@ -70,80 +70,80 @@ struct CountImpl : public ScalarAggregator {
this->non_nulls += input.is_valid * batch.length;
}
return Status::OK();
- }
-
+ }
+
Status MergeFrom(KernelContext*, KernelState&& src) override {
- const auto& other_state = checked_cast<const CountImpl&>(src);
- this->non_nulls += other_state.non_nulls;
- this->nulls += other_state.nulls;
+ const auto& other_state = checked_cast<const CountImpl&>(src);
+ this->non_nulls += other_state.non_nulls;
+ this->nulls += other_state.nulls;
return Status::OK();
- }
-
+ }
+
Status Finalize(KernelContext* ctx, Datum* out) override {
- const auto& state = checked_cast<const CountImpl&>(*ctx->state());
+ const auto& state = checked_cast<const CountImpl&>(*ctx->state());
if (state.options.skip_nulls) {
*out = Datum(state.non_nulls);
} else {
*out = Datum(state.nulls);
- }
+ }
return Status::OK();
- }
-
+ }
+
ScalarAggregateOptions options;
- int64_t non_nulls = 0;
- int64_t nulls = 0;
-};
-
+ int64_t non_nulls = 0;
+ int64_t nulls = 0;
+};
+
Result<std::unique_ptr<KernelState>> CountInit(KernelContext*,
const KernelInitArgs& args) {
- return ::arrow::internal::make_unique<CountImpl>(
+ return ::arrow::internal::make_unique<CountImpl>(
static_cast<const ScalarAggregateOptions&>(*args.options));
-}
-
-// ----------------------------------------------------------------------
-// Sum implementation
-
+}
+
+// ----------------------------------------------------------------------
+// Sum implementation
+
template <typename ArrowType>
struct SumImplDefault : public SumImpl<ArrowType, SimdLevel::NONE> {
explicit SumImplDefault(const ScalarAggregateOptions& options_) {
this->options = options_;
}
-};
-
+};
+
template <typename ArrowType>
struct MeanImplDefault : public MeanImpl<ArrowType, SimdLevel::NONE> {
explicit MeanImplDefault(const ScalarAggregateOptions& options_) {
this->options = options_;
}
-};
-
+};
+
Result<std::unique_ptr<KernelState>> SumInit(KernelContext* ctx,
const KernelInitArgs& args) {
SumLikeInit<SumImplDefault> visitor(
ctx, *args.inputs[0].type,
static_cast<const ScalarAggregateOptions&>(*args.options));
- return visitor.Create();
-}
-
+ return visitor.Create();
+}
+
Result<std::unique_ptr<KernelState>> MeanInit(KernelContext* ctx,
const KernelInitArgs& args) {
SumLikeInit<MeanImplDefault> visitor(
ctx, *args.inputs[0].type,
static_cast<const ScalarAggregateOptions&>(*args.options));
- return visitor.Create();
-}
-
-// ----------------------------------------------------------------------
-// MinMax implementation
-
+ return visitor.Create();
+}
+
+// ----------------------------------------------------------------------
+// MinMax implementation
+
Result<std::unique_ptr<KernelState>> MinMaxInit(KernelContext* ctx,
const KernelInitArgs& args) {
- MinMaxInitState<SimdLevel::NONE> visitor(
- ctx, *args.inputs[0].type, args.kernel->signature->out_type().type(),
+ MinMaxInitState<SimdLevel::NONE> visitor(
+ ctx, *args.inputs[0].type, args.kernel->signature->out_type().type(),
static_cast<const ScalarAggregateOptions&>(*args.options));
- return visitor.Create();
-}
-
+ return visitor.Create();
+}
+
// ----------------------------------------------------------------------
// Any implementation
@@ -203,8 +203,8 @@ Result<std::unique_ptr<KernelState>> AnyInit(KernelContext*, const KernelInitArg
static_cast<const ScalarAggregateOptions&>(*args.options);
return ::arrow::internal::make_unique<BooleanAnyImpl>(
static_cast<const ScalarAggregateOptions&>(*args.options));
-}
-
+}
+
// ----------------------------------------------------------------------
// All implementation
@@ -394,17 +394,17 @@ struct IndexInit {
}
};
-void AddBasicAggKernels(KernelInit init,
- const std::vector<std::shared_ptr<DataType>>& types,
- std::shared_ptr<DataType> out_ty, ScalarAggregateFunction* func,
- SimdLevel::type simd_level) {
- for (const auto& ty : types) {
- // array[InT] -> scalar[OutT]
- auto sig = KernelSignature::Make({InputType::Array(ty)}, ValueDescr::Scalar(out_ty));
- AddAggKernel(std::move(sig), init, func, simd_level);
- }
-}
-
+void AddBasicAggKernels(KernelInit init,
+ const std::vector<std::shared_ptr<DataType>>& types,
+ std::shared_ptr<DataType> out_ty, ScalarAggregateFunction* func,
+ SimdLevel::type simd_level) {
+ for (const auto& ty : types) {
+ // array[InT] -> scalar[OutT]
+ auto sig = KernelSignature::Make({InputType::Array(ty)}, ValueDescr::Scalar(out_ty));
+ AddAggKernel(std::move(sig), init, func, simd_level);
+ }
+}
+
void AddScalarAggKernels(KernelInit init,
const std::vector<std::shared_ptr<DataType>>& types,
std::shared_ptr<DataType> out_ty,
@@ -425,20 +425,20 @@ void AddArrayScalarAggKernels(KernelInit init,
AddScalarAggKernels(init, types, out_ty, func);
}
-void AddMinMaxKernels(KernelInit init,
- const std::vector<std::shared_ptr<DataType>>& types,
- ScalarAggregateFunction* func, SimdLevel::type simd_level) {
- for (const auto& ty : types) {
+void AddMinMaxKernels(KernelInit init,
+ const std::vector<std::shared_ptr<DataType>>& types,
+ ScalarAggregateFunction* func, SimdLevel::type simd_level) {
+ for (const auto& ty : types) {
// any[T] -> scalar[struct<min: T, max: T>]
- auto out_ty = struct_({field("min", ty), field("max", ty)});
+ auto out_ty = struct_({field("min", ty), field("max", ty)});
auto sig = KernelSignature::Make({InputType(ty)}, ValueDescr::Scalar(out_ty));
- AddAggKernel(std::move(sig), init, func, simd_level);
- }
-}
-
-} // namespace aggregate
-
-namespace internal {
+ AddAggKernel(std::move(sig), init, func, simd_level);
+ }
+}
+
+} // namespace aggregate
+
+namespace internal {
namespace {
const FunctionDoc count_doc{"Count the number of null / non-null values",
@@ -496,21 +496,21 @@ const FunctionDoc index_doc{"Find the index of the first occurrence of a given v
} // namespace
-void RegisterScalarAggregateBasic(FunctionRegistry* registry) {
+void RegisterScalarAggregateBasic(FunctionRegistry* registry) {
static auto default_scalar_aggregate_options = ScalarAggregateOptions::Defaults();
-
+
auto func = std::make_shared<ScalarAggregateFunction>(
"count", Arity::Unary(), &count_doc, &default_scalar_aggregate_options);
- // Takes any array input, outputs int64 scalar
- InputType any_array(ValueDescr::ARRAY);
+ // Takes any array input, outputs int64 scalar
+ InputType any_array(ValueDescr::ARRAY);
AddAggKernel(KernelSignature::Make({any_array}, ValueDescr::Scalar(int64())),
aggregate::CountInit, func.get());
AddAggKernel(
KernelSignature::Make({InputType(ValueDescr::SCALAR)}, ValueDescr::Scalar(int64())),
aggregate::CountInit, func.get());
- DCHECK_OK(registry->AddFunction(std::move(func)));
-
+ DCHECK_OK(registry->AddFunction(std::move(func)));
+
func = std::make_shared<ScalarAggregateFunction>("sum", Arity::Unary(), &sum_doc,
&default_scalar_aggregate_options);
aggregate::AddArrayScalarAggKernels(aggregate::SumInit, {boolean()}, int64(),
@@ -521,59 +521,59 @@ void RegisterScalarAggregateBasic(FunctionRegistry* registry) {
func.get());
aggregate::AddArrayScalarAggKernels(aggregate::SumInit, FloatingPointTypes(), float64(),
func.get());
- // Add the SIMD variants for sum
+ // Add the SIMD variants for sum
#if defined(ARROW_HAVE_RUNTIME_AVX2) || defined(ARROW_HAVE_RUNTIME_AVX512)
- auto cpu_info = arrow::internal::CpuInfo::GetInstance();
-#endif
-#if defined(ARROW_HAVE_RUNTIME_AVX2)
- if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX2)) {
- aggregate::AddSumAvx2AggKernels(func.get());
- }
-#endif
-#if defined(ARROW_HAVE_RUNTIME_AVX512)
- if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX512)) {
- aggregate::AddSumAvx512AggKernels(func.get());
- }
+ auto cpu_info = arrow::internal::CpuInfo::GetInstance();
#endif
- DCHECK_OK(registry->AddFunction(std::move(func)));
-
+#if defined(ARROW_HAVE_RUNTIME_AVX2)
+ if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX2)) {
+ aggregate::AddSumAvx2AggKernels(func.get());
+ }
+#endif
+#if defined(ARROW_HAVE_RUNTIME_AVX512)
+ if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX512)) {
+ aggregate::AddSumAvx512AggKernels(func.get());
+ }
+#endif
+ DCHECK_OK(registry->AddFunction(std::move(func)));
+
func = std::make_shared<ScalarAggregateFunction>("mean", Arity::Unary(), &mean_doc,
&default_scalar_aggregate_options);
aggregate::AddArrayScalarAggKernels(aggregate::MeanInit, {boolean()}, float64(),
func.get());
aggregate::AddArrayScalarAggKernels(aggregate::MeanInit, NumericTypes(), float64(),
func.get());
- // Add the SIMD variants for mean
-#if defined(ARROW_HAVE_RUNTIME_AVX2)
- if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX2)) {
- aggregate::AddMeanAvx2AggKernels(func.get());
- }
-#endif
-#if defined(ARROW_HAVE_RUNTIME_AVX512)
- if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX512)) {
- aggregate::AddMeanAvx512AggKernels(func.get());
- }
-#endif
- DCHECK_OK(registry->AddFunction(std::move(func)));
-
+ // Add the SIMD variants for mean
+#if defined(ARROW_HAVE_RUNTIME_AVX2)
+ if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX2)) {
+ aggregate::AddMeanAvx2AggKernels(func.get());
+ }
+#endif
+#if defined(ARROW_HAVE_RUNTIME_AVX512)
+ if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX512)) {
+ aggregate::AddMeanAvx512AggKernels(func.get());
+ }
+#endif
+ DCHECK_OK(registry->AddFunction(std::move(func)));
+
func = std::make_shared<ScalarAggregateFunction>(
"min_max", Arity::Unary(), &min_max_doc, &default_scalar_aggregate_options);
- aggregate::AddMinMaxKernels(aggregate::MinMaxInit, {boolean()}, func.get());
- aggregate::AddMinMaxKernels(aggregate::MinMaxInit, NumericTypes(), func.get());
- // Add the SIMD variants for min max
-#if defined(ARROW_HAVE_RUNTIME_AVX2)
- if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX2)) {
- aggregate::AddMinMaxAvx2AggKernels(func.get());
- }
-#endif
-#if defined(ARROW_HAVE_RUNTIME_AVX512)
- if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX512)) {
- aggregate::AddMinMaxAvx512AggKernels(func.get());
- }
-#endif
-
- DCHECK_OK(registry->AddFunction(std::move(func)));
-
+ aggregate::AddMinMaxKernels(aggregate::MinMaxInit, {boolean()}, func.get());
+ aggregate::AddMinMaxKernels(aggregate::MinMaxInit, NumericTypes(), func.get());
+ // Add the SIMD variants for min max
+#if defined(ARROW_HAVE_RUNTIME_AVX2)
+ if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX2)) {
+ aggregate::AddMinMaxAvx2AggKernels(func.get());
+ }
+#endif
+#if defined(ARROW_HAVE_RUNTIME_AVX512)
+ if (cpu_info->IsSupported(arrow::internal::CpuInfo::AVX512)) {
+ aggregate::AddMinMaxAvx512AggKernels(func.get());
+ }
+#endif
+
+ DCHECK_OK(registry->AddFunction(std::move(func)));
+
// any
func = std::make_shared<ScalarAggregateFunction>("any", Arity::Unary(), &any_doc,
&default_scalar_aggregate_options);
@@ -597,8 +597,8 @@ void RegisterScalarAggregateBasic(FunctionRegistry* registry) {
aggregate::AddBasicAggKernels(aggregate::IndexInit::Init, TemporalTypes(), int64(),
func.get());
DCHECK_OK(registry->AddFunction(std::move(func)));
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_basic_internal.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_basic_internal.h
index 5163d3fd03..60419356c5 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_basic_internal.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_basic_internal.h
@@ -1,63 +1,63 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <cmath>
-
-#include "arrow/compute/api_aggregate.h"
-#include "arrow/compute/kernels/aggregate_internal.h"
-#include "arrow/compute/kernels/common.h"
-#include "arrow/util/align_util.h"
-#include "arrow/util/bit_block_counter.h"
-
-namespace arrow {
-namespace compute {
-namespace aggregate {
-
-void AddBasicAggKernels(KernelInit init,
- const std::vector<std::shared_ptr<DataType>>& types,
- std::shared_ptr<DataType> out_ty, ScalarAggregateFunction* func,
- SimdLevel::type simd_level = SimdLevel::NONE);
-
-void AddMinMaxKernels(KernelInit init,
- const std::vector<std::shared_ptr<DataType>>& types,
- ScalarAggregateFunction* func,
- SimdLevel::type simd_level = SimdLevel::NONE);
-
-// SIMD variants for kernels
-void AddSumAvx2AggKernels(ScalarAggregateFunction* func);
-void AddMeanAvx2AggKernels(ScalarAggregateFunction* func);
-void AddMinMaxAvx2AggKernels(ScalarAggregateFunction* func);
-
-void AddSumAvx512AggKernels(ScalarAggregateFunction* func);
-void AddMeanAvx512AggKernels(ScalarAggregateFunction* func);
-void AddMinMaxAvx512AggKernels(ScalarAggregateFunction* func);
-
-// ----------------------------------------------------------------------
-// Sum implementation
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <cmath>
+
+#include "arrow/compute/api_aggregate.h"
+#include "arrow/compute/kernels/aggregate_internal.h"
+#include "arrow/compute/kernels/common.h"
+#include "arrow/util/align_util.h"
+#include "arrow/util/bit_block_counter.h"
+
+namespace arrow {
+namespace compute {
+namespace aggregate {
+
+void AddBasicAggKernels(KernelInit init,
+ const std::vector<std::shared_ptr<DataType>>& types,
+ std::shared_ptr<DataType> out_ty, ScalarAggregateFunction* func,
+ SimdLevel::type simd_level = SimdLevel::NONE);
+
+void AddMinMaxKernels(KernelInit init,
+ const std::vector<std::shared_ptr<DataType>>& types,
+ ScalarAggregateFunction* func,
+ SimdLevel::type simd_level = SimdLevel::NONE);
+
+// SIMD variants for kernels
+void AddSumAvx2AggKernels(ScalarAggregateFunction* func);
+void AddMeanAvx2AggKernels(ScalarAggregateFunction* func);
+void AddMinMaxAvx2AggKernels(ScalarAggregateFunction* func);
+
+void AddSumAvx512AggKernels(ScalarAggregateFunction* func);
+void AddMeanAvx512AggKernels(ScalarAggregateFunction* func);
+void AddMinMaxAvx512AggKernels(ScalarAggregateFunction* func);
+
+// ----------------------------------------------------------------------
+// Sum implementation
+
template <typename ArrowType, SimdLevel::type SimdLevel>
struct SumImpl : public ScalarAggregator {
using ThisType = SumImpl<ArrowType, SimdLevel>;
using CType = typename ArrowType::c_type;
- using SumType = typename FindAccumulatorType<ArrowType>::Type;
+ using SumType = typename FindAccumulatorType<ArrowType>::Type;
using OutputType = typename TypeTraits<SumType>::ScalarType;
-
+
Status Consume(KernelContext*, const ExecBatch& batch) override {
if (batch[0].is_array()) {
const auto& data = batch[0].array();
@@ -70,173 +70,173 @@ struct SumImpl : public ScalarAggregator {
arrow::compute::detail::SumArray<CType, typename SumType::c_type, SimdLevel>(
*data);
}
- } else {
+ } else {
const auto& data = *batch[0].scalar();
this->count += data.is_valid * batch.length;
if (data.is_valid) {
this->sum += internal::UnboxScalar<ArrowType>::Unbox(data) * batch.length;
- }
- }
+ }
+ }
return Status::OK();
- }
-
+ }
+
Status MergeFrom(KernelContext*, KernelState&& src) override {
const auto& other = checked_cast<const ThisType&>(src);
this->count += other.count;
this->sum += other.sum;
return Status::OK();
- }
-
+ }
+
Status Finalize(KernelContext*, Datum* out) override {
if (this->count < options.min_count) {
out->value = std::make_shared<OutputType>();
- } else {
+ } else {
out->value = MakeScalar(this->sum);
- }
+ }
return Status::OK();
- }
-
- size_t count = 0;
- typename SumType::c_type sum = 0;
+ }
+
+ size_t count = 0;
+ typename SumType::c_type sum = 0;
ScalarAggregateOptions options;
-};
-
+};
+
template <typename ArrowType, SimdLevel::type SimdLevel>
struct MeanImpl : public SumImpl<ArrowType, SimdLevel> {
Status Finalize(KernelContext*, Datum* out) override {
if (this->count < options.min_count) {
out->value = std::make_shared<DoubleScalar>();
- } else {
+ } else {
const double mean = static_cast<double>(this->sum) / this->count;
out->value = std::make_shared<DoubleScalar>(mean);
- }
+ }
return Status::OK();
- }
+ }
ScalarAggregateOptions options;
-};
-
-template <template <typename> class KernelClass>
-struct SumLikeInit {
- std::unique_ptr<KernelState> state;
- KernelContext* ctx;
- const DataType& type;
+};
+
+template <template <typename> class KernelClass>
+struct SumLikeInit {
+ std::unique_ptr<KernelState> state;
+ KernelContext* ctx;
+ const DataType& type;
const ScalarAggregateOptions& options;
-
+
SumLikeInit(KernelContext* ctx, const DataType& type,
const ScalarAggregateOptions& options)
: ctx(ctx), type(type), options(options) {}
-
- Status Visit(const DataType&) { return Status::NotImplemented("No sum implemented"); }
-
- Status Visit(const HalfFloatType&) {
- return Status::NotImplemented("No sum implemented");
- }
-
- Status Visit(const BooleanType&) {
+
+ Status Visit(const DataType&) { return Status::NotImplemented("No sum implemented"); }
+
+ Status Visit(const HalfFloatType&) {
+ return Status::NotImplemented("No sum implemented");
+ }
+
+ Status Visit(const BooleanType&) {
state.reset(new KernelClass<BooleanType>(options));
- return Status::OK();
- }
-
- template <typename Type>
- enable_if_number<Type, Status> Visit(const Type&) {
+ return Status::OK();
+ }
+
+ template <typename Type>
+ enable_if_number<Type, Status> Visit(const Type&) {
state.reset(new KernelClass<Type>(options));
- return Status::OK();
- }
-
+ return Status::OK();
+ }
+
Result<std::unique_ptr<KernelState>> Create() {
RETURN_NOT_OK(VisitTypeInline(type, this));
- return std::move(state);
- }
-};
-
-// ----------------------------------------------------------------------
-// MinMax implementation
-
-template <typename ArrowType, SimdLevel::type SimdLevel, typename Enable = void>
-struct MinMaxState {};
-
-template <typename ArrowType, SimdLevel::type SimdLevel>
-struct MinMaxState<ArrowType, SimdLevel, enable_if_boolean<ArrowType>> {
- using ThisType = MinMaxState<ArrowType, SimdLevel>;
- using T = typename ArrowType::c_type;
-
- ThisType& operator+=(const ThisType& rhs) {
- this->has_nulls |= rhs.has_nulls;
- this->has_values |= rhs.has_values;
- this->min = this->min && rhs.min;
- this->max = this->max || rhs.max;
- return *this;
- }
-
- void MergeOne(T value) {
- this->min = this->min && value;
- this->max = this->max || value;
- }
-
- T min = true;
- T max = false;
- bool has_nulls = false;
- bool has_values = false;
-};
-
-template <typename ArrowType, SimdLevel::type SimdLevel>
-struct MinMaxState<ArrowType, SimdLevel, enable_if_integer<ArrowType>> {
- using ThisType = MinMaxState<ArrowType, SimdLevel>;
- using T = typename ArrowType::c_type;
-
- ThisType& operator+=(const ThisType& rhs) {
- this->has_nulls |= rhs.has_nulls;
- this->has_values |= rhs.has_values;
- this->min = std::min(this->min, rhs.min);
- this->max = std::max(this->max, rhs.max);
- return *this;
- }
-
- void MergeOne(T value) {
- this->min = std::min(this->min, value);
- this->max = std::max(this->max, value);
- }
-
- T min = std::numeric_limits<T>::max();
- T max = std::numeric_limits<T>::min();
- bool has_nulls = false;
- bool has_values = false;
-};
-
-template <typename ArrowType, SimdLevel::type SimdLevel>
-struct MinMaxState<ArrowType, SimdLevel, enable_if_floating_point<ArrowType>> {
- using ThisType = MinMaxState<ArrowType, SimdLevel>;
- using T = typename ArrowType::c_type;
-
- ThisType& operator+=(const ThisType& rhs) {
- this->has_nulls |= rhs.has_nulls;
- this->has_values |= rhs.has_values;
- this->min = std::fmin(this->min, rhs.min);
- this->max = std::fmax(this->max, rhs.max);
- return *this;
- }
-
- void MergeOne(T value) {
- this->min = std::fmin(this->min, value);
- this->max = std::fmax(this->max, value);
- }
-
- T min = std::numeric_limits<T>::infinity();
- T max = -std::numeric_limits<T>::infinity();
- bool has_nulls = false;
- bool has_values = false;
-};
-
-template <typename ArrowType, SimdLevel::type SimdLevel>
-struct MinMaxImpl : public ScalarAggregator {
- using ArrayType = typename TypeTraits<ArrowType>::ArrayType;
- using ThisType = MinMaxImpl<ArrowType, SimdLevel>;
- using StateType = MinMaxState<ArrowType, SimdLevel>;
-
+ return std::move(state);
+ }
+};
+
+// ----------------------------------------------------------------------
+// MinMax implementation
+
+template <typename ArrowType, SimdLevel::type SimdLevel, typename Enable = void>
+struct MinMaxState {};
+
+template <typename ArrowType, SimdLevel::type SimdLevel>
+struct MinMaxState<ArrowType, SimdLevel, enable_if_boolean<ArrowType>> {
+ using ThisType = MinMaxState<ArrowType, SimdLevel>;
+ using T = typename ArrowType::c_type;
+
+ ThisType& operator+=(const ThisType& rhs) {
+ this->has_nulls |= rhs.has_nulls;
+ this->has_values |= rhs.has_values;
+ this->min = this->min && rhs.min;
+ this->max = this->max || rhs.max;
+ return *this;
+ }
+
+ void MergeOne(T value) {
+ this->min = this->min && value;
+ this->max = this->max || value;
+ }
+
+ T min = true;
+ T max = false;
+ bool has_nulls = false;
+ bool has_values = false;
+};
+
+template <typename ArrowType, SimdLevel::type SimdLevel>
+struct MinMaxState<ArrowType, SimdLevel, enable_if_integer<ArrowType>> {
+ using ThisType = MinMaxState<ArrowType, SimdLevel>;
+ using T = typename ArrowType::c_type;
+
+ ThisType& operator+=(const ThisType& rhs) {
+ this->has_nulls |= rhs.has_nulls;
+ this->has_values |= rhs.has_values;
+ this->min = std::min(this->min, rhs.min);
+ this->max = std::max(this->max, rhs.max);
+ return *this;
+ }
+
+ void MergeOne(T value) {
+ this->min = std::min(this->min, value);
+ this->max = std::max(this->max, value);
+ }
+
+ T min = std::numeric_limits<T>::max();
+ T max = std::numeric_limits<T>::min();
+ bool has_nulls = false;
+ bool has_values = false;
+};
+
+template <typename ArrowType, SimdLevel::type SimdLevel>
+struct MinMaxState<ArrowType, SimdLevel, enable_if_floating_point<ArrowType>> {
+ using ThisType = MinMaxState<ArrowType, SimdLevel>;
+ using T = typename ArrowType::c_type;
+
+ ThisType& operator+=(const ThisType& rhs) {
+ this->has_nulls |= rhs.has_nulls;
+ this->has_values |= rhs.has_values;
+ this->min = std::fmin(this->min, rhs.min);
+ this->max = std::fmax(this->max, rhs.max);
+ return *this;
+ }
+
+ void MergeOne(T value) {
+ this->min = std::fmin(this->min, value);
+ this->max = std::fmax(this->max, value);
+ }
+
+ T min = std::numeric_limits<T>::infinity();
+ T max = -std::numeric_limits<T>::infinity();
+ bool has_nulls = false;
+ bool has_values = false;
+};
+
+template <typename ArrowType, SimdLevel::type SimdLevel>
+struct MinMaxImpl : public ScalarAggregator {
+ using ArrayType = typename TypeTraits<ArrowType>::ArrayType;
+ using ThisType = MinMaxImpl<ArrowType, SimdLevel>;
+ using StateType = MinMaxState<ArrowType, SimdLevel>;
+
MinMaxImpl(const std::shared_ptr<DataType>& out_type,
const ScalarAggregateOptions& options)
- : out_type(out_type), options(options) {}
-
+ : out_type(out_type), options(options) {}
+
Status Consume(KernelContext*, const ExecBatch& batch) override {
if (batch[0].is_array()) {
return ConsumeArray(ArrayType(batch[0].array()));
@@ -245,15 +245,15 @@ struct MinMaxImpl : public ScalarAggregator {
}
Status ConsumeScalar(const Scalar& scalar) {
- StateType local;
+ StateType local;
local.has_nulls = !scalar.is_valid;
local.has_values = scalar.is_valid;
-
+
if (local.has_nulls && !options.skip_nulls) {
this->state = local;
return Status::OK();
}
-
+
local.MergeOne(internal::UnboxScalar<ArrowType>::Unbox(scalar));
this->state = local;
return Status::OK();
@@ -262,143 +262,143 @@ struct MinMaxImpl : public ScalarAggregator {
Status ConsumeArray(const ArrayType& arr) {
StateType local;
- const auto null_count = arr.null_count();
- local.has_nulls = null_count > 0;
- local.has_values = (arr.length() - null_count) > 0;
-
+ const auto null_count = arr.null_count();
+ local.has_nulls = null_count > 0;
+ local.has_values = (arr.length() - null_count) > 0;
+
if (local.has_nulls && !options.skip_nulls) {
- this->state = local;
+ this->state = local;
return Status::OK();
- }
-
- if (local.has_nulls) {
- local += ConsumeWithNulls(arr);
- } else { // All true values
- for (int64_t i = 0; i < arr.length(); i++) {
- local.MergeOne(arr.Value(i));
- }
- }
- this->state = local;
+ }
+
+ if (local.has_nulls) {
+ local += ConsumeWithNulls(arr);
+ } else { // All true values
+ for (int64_t i = 0; i < arr.length(); i++) {
+ local.MergeOne(arr.Value(i));
+ }
+ }
+ this->state = local;
return Status::OK();
- }
-
+ }
+
Status MergeFrom(KernelContext*, KernelState&& src) override {
- const auto& other = checked_cast<const ThisType&>(src);
- this->state += other.state;
+ const auto& other = checked_cast<const ThisType&>(src);
+ this->state += other.state;
return Status::OK();
- }
-
+ }
+
Status Finalize(KernelContext*, Datum* out) override {
- using ScalarType = typename TypeTraits<ArrowType>::ScalarType;
-
- std::vector<std::shared_ptr<Scalar>> values;
+ using ScalarType = typename TypeTraits<ArrowType>::ScalarType;
+
+ std::vector<std::shared_ptr<Scalar>> values;
if (!state.has_values || (state.has_nulls && !options.skip_nulls)) {
- // (null, null)
- values = {std::make_shared<ScalarType>(), std::make_shared<ScalarType>()};
- } else {
- values = {std::make_shared<ScalarType>(state.min),
- std::make_shared<ScalarType>(state.max)};
- }
+ // (null, null)
+ values = {std::make_shared<ScalarType>(), std::make_shared<ScalarType>()};
+ } else {
+ values = {std::make_shared<ScalarType>(state.min),
+ std::make_shared<ScalarType>(state.max)};
+ }
out->value = std::make_shared<StructScalar>(std::move(values), this->out_type);
return Status::OK();
- }
-
- std::shared_ptr<DataType> out_type;
+ }
+
+ std::shared_ptr<DataType> out_type;
ScalarAggregateOptions options;
- MinMaxState<ArrowType, SimdLevel> state;
-
- private:
- StateType ConsumeWithNulls(const ArrayType& arr) const {
- StateType local;
- const int64_t length = arr.length();
- int64_t offset = arr.offset();
- const uint8_t* bitmap = arr.null_bitmap_data();
- int64_t idx = 0;
-
- const auto p = arrow::internal::BitmapWordAlign<1>(bitmap, offset, length);
- // First handle the leading bits
- const int64_t leading_bits = p.leading_bits;
- while (idx < leading_bits) {
- if (BitUtil::GetBit(bitmap, offset)) {
- local.MergeOne(arr.Value(idx));
- }
- idx++;
- offset++;
- }
-
- // The aligned parts scanned with BitBlockCounter
- arrow::internal::BitBlockCounter data_counter(bitmap, offset, length - leading_bits);
- auto current_block = data_counter.NextWord();
- while (idx < length) {
- if (current_block.AllSet()) { // All true values
- int run_length = 0;
- // Scan forward until a block that has some false values (or the end)
- while (current_block.length > 0 && current_block.AllSet()) {
- run_length += current_block.length;
- current_block = data_counter.NextWord();
- }
- for (int64_t i = 0; i < run_length; i++) {
- local.MergeOne(arr.Value(idx + i));
- }
- idx += run_length;
- offset += run_length;
- // The current_block already computed, advance to next loop
- continue;
- } else if (!current_block.NoneSet()) { // Some values are null
- BitmapReader reader(arr.null_bitmap_data(), offset, current_block.length);
- for (int64_t i = 0; i < current_block.length; i++) {
- if (reader.IsSet()) {
- local.MergeOne(arr.Value(idx + i));
- }
- reader.Next();
- }
-
- idx += current_block.length;
- offset += current_block.length;
- } else { // All null values
- idx += current_block.length;
- offset += current_block.length;
- }
- current_block = data_counter.NextWord();
- }
-
- return local;
- }
-};
-
-template <SimdLevel::type SimdLevel>
-struct BooleanMinMaxImpl : public MinMaxImpl<BooleanType, SimdLevel> {
- using StateType = MinMaxState<BooleanType, SimdLevel>;
- using ArrayType = typename TypeTraits<BooleanType>::ArrayType;
- using MinMaxImpl<BooleanType, SimdLevel>::MinMaxImpl;
- using MinMaxImpl<BooleanType, SimdLevel>::options;
-
+ MinMaxState<ArrowType, SimdLevel> state;
+
+ private:
+ StateType ConsumeWithNulls(const ArrayType& arr) const {
+ StateType local;
+ const int64_t length = arr.length();
+ int64_t offset = arr.offset();
+ const uint8_t* bitmap = arr.null_bitmap_data();
+ int64_t idx = 0;
+
+ const auto p = arrow::internal::BitmapWordAlign<1>(bitmap, offset, length);
+ // First handle the leading bits
+ const int64_t leading_bits = p.leading_bits;
+ while (idx < leading_bits) {
+ if (BitUtil::GetBit(bitmap, offset)) {
+ local.MergeOne(arr.Value(idx));
+ }
+ idx++;
+ offset++;
+ }
+
+ // The aligned parts scanned with BitBlockCounter
+ arrow::internal::BitBlockCounter data_counter(bitmap, offset, length - leading_bits);
+ auto current_block = data_counter.NextWord();
+ while (idx < length) {
+ if (current_block.AllSet()) { // All true values
+ int run_length = 0;
+ // Scan forward until a block that has some false values (or the end)
+ while (current_block.length > 0 && current_block.AllSet()) {
+ run_length += current_block.length;
+ current_block = data_counter.NextWord();
+ }
+ for (int64_t i = 0; i < run_length; i++) {
+ local.MergeOne(arr.Value(idx + i));
+ }
+ idx += run_length;
+ offset += run_length;
+ // The current_block already computed, advance to next loop
+ continue;
+ } else if (!current_block.NoneSet()) { // Some values are null
+ BitmapReader reader(arr.null_bitmap_data(), offset, current_block.length);
+ for (int64_t i = 0; i < current_block.length; i++) {
+ if (reader.IsSet()) {
+ local.MergeOne(arr.Value(idx + i));
+ }
+ reader.Next();
+ }
+
+ idx += current_block.length;
+ offset += current_block.length;
+ } else { // All null values
+ idx += current_block.length;
+ offset += current_block.length;
+ }
+ current_block = data_counter.NextWord();
+ }
+
+ return local;
+ }
+};
+
+template <SimdLevel::type SimdLevel>
+struct BooleanMinMaxImpl : public MinMaxImpl<BooleanType, SimdLevel> {
+ using StateType = MinMaxState<BooleanType, SimdLevel>;
+ using ArrayType = typename TypeTraits<BooleanType>::ArrayType;
+ using MinMaxImpl<BooleanType, SimdLevel>::MinMaxImpl;
+ using MinMaxImpl<BooleanType, SimdLevel>::options;
+
Status Consume(KernelContext*, const ExecBatch& batch) override {
if (ARROW_PREDICT_FALSE(batch[0].is_scalar())) {
return ConsumeScalar(checked_cast<const BooleanScalar&>(*batch[0].scalar()));
}
- StateType local;
- ArrayType arr(batch[0].array());
-
- const auto arr_length = arr.length();
- const auto null_count = arr.null_count();
- const auto valid_count = arr_length - null_count;
-
- local.has_nulls = null_count > 0;
- local.has_values = valid_count > 0;
+ StateType local;
+ ArrayType arr(batch[0].array());
+
+ const auto arr_length = arr.length();
+ const auto null_count = arr.null_count();
+ const auto valid_count = arr_length - null_count;
+
+ local.has_nulls = null_count > 0;
+ local.has_values = valid_count > 0;
if (local.has_nulls && !options.skip_nulls) {
- this->state = local;
+ this->state = local;
return Status::OK();
- }
-
- const auto true_count = arr.true_count();
- const auto false_count = valid_count - true_count;
- local.max = true_count > 0;
- local.min = false_count == 0;
-
- this->state = local;
+ }
+
+ const auto true_count = arr.true_count();
+ const auto false_count = valid_count - true_count;
+ local.max = true_count > 0;
+ local.min = false_count == 0;
+
+ this->state = local;
return Status::OK();
- }
+ }
Status ConsumeScalar(const BooleanScalar& scalar) {
StateType local;
@@ -418,46 +418,46 @@ struct BooleanMinMaxImpl : public MinMaxImpl<BooleanType, SimdLevel> {
this->state = local;
return Status::OK();
}
-};
-
-template <SimdLevel::type SimdLevel>
-struct MinMaxInitState {
- std::unique_ptr<KernelState> state;
- KernelContext* ctx;
- const DataType& in_type;
- const std::shared_ptr<DataType>& out_type;
+};
+
+template <SimdLevel::type SimdLevel>
+struct MinMaxInitState {
+ std::unique_ptr<KernelState> state;
+ KernelContext* ctx;
+ const DataType& in_type;
+ const std::shared_ptr<DataType>& out_type;
const ScalarAggregateOptions& options;
-
- MinMaxInitState(KernelContext* ctx, const DataType& in_type,
+
+ MinMaxInitState(KernelContext* ctx, const DataType& in_type,
const std::shared_ptr<DataType>& out_type,
const ScalarAggregateOptions& options)
- : ctx(ctx), in_type(in_type), out_type(out_type), options(options) {}
-
- Status Visit(const DataType&) {
- return Status::NotImplemented("No min/max implemented");
- }
-
- Status Visit(const HalfFloatType&) {
- return Status::NotImplemented("No min/max implemented");
- }
-
- Status Visit(const BooleanType&) {
- state.reset(new BooleanMinMaxImpl<SimdLevel>(out_type, options));
- return Status::OK();
- }
-
- template <typename Type>
- enable_if_number<Type, Status> Visit(const Type&) {
- state.reset(new MinMaxImpl<Type, SimdLevel>(out_type, options));
- return Status::OK();
- }
-
+ : ctx(ctx), in_type(in_type), out_type(out_type), options(options) {}
+
+ Status Visit(const DataType&) {
+ return Status::NotImplemented("No min/max implemented");
+ }
+
+ Status Visit(const HalfFloatType&) {
+ return Status::NotImplemented("No min/max implemented");
+ }
+
+ Status Visit(const BooleanType&) {
+ state.reset(new BooleanMinMaxImpl<SimdLevel>(out_type, options));
+ return Status::OK();
+ }
+
+ template <typename Type>
+ enable_if_number<Type, Status> Visit(const Type&) {
+ state.reset(new MinMaxImpl<Type, SimdLevel>(out_type, options));
+ return Status::OK();
+ }
+
Result<std::unique_ptr<KernelState>> Create() {
RETURN_NOT_OK(VisitTypeInline(in_type, this));
- return std::move(state);
- }
-};
-
-} // namespace aggregate
-} // namespace compute
-} // namespace arrow
+ return std::move(state);
+ }
+};
+
+} // namespace aggregate
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_internal.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_internal.h
index ed29f26f2c..930242ac92 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_internal.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_internal.h
@@ -1,54 +1,54 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include "arrow/type.h"
-#include "arrow/type_traits.h"
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include "arrow/type.h"
+#include "arrow/type_traits.h"
#include "arrow/util/bit_run_reader.h"
#include "arrow/util/logging.h"
-
-namespace arrow {
-namespace compute {
-
-// Find the largest compatible primitive type for a primitive type.
-template <typename I, typename Enable = void>
-struct FindAccumulatorType {};
-
-template <typename I>
-struct FindAccumulatorType<I, enable_if_boolean<I>> {
- using Type = UInt64Type;
-};
-
-template <typename I>
-struct FindAccumulatorType<I, enable_if_signed_integer<I>> {
- using Type = Int64Type;
-};
-
-template <typename I>
-struct FindAccumulatorType<I, enable_if_unsigned_integer<I>> {
- using Type = UInt64Type;
-};
-
-template <typename I>
-struct FindAccumulatorType<I, enable_if_floating_point<I>> {
- using Type = DoubleType;
-};
-
+
+namespace arrow {
+namespace compute {
+
+// Find the largest compatible primitive type for a primitive type.
+template <typename I, typename Enable = void>
+struct FindAccumulatorType {};
+
+template <typename I>
+struct FindAccumulatorType<I, enable_if_boolean<I>> {
+ using Type = UInt64Type;
+};
+
+template <typename I>
+struct FindAccumulatorType<I, enable_if_signed_integer<I>> {
+ using Type = Int64Type;
+};
+
+template <typename I>
+struct FindAccumulatorType<I, enable_if_unsigned_integer<I>> {
+ using Type = UInt64Type;
+};
+
+template <typename I>
+struct FindAccumulatorType<I, enable_if_floating_point<I>> {
+ using Type = DoubleType;
+};
+
struct ScalarAggregator : public KernelState {
virtual Status Consume(KernelContext* ctx, const ExecBatch& batch) = 0;
virtual Status MergeFrom(KernelContext* ctx, KernelState&& src) = 0;
@@ -168,5 +168,5 @@ SumType SumArray(const ArrayData& data) {
} // namespace detail
-} // namespace compute
-} // namespace arrow
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_mode.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_mode.cc
index 6ad0eeb645..4d8f0fc42d 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_mode.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_mode.cc
@@ -1,24 +1,24 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include <cmath>
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include <cmath>
#include <queue>
#include <utility>
-
+
#include "arrow/compute/api_aggregate.h"
#include "arrow/compute/kernels/aggregate_internal.h"
#include "arrow/compute/kernels/common.h"
@@ -26,31 +26,31 @@
#include "arrow/result.h"
#include "arrow/stl_allocator.h"
#include "arrow/type_traits.h"
-
-namespace arrow {
-namespace compute {
+
+namespace arrow {
+namespace compute {
namespace internal {
-
-namespace {
-
+
+namespace {
+
using ModeState = OptionsWrapper<ModeOptions>;
-
+
constexpr char kModeFieldName[] = "mode";
constexpr char kCountFieldName[] = "count";
-
+
constexpr uint64_t kCountEOF = ~0ULL;
-
+
template <typename InType, typename CType = typename InType::c_type>
Result<std::pair<CType*, int64_t*>> PrepareOutput(int64_t n, KernelContext* ctx,
Datum* out) {
const auto& mode_type = TypeTraits<InType>::type_singleton();
const auto& count_type = int64();
-
+
auto mode_data = ArrayData::Make(mode_type, /*length=*/n, /*null_count=*/0);
mode_data->buffers.resize(2, nullptr);
auto count_data = ArrayData::Make(count_type, n, 0);
count_data->buffers.resize(2, nullptr);
-
+
CType* mode_buffer = nullptr;
int64_t* count_buffer = nullptr;
@@ -59,28 +59,28 @@ Result<std::pair<CType*, int64_t*>> PrepareOutput(int64_t n, KernelContext* ctx,
ARROW_ASSIGN_OR_RAISE(count_data->buffers[1], ctx->Allocate(n * sizeof(int64_t)));
mode_buffer = mode_data->template GetMutableValues<CType>(1);
count_buffer = count_data->template GetMutableValues<int64_t>(1);
- }
-
+ }
+
const auto& out_type =
struct_({field(kModeFieldName, mode_type), field(kCountFieldName, count_type)});
*out = Datum(ArrayData::Make(out_type, n, {nullptr}, {mode_data, count_data}, 0));
return std::make_pair(mode_buffer, count_buffer);
-}
-
+}
+
// find top-n value:count pairs with minimal heap
// suboptimal for tiny or large n, possibly okay as we're not in hot path
template <typename InType, typename Generator>
Status Finalize(KernelContext* ctx, Datum* out, Generator&& gen) {
using CType = typename InType::c_type;
-
+
using ValueCountPair = std::pair<CType, uint64_t>;
auto gt = [](const ValueCountPair& lhs, const ValueCountPair& rhs) {
const bool rhs_is_nan = rhs.first != rhs.first; // nan as largest value
return lhs.second > rhs.second ||
(lhs.second == rhs.second && (lhs.first < rhs.first || rhs_is_nan));
};
-
+
std::priority_queue<ValueCountPair, std::vector<ValueCountPair>, decltype(gt)> min_heap(
std::move(gt));
@@ -94,10 +94,10 @@ Status Finalize(KernelContext* ctx, Datum* out, Generator&& gen) {
} else if (gt(value_count, min_heap.top())) {
min_heap.pop();
min_heap.push(value_count);
- }
- }
+ }
+ }
const int64_t n = min_heap.size();
-
+
CType* mode_buffer;
int64_t* count_buffer;
ARROW_ASSIGN_OR_RAISE(std::tie(mode_buffer, count_buffer),
@@ -109,29 +109,29 @@ Status Finalize(KernelContext* ctx, Datum* out, Generator&& gen) {
}
return Status::OK();
-}
-
+}
+
// count value occurances for integers with narrow value range
// O(1) space, O(n) time
template <typename T>
struct CountModer {
using CType = typename T::c_type;
-
+
CType min;
std::vector<uint64_t> counts;
-
+
CountModer(CType min, CType max) {
uint32_t value_range = static_cast<uint32_t>(max - min) + 1;
DCHECK_LT(value_range, 1 << 20);
this->min = min;
this->counts.resize(value_range, 0);
- }
-
+ }
+
Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
// count values in all chunks, ignore nulls
const Datum& datum = batch[0];
CountValues<CType>(this->counts.data(), datum, this->min);
-
+
// generator to emit next value:count pair
int index = 0;
auto gen = [&]() {
@@ -145,17 +145,17 @@ struct CountModer {
}
return std::pair<CType, uint64_t>(0, kCountEOF);
};
-
+
return Finalize<T>(ctx, out, std::move(gen));
}
};
-
+
// booleans can be handled more straightforward
template <>
struct CountModer<BooleanType> {
Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
int64_t counts[2]{};
-
+
const Datum& datum = batch[0];
for (const auto& array : datum.chunks()) {
if (array->length() > array->null_count()) {
@@ -164,13 +164,13 @@ struct CountModer<BooleanType> {
const int64_t false_count = array->length() - array->null_count() - true_count;
counts[true] += true_count;
counts[false] += false_count;
- }
- }
-
+ }
+ }
+
const ModeOptions& options = ModeState::Get(ctx);
const int64_t distinct_values = (counts[0] != 0) + (counts[1] != 0);
const int64_t n = std::min(options.n, distinct_values);
-
+
bool* mode_buffer;
int64_t* count_buffer;
ARROW_ASSIGN_OR_RAISE(std::tie(mode_buffer, count_buffer),
@@ -183,31 +183,31 @@ struct CountModer<BooleanType> {
if (n == 2) {
mode_buffer[1] = !index;
count_buffer[1] = counts[!index];
- }
- }
+ }
+ }
return Status::OK();
- }
-};
-
+ }
+};
+
// copy and sort approach for floating points or integers with wide value range
// O(n) space, O(nlogn) time
template <typename T>
struct SortModer {
using CType = typename T::c_type;
using Allocator = arrow::stl::allocator<CType>;
-
+
Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
// copy all chunks to a buffer, ignore nulls and nans
std::vector<CType, Allocator> in_buffer(Allocator(ctx->memory_pool()));
-
+
uint64_t nan_count = 0;
const Datum& datum = batch[0];
const int64_t in_length = datum.length() - datum.null_count();
if (in_length > 0) {
in_buffer.resize(in_length);
CopyNonNullValues(datum, in_buffer.data());
-
+
// drop nan
if (is_floating_type<T>::value) {
const auto& it = std::remove_if(in_buffer.begin(), in_buffer.end(),
@@ -243,14 +243,14 @@ struct SortModer {
};
return Finalize<T>(ctx, out, std::move(gen));
- }
+ }
};
-
+
// pick counting or sorting approach per integers value range
template <typename T>
struct CountOrSortModer {
using CType = typename T::c_type;
-
+
Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
// cross point to benefit from counting approach
// about 2x improvement for int32/64 from micro-benchmarking
@@ -265,12 +265,12 @@ struct CountOrSortModer {
if (static_cast<uint64_t>(max) - static_cast<uint64_t>(min) <= kMaxValueRange) {
return CountModer<T>(min, max).Exec(ctx, batch, out);
}
- }
+ }
return SortModer<T>().Exec(ctx, batch, out);
- }
+ }
};
-
+
template <typename InType, typename Enable = void>
struct Moder;
@@ -278,30 +278,30 @@ template <>
struct Moder<Int8Type> {
CountModer<Int8Type> impl;
Moder() : impl(-128, 127) {}
-};
-
+};
+
template <>
struct Moder<UInt8Type> {
CountModer<UInt8Type> impl;
Moder() : impl(0, 255) {}
};
-
+
template <>
struct Moder<BooleanType> {
CountModer<BooleanType> impl;
};
-
+
template <typename InType>
struct Moder<InType, enable_if_t<(is_integer_type<InType>::value &&
(sizeof(typename InType::c_type) > 1))>> {
CountOrSortModer<InType> impl;
};
-
+
template <typename InType>
struct Moder<InType, enable_if_t<is_floating_type<InType>::value>> {
SortModer<InType> impl;
};
-
+
template <typename T>
Status ScalarMode(KernelContext* ctx, const Scalar& scalar, Datum* out) {
using CType = typename T::c_type;
@@ -314,12 +314,12 @@ Status ScalarMode(KernelContext* ctx, const Scalar& scalar, Datum* out) {
}
return std::pair<CType, uint64_t>(static_cast<CType>(0), kCountEOF);
});
- }
+ }
return Finalize<T>(ctx, out, []() {
return std::pair<CType, uint64_t>(static_cast<CType>(0), kCountEOF);
});
}
-
+
template <typename _, typename InType>
struct ModeExecutor {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
@@ -336,9 +336,9 @@ struct ModeExecutor {
}
return Moder<InType>().impl.Exec(ctx, batch, out);
- }
-};
-
+ }
+};
+
VectorKernel NewModeKernel(const std::shared_ptr<DataType>& in_type) {
VectorKernel kernel;
kernel.init = ModeState::Init;
@@ -349,8 +349,8 @@ VectorKernel NewModeKernel(const std::shared_ptr<DataType>& in_type) {
kernel.signature =
KernelSignature::Make({InputType(in_type)}, ValueDescr::Array(out_type));
return kernel;
-}
-
+}
+
void AddBooleanModeKernel(VectorFunction* func) {
VectorKernel kernel = NewModeKernel(boolean());
kernel.exec = ModeExecutor<StructType, BooleanType>::Exec;
@@ -362,9 +362,9 @@ void AddNumericModeKernels(VectorFunction* func) {
VectorKernel kernel = NewModeKernel(type);
kernel.exec = GenerateNumeric<ModeExecutor, StructType>(*type);
DCHECK_OK(func->AddKernel(kernel));
- }
-}
-
+ }
+}
+
const FunctionDoc mode_doc{
"Calculate the modal (most common) values of a numeric array",
("Returns top-n most common values and number of times they occur in an array.\n"
@@ -376,8 +376,8 @@ const FunctionDoc mode_doc{
{"array"},
"ModeOptions"};
-} // namespace
-
+} // namespace
+
void RegisterScalarAggregateMode(FunctionRegistry* registry) {
static auto default_options = ModeOptions::Defaults();
auto func = std::make_shared<VectorFunction>("mode", Arity::Unary(), &mode_doc,
@@ -385,8 +385,8 @@ void RegisterScalarAggregateMode(FunctionRegistry* registry) {
AddBooleanModeKernel(func.get());
AddNumericModeKernels(func.get());
DCHECK_OK(registry->AddFunction(std::move(func)));
-}
-
+}
+
} // namespace internal
-} // namespace compute
-} // namespace arrow
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_var_std.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_var_std.cc
index d6965fed4a..82fc3a2752 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_var_std.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/aggregate_var_std.cc
@@ -1,70 +1,70 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
#include <cmath>
-
+
#include "arrow/compute/api_aggregate.h"
#include "arrow/compute/kernels/aggregate_internal.h"
#include "arrow/compute/kernels/common.h"
#include "arrow/util/bit_run_reader.h"
#include "arrow/util/int128_internal.h"
-namespace arrow {
-namespace compute {
+namespace arrow {
+namespace compute {
namespace internal {
-
-namespace {
-
+
+namespace {
+
using arrow::internal::int128_t;
using arrow::internal::VisitSetBitRunsVoid;
-template <typename ArrowType>
-struct VarStdState {
- using ArrayType = typename TypeTraits<ArrowType>::ArrayType;
+template <typename ArrowType>
+struct VarStdState {
+ using ArrayType = typename TypeTraits<ArrowType>::ArrayType;
using CType = typename ArrowType::c_type;
- using ThisType = VarStdState<ArrowType>;
-
+ using ThisType = VarStdState<ArrowType>;
+
// float/double/int64: calculate `m2` (sum((X-mean)^2)) with `two pass algorithm`
- // https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Two-pass_algorithm
+ // https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Two-pass_algorithm
template <typename T = ArrowType>
enable_if_t<is_floating_type<T>::value || (sizeof(CType) > 4)> Consume(
const ArrayType& array) {
- int64_t count = array.length() - array.null_count();
- if (count == 0) {
- return;
- }
-
+ int64_t count = array.length() - array.null_count();
+ if (count == 0) {
+ return;
+ }
+
using SumType =
typename std::conditional<is_floating_type<T>::value, double, int128_t>::type;
SumType sum =
arrow::compute::detail::SumArray<CType, SumType, SimdLevel::NONE>(*array.data());
-
+
const double mean = static_cast<double>(sum) / count;
const double m2 = arrow::compute::detail::SumArray<CType, double, SimdLevel::NONE>(
*array.data(), [mean](CType value) {
const double v = static_cast<double>(value);
return (v - mean) * (v - mean);
});
-
- this->count = count;
+
+ this->count = count;
this->mean = mean;
- this->m2 = m2;
- }
-
+ this->m2 = m2;
+ }
+
// int32/16/8: textbook one pass algorithm with integer arithmetic
template <typename T = ArrowType>
enable_if_t<is_integer_type<T>::value && (sizeof(CType) <= 4)> Consume(
@@ -118,69 +118,69 @@ struct VarStdState {
// Combine `m2` from two chunks (m2 = n*s2)
// https://www.emathzone.com/tutorials/basic-statistics/combined-variance.html
- void MergeFrom(const ThisType& state) {
- if (state.count == 0) {
- return;
- }
- if (this->count == 0) {
- this->count = state.count;
+ void MergeFrom(const ThisType& state) {
+ if (state.count == 0) {
+ return;
+ }
+ if (this->count == 0) {
+ this->count = state.count;
this->mean = state.mean;
- this->m2 = state.m2;
- return;
- }
+ this->m2 = state.m2;
+ return;
+ }
double mean = (this->mean * this->count + state.mean * state.count) /
(this->count + state.count);
this->m2 += state.m2 + this->count * (this->mean - mean) * (this->mean - mean) +
state.count * (state.mean - mean) * (state.mean - mean);
- this->count += state.count;
+ this->count += state.count;
this->mean = mean;
- }
-
- int64_t count = 0;
+ }
+
+ int64_t count = 0;
double mean = 0;
double m2 = 0; // m2 = count*s2 = sum((X-mean)^2)
-};
-
-enum class VarOrStd : bool { Var, Std };
-
-template <typename ArrowType>
-struct VarStdImpl : public ScalarAggregator {
- using ThisType = VarStdImpl<ArrowType>;
- using ArrayType = typename TypeTraits<ArrowType>::ArrayType;
-
- explicit VarStdImpl(const std::shared_ptr<DataType>& out_type,
- const VarianceOptions& options, VarOrStd return_type)
- : out_type(out_type), options(options), return_type(return_type) {}
-
+};
+
+enum class VarOrStd : bool { Var, Std };
+
+template <typename ArrowType>
+struct VarStdImpl : public ScalarAggregator {
+ using ThisType = VarStdImpl<ArrowType>;
+ using ArrayType = typename TypeTraits<ArrowType>::ArrayType;
+
+ explicit VarStdImpl(const std::shared_ptr<DataType>& out_type,
+ const VarianceOptions& options, VarOrStd return_type)
+ : out_type(out_type), options(options), return_type(return_type) {}
+
Status Consume(KernelContext*, const ExecBatch& batch) override {
- ArrayType array(batch[0].array());
- this->state.Consume(array);
+ ArrayType array(batch[0].array());
+ this->state.Consume(array);
return Status::OK();
- }
-
+ }
+
Status MergeFrom(KernelContext*, KernelState&& src) override {
- const auto& other = checked_cast<const ThisType&>(src);
- this->state.MergeFrom(other.state);
+ const auto& other = checked_cast<const ThisType&>(src);
+ this->state.MergeFrom(other.state);
return Status::OK();
- }
-
+ }
+
Status Finalize(KernelContext*, Datum* out) override {
- if (this->state.count <= options.ddof) {
+ if (this->state.count <= options.ddof) {
out->value = std::make_shared<DoubleScalar>();
- } else {
- double var = this->state.m2 / (this->state.count - options.ddof);
- out->value =
+ } else {
+ double var = this->state.m2 / (this->state.count - options.ddof);
+ out->value =
std::make_shared<DoubleScalar>(return_type == VarOrStd::Var ? var : sqrt(var));
- }
+ }
return Status::OK();
- }
-
- std::shared_ptr<DataType> out_type;
- VarStdState<ArrowType> state;
- VarianceOptions options;
- VarOrStd return_type;
-};
-
+ }
+
+ std::shared_ptr<DataType> out_type;
+ VarStdState<ArrowType> state;
+ VarianceOptions options;
+ VarOrStd return_type;
+};
+
struct ScalarVarStdImpl : public ScalarAggregator {
explicit ScalarVarStdImpl(const VarianceOptions& options)
: options(options), seen(false) {}
@@ -209,77 +209,77 @@ struct ScalarVarStdImpl : public ScalarAggregator {
bool seen;
};
-struct VarStdInitState {
- std::unique_ptr<KernelState> state;
- KernelContext* ctx;
- const DataType& in_type;
- const std::shared_ptr<DataType>& out_type;
- const VarianceOptions& options;
- VarOrStd return_type;
-
- VarStdInitState(KernelContext* ctx, const DataType& in_type,
- const std::shared_ptr<DataType>& out_type,
- const VarianceOptions& options, VarOrStd return_type)
- : ctx(ctx),
- in_type(in_type),
- out_type(out_type),
- options(options),
- return_type(return_type) {}
-
- Status Visit(const DataType&) {
- return Status::NotImplemented("No variance/stddev implemented");
- }
-
- Status Visit(const HalfFloatType&) {
- return Status::NotImplemented("No variance/stddev implemented");
- }
-
- template <typename Type>
- enable_if_t<is_number_type<Type>::value, Status> Visit(const Type&) {
- state.reset(new VarStdImpl<Type>(out_type, options, return_type));
- return Status::OK();
- }
-
+struct VarStdInitState {
+ std::unique_ptr<KernelState> state;
+ KernelContext* ctx;
+ const DataType& in_type;
+ const std::shared_ptr<DataType>& out_type;
+ const VarianceOptions& options;
+ VarOrStd return_type;
+
+ VarStdInitState(KernelContext* ctx, const DataType& in_type,
+ const std::shared_ptr<DataType>& out_type,
+ const VarianceOptions& options, VarOrStd return_type)
+ : ctx(ctx),
+ in_type(in_type),
+ out_type(out_type),
+ options(options),
+ return_type(return_type) {}
+
+ Status Visit(const DataType&) {
+ return Status::NotImplemented("No variance/stddev implemented");
+ }
+
+ Status Visit(const HalfFloatType&) {
+ return Status::NotImplemented("No variance/stddev implemented");
+ }
+
+ template <typename Type>
+ enable_if_t<is_number_type<Type>::value, Status> Visit(const Type&) {
+ state.reset(new VarStdImpl<Type>(out_type, options, return_type));
+ return Status::OK();
+ }
+
Result<std::unique_ptr<KernelState>> Create() {
RETURN_NOT_OK(VisitTypeInline(in_type, this));
- return std::move(state);
- }
-};
-
+ return std::move(state);
+ }
+};
+
Result<std::unique_ptr<KernelState>> StddevInit(KernelContext* ctx,
const KernelInitArgs& args) {
- VarStdInitState visitor(
- ctx, *args.inputs[0].type, args.kernel->signature->out_type().type(),
- static_cast<const VarianceOptions&>(*args.options), VarOrStd::Std);
- return visitor.Create();
-}
-
+ VarStdInitState visitor(
+ ctx, *args.inputs[0].type, args.kernel->signature->out_type().type(),
+ static_cast<const VarianceOptions&>(*args.options), VarOrStd::Std);
+ return visitor.Create();
+}
+
Result<std::unique_ptr<KernelState>> VarianceInit(KernelContext* ctx,
const KernelInitArgs& args) {
- VarStdInitState visitor(
- ctx, *args.inputs[0].type, args.kernel->signature->out_type().type(),
- static_cast<const VarianceOptions&>(*args.options), VarOrStd::Var);
- return visitor.Create();
-}
-
+ VarStdInitState visitor(
+ ctx, *args.inputs[0].type, args.kernel->signature->out_type().type(),
+ static_cast<const VarianceOptions&>(*args.options), VarOrStd::Var);
+ return visitor.Create();
+}
+
Result<std::unique_ptr<KernelState>> ScalarVarStdInit(KernelContext* ctx,
const KernelInitArgs& args) {
return arrow::internal::make_unique<ScalarVarStdImpl>(
static_cast<const VarianceOptions&>(*args.options));
}
-void AddVarStdKernels(KernelInit init,
- const std::vector<std::shared_ptr<DataType>>& types,
- ScalarAggregateFunction* func) {
- for (const auto& ty : types) {
- auto sig = KernelSignature::Make({InputType::Array(ty)}, float64());
- AddAggKernel(std::move(sig), init, func);
+void AddVarStdKernels(KernelInit init,
+ const std::vector<std::shared_ptr<DataType>>& types,
+ ScalarAggregateFunction* func) {
+ for (const auto& ty : types) {
+ auto sig = KernelSignature::Make({InputType::Array(ty)}, float64());
+ AddAggKernel(std::move(sig), init, func);
sig = KernelSignature::Make({InputType::Scalar(ty)}, float64());
AddAggKernel(std::move(sig), ScalarVarStdInit, func);
- }
-}
-
+ }
+}
+
const FunctionDoc stddev_doc{
"Calculate the standard deviation of a numeric array",
("The number of degrees of freedom can be controlled using VarianceOptions.\n"
@@ -288,7 +288,7 @@ const FunctionDoc stddev_doc{
"to satisfy `ddof`, null is returned."),
{"array"},
"VarianceOptions"};
-
+
const FunctionDoc variance_doc{
"Calculate the variance of a numeric array",
("The number of degrees of freedom can be controlled using VarianceOptions.\n"
@@ -298,22 +298,22 @@ const FunctionDoc variance_doc{
{"array"},
"VarianceOptions"};
-std::shared_ptr<ScalarAggregateFunction> AddStddevAggKernels() {
- static auto default_std_options = VarianceOptions::Defaults();
+std::shared_ptr<ScalarAggregateFunction> AddStddevAggKernels() {
+ static auto default_std_options = VarianceOptions::Defaults();
auto func = std::make_shared<ScalarAggregateFunction>(
"stddev", Arity::Unary(), &stddev_doc, &default_std_options);
AddVarStdKernels(StddevInit, NumericTypes(), func.get());
- return func;
-}
-
-std::shared_ptr<ScalarAggregateFunction> AddVarianceAggKernels() {
- static auto default_var_options = VarianceOptions::Defaults();
+ return func;
+}
+
+std::shared_ptr<ScalarAggregateFunction> AddVarianceAggKernels() {
+ static auto default_var_options = VarianceOptions::Defaults();
auto func = std::make_shared<ScalarAggregateFunction>(
"variance", Arity::Unary(), &variance_doc, &default_var_options);
AddVarStdKernels(VarianceInit, NumericTypes(), func.get());
- return func;
-}
-
+ return func;
+}
+
} // namespace
void RegisterScalarAggregateVariance(FunctionRegistry* registry) {
@@ -322,5 +322,5 @@ void RegisterScalarAggregateVariance(FunctionRegistry* registry) {
}
} // namespace internal
-} // namespace compute
-} // namespace arrow
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/codegen_internal.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/codegen_internal.cc
index bab8e7000c..aa342eec25 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/codegen_internal.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/codegen_internal.cc
@@ -1,195 +1,195 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/compute/kernels/codegen_internal.h"
-
-#include <functional>
-#include <memory>
-#include <mutex>
-#include <vector>
-
-#include "arrow/type_fwd.h"
-
-namespace arrow {
-namespace compute {
-namespace internal {
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/compute/kernels/codegen_internal.h"
+
+#include <functional>
+#include <memory>
+#include <mutex>
+#include <vector>
+
+#include "arrow/type_fwd.h"
+
+namespace arrow {
+namespace compute {
+namespace internal {
+
Status ExecFail(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
return Status::NotImplemented("This kernel is malformed");
-}
-
-ArrayKernelExec MakeFlippedBinaryExec(ArrayKernelExec exec) {
- return [exec](KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- ExecBatch flipped_batch = batch;
- std::swap(flipped_batch.values[0], flipped_batch.values[1]);
+}
+
+ArrayKernelExec MakeFlippedBinaryExec(ArrayKernelExec exec) {
+ return [exec](KernelContext* ctx, const ExecBatch& batch, Datum* out) {
+ ExecBatch flipped_batch = batch;
+ std::swap(flipped_batch.values[0], flipped_batch.values[1]);
return exec(ctx, flipped_batch, out);
- };
-}
-
-std::vector<std::shared_ptr<DataType>> g_signed_int_types;
-std::vector<std::shared_ptr<DataType>> g_unsigned_int_types;
-std::vector<std::shared_ptr<DataType>> g_int_types;
-std::vector<std::shared_ptr<DataType>> g_floating_types;
-std::vector<std::shared_ptr<DataType>> g_numeric_types;
-std::vector<std::shared_ptr<DataType>> g_base_binary_types;
-std::vector<std::shared_ptr<DataType>> g_temporal_types;
-std::vector<std::shared_ptr<DataType>> g_primitive_types;
+ };
+}
+
+std::vector<std::shared_ptr<DataType>> g_signed_int_types;
+std::vector<std::shared_ptr<DataType>> g_unsigned_int_types;
+std::vector<std::shared_ptr<DataType>> g_int_types;
+std::vector<std::shared_ptr<DataType>> g_floating_types;
+std::vector<std::shared_ptr<DataType>> g_numeric_types;
+std::vector<std::shared_ptr<DataType>> g_base_binary_types;
+std::vector<std::shared_ptr<DataType>> g_temporal_types;
+std::vector<std::shared_ptr<DataType>> g_primitive_types;
std::vector<Type::type> g_decimal_type_ids;
-static std::once_flag codegen_static_initialized;
-
-template <typename T>
-void Extend(const std::vector<T>& values, std::vector<T>* out) {
- for (const auto& t : values) {
- out->push_back(t);
- }
-}
-
-static void InitStaticData() {
- // Signed int types
- g_signed_int_types = {int8(), int16(), int32(), int64()};
-
- // Unsigned int types
- g_unsigned_int_types = {uint8(), uint16(), uint32(), uint64()};
-
- // All int types
- Extend(g_unsigned_int_types, &g_int_types);
- Extend(g_signed_int_types, &g_int_types);
-
- // Floating point types
- g_floating_types = {float32(), float64()};
-
+static std::once_flag codegen_static_initialized;
+
+template <typename T>
+void Extend(const std::vector<T>& values, std::vector<T>* out) {
+ for (const auto& t : values) {
+ out->push_back(t);
+ }
+}
+
+static void InitStaticData() {
+ // Signed int types
+ g_signed_int_types = {int8(), int16(), int32(), int64()};
+
+ // Unsigned int types
+ g_unsigned_int_types = {uint8(), uint16(), uint32(), uint64()};
+
+ // All int types
+ Extend(g_unsigned_int_types, &g_int_types);
+ Extend(g_signed_int_types, &g_int_types);
+
+ // Floating point types
+ g_floating_types = {float32(), float64()};
+
// Decimal types
g_decimal_type_ids = {Type::DECIMAL128, Type::DECIMAL256};
- // Numeric types
- Extend(g_int_types, &g_numeric_types);
- Extend(g_floating_types, &g_numeric_types);
-
- // Temporal types
- g_temporal_types = {date32(),
- date64(),
- time32(TimeUnit::SECOND),
- time32(TimeUnit::MILLI),
- time64(TimeUnit::MICRO),
- time64(TimeUnit::NANO),
- timestamp(TimeUnit::SECOND),
- timestamp(TimeUnit::MILLI),
- timestamp(TimeUnit::MICRO),
- timestamp(TimeUnit::NANO)};
-
- // Base binary types (without FixedSizeBinary)
- g_base_binary_types = {binary(), utf8(), large_binary(), large_utf8()};
-
- // Non-parametric, non-nested types. This also DOES NOT include
- //
- // * Decimal
- // * Fixed Size Binary
- // * Time32
- // * Time64
- // * Timestamp
- g_primitive_types = {null(), boolean(), date32(), date64()};
- Extend(g_numeric_types, &g_primitive_types);
- Extend(g_base_binary_types, &g_primitive_types);
-}
-
-const std::vector<std::shared_ptr<DataType>>& BaseBinaryTypes() {
- std::call_once(codegen_static_initialized, InitStaticData);
- return g_base_binary_types;
-}
-
-const std::vector<std::shared_ptr<DataType>>& StringTypes() {
- static DataTypeVector types = {utf8(), large_utf8()};
- return types;
-}
-
-const std::vector<std::shared_ptr<DataType>>& SignedIntTypes() {
- std::call_once(codegen_static_initialized, InitStaticData);
- return g_signed_int_types;
-}
-
-const std::vector<std::shared_ptr<DataType>>& UnsignedIntTypes() {
- std::call_once(codegen_static_initialized, InitStaticData);
- return g_unsigned_int_types;
-}
-
-const std::vector<std::shared_ptr<DataType>>& IntTypes() {
- std::call_once(codegen_static_initialized, InitStaticData);
- return g_int_types;
-}
-
-const std::vector<std::shared_ptr<DataType>>& FloatingPointTypes() {
- std::call_once(codegen_static_initialized, InitStaticData);
- return g_floating_types;
-}
-
+ // Numeric types
+ Extend(g_int_types, &g_numeric_types);
+ Extend(g_floating_types, &g_numeric_types);
+
+ // Temporal types
+ g_temporal_types = {date32(),
+ date64(),
+ time32(TimeUnit::SECOND),
+ time32(TimeUnit::MILLI),
+ time64(TimeUnit::MICRO),
+ time64(TimeUnit::NANO),
+ timestamp(TimeUnit::SECOND),
+ timestamp(TimeUnit::MILLI),
+ timestamp(TimeUnit::MICRO),
+ timestamp(TimeUnit::NANO)};
+
+ // Base binary types (without FixedSizeBinary)
+ g_base_binary_types = {binary(), utf8(), large_binary(), large_utf8()};
+
+ // Non-parametric, non-nested types. This also DOES NOT include
+ //
+ // * Decimal
+ // * Fixed Size Binary
+ // * Time32
+ // * Time64
+ // * Timestamp
+ g_primitive_types = {null(), boolean(), date32(), date64()};
+ Extend(g_numeric_types, &g_primitive_types);
+ Extend(g_base_binary_types, &g_primitive_types);
+}
+
+const std::vector<std::shared_ptr<DataType>>& BaseBinaryTypes() {
+ std::call_once(codegen_static_initialized, InitStaticData);
+ return g_base_binary_types;
+}
+
+const std::vector<std::shared_ptr<DataType>>& StringTypes() {
+ static DataTypeVector types = {utf8(), large_utf8()};
+ return types;
+}
+
+const std::vector<std::shared_ptr<DataType>>& SignedIntTypes() {
+ std::call_once(codegen_static_initialized, InitStaticData);
+ return g_signed_int_types;
+}
+
+const std::vector<std::shared_ptr<DataType>>& UnsignedIntTypes() {
+ std::call_once(codegen_static_initialized, InitStaticData);
+ return g_unsigned_int_types;
+}
+
+const std::vector<std::shared_ptr<DataType>>& IntTypes() {
+ std::call_once(codegen_static_initialized, InitStaticData);
+ return g_int_types;
+}
+
+const std::vector<std::shared_ptr<DataType>>& FloatingPointTypes() {
+ std::call_once(codegen_static_initialized, InitStaticData);
+ return g_floating_types;
+}
+
const std::vector<Type::type>& DecimalTypeIds() {
std::call_once(codegen_static_initialized, InitStaticData);
return g_decimal_type_ids;
}
-const std::vector<TimeUnit::type>& AllTimeUnits() {
- static std::vector<TimeUnit::type> units = {TimeUnit::SECOND, TimeUnit::MILLI,
- TimeUnit::MICRO, TimeUnit::NANO};
- return units;
-}
-
-const std::vector<std::shared_ptr<DataType>>& NumericTypes() {
- std::call_once(codegen_static_initialized, InitStaticData);
- return g_numeric_types;
-}
-
-const std::vector<std::shared_ptr<DataType>>& TemporalTypes() {
- std::call_once(codegen_static_initialized, InitStaticData);
- return g_temporal_types;
-}
-
-const std::vector<std::shared_ptr<DataType>>& PrimitiveTypes() {
- std::call_once(codegen_static_initialized, InitStaticData);
- return g_primitive_types;
-}
-
-const std::vector<std::shared_ptr<DataType>>& ExampleParametricTypes() {
- static DataTypeVector example_parametric_types = {
+const std::vector<TimeUnit::type>& AllTimeUnits() {
+ static std::vector<TimeUnit::type> units = {TimeUnit::SECOND, TimeUnit::MILLI,
+ TimeUnit::MICRO, TimeUnit::NANO};
+ return units;
+}
+
+const std::vector<std::shared_ptr<DataType>>& NumericTypes() {
+ std::call_once(codegen_static_initialized, InitStaticData);
+ return g_numeric_types;
+}
+
+const std::vector<std::shared_ptr<DataType>>& TemporalTypes() {
+ std::call_once(codegen_static_initialized, InitStaticData);
+ return g_temporal_types;
+}
+
+const std::vector<std::shared_ptr<DataType>>& PrimitiveTypes() {
+ std::call_once(codegen_static_initialized, InitStaticData);
+ return g_primitive_types;
+}
+
+const std::vector<std::shared_ptr<DataType>>& ExampleParametricTypes() {
+ static DataTypeVector example_parametric_types = {
decimal128(12, 2),
- duration(TimeUnit::SECOND),
- timestamp(TimeUnit::SECOND),
- time32(TimeUnit::SECOND),
- time64(TimeUnit::MICRO),
- fixed_size_binary(0),
- list(null()),
- large_list(null()),
- fixed_size_list(field("dummy", null()), 0),
- struct_({}),
- sparse_union(FieldVector{}),
- dense_union(FieldVector{}),
- dictionary(int32(), null()),
- map(null(), null())};
- return example_parametric_types;
-}
-
-// Construct dummy parametric types so that we can get VisitTypeInline to
-// work above
-
-Result<ValueDescr> FirstType(KernelContext*, const std::vector<ValueDescr>& descrs) {
+ duration(TimeUnit::SECOND),
+ timestamp(TimeUnit::SECOND),
+ time32(TimeUnit::SECOND),
+ time64(TimeUnit::MICRO),
+ fixed_size_binary(0),
+ list(null()),
+ large_list(null()),
+ fixed_size_list(field("dummy", null()), 0),
+ struct_({}),
+ sparse_union(FieldVector{}),
+ dense_union(FieldVector{}),
+ dictionary(int32(), null()),
+ map(null(), null())};
+ return example_parametric_types;
+}
+
+// Construct dummy parametric types so that we can get VisitTypeInline to
+// work above
+
+Result<ValueDescr> FirstType(KernelContext*, const std::vector<ValueDescr>& descrs) {
ValueDescr result = descrs.front();
result.shape = GetBroadcastShape(descrs);
return result;
-}
-
+}
+
void EnsureDictionaryDecoded(std::vector<ValueDescr>* descrs) {
for (ValueDescr& descr : *descrs) {
if (descr.type->id() == Type::DICTIONARY) {
@@ -332,6 +332,6 @@ std::shared_ptr<DataType> CommonBinary(const std::vector<ValueDescr>& descrs) {
return large_binary();
}
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/codegen_internal.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/codegen_internal.h
index cb9b13bb3d..11a08a6ea9 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/codegen_internal.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/codegen_internal.h
@@ -1,95 +1,95 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <cstdint>
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <cstdint>
#include <cstring>
-#include <memory>
-#include <string>
-#include <utility>
-#include <vector>
-
-#include "arrow/array/builder_binary.h"
-#include "arrow/array/data.h"
-#include "arrow/buffer.h"
-#include "arrow/buffer_builder.h"
-#include "arrow/compute/exec.h"
-#include "arrow/compute/kernel.h"
-#include "arrow/datum.h"
-#include "arrow/result.h"
-#include "arrow/scalar.h"
-#include "arrow/status.h"
-#include "arrow/type.h"
-#include "arrow/type_traits.h"
-#include "arrow/util/bit_block_counter.h"
-#include "arrow/util/bit_util.h"
-#include "arrow/util/bitmap_generate.h"
-#include "arrow/util/bitmap_reader.h"
-#include "arrow/util/bitmap_writer.h"
-#include "arrow/util/checked_cast.h"
-#include "arrow/util/decimal.h"
-#include "arrow/util/logging.h"
-#include "arrow/util/macros.h"
-#include "arrow/util/make_unique.h"
-#include "arrow/util/optional.h"
-#include "arrow/util/string_view.h"
-#include "arrow/visitor_inline.h"
-
-namespace arrow {
-
-using internal::BinaryBitBlockCounter;
-using internal::BitBlockCount;
-using internal::BitmapReader;
-using internal::checked_cast;
-using internal::FirstTimeBitmapWriter;
-using internal::GenerateBitsUnrolled;
-using internal::VisitBitBlocksVoid;
-using internal::VisitTwoBitBlocksVoid;
-
-namespace compute {
-namespace internal {
-
-/// KernelState adapter for the common case of kernels whose only
-/// state is an instance of a subclass of FunctionOptions.
-/// Default FunctionOptions are *not* handled here.
-template <typename OptionsType>
-struct OptionsWrapper : public KernelState {
- explicit OptionsWrapper(OptionsType options) : options(std::move(options)) {}
-
+#include <memory>
+#include <string>
+#include <utility>
+#include <vector>
+
+#include "arrow/array/builder_binary.h"
+#include "arrow/array/data.h"
+#include "arrow/buffer.h"
+#include "arrow/buffer_builder.h"
+#include "arrow/compute/exec.h"
+#include "arrow/compute/kernel.h"
+#include "arrow/datum.h"
+#include "arrow/result.h"
+#include "arrow/scalar.h"
+#include "arrow/status.h"
+#include "arrow/type.h"
+#include "arrow/type_traits.h"
+#include "arrow/util/bit_block_counter.h"
+#include "arrow/util/bit_util.h"
+#include "arrow/util/bitmap_generate.h"
+#include "arrow/util/bitmap_reader.h"
+#include "arrow/util/bitmap_writer.h"
+#include "arrow/util/checked_cast.h"
+#include "arrow/util/decimal.h"
+#include "arrow/util/logging.h"
+#include "arrow/util/macros.h"
+#include "arrow/util/make_unique.h"
+#include "arrow/util/optional.h"
+#include "arrow/util/string_view.h"
+#include "arrow/visitor_inline.h"
+
+namespace arrow {
+
+using internal::BinaryBitBlockCounter;
+using internal::BitBlockCount;
+using internal::BitmapReader;
+using internal::checked_cast;
+using internal::FirstTimeBitmapWriter;
+using internal::GenerateBitsUnrolled;
+using internal::VisitBitBlocksVoid;
+using internal::VisitTwoBitBlocksVoid;
+
+namespace compute {
+namespace internal {
+
+/// KernelState adapter for the common case of kernels whose only
+/// state is an instance of a subclass of FunctionOptions.
+/// Default FunctionOptions are *not* handled here.
+template <typename OptionsType>
+struct OptionsWrapper : public KernelState {
+ explicit OptionsWrapper(OptionsType options) : options(std::move(options)) {}
+
static Result<std::unique_ptr<KernelState>> Init(KernelContext* ctx,
const KernelInitArgs& args) {
- if (auto options = static_cast<const OptionsType*>(args.options)) {
- return ::arrow::internal::make_unique<OptionsWrapper>(*options);
- }
-
+ if (auto options = static_cast<const OptionsType*>(args.options)) {
+ return ::arrow::internal::make_unique<OptionsWrapper>(*options);
+ }
+
return Status::Invalid(
"Attempted to initialize KernelState from null FunctionOptions");
- }
-
- static const OptionsType& Get(const KernelState& state) {
- return ::arrow::internal::checked_cast<const OptionsWrapper&>(state).options;
- }
-
- static const OptionsType& Get(KernelContext* ctx) { return Get(*ctx->state()); }
-
- OptionsType options;
-};
-
+ }
+
+ static const OptionsType& Get(const KernelState& state) {
+ return ::arrow::internal::checked_cast<const OptionsWrapper&>(state).options;
+ }
+
+ static const OptionsType& Get(KernelContext* ctx) { return Get(*ctx->state()); }
+
+ OptionsType options;
+};
+
/// KernelState adapter for when the state is an instance constructed with the
/// KernelContext and the FunctionOptions as argument
template <typename StateType, typename OptionsType>
@@ -118,41 +118,41 @@ struct KernelStateFromFunctionOptions : public KernelState {
StateType state;
};
-// ----------------------------------------------------------------------
-// Input and output value type definitions
-
-template <typename Type, typename Enable = void>
-struct GetViewType;
-
-template <typename Type>
-struct GetViewType<Type, enable_if_has_c_type<Type>> {
- using T = typename Type::c_type;
- using PhysicalType = T;
-
- static T LogicalValue(PhysicalType value) { return value; }
-};
-
-template <typename Type>
-struct GetViewType<Type, enable_if_t<is_base_binary_type<Type>::value ||
- is_fixed_size_binary_type<Type>::value>> {
- using T = util::string_view;
- using PhysicalType = T;
-
- static T LogicalValue(PhysicalType value) { return value; }
-};
-
-template <>
-struct GetViewType<Decimal128Type> {
- using T = Decimal128;
- using PhysicalType = util::string_view;
-
- static T LogicalValue(PhysicalType value) {
- return Decimal128(reinterpret_cast<const uint8_t*>(value.data()));
- }
+// ----------------------------------------------------------------------
+// Input and output value type definitions
+
+template <typename Type, typename Enable = void>
+struct GetViewType;
+
+template <typename Type>
+struct GetViewType<Type, enable_if_has_c_type<Type>> {
+ using T = typename Type::c_type;
+ using PhysicalType = T;
+
+ static T LogicalValue(PhysicalType value) { return value; }
+};
+
+template <typename Type>
+struct GetViewType<Type, enable_if_t<is_base_binary_type<Type>::value ||
+ is_fixed_size_binary_type<Type>::value>> {
+ using T = util::string_view;
+ using PhysicalType = T;
+
+ static T LogicalValue(PhysicalType value) { return value; }
+};
+
+template <>
+struct GetViewType<Decimal128Type> {
+ using T = Decimal128;
+ using PhysicalType = util::string_view;
+
+ static T LogicalValue(PhysicalType value) {
+ return Decimal128(reinterpret_cast<const uint8_t*>(value.data()));
+ }
static T LogicalValue(T value) { return value; }
-};
-
+};
+
template <>
struct GetViewType<Decimal256Type> {
using T = Decimal256;
@@ -165,88 +165,88 @@ struct GetViewType<Decimal256Type> {
static T LogicalValue(T value) { return value; }
};
-template <typename Type, typename Enable = void>
-struct GetOutputType;
-
-template <typename Type>
-struct GetOutputType<Type, enable_if_has_c_type<Type>> {
- using T = typename Type::c_type;
-};
-
-template <typename Type>
-struct GetOutputType<Type, enable_if_t<is_string_like_type<Type>::value>> {
- using T = std::string;
-};
-
-template <>
-struct GetOutputType<Decimal128Type> {
- using T = Decimal128;
-};
-
+template <typename Type, typename Enable = void>
+struct GetOutputType;
+
+template <typename Type>
+struct GetOutputType<Type, enable_if_has_c_type<Type>> {
+ using T = typename Type::c_type;
+};
+
+template <typename Type>
+struct GetOutputType<Type, enable_if_t<is_string_like_type<Type>::value>> {
+ using T = std::string;
+};
+
+template <>
+struct GetOutputType<Decimal128Type> {
+ using T = Decimal128;
+};
+
template <>
struct GetOutputType<Decimal256Type> {
using T = Decimal256;
};
-// ----------------------------------------------------------------------
-// Iteration / value access utilities
-
-template <typename T, typename R = void>
-using enable_if_has_c_type_not_boolean =
- enable_if_t<has_c_type<T>::value && !is_boolean_type<T>::value, R>;
-
-// Iterator over various input array types, yielding a GetViewType<Type>
-
-template <typename Type, typename Enable = void>
-struct ArrayIterator;
-
-template <typename Type>
-struct ArrayIterator<Type, enable_if_has_c_type_not_boolean<Type>> {
- using T = typename Type::c_type;
- const T* values;
-
- explicit ArrayIterator(const ArrayData& data) : values(data.GetValues<T>(1)) {}
- T operator()() { return *values++; }
-};
-
-template <typename Type>
-struct ArrayIterator<Type, enable_if_boolean<Type>> {
- BitmapReader reader;
-
- explicit ArrayIterator(const ArrayData& data)
- : reader(data.buffers[1]->data(), data.offset, data.length) {}
- bool operator()() {
- bool out = reader.IsSet();
- reader.Next();
- return out;
- }
-};
-
-template <typename Type>
-struct ArrayIterator<Type, enable_if_base_binary<Type>> {
- using offset_type = typename Type::offset_type;
- const ArrayData& arr;
- const offset_type* offsets;
- offset_type cur_offset;
- const char* data;
- int64_t position;
-
- explicit ArrayIterator(const ArrayData& arr)
- : arr(arr),
- offsets(reinterpret_cast<const offset_type*>(arr.buffers[1]->data()) +
- arr.offset),
- cur_offset(offsets[0]),
- data(reinterpret_cast<const char*>(arr.buffers[2]->data())),
- position(0) {}
-
- util::string_view operator()() {
- offset_type next_offset = offsets[++position];
- auto result = util::string_view(data + cur_offset, next_offset - cur_offset);
- cur_offset = next_offset;
- return result;
- }
-};
-
+// ----------------------------------------------------------------------
+// Iteration / value access utilities
+
+template <typename T, typename R = void>
+using enable_if_has_c_type_not_boolean =
+ enable_if_t<has_c_type<T>::value && !is_boolean_type<T>::value, R>;
+
+// Iterator over various input array types, yielding a GetViewType<Type>
+
+template <typename Type, typename Enable = void>
+struct ArrayIterator;
+
+template <typename Type>
+struct ArrayIterator<Type, enable_if_has_c_type_not_boolean<Type>> {
+ using T = typename Type::c_type;
+ const T* values;
+
+ explicit ArrayIterator(const ArrayData& data) : values(data.GetValues<T>(1)) {}
+ T operator()() { return *values++; }
+};
+
+template <typename Type>
+struct ArrayIterator<Type, enable_if_boolean<Type>> {
+ BitmapReader reader;
+
+ explicit ArrayIterator(const ArrayData& data)
+ : reader(data.buffers[1]->data(), data.offset, data.length) {}
+ bool operator()() {
+ bool out = reader.IsSet();
+ reader.Next();
+ return out;
+ }
+};
+
+template <typename Type>
+struct ArrayIterator<Type, enable_if_base_binary<Type>> {
+ using offset_type = typename Type::offset_type;
+ const ArrayData& arr;
+ const offset_type* offsets;
+ offset_type cur_offset;
+ const char* data;
+ int64_t position;
+
+ explicit ArrayIterator(const ArrayData& arr)
+ : arr(arr),
+ offsets(reinterpret_cast<const offset_type*>(arr.buffers[1]->data()) +
+ arr.offset),
+ cur_offset(offsets[0]),
+ data(reinterpret_cast<const char*>(arr.buffers[2]->data())),
+ position(0) {}
+
+ util::string_view operator()() {
+ offset_type next_offset = offsets[++position];
+ auto result = util::string_view(data + cur_offset, next_offset - cur_offset);
+ cur_offset = next_offset;
+ return result;
+ }
+};
+
template <typename Type>
struct ArrayIterator<Type, enable_if_decimal<Type>> {
using T = typename TypeTraits<Type>::ScalarType::ValueType;
@@ -259,27 +259,27 @@ struct ArrayIterator<Type, enable_if_decimal<Type>> {
T operator()() { return T{values++->data()}; }
};
-// Iterator over various output array types, taking a GetOutputType<Type>
-
-template <typename Type, typename Enable = void>
-struct OutputArrayWriter;
-
-template <typename Type>
-struct OutputArrayWriter<Type, enable_if_has_c_type_not_boolean<Type>> {
- using T = typename Type::c_type;
- T* values;
-
- explicit OutputArrayWriter(ArrayData* data) : values(data->GetMutableValues<T>(1)) {}
-
- void Write(T value) { *values++ = value; }
-
- // Note that this doesn't write the null bitmap, which should be consistent
- // with Write / WriteNull calls
- void WriteNull() { *values++ = T{}; }
+// Iterator over various output array types, taking a GetOutputType<Type>
+
+template <typename Type, typename Enable = void>
+struct OutputArrayWriter;
+
+template <typename Type>
+struct OutputArrayWriter<Type, enable_if_has_c_type_not_boolean<Type>> {
+ using T = typename Type::c_type;
+ T* values;
+
+ explicit OutputArrayWriter(ArrayData* data) : values(data->GetMutableValues<T>(1)) {}
+
+ void Write(T value) { *values++ = value; }
+
+ // Note that this doesn't write the null bitmap, which should be consistent
+ // with Write / WriteNull calls
+ void WriteNull() { *values++ = T{}; }
void WriteAllNull(int64_t length) { std::memset(values, 0, sizeof(T) * length); }
-};
-
+};
+
template <typename Type>
struct OutputArrayWriter<Type, enable_if_decimal<Type>> {
using T = typename TypeTraits<Type>::ScalarType::ValueType;
@@ -296,35 +296,35 @@ struct OutputArrayWriter<Type, enable_if_decimal<Type>> {
void WriteAllNull(int64_t length) { std::memset(values, 0, sizeof(T) * length); }
};
-// (Un)box Scalar to / from C++ value
-
-template <typename Type, typename Enable = void>
-struct UnboxScalar;
-
-template <typename Type>
-struct UnboxScalar<Type, enable_if_has_c_type<Type>> {
- using T = typename Type::c_type;
- static T Unbox(const Scalar& val) {
- return *reinterpret_cast<const T*>(
- checked_cast<const ::arrow::internal::PrimitiveScalarBase&>(val).data());
- }
-};
-
-template <typename Type>
+// (Un)box Scalar to / from C++ value
+
+template <typename Type, typename Enable = void>
+struct UnboxScalar;
+
+template <typename Type>
+struct UnboxScalar<Type, enable_if_has_c_type<Type>> {
+ using T = typename Type::c_type;
+ static T Unbox(const Scalar& val) {
+ return *reinterpret_cast<const T*>(
+ checked_cast<const ::arrow::internal::PrimitiveScalarBase&>(val).data());
+ }
+};
+
+template <typename Type>
struct UnboxScalar<Type, enable_if_has_string_view<Type>> {
- static util::string_view Unbox(const Scalar& val) {
+ static util::string_view Unbox(const Scalar& val) {
if (!val.is_valid) return util::string_view();
- return util::string_view(*checked_cast<const BaseBinaryScalar&>(val).value);
- }
-};
-
-template <>
-struct UnboxScalar<Decimal128Type> {
- static Decimal128 Unbox(const Scalar& val) {
- return checked_cast<const Decimal128Scalar&>(val).value;
- }
-};
-
+ return util::string_view(*checked_cast<const BaseBinaryScalar&>(val).value);
+ }
+};
+
+template <>
+struct UnboxScalar<Decimal128Type> {
+ static Decimal128 Unbox(const Scalar& val) {
+ return checked_cast<const Decimal128Scalar&>(val).value;
+ }
+};
+
template <>
struct UnboxScalar<Decimal256Type> {
static Decimal256 Unbox(const Scalar& val) {
@@ -332,36 +332,36 @@ struct UnboxScalar<Decimal256Type> {
}
};
-template <typename Type, typename Enable = void>
-struct BoxScalar;
-
-template <typename Type>
-struct BoxScalar<Type, enable_if_has_c_type<Type>> {
- using T = typename GetOutputType<Type>::T;
+template <typename Type, typename Enable = void>
+struct BoxScalar;
+
+template <typename Type>
+struct BoxScalar<Type, enable_if_has_c_type<Type>> {
+ using T = typename GetOutputType<Type>::T;
static void Box(T val, Scalar* out) {
// Enables BoxScalar<Int64Type> to work on a (for example) Time64Scalar
T* mutable_data = reinterpret_cast<T*>(
checked_cast<::arrow::internal::PrimitiveScalarBase*>(out)->mutable_data());
*mutable_data = val;
}
-};
-
-template <typename Type>
-struct BoxScalar<Type, enable_if_base_binary<Type>> {
- using T = typename GetOutputType<Type>::T;
- using ScalarType = typename TypeTraits<Type>::ScalarType;
- static void Box(T val, Scalar* out) {
- checked_cast<ScalarType*>(out)->value = std::make_shared<Buffer>(val);
- }
-};
-
-template <>
-struct BoxScalar<Decimal128Type> {
- using T = Decimal128;
- using ScalarType = Decimal128Scalar;
- static void Box(T val, Scalar* out) { checked_cast<ScalarType*>(out)->value = val; }
-};
-
+};
+
+template <typename Type>
+struct BoxScalar<Type, enable_if_base_binary<Type>> {
+ using T = typename GetOutputType<Type>::T;
+ using ScalarType = typename TypeTraits<Type>::ScalarType;
+ static void Box(T val, Scalar* out) {
+ checked_cast<ScalarType*>(out)->value = std::make_shared<Buffer>(val);
+ }
+};
+
+template <>
+struct BoxScalar<Decimal128Type> {
+ using T = Decimal128;
+ using ScalarType = Decimal128Scalar;
+ static void Box(T val, Scalar* out) { checked_cast<ScalarType*>(out)->value = val; }
+};
+
template <>
struct BoxScalar<Decimal256Type> {
using T = Decimal256;
@@ -369,21 +369,21 @@ struct BoxScalar<Decimal256Type> {
static void Box(T val, Scalar* out) { checked_cast<ScalarType*>(out)->value = val; }
};
-// A VisitArrayDataInline variant that calls its visitor function with logical
-// values, such as Decimal128 rather than util::string_view.
-
-template <typename T, typename VisitFunc, typename NullFunc>
+// A VisitArrayDataInline variant that calls its visitor function with logical
+// values, such as Decimal128 rather than util::string_view.
+
+template <typename T, typename VisitFunc, typename NullFunc>
static typename arrow::internal::call_traits::enable_if_return<VisitFunc, void>::type
VisitArrayValuesInline(const ArrayData& arr, VisitFunc&& valid_func,
NullFunc&& null_func) {
- VisitArrayDataInline<T>(
- arr,
- [&](typename GetViewType<T>::PhysicalType v) {
- valid_func(GetViewType<T>::LogicalValue(std::move(v)));
- },
- std::forward<NullFunc>(null_func));
-}
-
+ VisitArrayDataInline<T>(
+ arr,
+ [&](typename GetViewType<T>::PhysicalType v) {
+ valid_func(GetViewType<T>::LogicalValue(std::move(v)));
+ },
+ std::forward<NullFunc>(null_func));
+}
+
template <typename T, typename VisitFunc, typename NullFunc>
static typename arrow::internal::call_traits::enable_if_return<VisitFunc, Status>::type
VisitArrayValuesInline(const ArrayData& arr, VisitFunc&& valid_func,
@@ -396,110 +396,110 @@ VisitArrayValuesInline(const ArrayData& arr, VisitFunc&& valid_func,
std::forward<NullFunc>(null_func));
}
-// Like VisitArrayValuesInline, but for binary functions.
-
-template <typename Arg0Type, typename Arg1Type, typename VisitFunc, typename NullFunc>
-static void VisitTwoArrayValuesInline(const ArrayData& arr0, const ArrayData& arr1,
- VisitFunc&& valid_func, NullFunc&& null_func) {
- ArrayIterator<Arg0Type> arr0_it(arr0);
- ArrayIterator<Arg1Type> arr1_it(arr1);
-
- auto visit_valid = [&](int64_t i) {
- valid_func(GetViewType<Arg0Type>::LogicalValue(arr0_it()),
- GetViewType<Arg1Type>::LogicalValue(arr1_it()));
- };
- auto visit_null = [&]() {
- arr0_it();
- arr1_it();
- null_func();
- };
- VisitTwoBitBlocksVoid(arr0.buffers[0], arr0.offset, arr1.buffers[0], arr1.offset,
- arr0.length, std::move(visit_valid), std::move(visit_null));
-}
-
-// ----------------------------------------------------------------------
-// Reusable type resolvers
-
-Result<ValueDescr> FirstType(KernelContext*, const std::vector<ValueDescr>& descrs);
-
-// ----------------------------------------------------------------------
-// Generate an array kernel given template classes
-
+// Like VisitArrayValuesInline, but for binary functions.
+
+template <typename Arg0Type, typename Arg1Type, typename VisitFunc, typename NullFunc>
+static void VisitTwoArrayValuesInline(const ArrayData& arr0, const ArrayData& arr1,
+ VisitFunc&& valid_func, NullFunc&& null_func) {
+ ArrayIterator<Arg0Type> arr0_it(arr0);
+ ArrayIterator<Arg1Type> arr1_it(arr1);
+
+ auto visit_valid = [&](int64_t i) {
+ valid_func(GetViewType<Arg0Type>::LogicalValue(arr0_it()),
+ GetViewType<Arg1Type>::LogicalValue(arr1_it()));
+ };
+ auto visit_null = [&]() {
+ arr0_it();
+ arr1_it();
+ null_func();
+ };
+ VisitTwoBitBlocksVoid(arr0.buffers[0], arr0.offset, arr1.buffers[0], arr1.offset,
+ arr0.length, std::move(visit_valid), std::move(visit_null));
+}
+
+// ----------------------------------------------------------------------
+// Reusable type resolvers
+
+Result<ValueDescr> FirstType(KernelContext*, const std::vector<ValueDescr>& descrs);
+
+// ----------------------------------------------------------------------
+// Generate an array kernel given template classes
+
Status ExecFail(KernelContext* ctx, const ExecBatch& batch, Datum* out);
-
-ArrayKernelExec MakeFlippedBinaryExec(ArrayKernelExec exec);
-
-// ----------------------------------------------------------------------
-// Helpers for iterating over common DataType instances for adding kernels to
-// functions
-
-const std::vector<std::shared_ptr<DataType>>& BaseBinaryTypes();
-const std::vector<std::shared_ptr<DataType>>& StringTypes();
-const std::vector<std::shared_ptr<DataType>>& SignedIntTypes();
-const std::vector<std::shared_ptr<DataType>>& UnsignedIntTypes();
-const std::vector<std::shared_ptr<DataType>>& IntTypes();
-const std::vector<std::shared_ptr<DataType>>& FloatingPointTypes();
+
+ArrayKernelExec MakeFlippedBinaryExec(ArrayKernelExec exec);
+
+// ----------------------------------------------------------------------
+// Helpers for iterating over common DataType instances for adding kernels to
+// functions
+
+const std::vector<std::shared_ptr<DataType>>& BaseBinaryTypes();
+const std::vector<std::shared_ptr<DataType>>& StringTypes();
+const std::vector<std::shared_ptr<DataType>>& SignedIntTypes();
+const std::vector<std::shared_ptr<DataType>>& UnsignedIntTypes();
+const std::vector<std::shared_ptr<DataType>>& IntTypes();
+const std::vector<std::shared_ptr<DataType>>& FloatingPointTypes();
const std::vector<Type::type>& DecimalTypeIds();
-
-ARROW_EXPORT
-const std::vector<TimeUnit::type>& AllTimeUnits();
-
-// Returns a vector of example instances of parametric types such as
-//
-// * Decimal
-// * Timestamp (requiring unit)
-// * Time32 (requiring unit)
-// * Time64 (requiring unit)
-// * Duration (requiring unit)
-// * List, LargeList, FixedSizeList
-// * Struct
-// * Union
-// * Dictionary
-// * Map
-//
-// Generally kernels will use the "FirstType" OutputType::Resolver above for
-// the OutputType of the kernel's signature and match::SameTypeId for the
-// corresponding InputType
-const std::vector<std::shared_ptr<DataType>>& ExampleParametricTypes();
-
-// Number types without boolean
-const std::vector<std::shared_ptr<DataType>>& NumericTypes();
-
-// Temporal types including time and timestamps for each unit
-const std::vector<std::shared_ptr<DataType>>& TemporalTypes();
-
-// Integer, floating point, base binary, and temporal
-const std::vector<std::shared_ptr<DataType>>& PrimitiveTypes();
-
-// ----------------------------------------------------------------------
-// "Applicators" take an operator definition (which may be scalar-valued or
-// array-valued) and creates an ArrayKernelExec which can be used to add an
-// ArrayKernel to a Function.
-
-namespace applicator {
-
-// Generate an ArrayKernelExec given a functor that handles all of its own
-// iteration, etc.
-//
-// Operator must implement
-//
+
+ARROW_EXPORT
+const std::vector<TimeUnit::type>& AllTimeUnits();
+
+// Returns a vector of example instances of parametric types such as
+//
+// * Decimal
+// * Timestamp (requiring unit)
+// * Time32 (requiring unit)
+// * Time64 (requiring unit)
+// * Duration (requiring unit)
+// * List, LargeList, FixedSizeList
+// * Struct
+// * Union
+// * Dictionary
+// * Map
+//
+// Generally kernels will use the "FirstType" OutputType::Resolver above for
+// the OutputType of the kernel's signature and match::SameTypeId for the
+// corresponding InputType
+const std::vector<std::shared_ptr<DataType>>& ExampleParametricTypes();
+
+// Number types without boolean
+const std::vector<std::shared_ptr<DataType>>& NumericTypes();
+
+// Temporal types including time and timestamps for each unit
+const std::vector<std::shared_ptr<DataType>>& TemporalTypes();
+
+// Integer, floating point, base binary, and temporal
+const std::vector<std::shared_ptr<DataType>>& PrimitiveTypes();
+
+// ----------------------------------------------------------------------
+// "Applicators" take an operator definition (which may be scalar-valued or
+// array-valued) and creates an ArrayKernelExec which can be used to add an
+// ArrayKernel to a Function.
+
+namespace applicator {
+
+// Generate an ArrayKernelExec given a functor that handles all of its own
+// iteration, etc.
+//
+// Operator must implement
+//
// static Status Call(KernelContext*, const ArrayData& in, ArrayData* out)
// static Status Call(KernelContext*, const Scalar& in, Scalar* out)
-template <typename Operator>
+template <typename Operator>
static Status SimpleUnary(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- if (batch[0].kind() == Datum::SCALAR) {
+ if (batch[0].kind() == Datum::SCALAR) {
return Operator::Call(ctx, *batch[0].scalar(), out->scalar().get());
- } else if (batch.length > 0) {
+ } else if (batch.length > 0) {
return Operator::Call(ctx, *batch[0].array(), out->mutable_array());
- }
+ }
return Status::OK();
-}
-
-// Generate an ArrayKernelExec given a functor that handles all of its own
-// iteration, etc.
-//
-// Operator must implement
-//
+}
+
+// Generate an ArrayKernelExec given a functor that handles all of its own
+// iteration, etc.
+//
+// Operator must implement
+//
// static Status Call(KernelContext*, const ArrayData& arg0, const ArrayData& arg1,
// ArrayData* out)
// static Status Call(KernelContext*, const ArrayData& arg0, const Scalar& arg1,
@@ -508,7 +508,7 @@ static Status SimpleUnary(KernelContext* ctx, const ExecBatch& batch, Datum* out
// ArrayData* out)
// static Status Call(KernelContext*, const Scalar& arg0, const Scalar& arg1,
// Scalar* out)
-template <typename Operator>
+template <typename Operator>
static Status SimpleBinary(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
if (batch.length == 0) return Status::OK();
@@ -528,50 +528,50 @@ static Status SimpleBinary(KernelContext* ctx, const ExecBatch& batch, Datum* ou
return Operator::Call(ctx, *batch[0].scalar(), *batch[1].scalar(),
out->scalar().get());
}
- }
-}
-
-// OutputAdapter allows passing an inlineable lambda that provides a sequence
-// of output values to write into output memory. Boolean and primitive outputs
-// are currently implemented, and the validity bitmap is presumed to be handled
-// at a higher level, so this writes into every output slot, null or not.
-template <typename Type, typename Enable = void>
-struct OutputAdapter;
-
-template <typename Type>
-struct OutputAdapter<Type, enable_if_boolean<Type>> {
- template <typename Generator>
+ }
+}
+
+// OutputAdapter allows passing an inlineable lambda that provides a sequence
+// of output values to write into output memory. Boolean and primitive outputs
+// are currently implemented, and the validity bitmap is presumed to be handled
+// at a higher level, so this writes into every output slot, null or not.
+template <typename Type, typename Enable = void>
+struct OutputAdapter;
+
+template <typename Type>
+struct OutputAdapter<Type, enable_if_boolean<Type>> {
+ template <typename Generator>
static Status Write(KernelContext*, Datum* out, Generator&& generator) {
- ArrayData* out_arr = out->mutable_array();
- auto out_bitmap = out_arr->buffers[1]->mutable_data();
- GenerateBitsUnrolled(out_bitmap, out_arr->offset, out_arr->length,
- std::forward<Generator>(generator));
+ ArrayData* out_arr = out->mutable_array();
+ auto out_bitmap = out_arr->buffers[1]->mutable_data();
+ GenerateBitsUnrolled(out_bitmap, out_arr->offset, out_arr->length,
+ std::forward<Generator>(generator));
return Status::OK();
- }
-};
-
-template <typename Type>
-struct OutputAdapter<Type, enable_if_has_c_type_not_boolean<Type>> {
- template <typename Generator>
+ }
+};
+
+template <typename Type>
+struct OutputAdapter<Type, enable_if_has_c_type_not_boolean<Type>> {
+ template <typename Generator>
static Status Write(KernelContext*, Datum* out, Generator&& generator) {
- ArrayData* out_arr = out->mutable_array();
- auto out_data = out_arr->GetMutableValues<typename Type::c_type>(1);
- // TODO: Is this as fast as a more explicitly inlined function?
- for (int64_t i = 0; i < out_arr->length; ++i) {
- *out_data++ = generator();
- }
+ ArrayData* out_arr = out->mutable_array();
+ auto out_data = out_arr->GetMutableValues<typename Type::c_type>(1);
+ // TODO: Is this as fast as a more explicitly inlined function?
+ for (int64_t i = 0; i < out_arr->length; ++i) {
+ *out_data++ = generator();
+ }
return Status::OK();
- }
-};
-
-template <typename Type>
-struct OutputAdapter<Type, enable_if_base_binary<Type>> {
- template <typename Generator>
+ }
+};
+
+template <typename Type>
+struct OutputAdapter<Type, enable_if_base_binary<Type>> {
+ template <typename Generator>
static Status Write(KernelContext* ctx, Datum* out, Generator&& generator) {
return Status::NotImplemented("NYI");
- }
-};
-
+ }
+};
+
template <typename Type>
struct OutputAdapter<Type, enable_if_decimal<Type>> {
using T = typename TypeTraits<Type>::ScalarType::ValueType;
@@ -588,578 +588,578 @@ struct OutputAdapter<Type, enable_if_decimal<Type>> {
}
};
-// A kernel exec generator for unary functions that addresses both array and
-// scalar inputs and dispatches input iteration and output writing to other
-// templates
-//
-// This template executes the operator even on the data behind null values,
-// therefore it is generally only suitable for operators that are safe to apply
-// even on the null slot values.
-//
-// The "Op" functor should have the form
-//
-// struct Op {
-// template <typename OutValue, typename Arg0Value>
+// A kernel exec generator for unary functions that addresses both array and
+// scalar inputs and dispatches input iteration and output writing to other
+// templates
+//
+// This template executes the operator even on the data behind null values,
+// therefore it is generally only suitable for operators that are safe to apply
+// even on the null slot values.
+//
+// The "Op" functor should have the form
+//
+// struct Op {
+// template <typename OutValue, typename Arg0Value>
// static OutValue Call(KernelContext* ctx, Arg0Value val, Status* st) {
-// // implementation
+// // implementation
// // NOTE: "status" should only populated with errors,
// // leave it unmodified to indicate Status::OK()
-// }
-// };
-template <typename OutType, typename Arg0Type, typename Op>
-struct ScalarUnary {
- using OutValue = typename GetOutputType<OutType>::T;
- using Arg0Value = typename GetViewType<Arg0Type>::T;
-
+// }
+// };
+template <typename OutType, typename Arg0Type, typename Op>
+struct ScalarUnary {
+ using OutValue = typename GetOutputType<OutType>::T;
+ using Arg0Value = typename GetViewType<Arg0Type>::T;
+
static Status ExecArray(KernelContext* ctx, const ArrayData& arg0, Datum* out) {
Status st = Status::OK();
- ArrayIterator<Arg0Type> arg0_it(arg0);
+ ArrayIterator<Arg0Type> arg0_it(arg0);
RETURN_NOT_OK(OutputAdapter<OutType>::Write(ctx, out, [&]() -> OutValue {
return Op::template Call<OutValue, Arg0Value>(ctx, arg0_it(), &st);
}));
return st;
- }
-
+ }
+
static Status ExecScalar(KernelContext* ctx, const Scalar& arg0, Datum* out) {
Status st = Status::OK();
Scalar* out_scalar = out->scalar().get();
- if (arg0.is_valid) {
- Arg0Value arg0_val = UnboxScalar<Arg0Type>::Unbox(arg0);
+ if (arg0.is_valid) {
+ Arg0Value arg0_val = UnboxScalar<Arg0Type>::Unbox(arg0);
out_scalar->is_valid = true;
BoxScalar<OutType>::Box(Op::template Call<OutValue, Arg0Value>(ctx, arg0_val, &st),
out_scalar);
- } else {
+ } else {
out_scalar->is_valid = false;
- }
+ }
return st;
- }
-
+ }
+
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- if (batch[0].kind() == Datum::ARRAY) {
+ if (batch[0].kind() == Datum::ARRAY) {
return ExecArray(ctx, *batch[0].array(), out);
- } else {
+ } else {
return ExecScalar(ctx, *batch[0].scalar(), out);
- }
- }
-};
-
-// An alternative to ScalarUnary that Applies a scalar operation with state on
-// only the not-null values of a single array
-template <typename OutType, typename Arg0Type, typename Op>
-struct ScalarUnaryNotNullStateful {
- using ThisType = ScalarUnaryNotNullStateful<OutType, Arg0Type, Op>;
- using OutValue = typename GetOutputType<OutType>::T;
- using Arg0Value = typename GetViewType<Arg0Type>::T;
-
- Op op;
- explicit ScalarUnaryNotNullStateful(Op op) : op(std::move(op)) {}
-
- // NOTE: In ArrayExec<Type>, Type is really OutputType
-
- template <typename Type, typename Enable = void>
- struct ArrayExec {
+ }
+ }
+};
+
+// An alternative to ScalarUnary that Applies a scalar operation with state on
+// only the not-null values of a single array
+template <typename OutType, typename Arg0Type, typename Op>
+struct ScalarUnaryNotNullStateful {
+ using ThisType = ScalarUnaryNotNullStateful<OutType, Arg0Type, Op>;
+ using OutValue = typename GetOutputType<OutType>::T;
+ using Arg0Value = typename GetViewType<Arg0Type>::T;
+
+ Op op;
+ explicit ScalarUnaryNotNullStateful(Op op) : op(std::move(op)) {}
+
+ // NOTE: In ArrayExec<Type>, Type is really OutputType
+
+ template <typename Type, typename Enable = void>
+ struct ArrayExec {
static Status Exec(const ThisType& functor, KernelContext* ctx,
const ExecBatch& batch, Datum* out) {
- ARROW_LOG(FATAL) << "Missing ArrayExec specialization for output type "
- << out->type();
+ ARROW_LOG(FATAL) << "Missing ArrayExec specialization for output type "
+ << out->type();
return Status::NotImplemented("NYI");
- }
- };
-
- template <typename Type>
- struct ArrayExec<
- Type, enable_if_t<has_c_type<Type>::value && !is_boolean_type<Type>::value>> {
+ }
+ };
+
+ template <typename Type>
+ struct ArrayExec<
+ Type, enable_if_t<has_c_type<Type>::value && !is_boolean_type<Type>::value>> {
static Status Exec(const ThisType& functor, KernelContext* ctx, const ArrayData& arg0,
Datum* out) {
Status st = Status::OK();
- ArrayData* out_arr = out->mutable_array();
- auto out_data = out_arr->GetMutableValues<OutValue>(1);
- VisitArrayValuesInline<Arg0Type>(
- arg0,
- [&](Arg0Value v) {
+ ArrayData* out_arr = out->mutable_array();
+ auto out_data = out_arr->GetMutableValues<OutValue>(1);
+ VisitArrayValuesInline<Arg0Type>(
+ arg0,
+ [&](Arg0Value v) {
*out_data++ = functor.op.template Call<OutValue, Arg0Value>(ctx, v, &st);
- },
- [&]() {
- // null
+ },
+ [&]() {
+ // null
*out_data++ = OutValue{};
- });
+ });
return st;
- }
- };
-
- template <typename Type>
- struct ArrayExec<Type, enable_if_base_binary<Type>> {
+ }
+ };
+
+ template <typename Type>
+ struct ArrayExec<Type, enable_if_base_binary<Type>> {
static Status Exec(const ThisType& functor, KernelContext* ctx, const ArrayData& arg0,
Datum* out) {
- // NOTE: This code is not currently used by any kernels and has
- // suboptimal performance because it's recomputing the validity bitmap
- // that is already computed by the kernel execution layer. Consider
- // writing a lower-level "output adapter" for base binary types.
- typename TypeTraits<Type>::BuilderType builder;
+ // NOTE: This code is not currently used by any kernels and has
+ // suboptimal performance because it's recomputing the validity bitmap
+ // that is already computed by the kernel execution layer. Consider
+ // writing a lower-level "output adapter" for base binary types.
+ typename TypeTraits<Type>::BuilderType builder;
Status st = Status::OK();
RETURN_NOT_OK(VisitArrayValuesInline<Arg0Type>(
arg0, [&](Arg0Value v) { return builder.Append(functor.op.Call(ctx, v, &st)); },
[&]() { return builder.AppendNull(); }));
if (st.ok()) {
- std::shared_ptr<ArrayData> result;
+ std::shared_ptr<ArrayData> result;
RETURN_NOT_OK(builder.FinishInternal(&result));
- out->value = std::move(result);
- }
+ out->value = std::move(result);
+ }
return st;
- }
- };
-
- template <typename Type>
- struct ArrayExec<Type, enable_if_t<is_boolean_type<Type>::value>> {
+ }
+ };
+
+ template <typename Type>
+ struct ArrayExec<Type, enable_if_t<is_boolean_type<Type>::value>> {
static Status Exec(const ThisType& functor, KernelContext* ctx, const ArrayData& arg0,
Datum* out) {
Status st = Status::OK();
- ArrayData* out_arr = out->mutable_array();
- FirstTimeBitmapWriter out_writer(out_arr->buffers[1]->mutable_data(),
- out_arr->offset, out_arr->length);
- VisitArrayValuesInline<Arg0Type>(
- arg0,
- [&](Arg0Value v) {
+ ArrayData* out_arr = out->mutable_array();
+ FirstTimeBitmapWriter out_writer(out_arr->buffers[1]->mutable_data(),
+ out_arr->offset, out_arr->length);
+ VisitArrayValuesInline<Arg0Type>(
+ arg0,
+ [&](Arg0Value v) {
if (functor.op.template Call<OutValue, Arg0Value>(ctx, v, &st)) {
- out_writer.Set();
- }
- out_writer.Next();
- },
- [&]() {
- // null
- out_writer.Clear();
- out_writer.Next();
- });
- out_writer.Finish();
+ out_writer.Set();
+ }
+ out_writer.Next();
+ },
+ [&]() {
+ // null
+ out_writer.Clear();
+ out_writer.Next();
+ });
+ out_writer.Finish();
return st;
- }
- };
-
- template <typename Type>
+ }
+ };
+
+ template <typename Type>
struct ArrayExec<Type, enable_if_decimal<Type>> {
static Status Exec(const ThisType& functor, KernelContext* ctx, const ArrayData& arg0,
Datum* out) {
Status st = Status::OK();
- ArrayData* out_arr = out->mutable_array();
+ ArrayData* out_arr = out->mutable_array();
// Decimal128 data buffers are not safely reinterpret_cast-able on big-endian
using endian_agnostic =
std::array<uint8_t, sizeof(typename TypeTraits<Type>::ScalarType::ValueType)>;
auto out_data = out_arr->GetMutableValues<endian_agnostic>(1);
- VisitArrayValuesInline<Arg0Type>(
- arg0,
- [&](Arg0Value v) {
+ VisitArrayValuesInline<Arg0Type>(
+ arg0,
+ [&](Arg0Value v) {
functor.op.template Call<OutValue, Arg0Value>(ctx, v, &st)
.ToBytes(out_data++->data());
- },
+ },
[&]() {
// null
std::memset(out_data, 0, sizeof(*out_data));
++out_data;
});
return st;
- }
- };
-
+ }
+ };
+
Status Scalar(KernelContext* ctx, const Scalar& arg0, Datum* out) {
Status st = Status::OK();
- if (arg0.is_valid) {
- Arg0Value arg0_val = UnboxScalar<Arg0Type>::Unbox(arg0);
+ if (arg0.is_valid) {
+ Arg0Value arg0_val = UnboxScalar<Arg0Type>::Unbox(arg0);
BoxScalar<OutType>::Box(
this->op.template Call<OutValue, Arg0Value>(ctx, arg0_val, &st),
out->scalar().get());
- }
+ }
return st;
- }
-
+ }
+
Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- if (batch[0].kind() == Datum::ARRAY) {
+ if (batch[0].kind() == Datum::ARRAY) {
return ArrayExec<OutType>::Exec(*this, ctx, *batch[0].array(), out);
- } else {
- return Scalar(ctx, *batch[0].scalar(), out);
- }
- }
-};
-
-// An alternative to ScalarUnary that Applies a scalar operation on only the
-// not-null values of a single array. The operator is not stateful; if the
-// operator requires some initialization use ScalarUnaryNotNullStateful
-template <typename OutType, typename Arg0Type, typename Op>
-struct ScalarUnaryNotNull {
- using OutValue = typename GetOutputType<OutType>::T;
- using Arg0Value = typename GetViewType<Arg0Type>::T;
-
+ } else {
+ return Scalar(ctx, *batch[0].scalar(), out);
+ }
+ }
+};
+
+// An alternative to ScalarUnary that Applies a scalar operation on only the
+// not-null values of a single array. The operator is not stateful; if the
+// operator requires some initialization use ScalarUnaryNotNullStateful
+template <typename OutType, typename Arg0Type, typename Op>
+struct ScalarUnaryNotNull {
+ using OutValue = typename GetOutputType<OutType>::T;
+ using Arg0Value = typename GetViewType<Arg0Type>::T;
+
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- // Seed kernel with dummy state
- ScalarUnaryNotNullStateful<OutType, Arg0Type, Op> kernel({});
- return kernel.Exec(ctx, batch, out);
- }
-};
-
-// A kernel exec generator for binary functions that addresses both array and
-// scalar inputs and dispatches input iteration and output writing to other
-// templates
-//
-// This template executes the operator even on the data behind null values,
-// therefore it is generally only suitable for operators that are safe to apply
-// even on the null slot values.
-//
-// The "Op" functor should have the form
-//
-// struct Op {
-// template <typename OutValue, typename Arg0Value, typename Arg1Value>
+ // Seed kernel with dummy state
+ ScalarUnaryNotNullStateful<OutType, Arg0Type, Op> kernel({});
+ return kernel.Exec(ctx, batch, out);
+ }
+};
+
+// A kernel exec generator for binary functions that addresses both array and
+// scalar inputs and dispatches input iteration and output writing to other
+// templates
+//
+// This template executes the operator even on the data behind null values,
+// therefore it is generally only suitable for operators that are safe to apply
+// even on the null slot values.
+//
+// The "Op" functor should have the form
+//
+// struct Op {
+// template <typename OutValue, typename Arg0Value, typename Arg1Value>
// static OutValue Call(KernelContext* ctx, Arg0Value arg0, Arg1Value arg1, Status* st)
// {
-// // implementation
+// // implementation
// // NOTE: "status" should only populated with errors,
// // leave it unmodified to indicate Status::OK()
-// }
-// };
-template <typename OutType, typename Arg0Type, typename Arg1Type, typename Op>
-struct ScalarBinary {
- using OutValue = typename GetOutputType<OutType>::T;
- using Arg0Value = typename GetViewType<Arg0Type>::T;
- using Arg1Value = typename GetViewType<Arg1Type>::T;
-
+// }
+// };
+template <typename OutType, typename Arg0Type, typename Arg1Type, typename Op>
+struct ScalarBinary {
+ using OutValue = typename GetOutputType<OutType>::T;
+ using Arg0Value = typename GetViewType<Arg0Type>::T;
+ using Arg1Value = typename GetViewType<Arg1Type>::T;
+
static Status ArrayArray(KernelContext* ctx, const ArrayData& arg0,
const ArrayData& arg1, Datum* out) {
Status st = Status::OK();
- ArrayIterator<Arg0Type> arg0_it(arg0);
- ArrayIterator<Arg1Type> arg1_it(arg1);
+ ArrayIterator<Arg0Type> arg0_it(arg0);
+ ArrayIterator<Arg1Type> arg1_it(arg1);
RETURN_NOT_OK(OutputAdapter<OutType>::Write(ctx, out, [&]() -> OutValue {
return Op::template Call<OutValue, Arg0Value, Arg1Value>(ctx, arg0_it(), arg1_it(),
&st);
}));
return st;
- }
-
+ }
+
static Status ArrayScalar(KernelContext* ctx, const ArrayData& arg0, const Scalar& arg1,
Datum* out) {
Status st = Status::OK();
- ArrayIterator<Arg0Type> arg0_it(arg0);
- auto arg1_val = UnboxScalar<Arg1Type>::Unbox(arg1);
+ ArrayIterator<Arg0Type> arg0_it(arg0);
+ auto arg1_val = UnboxScalar<Arg1Type>::Unbox(arg1);
RETURN_NOT_OK(OutputAdapter<OutType>::Write(ctx, out, [&]() -> OutValue {
return Op::template Call<OutValue, Arg0Value, Arg1Value>(ctx, arg0_it(), arg1_val,
&st);
}));
return st;
- }
-
+ }
+
static Status ScalarArray(KernelContext* ctx, const Scalar& arg0, const ArrayData& arg1,
Datum* out) {
Status st = Status::OK();
- auto arg0_val = UnboxScalar<Arg0Type>::Unbox(arg0);
- ArrayIterator<Arg1Type> arg1_it(arg1);
+ auto arg0_val = UnboxScalar<Arg0Type>::Unbox(arg0);
+ ArrayIterator<Arg1Type> arg1_it(arg1);
RETURN_NOT_OK(OutputAdapter<OutType>::Write(ctx, out, [&]() -> OutValue {
return Op::template Call<OutValue, Arg0Value, Arg1Value>(ctx, arg0_val, arg1_it(),
&st);
}));
return st;
- }
-
+ }
+
static Status ScalarScalar(KernelContext* ctx, const Scalar& arg0, const Scalar& arg1,
Datum* out) {
Status st = Status::OK();
- if (out->scalar()->is_valid) {
- auto arg0_val = UnboxScalar<Arg0Type>::Unbox(arg0);
- auto arg1_val = UnboxScalar<Arg1Type>::Unbox(arg1);
+ if (out->scalar()->is_valid) {
+ auto arg0_val = UnboxScalar<Arg0Type>::Unbox(arg0);
+ auto arg1_val = UnboxScalar<Arg1Type>::Unbox(arg1);
BoxScalar<OutType>::Box(
Op::template Call<OutValue, Arg0Value, Arg1Value>(ctx, arg0_val, arg1_val, &st),
out->scalar().get());
- }
+ }
return st;
- }
-
+ }
+
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- if (batch[0].kind() == Datum::ARRAY) {
- if (batch[1].kind() == Datum::ARRAY) {
- return ArrayArray(ctx, *batch[0].array(), *batch[1].array(), out);
- } else {
- return ArrayScalar(ctx, *batch[0].array(), *batch[1].scalar(), out);
- }
- } else {
- if (batch[1].kind() == Datum::ARRAY) {
- return ScalarArray(ctx, *batch[0].scalar(), *batch[1].array(), out);
- } else {
- return ScalarScalar(ctx, *batch[0].scalar(), *batch[1].scalar(), out);
- }
- }
- }
-};
-
-// An alternative to ScalarBinary that Applies a scalar operation with state on
-// only the value pairs which are not-null in both arrays
-template <typename OutType, typename Arg0Type, typename Arg1Type, typename Op>
-struct ScalarBinaryNotNullStateful {
- using ThisType = ScalarBinaryNotNullStateful<OutType, Arg0Type, Arg1Type, Op>;
- using OutValue = typename GetOutputType<OutType>::T;
- using Arg0Value = typename GetViewType<Arg0Type>::T;
- using Arg1Value = typename GetViewType<Arg1Type>::T;
-
- Op op;
- explicit ScalarBinaryNotNullStateful(Op op) : op(std::move(op)) {}
-
- // NOTE: In ArrayExec<Type>, Type is really OutputType
-
+ if (batch[0].kind() == Datum::ARRAY) {
+ if (batch[1].kind() == Datum::ARRAY) {
+ return ArrayArray(ctx, *batch[0].array(), *batch[1].array(), out);
+ } else {
+ return ArrayScalar(ctx, *batch[0].array(), *batch[1].scalar(), out);
+ }
+ } else {
+ if (batch[1].kind() == Datum::ARRAY) {
+ return ScalarArray(ctx, *batch[0].scalar(), *batch[1].array(), out);
+ } else {
+ return ScalarScalar(ctx, *batch[0].scalar(), *batch[1].scalar(), out);
+ }
+ }
+ }
+};
+
+// An alternative to ScalarBinary that Applies a scalar operation with state on
+// only the value pairs which are not-null in both arrays
+template <typename OutType, typename Arg0Type, typename Arg1Type, typename Op>
+struct ScalarBinaryNotNullStateful {
+ using ThisType = ScalarBinaryNotNullStateful<OutType, Arg0Type, Arg1Type, Op>;
+ using OutValue = typename GetOutputType<OutType>::T;
+ using Arg0Value = typename GetViewType<Arg0Type>::T;
+ using Arg1Value = typename GetViewType<Arg1Type>::T;
+
+ Op op;
+ explicit ScalarBinaryNotNullStateful(Op op) : op(std::move(op)) {}
+
+ // NOTE: In ArrayExec<Type>, Type is really OutputType
+
Status ArrayArray(KernelContext* ctx, const ArrayData& arg0, const ArrayData& arg1,
Datum* out) {
Status st = Status::OK();
- OutputArrayWriter<OutType> writer(out->mutable_array());
- VisitTwoArrayValuesInline<Arg0Type, Arg1Type>(
- arg0, arg1,
- [&](Arg0Value u, Arg1Value v) {
+ OutputArrayWriter<OutType> writer(out->mutable_array());
+ VisitTwoArrayValuesInline<Arg0Type, Arg1Type>(
+ arg0, arg1,
+ [&](Arg0Value u, Arg1Value v) {
writer.Write(op.template Call<OutValue, Arg0Value, Arg1Value>(ctx, u, v, &st));
- },
- [&]() { writer.WriteNull(); });
+ },
+ [&]() { writer.WriteNull(); });
return st;
- }
-
+ }
+
Status ArrayScalar(KernelContext* ctx, const ArrayData& arg0, const Scalar& arg1,
Datum* out) {
Status st = Status::OK();
- OutputArrayWriter<OutType> writer(out->mutable_array());
- if (arg1.is_valid) {
- const auto arg1_val = UnboxScalar<Arg1Type>::Unbox(arg1);
- VisitArrayValuesInline<Arg0Type>(
- arg0,
- [&](Arg0Value u) {
- writer.Write(
+ OutputArrayWriter<OutType> writer(out->mutable_array());
+ if (arg1.is_valid) {
+ const auto arg1_val = UnboxScalar<Arg1Type>::Unbox(arg1);
+ VisitArrayValuesInline<Arg0Type>(
+ arg0,
+ [&](Arg0Value u) {
+ writer.Write(
op.template Call<OutValue, Arg0Value, Arg1Value>(ctx, u, arg1_val, &st));
- },
- [&]() { writer.WriteNull(); });
+ },
+ [&]() { writer.WriteNull(); });
} else {
writer.WriteAllNull(out->mutable_array()->length);
- }
+ }
return st;
- }
-
+ }
+
Status ScalarArray(KernelContext* ctx, const Scalar& arg0, const ArrayData& arg1,
Datum* out) {
Status st = Status::OK();
- OutputArrayWriter<OutType> writer(out->mutable_array());
- if (arg0.is_valid) {
- const auto arg0_val = UnboxScalar<Arg0Type>::Unbox(arg0);
- VisitArrayValuesInline<Arg1Type>(
- arg1,
- [&](Arg1Value v) {
- writer.Write(
+ OutputArrayWriter<OutType> writer(out->mutable_array());
+ if (arg0.is_valid) {
+ const auto arg0_val = UnboxScalar<Arg0Type>::Unbox(arg0);
+ VisitArrayValuesInline<Arg1Type>(
+ arg1,
+ [&](Arg1Value v) {
+ writer.Write(
op.template Call<OutValue, Arg0Value, Arg1Value>(ctx, arg0_val, v, &st));
- },
- [&]() { writer.WriteNull(); });
+ },
+ [&]() { writer.WriteNull(); });
} else {
writer.WriteAllNull(out->mutable_array()->length);
- }
+ }
return st;
- }
-
+ }
+
Status ScalarScalar(KernelContext* ctx, const Scalar& arg0, const Scalar& arg1,
Datum* out) {
Status st = Status::OK();
- if (arg0.is_valid && arg1.is_valid) {
- const auto arg0_val = UnboxScalar<Arg0Type>::Unbox(arg0);
- const auto arg1_val = UnboxScalar<Arg1Type>::Unbox(arg1);
- BoxScalar<OutType>::Box(
+ if (arg0.is_valid && arg1.is_valid) {
+ const auto arg0_val = UnboxScalar<Arg0Type>::Unbox(arg0);
+ const auto arg1_val = UnboxScalar<Arg1Type>::Unbox(arg1);
+ BoxScalar<OutType>::Box(
op.template Call<OutValue, Arg0Value, Arg1Value>(ctx, arg0_val, arg1_val, &st),
- out->scalar().get());
- }
+ out->scalar().get());
+ }
return st;
- }
-
+ }
+
Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- if (batch[0].kind() == Datum::ARRAY) {
- if (batch[1].kind() == Datum::ARRAY) {
- return ArrayArray(ctx, *batch[0].array(), *batch[1].array(), out);
- } else {
- return ArrayScalar(ctx, *batch[0].array(), *batch[1].scalar(), out);
- }
- } else {
- if (batch[1].kind() == Datum::ARRAY) {
- return ScalarArray(ctx, *batch[0].scalar(), *batch[1].array(), out);
- } else {
- return ScalarScalar(ctx, *batch[0].scalar(), *batch[1].scalar(), out);
- }
- }
- }
-};
-
-// An alternative to ScalarBinary that Applies a scalar operation on only
-// the value pairs which are not-null in both arrays.
-// The operator is not stateful; if the operator requires some initialization
-// use ScalarBinaryNotNullStateful.
-template <typename OutType, typename Arg0Type, typename Arg1Type, typename Op>
-struct ScalarBinaryNotNull {
- using OutValue = typename GetOutputType<OutType>::T;
- using Arg0Value = typename GetViewType<Arg0Type>::T;
- using Arg1Value = typename GetViewType<Arg1Type>::T;
-
+ if (batch[0].kind() == Datum::ARRAY) {
+ if (batch[1].kind() == Datum::ARRAY) {
+ return ArrayArray(ctx, *batch[0].array(), *batch[1].array(), out);
+ } else {
+ return ArrayScalar(ctx, *batch[0].array(), *batch[1].scalar(), out);
+ }
+ } else {
+ if (batch[1].kind() == Datum::ARRAY) {
+ return ScalarArray(ctx, *batch[0].scalar(), *batch[1].array(), out);
+ } else {
+ return ScalarScalar(ctx, *batch[0].scalar(), *batch[1].scalar(), out);
+ }
+ }
+ }
+};
+
+// An alternative to ScalarBinary that Applies a scalar operation on only
+// the value pairs which are not-null in both arrays.
+// The operator is not stateful; if the operator requires some initialization
+// use ScalarBinaryNotNullStateful.
+template <typename OutType, typename Arg0Type, typename Arg1Type, typename Op>
+struct ScalarBinaryNotNull {
+ using OutValue = typename GetOutputType<OutType>::T;
+ using Arg0Value = typename GetViewType<Arg0Type>::T;
+ using Arg1Value = typename GetViewType<Arg1Type>::T;
+
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- // Seed kernel with dummy state
- ScalarBinaryNotNullStateful<OutType, Arg0Type, Arg1Type, Op> kernel({});
- return kernel.Exec(ctx, batch, out);
- }
-};
-
-// A kernel exec generator for binary kernels where both input types are the
-// same
-template <typename OutType, typename ArgType, typename Op>
-using ScalarBinaryEqualTypes = ScalarBinary<OutType, ArgType, ArgType, Op>;
-
-// A kernel exec generator for non-null binary kernels where both input types are the
-// same
-template <typename OutType, typename ArgType, typename Op>
-using ScalarBinaryNotNullEqualTypes = ScalarBinaryNotNull<OutType, ArgType, ArgType, Op>;
-
-} // namespace applicator
-
-// ----------------------------------------------------------------------
-// BEGIN of kernel generator-dispatchers ("GD")
-//
-// These GD functions instantiate kernel functor templates and select one of
-// the instantiated kernels dynamically based on the data type or Type::type id
-// that is passed. This enables functions to be populated with kernels by
-// looping over vectors of data types rather than using macros or other
-// approaches.
-//
-// The kernel functor must be of the form:
-//
-// template <typename Type0, typename Type1, Args...>
-// struct FUNCTOR {
-// static void Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
-// // IMPLEMENTATION
-// }
-// };
-//
-// When you pass FUNCTOR to a GD function, you must pass at least one static
-// type along with the functor -- this is often the fixed return type of the
-// functor. This Type0 argument is passed as the first argument to the functor
-// during instantiation. The 2nd type passed to the functor is the DataType
-// subclass corresponding to the type passed as argument (not template type) to
-// the function.
-//
-// For example, GenerateNumeric<FUNCTOR, Type0>(int32()) will select a kernel
-// instantiated like FUNCTOR<Type0, Int32Type>. Any additional variadic
-// template arguments will be passed as additional template arguments to the
-// kernel template.
-
-namespace detail {
-
-// Convenience so we can pass DataType or Type::type for the GD's
-struct GetTypeId {
- Type::type id;
- GetTypeId(const std::shared_ptr<DataType>& type) // NOLINT implicit construction
- : id(type->id()) {}
- GetTypeId(const DataType& type) // NOLINT implicit construction
- : id(type.id()) {}
- GetTypeId(Type::type id) // NOLINT implicit construction
- : id(id) {}
-};
-
-} // namespace detail
-
-// GD for numeric types (integer and floating point)
-template <template <typename...> class Generator, typename Type0, typename... Args>
-ArrayKernelExec GenerateNumeric(detail::GetTypeId get_id) {
- switch (get_id.id) {
- case Type::INT8:
- return Generator<Type0, Int8Type, Args...>::Exec;
- case Type::UINT8:
- return Generator<Type0, UInt8Type, Args...>::Exec;
- case Type::INT16:
- return Generator<Type0, Int16Type, Args...>::Exec;
- case Type::UINT16:
- return Generator<Type0, UInt16Type, Args...>::Exec;
- case Type::INT32:
- return Generator<Type0, Int32Type, Args...>::Exec;
- case Type::UINT32:
- return Generator<Type0, UInt32Type, Args...>::Exec;
- case Type::INT64:
- return Generator<Type0, Int64Type, Args...>::Exec;
- case Type::UINT64:
- return Generator<Type0, UInt64Type, Args...>::Exec;
- case Type::FLOAT:
- return Generator<Type0, FloatType, Args...>::Exec;
- case Type::DOUBLE:
- return Generator<Type0, DoubleType, Args...>::Exec;
- default:
- DCHECK(false);
- return ExecFail;
- }
-}
-
-// Generate a kernel given a templated functor for floating point types
-//
-// See "Numeric" above for description of the generator functor
-template <template <typename...> class Generator, typename Type0, typename... Args>
-ArrayKernelExec GenerateFloatingPoint(detail::GetTypeId get_id) {
- switch (get_id.id) {
- case Type::FLOAT:
- return Generator<Type0, FloatType, Args...>::Exec;
- case Type::DOUBLE:
- return Generator<Type0, DoubleType, Args...>::Exec;
- default:
- DCHECK(false);
- return ExecFail;
- }
-}
-
-// Generate a kernel given a templated functor for integer types
-//
-// See "Numeric" above for description of the generator functor
-template <template <typename...> class Generator, typename Type0, typename... Args>
-ArrayKernelExec GenerateInteger(detail::GetTypeId get_id) {
- switch (get_id.id) {
- case Type::INT8:
- return Generator<Type0, Int8Type, Args...>::Exec;
- case Type::INT16:
- return Generator<Type0, Int16Type, Args...>::Exec;
- case Type::INT32:
- return Generator<Type0, Int32Type, Args...>::Exec;
- case Type::INT64:
- return Generator<Type0, Int64Type, Args...>::Exec;
- case Type::UINT8:
- return Generator<Type0, UInt8Type, Args...>::Exec;
- case Type::UINT16:
- return Generator<Type0, UInt16Type, Args...>::Exec;
- case Type::UINT32:
- return Generator<Type0, UInt32Type, Args...>::Exec;
- case Type::UINT64:
- return Generator<Type0, UInt64Type, Args...>::Exec;
- default:
- DCHECK(false);
- return ExecFail;
- }
-}
-
-template <template <typename...> class Generator, typename Type0, typename... Args>
-ArrayKernelExec GeneratePhysicalInteger(detail::GetTypeId get_id) {
- switch (get_id.id) {
- case Type::INT8:
- return Generator<Type0, Int8Type, Args...>::Exec;
- case Type::INT16:
- return Generator<Type0, Int16Type, Args...>::Exec;
- case Type::INT32:
- case Type::DATE32:
- case Type::TIME32:
- return Generator<Type0, Int32Type, Args...>::Exec;
- case Type::INT64:
- case Type::DATE64:
- case Type::TIMESTAMP:
- case Type::TIME64:
- case Type::DURATION:
- return Generator<Type0, Int64Type, Args...>::Exec;
- case Type::UINT8:
- return Generator<Type0, UInt8Type, Args...>::Exec;
- case Type::UINT16:
- return Generator<Type0, UInt16Type, Args...>::Exec;
- case Type::UINT32:
- return Generator<Type0, UInt32Type, Args...>::Exec;
- case Type::UINT64:
- return Generator<Type0, UInt64Type, Args...>::Exec;
- default:
- DCHECK(false);
- return ExecFail;
- }
-}
-
+ // Seed kernel with dummy state
+ ScalarBinaryNotNullStateful<OutType, Arg0Type, Arg1Type, Op> kernel({});
+ return kernel.Exec(ctx, batch, out);
+ }
+};
+
+// A kernel exec generator for binary kernels where both input types are the
+// same
+template <typename OutType, typename ArgType, typename Op>
+using ScalarBinaryEqualTypes = ScalarBinary<OutType, ArgType, ArgType, Op>;
+
+// A kernel exec generator for non-null binary kernels where both input types are the
+// same
+template <typename OutType, typename ArgType, typename Op>
+using ScalarBinaryNotNullEqualTypes = ScalarBinaryNotNull<OutType, ArgType, ArgType, Op>;
+
+} // namespace applicator
+
+// ----------------------------------------------------------------------
+// BEGIN of kernel generator-dispatchers ("GD")
+//
+// These GD functions instantiate kernel functor templates and select one of
+// the instantiated kernels dynamically based on the data type or Type::type id
+// that is passed. This enables functions to be populated with kernels by
+// looping over vectors of data types rather than using macros or other
+// approaches.
+//
+// The kernel functor must be of the form:
+//
+// template <typename Type0, typename Type1, Args...>
+// struct FUNCTOR {
+// static void Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
+// // IMPLEMENTATION
+// }
+// };
+//
+// When you pass FUNCTOR to a GD function, you must pass at least one static
+// type along with the functor -- this is often the fixed return type of the
+// functor. This Type0 argument is passed as the first argument to the functor
+// during instantiation. The 2nd type passed to the functor is the DataType
+// subclass corresponding to the type passed as argument (not template type) to
+// the function.
+//
+// For example, GenerateNumeric<FUNCTOR, Type0>(int32()) will select a kernel
+// instantiated like FUNCTOR<Type0, Int32Type>. Any additional variadic
+// template arguments will be passed as additional template arguments to the
+// kernel template.
+
+namespace detail {
+
+// Convenience so we can pass DataType or Type::type for the GD's
+struct GetTypeId {
+ Type::type id;
+ GetTypeId(const std::shared_ptr<DataType>& type) // NOLINT implicit construction
+ : id(type->id()) {}
+ GetTypeId(const DataType& type) // NOLINT implicit construction
+ : id(type.id()) {}
+ GetTypeId(Type::type id) // NOLINT implicit construction
+ : id(id) {}
+};
+
+} // namespace detail
+
+// GD for numeric types (integer and floating point)
+template <template <typename...> class Generator, typename Type0, typename... Args>
+ArrayKernelExec GenerateNumeric(detail::GetTypeId get_id) {
+ switch (get_id.id) {
+ case Type::INT8:
+ return Generator<Type0, Int8Type, Args...>::Exec;
+ case Type::UINT8:
+ return Generator<Type0, UInt8Type, Args...>::Exec;
+ case Type::INT16:
+ return Generator<Type0, Int16Type, Args...>::Exec;
+ case Type::UINT16:
+ return Generator<Type0, UInt16Type, Args...>::Exec;
+ case Type::INT32:
+ return Generator<Type0, Int32Type, Args...>::Exec;
+ case Type::UINT32:
+ return Generator<Type0, UInt32Type, Args...>::Exec;
+ case Type::INT64:
+ return Generator<Type0, Int64Type, Args...>::Exec;
+ case Type::UINT64:
+ return Generator<Type0, UInt64Type, Args...>::Exec;
+ case Type::FLOAT:
+ return Generator<Type0, FloatType, Args...>::Exec;
+ case Type::DOUBLE:
+ return Generator<Type0, DoubleType, Args...>::Exec;
+ default:
+ DCHECK(false);
+ return ExecFail;
+ }
+}
+
+// Generate a kernel given a templated functor for floating point types
+//
+// See "Numeric" above for description of the generator functor
+template <template <typename...> class Generator, typename Type0, typename... Args>
+ArrayKernelExec GenerateFloatingPoint(detail::GetTypeId get_id) {
+ switch (get_id.id) {
+ case Type::FLOAT:
+ return Generator<Type0, FloatType, Args...>::Exec;
+ case Type::DOUBLE:
+ return Generator<Type0, DoubleType, Args...>::Exec;
+ default:
+ DCHECK(false);
+ return ExecFail;
+ }
+}
+
+// Generate a kernel given a templated functor for integer types
+//
+// See "Numeric" above for description of the generator functor
+template <template <typename...> class Generator, typename Type0, typename... Args>
+ArrayKernelExec GenerateInteger(detail::GetTypeId get_id) {
+ switch (get_id.id) {
+ case Type::INT8:
+ return Generator<Type0, Int8Type, Args...>::Exec;
+ case Type::INT16:
+ return Generator<Type0, Int16Type, Args...>::Exec;
+ case Type::INT32:
+ return Generator<Type0, Int32Type, Args...>::Exec;
+ case Type::INT64:
+ return Generator<Type0, Int64Type, Args...>::Exec;
+ case Type::UINT8:
+ return Generator<Type0, UInt8Type, Args...>::Exec;
+ case Type::UINT16:
+ return Generator<Type0, UInt16Type, Args...>::Exec;
+ case Type::UINT32:
+ return Generator<Type0, UInt32Type, Args...>::Exec;
+ case Type::UINT64:
+ return Generator<Type0, UInt64Type, Args...>::Exec;
+ default:
+ DCHECK(false);
+ return ExecFail;
+ }
+}
+
+template <template <typename...> class Generator, typename Type0, typename... Args>
+ArrayKernelExec GeneratePhysicalInteger(detail::GetTypeId get_id) {
+ switch (get_id.id) {
+ case Type::INT8:
+ return Generator<Type0, Int8Type, Args...>::Exec;
+ case Type::INT16:
+ return Generator<Type0, Int16Type, Args...>::Exec;
+ case Type::INT32:
+ case Type::DATE32:
+ case Type::TIME32:
+ return Generator<Type0, Int32Type, Args...>::Exec;
+ case Type::INT64:
+ case Type::DATE64:
+ case Type::TIMESTAMP:
+ case Type::TIME64:
+ case Type::DURATION:
+ return Generator<Type0, Int64Type, Args...>::Exec;
+ case Type::UINT8:
+ return Generator<Type0, UInt8Type, Args...>::Exec;
+ case Type::UINT16:
+ return Generator<Type0, UInt16Type, Args...>::Exec;
+ case Type::UINT32:
+ return Generator<Type0, UInt32Type, Args...>::Exec;
+ case Type::UINT64:
+ return Generator<Type0, UInt64Type, Args...>::Exec;
+ default:
+ DCHECK(false);
+ return ExecFail;
+ }
+}
+
template <template <typename... Args> class Generator, typename... Args>
ArrayKernelExec GeneratePhysicalNumeric(detail::GetTypeId get_id) {
switch (get_id.id) {
@@ -1195,68 +1195,68 @@ ArrayKernelExec GeneratePhysicalNumeric(detail::GetTypeId get_id) {
}
}
-// Generate a kernel given a templated functor for integer types
-//
-// See "Numeric" above for description of the generator functor
-template <template <typename...> class Generator, typename Type0, typename... Args>
-ArrayKernelExec GenerateSignedInteger(detail::GetTypeId get_id) {
- switch (get_id.id) {
- case Type::INT8:
- return Generator<Type0, Int8Type, Args...>::Exec;
- case Type::INT16:
- return Generator<Type0, Int16Type, Args...>::Exec;
- case Type::INT32:
- return Generator<Type0, Int32Type, Args...>::Exec;
- case Type::INT64:
- return Generator<Type0, Int64Type, Args...>::Exec;
- default:
- DCHECK(false);
- return ExecFail;
- }
-}
-
-// Generate a kernel given a templated functor. Only a single template is
-// instantiated for each bit width, and the functor is expected to treat types
-// of the same bit width the same without utilizing any type-specific behavior
-// (e.g. int64 should be handled equivalent to uint64 or double -- all 64
-// bits).
-//
-// See "Numeric" above for description of the generator functor
+// Generate a kernel given a templated functor for integer types
+//
+// See "Numeric" above for description of the generator functor
+template <template <typename...> class Generator, typename Type0, typename... Args>
+ArrayKernelExec GenerateSignedInteger(detail::GetTypeId get_id) {
+ switch (get_id.id) {
+ case Type::INT8:
+ return Generator<Type0, Int8Type, Args...>::Exec;
+ case Type::INT16:
+ return Generator<Type0, Int16Type, Args...>::Exec;
+ case Type::INT32:
+ return Generator<Type0, Int32Type, Args...>::Exec;
+ case Type::INT64:
+ return Generator<Type0, Int64Type, Args...>::Exec;
+ default:
+ DCHECK(false);
+ return ExecFail;
+ }
+}
+
+// Generate a kernel given a templated functor. Only a single template is
+// instantiated for each bit width, and the functor is expected to treat types
+// of the same bit width the same without utilizing any type-specific behavior
+// (e.g. int64 should be handled equivalent to uint64 or double -- all 64
+// bits).
+//
+// See "Numeric" above for description of the generator functor
template <template <typename...> class Generator, typename... Args>
-ArrayKernelExec GenerateTypeAgnosticPrimitive(detail::GetTypeId get_id) {
- switch (get_id.id) {
- case Type::NA:
+ArrayKernelExec GenerateTypeAgnosticPrimitive(detail::GetTypeId get_id) {
+ switch (get_id.id) {
+ case Type::NA:
return Generator<NullType, Args...>::Exec;
- case Type::BOOL:
+ case Type::BOOL:
return Generator<BooleanType, Args...>::Exec;
- case Type::UINT8:
- case Type::INT8:
+ case Type::UINT8:
+ case Type::INT8:
return Generator<UInt8Type, Args...>::Exec;
- case Type::UINT16:
- case Type::INT16:
+ case Type::UINT16:
+ case Type::INT16:
return Generator<UInt16Type, Args...>::Exec;
- case Type::UINT32:
- case Type::INT32:
- case Type::FLOAT:
- case Type::DATE32:
- case Type::TIME32:
+ case Type::UINT32:
+ case Type::INT32:
+ case Type::FLOAT:
+ case Type::DATE32:
+ case Type::TIME32:
case Type::INTERVAL_MONTHS:
return Generator<UInt32Type, Args...>::Exec;
- case Type::UINT64:
- case Type::INT64:
- case Type::DOUBLE:
- case Type::DATE64:
- case Type::TIMESTAMP:
- case Type::TIME64:
- case Type::DURATION:
+ case Type::UINT64:
+ case Type::INT64:
+ case Type::DOUBLE:
+ case Type::DATE64:
+ case Type::TIMESTAMP:
+ case Type::TIME64:
+ case Type::DURATION:
case Type::INTERVAL_DAY_TIME:
return Generator<UInt64Type, Args...>::Exec;
- default:
- DCHECK(false);
- return ExecFail;
- }
-}
-
+ default:
+ DCHECK(false);
+ return ExecFail;
+ }
+}
+
// similar to GenerateTypeAgnosticPrimitive, but for variable types
template <template <typename...> class Generator, typename... Args>
ArrayKernelExec GenerateTypeAgnosticVarBinaryBase(detail::GetTypeId get_id) {
@@ -1273,69 +1273,69 @@ ArrayKernelExec GenerateTypeAgnosticVarBinaryBase(detail::GetTypeId get_id) {
}
}
-// Generate a kernel given a templated functor for base binary types. Generates
-// a single kernel for binary/string and large binary / large string. If your
-// kernel implementation needs access to the specific type at compile time,
-// please use BaseBinarySpecific.
-//
-// See "Numeric" above for description of the generator functor
-template <template <typename...> class Generator, typename Type0, typename... Args>
-ArrayKernelExec GenerateVarBinaryBase(detail::GetTypeId get_id) {
- switch (get_id.id) {
- case Type::BINARY:
- case Type::STRING:
- return Generator<Type0, BinaryType, Args...>::Exec;
- case Type::LARGE_BINARY:
- case Type::LARGE_STRING:
- return Generator<Type0, LargeBinaryType, Args...>::Exec;
- default:
- DCHECK(false);
- return ExecFail;
- }
-}
-
-// See BaseBinary documentation
-template <template <typename...> class Generator, typename Type0, typename... Args>
-ArrayKernelExec GenerateVarBinary(detail::GetTypeId get_id) {
- switch (get_id.id) {
- case Type::BINARY:
- return Generator<Type0, BinaryType, Args...>::Exec;
- case Type::STRING:
- return Generator<Type0, StringType, Args...>::Exec;
- case Type::LARGE_BINARY:
- return Generator<Type0, LargeBinaryType, Args...>::Exec;
- case Type::LARGE_STRING:
- return Generator<Type0, LargeStringType, Args...>::Exec;
- default:
- DCHECK(false);
- return ExecFail;
- }
-}
-
-// Generate a kernel given a templated functor for temporal types
-//
-// See "Numeric" above for description of the generator functor
-template <template <typename...> class Generator, typename Type0, typename... Args>
-ArrayKernelExec GenerateTemporal(detail::GetTypeId get_id) {
- switch (get_id.id) {
- case Type::DATE32:
- return Generator<Type0, Date32Type, Args...>::Exec;
- case Type::DATE64:
- return Generator<Type0, Date64Type, Args...>::Exec;
- case Type::DURATION:
- return Generator<Type0, DurationType, Args...>::Exec;
- case Type::TIME32:
- return Generator<Type0, Time32Type, Args...>::Exec;
- case Type::TIME64:
- return Generator<Type0, Time64Type, Args...>::Exec;
- case Type::TIMESTAMP:
- return Generator<Type0, TimestampType, Args...>::Exec;
- default:
- DCHECK(false);
- return ExecFail;
- }
-}
-
+// Generate a kernel given a templated functor for base binary types. Generates
+// a single kernel for binary/string and large binary / large string. If your
+// kernel implementation needs access to the specific type at compile time,
+// please use BaseBinarySpecific.
+//
+// See "Numeric" above for description of the generator functor
+template <template <typename...> class Generator, typename Type0, typename... Args>
+ArrayKernelExec GenerateVarBinaryBase(detail::GetTypeId get_id) {
+ switch (get_id.id) {
+ case Type::BINARY:
+ case Type::STRING:
+ return Generator<Type0, BinaryType, Args...>::Exec;
+ case Type::LARGE_BINARY:
+ case Type::LARGE_STRING:
+ return Generator<Type0, LargeBinaryType, Args...>::Exec;
+ default:
+ DCHECK(false);
+ return ExecFail;
+ }
+}
+
+// See BaseBinary documentation
+template <template <typename...> class Generator, typename Type0, typename... Args>
+ArrayKernelExec GenerateVarBinary(detail::GetTypeId get_id) {
+ switch (get_id.id) {
+ case Type::BINARY:
+ return Generator<Type0, BinaryType, Args...>::Exec;
+ case Type::STRING:
+ return Generator<Type0, StringType, Args...>::Exec;
+ case Type::LARGE_BINARY:
+ return Generator<Type0, LargeBinaryType, Args...>::Exec;
+ case Type::LARGE_STRING:
+ return Generator<Type0, LargeStringType, Args...>::Exec;
+ default:
+ DCHECK(false);
+ return ExecFail;
+ }
+}
+
+// Generate a kernel given a templated functor for temporal types
+//
+// See "Numeric" above for description of the generator functor
+template <template <typename...> class Generator, typename Type0, typename... Args>
+ArrayKernelExec GenerateTemporal(detail::GetTypeId get_id) {
+ switch (get_id.id) {
+ case Type::DATE32:
+ return Generator<Type0, Date32Type, Args...>::Exec;
+ case Type::DATE64:
+ return Generator<Type0, Date64Type, Args...>::Exec;
+ case Type::DURATION:
+ return Generator<Type0, DurationType, Args...>::Exec;
+ case Type::TIME32:
+ return Generator<Type0, Time32Type, Args...>::Exec;
+ case Type::TIME64:
+ return Generator<Type0, Time64Type, Args...>::Exec;
+ case Type::TIMESTAMP:
+ return Generator<Type0, TimestampType, Args...>::Exec;
+ default:
+ DCHECK(false);
+ return ExecFail;
+ }
+}
+
// Generate a kernel given a templated functor for decimal types
//
// See "Numeric" above for description of the generator functor
@@ -1352,9 +1352,9 @@ ArrayKernelExec GenerateDecimal(detail::GetTypeId get_id) {
}
}
-// END of kernel generator-dispatchers
-// ----------------------------------------------------------------------
-
+// END of kernel generator-dispatchers
+// ----------------------------------------------------------------------
+
ARROW_EXPORT
void EnsureDictionaryDecoded(std::vector<ValueDescr>* descrs);
@@ -1376,6 +1376,6 @@ std::shared_ptr<DataType> CommonTimestamp(const std::vector<ValueDescr>& descrs)
ARROW_EXPORT
std::shared_ptr<DataType> CommonBinary(const std::vector<ValueDescr>& descrs);
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/common.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/common.h
index 21244320f3..9ee2ec977a 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/common.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/common.h
@@ -1,54 +1,54 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-// IWYU pragma: begin_exports
-
-#include <cstdint>
-#include <memory>
-#include <string>
-#include <type_traits>
-#include <utility>
-#include <vector>
-
-#include "arrow/array/data.h"
-#include "arrow/buffer.h"
-#include "arrow/chunked_array.h"
-#include "arrow/compute/exec.h"
-#include "arrow/compute/function.h"
-#include "arrow/compute/kernel.h"
-#include "arrow/compute/kernels/codegen_internal.h"
-#include "arrow/compute/registry.h"
-#include "arrow/datum.h"
-#include "arrow/memory_pool.h"
-#include "arrow/status.h"
-#include "arrow/type.h"
-#include "arrow/type_traits.h"
-#include "arrow/util/checked_cast.h"
-#include "arrow/util/logging.h"
-#include "arrow/util/macros.h"
-#include "arrow/util/string_view.h"
-
-// IWYU pragma: end_exports
-
-namespace arrow {
-
-using internal::checked_cast;
-using internal::checked_pointer_cast;
-
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+// IWYU pragma: begin_exports
+
+#include <cstdint>
+#include <memory>
+#include <string>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+#include "arrow/array/data.h"
+#include "arrow/buffer.h"
+#include "arrow/chunked_array.h"
+#include "arrow/compute/exec.h"
+#include "arrow/compute/function.h"
+#include "arrow/compute/kernel.h"
+#include "arrow/compute/kernels/codegen_internal.h"
+#include "arrow/compute/registry.h"
+#include "arrow/datum.h"
+#include "arrow/memory_pool.h"
+#include "arrow/status.h"
+#include "arrow/type.h"
+#include "arrow/type_traits.h"
+#include "arrow/util/checked_cast.h"
+#include "arrow/util/logging.h"
+#include "arrow/util/macros.h"
+#include "arrow/util/string_view.h"
+
+// IWYU pragma: end_exports
+
+namespace arrow {
+
+using internal::checked_cast;
+using internal::checked_pointer_cast;
+
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_arithmetic.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_arithmetic.cc
index a5d4a55774..f05cc0f3d3 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_arithmetic.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_arithmetic.cc
@@ -1,83 +1,83 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
#include <algorithm>
#include <cmath>
#include <limits>
#include <utility>
#include "arrow/compute/kernels/codegen_internal.h"
-#include "arrow/compute/kernels/common.h"
+#include "arrow/compute/kernels/common.h"
#include "arrow/compute/kernels/util_internal.h"
#include "arrow/type.h"
#include "arrow/type_traits.h"
#include "arrow/util/decimal.h"
-#include "arrow/util/int_util_internal.h"
-#include "arrow/util/macros.h"
-
-namespace arrow {
-
-using internal::AddWithOverflow;
-using internal::DivideWithOverflow;
-using internal::MultiplyWithOverflow;
+#include "arrow/util/int_util_internal.h"
+#include "arrow/util/macros.h"
+
+namespace arrow {
+
+using internal::AddWithOverflow;
+using internal::DivideWithOverflow;
+using internal::MultiplyWithOverflow;
using internal::NegateWithOverflow;
-using internal::SubtractWithOverflow;
-
-namespace compute {
-namespace internal {
-
-using applicator::ScalarBinaryEqualTypes;
-using applicator::ScalarBinaryNotNullEqualTypes;
+using internal::SubtractWithOverflow;
+
+namespace compute {
+namespace internal {
+
+using applicator::ScalarBinaryEqualTypes;
+using applicator::ScalarBinaryNotNullEqualTypes;
using applicator::ScalarUnary;
using applicator::ScalarUnaryNotNull;
-
-namespace {
-
-template <typename T>
-using is_unsigned_integer = std::integral_constant<bool, std::is_integral<T>::value &&
- std::is_unsigned<T>::value>;
-
-template <typename T>
-using is_signed_integer =
- std::integral_constant<bool, std::is_integral<T>::value && std::is_signed<T>::value>;
-
+
+namespace {
+
+template <typename T>
+using is_unsigned_integer = std::integral_constant<bool, std::is_integral<T>::value &&
+ std::is_unsigned<T>::value>;
+
+template <typename T>
+using is_signed_integer =
+ std::integral_constant<bool, std::is_integral<T>::value && std::is_signed<T>::value>;
+
template <typename T, typename R = T>
using enable_if_signed_integer = enable_if_t<is_signed_integer<T>::value, R>;
-
+
template <typename T, typename R = T>
using enable_if_unsigned_integer = enable_if_t<is_unsigned_integer<T>::value, R>;
-
+
template <typename T, typename R = T>
-using enable_if_integer =
+using enable_if_integer =
enable_if_t<is_signed_integer<T>::value || is_unsigned_integer<T>::value, R>;
-
+
template <typename T, typename R = T>
using enable_if_floating_point = enable_if_t<std::is_floating_point<T>::value, R>;
-template <typename T>
+template <typename T>
using enable_if_decimal =
enable_if_t<std::is_same<Decimal128, T>::value || std::is_same<Decimal256, T>::value,
T>;
-
-template <typename T, typename Unsigned = typename std::make_unsigned<T>::type>
-constexpr Unsigned to_unsigned(T signed_) {
- return static_cast<Unsigned>(signed_);
-}
-
+
+template <typename T, typename Unsigned = typename std::make_unsigned<T>::type>
+constexpr Unsigned to_unsigned(T signed_) {
+ return static_cast<Unsigned>(signed_);
+}
+
struct AbsoluteValue {
template <typename T, typename Arg>
static constexpr enable_if_floating_point<T> Call(KernelContext*, T arg, Status*) {
@@ -119,201 +119,201 @@ struct AbsoluteValueChecked {
}
};
-struct Add {
+struct Add {
template <typename T, typename Arg0, typename Arg1>
static constexpr enable_if_floating_point<T> Call(KernelContext*, Arg0 left, Arg1 right,
Status*) {
- return left + right;
- }
-
+ return left + right;
+ }
+
template <typename T, typename Arg0, typename Arg1>
static constexpr enable_if_unsigned_integer<T> Call(KernelContext*, Arg0 left,
Arg1 right, Status*) {
- return left + right;
- }
-
+ return left + right;
+ }
+
template <typename T, typename Arg0, typename Arg1>
static constexpr enable_if_signed_integer<T> Call(KernelContext*, Arg0 left, Arg1 right,
Status*) {
- return arrow::internal::SafeSignedAdd(left, right);
- }
+ return arrow::internal::SafeSignedAdd(left, right);
+ }
template <typename T, typename Arg0, typename Arg1>
static enable_if_decimal<T> Call(KernelContext*, Arg0 left, Arg1 right, Status*) {
return left + right;
}
-};
-
-struct AddChecked {
- template <typename T, typename Arg0, typename Arg1>
+};
+
+struct AddChecked {
+ template <typename T, typename Arg0, typename Arg1>
static enable_if_integer<T> Call(KernelContext*, Arg0 left, Arg1 right, Status* st) {
- static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
- T result = 0;
- if (ARROW_PREDICT_FALSE(AddWithOverflow(left, right, &result))) {
+ static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
+ T result = 0;
+ if (ARROW_PREDICT_FALSE(AddWithOverflow(left, right, &result))) {
*st = Status::Invalid("overflow");
- }
- return result;
- }
-
- template <typename T, typename Arg0, typename Arg1>
+ }
+ return result;
+ }
+
+ template <typename T, typename Arg0, typename Arg1>
static enable_if_floating_point<T> Call(KernelContext*, Arg0 left, Arg1 right,
Status*) {
- static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
- return left + right;
- }
+ static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
+ return left + right;
+ }
template <typename T, typename Arg0, typename Arg1>
static enable_if_decimal<T> Call(KernelContext*, Arg0 left, Arg1 right, Status*) {
return left + right;
}
-};
-
-struct Subtract {
+};
+
+struct Subtract {
template <typename T, typename Arg0, typename Arg1>
static constexpr enable_if_floating_point<T> Call(KernelContext*, Arg0 left, Arg1 right,
Status*) {
static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
- return left - right;
- }
-
+ return left - right;
+ }
+
template <typename T, typename Arg0, typename Arg1>
static constexpr enable_if_unsigned_integer<T> Call(KernelContext*, Arg0 left,
Arg1 right, Status*) {
static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
- return left - right;
- }
-
+ return left - right;
+ }
+
template <typename T, typename Arg0, typename Arg1>
static constexpr enable_if_signed_integer<T> Call(KernelContext*, Arg0 left, Arg1 right,
Status*) {
static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
- return arrow::internal::SafeSignedSubtract(left, right);
- }
+ return arrow::internal::SafeSignedSubtract(left, right);
+ }
template <typename T, typename Arg0, typename Arg1>
static enable_if_decimal<T> Call(KernelContext*, Arg0 left, Arg1 right, Status*) {
return left + (-right);
}
-};
-
-struct SubtractChecked {
- template <typename T, typename Arg0, typename Arg1>
+};
+
+struct SubtractChecked {
+ template <typename T, typename Arg0, typename Arg1>
static enable_if_integer<T> Call(KernelContext*, Arg0 left, Arg1 right, Status* st) {
- static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
- T result = 0;
- if (ARROW_PREDICT_FALSE(SubtractWithOverflow(left, right, &result))) {
+ static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
+ T result = 0;
+ if (ARROW_PREDICT_FALSE(SubtractWithOverflow(left, right, &result))) {
*st = Status::Invalid("overflow");
- }
- return result;
- }
-
- template <typename T, typename Arg0, typename Arg1>
+ }
+ return result;
+ }
+
+ template <typename T, typename Arg0, typename Arg1>
static enable_if_floating_point<T> Call(KernelContext*, Arg0 left, Arg1 right,
Status*) {
- static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
- return left - right;
- }
+ static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
+ return left - right;
+ }
template <typename T, typename Arg0, typename Arg1>
static enable_if_decimal<T> Call(KernelContext*, Arg0 left, Arg1 right, Status*) {
return left + (-right);
}
-};
-
-struct Multiply {
- static_assert(std::is_same<decltype(int8_t() * int8_t()), int32_t>::value, "");
- static_assert(std::is_same<decltype(uint8_t() * uint8_t()), int32_t>::value, "");
- static_assert(std::is_same<decltype(int16_t() * int16_t()), int32_t>::value, "");
- static_assert(std::is_same<decltype(uint16_t() * uint16_t()), int32_t>::value, "");
- static_assert(std::is_same<decltype(int32_t() * int32_t()), int32_t>::value, "");
- static_assert(std::is_same<decltype(uint32_t() * uint32_t()), uint32_t>::value, "");
- static_assert(std::is_same<decltype(int64_t() * int64_t()), int64_t>::value, "");
- static_assert(std::is_same<decltype(uint64_t() * uint64_t()), uint64_t>::value, "");
-
+};
+
+struct Multiply {
+ static_assert(std::is_same<decltype(int8_t() * int8_t()), int32_t>::value, "");
+ static_assert(std::is_same<decltype(uint8_t() * uint8_t()), int32_t>::value, "");
+ static_assert(std::is_same<decltype(int16_t() * int16_t()), int32_t>::value, "");
+ static_assert(std::is_same<decltype(uint16_t() * uint16_t()), int32_t>::value, "");
+ static_assert(std::is_same<decltype(int32_t() * int32_t()), int32_t>::value, "");
+ static_assert(std::is_same<decltype(uint32_t() * uint32_t()), uint32_t>::value, "");
+ static_assert(std::is_same<decltype(int64_t() * int64_t()), int64_t>::value, "");
+ static_assert(std::is_same<decltype(uint64_t() * uint64_t()), uint64_t>::value, "");
+
template <typename T, typename Arg0, typename Arg1>
static constexpr enable_if_floating_point<T> Call(KernelContext*, T left, T right,
Status*) {
- return left * right;
- }
-
+ return left * right;
+ }
+
template <typename T, typename Arg0, typename Arg1>
static constexpr enable_if_t<
is_unsigned_integer<T>::value && !std::is_same<T, uint16_t>::value, T>
Call(KernelContext*, T left, T right, Status*) {
- return left * right;
- }
-
+ return left * right;
+ }
+
template <typename T, typename Arg0, typename Arg1>
static constexpr enable_if_t<
is_signed_integer<T>::value && !std::is_same<T, int16_t>::value, T>
Call(KernelContext*, T left, T right, Status*) {
- return to_unsigned(left) * to_unsigned(right);
- }
-
- // Multiplication of 16 bit integer types implicitly promotes to signed 32 bit
- // integer. However, some inputs may nevertheless overflow (which triggers undefined
- // behaviour). Therefore we first cast to 32 bit unsigned integers where overflow is
- // well defined.
+ return to_unsigned(left) * to_unsigned(right);
+ }
+
+ // Multiplication of 16 bit integer types implicitly promotes to signed 32 bit
+ // integer. However, some inputs may nevertheless overflow (which triggers undefined
+ // behaviour). Therefore we first cast to 32 bit unsigned integers where overflow is
+ // well defined.
template <typename T, typename Arg0, typename Arg1>
static constexpr enable_if_same<T, int16_t, T> Call(KernelContext*, int16_t left,
int16_t right, Status*) {
- return static_cast<uint32_t>(left) * static_cast<uint32_t>(right);
- }
+ return static_cast<uint32_t>(left) * static_cast<uint32_t>(right);
+ }
template <typename T, typename Arg0, typename Arg1>
static constexpr enable_if_same<T, uint16_t, T> Call(KernelContext*, uint16_t left,
uint16_t right, Status*) {
- return static_cast<uint32_t>(left) * static_cast<uint32_t>(right);
- }
+ return static_cast<uint32_t>(left) * static_cast<uint32_t>(right);
+ }
template <typename T, typename Arg0, typename Arg1>
static enable_if_decimal<T> Call(KernelContext*, Arg0 left, Arg1 right, Status*) {
return left * right;
}
-};
-
-struct MultiplyChecked {
- template <typename T, typename Arg0, typename Arg1>
+};
+
+struct MultiplyChecked {
+ template <typename T, typename Arg0, typename Arg1>
static enable_if_integer<T> Call(KernelContext*, Arg0 left, Arg1 right, Status* st) {
- static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
- T result = 0;
- if (ARROW_PREDICT_FALSE(MultiplyWithOverflow(left, right, &result))) {
+ static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
+ T result = 0;
+ if (ARROW_PREDICT_FALSE(MultiplyWithOverflow(left, right, &result))) {
*st = Status::Invalid("overflow");
- }
- return result;
- }
-
- template <typename T, typename Arg0, typename Arg1>
+ }
+ return result;
+ }
+
+ template <typename T, typename Arg0, typename Arg1>
static enable_if_floating_point<T> Call(KernelContext*, Arg0 left, Arg1 right,
Status*) {
- static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
- return left * right;
- }
+ static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
+ return left * right;
+ }
template <typename T, typename Arg0, typename Arg1>
static enable_if_decimal<T> Call(KernelContext*, Arg0 left, Arg1 right, Status*) {
return left * right;
}
-};
-
-struct Divide {
- template <typename T, typename Arg0, typename Arg1>
+};
+
+struct Divide {
+ template <typename T, typename Arg0, typename Arg1>
static enable_if_floating_point<T> Call(KernelContext*, Arg0 left, Arg1 right,
Status*) {
- return left / right;
- }
-
- template <typename T, typename Arg0, typename Arg1>
+ return left / right;
+ }
+
+ template <typename T, typename Arg0, typename Arg1>
static enable_if_integer<T> Call(KernelContext*, Arg0 left, Arg1 right, Status* st) {
- T result;
- if (ARROW_PREDICT_FALSE(DivideWithOverflow(left, right, &result))) {
- if (right == 0) {
+ T result;
+ if (ARROW_PREDICT_FALSE(DivideWithOverflow(left, right, &result))) {
+ if (right == 0) {
*st = Status::Invalid("divide by zero");
- } else {
- result = 0;
- }
- }
- return result;
- }
+ } else {
+ result = 0;
+ }
+ }
+ return result;
+ }
template <typename T, typename Arg0, typename Arg1>
static enable_if_decimal<T> Call(KernelContext*, Arg0 left, Arg1 right, Status* st) {
@@ -324,41 +324,41 @@ struct Divide {
return left / right;
}
}
-};
-
-struct DivideChecked {
- template <typename T, typename Arg0, typename Arg1>
+};
+
+struct DivideChecked {
+ template <typename T, typename Arg0, typename Arg1>
static enable_if_integer<T> Call(KernelContext*, Arg0 left, Arg1 right, Status* st) {
- static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
- T result;
- if (ARROW_PREDICT_FALSE(DivideWithOverflow(left, right, &result))) {
- if (right == 0) {
+ static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
+ T result;
+ if (ARROW_PREDICT_FALSE(DivideWithOverflow(left, right, &result))) {
+ if (right == 0) {
*st = Status::Invalid("divide by zero");
- } else {
+ } else {
*st = Status::Invalid("overflow");
- }
- }
- return result;
- }
-
- template <typename T, typename Arg0, typename Arg1>
+ }
+ }
+ return result;
+ }
+
+ template <typename T, typename Arg0, typename Arg1>
static enable_if_floating_point<T> Call(KernelContext*, Arg0 left, Arg1 right,
Status* st) {
- static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
- if (ARROW_PREDICT_FALSE(right == 0)) {
+ static_assert(std::is_same<T, Arg0>::value && std::is_same<T, Arg1>::value, "");
+ if (ARROW_PREDICT_FALSE(right == 0)) {
*st = Status::Invalid("divide by zero");
- return 0;
- }
- return left / right;
- }
+ return 0;
+ }
+ return left / right;
+ }
template <typename T, typename Arg0, typename Arg1>
static enable_if_decimal<T> Call(KernelContext* ctx, Arg0 left, Arg1 right,
Status* st) {
return Divide::Call<T>(ctx, left, right, st);
}
-};
-
+};
+
struct Negate {
template <typename T, typename Arg>
static constexpr enable_if_floating_point<T> Call(KernelContext*, Arg arg, Status*) {
@@ -838,37 +838,37 @@ struct Trunc {
}
};
-// Generate a kernel given an arithmetic functor
-template <template <typename... Args> class KernelGenerator, typename Op>
+// Generate a kernel given an arithmetic functor
+template <template <typename... Args> class KernelGenerator, typename Op>
ArrayKernelExec ArithmeticExecFromOp(detail::GetTypeId get_id) {
- switch (get_id.id) {
- case Type::INT8:
- return KernelGenerator<Int8Type, Int8Type, Op>::Exec;
- case Type::UINT8:
- return KernelGenerator<UInt8Type, UInt8Type, Op>::Exec;
- case Type::INT16:
- return KernelGenerator<Int16Type, Int16Type, Op>::Exec;
- case Type::UINT16:
- return KernelGenerator<UInt16Type, UInt16Type, Op>::Exec;
- case Type::INT32:
- return KernelGenerator<Int32Type, Int32Type, Op>::Exec;
- case Type::UINT32:
- return KernelGenerator<UInt32Type, UInt32Type, Op>::Exec;
- case Type::INT64:
- case Type::TIMESTAMP:
- return KernelGenerator<Int64Type, Int64Type, Op>::Exec;
- case Type::UINT64:
- return KernelGenerator<UInt64Type, UInt64Type, Op>::Exec;
- case Type::FLOAT:
- return KernelGenerator<FloatType, FloatType, Op>::Exec;
- case Type::DOUBLE:
- return KernelGenerator<DoubleType, DoubleType, Op>::Exec;
- default:
- DCHECK(false);
- return ExecFail;
- }
-}
-
+ switch (get_id.id) {
+ case Type::INT8:
+ return KernelGenerator<Int8Type, Int8Type, Op>::Exec;
+ case Type::UINT8:
+ return KernelGenerator<UInt8Type, UInt8Type, Op>::Exec;
+ case Type::INT16:
+ return KernelGenerator<Int16Type, Int16Type, Op>::Exec;
+ case Type::UINT16:
+ return KernelGenerator<UInt16Type, UInt16Type, Op>::Exec;
+ case Type::INT32:
+ return KernelGenerator<Int32Type, Int32Type, Op>::Exec;
+ case Type::UINT32:
+ return KernelGenerator<UInt32Type, UInt32Type, Op>::Exec;
+ case Type::INT64:
+ case Type::TIMESTAMP:
+ return KernelGenerator<Int64Type, Int64Type, Op>::Exec;
+ case Type::UINT64:
+ return KernelGenerator<UInt64Type, UInt64Type, Op>::Exec;
+ case Type::FLOAT:
+ return KernelGenerator<FloatType, FloatType, Op>::Exec;
+ case Type::DOUBLE:
+ return KernelGenerator<DoubleType, DoubleType, Op>::Exec;
+ default:
+ DCHECK(false);
+ return ExecFail;
+ }
+}
+
// Generate a kernel given a bitwise arithmetic functor. Assumes the
// functor treats all integer types of equal width identically
template <template <typename... Args> class KernelGenerator, typename Op>
@@ -1050,7 +1050,7 @@ Result<ValueDescr> ResolveDecimalDivisionOutput(KernelContext*,
});
}
-template <typename Op>
+template <typename Op>
void AddDecimalBinaryKernels(const std::string& name,
std::shared_ptr<ScalarFunction>* func) {
OutputType out_type(null());
@@ -1182,26 +1182,26 @@ template <typename Op>
std::shared_ptr<ScalarFunction> MakeArithmeticFunction(std::string name,
const FunctionDoc* doc) {
auto func = std::make_shared<ArithmeticFunction>(name, Arity::Binary(), doc);
- for (const auto& ty : NumericTypes()) {
+ for (const auto& ty : NumericTypes()) {
auto exec = ArithmeticExecFromOp<ScalarBinaryEqualTypes, Op>(ty);
- DCHECK_OK(func->AddKernel({ty, ty}, ty, exec));
- }
- return func;
-}
-
-// Like MakeArithmeticFunction, but for arithmetic ops that need to run
-// only on non-null output.
-template <typename Op>
+ DCHECK_OK(func->AddKernel({ty, ty}, ty, exec));
+ }
+ return func;
+}
+
+// Like MakeArithmeticFunction, but for arithmetic ops that need to run
+// only on non-null output.
+template <typename Op>
std::shared_ptr<ScalarFunction> MakeArithmeticFunctionNotNull(std::string name,
const FunctionDoc* doc) {
auto func = std::make_shared<ArithmeticFunction>(name, Arity::Binary(), doc);
- for (const auto& ty : NumericTypes()) {
+ for (const auto& ty : NumericTypes()) {
auto exec = ArithmeticExecFromOp<ScalarBinaryNotNullEqualTypes, Op>(ty);
- DCHECK_OK(func->AddKernel({ty, ty}, ty, exec));
- }
- return func;
-}
-
+ DCHECK_OK(func->AddKernel({ty, ty}, ty, exec));
+ }
+ return func;
+}
+
template <typename Op>
std::shared_ptr<ScalarFunction> MakeUnaryArithmeticFunction(std::string name,
const FunctionDoc* doc) {
@@ -1606,10 +1606,10 @@ const FunctionDoc trunc_doc{
("Calculate the nearest integer not greater in magnitude than to the "
"argument element-wise."),
{"x"}};
-} // namespace
-
-void RegisterScalarArithmetic(FunctionRegistry* registry) {
- // ----------------------------------------------------------------------
+} // namespace
+
+void RegisterScalarArithmetic(FunctionRegistry* registry) {
+ // ----------------------------------------------------------------------
auto absolute_value =
MakeUnaryArithmeticFunction<AbsoluteValue>("abs", &absolute_value_doc);
DCHECK_OK(registry->AddFunction(std::move(absolute_value)));
@@ -1622,54 +1622,54 @@ void RegisterScalarArithmetic(FunctionRegistry* registry) {
// ----------------------------------------------------------------------
auto add = MakeArithmeticFunction<Add>("add", &add_doc);
AddDecimalBinaryKernels<Add>("add", &add);
- DCHECK_OK(registry->AddFunction(std::move(add)));
-
- // ----------------------------------------------------------------------
+ DCHECK_OK(registry->AddFunction(std::move(add)));
+
+ // ----------------------------------------------------------------------
auto add_checked =
MakeArithmeticFunctionNotNull<AddChecked>("add_checked", &add_checked_doc);
AddDecimalBinaryKernels<AddChecked>("add_checked", &add_checked);
- DCHECK_OK(registry->AddFunction(std::move(add_checked)));
-
- // ----------------------------------------------------------------------
+ DCHECK_OK(registry->AddFunction(std::move(add_checked)));
+
+ // ----------------------------------------------------------------------
auto subtract = MakeArithmeticFunction<Subtract>("subtract", &sub_doc);
AddDecimalBinaryKernels<Subtract>("subtract", &subtract);
-
- // Add subtract(timestamp, timestamp) -> duration
- for (auto unit : AllTimeUnits()) {
- InputType in_type(match::TimestampTypeUnit(unit));
+
+ // Add subtract(timestamp, timestamp) -> duration
+ for (auto unit : AllTimeUnits()) {
+ InputType in_type(match::TimestampTypeUnit(unit));
auto exec = ArithmeticExecFromOp<ScalarBinaryEqualTypes, Subtract>(Type::TIMESTAMP);
- DCHECK_OK(subtract->AddKernel({in_type, in_type}, duration(unit), std::move(exec)));
- }
-
- DCHECK_OK(registry->AddFunction(std::move(subtract)));
-
- // ----------------------------------------------------------------------
+ DCHECK_OK(subtract->AddKernel({in_type, in_type}, duration(unit), std::move(exec)));
+ }
+
+ DCHECK_OK(registry->AddFunction(std::move(subtract)));
+
+ // ----------------------------------------------------------------------
auto subtract_checked = MakeArithmeticFunctionNotNull<SubtractChecked>(
"subtract_checked", &sub_checked_doc);
AddDecimalBinaryKernels<SubtractChecked>("subtract_checked", &subtract_checked);
- DCHECK_OK(registry->AddFunction(std::move(subtract_checked)));
-
- // ----------------------------------------------------------------------
+ DCHECK_OK(registry->AddFunction(std::move(subtract_checked)));
+
+ // ----------------------------------------------------------------------
auto multiply = MakeArithmeticFunction<Multiply>("multiply", &mul_doc);
AddDecimalBinaryKernels<Multiply>("multiply", &multiply);
- DCHECK_OK(registry->AddFunction(std::move(multiply)));
-
- // ----------------------------------------------------------------------
+ DCHECK_OK(registry->AddFunction(std::move(multiply)));
+
+ // ----------------------------------------------------------------------
auto multiply_checked = MakeArithmeticFunctionNotNull<MultiplyChecked>(
"multiply_checked", &mul_checked_doc);
AddDecimalBinaryKernels<MultiplyChecked>("multiply_checked", &multiply_checked);
- DCHECK_OK(registry->AddFunction(std::move(multiply_checked)));
-
- // ----------------------------------------------------------------------
+ DCHECK_OK(registry->AddFunction(std::move(multiply_checked)));
+
+ // ----------------------------------------------------------------------
auto divide = MakeArithmeticFunctionNotNull<Divide>("divide", &div_doc);
AddDecimalBinaryKernels<Divide>("divide", &divide);
- DCHECK_OK(registry->AddFunction(std::move(divide)));
-
- // ----------------------------------------------------------------------
+ DCHECK_OK(registry->AddFunction(std::move(divide)));
+
+ // ----------------------------------------------------------------------
auto divide_checked =
MakeArithmeticFunctionNotNull<DivideChecked>("divide_checked", &div_checked_doc);
AddDecimalBinaryKernels<DivideChecked>("divide_checked", &divide_checked);
- DCHECK_OK(registry->AddFunction(std::move(divide_checked)));
+ DCHECK_OK(registry->AddFunction(std::move(divide_checked)));
// ----------------------------------------------------------------------
auto negate = MakeUnaryArithmeticFunction<Negate>("negate", &negate_doc);
@@ -1816,8 +1816,8 @@ void RegisterScalarArithmetic(FunctionRegistry* registry) {
auto trunc = MakeUnaryArithmeticFunctionFloatingPoint<Trunc>("trunc", &trunc_doc);
DCHECK_OK(registry->AddFunction(std::move(trunc)));
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_boolean.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_boolean.cc
index 7a0e3654ed..63fddcd1fe 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_boolean.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_boolean.cc
@@ -1,61 +1,61 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include <array>
-
-#include "arrow/compute/kernels/common.h"
-#include "arrow/util/bit_util.h"
-#include "arrow/util/bitmap.h"
-#include "arrow/util/bitmap_ops.h"
-
-namespace arrow {
-
-using internal::Bitmap;
-
-namespace compute {
-
-namespace {
-
-template <typename ComputeWord>
-void ComputeKleene(ComputeWord&& compute_word, KernelContext* ctx, const ArrayData& left,
- const ArrayData& right, ArrayData* out) {
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include <array>
+
+#include "arrow/compute/kernels/common.h"
+#include "arrow/util/bit_util.h"
+#include "arrow/util/bitmap.h"
+#include "arrow/util/bitmap_ops.h"
+
+namespace arrow {
+
+using internal::Bitmap;
+
+namespace compute {
+
+namespace {
+
+template <typename ComputeWord>
+void ComputeKleene(ComputeWord&& compute_word, KernelContext* ctx, const ArrayData& left,
+ const ArrayData& right, ArrayData* out) {
DCHECK(left.null_count != 0 || right.null_count != 0)
<< "ComputeKleene is unnecessarily expensive for the non-null case";
-
+
Bitmap left_valid_bm{left.buffers[0], left.offset, left.length};
Bitmap left_data_bm{left.buffers[1], left.offset, left.length};
-
+
Bitmap right_valid_bm{right.buffers[0], right.offset, right.length};
Bitmap right_data_bm{right.buffers[1], right.offset, right.length};
-
+
std::array<Bitmap, 2> out_bms{Bitmap(out->buffers[0], out->offset, out->length),
Bitmap(out->buffers[1], out->offset, out->length)};
-
- auto apply = [&](uint64_t left_valid, uint64_t left_data, uint64_t right_valid,
+
+ auto apply = [&](uint64_t left_valid, uint64_t left_data, uint64_t right_valid,
uint64_t right_data, uint64_t* out_validity, uint64_t* out_data) {
- auto left_true = left_valid & left_data;
- auto left_false = left_valid & ~left_data;
-
- auto right_true = right_valid & right_data;
- auto right_false = right_valid & ~right_data;
-
+ auto left_true = left_valid & left_data;
+ auto left_false = left_valid & ~left_data;
+
+ auto right_true = right_valid & right_data;
+ auto right_false = right_valid & ~right_data;
+
compute_word(left_true, left_false, right_true, right_false, out_validity, out_data);
- };
-
+ };
+
if (right.null_count == 0) {
std::array<Bitmap, 3> in_bms{left_valid_bm, left_data_bm, right_data_bm};
Bitmap::VisitWordsAndWrite(
@@ -65,7 +65,7 @@ void ComputeKleene(ComputeWord&& compute_word, KernelContext* ctx, const ArrayDa
});
return;
}
-
+
if (left.null_count == 0) {
std::array<Bitmap, 3> in_bms{left_data_bm, right_valid_bm, right_data_bm};
Bitmap::VisitWordsAndWrite(
@@ -74,7 +74,7 @@ void ComputeKleene(ComputeWord&& compute_word, KernelContext* ctx, const ArrayDa
apply(~uint64_t(0), in[0], in[1], in[2], &(out->at(0)), &(out->at(1)));
});
return;
- }
+ }
DCHECK(left.null_count != 0 && right.null_count != 0);
std::array<Bitmap, 4> in_bms{left_valid_bm, left_data_bm, right_valid_bm,
@@ -84,8 +84,8 @@ void ComputeKleene(ComputeWord&& compute_word, KernelContext* ctx, const ArrayDa
[&](const std::array<uint64_t, 4>& in, std::array<uint64_t, 2>* out) {
apply(in[0], in[1], in[2], in[3], &(out->at(0)), &(out->at(1)));
});
-}
-
+}
+
inline BooleanScalar InvertScalar(const Scalar& in) {
return in.is_valid ? BooleanScalar(!checked_cast<const BooleanScalar&>(in).value)
: BooleanScalar();
@@ -121,13 +121,13 @@ struct AndOp : Commutative<AndOp> {
static Status Call(KernelContext* ctx, const Scalar& left, const Scalar& right,
Scalar* out) {
if (left.is_valid && right.is_valid) {
- checked_cast<BooleanScalar*>(out)->value =
+ checked_cast<BooleanScalar*>(out)->value =
checked_cast<const BooleanScalar&>(left).value &&
checked_cast<const BooleanScalar&>(right).value;
- }
+ }
return Status::OK();
- }
-
+ }
+
static Status Call(KernelContext* ctx, const ArrayData& left, const Scalar& right,
ArrayData* out) {
if (right.is_valid) {
@@ -136,17 +136,17 @@ struct AndOp : Commutative<AndOp> {
: GetBitmap(*out, 1).SetBitsTo(false);
}
return Status::OK();
- }
-
+ }
+
static Status Call(KernelContext* ctx, const ArrayData& left, const ArrayData& right,
ArrayData* out) {
- ::arrow::internal::BitmapAnd(left.buffers[1]->data(), left.offset,
- right.buffers[1]->data(), right.offset, right.length,
- out->offset, out->buffers[1]->mutable_data());
+ ::arrow::internal::BitmapAnd(left.buffers[1]->data(), left.offset,
+ right.buffers[1]->data(), right.offset, right.length,
+ out->offset, out->buffers[1]->mutable_data());
return Status::OK();
- }
-};
-
+ }
+};
+
struct KleeneAndOp : Commutative<KleeneAndOp> {
using Commutative<KleeneAndOp>::Call;
@@ -202,23 +202,23 @@ struct KleeneAndOp : Commutative<KleeneAndOp> {
static Status Call(KernelContext* ctx, const ArrayData& left, const ArrayData& right,
ArrayData* out) {
- if (left.GetNullCount() == 0 && right.GetNullCount() == 0) {
+ if (left.GetNullCount() == 0 && right.GetNullCount() == 0) {
out->null_count = 0;
// Kleene kernels have validity bitmap pre-allocated. Therefore, set it to 1
BitUtil::SetBitmap(out->buffers[0]->mutable_data(), out->offset, out->length);
return AndOp::Call(ctx, left, right, out);
- }
- auto compute_word = [](uint64_t left_true, uint64_t left_false, uint64_t right_true,
- uint64_t right_false, uint64_t* out_valid,
- uint64_t* out_data) {
- *out_data = left_true & right_true;
- *out_valid = left_false | right_false | (left_true & right_true);
- };
- ComputeKleene(compute_word, ctx, left, right, out);
+ }
+ auto compute_word = [](uint64_t left_true, uint64_t left_false, uint64_t right_true,
+ uint64_t right_false, uint64_t* out_valid,
+ uint64_t* out_data) {
+ *out_data = left_true & right_true;
+ *out_valid = left_false | right_false | (left_true & right_true);
+ };
+ ComputeKleene(compute_word, ctx, left, right, out);
return Status::OK();
- }
-};
-
+ }
+};
+
struct OrOp : Commutative<OrOp> {
using Commutative<OrOp>::Call;
@@ -244,13 +244,13 @@ struct OrOp : Commutative<OrOp> {
static Status Call(KernelContext* ctx, const ArrayData& left, const ArrayData& right,
ArrayData* out) {
- ::arrow::internal::BitmapOr(left.buffers[1]->data(), left.offset,
- right.buffers[1]->data(), right.offset, right.length,
- out->offset, out->buffers[1]->mutable_data());
+ ::arrow::internal::BitmapOr(left.buffers[1]->data(), left.offset,
+ right.buffers[1]->data(), right.offset, right.length,
+ out->offset, out->buffers[1]->mutable_data());
return Status::OK();
- }
-};
-
+ }
+};
+
struct KleeneOrOp : Commutative<KleeneOrOp> {
using Commutative<KleeneOrOp>::Call;
@@ -306,25 +306,25 @@ struct KleeneOrOp : Commutative<KleeneOrOp> {
static Status Call(KernelContext* ctx, const ArrayData& left, const ArrayData& right,
ArrayData* out) {
- if (left.GetNullCount() == 0 && right.GetNullCount() == 0) {
+ if (left.GetNullCount() == 0 && right.GetNullCount() == 0) {
out->null_count = 0;
// Kleene kernels have validity bitmap pre-allocated. Therefore, set it to 1
BitUtil::SetBitmap(out->buffers[0]->mutable_data(), out->offset, out->length);
return OrOp::Call(ctx, left, right, out);
- }
-
- static auto compute_word = [](uint64_t left_true, uint64_t left_false,
- uint64_t right_true, uint64_t right_false,
- uint64_t* out_valid, uint64_t* out_data) {
- *out_data = left_true | right_true;
- *out_valid = left_true | right_true | (left_false & right_false);
- };
-
+ }
+
+ static auto compute_word = [](uint64_t left_true, uint64_t left_false,
+ uint64_t right_true, uint64_t right_false,
+ uint64_t* out_valid, uint64_t* out_data) {
+ *out_data = left_true | right_true;
+ *out_valid = left_true | right_true | (left_false & right_false);
+ };
+
ComputeKleene(compute_word, ctx, left, right, out);
return Status::OK();
- }
-};
-
+ }
+};
+
struct XorOp : Commutative<XorOp> {
using Commutative<XorOp>::Call;
@@ -350,13 +350,13 @@ struct XorOp : Commutative<XorOp> {
static Status Call(KernelContext* ctx, const ArrayData& left, const ArrayData& right,
ArrayData* out) {
- ::arrow::internal::BitmapXor(left.buffers[1]->data(), left.offset,
- right.buffers[1]->data(), right.offset, right.length,
- out->offset, out->buffers[1]->mutable_data());
+ ::arrow::internal::BitmapXor(left.buffers[1]->data(), left.offset,
+ right.buffers[1]->data(), right.offset, right.length,
+ out->offset, out->buffers[1]->mutable_data());
return Status::OK();
- }
-};
-
+ }
+};
+
struct AndNotOp {
static Status Call(KernelContext* ctx, const Scalar& left, const Scalar& right,
Scalar* out) {
@@ -458,18 +458,18 @@ struct KleeneAndNotOp {
void MakeFunction(const std::string& name, int arity, ArrayKernelExec exec,
const FunctionDoc* doc, FunctionRegistry* registry,
- NullHandling::type null_handling = NullHandling::INTERSECTION) {
+ NullHandling::type null_handling = NullHandling::INTERSECTION) {
auto func = std::make_shared<ScalarFunction>(name, Arity(arity), doc);
-
- // Scalar arguments not yet supported
+
+ // Scalar arguments not yet supported
std::vector<InputType> in_types(arity, InputType(boolean()));
- ScalarKernel kernel(std::move(in_types), boolean(), exec);
- kernel.null_handling = null_handling;
-
- DCHECK_OK(func->AddKernel(kernel));
- DCHECK_OK(registry->AddFunction(std::move(func)));
-}
-
+ ScalarKernel kernel(std::move(in_types), boolean(), exec);
+ kernel.null_handling = null_handling;
+
+ DCHECK_OK(func->AddKernel(kernel));
+ DCHECK_OK(registry->AddFunction(std::move(func)));
+}
+
const FunctionDoc invert_doc{"Invert boolean values", "", {"values"}};
const FunctionDoc and_doc{
@@ -538,26 +538,26 @@ const FunctionDoc or_kleene_doc{
"For a different null behavior, see function \"and\"."),
{"x", "y"}};
-} // namespace
-
-namespace internal {
-
-void RegisterScalarBoolean(FunctionRegistry* registry) {
- // These functions can write into sliced output bitmaps
+} // namespace
+
+namespace internal {
+
+void RegisterScalarBoolean(FunctionRegistry* registry) {
+ // These functions can write into sliced output bitmaps
MakeFunction("invert", 1, applicator::SimpleUnary<InvertOp>, &invert_doc, registry);
MakeFunction("and", 2, applicator::SimpleBinary<AndOp>, &and_doc, registry);
MakeFunction("and_not", 2, applicator::SimpleBinary<AndNotOp>, &and_not_doc, registry);
MakeFunction("or", 2, applicator::SimpleBinary<OrOp>, &or_doc, registry);
MakeFunction("xor", 2, applicator::SimpleBinary<XorOp>, &xor_doc, registry);
-
+
MakeFunction("and_kleene", 2, applicator::SimpleBinary<KleeneAndOp>, &and_kleene_doc,
registry, NullHandling::COMPUTED_PREALLOCATE);
MakeFunction("and_not_kleene", 2, applicator::SimpleBinary<KleeneAndNotOp>,
&and_not_kleene_doc, registry, NullHandling::COMPUTED_PREALLOCATE);
MakeFunction("or_kleene", 2, applicator::SimpleBinary<KleeneOrOp>, &or_kleene_doc,
registry, NullHandling::COMPUTED_PREALLOCATE);
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_boolean.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_boolean.cc
index dad94c1ace..c5fd7b78b1 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_boolean.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_boolean.cc
@@ -1,70 +1,70 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-// Cast types to boolean
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// Cast types to boolean
+
#include "arrow/array/builder_primitive.h"
-#include "arrow/compute/kernels/common.h"
-#include "arrow/compute/kernels/scalar_cast_internal.h"
-#include "arrow/util/value_parsing.h"
-
-namespace arrow {
-
-using internal::ParseValue;
-
-namespace compute {
-namespace internal {
-
-struct IsNonZero {
- template <typename OutValue, typename Arg0Value>
+#include "arrow/compute/kernels/common.h"
+#include "arrow/compute/kernels/scalar_cast_internal.h"
+#include "arrow/util/value_parsing.h"
+
+namespace arrow {
+
+using internal::ParseValue;
+
+namespace compute {
+namespace internal {
+
+struct IsNonZero {
+ template <typename OutValue, typename Arg0Value>
static OutValue Call(KernelContext*, Arg0Value val, Status*) {
- return val != 0;
- }
-};
-
-struct ParseBooleanString {
- template <typename OutValue, typename Arg0Value>
+ return val != 0;
+ }
+};
+
+struct ParseBooleanString {
+ template <typename OutValue, typename Arg0Value>
static OutValue Call(KernelContext*, Arg0Value val, Status* st) {
- bool result = false;
- if (ARROW_PREDICT_FALSE(!ParseValue<BooleanType>(val.data(), val.size(), &result))) {
+ bool result = false;
+ if (ARROW_PREDICT_FALSE(!ParseValue<BooleanType>(val.data(), val.size(), &result))) {
*st = Status::Invalid("Failed to parse value: ", val);
- }
- return result;
- }
-};
-
-std::vector<std::shared_ptr<CastFunction>> GetBooleanCasts() {
- auto func = std::make_shared<CastFunction>("cast_boolean", Type::BOOL);
- AddCommonCasts(Type::BOOL, boolean(), func.get());
+ }
+ return result;
+ }
+};
+
+std::vector<std::shared_ptr<CastFunction>> GetBooleanCasts() {
+ auto func = std::make_shared<CastFunction>("cast_boolean", Type::BOOL);
+ AddCommonCasts(Type::BOOL, boolean(), func.get());
AddZeroCopyCast(Type::BOOL, boolean(), boolean(), func.get());
-
- for (const auto& ty : NumericTypes()) {
- ArrayKernelExec exec =
- GenerateNumeric<applicator::ScalarUnary, BooleanType, IsNonZero>(*ty);
- DCHECK_OK(func->AddKernel(ty->id(), {ty}, boolean(), exec));
- }
- for (const auto& ty : BaseBinaryTypes()) {
- ArrayKernelExec exec = GenerateVarBinaryBase<applicator::ScalarUnaryNotNull,
- BooleanType, ParseBooleanString>(*ty);
- DCHECK_OK(func->AddKernel(ty->id(), {ty}, boolean(), exec));
- }
- return {func};
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+
+ for (const auto& ty : NumericTypes()) {
+ ArrayKernelExec exec =
+ GenerateNumeric<applicator::ScalarUnary, BooleanType, IsNonZero>(*ty);
+ DCHECK_OK(func->AddKernel(ty->id(), {ty}, boolean(), exec));
+ }
+ for (const auto& ty : BaseBinaryTypes()) {
+ ArrayKernelExec exec = GenerateVarBinaryBase<applicator::ScalarUnaryNotNull,
+ BooleanType, ParseBooleanString>(*ty);
+ DCHECK_OK(func->AddKernel(ty->id(), {ty}, boolean(), exec));
+ }
+ return {func};
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_internal.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_internal.cc
index 198c82bd97..e25523a3c1 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_internal.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_internal.cc
@@ -1,175 +1,175 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/compute/kernels/scalar_cast_internal.h"
-#include "arrow/compute/cast_internal.h"
-#include "arrow/compute/kernels/common.h"
-#include "arrow/extension_type.h"
-
-namespace arrow {
-
-using internal::PrimitiveScalarBase;
-
-namespace compute {
-namespace internal {
-
-// ----------------------------------------------------------------------
-
-template <typename OutT, typename InT>
-ARROW_DISABLE_UBSAN("float-cast-overflow")
-void DoStaticCast(const void* in_data, int64_t in_offset, int64_t length,
- int64_t out_offset, void* out_data) {
- auto in = reinterpret_cast<const InT*>(in_data) + in_offset;
- auto out = reinterpret_cast<OutT*>(out_data) + out_offset;
- for (int64_t i = 0; i < length; ++i) {
- *out++ = static_cast<OutT>(*in++);
- }
-}
-
-using StaticCastFunc = std::function<void(const void*, int64_t, int64_t, int64_t, void*)>;
-
-template <typename OutType, typename InType, typename Enable = void>
-struct CastPrimitive {
- static void Exec(const Datum& input, Datum* out) {
- using OutT = typename OutType::c_type;
- using InT = typename InType::c_type;
-
- StaticCastFunc caster = DoStaticCast<OutT, InT>;
- if (input.kind() == Datum::ARRAY) {
- const ArrayData& arr = *input.array();
- ArrayData* out_arr = out->mutable_array();
- caster(arr.buffers[1]->data(), arr.offset, arr.length, out_arr->offset,
- out_arr->buffers[1]->mutable_data());
- } else {
- // Scalar path. Use the caster with length 1 to place the casted value into
- // the output
- const auto& in_scalar = input.scalar_as<PrimitiveScalarBase>();
- auto out_scalar = checked_cast<PrimitiveScalarBase*>(out->scalar().get());
- caster(in_scalar.data(), /*in_offset=*/0, /*length=*/1, /*out_offset=*/0,
- out_scalar->mutable_data());
- }
- }
-};
-
-template <typename OutType, typename InType>
-struct CastPrimitive<OutType, InType, enable_if_t<std::is_same<OutType, InType>::value>> {
- // memcpy output
- static void Exec(const Datum& input, Datum* out) {
- using T = typename InType::c_type;
-
- if (input.kind() == Datum::ARRAY) {
- const ArrayData& arr = *input.array();
- ArrayData* out_arr = out->mutable_array();
- std::memcpy(
- reinterpret_cast<T*>(out_arr->buffers[1]->mutable_data()) + out_arr->offset,
- reinterpret_cast<const T*>(arr.buffers[1]->data()) + arr.offset,
- arr.length * sizeof(T));
- } else {
- // Scalar path. Use the caster with length 1 to place the casted value into
- // the output
- const auto& in_scalar = input.scalar_as<PrimitiveScalarBase>();
- auto out_scalar = checked_cast<PrimitiveScalarBase*>(out->scalar().get());
- *reinterpret_cast<T*>(out_scalar->mutable_data()) =
- *reinterpret_cast<const T*>(in_scalar.data());
- }
- }
-};
-
-template <typename InType>
-void CastNumberImpl(Type::type out_type, const Datum& input, Datum* out) {
- switch (out_type) {
- case Type::INT8:
- return CastPrimitive<Int8Type, InType>::Exec(input, out);
- case Type::INT16:
- return CastPrimitive<Int16Type, InType>::Exec(input, out);
- case Type::INT32:
- return CastPrimitive<Int32Type, InType>::Exec(input, out);
- case Type::INT64:
- return CastPrimitive<Int64Type, InType>::Exec(input, out);
- case Type::UINT8:
- return CastPrimitive<UInt8Type, InType>::Exec(input, out);
- case Type::UINT16:
- return CastPrimitive<UInt16Type, InType>::Exec(input, out);
- case Type::UINT32:
- return CastPrimitive<UInt32Type, InType>::Exec(input, out);
- case Type::UINT64:
- return CastPrimitive<UInt64Type, InType>::Exec(input, out);
- case Type::FLOAT:
- return CastPrimitive<FloatType, InType>::Exec(input, out);
- case Type::DOUBLE:
- return CastPrimitive<DoubleType, InType>::Exec(input, out);
- default:
- break;
- }
-}
-
-void CastNumberToNumberUnsafe(Type::type in_type, Type::type out_type, const Datum& input,
- Datum* out) {
- switch (in_type) {
- case Type::INT8:
- return CastNumberImpl<Int8Type>(out_type, input, out);
- case Type::INT16:
- return CastNumberImpl<Int16Type>(out_type, input, out);
- case Type::INT32:
- return CastNumberImpl<Int32Type>(out_type, input, out);
- case Type::INT64:
- return CastNumberImpl<Int64Type>(out_type, input, out);
- case Type::UINT8:
- return CastNumberImpl<UInt8Type>(out_type, input, out);
- case Type::UINT16:
- return CastNumberImpl<UInt16Type>(out_type, input, out);
- case Type::UINT32:
- return CastNumberImpl<UInt32Type>(out_type, input, out);
- case Type::UINT64:
- return CastNumberImpl<UInt64Type>(out_type, input, out);
- case Type::FLOAT:
- return CastNumberImpl<FloatType>(out_type, input, out);
- case Type::DOUBLE:
- return CastNumberImpl<DoubleType>(out_type, input, out);
- default:
- DCHECK(false);
- break;
- }
-}
-
-// ----------------------------------------------------------------------
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/compute/kernels/scalar_cast_internal.h"
+#include "arrow/compute/cast_internal.h"
+#include "arrow/compute/kernels/common.h"
+#include "arrow/extension_type.h"
+
+namespace arrow {
+
+using internal::PrimitiveScalarBase;
+
+namespace compute {
+namespace internal {
+
+// ----------------------------------------------------------------------
+
+template <typename OutT, typename InT>
+ARROW_DISABLE_UBSAN("float-cast-overflow")
+void DoStaticCast(const void* in_data, int64_t in_offset, int64_t length,
+ int64_t out_offset, void* out_data) {
+ auto in = reinterpret_cast<const InT*>(in_data) + in_offset;
+ auto out = reinterpret_cast<OutT*>(out_data) + out_offset;
+ for (int64_t i = 0; i < length; ++i) {
+ *out++ = static_cast<OutT>(*in++);
+ }
+}
+
+using StaticCastFunc = std::function<void(const void*, int64_t, int64_t, int64_t, void*)>;
+
+template <typename OutType, typename InType, typename Enable = void>
+struct CastPrimitive {
+ static void Exec(const Datum& input, Datum* out) {
+ using OutT = typename OutType::c_type;
+ using InT = typename InType::c_type;
+
+ StaticCastFunc caster = DoStaticCast<OutT, InT>;
+ if (input.kind() == Datum::ARRAY) {
+ const ArrayData& arr = *input.array();
+ ArrayData* out_arr = out->mutable_array();
+ caster(arr.buffers[1]->data(), arr.offset, arr.length, out_arr->offset,
+ out_arr->buffers[1]->mutable_data());
+ } else {
+ // Scalar path. Use the caster with length 1 to place the casted value into
+ // the output
+ const auto& in_scalar = input.scalar_as<PrimitiveScalarBase>();
+ auto out_scalar = checked_cast<PrimitiveScalarBase*>(out->scalar().get());
+ caster(in_scalar.data(), /*in_offset=*/0, /*length=*/1, /*out_offset=*/0,
+ out_scalar->mutable_data());
+ }
+ }
+};
+
+template <typename OutType, typename InType>
+struct CastPrimitive<OutType, InType, enable_if_t<std::is_same<OutType, InType>::value>> {
+ // memcpy output
+ static void Exec(const Datum& input, Datum* out) {
+ using T = typename InType::c_type;
+
+ if (input.kind() == Datum::ARRAY) {
+ const ArrayData& arr = *input.array();
+ ArrayData* out_arr = out->mutable_array();
+ std::memcpy(
+ reinterpret_cast<T*>(out_arr->buffers[1]->mutable_data()) + out_arr->offset,
+ reinterpret_cast<const T*>(arr.buffers[1]->data()) + arr.offset,
+ arr.length * sizeof(T));
+ } else {
+ // Scalar path. Use the caster with length 1 to place the casted value into
+ // the output
+ const auto& in_scalar = input.scalar_as<PrimitiveScalarBase>();
+ auto out_scalar = checked_cast<PrimitiveScalarBase*>(out->scalar().get());
+ *reinterpret_cast<T*>(out_scalar->mutable_data()) =
+ *reinterpret_cast<const T*>(in_scalar.data());
+ }
+ }
+};
+
+template <typename InType>
+void CastNumberImpl(Type::type out_type, const Datum& input, Datum* out) {
+ switch (out_type) {
+ case Type::INT8:
+ return CastPrimitive<Int8Type, InType>::Exec(input, out);
+ case Type::INT16:
+ return CastPrimitive<Int16Type, InType>::Exec(input, out);
+ case Type::INT32:
+ return CastPrimitive<Int32Type, InType>::Exec(input, out);
+ case Type::INT64:
+ return CastPrimitive<Int64Type, InType>::Exec(input, out);
+ case Type::UINT8:
+ return CastPrimitive<UInt8Type, InType>::Exec(input, out);
+ case Type::UINT16:
+ return CastPrimitive<UInt16Type, InType>::Exec(input, out);
+ case Type::UINT32:
+ return CastPrimitive<UInt32Type, InType>::Exec(input, out);
+ case Type::UINT64:
+ return CastPrimitive<UInt64Type, InType>::Exec(input, out);
+ case Type::FLOAT:
+ return CastPrimitive<FloatType, InType>::Exec(input, out);
+ case Type::DOUBLE:
+ return CastPrimitive<DoubleType, InType>::Exec(input, out);
+ default:
+ break;
+ }
+}
+
+void CastNumberToNumberUnsafe(Type::type in_type, Type::type out_type, const Datum& input,
+ Datum* out) {
+ switch (in_type) {
+ case Type::INT8:
+ return CastNumberImpl<Int8Type>(out_type, input, out);
+ case Type::INT16:
+ return CastNumberImpl<Int16Type>(out_type, input, out);
+ case Type::INT32:
+ return CastNumberImpl<Int32Type>(out_type, input, out);
+ case Type::INT64:
+ return CastNumberImpl<Int64Type>(out_type, input, out);
+ case Type::UINT8:
+ return CastNumberImpl<UInt8Type>(out_type, input, out);
+ case Type::UINT16:
+ return CastNumberImpl<UInt16Type>(out_type, input, out);
+ case Type::UINT32:
+ return CastNumberImpl<UInt32Type>(out_type, input, out);
+ case Type::UINT64:
+ return CastNumberImpl<UInt64Type>(out_type, input, out);
+ case Type::FLOAT:
+ return CastNumberImpl<FloatType>(out_type, input, out);
+ case Type::DOUBLE:
+ return CastNumberImpl<DoubleType>(out_type, input, out);
+ default:
+ DCHECK(false);
+ break;
+ }
+}
+
+// ----------------------------------------------------------------------
+
Status UnpackDictionary(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
DCHECK(out->is_array());
- DictionaryArray dict_arr(batch[0].array());
- const CastOptions& options = checked_cast<const CastState&>(*ctx->state()).options;
-
- const auto& dict_type = *dict_arr.dictionary()->type();
+ DictionaryArray dict_arr(batch[0].array());
+ const CastOptions& options = checked_cast<const CastState&>(*ctx->state()).options;
+
+ const auto& dict_type = *dict_arr.dictionary()->type();
if (!dict_type.Equals(options.to_type) && !CanCast(dict_type, *options.to_type)) {
return Status::Invalid("Cast type ", options.to_type->ToString(),
" incompatible with dictionary type ", dict_type.ToString());
- }
-
+ }
+
ARROW_ASSIGN_OR_RAISE(*out,
Take(Datum(dict_arr.dictionary()), Datum(dict_arr.indices()),
TakeOptions::Defaults(), ctx->exec_context()));
if (!dict_type.Equals(options.to_type)) {
ARROW_ASSIGN_OR_RAISE(*out, Cast(*out, options));
- }
+ }
return Status::OK();
-}
-
+}
+
Status OutputAllNull(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
if (out->is_scalar()) {
out->scalar()->is_valid = false;
@@ -179,23 +179,23 @@ Status OutputAllNull(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
output->null_count = batch.length;
}
return Status::OK();
-}
-
+}
+
Status CastFromExtension(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- const CastOptions& options = checked_cast<const CastState*>(ctx->state())->options;
-
- const DataType& in_type = *batch[0].type();
- const auto storage_type = checked_cast<const ExtensionType&>(in_type).storage_type();
-
- ExtensionArray extension(batch[0].array());
-
- Datum casted_storage;
+ const CastOptions& options = checked_cast<const CastState*>(ctx->state())->options;
+
+ const DataType& in_type = *batch[0].type();
+ const auto storage_type = checked_cast<const ExtensionType&>(in_type).storage_type();
+
+ ExtensionArray extension(batch[0].array());
+
+ Datum casted_storage;
RETURN_NOT_OK(Cast(*extension.storage(), out->type(), options, ctx->exec_context())
.Value(&casted_storage));
- out->value = casted_storage.array();
+ out->value = casted_storage.array();
return Status::OK();
-}
-
+}
+
Status CastFromNull(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
if (!batch[0].is_scalar()) {
ArrayData* output = out->mutable_array();
@@ -204,25 +204,25 @@ Status CastFromNull(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
out->value = nulls->data();
}
return Status::OK();
-}
-
-Result<ValueDescr> ResolveOutputFromOptions(KernelContext* ctx,
- const std::vector<ValueDescr>& args) {
- const CastOptions& options = checked_cast<const CastState&>(*ctx->state()).options;
- return ValueDescr(options.to_type, args[0].shape);
-}
-
-/// You will see some of kernels with
-///
-/// kOutputTargetType
-///
-/// for their output type resolution. This is somewhat of an eyesore but the
-/// easiest initial way to get the requested cast type including the TimeUnit
-/// to the kernel (which is needed to compute the output) was through
-/// CastOptions
-
-OutputType kOutputTargetType(ResolveOutputFromOptions);
-
+}
+
+Result<ValueDescr> ResolveOutputFromOptions(KernelContext* ctx,
+ const std::vector<ValueDescr>& args) {
+ const CastOptions& options = checked_cast<const CastState&>(*ctx->state()).options;
+ return ValueDescr(options.to_type, args[0].shape);
+}
+
+/// You will see some of kernels with
+///
+/// kOutputTargetType
+///
+/// for their output type resolution. This is somewhat of an eyesore but the
+/// easiest initial way to get the requested cast type including the TimeUnit
+/// to the kernel (which is needed to compute the output) was through
+/// CastOptions
+
+OutputType kOutputTargetType(ResolveOutputFromOptions);
+
Status ZeroCopyCastExec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
DCHECK_EQ(batch[0].kind(), Datum::ARRAY);
// Make a copy of the buffers into a destination array without carrying
@@ -235,51 +235,51 @@ Status ZeroCopyCastExec(KernelContext* ctx, const ExecBatch& batch, Datum* out)
output->offset = input.offset;
output->child_data = input.child_data;
return Status::OK();
-}
-
-void AddZeroCopyCast(Type::type in_type_id, InputType in_type, OutputType out_type,
- CastFunction* func) {
- auto sig = KernelSignature::Make({in_type}, out_type);
- ScalarKernel kernel;
+}
+
+void AddZeroCopyCast(Type::type in_type_id, InputType in_type, OutputType out_type,
+ CastFunction* func) {
+ auto sig = KernelSignature::Make({in_type}, out_type);
+ ScalarKernel kernel;
kernel.exec = TrivialScalarUnaryAsArraysExec(ZeroCopyCastExec);
- kernel.signature = sig;
- kernel.null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
- kernel.mem_allocation = MemAllocation::NO_PREALLOCATE;
- DCHECK_OK(func->AddKernel(in_type_id, std::move(kernel)));
-}
-
-static bool CanCastFromDictionary(Type::type type_id) {
- return (is_primitive(type_id) || is_base_binary_like(type_id) ||
- is_fixed_size_binary(type_id));
-}
-
-void AddCommonCasts(Type::type out_type_id, OutputType out_ty, CastFunction* func) {
- // From null to this type
+ kernel.signature = sig;
+ kernel.null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
+ kernel.mem_allocation = MemAllocation::NO_PREALLOCATE;
+ DCHECK_OK(func->AddKernel(in_type_id, std::move(kernel)));
+}
+
+static bool CanCastFromDictionary(Type::type type_id) {
+ return (is_primitive(type_id) || is_base_binary_like(type_id) ||
+ is_fixed_size_binary(type_id));
+}
+
+void AddCommonCasts(Type::type out_type_id, OutputType out_ty, CastFunction* func) {
+ // From null to this type
ScalarKernel kernel;
kernel.exec = CastFromNull;
kernel.signature = KernelSignature::Make({null()}, out_ty);
kernel.null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
kernel.mem_allocation = MemAllocation::NO_PREALLOCATE;
DCHECK_OK(func->AddKernel(Type::NA, std::move(kernel)));
-
- // From dictionary to this type
- if (CanCastFromDictionary(out_type_id)) {
- // Dictionary unpacking not implemented for boolean or nested types.
- //
- // XXX: Uses Take and does its own memory allocation for the moment. We can
- // fix this later.
+
+ // From dictionary to this type
+ if (CanCastFromDictionary(out_type_id)) {
+ // Dictionary unpacking not implemented for boolean or nested types.
+ //
+ // XXX: Uses Take and does its own memory allocation for the moment. We can
+ // fix this later.
DCHECK_OK(func->AddKernel(Type::DICTIONARY, {InputType(Type::DICTIONARY)}, out_ty,
TrivialScalarUnaryAsArraysExec(UnpackDictionary),
NullHandling::COMPUTED_NO_PREALLOCATE,
MemAllocation::NO_PREALLOCATE));
- }
-
- // From extension type to this type
- DCHECK_OK(func->AddKernel(Type::EXTENSION, {InputType::Array(Type::EXTENSION)}, out_ty,
- CastFromExtension, NullHandling::COMPUTED_NO_PREALLOCATE,
- MemAllocation::NO_PREALLOCATE));
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+ }
+
+ // From extension type to this type
+ DCHECK_OK(func->AddKernel(Type::EXTENSION, {InputType::Array(Type::EXTENSION)}, out_ty,
+ CastFromExtension, NullHandling::COMPUTED_NO_PREALLOCATE,
+ MemAllocation::NO_PREALLOCATE));
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_internal.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_internal.h
index 2419d898a6..12e3605695 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_internal.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_internal.h
@@ -1,88 +1,88 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include "arrow/compute/api_vector.h"
-#include "arrow/compute/cast.h" // IWYU pragma: export
-#include "arrow/compute/cast_internal.h" // IWYU pragma: export
-#include "arrow/compute/kernels/common.h"
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include "arrow/compute/api_vector.h"
+#include "arrow/compute/cast.h" // IWYU pragma: export
+#include "arrow/compute/cast_internal.h" // IWYU pragma: export
+#include "arrow/compute/kernels/common.h"
#include "arrow/compute/kernels/util_internal.h"
-
-namespace arrow {
-
-using internal::checked_cast;
-
-namespace compute {
-namespace internal {
-
-template <typename OutType, typename InType, typename Enable = void>
-struct CastFunctor {};
-
-// No-op functor for identity casts
-template <typename O, typename I>
-struct CastFunctor<
- O, I, enable_if_t<std::is_same<O, I>::value && is_parameter_free_type<I>::value>> {
+
+namespace arrow {
+
+using internal::checked_cast;
+
+namespace compute {
+namespace internal {
+
+template <typename OutType, typename InType, typename Enable = void>
+struct CastFunctor {};
+
+// No-op functor for identity casts
+template <typename O, typename I>
+struct CastFunctor<
+ O, I, enable_if_t<std::is_same<O, I>::value && is_parameter_free_type<I>::value>> {
static Status Exec(KernelContext*, const ExecBatch&, Datum*) { return Status::OK(); }
-};
-
+};
+
Status CastFromExtension(KernelContext* ctx, const ExecBatch& batch, Datum* out);
-
-// Utility for numeric casts
-void CastNumberToNumberUnsafe(Type::type in_type, Type::type out_type, const Datum& input,
- Datum* out);
-
-// ----------------------------------------------------------------------
-// Dictionary to other things
-
+
+// Utility for numeric casts
+void CastNumberToNumberUnsafe(Type::type in_type, Type::type out_type, const Datum& input,
+ Datum* out);
+
+// ----------------------------------------------------------------------
+// Dictionary to other things
+
Status UnpackDictionary(KernelContext* ctx, const ExecBatch& batch, Datum* out);
-
+
Status OutputAllNull(KernelContext* ctx, const ExecBatch& batch, Datum* out);
-
+
Status CastFromNull(KernelContext* ctx, const ExecBatch& batch, Datum* out);
-
+
// Adds a cast function where CastFunctor is specialized and the input and output
// types are parameter free (have a type_singleton). Scalar inputs are handled by
// wrapping with TrivialScalarUnaryAsArraysExec.
-template <typename InType, typename OutType>
-void AddSimpleCast(InputType in_ty, OutputType out_ty, CastFunction* func) {
+template <typename InType, typename OutType>
+void AddSimpleCast(InputType in_ty, OutputType out_ty, CastFunction* func) {
DCHECK_OK(func->AddKernel(
InType::type_id, {in_ty}, out_ty,
TrivialScalarUnaryAsArraysExec(CastFunctor<OutType, InType>::Exec)));
-}
-
+}
+
Status ZeroCopyCastExec(KernelContext* ctx, const ExecBatch& batch, Datum* out);
-
-void AddZeroCopyCast(Type::type in_type_id, InputType in_type, OutputType out_type,
- CastFunction* func);
-
-// OutputType::Resolver that returns a descr with the shape of the input
-// argument and the type from CastOptions
-Result<ValueDescr> ResolveOutputFromOptions(KernelContext* ctx,
- const std::vector<ValueDescr>& args);
-
-ARROW_EXPORT extern OutputType kOutputTargetType;
-
-// Add generic casts to out_ty from:
-// - the null type
-// - dictionary with out_ty as given value type
-// - extension types with a compatible storage type
-void AddCommonCasts(Type::type out_type_id, OutputType out_ty, CastFunction* func);
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+
+void AddZeroCopyCast(Type::type in_type_id, InputType in_type, OutputType out_type,
+ CastFunction* func);
+
+// OutputType::Resolver that returns a descr with the shape of the input
+// argument and the type from CastOptions
+Result<ValueDescr> ResolveOutputFromOptions(KernelContext* ctx,
+ const std::vector<ValueDescr>& args);
+
+ARROW_EXPORT extern OutputType kOutputTargetType;
+
+// Add generic casts to out_ty from:
+// - the null type
+// - dictionary with out_ty as given value type
+// - extension types with a compatible storage type
+void AddCommonCasts(Type::type out_type_id, OutputType out_ty, CastFunction* func);
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_nested.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_nested.cc
index ec92dbb5d6..8b8fdf094a 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_nested.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_nested.cc
@@ -1,46 +1,46 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-// Implementation of casting to (or between) list types
-
-#include <utility>
-#include <vector>
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// Implementation of casting to (or between) list types
+
+#include <utility>
+#include <vector>
+
#include "arrow/array/builder_nested.h"
#include "arrow/compute/api_scalar.h"
-#include "arrow/compute/cast.h"
-#include "arrow/compute/kernels/common.h"
-#include "arrow/compute/kernels/scalar_cast_internal.h"
+#include "arrow/compute/cast.h"
+#include "arrow/compute/kernels/common.h"
+#include "arrow/compute/kernels/scalar_cast_internal.h"
#include "arrow/util/bitmap_ops.h"
-
-namespace arrow {
+
+namespace arrow {
using internal::CopyBitmap;
-namespace compute {
-namespace internal {
-
-template <typename Type>
+namespace compute {
+namespace internal {
+
+template <typename Type>
Status CastListExec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
using offset_type = typename Type::offset_type;
using ScalarType = typename TypeTraits<Type>::ScalarType;
-
+
const CastOptions& options = CastState::Get(ctx);
-
+
auto child_type = checked_cast<const Type&>(*out->type()).value_type();
if (out->kind() == Datum::SCALAR) {
@@ -55,11 +55,11 @@ Status CastListExec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
out_scalar->is_valid = true;
}
return Status::OK();
- }
-
+ }
+
const ArrayData& in_array = *batch[0].array();
ArrayData* out_array = out->mutable_array();
-
+
// Copy from parent
out_array->buffers = in_array.buffers;
Datum values = in_array.child_data[0];
@@ -88,46 +88,46 @@ Status CastListExec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
DCHECK_EQ(Datum::ARRAY, cast_values.kind());
out_array->child_data.push_back(cast_values.array());
return Status::OK();
-}
-
-template <typename Type>
-void AddListCast(CastFunction* func) {
- ScalarKernel kernel;
- kernel.exec = CastListExec<Type>;
- kernel.signature = KernelSignature::Make({InputType(Type::type_id)}, kOutputTargetType);
- kernel.null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
- DCHECK_OK(func->AddKernel(Type::type_id, std::move(kernel)));
-}
-
-std::vector<std::shared_ptr<CastFunction>> GetNestedCasts() {
- // We use the list<T> from the CastOptions when resolving the output type
-
- auto cast_list = std::make_shared<CastFunction>("cast_list", Type::LIST);
- AddCommonCasts(Type::LIST, kOutputTargetType, cast_list.get());
- AddListCast<ListType>(cast_list.get());
-
- auto cast_large_list =
- std::make_shared<CastFunction>("cast_large_list", Type::LARGE_LIST);
- AddCommonCasts(Type::LARGE_LIST, kOutputTargetType, cast_large_list.get());
- AddListCast<LargeListType>(cast_large_list.get());
-
- // FSL is a bit incomplete at the moment
- auto cast_fsl =
- std::make_shared<CastFunction>("cast_fixed_size_list", Type::FIXED_SIZE_LIST);
- AddCommonCasts(Type::FIXED_SIZE_LIST, kOutputTargetType, cast_fsl.get());
-
- // So is struct
- auto cast_struct = std::make_shared<CastFunction>("cast_struct", Type::STRUCT);
- AddCommonCasts(Type::STRUCT, kOutputTargetType, cast_struct.get());
-
+}
+
+template <typename Type>
+void AddListCast(CastFunction* func) {
+ ScalarKernel kernel;
+ kernel.exec = CastListExec<Type>;
+ kernel.signature = KernelSignature::Make({InputType(Type::type_id)}, kOutputTargetType);
+ kernel.null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
+ DCHECK_OK(func->AddKernel(Type::type_id, std::move(kernel)));
+}
+
+std::vector<std::shared_ptr<CastFunction>> GetNestedCasts() {
+ // We use the list<T> from the CastOptions when resolving the output type
+
+ auto cast_list = std::make_shared<CastFunction>("cast_list", Type::LIST);
+ AddCommonCasts(Type::LIST, kOutputTargetType, cast_list.get());
+ AddListCast<ListType>(cast_list.get());
+
+ auto cast_large_list =
+ std::make_shared<CastFunction>("cast_large_list", Type::LARGE_LIST);
+ AddCommonCasts(Type::LARGE_LIST, kOutputTargetType, cast_large_list.get());
+ AddListCast<LargeListType>(cast_large_list.get());
+
+ // FSL is a bit incomplete at the moment
+ auto cast_fsl =
+ std::make_shared<CastFunction>("cast_fixed_size_list", Type::FIXED_SIZE_LIST);
+ AddCommonCasts(Type::FIXED_SIZE_LIST, kOutputTargetType, cast_fsl.get());
+
+ // So is struct
+ auto cast_struct = std::make_shared<CastFunction>("cast_struct", Type::STRUCT);
+ AddCommonCasts(Type::STRUCT, kOutputTargetType, cast_struct.get());
+
// So is dictionary
auto cast_dictionary =
std::make_shared<CastFunction>("cast_dictionary", Type::DICTIONARY);
AddCommonCasts(Type::DICTIONARY, kOutputTargetType, cast_dictionary.get());
return {cast_list, cast_large_list, cast_fsl, cast_struct, cast_dictionary};
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_numeric.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_numeric.cc
index cc7b533f26..ae9a04e8e9 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_numeric.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_numeric.cc
@@ -1,399 +1,399 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-// Implementation of casting to integer, floating point, or decimal types
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// Implementation of casting to integer, floating point, or decimal types
+
#include "arrow/array/builder_primitive.h"
-#include "arrow/compute/kernels/common.h"
-#include "arrow/compute/kernels/scalar_cast_internal.h"
+#include "arrow/compute/kernels/common.h"
+#include "arrow/compute/kernels/scalar_cast_internal.h"
#include "arrow/compute/kernels/util_internal.h"
-#include "arrow/util/bit_block_counter.h"
-#include "arrow/util/int_util.h"
-#include "arrow/util/value_parsing.h"
-
-namespace arrow {
-
-using internal::BitBlockCount;
-using internal::CheckIntegersInRange;
-using internal::IntegersCanFit;
-using internal::OptionalBitBlockCounter;
-using internal::ParseValue;
-
-namespace compute {
-namespace internal {
-
+#include "arrow/util/bit_block_counter.h"
+#include "arrow/util/int_util.h"
+#include "arrow/util/value_parsing.h"
+
+namespace arrow {
+
+using internal::BitBlockCount;
+using internal::CheckIntegersInRange;
+using internal::IntegersCanFit;
+using internal::OptionalBitBlockCounter;
+using internal::ParseValue;
+
+namespace compute {
+namespace internal {
+
Status CastIntegerToInteger(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- const auto& options = checked_cast<const CastState*>(ctx->state())->options;
- if (!options.allow_int_overflow) {
+ const auto& options = checked_cast<const CastState*>(ctx->state())->options;
+ if (!options.allow_int_overflow) {
RETURN_NOT_OK(IntegersCanFit(batch[0], *out->type()));
- }
- CastNumberToNumberUnsafe(batch[0].type()->id(), out->type()->id(), batch[0], out);
+ }
+ CastNumberToNumberUnsafe(batch[0].type()->id(), out->type()->id(), batch[0], out);
return Status::OK();
-}
-
+}
+
Status CastFloatingToFloating(KernelContext*, const ExecBatch& batch, Datum* out) {
- CastNumberToNumberUnsafe(batch[0].type()->id(), out->type()->id(), batch[0], out);
+ CastNumberToNumberUnsafe(batch[0].type()->id(), out->type()->id(), batch[0], out);
return Status::OK();
-}
-
-// ----------------------------------------------------------------------
-// Implement fast safe floating point to integer cast
-
-// InType is a floating point type we are planning to cast to integer
-template <typename InType, typename OutType, typename InT = typename InType::c_type,
- typename OutT = typename OutType::c_type>
-ARROW_DISABLE_UBSAN("float-cast-overflow")
-Status CheckFloatTruncation(const Datum& input, const Datum& output) {
- auto WasTruncated = [&](OutT out_val, InT in_val) -> bool {
- return static_cast<InT>(out_val) != in_val;
- };
- auto WasTruncatedMaybeNull = [&](OutT out_val, InT in_val, bool is_valid) -> bool {
- return is_valid && static_cast<InT>(out_val) != in_val;
- };
- auto GetErrorMessage = [&](InT val) {
+}
+
+// ----------------------------------------------------------------------
+// Implement fast safe floating point to integer cast
+
+// InType is a floating point type we are planning to cast to integer
+template <typename InType, typename OutType, typename InT = typename InType::c_type,
+ typename OutT = typename OutType::c_type>
+ARROW_DISABLE_UBSAN("float-cast-overflow")
+Status CheckFloatTruncation(const Datum& input, const Datum& output) {
+ auto WasTruncated = [&](OutT out_val, InT in_val) -> bool {
+ return static_cast<InT>(out_val) != in_val;
+ };
+ auto WasTruncatedMaybeNull = [&](OutT out_val, InT in_val, bool is_valid) -> bool {
+ return is_valid && static_cast<InT>(out_val) != in_val;
+ };
+ auto GetErrorMessage = [&](InT val) {
return Status::Invalid("Float value ", val, " was truncated converting to ",
- *output.type());
- };
-
- if (input.kind() == Datum::SCALAR) {
- DCHECK_EQ(output.kind(), Datum::SCALAR);
- const auto& in_scalar = input.scalar_as<typename TypeTraits<InType>::ScalarType>();
- const auto& out_scalar = output.scalar_as<typename TypeTraits<OutType>::ScalarType>();
- if (WasTruncatedMaybeNull(out_scalar.value, in_scalar.value, out_scalar.is_valid)) {
- return GetErrorMessage(in_scalar.value);
- }
- return Status::OK();
- }
-
- const ArrayData& in_array = *input.array();
- const ArrayData& out_array = *output.array();
-
- const InT* in_data = in_array.GetValues<InT>(1);
- const OutT* out_data = out_array.GetValues<OutT>(1);
-
- const uint8_t* bitmap = nullptr;
- if (in_array.buffers[0]) {
- bitmap = in_array.buffers[0]->data();
- }
- OptionalBitBlockCounter bit_counter(bitmap, in_array.offset, in_array.length);
- int64_t position = 0;
- int64_t offset_position = in_array.offset;
- while (position < in_array.length) {
- BitBlockCount block = bit_counter.NextBlock();
- bool block_out_of_bounds = false;
- if (block.popcount == block.length) {
- // Fast path: branchless
- for (int64_t i = 0; i < block.length; ++i) {
- block_out_of_bounds |= WasTruncated(out_data[i], in_data[i]);
- }
- } else if (block.popcount > 0) {
- // Indices have nulls, must only boundscheck non-null values
- for (int64_t i = 0; i < block.length; ++i) {
- block_out_of_bounds |= WasTruncatedMaybeNull(
- out_data[i], in_data[i], BitUtil::GetBit(bitmap, offset_position + i));
- }
- }
- if (ARROW_PREDICT_FALSE(block_out_of_bounds)) {
- if (in_array.GetNullCount() > 0) {
- for (int64_t i = 0; i < block.length; ++i) {
- if (WasTruncatedMaybeNull(out_data[i], in_data[i],
- BitUtil::GetBit(bitmap, offset_position + i))) {
- return GetErrorMessage(in_data[i]);
- }
- }
- } else {
- for (int64_t i = 0; i < block.length; ++i) {
- if (WasTruncated(out_data[i], in_data[i])) {
- return GetErrorMessage(in_data[i]);
- }
- }
- }
- }
- in_data += block.length;
- out_data += block.length;
- position += block.length;
- offset_position += block.length;
- }
- return Status::OK();
-}
-
-template <typename InType>
-Status CheckFloatToIntTruncationImpl(const Datum& input, const Datum& output) {
- switch (output.type()->id()) {
- case Type::INT8:
- return CheckFloatTruncation<InType, Int8Type>(input, output);
- case Type::INT16:
- return CheckFloatTruncation<InType, Int16Type>(input, output);
- case Type::INT32:
- return CheckFloatTruncation<InType, Int32Type>(input, output);
- case Type::INT64:
- return CheckFloatTruncation<InType, Int64Type>(input, output);
- case Type::UINT8:
- return CheckFloatTruncation<InType, UInt8Type>(input, output);
- case Type::UINT16:
- return CheckFloatTruncation<InType, UInt16Type>(input, output);
- case Type::UINT32:
- return CheckFloatTruncation<InType, UInt32Type>(input, output);
- case Type::UINT64:
- return CheckFloatTruncation<InType, UInt64Type>(input, output);
- default:
- break;
- }
- DCHECK(false);
- return Status::OK();
-}
-
-Status CheckFloatToIntTruncation(const Datum& input, const Datum& output) {
- switch (input.type()->id()) {
- case Type::FLOAT:
- return CheckFloatToIntTruncationImpl<FloatType>(input, output);
- case Type::DOUBLE:
- return CheckFloatToIntTruncationImpl<DoubleType>(input, output);
- default:
- break;
- }
- DCHECK(false);
- return Status::OK();
-}
-
+ *output.type());
+ };
+
+ if (input.kind() == Datum::SCALAR) {
+ DCHECK_EQ(output.kind(), Datum::SCALAR);
+ const auto& in_scalar = input.scalar_as<typename TypeTraits<InType>::ScalarType>();
+ const auto& out_scalar = output.scalar_as<typename TypeTraits<OutType>::ScalarType>();
+ if (WasTruncatedMaybeNull(out_scalar.value, in_scalar.value, out_scalar.is_valid)) {
+ return GetErrorMessage(in_scalar.value);
+ }
+ return Status::OK();
+ }
+
+ const ArrayData& in_array = *input.array();
+ const ArrayData& out_array = *output.array();
+
+ const InT* in_data = in_array.GetValues<InT>(1);
+ const OutT* out_data = out_array.GetValues<OutT>(1);
+
+ const uint8_t* bitmap = nullptr;
+ if (in_array.buffers[0]) {
+ bitmap = in_array.buffers[0]->data();
+ }
+ OptionalBitBlockCounter bit_counter(bitmap, in_array.offset, in_array.length);
+ int64_t position = 0;
+ int64_t offset_position = in_array.offset;
+ while (position < in_array.length) {
+ BitBlockCount block = bit_counter.NextBlock();
+ bool block_out_of_bounds = false;
+ if (block.popcount == block.length) {
+ // Fast path: branchless
+ for (int64_t i = 0; i < block.length; ++i) {
+ block_out_of_bounds |= WasTruncated(out_data[i], in_data[i]);
+ }
+ } else if (block.popcount > 0) {
+ // Indices have nulls, must only boundscheck non-null values
+ for (int64_t i = 0; i < block.length; ++i) {
+ block_out_of_bounds |= WasTruncatedMaybeNull(
+ out_data[i], in_data[i], BitUtil::GetBit(bitmap, offset_position + i));
+ }
+ }
+ if (ARROW_PREDICT_FALSE(block_out_of_bounds)) {
+ if (in_array.GetNullCount() > 0) {
+ for (int64_t i = 0; i < block.length; ++i) {
+ if (WasTruncatedMaybeNull(out_data[i], in_data[i],
+ BitUtil::GetBit(bitmap, offset_position + i))) {
+ return GetErrorMessage(in_data[i]);
+ }
+ }
+ } else {
+ for (int64_t i = 0; i < block.length; ++i) {
+ if (WasTruncated(out_data[i], in_data[i])) {
+ return GetErrorMessage(in_data[i]);
+ }
+ }
+ }
+ }
+ in_data += block.length;
+ out_data += block.length;
+ position += block.length;
+ offset_position += block.length;
+ }
+ return Status::OK();
+}
+
+template <typename InType>
+Status CheckFloatToIntTruncationImpl(const Datum& input, const Datum& output) {
+ switch (output.type()->id()) {
+ case Type::INT8:
+ return CheckFloatTruncation<InType, Int8Type>(input, output);
+ case Type::INT16:
+ return CheckFloatTruncation<InType, Int16Type>(input, output);
+ case Type::INT32:
+ return CheckFloatTruncation<InType, Int32Type>(input, output);
+ case Type::INT64:
+ return CheckFloatTruncation<InType, Int64Type>(input, output);
+ case Type::UINT8:
+ return CheckFloatTruncation<InType, UInt8Type>(input, output);
+ case Type::UINT16:
+ return CheckFloatTruncation<InType, UInt16Type>(input, output);
+ case Type::UINT32:
+ return CheckFloatTruncation<InType, UInt32Type>(input, output);
+ case Type::UINT64:
+ return CheckFloatTruncation<InType, UInt64Type>(input, output);
+ default:
+ break;
+ }
+ DCHECK(false);
+ return Status::OK();
+}
+
+Status CheckFloatToIntTruncation(const Datum& input, const Datum& output) {
+ switch (input.type()->id()) {
+ case Type::FLOAT:
+ return CheckFloatToIntTruncationImpl<FloatType>(input, output);
+ case Type::DOUBLE:
+ return CheckFloatToIntTruncationImpl<DoubleType>(input, output);
+ default:
+ break;
+ }
+ DCHECK(false);
+ return Status::OK();
+}
+
Status CastFloatingToInteger(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- const auto& options = checked_cast<const CastState*>(ctx->state())->options;
- CastNumberToNumberUnsafe(batch[0].type()->id(), out->type()->id(), batch[0], out);
- if (!options.allow_float_truncate) {
+ const auto& options = checked_cast<const CastState*>(ctx->state())->options;
+ CastNumberToNumberUnsafe(batch[0].type()->id(), out->type()->id(), batch[0], out);
+ if (!options.allow_float_truncate) {
RETURN_NOT_OK(CheckFloatToIntTruncation(batch[0], *out));
- }
- return Status::OK();
-}
-
-// ----------------------------------------------------------------------
-// Implement fast integer to floating point cast
-
-// These are the limits for exact representation of whole numbers in floating
-// point numbers
-template <typename T>
-struct FloatingIntegerBound {};
-
-template <>
-struct FloatingIntegerBound<float> {
- static const int64_t value = 1LL << 24;
-};
-
-template <>
-struct FloatingIntegerBound<double> {
- static const int64_t value = 1LL << 53;
-};
-
-template <typename InType, typename OutType, typename InT = typename InType::c_type,
- typename OutT = typename OutType::c_type,
- bool IsSigned = is_signed_integer_type<InType>::value>
-Status CheckIntegerFloatTruncateImpl(const Datum& input) {
- using InScalarType = typename TypeTraits<InType>::ScalarType;
- const int64_t limit = FloatingIntegerBound<OutT>::value;
- InScalarType bound_lower(IsSigned ? -limit : 0);
- InScalarType bound_upper(limit);
- return CheckIntegersInRange(input, bound_lower, bound_upper);
-}
-
-Status CheckForIntegerToFloatingTruncation(const Datum& input, Type::type out_type) {
- switch (input.type()->id()) {
- // Small integers are all exactly representable as whole numbers
- case Type::INT8:
- case Type::INT16:
- case Type::UINT8:
- case Type::UINT16:
- return Status::OK();
- case Type::INT32: {
- if (out_type == Type::DOUBLE) {
- return Status::OK();
- }
- return CheckIntegerFloatTruncateImpl<Int32Type, FloatType>(input);
- }
- case Type::UINT32: {
- if (out_type == Type::DOUBLE) {
- return Status::OK();
- }
- return CheckIntegerFloatTruncateImpl<UInt32Type, FloatType>(input);
- }
- case Type::INT64: {
- if (out_type == Type::FLOAT) {
- return CheckIntegerFloatTruncateImpl<Int64Type, FloatType>(input);
- } else {
- return CheckIntegerFloatTruncateImpl<Int64Type, DoubleType>(input);
- }
- }
- case Type::UINT64: {
- if (out_type == Type::FLOAT) {
- return CheckIntegerFloatTruncateImpl<UInt64Type, FloatType>(input);
- } else {
- return CheckIntegerFloatTruncateImpl<UInt64Type, DoubleType>(input);
- }
- }
- default:
- break;
- }
- DCHECK(false);
+ }
return Status::OK();
-}
-
+}
+
+// ----------------------------------------------------------------------
+// Implement fast integer to floating point cast
+
+// These are the limits for exact representation of whole numbers in floating
+// point numbers
+template <typename T>
+struct FloatingIntegerBound {};
+
+template <>
+struct FloatingIntegerBound<float> {
+ static const int64_t value = 1LL << 24;
+};
+
+template <>
+struct FloatingIntegerBound<double> {
+ static const int64_t value = 1LL << 53;
+};
+
+template <typename InType, typename OutType, typename InT = typename InType::c_type,
+ typename OutT = typename OutType::c_type,
+ bool IsSigned = is_signed_integer_type<InType>::value>
+Status CheckIntegerFloatTruncateImpl(const Datum& input) {
+ using InScalarType = typename TypeTraits<InType>::ScalarType;
+ const int64_t limit = FloatingIntegerBound<OutT>::value;
+ InScalarType bound_lower(IsSigned ? -limit : 0);
+ InScalarType bound_upper(limit);
+ return CheckIntegersInRange(input, bound_lower, bound_upper);
+}
+
+Status CheckForIntegerToFloatingTruncation(const Datum& input, Type::type out_type) {
+ switch (input.type()->id()) {
+ // Small integers are all exactly representable as whole numbers
+ case Type::INT8:
+ case Type::INT16:
+ case Type::UINT8:
+ case Type::UINT16:
+ return Status::OK();
+ case Type::INT32: {
+ if (out_type == Type::DOUBLE) {
+ return Status::OK();
+ }
+ return CheckIntegerFloatTruncateImpl<Int32Type, FloatType>(input);
+ }
+ case Type::UINT32: {
+ if (out_type == Type::DOUBLE) {
+ return Status::OK();
+ }
+ return CheckIntegerFloatTruncateImpl<UInt32Type, FloatType>(input);
+ }
+ case Type::INT64: {
+ if (out_type == Type::FLOAT) {
+ return CheckIntegerFloatTruncateImpl<Int64Type, FloatType>(input);
+ } else {
+ return CheckIntegerFloatTruncateImpl<Int64Type, DoubleType>(input);
+ }
+ }
+ case Type::UINT64: {
+ if (out_type == Type::FLOAT) {
+ return CheckIntegerFloatTruncateImpl<UInt64Type, FloatType>(input);
+ } else {
+ return CheckIntegerFloatTruncateImpl<UInt64Type, DoubleType>(input);
+ }
+ }
+ default:
+ break;
+ }
+ DCHECK(false);
+ return Status::OK();
+}
+
Status CastIntegerToFloating(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- const auto& options = checked_cast<const CastState*>(ctx->state())->options;
- Type::type out_type = out->type()->id();
- if (!options.allow_float_truncate) {
+ const auto& options = checked_cast<const CastState*>(ctx->state())->options;
+ Type::type out_type = out->type()->id();
+ if (!options.allow_float_truncate) {
RETURN_NOT_OK(CheckForIntegerToFloatingTruncation(batch[0], out_type));
- }
- CastNumberToNumberUnsafe(batch[0].type()->id(), out_type, batch[0], out);
+ }
+ CastNumberToNumberUnsafe(batch[0].type()->id(), out_type, batch[0], out);
return Status::OK();
-}
-
-// ----------------------------------------------------------------------
-// Boolean to number
-
-struct BooleanToNumber {
- template <typename OutValue, typename Arg0Value>
+}
+
+// ----------------------------------------------------------------------
+// Boolean to number
+
+struct BooleanToNumber {
+ template <typename OutValue, typename Arg0Value>
static OutValue Call(KernelContext*, Arg0Value val, Status*) {
- constexpr auto kOne = static_cast<OutValue>(1);
- constexpr auto kZero = static_cast<OutValue>(0);
- return val ? kOne : kZero;
- }
-};
-
-template <typename O>
-struct CastFunctor<O, BooleanType, enable_if_number<O>> {
+ constexpr auto kOne = static_cast<OutValue>(1);
+ constexpr auto kZero = static_cast<OutValue>(0);
+ return val ? kOne : kZero;
+ }
+};
+
+template <typename O>
+struct CastFunctor<O, BooleanType, enable_if_number<O>> {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
return applicator::ScalarUnary<O, BooleanType, BooleanToNumber>::Exec(ctx, batch,
out);
- }
-};
-
-// ----------------------------------------------------------------------
-// String to number
-
-template <typename OutType>
-struct ParseString {
- template <typename OutValue, typename Arg0Value>
+ }
+};
+
+// ----------------------------------------------------------------------
+// String to number
+
+template <typename OutType>
+struct ParseString {
+ template <typename OutValue, typename Arg0Value>
OutValue Call(KernelContext* ctx, Arg0Value val, Status* st) const {
- OutValue result = OutValue(0);
- if (ARROW_PREDICT_FALSE(!ParseValue<OutType>(val.data(), val.size(), &result))) {
+ OutValue result = OutValue(0);
+ if (ARROW_PREDICT_FALSE(!ParseValue<OutType>(val.data(), val.size(), &result))) {
*st = Status::Invalid("Failed to parse string: '", val, "' as a scalar of type ",
TypeTraits<OutType>::type_singleton()->ToString());
- }
- return result;
- }
-};
-
-template <typename O, typename I>
-struct CastFunctor<O, I, enable_if_base_binary<I>> {
+ }
+ return result;
+ }
+};
+
+template <typename O, typename I>
+struct CastFunctor<O, I, enable_if_base_binary<I>> {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
return applicator::ScalarUnaryNotNull<O, I, ParseString<O>>::Exec(ctx, batch, out);
- }
-};
-
-// ----------------------------------------------------------------------
-// Decimal to integer
-
-struct DecimalToIntegerMixin {
+ }
+};
+
+// ----------------------------------------------------------------------
+// Decimal to integer
+
+struct DecimalToIntegerMixin {
template <typename OutValue, typename Arg0Value>
OutValue ToInteger(KernelContext* ctx, const Arg0Value& val, Status* st) const {
- constexpr auto min_value = std::numeric_limits<OutValue>::min();
- constexpr auto max_value = std::numeric_limits<OutValue>::max();
-
- if (!allow_int_overflow_ && ARROW_PREDICT_FALSE(val < min_value || val > max_value)) {
+ constexpr auto min_value = std::numeric_limits<OutValue>::min();
+ constexpr auto max_value = std::numeric_limits<OutValue>::max();
+
+ if (!allow_int_overflow_ && ARROW_PREDICT_FALSE(val < min_value || val > max_value)) {
*st = Status::Invalid("Integer value out of bounds");
- return OutValue{}; // Zero
- } else {
- return static_cast<OutValue>(val.low_bits());
- }
- }
-
- DecimalToIntegerMixin(int32_t in_scale, bool allow_int_overflow)
- : in_scale_(in_scale), allow_int_overflow_(allow_int_overflow) {}
-
- int32_t in_scale_;
- bool allow_int_overflow_;
-};
-
-struct UnsafeUpscaleDecimalToInteger : public DecimalToIntegerMixin {
- using DecimalToIntegerMixin::DecimalToIntegerMixin;
-
- template <typename OutValue, typename Arg0Value>
+ return OutValue{}; // Zero
+ } else {
+ return static_cast<OutValue>(val.low_bits());
+ }
+ }
+
+ DecimalToIntegerMixin(int32_t in_scale, bool allow_int_overflow)
+ : in_scale_(in_scale), allow_int_overflow_(allow_int_overflow) {}
+
+ int32_t in_scale_;
+ bool allow_int_overflow_;
+};
+
+struct UnsafeUpscaleDecimalToInteger : public DecimalToIntegerMixin {
+ using DecimalToIntegerMixin::DecimalToIntegerMixin;
+
+ template <typename OutValue, typename Arg0Value>
OutValue Call(KernelContext* ctx, Arg0Value val, Status* st) const {
return ToInteger<OutValue>(ctx, val.IncreaseScaleBy(-in_scale_), st);
- }
-};
-
-struct UnsafeDownscaleDecimalToInteger : public DecimalToIntegerMixin {
- using DecimalToIntegerMixin::DecimalToIntegerMixin;
-
- template <typename OutValue, typename Arg0Value>
+ }
+};
+
+struct UnsafeDownscaleDecimalToInteger : public DecimalToIntegerMixin {
+ using DecimalToIntegerMixin::DecimalToIntegerMixin;
+
+ template <typename OutValue, typename Arg0Value>
OutValue Call(KernelContext* ctx, Arg0Value val, Status* st) const {
return ToInteger<OutValue>(ctx, val.ReduceScaleBy(in_scale_, false), st);
- }
-};
-
-struct SafeRescaleDecimalToInteger : public DecimalToIntegerMixin {
- using DecimalToIntegerMixin::DecimalToIntegerMixin;
-
- template <typename OutValue, typename Arg0Value>
+ }
+};
+
+struct SafeRescaleDecimalToInteger : public DecimalToIntegerMixin {
+ using DecimalToIntegerMixin::DecimalToIntegerMixin;
+
+ template <typename OutValue, typename Arg0Value>
OutValue Call(KernelContext* ctx, Arg0Value val, Status* st) const {
- auto result = val.Rescale(in_scale_, 0);
- if (ARROW_PREDICT_FALSE(!result.ok())) {
+ auto result = val.Rescale(in_scale_, 0);
+ if (ARROW_PREDICT_FALSE(!result.ok())) {
*st = result.status();
- return OutValue{}; // Zero
- } else {
+ return OutValue{}; // Zero
+ } else {
return ToInteger<OutValue>(ctx, *result, st);
- }
- }
-};
-
+ }
+ }
+};
+
template <typename O, typename I>
struct CastFunctor<O, I,
enable_if_t<is_integer_type<O>::value && is_decimal_type<I>::value>> {
- using out_type = typename O::c_type;
-
+ using out_type = typename O::c_type;
+
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- const auto& options = checked_cast<const CastState*>(ctx->state())->options;
-
+ const auto& options = checked_cast<const CastState*>(ctx->state())->options;
+
const auto& in_type_inst = checked_cast<const I&>(*batch[0].type());
- const auto in_scale = in_type_inst.scale();
-
- if (options.allow_decimal_truncate) {
- if (in_scale < 0) {
- // Unsafe upscale
+ const auto in_scale = in_type_inst.scale();
+
+ if (options.allow_decimal_truncate) {
+ if (in_scale < 0) {
+ // Unsafe upscale
applicator::ScalarUnaryNotNullStateful<O, I, UnsafeUpscaleDecimalToInteger>
- kernel(UnsafeUpscaleDecimalToInteger{in_scale, options.allow_int_overflow});
- return kernel.Exec(ctx, batch, out);
- } else {
- // Unsafe downscale
+ kernel(UnsafeUpscaleDecimalToInteger{in_scale, options.allow_int_overflow});
+ return kernel.Exec(ctx, batch, out);
+ } else {
+ // Unsafe downscale
applicator::ScalarUnaryNotNullStateful<O, I, UnsafeDownscaleDecimalToInteger>
- kernel(UnsafeDownscaleDecimalToInteger{in_scale, options.allow_int_overflow});
- return kernel.Exec(ctx, batch, out);
- }
- } else {
- // Safe rescale
+ kernel(UnsafeDownscaleDecimalToInteger{in_scale, options.allow_int_overflow});
+ return kernel.Exec(ctx, batch, out);
+ }
+ } else {
+ // Safe rescale
applicator::ScalarUnaryNotNullStateful<O, I, SafeRescaleDecimalToInteger> kernel(
SafeRescaleDecimalToInteger{in_scale, options.allow_int_overflow});
- return kernel.Exec(ctx, batch, out);
- }
- }
-};
-
-// ----------------------------------------------------------------------
-// Decimal to decimal
-
+ return kernel.Exec(ctx, batch, out);
+ }
+ }
+};
+
+// ----------------------------------------------------------------------
+// Decimal to decimal
+
// Helper that converts the input and output decimals
// For instance, Decimal128 -> Decimal256 requires converting, then scaling
// Decimal256 -> Decimal128 requires scaling, then truncating
@@ -413,15 +413,15 @@ struct DecimalConversions<Decimal128, Decimal256> {
static Decimal256 ConvertInput(Decimal256&& val) { return val; }
static Decimal128 ConvertOutput(Decimal256&& val) {
return Decimal128(val.little_endian_array()[1], val.little_endian_array()[0]);
- }
+ }
};
-
+
template <>
struct DecimalConversions<Decimal128, Decimal128> {
static Decimal128 ConvertInput(Decimal128&& val) { return val; }
static Decimal128 ConvertOutput(Decimal128&& val) { return val; }
-};
-
+};
+
struct UnsafeUpscaleDecimal {
template <typename OutValue, typename Arg0Value>
OutValue Call(KernelContext*, Arg0Value val, Status*) const {
@@ -431,17 +431,17 @@ struct UnsafeUpscaleDecimal {
int32_t by_;
};
-struct UnsafeDownscaleDecimal {
+struct UnsafeDownscaleDecimal {
template <typename OutValue, typename Arg0Value>
OutValue Call(KernelContext*, Arg0Value val, Status*) const {
using Conv = DecimalConversions<OutValue, Arg0Value>;
return Conv::ConvertOutput(
Conv::ConvertInput(std::move(val)).ReduceScaleBy(by_, false));
- }
+ }
int32_t by_;
-};
-
-struct SafeRescaleDecimal {
+};
+
+struct SafeRescaleDecimal {
template <typename OutValue, typename Arg0Value>
OutValue Call(KernelContext*, Arg0Value val, Status* st) const {
using Conv = DecimalConversions<OutValue, Arg0Value>;
@@ -450,7 +450,7 @@ struct SafeRescaleDecimal {
if (ARROW_PREDICT_FALSE(!maybe_rescaled.ok())) {
*st = maybe_rescaled.status();
return {}; // Zero
- }
+ }
if (ARROW_PREDICT_TRUE(maybe_rescaled->FitsInPrecision(out_precision_))) {
return Conv::ConvertOutput(maybe_rescaled.MoveValueUnsafe());
@@ -458,199 +458,199 @@ struct SafeRescaleDecimal {
*st = Status::Invalid("Decimal value does not fit in precision ", out_precision_);
return {}; // Zero
- }
-
- int32_t out_scale_, out_precision_, in_scale_;
-};
-
+ }
+
+ int32_t out_scale_, out_precision_, in_scale_;
+};
+
template <typename O, typename I>
struct CastFunctor<O, I,
enable_if_t<is_decimal_type<O>::value && is_decimal_type<I>::value>> {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- const auto& options = checked_cast<const CastState*>(ctx->state())->options;
-
+ const auto& options = checked_cast<const CastState*>(ctx->state())->options;
+
const auto& in_type = checked_cast<const I&>(*batch[0].type());
const auto& out_type = checked_cast<const O&>(*out->type());
const auto in_scale = in_type.scale();
const auto out_scale = out_type.scale();
-
- if (options.allow_decimal_truncate) {
- if (in_scale < out_scale) {
- // Unsafe upscale
+
+ if (options.allow_decimal_truncate) {
+ if (in_scale < out_scale) {
+ // Unsafe upscale
applicator::ScalarUnaryNotNullStateful<O, I, UnsafeUpscaleDecimal> kernel(
UnsafeUpscaleDecimal{out_scale - in_scale});
- return kernel.Exec(ctx, batch, out);
- } else {
- // Unsafe downscale
+ return kernel.Exec(ctx, batch, out);
+ } else {
+ // Unsafe downscale
applicator::ScalarUnaryNotNullStateful<O, I, UnsafeDownscaleDecimal> kernel(
UnsafeDownscaleDecimal{in_scale - out_scale});
- return kernel.Exec(ctx, batch, out);
- }
- }
+ return kernel.Exec(ctx, batch, out);
+ }
+ }
// Safe rescale
applicator::ScalarUnaryNotNullStateful<O, I, SafeRescaleDecimal> kernel(
SafeRescaleDecimal{out_scale, out_type.precision(), in_scale});
return kernel.Exec(ctx, batch, out);
- }
-};
-
-// ----------------------------------------------------------------------
-// Real to decimal
-
-struct RealToDecimal {
- template <typename OutValue, typename RealType>
+ }
+};
+
+// ----------------------------------------------------------------------
+// Real to decimal
+
+struct RealToDecimal {
+ template <typename OutValue, typename RealType>
OutValue Call(KernelContext*, RealType val, Status* st) const {
auto maybe_decimal = OutValue::FromReal(val, out_precision_, out_scale_);
if (ARROW_PREDICT_TRUE(maybe_decimal.ok())) {
return maybe_decimal.MoveValueUnsafe();
- }
+ }
if (!allow_truncate_) {
*st = maybe_decimal.status();
}
return {}; // Zero
- }
-
- int32_t out_scale_, out_precision_;
- bool allow_truncate_;
-};
-
+ }
+
+ int32_t out_scale_, out_precision_;
+ bool allow_truncate_;
+};
+
template <typename O, typename I>
struct CastFunctor<O, I,
enable_if_t<is_decimal_type<O>::value && is_floating_type<I>::value>> {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- const auto& options = checked_cast<const CastState*>(ctx->state())->options;
+ const auto& options = checked_cast<const CastState*>(ctx->state())->options;
const auto& out_type = checked_cast<const O&>(*out->type());
const auto out_scale = out_type.scale();
const auto out_precision = out_type.precision();
-
+
applicator::ScalarUnaryNotNullStateful<O, I, RealToDecimal> kernel(
- RealToDecimal{out_scale, out_precision, options.allow_decimal_truncate});
- return kernel.Exec(ctx, batch, out);
- }
-};
-
-// ----------------------------------------------------------------------
-// Decimal to real
-
-struct DecimalToReal {
- template <typename RealType, typename Arg0Value>
+ RealToDecimal{out_scale, out_precision, options.allow_decimal_truncate});
+ return kernel.Exec(ctx, batch, out);
+ }
+};
+
+// ----------------------------------------------------------------------
+// Decimal to real
+
+struct DecimalToReal {
+ template <typename RealType, typename Arg0Value>
RealType Call(KernelContext*, const Arg0Value& val, Status*) const {
return val.template ToReal<RealType>(in_scale_);
- }
-
- int32_t in_scale_;
-};
-
+ }
+
+ int32_t in_scale_;
+};
+
template <typename O, typename I>
struct CastFunctor<O, I,
enable_if_t<is_floating_type<O>::value && is_decimal_type<I>::value>> {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
const auto& in_type = checked_cast<const I&>(*batch[0].type());
const auto in_scale = in_type.scale();
-
+
applicator::ScalarUnaryNotNullStateful<O, I, DecimalToReal> kernel(
- DecimalToReal{in_scale});
- return kernel.Exec(ctx, batch, out);
- }
-};
-
-// ----------------------------------------------------------------------
-// Top-level kernel instantiation
-
-namespace {
-
-template <typename OutType>
-void AddCommonNumberCasts(const std::shared_ptr<DataType>& out_ty, CastFunction* func) {
- AddCommonCasts(out_ty->id(), out_ty, func);
-
- // Cast from boolean to number
- DCHECK_OK(func->AddKernel(Type::BOOL, {boolean()}, out_ty,
- CastFunctor<OutType, BooleanType>::Exec));
-
- // Cast from other strings
- for (const std::shared_ptr<DataType>& in_ty : BaseBinaryTypes()) {
- auto exec = GenerateVarBinaryBase<CastFunctor, OutType>(*in_ty);
- DCHECK_OK(func->AddKernel(in_ty->id(), {in_ty}, out_ty, exec));
- }
-}
-
-template <typename OutType>
-std::shared_ptr<CastFunction> GetCastToInteger(std::string name) {
- auto func = std::make_shared<CastFunction>(std::move(name), OutType::type_id);
- auto out_ty = TypeTraits<OutType>::type_singleton();
-
- for (const std::shared_ptr<DataType>& in_ty : IntTypes()) {
- DCHECK_OK(func->AddKernel(in_ty->id(), {in_ty}, out_ty, CastIntegerToInteger));
- }
-
- // Cast from floating point
- for (const std::shared_ptr<DataType>& in_ty : FloatingPointTypes()) {
- DCHECK_OK(func->AddKernel(in_ty->id(), {in_ty}, out_ty, CastFloatingToInteger));
- }
-
- // From other numbers to integer
- AddCommonNumberCasts<OutType>(out_ty, func.get());
-
- // From decimal to integer
+ DecimalToReal{in_scale});
+ return kernel.Exec(ctx, batch, out);
+ }
+};
+
+// ----------------------------------------------------------------------
+// Top-level kernel instantiation
+
+namespace {
+
+template <typename OutType>
+void AddCommonNumberCasts(const std::shared_ptr<DataType>& out_ty, CastFunction* func) {
+ AddCommonCasts(out_ty->id(), out_ty, func);
+
+ // Cast from boolean to number
+ DCHECK_OK(func->AddKernel(Type::BOOL, {boolean()}, out_ty,
+ CastFunctor<OutType, BooleanType>::Exec));
+
+ // Cast from other strings
+ for (const std::shared_ptr<DataType>& in_ty : BaseBinaryTypes()) {
+ auto exec = GenerateVarBinaryBase<CastFunctor, OutType>(*in_ty);
+ DCHECK_OK(func->AddKernel(in_ty->id(), {in_ty}, out_ty, exec));
+ }
+}
+
+template <typename OutType>
+std::shared_ptr<CastFunction> GetCastToInteger(std::string name) {
+ auto func = std::make_shared<CastFunction>(std::move(name), OutType::type_id);
+ auto out_ty = TypeTraits<OutType>::type_singleton();
+
+ for (const std::shared_ptr<DataType>& in_ty : IntTypes()) {
+ DCHECK_OK(func->AddKernel(in_ty->id(), {in_ty}, out_ty, CastIntegerToInteger));
+ }
+
+ // Cast from floating point
+ for (const std::shared_ptr<DataType>& in_ty : FloatingPointTypes()) {
+ DCHECK_OK(func->AddKernel(in_ty->id(), {in_ty}, out_ty, CastFloatingToInteger));
+ }
+
+ // From other numbers to integer
+ AddCommonNumberCasts<OutType>(out_ty, func.get());
+
+ // From decimal to integer
DCHECK_OK(func->AddKernel(Type::DECIMAL, {InputType(Type::DECIMAL)}, out_ty,
- CastFunctor<OutType, Decimal128Type>::Exec));
+ CastFunctor<OutType, Decimal128Type>::Exec));
DCHECK_OK(func->AddKernel(Type::DECIMAL256, {InputType(Type::DECIMAL256)}, out_ty,
CastFunctor<OutType, Decimal256Type>::Exec));
- return func;
-}
-
-template <typename OutType>
-std::shared_ptr<CastFunction> GetCastToFloating(std::string name) {
- auto func = std::make_shared<CastFunction>(std::move(name), OutType::type_id);
- auto out_ty = TypeTraits<OutType>::type_singleton();
-
- // Casts from integer to floating point
- for (const std::shared_ptr<DataType>& in_ty : IntTypes()) {
- DCHECK_OK(func->AddKernel(in_ty->id(), {in_ty}, out_ty, CastIntegerToFloating));
- }
-
- // Cast from floating point
- for (const std::shared_ptr<DataType>& in_ty : FloatingPointTypes()) {
- DCHECK_OK(func->AddKernel(in_ty->id(), {in_ty}, out_ty, CastFloatingToFloating));
- }
-
- // From other numbers to floating point
- AddCommonNumberCasts<OutType>(out_ty, func.get());
-
- // From decimal to floating point
+ return func;
+}
+
+template <typename OutType>
+std::shared_ptr<CastFunction> GetCastToFloating(std::string name) {
+ auto func = std::make_shared<CastFunction>(std::move(name), OutType::type_id);
+ auto out_ty = TypeTraits<OutType>::type_singleton();
+
+ // Casts from integer to floating point
+ for (const std::shared_ptr<DataType>& in_ty : IntTypes()) {
+ DCHECK_OK(func->AddKernel(in_ty->id(), {in_ty}, out_ty, CastIntegerToFloating));
+ }
+
+ // Cast from floating point
+ for (const std::shared_ptr<DataType>& in_ty : FloatingPointTypes()) {
+ DCHECK_OK(func->AddKernel(in_ty->id(), {in_ty}, out_ty, CastFloatingToFloating));
+ }
+
+ // From other numbers to floating point
+ AddCommonNumberCasts<OutType>(out_ty, func.get());
+
+ // From decimal to floating point
DCHECK_OK(func->AddKernel(Type::DECIMAL, {InputType(Type::DECIMAL)}, out_ty,
- CastFunctor<OutType, Decimal128Type>::Exec));
+ CastFunctor<OutType, Decimal128Type>::Exec));
DCHECK_OK(func->AddKernel(Type::DECIMAL256, {InputType(Type::DECIMAL256)}, out_ty,
CastFunctor<OutType, Decimal256Type>::Exec));
- return func;
-}
-
+ return func;
+}
+
std::shared_ptr<CastFunction> GetCastToDecimal128() {
- OutputType sig_out_ty(ResolveOutputFromOptions);
-
+ OutputType sig_out_ty(ResolveOutputFromOptions);
+
auto func = std::make_shared<CastFunction>("cast_decimal", Type::DECIMAL128);
AddCommonCasts(Type::DECIMAL128, sig_out_ty, func.get());
-
- // Cast from floating point
- DCHECK_OK(func->AddKernel(Type::FLOAT, {float32()}, sig_out_ty,
- CastFunctor<Decimal128Type, FloatType>::Exec));
- DCHECK_OK(func->AddKernel(Type::DOUBLE, {float64()}, sig_out_ty,
- CastFunctor<Decimal128Type, DoubleType>::Exec));
-
- // Cast from other decimal
- auto exec = CastFunctor<Decimal128Type, Decimal128Type>::Exec;
- // We resolve the output type of this kernel from the CastOptions
+
+ // Cast from floating point
+ DCHECK_OK(func->AddKernel(Type::FLOAT, {float32()}, sig_out_ty,
+ CastFunctor<Decimal128Type, FloatType>::Exec));
+ DCHECK_OK(func->AddKernel(Type::DOUBLE, {float64()}, sig_out_ty,
+ CastFunctor<Decimal128Type, DoubleType>::Exec));
+
+ // Cast from other decimal
+ auto exec = CastFunctor<Decimal128Type, Decimal128Type>::Exec;
+ // We resolve the output type of this kernel from the CastOptions
DCHECK_OK(
func->AddKernel(Type::DECIMAL128, {InputType(Type::DECIMAL128)}, sig_out_ty, exec));
exec = CastFunctor<Decimal128Type, Decimal256Type>::Exec;
DCHECK_OK(
func->AddKernel(Type::DECIMAL256, {InputType(Type::DECIMAL256)}, sig_out_ty, exec));
- return func;
-}
-
+ return func;
+}
+
std::shared_ptr<CastFunction> GetCastToDecimal256() {
OutputType sig_out_ty(ResolveOutputFromOptions);
@@ -673,55 +673,55 @@ std::shared_ptr<CastFunction> GetCastToDecimal256() {
return func;
}
-} // namespace
-
-std::vector<std::shared_ptr<CastFunction>> GetNumericCasts() {
- std::vector<std::shared_ptr<CastFunction>> functions;
-
- // Make a cast to null that does not do much. Not sure why we need to be able
- // to cast from dict<null> -> null but there are unit tests for it
- auto cast_null = std::make_shared<CastFunction>("cast_null", Type::NA);
+} // namespace
+
+std::vector<std::shared_ptr<CastFunction>> GetNumericCasts() {
+ std::vector<std::shared_ptr<CastFunction>> functions;
+
+ // Make a cast to null that does not do much. Not sure why we need to be able
+ // to cast from dict<null> -> null but there are unit tests for it
+ auto cast_null = std::make_shared<CastFunction>("cast_null", Type::NA);
DCHECK_OK(cast_null->AddKernel(Type::DICTIONARY, {InputType(Type::DICTIONARY)}, null(),
OutputAllNull));
- functions.push_back(cast_null);
-
- functions.push_back(GetCastToInteger<Int8Type>("cast_int8"));
- functions.push_back(GetCastToInteger<Int16Type>("cast_int16"));
-
- auto cast_int32 = GetCastToInteger<Int32Type>("cast_int32");
- // Convert DATE32 or TIME32 to INT32 zero copy
- AddZeroCopyCast(Type::DATE32, date32(), int32(), cast_int32.get());
- AddZeroCopyCast(Type::TIME32, InputType(Type::TIME32), int32(), cast_int32.get());
- functions.push_back(cast_int32);
-
- auto cast_int64 = GetCastToInteger<Int64Type>("cast_int64");
- // Convert DATE64, DURATION, TIMESTAMP, TIME64 to INT64 zero copy
- AddZeroCopyCast(Type::DATE64, InputType(Type::DATE64), int64(), cast_int64.get());
- AddZeroCopyCast(Type::DURATION, InputType(Type::DURATION), int64(), cast_int64.get());
- AddZeroCopyCast(Type::TIMESTAMP, InputType(Type::TIMESTAMP), int64(), cast_int64.get());
- AddZeroCopyCast(Type::TIME64, InputType(Type::TIME64), int64(), cast_int64.get());
- functions.push_back(cast_int64);
-
- functions.push_back(GetCastToInteger<UInt8Type>("cast_uint8"));
- functions.push_back(GetCastToInteger<UInt16Type>("cast_uint16"));
- functions.push_back(GetCastToInteger<UInt32Type>("cast_uint32"));
- functions.push_back(GetCastToInteger<UInt64Type>("cast_uint64"));
-
- // HalfFloat is a bit brain-damaged for now
- auto cast_half_float =
- std::make_shared<CastFunction>("cast_half_float", Type::HALF_FLOAT);
- AddCommonCasts(Type::HALF_FLOAT, float16(), cast_half_float.get());
- functions.push_back(cast_half_float);
-
- functions.push_back(GetCastToFloating<FloatType>("cast_float"));
- functions.push_back(GetCastToFloating<DoubleType>("cast_double"));
-
+ functions.push_back(cast_null);
+
+ functions.push_back(GetCastToInteger<Int8Type>("cast_int8"));
+ functions.push_back(GetCastToInteger<Int16Type>("cast_int16"));
+
+ auto cast_int32 = GetCastToInteger<Int32Type>("cast_int32");
+ // Convert DATE32 or TIME32 to INT32 zero copy
+ AddZeroCopyCast(Type::DATE32, date32(), int32(), cast_int32.get());
+ AddZeroCopyCast(Type::TIME32, InputType(Type::TIME32), int32(), cast_int32.get());
+ functions.push_back(cast_int32);
+
+ auto cast_int64 = GetCastToInteger<Int64Type>("cast_int64");
+ // Convert DATE64, DURATION, TIMESTAMP, TIME64 to INT64 zero copy
+ AddZeroCopyCast(Type::DATE64, InputType(Type::DATE64), int64(), cast_int64.get());
+ AddZeroCopyCast(Type::DURATION, InputType(Type::DURATION), int64(), cast_int64.get());
+ AddZeroCopyCast(Type::TIMESTAMP, InputType(Type::TIMESTAMP), int64(), cast_int64.get());
+ AddZeroCopyCast(Type::TIME64, InputType(Type::TIME64), int64(), cast_int64.get());
+ functions.push_back(cast_int64);
+
+ functions.push_back(GetCastToInteger<UInt8Type>("cast_uint8"));
+ functions.push_back(GetCastToInteger<UInt16Type>("cast_uint16"));
+ functions.push_back(GetCastToInteger<UInt32Type>("cast_uint32"));
+ functions.push_back(GetCastToInteger<UInt64Type>("cast_uint64"));
+
+ // HalfFloat is a bit brain-damaged for now
+ auto cast_half_float =
+ std::make_shared<CastFunction>("cast_half_float", Type::HALF_FLOAT);
+ AddCommonCasts(Type::HALF_FLOAT, float16(), cast_half_float.get());
+ functions.push_back(cast_half_float);
+
+ functions.push_back(GetCastToFloating<FloatType>("cast_float"));
+ functions.push_back(GetCastToFloating<DoubleType>("cast_double"));
+
functions.push_back(GetCastToDecimal128());
functions.push_back(GetCastToDecimal256());
-
- return functions;
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+
+ return functions;
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_string.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_string.cc
index 3ce537b722..56a19a69a1 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_string.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_string.cc
@@ -1,107 +1,107 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
#include <limits>
-
-#include "arrow/array/array_base.h"
+
+#include "arrow/array/array_base.h"
#include "arrow/array/builder_binary.h"
-#include "arrow/compute/kernels/common.h"
-#include "arrow/compute/kernels/scalar_cast_internal.h"
-#include "arrow/result.h"
-#include "arrow/util/formatting.h"
+#include "arrow/compute/kernels/common.h"
+#include "arrow/compute/kernels/scalar_cast_internal.h"
+#include "arrow/result.h"
+#include "arrow/util/formatting.h"
#include "arrow/util/int_util.h"
-#include "arrow/util/optional.h"
-#include "arrow/util/utf8.h"
-#include "arrow/visitor_inline.h"
-
-namespace arrow {
-
-using internal::StringFormatter;
-using util::InitializeUTF8;
-using util::ValidateUTF8;
-
-namespace compute {
-namespace internal {
-
+#include "arrow/util/optional.h"
+#include "arrow/util/utf8.h"
+#include "arrow/visitor_inline.h"
+
+namespace arrow {
+
+using internal::StringFormatter;
+using util::InitializeUTF8;
+using util::ValidateUTF8;
+
+namespace compute {
+namespace internal {
+
namespace {
-// ----------------------------------------------------------------------
-// Number / Boolean to String
-
+// ----------------------------------------------------------------------
+// Number / Boolean to String
+
template <typename O, typename I>
struct NumericToStringCastFunctor {
- using value_type = typename TypeTraits<I>::CType;
- using BuilderType = typename TypeTraits<O>::BuilderType;
- using FormatterType = StringFormatter<I>;
-
+ using value_type = typename TypeTraits<I>::CType;
+ using BuilderType = typename TypeTraits<O>::BuilderType;
+ using FormatterType = StringFormatter<I>;
+
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
DCHECK(out->is_array());
- const ArrayData& input = *batch[0].array();
- ArrayData* output = out->mutable_array();
+ const ArrayData& input = *batch[0].array();
+ ArrayData* output = out->mutable_array();
return Convert(ctx, input, output);
- }
-
- static Status Convert(KernelContext* ctx, const ArrayData& input, ArrayData* output) {
- FormatterType formatter(input.type);
- BuilderType builder(input.type, ctx->memory_pool());
- RETURN_NOT_OK(VisitArrayDataInline<I>(
- input,
- [&](value_type v) {
- return formatter(v, [&](util::string_view v) { return builder.Append(v); });
- },
- [&]() { return builder.AppendNull(); }));
-
- std::shared_ptr<Array> output_array;
- RETURN_NOT_OK(builder.Finish(&output_array));
- *output = std::move(*output_array->data());
- return Status::OK();
- }
-};
-
-// ----------------------------------------------------------------------
+ }
+
+ static Status Convert(KernelContext* ctx, const ArrayData& input, ArrayData* output) {
+ FormatterType formatter(input.type);
+ BuilderType builder(input.type, ctx->memory_pool());
+ RETURN_NOT_OK(VisitArrayDataInline<I>(
+ input,
+ [&](value_type v) {
+ return formatter(v, [&](util::string_view v) { return builder.Append(v); });
+ },
+ [&]() { return builder.AppendNull(); }));
+
+ std::shared_ptr<Array> output_array;
+ RETURN_NOT_OK(builder.Finish(&output_array));
+ *output = std::move(*output_array->data());
+ return Status::OK();
+ }
+};
+
+// ----------------------------------------------------------------------
// Binary-like to binary-like
-//
-
-#if defined(_MSC_VER)
-// Silence warning: """'visitor': unreferenced local variable"""
-#pragma warning(push)
-#pragma warning(disable : 4101)
-#endif
-
-struct Utf8Validator {
- Status VisitNull() { return Status::OK(); }
-
- Status VisitValue(util::string_view str) {
- if (ARROW_PREDICT_FALSE(!ValidateUTF8(str))) {
- return Status::Invalid("Invalid UTF8 payload");
- }
- return Status::OK();
- }
-};
-
-template <typename I, typename O>
+//
+
+#if defined(_MSC_VER)
+// Silence warning: """'visitor': unreferenced local variable"""
+#pragma warning(push)
+#pragma warning(disable : 4101)
+#endif
+
+struct Utf8Validator {
+ Status VisitNull() { return Status::OK(); }
+
+ Status VisitValue(util::string_view str) {
+ if (ARROW_PREDICT_FALSE(!ValidateUTF8(str))) {
+ return Status::Invalid("Invalid UTF8 payload");
+ }
+ return Status::OK();
+ }
+};
+
+template <typename I, typename O>
Status CastBinaryToBinaryOffsets(KernelContext* ctx, const ArrayData& input,
ArrayData* output) {
static_assert(std::is_same<I, O>::value, "Cast same-width offsets (no-op)");
return Status::OK();
}
-
+
// Upcast offsets
-template <>
+template <>
Status CastBinaryToBinaryOffsets<int32_t, int64_t>(KernelContext* ctx,
const ArrayData& input,
ArrayData* output) {
@@ -117,15 +117,15 @@ Status CastBinaryToBinaryOffsets<int32_t, int64_t>(KernelContext* ctx,
output->length + 1);
return Status::OK();
}
-
+
// Downcast offsets
-template <>
+template <>
Status CastBinaryToBinaryOffsets<int64_t, int32_t>(KernelContext* ctx,
const ArrayData& input,
ArrayData* output) {
using input_offset_type = int64_t;
using output_offset_type = int32_t;
-
+
constexpr input_offset_type kMaxOffset = std::numeric_limits<output_offset_type>::max();
auto input_offsets = input.GetValues<input_offset_type>(1);
@@ -167,31 +167,31 @@ Status BinaryToBinaryCastExec(KernelContext* ctx, const ExecBatch& batch, Datum*
ctx, input, out->mutable_array());
}
-#if defined(_MSC_VER)
-#pragma warning(pop)
-#endif
-
+#if defined(_MSC_VER)
+#pragma warning(pop)
+#endif
+
// ----------------------------------------------------------------------
// Cast functions registration
-
-template <typename OutType>
+
+template <typename OutType>
void AddNumberToStringCasts(CastFunction* func) {
auto out_ty = TypeTraits<OutType>::type_singleton();
- DCHECK_OK(func->AddKernel(Type::BOOL, {boolean()}, out_ty,
+ DCHECK_OK(func->AddKernel(Type::BOOL, {boolean()}, out_ty,
TrivialScalarUnaryAsArraysExec(
NumericToStringCastFunctor<OutType, BooleanType>::Exec),
- NullHandling::COMPUTED_NO_PREALLOCATE));
-
- for (const std::shared_ptr<DataType>& in_ty : NumericTypes()) {
+ NullHandling::COMPUTED_NO_PREALLOCATE));
+
+ for (const std::shared_ptr<DataType>& in_ty : NumericTypes()) {
DCHECK_OK(
func->AddKernel(in_ty->id(), {in_ty}, out_ty,
TrivialScalarUnaryAsArraysExec(
GenerateNumeric<NumericToStringCastFunctor, OutType>(*in_ty)),
NullHandling::COMPUTED_NO_PREALLOCATE));
- }
-}
-
+ }
+}
+
template <typename OutType, typename InType>
void AddBinaryToBinaryCast(CastFunction* func) {
auto in_ty = TypeTraits<InType>::type_singleton();
@@ -213,35 +213,35 @@ void AddBinaryToBinaryCast(CastFunction* func) {
} // namespace
-std::vector<std::shared_ptr<CastFunction>> GetBinaryLikeCasts() {
- auto cast_binary = std::make_shared<CastFunction>("cast_binary", Type::BINARY);
- AddCommonCasts(Type::BINARY, binary(), cast_binary.get());
+std::vector<std::shared_ptr<CastFunction>> GetBinaryLikeCasts() {
+ auto cast_binary = std::make_shared<CastFunction>("cast_binary", Type::BINARY);
+ AddCommonCasts(Type::BINARY, binary(), cast_binary.get());
AddBinaryToBinaryCast<BinaryType>(cast_binary.get());
-
- auto cast_large_binary =
- std::make_shared<CastFunction>("cast_large_binary", Type::LARGE_BINARY);
- AddCommonCasts(Type::LARGE_BINARY, large_binary(), cast_large_binary.get());
+
+ auto cast_large_binary =
+ std::make_shared<CastFunction>("cast_large_binary", Type::LARGE_BINARY);
+ AddCommonCasts(Type::LARGE_BINARY, large_binary(), cast_large_binary.get());
AddBinaryToBinaryCast<LargeBinaryType>(cast_large_binary.get());
-
- auto cast_string = std::make_shared<CastFunction>("cast_string", Type::STRING);
- AddCommonCasts(Type::STRING, utf8(), cast_string.get());
+
+ auto cast_string = std::make_shared<CastFunction>("cast_string", Type::STRING);
+ AddCommonCasts(Type::STRING, utf8(), cast_string.get());
AddNumberToStringCasts<StringType>(cast_string.get());
AddBinaryToBinaryCast<StringType>(cast_string.get());
-
- auto cast_large_string =
- std::make_shared<CastFunction>("cast_large_string", Type::LARGE_STRING);
- AddCommonCasts(Type::LARGE_STRING, large_utf8(), cast_large_string.get());
+
+ auto cast_large_string =
+ std::make_shared<CastFunction>("cast_large_string", Type::LARGE_STRING);
+ AddCommonCasts(Type::LARGE_STRING, large_utf8(), cast_large_string.get());
AddNumberToStringCasts<LargeStringType>(cast_large_string.get());
AddBinaryToBinaryCast<LargeStringType>(cast_large_string.get());
-
+
auto cast_fsb =
std::make_shared<CastFunction>("cast_fixed_size_binary", Type::FIXED_SIZE_BINARY);
AddCommonCasts(Type::FIXED_SIZE_BINARY, OutputType(ResolveOutputFromOptions),
cast_fsb.get());
return {cast_binary, cast_large_binary, cast_string, cast_large_string, cast_fsb};
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_temporal.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_temporal.cc
index 1a58fce7c7..a06d473329 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_temporal.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_cast_temporal.cc
@@ -1,260 +1,260 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-// Implementation of casting to (or between) temporal types
-
-#include <limits>
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// Implementation of casting to (or between) temporal types
+
+#include <limits>
+
#include "arrow/array/builder_time.h"
-#include "arrow/compute/kernels/common.h"
-#include "arrow/compute/kernels/scalar_cast_internal.h"
-#include "arrow/util/bitmap_reader.h"
-#include "arrow/util/time.h"
-#include "arrow/util/value_parsing.h"
-
-namespace arrow {
-
-using internal::ParseValue;
-
-namespace compute {
-namespace internal {
-
-constexpr int64_t kMillisecondsInDay = 86400000;
-
-// ----------------------------------------------------------------------
-// From one timestamp to another
-
-template <typename in_type, typename out_type>
+#include "arrow/compute/kernels/common.h"
+#include "arrow/compute/kernels/scalar_cast_internal.h"
+#include "arrow/util/bitmap_reader.h"
+#include "arrow/util/time.h"
+#include "arrow/util/value_parsing.h"
+
+namespace arrow {
+
+using internal::ParseValue;
+
+namespace compute {
+namespace internal {
+
+constexpr int64_t kMillisecondsInDay = 86400000;
+
+// ----------------------------------------------------------------------
+// From one timestamp to another
+
+template <typename in_type, typename out_type>
Status ShiftTime(KernelContext* ctx, const util::DivideOrMultiply factor_op,
const int64_t factor, const ArrayData& input, ArrayData* output) {
- const CastOptions& options = checked_cast<const CastState&>(*ctx->state()).options;
+ const CastOptions& options = checked_cast<const CastState&>(*ctx->state()).options;
auto in_data = input.GetValues<in_type>(1);
- auto out_data = output->GetMutableValues<out_type>(1);
-
- if (factor == 1) {
- for (int64_t i = 0; i < input.length; i++) {
- out_data[i] = static_cast<out_type>(in_data[i]);
- }
- } else if (factor_op == util::MULTIPLY) {
- if (options.allow_time_overflow) {
- for (int64_t i = 0; i < input.length; i++) {
- out_data[i] = static_cast<out_type>(in_data[i] * factor);
- }
- } else {
+ auto out_data = output->GetMutableValues<out_type>(1);
+
+ if (factor == 1) {
+ for (int64_t i = 0; i < input.length; i++) {
+ out_data[i] = static_cast<out_type>(in_data[i]);
+ }
+ } else if (factor_op == util::MULTIPLY) {
+ if (options.allow_time_overflow) {
+ for (int64_t i = 0; i < input.length; i++) {
+ out_data[i] = static_cast<out_type>(in_data[i] * factor);
+ }
+ } else {
#define RAISE_OVERFLOW_CAST(VAL) \
return Status::Invalid("Casting from ", input.type->ToString(), " to ", \
output->type->ToString(), " would result in ", \
"out of bounds timestamp: ", VAL);
-
- int64_t max_val = std::numeric_limits<int64_t>::max() / factor;
- int64_t min_val = std::numeric_limits<int64_t>::min() / factor;
- if (input.null_count != 0) {
- BitmapReader bit_reader(input.buffers[0]->data(), input.offset, input.length);
- for (int64_t i = 0; i < input.length; i++) {
- if (bit_reader.IsSet() && (in_data[i] < min_val || in_data[i] > max_val)) {
- RAISE_OVERFLOW_CAST(in_data[i]);
- }
- out_data[i] = static_cast<out_type>(in_data[i] * factor);
- bit_reader.Next();
- }
- } else {
- for (int64_t i = 0; i < input.length; i++) {
- if (in_data[i] < min_val || in_data[i] > max_val) {
- RAISE_OVERFLOW_CAST(in_data[i]);
- }
- out_data[i] = static_cast<out_type>(in_data[i] * factor);
- }
- }
-
-#undef RAISE_OVERFLOW_CAST
- }
- } else {
- if (options.allow_time_truncate) {
- for (int64_t i = 0; i < input.length; i++) {
- out_data[i] = static_cast<out_type>(in_data[i] / factor);
- }
- } else {
+
+ int64_t max_val = std::numeric_limits<int64_t>::max() / factor;
+ int64_t min_val = std::numeric_limits<int64_t>::min() / factor;
+ if (input.null_count != 0) {
+ BitmapReader bit_reader(input.buffers[0]->data(), input.offset, input.length);
+ for (int64_t i = 0; i < input.length; i++) {
+ if (bit_reader.IsSet() && (in_data[i] < min_val || in_data[i] > max_val)) {
+ RAISE_OVERFLOW_CAST(in_data[i]);
+ }
+ out_data[i] = static_cast<out_type>(in_data[i] * factor);
+ bit_reader.Next();
+ }
+ } else {
+ for (int64_t i = 0; i < input.length; i++) {
+ if (in_data[i] < min_val || in_data[i] > max_val) {
+ RAISE_OVERFLOW_CAST(in_data[i]);
+ }
+ out_data[i] = static_cast<out_type>(in_data[i] * factor);
+ }
+ }
+
+#undef RAISE_OVERFLOW_CAST
+ }
+ } else {
+ if (options.allow_time_truncate) {
+ for (int64_t i = 0; i < input.length; i++) {
+ out_data[i] = static_cast<out_type>(in_data[i] / factor);
+ }
+ } else {
#define RAISE_INVALID_CAST(VAL) \
return Status::Invalid("Casting from ", input.type->ToString(), " to ", \
output->type->ToString(), " would lose data: ", VAL);
-
- if (input.null_count != 0) {
- BitmapReader bit_reader(input.buffers[0]->data(), input.offset, input.length);
- for (int64_t i = 0; i < input.length; i++) {
- out_data[i] = static_cast<out_type>(in_data[i] / factor);
- if (bit_reader.IsSet() && (out_data[i] * factor != in_data[i])) {
- RAISE_INVALID_CAST(in_data[i]);
- }
- bit_reader.Next();
- }
- } else {
- for (int64_t i = 0; i < input.length; i++) {
- out_data[i] = static_cast<out_type>(in_data[i] / factor);
- if (out_data[i] * factor != in_data[i]) {
- RAISE_INVALID_CAST(in_data[i]);
- }
- }
- }
-
-#undef RAISE_INVALID_CAST
- }
- }
+
+ if (input.null_count != 0) {
+ BitmapReader bit_reader(input.buffers[0]->data(), input.offset, input.length);
+ for (int64_t i = 0; i < input.length; i++) {
+ out_data[i] = static_cast<out_type>(in_data[i] / factor);
+ if (bit_reader.IsSet() && (out_data[i] * factor != in_data[i])) {
+ RAISE_INVALID_CAST(in_data[i]);
+ }
+ bit_reader.Next();
+ }
+ } else {
+ for (int64_t i = 0; i < input.length; i++) {
+ out_data[i] = static_cast<out_type>(in_data[i] / factor);
+ if (out_data[i] * factor != in_data[i]) {
+ RAISE_INVALID_CAST(in_data[i]);
+ }
+ }
+ }
+
+#undef RAISE_INVALID_CAST
+ }
+ }
return Status::OK();
-}
-
-// <TimestampType, TimestampType> and <DurationType, DurationType>
-template <typename O, typename I>
-struct CastFunctor<
- O, I,
- enable_if_t<(is_timestamp_type<O>::value && is_timestamp_type<I>::value) ||
- (is_duration_type<O>::value && is_duration_type<I>::value)>> {
+}
+
+// <TimestampType, TimestampType> and <DurationType, DurationType>
+template <typename O, typename I>
+struct CastFunctor<
+ O, I,
+ enable_if_t<(is_timestamp_type<O>::value && is_timestamp_type<I>::value) ||
+ (is_duration_type<O>::value && is_duration_type<I>::value)>> {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- DCHECK_EQ(batch[0].kind(), Datum::ARRAY);
-
- const ArrayData& input = *batch[0].array();
- ArrayData* output = out->mutable_array();
-
- // If units are the same, zero copy, otherwise convert
- const auto& in_type = checked_cast<const I&>(*batch[0].type());
- const auto& out_type = checked_cast<const O&>(*output->type);
-
- // The units may be equal if the time zones are different. We might go to
- // lengths to make this zero copy in the future but we leave it for now
-
- auto conversion = util::GetTimestampConversion(in_type.unit(), out_type.unit());
+ DCHECK_EQ(batch[0].kind(), Datum::ARRAY);
+
+ const ArrayData& input = *batch[0].array();
+ ArrayData* output = out->mutable_array();
+
+ // If units are the same, zero copy, otherwise convert
+ const auto& in_type = checked_cast<const I&>(*batch[0].type());
+ const auto& out_type = checked_cast<const O&>(*output->type);
+
+ // The units may be equal if the time zones are different. We might go to
+ // lengths to make this zero copy in the future but we leave it for now
+
+ auto conversion = util::GetTimestampConversion(in_type.unit(), out_type.unit());
return ShiftTime<int64_t, int64_t>(ctx, conversion.first, conversion.second, input,
output);
- }
-};
-
-template <>
-struct CastFunctor<Date32Type, TimestampType> {
+ }
+};
+
+template <>
+struct CastFunctor<Date32Type, TimestampType> {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- DCHECK_EQ(batch[0].kind(), Datum::ARRAY);
-
- const ArrayData& input = *batch[0].array();
- ArrayData* output = out->mutable_array();
-
- const auto& in_type = checked_cast<const TimestampType&>(*input.type);
-
- static const int64_t kTimestampToDateFactors[4] = {
- 86400LL, // SECOND
- 86400LL * 1000LL, // MILLI
- 86400LL * 1000LL * 1000LL, // MICRO
- 86400LL * 1000LL * 1000LL * 1000LL, // NANO
- };
-
- const int64_t factor = kTimestampToDateFactors[static_cast<int>(in_type.unit())];
+ DCHECK_EQ(batch[0].kind(), Datum::ARRAY);
+
+ const ArrayData& input = *batch[0].array();
+ ArrayData* output = out->mutable_array();
+
+ const auto& in_type = checked_cast<const TimestampType&>(*input.type);
+
+ static const int64_t kTimestampToDateFactors[4] = {
+ 86400LL, // SECOND
+ 86400LL * 1000LL, // MILLI
+ 86400LL * 1000LL * 1000LL, // MICRO
+ 86400LL * 1000LL * 1000LL * 1000LL, // NANO
+ };
+
+ const int64_t factor = kTimestampToDateFactors[static_cast<int>(in_type.unit())];
return ShiftTime<int64_t, int32_t>(ctx, util::DIVIDE, factor, input, output);
- }
-};
-
-template <>
-struct CastFunctor<Date64Type, TimestampType> {
+ }
+};
+
+template <>
+struct CastFunctor<Date64Type, TimestampType> {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- DCHECK_EQ(batch[0].kind(), Datum::ARRAY);
-
- const CastOptions& options = checked_cast<const CastState&>(*ctx->state()).options;
- const ArrayData& input = *batch[0].array();
- ArrayData* output = out->mutable_array();
- const auto& in_type = checked_cast<const TimestampType&>(*input.type);
-
- auto conversion = util::GetTimestampConversion(in_type.unit(), TimeUnit::MILLI);
+ DCHECK_EQ(batch[0].kind(), Datum::ARRAY);
+
+ const CastOptions& options = checked_cast<const CastState&>(*ctx->state()).options;
+ const ArrayData& input = *batch[0].array();
+ ArrayData* output = out->mutable_array();
+ const auto& in_type = checked_cast<const TimestampType&>(*input.type);
+
+ auto conversion = util::GetTimestampConversion(in_type.unit(), TimeUnit::MILLI);
RETURN_NOT_OK((ShiftTime<int64_t, int64_t>(ctx, conversion.first, conversion.second,
input, output)));
-
- // Ensure that intraday milliseconds have been zeroed out
- auto out_data = output->GetMutableValues<int64_t>(1);
-
- if (input.null_count != 0) {
- BitmapReader bit_reader(input.buffers[0]->data(), input.offset, input.length);
-
- for (int64_t i = 0; i < input.length; ++i) {
- const int64_t remainder = out_data[i] % kMillisecondsInDay;
- if (ARROW_PREDICT_FALSE(!options.allow_time_truncate && bit_reader.IsSet() &&
- remainder > 0)) {
+
+ // Ensure that intraday milliseconds have been zeroed out
+ auto out_data = output->GetMutableValues<int64_t>(1);
+
+ if (input.null_count != 0) {
+ BitmapReader bit_reader(input.buffers[0]->data(), input.offset, input.length);
+
+ for (int64_t i = 0; i < input.length; ++i) {
+ const int64_t remainder = out_data[i] % kMillisecondsInDay;
+ if (ARROW_PREDICT_FALSE(!options.allow_time_truncate && bit_reader.IsSet() &&
+ remainder > 0)) {
return Status::Invalid("Timestamp value had non-zero intraday milliseconds");
- }
- out_data[i] -= remainder;
- bit_reader.Next();
- }
- } else {
- for (int64_t i = 0; i < input.length; ++i) {
- const int64_t remainder = out_data[i] % kMillisecondsInDay;
- if (ARROW_PREDICT_FALSE(!options.allow_time_truncate && remainder > 0)) {
+ }
+ out_data[i] -= remainder;
+ bit_reader.Next();
+ }
+ } else {
+ for (int64_t i = 0; i < input.length; ++i) {
+ const int64_t remainder = out_data[i] % kMillisecondsInDay;
+ if (ARROW_PREDICT_FALSE(!options.allow_time_truncate && remainder > 0)) {
return Status::Invalid("Timestamp value had non-zero intraday milliseconds");
- }
- out_data[i] -= remainder;
- }
- }
+ }
+ out_data[i] -= remainder;
+ }
+ }
return Status::OK();
- }
-};
-
-// ----------------------------------------------------------------------
-// From one time32 or time64 to another
-
-template <typename O, typename I>
-struct CastFunctor<O, I, enable_if_t<is_time_type<I>::value && is_time_type<O>::value>> {
- using in_t = typename I::c_type;
- using out_t = typename O::c_type;
-
+ }
+};
+
+// ----------------------------------------------------------------------
+// From one time32 or time64 to another
+
+template <typename O, typename I>
+struct CastFunctor<O, I, enable_if_t<is_time_type<I>::value && is_time_type<O>::value>> {
+ using in_t = typename I::c_type;
+ using out_t = typename O::c_type;
+
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- DCHECK_EQ(batch[0].kind(), Datum::ARRAY);
-
- const ArrayData& input = *batch[0].array();
- ArrayData* output = out->mutable_array();
-
- // If units are the same, zero copy, otherwise convert
- const auto& in_type = checked_cast<const I&>(*input.type);
- const auto& out_type = checked_cast<const O&>(*output->type);
- DCHECK_NE(in_type.unit(), out_type.unit()) << "Do not cast equal types";
- auto conversion = util::GetTimestampConversion(in_type.unit(), out_type.unit());
+ DCHECK_EQ(batch[0].kind(), Datum::ARRAY);
+
+ const ArrayData& input = *batch[0].array();
+ ArrayData* output = out->mutable_array();
+
+ // If units are the same, zero copy, otherwise convert
+ const auto& in_type = checked_cast<const I&>(*input.type);
+ const auto& out_type = checked_cast<const O&>(*output->type);
+ DCHECK_NE(in_type.unit(), out_type.unit()) << "Do not cast equal types";
+ auto conversion = util::GetTimestampConversion(in_type.unit(), out_type.unit());
return ShiftTime<in_t, out_t>(ctx, conversion.first, conversion.second, input,
output);
- }
-};
-
-// ----------------------------------------------------------------------
-// Between date32 and date64
-
-template <>
-struct CastFunctor<Date64Type, Date32Type> {
+ }
+};
+
+// ----------------------------------------------------------------------
+// Between date32 and date64
+
+template <>
+struct CastFunctor<Date64Type, Date32Type> {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- DCHECK_EQ(batch[0].kind(), Datum::ARRAY);
-
+ DCHECK_EQ(batch[0].kind(), Datum::ARRAY);
+
return ShiftTime<int32_t, int64_t>(ctx, util::MULTIPLY, kMillisecondsInDay,
*batch[0].array(), out->mutable_array());
- }
-};
-
-template <>
-struct CastFunctor<Date32Type, Date64Type> {
+ }
+};
+
+template <>
+struct CastFunctor<Date32Type, Date64Type> {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- DCHECK_EQ(batch[0].kind(), Datum::ARRAY);
-
+ DCHECK_EQ(batch[0].kind(), Datum::ARRAY);
+
return ShiftTime<int64_t, int32_t>(ctx, util::DIVIDE, kMillisecondsInDay,
*batch[0].array(), out->mutable_array());
- }
-};
-
-// ----------------------------------------------------------------------
+ }
+};
+
+// ----------------------------------------------------------------------
// date32, date64 to timestamp
template <>
@@ -289,164 +289,164 @@ struct CastFunctor<TimestampType, Date64Type> {
};
// ----------------------------------------------------------------------
-// String to Timestamp
-
-struct ParseTimestamp {
- template <typename OutValue, typename Arg0Value>
+// String to Timestamp
+
+struct ParseTimestamp {
+ template <typename OutValue, typename Arg0Value>
OutValue Call(KernelContext*, Arg0Value val, Status* st) const {
- OutValue result = 0;
- if (ARROW_PREDICT_FALSE(!ParseValue(type, val.data(), val.size(), &result))) {
+ OutValue result = 0;
+ if (ARROW_PREDICT_FALSE(!ParseValue(type, val.data(), val.size(), &result))) {
*st = Status::Invalid("Failed to parse string: '", val, "' as a scalar of type ",
type.ToString());
- }
- return result;
- }
-
- const TimestampType& type;
-};
-
-template <typename I>
-struct CastFunctor<TimestampType, I, enable_if_t<is_base_binary_type<I>::value>> {
+ }
+ return result;
+ }
+
+ const TimestampType& type;
+};
+
+template <typename I>
+struct CastFunctor<TimestampType, I, enable_if_t<is_base_binary_type<I>::value>> {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- const auto& out_type = checked_cast<const TimestampType&>(*out->type());
- applicator::ScalarUnaryNotNullStateful<TimestampType, I, ParseTimestamp> kernel(
- ParseTimestamp{out_type});
- return kernel.Exec(ctx, batch, out);
- }
-};
-
-template <typename Type>
-void AddCrossUnitCast(CastFunction* func) {
- ScalarKernel kernel;
+ const auto& out_type = checked_cast<const TimestampType&>(*out->type());
+ applicator::ScalarUnaryNotNullStateful<TimestampType, I, ParseTimestamp> kernel(
+ ParseTimestamp{out_type});
+ return kernel.Exec(ctx, batch, out);
+ }
+};
+
+template <typename Type>
+void AddCrossUnitCast(CastFunction* func) {
+ ScalarKernel kernel;
kernel.exec = TrivialScalarUnaryAsArraysExec(CastFunctor<Type, Type>::Exec);
- kernel.signature = KernelSignature::Make({InputType(Type::type_id)}, kOutputTargetType);
- DCHECK_OK(func->AddKernel(Type::type_id, std::move(kernel)));
-}
-
-std::shared_ptr<CastFunction> GetDate32Cast() {
- auto func = std::make_shared<CastFunction>("cast_date32", Type::DATE32);
- auto out_ty = date32();
- AddCommonCasts(Type::DATE32, out_ty, func.get());
-
- // int32 -> date32
- AddZeroCopyCast(Type::INT32, int32(), date32(), func.get());
-
- // date64 -> date32
- AddSimpleCast<Date64Type, Date32Type>(date64(), date32(), func.get());
-
- // timestamp -> date32
- AddSimpleCast<TimestampType, Date32Type>(InputType(Type::TIMESTAMP), date32(),
- func.get());
- return func;
-}
-
-std::shared_ptr<CastFunction> GetDate64Cast() {
- auto func = std::make_shared<CastFunction>("cast_date64", Type::DATE64);
- auto out_ty = date64();
- AddCommonCasts(Type::DATE64, out_ty, func.get());
-
- // int64 -> date64
- AddZeroCopyCast(Type::INT64, int64(), date64(), func.get());
-
- // date32 -> date64
- AddSimpleCast<Date32Type, Date64Type>(date32(), date64(), func.get());
-
- // timestamp -> date64
- AddSimpleCast<TimestampType, Date64Type>(InputType(Type::TIMESTAMP), date64(),
- func.get());
- return func;
-}
-
-std::shared_ptr<CastFunction> GetDurationCast() {
- auto func = std::make_shared<CastFunction>("cast_duration", Type::DURATION);
- AddCommonCasts(Type::DURATION, kOutputTargetType, func.get());
-
- auto seconds = duration(TimeUnit::SECOND);
- auto millis = duration(TimeUnit::MILLI);
- auto micros = duration(TimeUnit::MICRO);
- auto nanos = duration(TimeUnit::NANO);
-
- // Same integer representation
- AddZeroCopyCast(Type::INT64, /*in_type=*/int64(), kOutputTargetType, func.get());
-
- // Between durations
- AddCrossUnitCast<DurationType>(func.get());
-
- return func;
-}
-
-std::shared_ptr<CastFunction> GetTime32Cast() {
- auto func = std::make_shared<CastFunction>("cast_time32", Type::TIME32);
- AddCommonCasts(Type::TIME32, kOutputTargetType, func.get());
-
- // Zero copy when the unit is the same or same integer representation
- AddZeroCopyCast(Type::INT32, /*in_type=*/int32(), kOutputTargetType, func.get());
-
- // time64 -> time32
- AddSimpleCast<Time64Type, Time32Type>(InputType(Type::TIME64), kOutputTargetType,
- func.get());
-
- // time32 -> time32
- AddCrossUnitCast<Time32Type>(func.get());
-
- return func;
-}
-
-std::shared_ptr<CastFunction> GetTime64Cast() {
- auto func = std::make_shared<CastFunction>("cast_time64", Type::TIME64);
- AddCommonCasts(Type::TIME64, kOutputTargetType, func.get());
-
- // Zero copy when the unit is the same or same integer representation
- AddZeroCopyCast(Type::INT64, /*in_type=*/int64(), kOutputTargetType, func.get());
-
- // time32 -> time64
- AddSimpleCast<Time32Type, Time64Type>(InputType(Type::TIME32), kOutputTargetType,
- func.get());
-
- // Between durations
- AddCrossUnitCast<Time64Type>(func.get());
-
- return func;
-}
-
-std::shared_ptr<CastFunction> GetTimestampCast() {
- auto func = std::make_shared<CastFunction>("cast_timestamp", Type::TIMESTAMP);
- AddCommonCasts(Type::TIMESTAMP, kOutputTargetType, func.get());
-
- // Same integer representation
- AddZeroCopyCast(Type::INT64, /*in_type=*/int64(), kOutputTargetType, func.get());
-
- // From date types
+ kernel.signature = KernelSignature::Make({InputType(Type::type_id)}, kOutputTargetType);
+ DCHECK_OK(func->AddKernel(Type::type_id, std::move(kernel)));
+}
+
+std::shared_ptr<CastFunction> GetDate32Cast() {
+ auto func = std::make_shared<CastFunction>("cast_date32", Type::DATE32);
+ auto out_ty = date32();
+ AddCommonCasts(Type::DATE32, out_ty, func.get());
+
+ // int32 -> date32
+ AddZeroCopyCast(Type::INT32, int32(), date32(), func.get());
+
+ // date64 -> date32
+ AddSimpleCast<Date64Type, Date32Type>(date64(), date32(), func.get());
+
+ // timestamp -> date32
+ AddSimpleCast<TimestampType, Date32Type>(InputType(Type::TIMESTAMP), date32(),
+ func.get());
+ return func;
+}
+
+std::shared_ptr<CastFunction> GetDate64Cast() {
+ auto func = std::make_shared<CastFunction>("cast_date64", Type::DATE64);
+ auto out_ty = date64();
+ AddCommonCasts(Type::DATE64, out_ty, func.get());
+
+ // int64 -> date64
+ AddZeroCopyCast(Type::INT64, int64(), date64(), func.get());
+
+ // date32 -> date64
+ AddSimpleCast<Date32Type, Date64Type>(date32(), date64(), func.get());
+
+ // timestamp -> date64
+ AddSimpleCast<TimestampType, Date64Type>(InputType(Type::TIMESTAMP), date64(),
+ func.get());
+ return func;
+}
+
+std::shared_ptr<CastFunction> GetDurationCast() {
+ auto func = std::make_shared<CastFunction>("cast_duration", Type::DURATION);
+ AddCommonCasts(Type::DURATION, kOutputTargetType, func.get());
+
+ auto seconds = duration(TimeUnit::SECOND);
+ auto millis = duration(TimeUnit::MILLI);
+ auto micros = duration(TimeUnit::MICRO);
+ auto nanos = duration(TimeUnit::NANO);
+
+ // Same integer representation
+ AddZeroCopyCast(Type::INT64, /*in_type=*/int64(), kOutputTargetType, func.get());
+
+ // Between durations
+ AddCrossUnitCast<DurationType>(func.get());
+
+ return func;
+}
+
+std::shared_ptr<CastFunction> GetTime32Cast() {
+ auto func = std::make_shared<CastFunction>("cast_time32", Type::TIME32);
+ AddCommonCasts(Type::TIME32, kOutputTargetType, func.get());
+
+ // Zero copy when the unit is the same or same integer representation
+ AddZeroCopyCast(Type::INT32, /*in_type=*/int32(), kOutputTargetType, func.get());
+
+ // time64 -> time32
+ AddSimpleCast<Time64Type, Time32Type>(InputType(Type::TIME64), kOutputTargetType,
+ func.get());
+
+ // time32 -> time32
+ AddCrossUnitCast<Time32Type>(func.get());
+
+ return func;
+}
+
+std::shared_ptr<CastFunction> GetTime64Cast() {
+ auto func = std::make_shared<CastFunction>("cast_time64", Type::TIME64);
+ AddCommonCasts(Type::TIME64, kOutputTargetType, func.get());
+
+ // Zero copy when the unit is the same or same integer representation
+ AddZeroCopyCast(Type::INT64, /*in_type=*/int64(), kOutputTargetType, func.get());
+
+ // time32 -> time64
+ AddSimpleCast<Time32Type, Time64Type>(InputType(Type::TIME32), kOutputTargetType,
+ func.get());
+
+ // Between durations
+ AddCrossUnitCast<Time64Type>(func.get());
+
+ return func;
+}
+
+std::shared_ptr<CastFunction> GetTimestampCast() {
+ auto func = std::make_shared<CastFunction>("cast_timestamp", Type::TIMESTAMP);
+ AddCommonCasts(Type::TIMESTAMP, kOutputTargetType, func.get());
+
+ // Same integer representation
+ AddZeroCopyCast(Type::INT64, /*in_type=*/int64(), kOutputTargetType, func.get());
+
+ // From date types
// TODO: ARROW-8876, these casts are not directly tested
AddSimpleCast<Date32Type, TimestampType>(InputType(Type::DATE32), kOutputTargetType,
func.get());
AddSimpleCast<Date64Type, TimestampType>(InputType(Type::DATE64), kOutputTargetType,
func.get());
-
- // string -> timestamp
- AddSimpleCast<StringType, TimestampType>(utf8(), kOutputTargetType, func.get());
- // large_string -> timestamp
- AddSimpleCast<LargeStringType, TimestampType>(large_utf8(), kOutputTargetType,
- func.get());
-
- // From one timestamp to another
- AddCrossUnitCast<TimestampType>(func.get());
-
- return func;
-}
-
-std::vector<std::shared_ptr<CastFunction>> GetTemporalCasts() {
- std::vector<std::shared_ptr<CastFunction>> functions;
-
- functions.push_back(GetDate32Cast());
- functions.push_back(GetDate64Cast());
- functions.push_back(GetDurationCast());
- functions.push_back(GetTime32Cast());
- functions.push_back(GetTime64Cast());
- functions.push_back(GetTimestampCast());
- return functions;
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+
+ // string -> timestamp
+ AddSimpleCast<StringType, TimestampType>(utf8(), kOutputTargetType, func.get());
+ // large_string -> timestamp
+ AddSimpleCast<LargeStringType, TimestampType>(large_utf8(), kOutputTargetType,
+ func.get());
+
+ // From one timestamp to another
+ AddCrossUnitCast<TimestampType>(func.get());
+
+ return func;
+}
+
+std::vector<std::shared_ptr<CastFunction>> GetTemporalCasts() {
+ std::vector<std::shared_ptr<CastFunction>> functions;
+
+ functions.push_back(GetDate32Cast());
+ functions.push_back(GetDate64Cast());
+ functions.push_back(GetDurationCast());
+ functions.push_back(GetTime32Cast());
+ functions.push_back(GetTime64Cast());
+ functions.push_back(GetTimestampCast());
+ return functions;
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_compare.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_compare.cc
index 4342d776c3..713875937a 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_compare.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_compare.cc
@@ -1,70 +1,70 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
#include <cmath>
#include <limits>
#include "arrow/compute/api_scalar.h"
-#include "arrow/compute/kernels/common.h"
+#include "arrow/compute/kernels/common.h"
#include "arrow/util/bitmap_ops.h"
-
-namespace arrow {
-
-using internal::checked_cast;
-using internal::checked_pointer_cast;
-using util::string_view;
-
-namespace compute {
-namespace internal {
-
-namespace {
-
-struct Equal {
+
+namespace arrow {
+
+using internal::checked_cast;
+using internal::checked_pointer_cast;
+using util::string_view;
+
+namespace compute {
+namespace internal {
+
+namespace {
+
+struct Equal {
template <typename T, typename Arg0, typename Arg1>
static constexpr T Call(KernelContext*, const Arg0& left, const Arg1& right, Status*) {
static_assert(std::is_same<T, bool>::value && std::is_same<Arg0, Arg1>::value, "");
- return left == right;
- }
-};
-
-struct NotEqual {
+ return left == right;
+ }
+};
+
+struct NotEqual {
template <typename T, typename Arg0, typename Arg1>
static constexpr T Call(KernelContext*, const Arg0& left, const Arg1& right, Status*) {
static_assert(std::is_same<T, bool>::value && std::is_same<Arg0, Arg1>::value, "");
- return left != right;
- }
-};
-
-struct Greater {
+ return left != right;
+ }
+};
+
+struct Greater {
template <typename T, typename Arg0, typename Arg1>
static constexpr T Call(KernelContext*, const Arg0& left, const Arg1& right, Status*) {
static_assert(std::is_same<T, bool>::value && std::is_same<Arg0, Arg1>::value, "");
- return left > right;
- }
-};
-
-struct GreaterEqual {
+ return left > right;
+ }
+};
+
+struct GreaterEqual {
template <typename T, typename Arg0, typename Arg1>
static constexpr T Call(KernelContext*, const Arg0& left, const Arg1& right, Status*) {
static_assert(std::is_same<T, bool>::value && std::is_same<Arg0, Arg1>::value, "");
- return left >= right;
- }
-};
-
+ return left >= right;
+ }
+};
+
template <typename T>
using is_unsigned_integer = std::integral_constant<bool, std::is_integral<T>::value &&
std::is_unsigned<T>::value>;
@@ -138,22 +138,22 @@ struct Maximum {
}
};
-// Implement Less, LessEqual by flipping arguments to Greater, GreaterEqual
-
-template <typename Op>
-void AddIntegerCompare(const std::shared_ptr<DataType>& ty, ScalarFunction* func) {
- auto exec =
- GeneratePhysicalInteger<applicator::ScalarBinaryEqualTypes, BooleanType, Op>(*ty);
- DCHECK_OK(func->AddKernel({ty, ty}, boolean(), std::move(exec)));
-}
-
-template <typename InType, typename Op>
-void AddGenericCompare(const std::shared_ptr<DataType>& ty, ScalarFunction* func) {
- DCHECK_OK(
- func->AddKernel({ty, ty}, boolean(),
- applicator::ScalarBinaryEqualTypes<BooleanType, InType, Op>::Exec));
-}
-
+// Implement Less, LessEqual by flipping arguments to Greater, GreaterEqual
+
+template <typename Op>
+void AddIntegerCompare(const std::shared_ptr<DataType>& ty, ScalarFunction* func) {
+ auto exec =
+ GeneratePhysicalInteger<applicator::ScalarBinaryEqualTypes, BooleanType, Op>(*ty);
+ DCHECK_OK(func->AddKernel({ty, ty}, boolean(), std::move(exec)));
+}
+
+template <typename InType, typename Op>
+void AddGenericCompare(const std::shared_ptr<DataType>& ty, ScalarFunction* func) {
+ DCHECK_OK(
+ func->AddKernel({ty, ty}, boolean(),
+ applicator::ScalarBinaryEqualTypes<BooleanType, InType, Op>::Exec));
+}
+
struct CompareFunction : ScalarFunction {
using ScalarFunction::ScalarFunction;
@@ -201,79 +201,79 @@ struct VarArgsCompareFunction : ScalarFunction {
}
};
-template <typename Op>
+template <typename Op>
std::shared_ptr<ScalarFunction> MakeCompareFunction(std::string name,
const FunctionDoc* doc) {
auto func = std::make_shared<CompareFunction>(name, Arity::Binary(), doc);
-
- DCHECK_OK(func->AddKernel(
- {boolean(), boolean()}, boolean(),
- applicator::ScalarBinary<BooleanType, BooleanType, BooleanType, Op>::Exec));
-
- for (const std::shared_ptr<DataType>& ty : IntTypes()) {
- AddIntegerCompare<Op>(ty, func.get());
- }
- AddIntegerCompare<Op>(date32(), func.get());
- AddIntegerCompare<Op>(date64(), func.get());
-
- AddGenericCompare<FloatType, Op>(float32(), func.get());
- AddGenericCompare<DoubleType, Op>(float64(), func.get());
-
- // Add timestamp kernels
- for (auto unit : AllTimeUnits()) {
- InputType in_type(match::TimestampTypeUnit(unit));
- auto exec =
- GeneratePhysicalInteger<applicator::ScalarBinaryEqualTypes, BooleanType, Op>(
- int64());
- DCHECK_OK(func->AddKernel({in_type, in_type}, boolean(), std::move(exec)));
- }
-
- // Duration
- for (auto unit : AllTimeUnits()) {
- InputType in_type(match::DurationTypeUnit(unit));
- auto exec =
- GeneratePhysicalInteger<applicator::ScalarBinaryEqualTypes, BooleanType, Op>(
- int64());
- DCHECK_OK(func->AddKernel({in_type, in_type}, boolean(), std::move(exec)));
- }
-
- // Time32 and Time64
- for (auto unit : {TimeUnit::SECOND, TimeUnit::MILLI}) {
- InputType in_type(match::Time32TypeUnit(unit));
- auto exec =
- GeneratePhysicalInteger<applicator::ScalarBinaryEqualTypes, BooleanType, Op>(
- int32());
- DCHECK_OK(func->AddKernel({in_type, in_type}, boolean(), std::move(exec)));
- }
- for (auto unit : {TimeUnit::MICRO, TimeUnit::NANO}) {
- InputType in_type(match::Time64TypeUnit(unit));
- auto exec =
- GeneratePhysicalInteger<applicator::ScalarBinaryEqualTypes, BooleanType, Op>(
- int64());
- DCHECK_OK(func->AddKernel({in_type, in_type}, boolean(), std::move(exec)));
- }
-
- for (const std::shared_ptr<DataType>& ty : BaseBinaryTypes()) {
- auto exec =
- GenerateVarBinaryBase<applicator::ScalarBinaryEqualTypes, BooleanType, Op>(*ty);
- DCHECK_OK(func->AddKernel({ty, ty}, boolean(), std::move(exec)));
- }
-
- return func;
-}
-
-std::shared_ptr<ScalarFunction> MakeFlippedFunction(std::string name,
+
+ DCHECK_OK(func->AddKernel(
+ {boolean(), boolean()}, boolean(),
+ applicator::ScalarBinary<BooleanType, BooleanType, BooleanType, Op>::Exec));
+
+ for (const std::shared_ptr<DataType>& ty : IntTypes()) {
+ AddIntegerCompare<Op>(ty, func.get());
+ }
+ AddIntegerCompare<Op>(date32(), func.get());
+ AddIntegerCompare<Op>(date64(), func.get());
+
+ AddGenericCompare<FloatType, Op>(float32(), func.get());
+ AddGenericCompare<DoubleType, Op>(float64(), func.get());
+
+ // Add timestamp kernels
+ for (auto unit : AllTimeUnits()) {
+ InputType in_type(match::TimestampTypeUnit(unit));
+ auto exec =
+ GeneratePhysicalInteger<applicator::ScalarBinaryEqualTypes, BooleanType, Op>(
+ int64());
+ DCHECK_OK(func->AddKernel({in_type, in_type}, boolean(), std::move(exec)));
+ }
+
+ // Duration
+ for (auto unit : AllTimeUnits()) {
+ InputType in_type(match::DurationTypeUnit(unit));
+ auto exec =
+ GeneratePhysicalInteger<applicator::ScalarBinaryEqualTypes, BooleanType, Op>(
+ int64());
+ DCHECK_OK(func->AddKernel({in_type, in_type}, boolean(), std::move(exec)));
+ }
+
+ // Time32 and Time64
+ for (auto unit : {TimeUnit::SECOND, TimeUnit::MILLI}) {
+ InputType in_type(match::Time32TypeUnit(unit));
+ auto exec =
+ GeneratePhysicalInteger<applicator::ScalarBinaryEqualTypes, BooleanType, Op>(
+ int32());
+ DCHECK_OK(func->AddKernel({in_type, in_type}, boolean(), std::move(exec)));
+ }
+ for (auto unit : {TimeUnit::MICRO, TimeUnit::NANO}) {
+ InputType in_type(match::Time64TypeUnit(unit));
+ auto exec =
+ GeneratePhysicalInteger<applicator::ScalarBinaryEqualTypes, BooleanType, Op>(
+ int64());
+ DCHECK_OK(func->AddKernel({in_type, in_type}, boolean(), std::move(exec)));
+ }
+
+ for (const std::shared_ptr<DataType>& ty : BaseBinaryTypes()) {
+ auto exec =
+ GenerateVarBinaryBase<applicator::ScalarBinaryEqualTypes, BooleanType, Op>(*ty);
+ DCHECK_OK(func->AddKernel({ty, ty}, boolean(), std::move(exec)));
+ }
+
+ return func;
+}
+
+std::shared_ptr<ScalarFunction> MakeFlippedFunction(std::string name,
const ScalarFunction& func,
const FunctionDoc* doc) {
auto flipped_func = std::make_shared<CompareFunction>(name, Arity::Binary(), doc);
- for (const ScalarKernel* kernel : func.kernels()) {
- ScalarKernel flipped_kernel = *kernel;
- flipped_kernel.exec = MakeFlippedBinaryExec(kernel->exec);
- DCHECK_OK(flipped_func->AddKernel(std::move(flipped_kernel)));
- }
- return flipped_func;
-}
-
+ for (const ScalarKernel* kernel : func.kernels()) {
+ ScalarKernel flipped_kernel = *kernel;
+ flipped_kernel.exec = MakeFlippedBinaryExec(kernel->exec);
+ DCHECK_OK(flipped_func->AddKernel(std::move(flipped_kernel)));
+ }
+ return flipped_func;
+}
+
using MinMaxState = OptionsWrapper<ElementWiseAggregateOptions>;
// Implement a variadic scalar min/max kernel.
@@ -489,23 +489,23 @@ const FunctionDoc max_element_wise_doc{
"NaN will be taken over null, but not over any valid float."),
{"*args"},
"ElementWiseAggregateOptions"};
-} // namespace
-
-void RegisterScalarComparison(FunctionRegistry* registry) {
+} // namespace
+
+void RegisterScalarComparison(FunctionRegistry* registry) {
DCHECK_OK(registry->AddFunction(MakeCompareFunction<Equal>("equal", &equal_doc)));
DCHECK_OK(
registry->AddFunction(MakeCompareFunction<NotEqual>("not_equal", &not_equal_doc)));
-
+
auto greater = MakeCompareFunction<Greater>("greater", &greater_doc);
auto greater_equal =
MakeCompareFunction<GreaterEqual>("greater_equal", &greater_equal_doc);
-
+
auto less = MakeFlippedFunction("less", *greater, &less_doc);
auto less_equal = MakeFlippedFunction("less_equal", *greater_equal, &less_equal_doc);
- DCHECK_OK(registry->AddFunction(std::move(less)));
- DCHECK_OK(registry->AddFunction(std::move(less_equal)));
- DCHECK_OK(registry->AddFunction(std::move(greater)));
- DCHECK_OK(registry->AddFunction(std::move(greater_equal)));
+ DCHECK_OK(registry->AddFunction(std::move(less)));
+ DCHECK_OK(registry->AddFunction(std::move(less_equal)));
+ DCHECK_OK(registry->AddFunction(std::move(greater)));
+ DCHECK_OK(registry->AddFunction(std::move(greater_equal)));
// ----------------------------------------------------------------------
// Variadic element-wise functions
@@ -517,8 +517,8 @@ void RegisterScalarComparison(FunctionRegistry* registry) {
auto max_element_wise =
MakeScalarMinMax<Maximum>("max_element_wise", &max_element_wise_doc);
DCHECK_OK(registry->AddFunction(std::move(max_element_wise)));
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_fill_null.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_fill_null.cc
index cf22b0de3d..e189c294be 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_fill_null.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_fill_null.cc
@@ -1,157 +1,157 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include <algorithm>
-#include <cstring>
-
-#include "arrow/compute/kernels/common.h"
-#include "arrow/scalar.h"
-#include "arrow/util/bit_block_counter.h"
-#include "arrow/util/bit_util.h"
-#include "arrow/util/bitmap_ops.h"
-
-namespace arrow {
-
-using internal::BitBlockCount;
-using internal::BitBlockCounter;
-
-namespace compute {
-namespace internal {
-
-namespace {
-
-template <typename Type, typename Enable = void>
-struct FillNullFunctor {};
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include <algorithm>
+#include <cstring>
+
+#include "arrow/compute/kernels/common.h"
+#include "arrow/scalar.h"
+#include "arrow/util/bit_block_counter.h"
+#include "arrow/util/bit_util.h"
+#include "arrow/util/bitmap_ops.h"
+
+namespace arrow {
+
+using internal::BitBlockCount;
+using internal::BitBlockCounter;
+
+namespace compute {
+namespace internal {
+
+namespace {
+
+template <typename Type, typename Enable = void>
+struct FillNullFunctor {};
+
// Numeric inputs
-template <typename Type>
-struct FillNullFunctor<Type, enable_if_t<is_number_type<Type>::value>> {
- using T = typename TypeTraits<Type>::CType;
-
+template <typename Type>
+struct FillNullFunctor<Type, enable_if_t<is_number_type<Type>::value>> {
+ using T = typename TypeTraits<Type>::CType;
+
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- const ArrayData& data = *batch[0].array();
- const Scalar& fill_value = *batch[1].scalar();
- ArrayData* output = out->mutable_array();
-
- // Ensure the kernel is configured properly to have no validity bitmap /
- // null count 0 unless we explicitly propagate it below.
- DCHECK(output->buffers[0] == nullptr);
-
- T value = UnboxScalar<Type>::Unbox(fill_value);
- if (data.MayHaveNulls() != 0 && fill_value.is_valid) {
+ const ArrayData& data = *batch[0].array();
+ const Scalar& fill_value = *batch[1].scalar();
+ ArrayData* output = out->mutable_array();
+
+ // Ensure the kernel is configured properly to have no validity bitmap /
+ // null count 0 unless we explicitly propagate it below.
+ DCHECK(output->buffers[0] == nullptr);
+
+ T value = UnboxScalar<Type>::Unbox(fill_value);
+ if (data.MayHaveNulls() != 0 && fill_value.is_valid) {
ARROW_ASSIGN_OR_RAISE(std::shared_ptr<Buffer> out_buf,
ctx->Allocate(data.length * sizeof(T)));
-
- const uint8_t* is_valid = data.buffers[0]->data();
- const T* in_values = data.GetValues<T>(1);
- T* out_values = reinterpret_cast<T*>(out_buf->mutable_data());
- int64_t offset = data.offset;
- BitBlockCounter bit_counter(is_valid, data.offset, data.length);
- while (offset < data.offset + data.length) {
- BitBlockCount block = bit_counter.NextWord();
- if (block.AllSet()) {
- // Block all not null
- std::memcpy(out_values, in_values, block.length * sizeof(T));
- } else if (block.NoneSet()) {
- // Block all null
- std::fill(out_values, out_values + block.length, value);
- } else {
- for (int64_t i = 0; i < block.length; ++i) {
- out_values[i] = BitUtil::GetBit(is_valid, offset + i) ? in_values[i] : value;
- }
- }
- offset += block.length;
- out_values += block.length;
- in_values += block.length;
- }
- output->buffers[1] = out_buf;
+
+ const uint8_t* is_valid = data.buffers[0]->data();
+ const T* in_values = data.GetValues<T>(1);
+ T* out_values = reinterpret_cast<T*>(out_buf->mutable_data());
+ int64_t offset = data.offset;
+ BitBlockCounter bit_counter(is_valid, data.offset, data.length);
+ while (offset < data.offset + data.length) {
+ BitBlockCount block = bit_counter.NextWord();
+ if (block.AllSet()) {
+ // Block all not null
+ std::memcpy(out_values, in_values, block.length * sizeof(T));
+ } else if (block.NoneSet()) {
+ // Block all null
+ std::fill(out_values, out_values + block.length, value);
+ } else {
+ for (int64_t i = 0; i < block.length; ++i) {
+ out_values[i] = BitUtil::GetBit(is_valid, offset + i) ? in_values[i] : value;
+ }
+ }
+ offset += block.length;
+ out_values += block.length;
+ in_values += block.length;
+ }
+ output->buffers[1] = out_buf;
output->null_count = 0;
- } else {
- *output = data;
- }
+ } else {
+ *output = data;
+ }
return Status::OK();
- }
-};
-
+ }
+};
+
// Boolean input
-template <typename Type>
-struct FillNullFunctor<Type, enable_if_t<is_boolean_type<Type>::value>> {
+template <typename Type>
+struct FillNullFunctor<Type, enable_if_t<is_boolean_type<Type>::value>> {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- const ArrayData& data = *batch[0].array();
- const Scalar& fill_value = *batch[1].scalar();
- ArrayData* output = out->mutable_array();
-
- bool value = UnboxScalar<BooleanType>::Unbox(fill_value);
- if (data.MayHaveNulls() != 0 && fill_value.is_valid) {
+ const ArrayData& data = *batch[0].array();
+ const Scalar& fill_value = *batch[1].scalar();
+ ArrayData* output = out->mutable_array();
+
+ bool value = UnboxScalar<BooleanType>::Unbox(fill_value);
+ if (data.MayHaveNulls() != 0 && fill_value.is_valid) {
ARROW_ASSIGN_OR_RAISE(std::shared_ptr<Buffer> out_buf,
ctx->AllocateBitmap(data.length));
-
- const uint8_t* is_valid = data.buffers[0]->data();
- const uint8_t* data_bitmap = data.buffers[1]->data();
- uint8_t* out_bitmap = out_buf->mutable_data();
-
- int64_t data_offset = data.offset;
- BitBlockCounter bit_counter(is_valid, data.offset, data.length);
-
- int64_t out_offset = 0;
- while (out_offset < data.length) {
- BitBlockCount block = bit_counter.NextWord();
- if (block.AllSet()) {
- // Block all not null
- ::arrow::internal::CopyBitmap(data_bitmap, data_offset, block.length,
- out_bitmap, out_offset);
- } else if (block.NoneSet()) {
- // Block all null
- BitUtil::SetBitsTo(out_bitmap, out_offset, block.length, value);
- } else {
- for (int64_t i = 0; i < block.length; ++i) {
- BitUtil::SetBitTo(out_bitmap, out_offset + i,
- BitUtil::GetBit(is_valid, data_offset + i)
- ? BitUtil::GetBit(data_bitmap, data_offset + i)
- : value);
- }
- }
- data_offset += block.length;
- out_offset += block.length;
- }
- output->buffers[1] = out_buf;
+
+ const uint8_t* is_valid = data.buffers[0]->data();
+ const uint8_t* data_bitmap = data.buffers[1]->data();
+ uint8_t* out_bitmap = out_buf->mutable_data();
+
+ int64_t data_offset = data.offset;
+ BitBlockCounter bit_counter(is_valid, data.offset, data.length);
+
+ int64_t out_offset = 0;
+ while (out_offset < data.length) {
+ BitBlockCount block = bit_counter.NextWord();
+ if (block.AllSet()) {
+ // Block all not null
+ ::arrow::internal::CopyBitmap(data_bitmap, data_offset, block.length,
+ out_bitmap, out_offset);
+ } else if (block.NoneSet()) {
+ // Block all null
+ BitUtil::SetBitsTo(out_bitmap, out_offset, block.length, value);
+ } else {
+ for (int64_t i = 0; i < block.length; ++i) {
+ BitUtil::SetBitTo(out_bitmap, out_offset + i,
+ BitUtil::GetBit(is_valid, data_offset + i)
+ ? BitUtil::GetBit(data_bitmap, data_offset + i)
+ : value);
+ }
+ }
+ data_offset += block.length;
+ out_offset += block.length;
+ }
+ output->buffers[1] = out_buf;
output->null_count = 0;
- } else {
- *output = data;
- }
+ } else {
+ *output = data;
+ }
return Status::OK();
- }
-};
-
+ }
+};
+
// Null input
-template <typename Type>
-struct FillNullFunctor<Type, enable_if_t<is_null_type<Type>::value>> {
+template <typename Type>
+struct FillNullFunctor<Type, enable_if_t<is_null_type<Type>::value>> {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- // Nothing preallocated, so we assign into the output
- *out->mutable_array() = *batch[0].array();
+ // Nothing preallocated, so we assign into the output
+ *out->mutable_array() = *batch[0].array();
return Status::OK();
- }
-};
-
+ }
+};
+
// Binary-like input
template <typename Type>
@@ -194,20 +194,20 @@ struct FillNullFunctor<Type, enable_if_t<is_base_binary_type<Type>::value>> {
}
};
-void AddBasicFillNullKernels(ScalarKernel kernel, ScalarFunction* func) {
- auto AddKernels = [&](const std::vector<std::shared_ptr<DataType>>& types) {
- for (const std::shared_ptr<DataType>& ty : types) {
- kernel.signature =
- KernelSignature::Make({InputType::Array(ty), InputType::Scalar(ty)}, ty);
- kernel.exec = GenerateTypeAgnosticPrimitive<FillNullFunctor>(*ty);
- DCHECK_OK(func->AddKernel(kernel));
- }
- };
- AddKernels(NumericTypes());
- AddKernels(TemporalTypes());
- AddKernels({boolean(), null()});
-}
-
+void AddBasicFillNullKernels(ScalarKernel kernel, ScalarFunction* func) {
+ auto AddKernels = [&](const std::vector<std::shared_ptr<DataType>>& types) {
+ for (const std::shared_ptr<DataType>& ty : types) {
+ kernel.signature =
+ KernelSignature::Make({InputType::Array(ty), InputType::Scalar(ty)}, ty);
+ kernel.exec = GenerateTypeAgnosticPrimitive<FillNullFunctor>(*ty);
+ DCHECK_OK(func->AddKernel(kernel));
+ }
+ };
+ AddKernels(NumericTypes());
+ AddKernels(TemporalTypes());
+ AddKernels({boolean(), null()});
+}
+
void AddBinaryFillNullKernels(ScalarKernel kernel, ScalarFunction* func) {
for (const std::shared_ptr<DataType>& ty : BaseBinaryTypes()) {
kernel.signature =
@@ -224,21 +224,21 @@ const FunctionDoc fill_null_doc{
"Each null value in `values` is replaced with `fill_value`."),
{"values", "fill_value"}};
-} // namespace
-
-void RegisterScalarFillNull(FunctionRegistry* registry) {
- {
- ScalarKernel fill_null_base;
- fill_null_base.null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
- fill_null_base.mem_allocation = MemAllocation::NO_PREALLOCATE;
+} // namespace
+
+void RegisterScalarFillNull(FunctionRegistry* registry) {
+ {
+ ScalarKernel fill_null_base;
+ fill_null_base.null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
+ fill_null_base.mem_allocation = MemAllocation::NO_PREALLOCATE;
auto fill_null =
std::make_shared<ScalarFunction>("fill_null", Arity::Binary(), &fill_null_doc);
- AddBasicFillNullKernels(fill_null_base, fill_null.get());
+ AddBasicFillNullKernels(fill_null_base, fill_null.get());
AddBinaryFillNullKernels(fill_null_base, fill_null.get());
- DCHECK_OK(registry->AddFunction(fill_null));
- }
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+ DCHECK_OK(registry->AddFunction(fill_null));
+ }
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_nested.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_nested.cc
index e9f0696c8f..cae2df4a09 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_nested.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_nested.cc
@@ -1,60 +1,60 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-// Vector kernels involving nested types
-
-#include "arrow/array/array_base.h"
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// Vector kernels involving nested types
+
+#include "arrow/array/array_base.h"
#include "arrow/compute/api_scalar.h"
-#include "arrow/compute/kernels/common.h"
-#include "arrow/result.h"
-#include "arrow/util/bit_block_counter.h"
-
-namespace arrow {
-namespace compute {
-namespace internal {
-namespace {
-
-template <typename Type, typename offset_type = typename Type::offset_type>
+#include "arrow/compute/kernels/common.h"
+#include "arrow/result.h"
+#include "arrow/util/bit_block_counter.h"
+
+namespace arrow {
+namespace compute {
+namespace internal {
+namespace {
+
+template <typename Type, typename offset_type = typename Type::offset_type>
Status ListValueLength(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- using ScalarType = typename TypeTraits<Type>::ScalarType;
- using OffsetScalarType = typename TypeTraits<Type>::OffsetScalarType;
-
- if (batch[0].kind() == Datum::ARRAY) {
- typename TypeTraits<Type>::ArrayType list(batch[0].array());
- ArrayData* out_arr = out->mutable_array();
- auto out_values = out_arr->GetMutableValues<offset_type>(1);
- const offset_type* offsets = list.raw_value_offsets();
- ::arrow::internal::VisitBitBlocksVoid(
- list.data()->buffers[0], list.offset(), list.length(),
- [&](int64_t position) {
- *out_values++ = offsets[position + 1] - offsets[position];
- },
- [&]() { *out_values++ = 0; });
- } else {
- const auto& arg0 = batch[0].scalar_as<ScalarType>();
- if (arg0.is_valid) {
- checked_cast<OffsetScalarType*>(out->scalar().get())->value =
- static_cast<offset_type>(arg0.value->length());
- }
- }
+ using ScalarType = typename TypeTraits<Type>::ScalarType;
+ using OffsetScalarType = typename TypeTraits<Type>::OffsetScalarType;
+
+ if (batch[0].kind() == Datum::ARRAY) {
+ typename TypeTraits<Type>::ArrayType list(batch[0].array());
+ ArrayData* out_arr = out->mutable_array();
+ auto out_values = out_arr->GetMutableValues<offset_type>(1);
+ const offset_type* offsets = list.raw_value_offsets();
+ ::arrow::internal::VisitBitBlocksVoid(
+ list.data()->buffers[0], list.offset(), list.length(),
+ [&](int64_t position) {
+ *out_values++ = offsets[position + 1] - offsets[position];
+ },
+ [&]() { *out_values++ = 0; });
+ } else {
+ const auto& arg0 = batch[0].scalar_as<ScalarType>();
+ if (arg0.is_valid) {
+ checked_cast<OffsetScalarType*>(out->scalar().get())->value =
+ static_cast<offset_type>(arg0.value->length());
+ }
+ }
return Status::OK();
-}
-
+}
+
const FunctionDoc list_value_length_doc{
"Compute list lengths",
("`lists` must have a list-like type.\n"
@@ -154,16 +154,16 @@ const FunctionDoc make_struct_doc{"Wrap Arrays into a StructArray",
{"*args"},
"MakeStructOptions"};
-} // namespace
-
-void RegisterScalarNested(FunctionRegistry* registry) {
+} // namespace
+
+void RegisterScalarNested(FunctionRegistry* registry) {
auto list_value_length = std::make_shared<ScalarFunction>(
"list_value_length", Arity::Unary(), &list_value_length_doc);
- DCHECK_OK(list_value_length->AddKernel({InputType(Type::LIST)}, int32(),
- ListValueLength<ListType>));
- DCHECK_OK(list_value_length->AddKernel({InputType(Type::LARGE_LIST)}, int64(),
- ListValueLength<LargeListType>));
- DCHECK_OK(registry->AddFunction(std::move(list_value_length)));
+ DCHECK_OK(list_value_length->AddKernel({InputType(Type::LIST)}, int32(),
+ ListValueLength<ListType>));
+ DCHECK_OK(list_value_length->AddKernel({InputType(Type::LARGE_LIST)}, int64(),
+ ListValueLength<LargeListType>));
+ DCHECK_OK(registry->AddFunction(std::move(list_value_length)));
static MakeStructOptions kDefaultMakeStructOptions;
auto make_struct_function = std::make_shared<ScalarFunction>(
@@ -176,8 +176,8 @@ void RegisterScalarNested(FunctionRegistry* registry) {
kernel.mem_allocation = MemAllocation::NO_PREALLOCATE;
DCHECK_OK(make_struct_function->AddKernel(std::move(kernel)));
DCHECK_OK(registry->AddFunction(std::move(make_struct_function)));
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_set_lookup.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_set_lookup.cc
index 3e2e95e540..867d8d041f 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_set_lookup.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_set_lookup.cc
@@ -1,45 +1,45 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/array/array_base.h"
-#include "arrow/array/builder_primitive.h"
-#include "arrow/compute/api_scalar.h"
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/array/array_base.h"
+#include "arrow/array/builder_primitive.h"
+#include "arrow/compute/api_scalar.h"
#include "arrow/compute/cast.h"
-#include "arrow/compute/kernels/common.h"
+#include "arrow/compute/kernels/common.h"
#include "arrow/compute/kernels/util_internal.h"
-#include "arrow/util/bit_util.h"
-#include "arrow/util/bitmap_writer.h"
-#include "arrow/util/hashing.h"
-#include "arrow/visitor_inline.h"
-
-namespace arrow {
-
-using internal::checked_cast;
-using internal::HashTraits;
-
-namespace compute {
-namespace internal {
-namespace {
-
-template <typename Type>
-struct SetLookupState : public KernelState {
+#include "arrow/util/bit_util.h"
+#include "arrow/util/bitmap_writer.h"
+#include "arrow/util/hashing.h"
+#include "arrow/visitor_inline.h"
+
+namespace arrow {
+
+using internal::checked_cast;
+using internal::HashTraits;
+
+namespace compute {
+namespace internal {
+namespace {
+
+template <typename Type>
+struct SetLookupState : public KernelState {
explicit SetLookupState(MemoryPool* pool) : lookup_table(pool, 0) {}
-
- Status Init(const SetLookupOptions& options) {
+
+ Status Init(const SetLookupOptions& options) {
if (options.value_set.kind() == Datum::ARRAY) {
const ArrayData& value_set = *options.value_set.array();
memo_index_to_value_index.reserve(value_set.length);
@@ -63,11 +63,11 @@ struct SetLookupState : public KernelState {
Status AddArrayValueSet(const SetLookupOptions& options, const ArrayData& data,
int64_t start_index = 0) {
- using T = typename GetViewType<Type>::T;
+ using T = typename GetViewType<Type>::T;
int32_t index = static_cast<int32_t>(start_index);
- auto visit_valid = [&](T v) {
+ auto visit_valid = [&](T v) {
const auto memo_size = static_cast<int32_t>(memo_index_to_value_index.size());
- int32_t unused_memo_index;
+ int32_t unused_memo_index;
auto on_found = [&](int32_t memo_index) { DCHECK_LT(memo_index, memo_size); };
auto on_not_found = [&](int32_t memo_index) {
DCHECK_EQ(memo_index, memo_size);
@@ -77,8 +77,8 @@ struct SetLookupState : public KernelState {
v, std::move(on_found), std::move(on_not_found), &unused_memo_index));
++index;
return Status::OK();
- };
- auto visit_null = [&]() {
+ };
+ auto visit_null = [&]() {
const auto memo_size = static_cast<int32_t>(memo_index_to_value_index.size());
auto on_found = [&](int32_t memo_index) { DCHECK_LT(memo_index, memo_size); };
auto on_not_found = [&](int32_t memo_index) {
@@ -87,96 +87,96 @@ struct SetLookupState : public KernelState {
};
lookup_table.GetOrInsertNull(std::move(on_found), std::move(on_not_found));
++index;
- return Status::OK();
- };
+ return Status::OK();
+ };
return VisitArrayDataInline<Type>(data, visit_valid, visit_null);
- }
-
- using MemoTable = typename HashTraits<Type>::MemoTableType;
- MemoTable lookup_table;
+ }
+
+ using MemoTable = typename HashTraits<Type>::MemoTableType;
+ MemoTable lookup_table;
// When there are duplicates in value_set, the MemoTable indices must
// be mapped back to indices in the value_set.
std::vector<int32_t> memo_index_to_value_index;
int32_t null_index = -1;
-};
-
-template <>
-struct SetLookupState<NullType> : public KernelState {
- explicit SetLookupState(MemoryPool*) {}
-
- Status Init(const SetLookupOptions& options) {
+};
+
+template <>
+struct SetLookupState<NullType> : public KernelState {
+ explicit SetLookupState(MemoryPool*) {}
+
+ Status Init(const SetLookupOptions& options) {
value_set_has_null = (options.value_set.length() > 0) && !options.skip_nulls;
- return Status::OK();
- }
-
+ return Status::OK();
+ }
+
bool value_set_has_null;
-};
-
-// TODO: Put this concept somewhere reusable
-template <int width>
-struct UnsignedIntType;
-
-template <>
-struct UnsignedIntType<1> {
- using Type = UInt8Type;
-};
-
-template <>
-struct UnsignedIntType<2> {
- using Type = UInt16Type;
-};
-
-template <>
-struct UnsignedIntType<4> {
- using Type = UInt32Type;
-};
-
-template <>
-struct UnsignedIntType<8> {
- using Type = UInt64Type;
-};
-
-// Constructing the type requires a type parameter
-struct InitStateVisitor {
- KernelContext* ctx;
+};
+
+// TODO: Put this concept somewhere reusable
+template <int width>
+struct UnsignedIntType;
+
+template <>
+struct UnsignedIntType<1> {
+ using Type = UInt8Type;
+};
+
+template <>
+struct UnsignedIntType<2> {
+ using Type = UInt16Type;
+};
+
+template <>
+struct UnsignedIntType<4> {
+ using Type = UInt32Type;
+};
+
+template <>
+struct UnsignedIntType<8> {
+ using Type = UInt64Type;
+};
+
+// Constructing the type requires a type parameter
+struct InitStateVisitor {
+ KernelContext* ctx;
SetLookupOptions options;
const std::shared_ptr<DataType>& arg_type;
- std::unique_ptr<KernelState> result;
-
+ std::unique_ptr<KernelState> result;
+
InitStateVisitor(KernelContext* ctx, const KernelInitArgs& args)
: ctx(ctx),
options(*checked_cast<const SetLookupOptions*>(args.options)),
arg_type(args.inputs[0].type) {}
-
- template <typename Type>
- Status Init() {
- using StateType = SetLookupState<Type>;
- result.reset(new StateType(ctx->exec_context()->memory_pool()));
+
+ template <typename Type>
+ Status Init() {
+ using StateType = SetLookupState<Type>;
+ result.reset(new StateType(ctx->exec_context()->memory_pool()));
return static_cast<StateType*>(result.get())->Init(options);
- }
-
- Status Visit(const DataType&) { return Init<NullType>(); }
-
- template <typename Type>
- enable_if_boolean<Type, Status> Visit(const Type&) {
- return Init<BooleanType>();
- }
-
- template <typename Type>
- enable_if_t<has_c_type<Type>::value && !is_boolean_type<Type>::value, Status> Visit(
- const Type&) {
- return Init<typename UnsignedIntType<sizeof(typename Type::c_type)>::Type>();
- }
-
- template <typename Type>
- enable_if_base_binary<Type, Status> Visit(const Type&) {
- return Init<typename Type::PhysicalType>();
- }
-
- // Handle Decimal128Type, FixedSizeBinaryType
- Status Visit(const FixedSizeBinaryType& type) { return Init<FixedSizeBinaryType>(); }
-
+ }
+
+ Status Visit(const DataType&) { return Init<NullType>(); }
+
+ template <typename Type>
+ enable_if_boolean<Type, Status> Visit(const Type&) {
+ return Init<BooleanType>();
+ }
+
+ template <typename Type>
+ enable_if_t<has_c_type<Type>::value && !is_boolean_type<Type>::value, Status> Visit(
+ const Type&) {
+ return Init<typename UnsignedIntType<sizeof(typename Type::c_type)>::Type>();
+ }
+
+ template <typename Type>
+ enable_if_base_binary<Type, Status> Visit(const Type&) {
+ return Init<typename Type::PhysicalType>();
+ }
+
+ // Handle Decimal128Type, FixedSizeBinaryType
+ Status Visit(const FixedSizeBinaryType& type) { return Init<FixedSizeBinaryType>(); }
+
Result<std::unique_ptr<KernelState>> GetResult() {
if (!options.value_set.type()->Equals(arg_type)) {
ARROW_ASSIGN_OR_RAISE(
@@ -186,9 +186,9 @@ struct InitStateVisitor {
RETURN_NOT_OK(VisitTypeInline(*arg_type, this));
return std::move(result);
- }
-};
-
+ }
+};
+
Result<std::unique_ptr<KernelState>> InitSetLookup(KernelContext* ctx,
const KernelInitArgs& args) {
if (args.options == nullptr) {
@@ -197,246 +197,246 @@ Result<std::unique_ptr<KernelState>> InitSetLookup(KernelContext* ctx,
}
return InitStateVisitor{ctx, args}.GetResult();
-}
-
-struct IndexInVisitor {
- KernelContext* ctx;
- const ArrayData& data;
- Datum* out;
- Int32Builder builder;
-
- IndexInVisitor(KernelContext* ctx, const ArrayData& data, Datum* out)
- : ctx(ctx), data(data), out(out), builder(ctx->exec_context()->memory_pool()) {}
-
+}
+
+struct IndexInVisitor {
+ KernelContext* ctx;
+ const ArrayData& data;
+ Datum* out;
+ Int32Builder builder;
+
+ IndexInVisitor(KernelContext* ctx, const ArrayData& data, Datum* out)
+ : ctx(ctx), data(data), out(out), builder(ctx->exec_context()->memory_pool()) {}
+
Status Visit(const DataType& type) {
DCHECK_EQ(type.id(), Type::NA);
- const auto& state = checked_cast<const SetLookupState<NullType>&>(*ctx->state());
- if (data.length != 0) {
+ const auto& state = checked_cast<const SetLookupState<NullType>&>(*ctx->state());
+ if (data.length != 0) {
// skip_nulls is honored for consistency with other types
if (state.value_set_has_null) {
- RETURN_NOT_OK(this->builder.Reserve(data.length));
- for (int64_t i = 0; i < data.length; ++i) {
- this->builder.UnsafeAppend(0);
- }
+ RETURN_NOT_OK(this->builder.Reserve(data.length));
+ for (int64_t i = 0; i < data.length; ++i) {
+ this->builder.UnsafeAppend(0);
+ }
} else {
RETURN_NOT_OK(this->builder.AppendNulls(data.length));
- }
- }
- return Status::OK();
- }
-
- template <typename Type>
- Status ProcessIndexIn() {
- using T = typename GetViewType<Type>::T;
-
- const auto& state = checked_cast<const SetLookupState<Type>&>(*ctx->state());
-
- RETURN_NOT_OK(this->builder.Reserve(data.length));
- VisitArrayDataInline<Type>(
- data,
- [&](T v) {
- int32_t index = state.lookup_table.Get(v);
- if (index != -1) {
- // matching needle; output index from value_set
+ }
+ }
+ return Status::OK();
+ }
+
+ template <typename Type>
+ Status ProcessIndexIn() {
+ using T = typename GetViewType<Type>::T;
+
+ const auto& state = checked_cast<const SetLookupState<Type>&>(*ctx->state());
+
+ RETURN_NOT_OK(this->builder.Reserve(data.length));
+ VisitArrayDataInline<Type>(
+ data,
+ [&](T v) {
+ int32_t index = state.lookup_table.Get(v);
+ if (index != -1) {
+ // matching needle; output index from value_set
this->builder.UnsafeAppend(state.memo_index_to_value_index[index]);
- } else {
- // no matching needle; output null
- this->builder.UnsafeAppendNull();
- }
- },
- [&]() {
+ } else {
+ // no matching needle; output null
+ this->builder.UnsafeAppendNull();
+ }
+ },
+ [&]() {
if (state.null_index != -1) {
- // value_set included null
+ // value_set included null
this->builder.UnsafeAppend(state.null_index);
- } else {
- // value_set does not include null; output null
- this->builder.UnsafeAppendNull();
- }
- });
- return Status::OK();
- }
-
- template <typename Type>
- enable_if_boolean<Type, Status> Visit(const Type&) {
- return ProcessIndexIn<BooleanType>();
- }
-
- template <typename Type>
- enable_if_t<has_c_type<Type>::value && !is_boolean_type<Type>::value, Status> Visit(
- const Type&) {
- return ProcessIndexIn<
- typename UnsignedIntType<sizeof(typename Type::c_type)>::Type>();
- }
-
- template <typename Type>
- enable_if_base_binary<Type, Status> Visit(const Type&) {
- return ProcessIndexIn<typename Type::PhysicalType>();
- }
-
- // Handle Decimal128Type, FixedSizeBinaryType
- Status Visit(const FixedSizeBinaryType& type) {
- return ProcessIndexIn<FixedSizeBinaryType>();
- }
-
- Status Execute() {
- Status s = VisitTypeInline(*data.type, this);
- if (!s.ok()) {
- return s;
- }
- std::shared_ptr<ArrayData> out_data;
- RETURN_NOT_OK(this->builder.FinishInternal(&out_data));
- out->value = std::move(out_data);
- return Status::OK();
- }
-};
-
+ } else {
+ // value_set does not include null; output null
+ this->builder.UnsafeAppendNull();
+ }
+ });
+ return Status::OK();
+ }
+
+ template <typename Type>
+ enable_if_boolean<Type, Status> Visit(const Type&) {
+ return ProcessIndexIn<BooleanType>();
+ }
+
+ template <typename Type>
+ enable_if_t<has_c_type<Type>::value && !is_boolean_type<Type>::value, Status> Visit(
+ const Type&) {
+ return ProcessIndexIn<
+ typename UnsignedIntType<sizeof(typename Type::c_type)>::Type>();
+ }
+
+ template <typename Type>
+ enable_if_base_binary<Type, Status> Visit(const Type&) {
+ return ProcessIndexIn<typename Type::PhysicalType>();
+ }
+
+ // Handle Decimal128Type, FixedSizeBinaryType
+ Status Visit(const FixedSizeBinaryType& type) {
+ return ProcessIndexIn<FixedSizeBinaryType>();
+ }
+
+ Status Execute() {
+ Status s = VisitTypeInline(*data.type, this);
+ if (!s.ok()) {
+ return s;
+ }
+ std::shared_ptr<ArrayData> out_data;
+ RETURN_NOT_OK(this->builder.FinishInternal(&out_data));
+ out->value = std::move(out_data);
+ return Status::OK();
+ }
+};
+
Status ExecIndexIn(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
return IndexInVisitor(ctx, *batch[0].array(), out).Execute();
-}
-
-// ----------------------------------------------------------------------
-
+}
+
+// ----------------------------------------------------------------------
+
// IsIn writes the results into a preallocated boolean data bitmap
-struct IsInVisitor {
- KernelContext* ctx;
- const ArrayData& data;
- Datum* out;
-
- IsInVisitor(KernelContext* ctx, const ArrayData& data, Datum* out)
- : ctx(ctx), data(data), out(out) {}
-
+struct IsInVisitor {
+ KernelContext* ctx;
+ const ArrayData& data;
+ Datum* out;
+
+ IsInVisitor(KernelContext* ctx, const ArrayData& data, Datum* out)
+ : ctx(ctx), data(data), out(out) {}
+
Status Visit(const DataType& type) {
DCHECK_EQ(type.id(), Type::NA);
- const auto& state = checked_cast<const SetLookupState<NullType>&>(*ctx->state());
- ArrayData* output = out->mutable_array();
+ const auto& state = checked_cast<const SetLookupState<NullType>&>(*ctx->state());
+ ArrayData* output = out->mutable_array();
// skip_nulls is honored for consistency with other types
BitUtil::SetBitsTo(output->buffers[1]->mutable_data(), output->offset, output->length,
state.value_set_has_null);
- return Status::OK();
- }
-
- template <typename Type>
- Status ProcessIsIn() {
- using T = typename GetViewType<Type>::T;
- const auto& state = checked_cast<const SetLookupState<Type>&>(*ctx->state());
- ArrayData* output = out->mutable_array();
-
- FirstTimeBitmapWriter writer(output->buffers[1]->mutable_data(), output->offset,
- output->length);
-
- VisitArrayDataInline<Type>(
- this->data,
- [&](T v) {
- if (state.lookup_table.Get(v) != -1) {
- writer.Set();
- } else {
- writer.Clear();
- }
- writer.Next();
- },
- [&]() {
+ return Status::OK();
+ }
+
+ template <typename Type>
+ Status ProcessIsIn() {
+ using T = typename GetViewType<Type>::T;
+ const auto& state = checked_cast<const SetLookupState<Type>&>(*ctx->state());
+ ArrayData* output = out->mutable_array();
+
+ FirstTimeBitmapWriter writer(output->buffers[1]->mutable_data(), output->offset,
+ output->length);
+
+ VisitArrayDataInline<Type>(
+ this->data,
+ [&](T v) {
+ if (state.lookup_table.Get(v) != -1) {
+ writer.Set();
+ } else {
+ writer.Clear();
+ }
+ writer.Next();
+ },
+ [&]() {
if (state.null_index != -1) {
writer.Set();
} else {
writer.Clear();
}
- writer.Next();
- });
- writer.Finish();
- return Status::OK();
- }
-
- template <typename Type>
- enable_if_boolean<Type, Status> Visit(const Type&) {
- return ProcessIsIn<BooleanType>();
- }
-
- template <typename Type>
- enable_if_t<has_c_type<Type>::value && !is_boolean_type<Type>::value, Status> Visit(
- const Type&) {
- return ProcessIsIn<typename UnsignedIntType<sizeof(typename Type::c_type)>::Type>();
- }
-
- template <typename Type>
- enable_if_base_binary<Type, Status> Visit(const Type&) {
- return ProcessIsIn<typename Type::PhysicalType>();
- }
-
- // Handle Decimal128Type, FixedSizeBinaryType
- Status Visit(const FixedSizeBinaryType& type) {
- return ProcessIsIn<FixedSizeBinaryType>();
- }
-
- Status Execute() { return VisitTypeInline(*data.type, this); }
-};
-
+ writer.Next();
+ });
+ writer.Finish();
+ return Status::OK();
+ }
+
+ template <typename Type>
+ enable_if_boolean<Type, Status> Visit(const Type&) {
+ return ProcessIsIn<BooleanType>();
+ }
+
+ template <typename Type>
+ enable_if_t<has_c_type<Type>::value && !is_boolean_type<Type>::value, Status> Visit(
+ const Type&) {
+ return ProcessIsIn<typename UnsignedIntType<sizeof(typename Type::c_type)>::Type>();
+ }
+
+ template <typename Type>
+ enable_if_base_binary<Type, Status> Visit(const Type&) {
+ return ProcessIsIn<typename Type::PhysicalType>();
+ }
+
+ // Handle Decimal128Type, FixedSizeBinaryType
+ Status Visit(const FixedSizeBinaryType& type) {
+ return ProcessIsIn<FixedSizeBinaryType>();
+ }
+
+ Status Execute() { return VisitTypeInline(*data.type, this); }
+};
+
Status ExecIsIn(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
return IsInVisitor(ctx, *batch[0].array(), out).Execute();
-}
-
-// Unary set lookup kernels available for the following input types
-//
-// * Null type
-// * Boolean
-// * Numeric
-// * Simple temporal types (date, time, timestamp)
-// * Base binary types
-// * Decimal
-
-void AddBasicSetLookupKernels(ScalarKernel kernel,
- const std::shared_ptr<DataType>& out_ty,
- ScalarFunction* func) {
- auto AddKernels = [&](const std::vector<std::shared_ptr<DataType>>& types) {
- for (const std::shared_ptr<DataType>& ty : types) {
- kernel.signature = KernelSignature::Make({ty}, out_ty);
- DCHECK_OK(func->AddKernel(kernel));
- }
- };
-
- AddKernels(BaseBinaryTypes());
- AddKernels(NumericTypes());
- AddKernels(TemporalTypes());
-
- std::vector<Type::type> other_types = {Type::BOOL, Type::DECIMAL,
- Type::FIXED_SIZE_BINARY};
- for (auto ty : other_types) {
- kernel.signature = KernelSignature::Make({InputType::Array(ty)}, out_ty);
- DCHECK_OK(func->AddKernel(kernel));
- }
-}
-
-// Enables calling is_in with CallFunction as though it were binary.
-class IsInMetaBinary : public MetaFunction {
- public:
+}
+
+// Unary set lookup kernels available for the following input types
+//
+// * Null type
+// * Boolean
+// * Numeric
+// * Simple temporal types (date, time, timestamp)
+// * Base binary types
+// * Decimal
+
+void AddBasicSetLookupKernels(ScalarKernel kernel,
+ const std::shared_ptr<DataType>& out_ty,
+ ScalarFunction* func) {
+ auto AddKernels = [&](const std::vector<std::shared_ptr<DataType>>& types) {
+ for (const std::shared_ptr<DataType>& ty : types) {
+ kernel.signature = KernelSignature::Make({ty}, out_ty);
+ DCHECK_OK(func->AddKernel(kernel));
+ }
+ };
+
+ AddKernels(BaseBinaryTypes());
+ AddKernels(NumericTypes());
+ AddKernels(TemporalTypes());
+
+ std::vector<Type::type> other_types = {Type::BOOL, Type::DECIMAL,
+ Type::FIXED_SIZE_BINARY};
+ for (auto ty : other_types) {
+ kernel.signature = KernelSignature::Make({InputType::Array(ty)}, out_ty);
+ DCHECK_OK(func->AddKernel(kernel));
+ }
+}
+
+// Enables calling is_in with CallFunction as though it were binary.
+class IsInMetaBinary : public MetaFunction {
+ public:
IsInMetaBinary()
: MetaFunction("is_in_meta_binary", Arity::Binary(), /*doc=*/nullptr) {}
-
- Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
- const FunctionOptions* options,
- ExecContext* ctx) const override {
- if (options != nullptr) {
- return Status::Invalid("Unexpected options for 'is_in_meta_binary' function");
- }
- return IsIn(args[0], args[1], ctx);
- }
-};
-
-// Enables calling index_in with CallFunction as though it were binary.
-class IndexInMetaBinary : public MetaFunction {
- public:
+
+ Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
+ const FunctionOptions* options,
+ ExecContext* ctx) const override {
+ if (options != nullptr) {
+ return Status::Invalid("Unexpected options for 'is_in_meta_binary' function");
+ }
+ return IsIn(args[0], args[1], ctx);
+ }
+};
+
+// Enables calling index_in with CallFunction as though it were binary.
+class IndexInMetaBinary : public MetaFunction {
+ public:
IndexInMetaBinary()
: MetaFunction("index_in_meta_binary", Arity::Binary(), /*doc=*/nullptr) {}
-
- Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
- const FunctionOptions* options,
- ExecContext* ctx) const override {
- if (options != nullptr) {
- return Status::Invalid("Unexpected options for 'index_in_meta_binary' function");
- }
- return IndexIn(args[0], args[1], ctx);
- }
-};
-
+
+ Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
+ const FunctionOptions* options,
+ ExecContext* ctx) const override {
+ if (options != nullptr) {
+ return Status::Invalid("Unexpected options for 'index_in_meta_binary' function");
+ }
+ return IndexIn(args[0], args[1], ctx);
+ }
+};
+
struct SetLookupFunction : ScalarFunction {
using ScalarFunction::ScalarFunction;
@@ -466,48 +466,48 @@ const FunctionDoc index_in_doc{
{"values"},
"SetLookupOptions"};
-} // namespace
-
-void RegisterScalarSetLookup(FunctionRegistry* registry) {
+} // namespace
+
+void RegisterScalarSetLookup(FunctionRegistry* registry) {
// IsIn writes its boolean output into preallocated memory
- {
- ScalarKernel isin_base;
- isin_base.init = InitSetLookup;
+ {
+ ScalarKernel isin_base;
+ isin_base.init = InitSetLookup;
isin_base.exec =
TrivialScalarUnaryAsArraysExec(ExecIsIn, NullHandling::OUTPUT_NOT_NULL);
isin_base.null_handling = NullHandling::OUTPUT_NOT_NULL;
auto is_in = std::make_shared<SetLookupFunction>("is_in", Arity::Unary(), &is_in_doc);
-
- AddBasicSetLookupKernels(isin_base, /*output_type=*/boolean(), is_in.get());
-
- isin_base.signature = KernelSignature::Make({null()}, boolean());
- DCHECK_OK(is_in->AddKernel(isin_base));
- DCHECK_OK(registry->AddFunction(is_in));
-
- DCHECK_OK(registry->AddFunction(std::make_shared<IsInMetaBinary>()));
- }
-
- // IndexIn uses Int32Builder and so is responsible for all its own allocation
- {
- ScalarKernel index_in_base;
- index_in_base.init = InitSetLookup;
+
+ AddBasicSetLookupKernels(isin_base, /*output_type=*/boolean(), is_in.get());
+
+ isin_base.signature = KernelSignature::Make({null()}, boolean());
+ DCHECK_OK(is_in->AddKernel(isin_base));
+ DCHECK_OK(registry->AddFunction(is_in));
+
+ DCHECK_OK(registry->AddFunction(std::make_shared<IsInMetaBinary>()));
+ }
+
+ // IndexIn uses Int32Builder and so is responsible for all its own allocation
+ {
+ ScalarKernel index_in_base;
+ index_in_base.init = InitSetLookup;
index_in_base.exec = TrivialScalarUnaryAsArraysExec(
ExecIndexIn, NullHandling::COMPUTED_NO_PREALLOCATE);
- index_in_base.null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
- index_in_base.mem_allocation = MemAllocation::NO_PREALLOCATE;
+ index_in_base.null_handling = NullHandling::COMPUTED_NO_PREALLOCATE;
+ index_in_base.mem_allocation = MemAllocation::NO_PREALLOCATE;
auto index_in =
std::make_shared<SetLookupFunction>("index_in", Arity::Unary(), &index_in_doc);
-
- AddBasicSetLookupKernels(index_in_base, /*output_type=*/int32(), index_in.get());
-
- index_in_base.signature = KernelSignature::Make({null()}, int32());
- DCHECK_OK(index_in->AddKernel(index_in_base));
- DCHECK_OK(registry->AddFunction(index_in));
-
- DCHECK_OK(registry->AddFunction(std::make_shared<IndexInMetaBinary>()));
- }
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+
+ AddBasicSetLookupKernels(index_in_base, /*output_type=*/int32(), index_in.get());
+
+ index_in_base.signature = KernelSignature::Make({null()}, int32());
+ DCHECK_OK(index_in->AddKernel(index_in_base));
+ DCHECK_OK(registry->AddFunction(index_in));
+
+ DCHECK_OK(registry->AddFunction(std::make_shared<IndexInMetaBinary>()));
+ }
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_string.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_string.cc
index ab0a490eeb..9d2ed1764e 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_string.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_string.cc
@@ -1,29 +1,29 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include <algorithm>
-#include <cctype>
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include <algorithm>
+#include <cctype>
#include <iterator>
-#include <string>
-
-#ifdef ARROW_WITH_UTF8PROC
-#include <utf8proc.h>
-#endif
-
+#include <string>
+
+#ifdef ARROW_WITH_UTF8PROC
+#include <utf8proc.h>
+#endif
+
#ifdef ARROW_WITH_RE2
#include <re2/re2.h>
#endif
@@ -33,22 +33,22 @@
#include "arrow/buffer_builder.h"
#include "arrow/builder.h"
-#include "arrow/compute/api_scalar.h"
-#include "arrow/compute/kernels/common.h"
+#include "arrow/compute/api_scalar.h"
+#include "arrow/compute/kernels/common.h"
#include "arrow/util/checked_cast.h"
-#include "arrow/util/utf8.h"
-#include "arrow/util/value_parsing.h"
+#include "arrow/util/utf8.h"
+#include "arrow/util/value_parsing.h"
#include "arrow/visitor_inline.h"
-
-namespace arrow {
+
+namespace arrow {
using internal::checked_cast;
-namespace compute {
-namespace internal {
-
-namespace {
-
+namespace compute {
+namespace internal {
+
+namespace {
+
#ifdef ARROW_WITH_RE2
util::string_view ToStringView(re2::StringPiece piece) {
return {piece.data(), piece.length()};
@@ -66,33 +66,33 @@ Status RegexStatus(const RE2& regex) {
}
#endif
-// Code units in the range [a-z] can only be an encoding of an ascii
-// character/codepoint, not the 2nd, 3rd or 4th code unit (byte) of an different
-// codepoint. This guaranteed by non-overlap design of the unicode standard. (see
-// section 2.5 of Unicode Standard Core Specification v13.0)
-
-static inline uint8_t ascii_tolower(uint8_t utf8_code_unit) {
- return ((utf8_code_unit >= 'A') && (utf8_code_unit <= 'Z')) ? (utf8_code_unit + 32)
- : utf8_code_unit;
-}
-
-static inline uint8_t ascii_toupper(uint8_t utf8_code_unit) {
- return ((utf8_code_unit >= 'a') && (utf8_code_unit <= 'z')) ? (utf8_code_unit - 32)
- : utf8_code_unit;
-}
-
-template <typename T>
-static inline bool IsAsciiCharacter(T character) {
- return character < 128;
-}
-
-struct BinaryLength {
- template <typename OutValue, typename Arg0Value = util::string_view>
+// Code units in the range [a-z] can only be an encoding of an ascii
+// character/codepoint, not the 2nd, 3rd or 4th code unit (byte) of an different
+// codepoint. This guaranteed by non-overlap design of the unicode standard. (see
+// section 2.5 of Unicode Standard Core Specification v13.0)
+
+static inline uint8_t ascii_tolower(uint8_t utf8_code_unit) {
+ return ((utf8_code_unit >= 'A') && (utf8_code_unit <= 'Z')) ? (utf8_code_unit + 32)
+ : utf8_code_unit;
+}
+
+static inline uint8_t ascii_toupper(uint8_t utf8_code_unit) {
+ return ((utf8_code_unit >= 'a') && (utf8_code_unit <= 'z')) ? (utf8_code_unit - 32)
+ : utf8_code_unit;
+}
+
+template <typename T>
+static inline bool IsAsciiCharacter(T character) {
+ return character < 128;
+}
+
+struct BinaryLength {
+ template <typename OutValue, typename Arg0Value = util::string_view>
static OutValue Call(KernelContext*, Arg0Value val, Status*) {
- return static_cast<OutValue>(val.size());
- }
-};
-
+ return static_cast<OutValue>(val.size());
+ }
+};
+
struct Utf8Length {
template <typename OutValue, typename Arg0Value = util::string_view>
static OutValue Call(KernelContext*, Arg0Value val, Status*) {
@@ -102,28 +102,28 @@ struct Utf8Length {
}
};
-#ifdef ARROW_WITH_UTF8PROC
-
-// Direct lookup tables for unicode properties
-constexpr uint32_t kMaxCodepointLookup =
- 0xffff; // up to this codepoint is in a lookup table
-std::vector<uint32_t> lut_upper_codepoint;
-std::vector<uint32_t> lut_lower_codepoint;
-std::vector<utf8proc_category_t> lut_category;
-std::once_flag flag_case_luts;
-
-void EnsureLookupTablesFilled() {
- std::call_once(flag_case_luts, []() {
- lut_upper_codepoint.reserve(kMaxCodepointLookup + 1);
- lut_lower_codepoint.reserve(kMaxCodepointLookup + 1);
- for (uint32_t i = 0; i <= kMaxCodepointLookup; i++) {
- lut_upper_codepoint.push_back(utf8proc_toupper(i));
- lut_lower_codepoint.push_back(utf8proc_tolower(i));
- lut_category.push_back(utf8proc_category(i));
- }
- });
-}
-
+#ifdef ARROW_WITH_UTF8PROC
+
+// Direct lookup tables for unicode properties
+constexpr uint32_t kMaxCodepointLookup =
+ 0xffff; // up to this codepoint is in a lookup table
+std::vector<uint32_t> lut_upper_codepoint;
+std::vector<uint32_t> lut_lower_codepoint;
+std::vector<utf8proc_category_t> lut_category;
+std::once_flag flag_case_luts;
+
+void EnsureLookupTablesFilled() {
+ std::call_once(flag_case_luts, []() {
+ lut_upper_codepoint.reserve(kMaxCodepointLookup + 1);
+ lut_lower_codepoint.reserve(kMaxCodepointLookup + 1);
+ for (uint32_t i = 0; i <= kMaxCodepointLookup; i++) {
+ lut_upper_codepoint.push_back(utf8proc_toupper(i));
+ lut_lower_codepoint.push_back(utf8proc_tolower(i));
+ lut_category.push_back(utf8proc_category(i));
+ }
+ });
+}
+
#else
void EnsureLookupTablesFilled() {}
@@ -154,67 +154,67 @@ struct StringTransformBase {
template <typename Type, typename StringTransform>
struct StringTransformExecBase {
- using offset_type = typename Type::offset_type;
- using ArrayType = typename TypeTraits<Type>::ArrayType;
-
+ using offset_type = typename Type::offset_type;
+ using ArrayType = typename TypeTraits<Type>::ArrayType;
+
static Status Execute(KernelContext* ctx, StringTransform* transform,
const ExecBatch& batch, Datum* out) {
if (batch[0].kind() == Datum::ARRAY) {
return ExecArray(ctx, transform, batch[0].array(), out);
- }
+ }
DCHECK_EQ(batch[0].kind(), Datum::SCALAR);
return ExecScalar(ctx, transform, batch[0].scalar(), out);
- }
-
+ }
+
static Status ExecArray(KernelContext* ctx, StringTransform* transform,
const std::shared_ptr<ArrayData>& data, Datum* out) {
ArrayType input(data);
ArrayData* output = out->mutable_array();
-
+
const int64_t input_ncodeunits = input.total_values_length();
const int64_t input_nstrings = input.length();
-
+
const int64_t output_ncodeunits_max =
transform->MaxCodeunits(input_nstrings, input_ncodeunits);
if (output_ncodeunits_max > std::numeric_limits<offset_type>::max()) {
return Status::CapacityError(
"Result might not fit in a 32bit utf8 array, convert to large_utf8");
}
-
+
ARROW_ASSIGN_OR_RAISE(auto values_buffer, ctx->Allocate(output_ncodeunits_max));
output->buffers[2] = values_buffer;
-
+
// String offsets are preallocated
offset_type* output_string_offsets = output->GetMutableValues<offset_type>(1);
uint8_t* output_str = output->buffers[2]->mutable_data();
offset_type output_ncodeunits = 0;
-
+
output_string_offsets[0] = 0;
for (int64_t i = 0; i < input_nstrings; i++) {
if (!input.IsNull(i)) {
- offset_type input_string_ncodeunits;
+ offset_type input_string_ncodeunits;
const uint8_t* input_string = input.GetValue(i, &input_string_ncodeunits);
auto encoded_nbytes = static_cast<offset_type>(transform->Transform(
input_string, input_string_ncodeunits, output_str + output_ncodeunits));
if (encoded_nbytes < 0) {
return transform->InvalidStatus();
- }
- output_ncodeunits += encoded_nbytes;
- }
+ }
+ output_ncodeunits += encoded_nbytes;
+ }
output_string_offsets[i + 1] = output_ncodeunits;
}
DCHECK_LE(output_ncodeunits, output_ncodeunits_max);
-
+
// Trim the codepoint buffer, since we allocated too much
return values_buffer->Resize(output_ncodeunits, /*shrink_to_fit=*/true);
}
-
+
static Status ExecScalar(KernelContext* ctx, StringTransform* transform,
const std::shared_ptr<Scalar>& scalar, Datum* out) {
const auto& input = checked_cast<const BaseBinaryScalar&>(*scalar);
if (!input.is_valid) {
return Status::OK();
- }
+ }
auto* result = checked_cast<BaseBinaryScalar*>(out->scalar().get());
result->is_valid = true;
const int64_t data_nbytes = static_cast<int64_t>(input.value->size());
@@ -233,9 +233,9 @@ struct StringTransformExecBase {
}
DCHECK_LE(encoded_nbytes, output_ncodeunits_max);
return value_buffer->Resize(encoded_nbytes, /*shrink_to_fit=*/true);
- }
-};
-
+ }
+};
+
template <typename Type, typename StringTransform>
struct StringTransformExec : public StringTransformExecBase<Type, StringTransform> {
using StringTransformExecBase<Type, StringTransform>::Execute;
@@ -300,26 +300,26 @@ struct CaseMappingTransform {
struct UTF8UpperTransform : public CaseMappingTransform {
static uint32_t TransformCodepoint(uint32_t codepoint) {
- return codepoint <= kMaxCodepointLookup ? lut_upper_codepoint[codepoint]
- : utf8proc_toupper(codepoint);
- }
-};
-
-template <typename Type>
+ return codepoint <= kMaxCodepointLookup ? lut_upper_codepoint[codepoint]
+ : utf8proc_toupper(codepoint);
+ }
+};
+
+template <typename Type>
using UTF8Upper = StringTransformExec<Type, StringTransformCodepoint<UTF8UpperTransform>>;
struct UTF8LowerTransform : public CaseMappingTransform {
- static uint32_t TransformCodepoint(uint32_t codepoint) {
- return codepoint <= kMaxCodepointLookup ? lut_lower_codepoint[codepoint]
- : utf8proc_tolower(codepoint);
- }
-};
-
+ static uint32_t TransformCodepoint(uint32_t codepoint) {
+ return codepoint <= kMaxCodepointLookup ? lut_lower_codepoint[codepoint]
+ : utf8proc_tolower(codepoint);
+ }
+};
+
template <typename Type>
using UTF8Lower = StringTransformExec<Type, StringTransformCodepoint<UTF8LowerTransform>>;
-
-#endif // ARROW_WITH_UTF8PROC
-
+
+#endif // ARROW_WITH_UTF8PROC
+
struct AsciiReverseTransform : public StringTransformBase {
int64_t Transform(const uint8_t* input, int64_t input_string_ncodeunits,
uint8_t* output) {
@@ -357,129 +357,129 @@ struct Utf8ReverseTransform : public StringTransformBase {
template <typename Type>
using Utf8Reverse = StringTransformExec<Type, Utf8ReverseTransform>;
-using TransformFunc = std::function<void(const uint8_t*, int64_t, uint8_t*)>;
-
-// Transform a buffer of offsets to one which begins with 0 and has same
-// value lengths.
-template <typename T>
-Status GetShiftedOffsets(KernelContext* ctx, const Buffer& input_buffer, int64_t offset,
- int64_t length, std::shared_ptr<Buffer>* out) {
- ARROW_ASSIGN_OR_RAISE(*out, ctx->Allocate((length + 1) * sizeof(T)));
- const T* input_offsets = reinterpret_cast<const T*>(input_buffer.data()) + offset;
- T* out_offsets = reinterpret_cast<T*>((*out)->mutable_data());
- T first_offset = *input_offsets;
- for (int64_t i = 0; i < length; ++i) {
- *out_offsets++ = input_offsets[i] - first_offset;
- }
- *out_offsets = input_offsets[length] - first_offset;
- return Status::OK();
-}
-
-// Apply `transform` to input character data- this function cannot change the
-// length
-template <typename Type>
+using TransformFunc = std::function<void(const uint8_t*, int64_t, uint8_t*)>;
+
+// Transform a buffer of offsets to one which begins with 0 and has same
+// value lengths.
+template <typename T>
+Status GetShiftedOffsets(KernelContext* ctx, const Buffer& input_buffer, int64_t offset,
+ int64_t length, std::shared_ptr<Buffer>* out) {
+ ARROW_ASSIGN_OR_RAISE(*out, ctx->Allocate((length + 1) * sizeof(T)));
+ const T* input_offsets = reinterpret_cast<const T*>(input_buffer.data()) + offset;
+ T* out_offsets = reinterpret_cast<T*>((*out)->mutable_data());
+ T first_offset = *input_offsets;
+ for (int64_t i = 0; i < length; ++i) {
+ *out_offsets++ = input_offsets[i] - first_offset;
+ }
+ *out_offsets = input_offsets[length] - first_offset;
+ return Status::OK();
+}
+
+// Apply `transform` to input character data- this function cannot change the
+// length
+template <typename Type>
Status StringDataTransform(KernelContext* ctx, const ExecBatch& batch,
TransformFunc transform, Datum* out) {
- using ArrayType = typename TypeTraits<Type>::ArrayType;
- using offset_type = typename Type::offset_type;
-
- if (batch[0].kind() == Datum::ARRAY) {
- const ArrayData& input = *batch[0].array();
- ArrayType input_boxed(batch[0].array());
-
- ArrayData* out_arr = out->mutable_array();
-
- if (input.offset == 0) {
- // We can reuse offsets from input
- out_arr->buffers[1] = input.buffers[1];
- } else {
- DCHECK(input.buffers[1]);
- // We must allocate new space for the offsets and shift the existing offsets
+ using ArrayType = typename TypeTraits<Type>::ArrayType;
+ using offset_type = typename Type::offset_type;
+
+ if (batch[0].kind() == Datum::ARRAY) {
+ const ArrayData& input = *batch[0].array();
+ ArrayType input_boxed(batch[0].array());
+
+ ArrayData* out_arr = out->mutable_array();
+
+ if (input.offset == 0) {
+ // We can reuse offsets from input
+ out_arr->buffers[1] = input.buffers[1];
+ } else {
+ DCHECK(input.buffers[1]);
+ // We must allocate new space for the offsets and shift the existing offsets
RETURN_NOT_OK(GetShiftedOffsets<offset_type>(ctx, *input.buffers[1], input.offset,
input.length, &out_arr->buffers[1]));
- }
-
- // Allocate space for output data
- int64_t data_nbytes = input_boxed.total_values_length();
+ }
+
+ // Allocate space for output data
+ int64_t data_nbytes = input_boxed.total_values_length();
RETURN_NOT_OK(ctx->Allocate(data_nbytes).Value(&out_arr->buffers[2]));
- if (input.length > 0) {
- transform(input.buffers[2]->data() + input_boxed.value_offset(0), data_nbytes,
- out_arr->buffers[2]->mutable_data());
- }
- } else {
- const auto& input = checked_cast<const BaseBinaryScalar&>(*batch[0].scalar());
- auto result = checked_pointer_cast<BaseBinaryScalar>(MakeNullScalar(out->type()));
- if (input.is_valid) {
- result->is_valid = true;
- int64_t data_nbytes = input.value->size();
+ if (input.length > 0) {
+ transform(input.buffers[2]->data() + input_boxed.value_offset(0), data_nbytes,
+ out_arr->buffers[2]->mutable_data());
+ }
+ } else {
+ const auto& input = checked_cast<const BaseBinaryScalar&>(*batch[0].scalar());
+ auto result = checked_pointer_cast<BaseBinaryScalar>(MakeNullScalar(out->type()));
+ if (input.is_valid) {
+ result->is_valid = true;
+ int64_t data_nbytes = input.value->size();
RETURN_NOT_OK(ctx->Allocate(data_nbytes).Value(&result->value));
- transform(input.value->data(), data_nbytes, result->value->mutable_data());
- }
+ transform(input.value->data(), data_nbytes, result->value->mutable_data());
+ }
out->value = result;
- }
+ }
return Status::OK();
-}
-
-void TransformAsciiUpper(const uint8_t* input, int64_t length, uint8_t* output) {
- std::transform(input, input + length, output, ascii_toupper);
-}
-
-template <typename Type>
-struct AsciiUpper {
+}
+
+void TransformAsciiUpper(const uint8_t* input, int64_t length, uint8_t* output) {
+ std::transform(input, input + length, output, ascii_toupper);
+}
+
+template <typename Type>
+struct AsciiUpper {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
return StringDataTransform<Type>(ctx, batch, TransformAsciiUpper, out);
- }
-};
-
-void TransformAsciiLower(const uint8_t* input, int64_t length, uint8_t* output) {
- std::transform(input, input + length, output, ascii_tolower);
-}
-
-template <typename Type>
-struct AsciiLower {
+ }
+};
+
+void TransformAsciiLower(const uint8_t* input, int64_t length, uint8_t* output) {
+ std::transform(input, input + length, output, ascii_tolower);
+}
+
+template <typename Type>
+struct AsciiLower {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
return StringDataTransform<Type>(ctx, batch, TransformAsciiLower, out);
- }
-};
-
-// ----------------------------------------------------------------------
-// exact pattern detection
-
-using StrToBoolTransformFunc =
- std::function<void(const void*, const uint8_t*, int64_t, int64_t, uint8_t*)>;
-
-// Apply `transform` to input character data- this function cannot change the
-// length
-template <typename Type>
-void StringBoolTransform(KernelContext* ctx, const ExecBatch& batch,
- StrToBoolTransformFunc transform, Datum* out) {
- using offset_type = typename Type::offset_type;
-
- if (batch[0].kind() == Datum::ARRAY) {
- const ArrayData& input = *batch[0].array();
- ArrayData* out_arr = out->mutable_array();
- if (input.length > 0) {
- transform(
- reinterpret_cast<const offset_type*>(input.buffers[1]->data()) + input.offset,
- input.buffers[2]->data(), input.length, out_arr->offset,
- out_arr->buffers[1]->mutable_data());
- }
- } else {
- const auto& input = checked_cast<const BaseBinaryScalar&>(*batch[0].scalar());
- if (input.is_valid) {
- uint8_t result_value = 0;
- std::array<offset_type, 2> offsets{0,
- static_cast<offset_type>(input.value->size())};
- transform(offsets.data(), input.value->data(), 1, /*output_offset=*/0,
- &result_value);
+ }
+};
+
+// ----------------------------------------------------------------------
+// exact pattern detection
+
+using StrToBoolTransformFunc =
+ std::function<void(const void*, const uint8_t*, int64_t, int64_t, uint8_t*)>;
+
+// Apply `transform` to input character data- this function cannot change the
+// length
+template <typename Type>
+void StringBoolTransform(KernelContext* ctx, const ExecBatch& batch,
+ StrToBoolTransformFunc transform, Datum* out) {
+ using offset_type = typename Type::offset_type;
+
+ if (batch[0].kind() == Datum::ARRAY) {
+ const ArrayData& input = *batch[0].array();
+ ArrayData* out_arr = out->mutable_array();
+ if (input.length > 0) {
+ transform(
+ reinterpret_cast<const offset_type*>(input.buffers[1]->data()) + input.offset,
+ input.buffers[2]->data(), input.length, out_arr->offset,
+ out_arr->buffers[1]->mutable_data());
+ }
+ } else {
+ const auto& input = checked_cast<const BaseBinaryScalar&>(*batch[0].scalar());
+ if (input.is_valid) {
+ uint8_t result_value = 0;
+ std::array<offset_type, 2> offsets{0,
+ static_cast<offset_type>(input.value->size())};
+ transform(offsets.data(), input.value->data(), 1, /*output_offset=*/0,
+ &result_value);
out->value = std::make_shared<BooleanScalar>(result_value > 0);
- }
- }
-}
-
+ }
+ }
+}
+
using MatchSubstringState = OptionsWrapper<MatchSubstringOptions>;
-
+
// This is an implementation of the Knuth-Morris-Pratt algorithm
struct PlainSubstringMatcher {
const MatchSubstringOptions& options_;
@@ -507,31 +507,31 @@ struct PlainSubstringMatcher {
}
prefix_length++;
prefix_table[pos + 1] = prefix_length;
- }
- }
-
+ }
+ }
+
int64_t Find(util::string_view current) const {
// Phase 2: Find the prefix in the data
const auto pattern_length = options_.pattern.size();
- int64_t pattern_pos = 0;
+ int64_t pattern_pos = 0;
int64_t pos = 0;
if (pattern_length == 0) return 0;
for (const auto c : current) {
while ((pattern_pos >= 0) && (options_.pattern[pattern_pos] != c)) {
- pattern_pos = prefix_table[pattern_pos];
- }
- pattern_pos++;
+ pattern_pos = prefix_table[pattern_pos];
+ }
+ pattern_pos++;
if (static_cast<size_t>(pattern_pos) == pattern_length) {
return pos + 1 - pattern_length;
- }
+ }
pos++;
- }
+ }
return -1;
- }
-
+ }
+
bool Match(util::string_view current) const { return Find(current) >= 0; }
};
-
+
struct PlainStartsWithMatcher {
const MatchSubstringOptions& options_;
@@ -607,12 +607,12 @@ struct RegexSubstringMatcher {
template <typename Type, typename Matcher>
struct MatchSubstringImpl {
- using offset_type = typename Type::offset_type;
+ using offset_type = typename Type::offset_type;
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out,
const Matcher* matcher) {
- StringBoolTransform<Type>(
- ctx, batch,
+ StringBoolTransform<Type>(
+ ctx, batch,
[&matcher](const void* raw_offsets, const uint8_t* data, int64_t length,
int64_t output_offset, uint8_t* output) {
const offset_type* offsets = reinterpret_cast<const offset_type*>(raw_offsets);
@@ -626,12 +626,12 @@ struct MatchSubstringImpl {
bitmap_writer.Next();
}
bitmap_writer.Finish();
- },
- out);
+ },
+ out);
return Status::OK();
- }
-};
-
+ }
+};
+
template <typename Type, typename Matcher>
struct MatchSubstring {
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
@@ -842,7 +842,7 @@ const FunctionDoc match_like_doc(
#endif
-void AddMatchSubstring(FunctionRegistry* registry) {
+void AddMatchSubstring(FunctionRegistry* registry) {
{
auto func = std::make_shared<ScalarFunction>("match_substring", Arity::Unary(),
&match_substring_doc);
@@ -1344,420 +1344,420 @@ void AddSlice(FunctionRegistry* registry) {
&utf8_slice_codeunits_doc);
using t32 = SliceCodeunits<StringType>;
using t64 = SliceCodeunits<LargeStringType>;
- DCHECK_OK(
+ DCHECK_OK(
func->AddKernel({utf8()}, utf8(), t32::Exec, SliceCodeunitsTransform::State::Init));
DCHECK_OK(func->AddKernel({large_utf8()}, large_utf8(), t64::Exec,
SliceCodeunitsTransform::State::Init));
- DCHECK_OK(registry->AddFunction(std::move(func)));
-}
-
-// IsAlpha/Digit etc
-
-#ifdef ARROW_WITH_UTF8PROC
-
-static inline bool HasAnyUnicodeGeneralCategory(uint32_t codepoint, uint32_t mask) {
- utf8proc_category_t general_category = codepoint <= kMaxCodepointLookup
- ? lut_category[codepoint]
- : utf8proc_category(codepoint);
- uint32_t general_category_bit = 1 << general_category;
- // for e.g. undefined (but valid) codepoints, general_category == 0 ==
- // UTF8PROC_CATEGORY_CN
- return (general_category != UTF8PROC_CATEGORY_CN) &&
- ((general_category_bit & mask) != 0);
-}
-
-template <typename... Categories>
-static inline bool HasAnyUnicodeGeneralCategory(uint32_t codepoint, uint32_t mask,
- utf8proc_category_t category,
- Categories... categories) {
- return HasAnyUnicodeGeneralCategory(codepoint, mask | (1 << category), categories...);
-}
-
-template <typename... Categories>
-static inline bool HasAnyUnicodeGeneralCategory(uint32_t codepoint,
- utf8proc_category_t category,
- Categories... categories) {
- return HasAnyUnicodeGeneralCategory(codepoint, static_cast<uint32_t>(1u << category),
- categories...);
-}
-
-static inline bool IsCasedCharacterUnicode(uint32_t codepoint) {
- return HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_LU,
- UTF8PROC_CATEGORY_LL, UTF8PROC_CATEGORY_LT) ||
- ((static_cast<uint32_t>(utf8proc_toupper(codepoint)) != codepoint) ||
- (static_cast<uint32_t>(utf8proc_tolower(codepoint)) != codepoint));
-}
-
-static inline bool IsLowerCaseCharacterUnicode(uint32_t codepoint) {
- // although this trick seems to work for upper case, this is not enough for lower case
- // testing, see https://github.com/JuliaStrings/utf8proc/issues/195 . But currently the
- // best we can do
- return (HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_LL) ||
- ((static_cast<uint32_t>(utf8proc_toupper(codepoint)) != codepoint) &&
- (static_cast<uint32_t>(utf8proc_tolower(codepoint)) == codepoint))) &&
- !HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_LT);
-}
-
-static inline bool IsUpperCaseCharacterUnicode(uint32_t codepoint) {
- // this seems to be a good workaround for utf8proc not having case information
- // https://github.com/JuliaStrings/utf8proc/issues/195
- return (HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_LU) ||
- ((static_cast<uint32_t>(utf8proc_toupper(codepoint)) == codepoint) &&
- (static_cast<uint32_t>(utf8proc_tolower(codepoint)) != codepoint))) &&
- !HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_LT);
-}
-
-static inline bool IsAlphaNumericCharacterUnicode(uint32_t codepoint) {
- return HasAnyUnicodeGeneralCategory(
- codepoint, UTF8PROC_CATEGORY_LU, UTF8PROC_CATEGORY_LL, UTF8PROC_CATEGORY_LT,
- UTF8PROC_CATEGORY_LM, UTF8PROC_CATEGORY_LO, UTF8PROC_CATEGORY_ND,
- UTF8PROC_CATEGORY_NL, UTF8PROC_CATEGORY_NO);
-}
-
-static inline bool IsAlphaCharacterUnicode(uint32_t codepoint) {
- return HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_LU,
- UTF8PROC_CATEGORY_LL, UTF8PROC_CATEGORY_LT,
- UTF8PROC_CATEGORY_LM, UTF8PROC_CATEGORY_LO);
-}
-
-static inline bool IsDecimalCharacterUnicode(uint32_t codepoint) {
- return HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_ND);
-}
-
-static inline bool IsDigitCharacterUnicode(uint32_t codepoint) {
- // Python defines this as Numeric_Type=Digit or Numeric_Type=Decimal.
- // utf8proc has no support for this, this is the best we can do:
- return HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_ND);
-}
-
-static inline bool IsNumericCharacterUnicode(uint32_t codepoint) {
- // Formally this is not correct, but utf8proc does not allow us to query for Numerical
- // properties, e.g. Numeric_Value and Numeric_Type
- // Python defines Numeric as Numeric_Type=Digit, Numeric_Type=Decimal or
- // Numeric_Type=Numeric.
- return HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_ND,
- UTF8PROC_CATEGORY_NL, UTF8PROC_CATEGORY_NO);
-}
-
-static inline bool IsSpaceCharacterUnicode(uint32_t codepoint) {
- auto property = utf8proc_get_property(codepoint);
- return HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_ZS) ||
- property->bidi_class == UTF8PROC_BIDI_CLASS_WS ||
- property->bidi_class == UTF8PROC_BIDI_CLASS_B ||
- property->bidi_class == UTF8PROC_BIDI_CLASS_S;
-}
-
-static inline bool IsPrintableCharacterUnicode(uint32_t codepoint) {
- uint32_t general_category = utf8proc_category(codepoint);
- return (general_category != UTF8PROC_CATEGORY_CN) &&
- !HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_CC,
- UTF8PROC_CATEGORY_CF, UTF8PROC_CATEGORY_CS,
- UTF8PROC_CATEGORY_CO, UTF8PROC_CATEGORY_ZS,
- UTF8PROC_CATEGORY_ZL, UTF8PROC_CATEGORY_ZP);
-}
-
-#endif
-
-static inline bool IsLowerCaseCharacterAscii(uint8_t ascii_character) {
- return (ascii_character >= 'a') && (ascii_character <= 'z');
-}
-
-static inline bool IsUpperCaseCharacterAscii(uint8_t ascii_character) {
- return (ascii_character >= 'A') && (ascii_character <= 'Z');
-}
-
-static inline bool IsCasedCharacterAscii(uint8_t ascii_character) {
- return IsLowerCaseCharacterAscii(ascii_character) ||
- IsUpperCaseCharacterAscii(ascii_character);
-}
-
-static inline bool IsAlphaCharacterAscii(uint8_t ascii_character) {
- return IsCasedCharacterAscii(ascii_character); // same
-}
-
-static inline bool IsAlphaNumericCharacterAscii(uint8_t ascii_character) {
- return ((ascii_character >= '0') && (ascii_character <= '9')) ||
- ((ascii_character >= 'a') && (ascii_character <= 'z')) ||
- ((ascii_character >= 'A') && (ascii_character <= 'Z'));
-}
-
-static inline bool IsDecimalCharacterAscii(uint8_t ascii_character) {
- return ((ascii_character >= '0') && (ascii_character <= '9'));
-}
-
-static inline bool IsSpaceCharacterAscii(uint8_t ascii_character) {
- return ((ascii_character >= 0x09) && (ascii_character <= 0x0D)) ||
- (ascii_character == ' ');
-}
-
-static inline bool IsPrintableCharacterAscii(uint8_t ascii_character) {
- return ((ascii_character >= ' ') && (ascii_character <= '~'));
-}
-
-template <typename Derived, bool allow_empty = false>
-struct CharacterPredicateUnicode {
+ DCHECK_OK(registry->AddFunction(std::move(func)));
+}
+
+// IsAlpha/Digit etc
+
+#ifdef ARROW_WITH_UTF8PROC
+
+static inline bool HasAnyUnicodeGeneralCategory(uint32_t codepoint, uint32_t mask) {
+ utf8proc_category_t general_category = codepoint <= kMaxCodepointLookup
+ ? lut_category[codepoint]
+ : utf8proc_category(codepoint);
+ uint32_t general_category_bit = 1 << general_category;
+ // for e.g. undefined (but valid) codepoints, general_category == 0 ==
+ // UTF8PROC_CATEGORY_CN
+ return (general_category != UTF8PROC_CATEGORY_CN) &&
+ ((general_category_bit & mask) != 0);
+}
+
+template <typename... Categories>
+static inline bool HasAnyUnicodeGeneralCategory(uint32_t codepoint, uint32_t mask,
+ utf8proc_category_t category,
+ Categories... categories) {
+ return HasAnyUnicodeGeneralCategory(codepoint, mask | (1 << category), categories...);
+}
+
+template <typename... Categories>
+static inline bool HasAnyUnicodeGeneralCategory(uint32_t codepoint,
+ utf8proc_category_t category,
+ Categories... categories) {
+ return HasAnyUnicodeGeneralCategory(codepoint, static_cast<uint32_t>(1u << category),
+ categories...);
+}
+
+static inline bool IsCasedCharacterUnicode(uint32_t codepoint) {
+ return HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_LU,
+ UTF8PROC_CATEGORY_LL, UTF8PROC_CATEGORY_LT) ||
+ ((static_cast<uint32_t>(utf8proc_toupper(codepoint)) != codepoint) ||
+ (static_cast<uint32_t>(utf8proc_tolower(codepoint)) != codepoint));
+}
+
+static inline bool IsLowerCaseCharacterUnicode(uint32_t codepoint) {
+ // although this trick seems to work for upper case, this is not enough for lower case
+ // testing, see https://github.com/JuliaStrings/utf8proc/issues/195 . But currently the
+ // best we can do
+ return (HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_LL) ||
+ ((static_cast<uint32_t>(utf8proc_toupper(codepoint)) != codepoint) &&
+ (static_cast<uint32_t>(utf8proc_tolower(codepoint)) == codepoint))) &&
+ !HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_LT);
+}
+
+static inline bool IsUpperCaseCharacterUnicode(uint32_t codepoint) {
+ // this seems to be a good workaround for utf8proc not having case information
+ // https://github.com/JuliaStrings/utf8proc/issues/195
+ return (HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_LU) ||
+ ((static_cast<uint32_t>(utf8proc_toupper(codepoint)) == codepoint) &&
+ (static_cast<uint32_t>(utf8proc_tolower(codepoint)) != codepoint))) &&
+ !HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_LT);
+}
+
+static inline bool IsAlphaNumericCharacterUnicode(uint32_t codepoint) {
+ return HasAnyUnicodeGeneralCategory(
+ codepoint, UTF8PROC_CATEGORY_LU, UTF8PROC_CATEGORY_LL, UTF8PROC_CATEGORY_LT,
+ UTF8PROC_CATEGORY_LM, UTF8PROC_CATEGORY_LO, UTF8PROC_CATEGORY_ND,
+ UTF8PROC_CATEGORY_NL, UTF8PROC_CATEGORY_NO);
+}
+
+static inline bool IsAlphaCharacterUnicode(uint32_t codepoint) {
+ return HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_LU,
+ UTF8PROC_CATEGORY_LL, UTF8PROC_CATEGORY_LT,
+ UTF8PROC_CATEGORY_LM, UTF8PROC_CATEGORY_LO);
+}
+
+static inline bool IsDecimalCharacterUnicode(uint32_t codepoint) {
+ return HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_ND);
+}
+
+static inline bool IsDigitCharacterUnicode(uint32_t codepoint) {
+ // Python defines this as Numeric_Type=Digit or Numeric_Type=Decimal.
+ // utf8proc has no support for this, this is the best we can do:
+ return HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_ND);
+}
+
+static inline bool IsNumericCharacterUnicode(uint32_t codepoint) {
+ // Formally this is not correct, but utf8proc does not allow us to query for Numerical
+ // properties, e.g. Numeric_Value and Numeric_Type
+ // Python defines Numeric as Numeric_Type=Digit, Numeric_Type=Decimal or
+ // Numeric_Type=Numeric.
+ return HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_ND,
+ UTF8PROC_CATEGORY_NL, UTF8PROC_CATEGORY_NO);
+}
+
+static inline bool IsSpaceCharacterUnicode(uint32_t codepoint) {
+ auto property = utf8proc_get_property(codepoint);
+ return HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_ZS) ||
+ property->bidi_class == UTF8PROC_BIDI_CLASS_WS ||
+ property->bidi_class == UTF8PROC_BIDI_CLASS_B ||
+ property->bidi_class == UTF8PROC_BIDI_CLASS_S;
+}
+
+static inline bool IsPrintableCharacterUnicode(uint32_t codepoint) {
+ uint32_t general_category = utf8proc_category(codepoint);
+ return (general_category != UTF8PROC_CATEGORY_CN) &&
+ !HasAnyUnicodeGeneralCategory(codepoint, UTF8PROC_CATEGORY_CC,
+ UTF8PROC_CATEGORY_CF, UTF8PROC_CATEGORY_CS,
+ UTF8PROC_CATEGORY_CO, UTF8PROC_CATEGORY_ZS,
+ UTF8PROC_CATEGORY_ZL, UTF8PROC_CATEGORY_ZP);
+}
+
+#endif
+
+static inline bool IsLowerCaseCharacterAscii(uint8_t ascii_character) {
+ return (ascii_character >= 'a') && (ascii_character <= 'z');
+}
+
+static inline bool IsUpperCaseCharacterAscii(uint8_t ascii_character) {
+ return (ascii_character >= 'A') && (ascii_character <= 'Z');
+}
+
+static inline bool IsCasedCharacterAscii(uint8_t ascii_character) {
+ return IsLowerCaseCharacterAscii(ascii_character) ||
+ IsUpperCaseCharacterAscii(ascii_character);
+}
+
+static inline bool IsAlphaCharacterAscii(uint8_t ascii_character) {
+ return IsCasedCharacterAscii(ascii_character); // same
+}
+
+static inline bool IsAlphaNumericCharacterAscii(uint8_t ascii_character) {
+ return ((ascii_character >= '0') && (ascii_character <= '9')) ||
+ ((ascii_character >= 'a') && (ascii_character <= 'z')) ||
+ ((ascii_character >= 'A') && (ascii_character <= 'Z'));
+}
+
+static inline bool IsDecimalCharacterAscii(uint8_t ascii_character) {
+ return ((ascii_character >= '0') && (ascii_character <= '9'));
+}
+
+static inline bool IsSpaceCharacterAscii(uint8_t ascii_character) {
+ return ((ascii_character >= 0x09) && (ascii_character <= 0x0D)) ||
+ (ascii_character == ' ');
+}
+
+static inline bool IsPrintableCharacterAscii(uint8_t ascii_character) {
+ return ((ascii_character >= ' ') && (ascii_character <= '~'));
+}
+
+template <typename Derived, bool allow_empty = false>
+struct CharacterPredicateUnicode {
static bool Call(KernelContext*, const uint8_t* input, size_t input_string_ncodeunits,
Status* st) {
- if (allow_empty && input_string_ncodeunits == 0) {
- return true;
- }
- bool all;
- bool any = false;
- if (!ARROW_PREDICT_TRUE(arrow::util::UTF8AllOf(
- input, input + input_string_ncodeunits, &all, [&any](uint32_t codepoint) {
- any |= Derived::PredicateCharacterAny(codepoint);
- return Derived::PredicateCharacterAll(codepoint);
- }))) {
+ if (allow_empty && input_string_ncodeunits == 0) {
+ return true;
+ }
+ bool all;
+ bool any = false;
+ if (!ARROW_PREDICT_TRUE(arrow::util::UTF8AllOf(
+ input, input + input_string_ncodeunits, &all, [&any](uint32_t codepoint) {
+ any |= Derived::PredicateCharacterAny(codepoint);
+ return Derived::PredicateCharacterAll(codepoint);
+ }))) {
*st = Status::Invalid("Invalid UTF8 sequence in input");
- return false;
- }
- return all & any;
- }
-
- static inline bool PredicateCharacterAny(uint32_t) {
- return true; // default condition make sure there is at least 1 charachter
- }
-};
-
-template <typename Derived, bool allow_empty = false>
-struct CharacterPredicateAscii {
+ return false;
+ }
+ return all & any;
+ }
+
+ static inline bool PredicateCharacterAny(uint32_t) {
+ return true; // default condition make sure there is at least 1 charachter
+ }
+};
+
+template <typename Derived, bool allow_empty = false>
+struct CharacterPredicateAscii {
static bool Call(KernelContext*, const uint8_t* input, size_t input_string_ncodeunits,
Status*) {
- if (allow_empty && input_string_ncodeunits == 0) {
- return true;
- }
- bool any = false;
- // MB: A simple for loops seems 8% faster on gcc 9.3, running the IsAlphaNumericAscii
- // benchmark. I don't consider that worth it.
- bool all = std::all_of(input, input + input_string_ncodeunits,
- [&any](uint8_t ascii_character) {
- any |= Derived::PredicateCharacterAny(ascii_character);
- return Derived::PredicateCharacterAll(ascii_character);
- });
- return all & any;
- }
-
- static inline bool PredicateCharacterAny(uint8_t) {
- return true; // default condition make sure there is at least 1 charachter
- }
-};
-
-#ifdef ARROW_WITH_UTF8PROC
-struct IsAlphaNumericUnicode : CharacterPredicateUnicode<IsAlphaNumericUnicode> {
- static inline bool PredicateCharacterAll(uint32_t codepoint) {
- return IsAlphaNumericCharacterUnicode(codepoint);
- }
-};
-#endif
-
-struct IsAlphaNumericAscii : CharacterPredicateAscii<IsAlphaNumericAscii> {
- static inline bool PredicateCharacterAll(uint8_t ascii_character) {
- return IsAlphaNumericCharacterAscii(ascii_character);
- }
-};
-
-#ifdef ARROW_WITH_UTF8PROC
-struct IsAlphaUnicode : CharacterPredicateUnicode<IsAlphaUnicode> {
- static inline bool PredicateCharacterAll(uint32_t codepoint) {
- return IsAlphaCharacterUnicode(codepoint);
- }
-};
-#endif
-
-struct IsAlphaAscii : CharacterPredicateAscii<IsAlphaAscii> {
- static inline bool PredicateCharacterAll(uint8_t ascii_character) {
- return IsAlphaCharacterAscii(ascii_character);
- }
-};
-
-#ifdef ARROW_WITH_UTF8PROC
-struct IsDecimalUnicode : CharacterPredicateUnicode<IsDecimalUnicode> {
- static inline bool PredicateCharacterAll(uint32_t codepoint) {
- return IsDecimalCharacterUnicode(codepoint);
- }
-};
-#endif
-
-struct IsDecimalAscii : CharacterPredicateAscii<IsDecimalAscii> {
- static inline bool PredicateCharacterAll(uint8_t ascii_character) {
- return IsDecimalCharacterAscii(ascii_character);
- }
-};
-
-#ifdef ARROW_WITH_UTF8PROC
-struct IsDigitUnicode : CharacterPredicateUnicode<IsDigitUnicode> {
- static inline bool PredicateCharacterAll(uint32_t codepoint) {
- return IsDigitCharacterUnicode(codepoint);
- }
-};
-
-struct IsNumericUnicode : CharacterPredicateUnicode<IsNumericUnicode> {
- static inline bool PredicateCharacterAll(uint32_t codepoint) {
- return IsNumericCharacterUnicode(codepoint);
- }
-};
-#endif
-
-struct IsAscii {
+ if (allow_empty && input_string_ncodeunits == 0) {
+ return true;
+ }
+ bool any = false;
+ // MB: A simple for loops seems 8% faster on gcc 9.3, running the IsAlphaNumericAscii
+ // benchmark. I don't consider that worth it.
+ bool all = std::all_of(input, input + input_string_ncodeunits,
+ [&any](uint8_t ascii_character) {
+ any |= Derived::PredicateCharacterAny(ascii_character);
+ return Derived::PredicateCharacterAll(ascii_character);
+ });
+ return all & any;
+ }
+
+ static inline bool PredicateCharacterAny(uint8_t) {
+ return true; // default condition make sure there is at least 1 charachter
+ }
+};
+
+#ifdef ARROW_WITH_UTF8PROC
+struct IsAlphaNumericUnicode : CharacterPredicateUnicode<IsAlphaNumericUnicode> {
+ static inline bool PredicateCharacterAll(uint32_t codepoint) {
+ return IsAlphaNumericCharacterUnicode(codepoint);
+ }
+};
+#endif
+
+struct IsAlphaNumericAscii : CharacterPredicateAscii<IsAlphaNumericAscii> {
+ static inline bool PredicateCharacterAll(uint8_t ascii_character) {
+ return IsAlphaNumericCharacterAscii(ascii_character);
+ }
+};
+
+#ifdef ARROW_WITH_UTF8PROC
+struct IsAlphaUnicode : CharacterPredicateUnicode<IsAlphaUnicode> {
+ static inline bool PredicateCharacterAll(uint32_t codepoint) {
+ return IsAlphaCharacterUnicode(codepoint);
+ }
+};
+#endif
+
+struct IsAlphaAscii : CharacterPredicateAscii<IsAlphaAscii> {
+ static inline bool PredicateCharacterAll(uint8_t ascii_character) {
+ return IsAlphaCharacterAscii(ascii_character);
+ }
+};
+
+#ifdef ARROW_WITH_UTF8PROC
+struct IsDecimalUnicode : CharacterPredicateUnicode<IsDecimalUnicode> {
+ static inline bool PredicateCharacterAll(uint32_t codepoint) {
+ return IsDecimalCharacterUnicode(codepoint);
+ }
+};
+#endif
+
+struct IsDecimalAscii : CharacterPredicateAscii<IsDecimalAscii> {
+ static inline bool PredicateCharacterAll(uint8_t ascii_character) {
+ return IsDecimalCharacterAscii(ascii_character);
+ }
+};
+
+#ifdef ARROW_WITH_UTF8PROC
+struct IsDigitUnicode : CharacterPredicateUnicode<IsDigitUnicode> {
+ static inline bool PredicateCharacterAll(uint32_t codepoint) {
+ return IsDigitCharacterUnicode(codepoint);
+ }
+};
+
+struct IsNumericUnicode : CharacterPredicateUnicode<IsNumericUnicode> {
+ static inline bool PredicateCharacterAll(uint32_t codepoint) {
+ return IsNumericCharacterUnicode(codepoint);
+ }
+};
+#endif
+
+struct IsAscii {
static bool Call(KernelContext*, const uint8_t* input,
size_t input_string_nascii_characters, Status*) {
- return std::all_of(input, input + input_string_nascii_characters,
- IsAsciiCharacter<uint8_t>);
- }
-};
-
-#ifdef ARROW_WITH_UTF8PROC
-struct IsLowerUnicode : CharacterPredicateUnicode<IsLowerUnicode> {
- static inline bool PredicateCharacterAll(uint32_t codepoint) {
- // Only for cased character it needs to be lower case
- return !IsCasedCharacterUnicode(codepoint) || IsLowerCaseCharacterUnicode(codepoint);
- }
- static inline bool PredicateCharacterAny(uint32_t codepoint) {
- return IsCasedCharacterUnicode(codepoint); // at least 1 cased character
- }
-};
-#endif
-
-struct IsLowerAscii : CharacterPredicateAscii<IsLowerAscii> {
- static inline bool PredicateCharacterAll(uint8_t ascii_character) {
- // Only for cased character it needs to be lower case
- return !IsCasedCharacterAscii(ascii_character) ||
- IsLowerCaseCharacterAscii(ascii_character);
- }
- static inline bool PredicateCharacterAny(uint8_t ascii_character) {
- return IsCasedCharacterAscii(ascii_character); // at least 1 cased character
- }
-};
-
-#ifdef ARROW_WITH_UTF8PROC
-struct IsPrintableUnicode
- : CharacterPredicateUnicode<IsPrintableUnicode, /*allow_empty=*/true> {
- static inline bool PredicateCharacterAll(uint32_t codepoint) {
- return codepoint == ' ' || IsPrintableCharacterUnicode(codepoint);
- }
-};
-#endif
-
-struct IsPrintableAscii
- : CharacterPredicateAscii<IsPrintableAscii, /*allow_empty=*/true> {
- static inline bool PredicateCharacterAll(uint8_t ascii_character) {
- return IsPrintableCharacterAscii(ascii_character);
- }
-};
-
-#ifdef ARROW_WITH_UTF8PROC
-struct IsSpaceUnicode : CharacterPredicateUnicode<IsSpaceUnicode> {
- static inline bool PredicateCharacterAll(uint32_t codepoint) {
- return IsSpaceCharacterUnicode(codepoint);
- }
-};
-#endif
-
-struct IsSpaceAscii : CharacterPredicateAscii<IsSpaceAscii> {
- static inline bool PredicateCharacterAll(uint8_t ascii_character) {
- return IsSpaceCharacterAscii(ascii_character);
- }
-};
-
-#ifdef ARROW_WITH_UTF8PROC
-struct IsTitleUnicode {
+ return std::all_of(input, input + input_string_nascii_characters,
+ IsAsciiCharacter<uint8_t>);
+ }
+};
+
+#ifdef ARROW_WITH_UTF8PROC
+struct IsLowerUnicode : CharacterPredicateUnicode<IsLowerUnicode> {
+ static inline bool PredicateCharacterAll(uint32_t codepoint) {
+ // Only for cased character it needs to be lower case
+ return !IsCasedCharacterUnicode(codepoint) || IsLowerCaseCharacterUnicode(codepoint);
+ }
+ static inline bool PredicateCharacterAny(uint32_t codepoint) {
+ return IsCasedCharacterUnicode(codepoint); // at least 1 cased character
+ }
+};
+#endif
+
+struct IsLowerAscii : CharacterPredicateAscii<IsLowerAscii> {
+ static inline bool PredicateCharacterAll(uint8_t ascii_character) {
+ // Only for cased character it needs to be lower case
+ return !IsCasedCharacterAscii(ascii_character) ||
+ IsLowerCaseCharacterAscii(ascii_character);
+ }
+ static inline bool PredicateCharacterAny(uint8_t ascii_character) {
+ return IsCasedCharacterAscii(ascii_character); // at least 1 cased character
+ }
+};
+
+#ifdef ARROW_WITH_UTF8PROC
+struct IsPrintableUnicode
+ : CharacterPredicateUnicode<IsPrintableUnicode, /*allow_empty=*/true> {
+ static inline bool PredicateCharacterAll(uint32_t codepoint) {
+ return codepoint == ' ' || IsPrintableCharacterUnicode(codepoint);
+ }
+};
+#endif
+
+struct IsPrintableAscii
+ : CharacterPredicateAscii<IsPrintableAscii, /*allow_empty=*/true> {
+ static inline bool PredicateCharacterAll(uint8_t ascii_character) {
+ return IsPrintableCharacterAscii(ascii_character);
+ }
+};
+
+#ifdef ARROW_WITH_UTF8PROC
+struct IsSpaceUnicode : CharacterPredicateUnicode<IsSpaceUnicode> {
+ static inline bool PredicateCharacterAll(uint32_t codepoint) {
+ return IsSpaceCharacterUnicode(codepoint);
+ }
+};
+#endif
+
+struct IsSpaceAscii : CharacterPredicateAscii<IsSpaceAscii> {
+ static inline bool PredicateCharacterAll(uint8_t ascii_character) {
+ return IsSpaceCharacterAscii(ascii_character);
+ }
+};
+
+#ifdef ARROW_WITH_UTF8PROC
+struct IsTitleUnicode {
static bool Call(KernelContext*, const uint8_t* input, size_t input_string_ncodeunits,
Status* st) {
- // rules:
- // * 1: lower case follows cased
- // * 2: upper case follows uncased
- // * 3: at least 1 cased character (which logically should be upper/title)
- bool rules_1_and_2;
- bool previous_cased = false; // in LL, LU or LT
- bool rule_3 = false;
- bool status =
- arrow::util::UTF8AllOf(input, input + input_string_ncodeunits, &rules_1_and_2,
- [&previous_cased, &rule_3](uint32_t codepoint) {
- if (IsLowerCaseCharacterUnicode(codepoint)) {
- if (!previous_cased) return false; // rule 1 broken
- previous_cased = true;
- } else if (IsCasedCharacterUnicode(codepoint)) {
- if (previous_cased) return false; // rule 2 broken
- // next should be a lower case or uncased
- previous_cased = true;
- rule_3 = true; // rule 3 obeyed
- } else {
- // a non-cased char, like _ or 1
- // next should be upper case or more uncased
- previous_cased = false;
- }
- return true;
- });
- if (!ARROW_PREDICT_TRUE(status)) {
+ // rules:
+ // * 1: lower case follows cased
+ // * 2: upper case follows uncased
+ // * 3: at least 1 cased character (which logically should be upper/title)
+ bool rules_1_and_2;
+ bool previous_cased = false; // in LL, LU or LT
+ bool rule_3 = false;
+ bool status =
+ arrow::util::UTF8AllOf(input, input + input_string_ncodeunits, &rules_1_and_2,
+ [&previous_cased, &rule_3](uint32_t codepoint) {
+ if (IsLowerCaseCharacterUnicode(codepoint)) {
+ if (!previous_cased) return false; // rule 1 broken
+ previous_cased = true;
+ } else if (IsCasedCharacterUnicode(codepoint)) {
+ if (previous_cased) return false; // rule 2 broken
+ // next should be a lower case or uncased
+ previous_cased = true;
+ rule_3 = true; // rule 3 obeyed
+ } else {
+ // a non-cased char, like _ or 1
+ // next should be upper case or more uncased
+ previous_cased = false;
+ }
+ return true;
+ });
+ if (!ARROW_PREDICT_TRUE(status)) {
*st = Status::Invalid("Invalid UTF8 sequence in input");
- return false;
- }
- return rules_1_and_2 & rule_3;
- }
-};
-#endif
-
-struct IsTitleAscii {
+ return false;
+ }
+ return rules_1_and_2 & rule_3;
+ }
+};
+#endif
+
+struct IsTitleAscii {
static bool Call(KernelContext*, const uint8_t* input, size_t input_string_ncodeunits,
Status*) {
- // rules:
- // * 1: lower case follows cased
- // * 2: upper case follows uncased
- // * 3: at least 1 cased character (which logically should be upper/title)
- bool rules_1_and_2 = true;
- bool previous_cased = false; // in LL, LU or LT
- bool rule_3 = false;
- // we cannot rely on std::all_of because we need guaranteed order
- for (const uint8_t* c = input; c < input + input_string_ncodeunits; ++c) {
- if (IsLowerCaseCharacterAscii(*c)) {
- if (!previous_cased) {
- // rule 1 broken
- rules_1_and_2 = false;
- break;
- }
- previous_cased = true;
- } else if (IsCasedCharacterAscii(*c)) {
- if (previous_cased) {
- // rule 2 broken
- rules_1_and_2 = false;
- break;
- }
- // next should be a lower case or uncased
- previous_cased = true;
- rule_3 = true; // rule 3 obeyed
- } else {
- // a non-cased char, like _ or 1
- // next should be upper case or more uncased
- previous_cased = false;
- }
- }
- return rules_1_and_2 & rule_3;
- }
-};
-
-#ifdef ARROW_WITH_UTF8PROC
-struct IsUpperUnicode : CharacterPredicateUnicode<IsUpperUnicode> {
- static inline bool PredicateCharacterAll(uint32_t codepoint) {
- // Only for cased character it needs to be lower case
- return !IsCasedCharacterUnicode(codepoint) || IsUpperCaseCharacterUnicode(codepoint);
- }
- static inline bool PredicateCharacterAny(uint32_t codepoint) {
- return IsCasedCharacterUnicode(codepoint); // at least 1 cased character
- }
-};
-#endif
-
-struct IsUpperAscii : CharacterPredicateAscii<IsUpperAscii> {
- static inline bool PredicateCharacterAll(uint8_t ascii_character) {
- // Only for cased character it needs to be lower case
- return !IsCasedCharacterAscii(ascii_character) ||
- IsUpperCaseCharacterAscii(ascii_character);
- }
- static inline bool PredicateCharacterAny(uint8_t ascii_character) {
- return IsCasedCharacterAscii(ascii_character); // at least 1 cased character
- }
-};
-
+ // rules:
+ // * 1: lower case follows cased
+ // * 2: upper case follows uncased
+ // * 3: at least 1 cased character (which logically should be upper/title)
+ bool rules_1_and_2 = true;
+ bool previous_cased = false; // in LL, LU or LT
+ bool rule_3 = false;
+ // we cannot rely on std::all_of because we need guaranteed order
+ for (const uint8_t* c = input; c < input + input_string_ncodeunits; ++c) {
+ if (IsLowerCaseCharacterAscii(*c)) {
+ if (!previous_cased) {
+ // rule 1 broken
+ rules_1_and_2 = false;
+ break;
+ }
+ previous_cased = true;
+ } else if (IsCasedCharacterAscii(*c)) {
+ if (previous_cased) {
+ // rule 2 broken
+ rules_1_and_2 = false;
+ break;
+ }
+ // next should be a lower case or uncased
+ previous_cased = true;
+ rule_3 = true; // rule 3 obeyed
+ } else {
+ // a non-cased char, like _ or 1
+ // next should be upper case or more uncased
+ previous_cased = false;
+ }
+ }
+ return rules_1_and_2 & rule_3;
+ }
+};
+
+#ifdef ARROW_WITH_UTF8PROC
+struct IsUpperUnicode : CharacterPredicateUnicode<IsUpperUnicode> {
+ static inline bool PredicateCharacterAll(uint32_t codepoint) {
+ // Only for cased character it needs to be lower case
+ return !IsCasedCharacterUnicode(codepoint) || IsUpperCaseCharacterUnicode(codepoint);
+ }
+ static inline bool PredicateCharacterAny(uint32_t codepoint) {
+ return IsCasedCharacterUnicode(codepoint); // at least 1 cased character
+ }
+};
+#endif
+
+struct IsUpperAscii : CharacterPredicateAscii<IsUpperAscii> {
+ static inline bool PredicateCharacterAll(uint8_t ascii_character) {
+ // Only for cased character it needs to be lower case
+ return !IsCasedCharacterAscii(ascii_character) ||
+ IsUpperCaseCharacterAscii(ascii_character);
+ }
+ static inline bool PredicateCharacterAny(uint8_t ascii_character) {
+ return IsCasedCharacterAscii(ascii_character); // at least 1 cased character
+ }
+};
+
// splitting
template <typename Options>
@@ -2215,7 +2215,7 @@ void AddSplit(FunctionRegistry* registry) {
#endif
}
-// ----------------------------------------------------------------------
+// ----------------------------------------------------------------------
// Replace substring (plain, regex)
template <typename Type, typename Replacer>
@@ -2773,43 +2773,43 @@ void AddExtractRegex(FunctionRegistry* registry) {
#endif // ARROW_WITH_RE2
// ----------------------------------------------------------------------
-// strptime string parsing
-
-using StrptimeState = OptionsWrapper<StrptimeOptions>;
-
-struct ParseStrptime {
- explicit ParseStrptime(const StrptimeOptions& options)
- : parser(TimestampParser::MakeStrptime(options.format)), unit(options.unit) {}
-
- template <typename... Ignored>
+// strptime string parsing
+
+using StrptimeState = OptionsWrapper<StrptimeOptions>;
+
+struct ParseStrptime {
+ explicit ParseStrptime(const StrptimeOptions& options)
+ : parser(TimestampParser::MakeStrptime(options.format)), unit(options.unit) {}
+
+ template <typename... Ignored>
int64_t Call(KernelContext*, util::string_view val, Status* st) const {
- int64_t result = 0;
- if (!(*parser)(val.data(), val.size(), unit, &result)) {
+ int64_t result = 0;
+ if (!(*parser)(val.data(), val.size(), unit, &result)) {
*st = Status::Invalid("Failed to parse string: '", val, "' as a scalar of type ",
TimestampType(unit).ToString());
- }
- return result;
- }
-
- std::shared_ptr<TimestampParser> parser;
- TimeUnit::type unit;
-};
-
-template <typename InputType>
+ }
+ return result;
+ }
+
+ std::shared_ptr<TimestampParser> parser;
+ TimeUnit::type unit;
+};
+
+template <typename InputType>
Status StrptimeExec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- applicator::ScalarUnaryNotNullStateful<TimestampType, InputType, ParseStrptime> kernel{
- ParseStrptime(StrptimeState::Get(ctx))};
- return kernel.Exec(ctx, batch, out);
-}
-
-Result<ValueDescr> StrptimeResolve(KernelContext* ctx, const std::vector<ValueDescr>&) {
- if (ctx->state()) {
- return ::arrow::timestamp(StrptimeState::Get(ctx).unit);
- }
-
- return Status::Invalid("strptime does not provide default StrptimeOptions");
-}
-
+ applicator::ScalarUnaryNotNullStateful<TimestampType, InputType, ParseStrptime> kernel{
+ ParseStrptime(StrptimeState::Get(ctx))};
+ return kernel.Exec(ctx, batch, out);
+}
+
+Result<ValueDescr> StrptimeResolve(KernelContext* ctx, const std::vector<ValueDescr>&) {
+ if (ctx->state()) {
+ return ::arrow::timestamp(StrptimeState::Get(ctx).unit);
+ }
+
+ return Status::Invalid("strptime does not provide default StrptimeOptions");
+}
+
// ----------------------------------------------------------------------
// string padding
@@ -3273,31 +3273,31 @@ const FunctionDoc utf8_length_doc("Compute UTF8 string lengths",
"UTF8 characters. Null values emit null."),
{"strings"});
-void AddStrptime(FunctionRegistry* registry) {
+void AddStrptime(FunctionRegistry* registry) {
auto func = std::make_shared<ScalarFunction>("strptime", Arity::Unary(), &strptime_doc);
- DCHECK_OK(func->AddKernel({utf8()}, OutputType(StrptimeResolve),
- StrptimeExec<StringType>, StrptimeState::Init));
- DCHECK_OK(func->AddKernel({large_utf8()}, OutputType(StrptimeResolve),
- StrptimeExec<LargeStringType>, StrptimeState::Init));
- DCHECK_OK(registry->AddFunction(std::move(func)));
-}
-
-void AddBinaryLength(FunctionRegistry* registry) {
+ DCHECK_OK(func->AddKernel({utf8()}, OutputType(StrptimeResolve),
+ StrptimeExec<StringType>, StrptimeState::Init));
+ DCHECK_OK(func->AddKernel({large_utf8()}, OutputType(StrptimeResolve),
+ StrptimeExec<LargeStringType>, StrptimeState::Init));
+ DCHECK_OK(registry->AddFunction(std::move(func)));
+}
+
+void AddBinaryLength(FunctionRegistry* registry) {
auto func = std::make_shared<ScalarFunction>("binary_length", Arity::Unary(),
&binary_length_doc);
- ArrayKernelExec exec_offset_32 =
- applicator::ScalarUnaryNotNull<Int32Type, StringType, BinaryLength>::Exec;
- ArrayKernelExec exec_offset_64 =
- applicator::ScalarUnaryNotNull<Int64Type, LargeStringType, BinaryLength>::Exec;
- for (const auto& input_type : {binary(), utf8()}) {
- DCHECK_OK(func->AddKernel({input_type}, int32(), exec_offset_32));
- }
- for (const auto& input_type : {large_binary(), large_utf8()}) {
- DCHECK_OK(func->AddKernel({input_type}, int64(), exec_offset_64));
- }
- DCHECK_OK(registry->AddFunction(std::move(func)));
-}
-
+ ArrayKernelExec exec_offset_32 =
+ applicator::ScalarUnaryNotNull<Int32Type, StringType, BinaryLength>::Exec;
+ ArrayKernelExec exec_offset_64 =
+ applicator::ScalarUnaryNotNull<Int64Type, LargeStringType, BinaryLength>::Exec;
+ for (const auto& input_type : {binary(), utf8()}) {
+ DCHECK_OK(func->AddKernel({input_type}, int32(), exec_offset_32));
+ }
+ for (const auto& input_type : {large_binary(), large_utf8()}) {
+ DCHECK_OK(func->AddKernel({input_type}, int64(), exec_offset_64));
+ }
+ DCHECK_OK(registry->AddFunction(std::move(func)));
+}
+
void AddUtf8Length(FunctionRegistry* registry) {
auto func =
std::make_shared<ScalarFunction>("utf8_length", Arity::Unary(), &utf8_length_doc);
@@ -3821,7 +3821,7 @@ void AddBinaryJoin(FunctionRegistry* registry) {
}
}
-template <template <typename> class ExecFunctor>
+template <template <typename> class ExecFunctor>
void MakeUnaryStringBatchKernel(
std::string name, FunctionRegistry* registry, const FunctionDoc* doc,
MemAllocation::type mem_allocation = MemAllocation::PREALLOCATE) {
@@ -3838,9 +3838,9 @@ void MakeUnaryStringBatchKernel(
kernel.mem_allocation = mem_allocation;
DCHECK_OK(func->AddKernel(std::move(kernel)));
}
- DCHECK_OK(registry->AddFunction(std::move(func)));
-}
-
+ DCHECK_OK(registry->AddFunction(std::move(func)));
+}
+
template <template <typename> class ExecFunctor>
void MakeUnaryStringBatchKernelWithState(
std::string name, FunctionRegistry* registry, const FunctionDoc* doc,
@@ -3861,71 +3861,71 @@ void MakeUnaryStringBatchKernelWithState(
DCHECK_OK(registry->AddFunction(std::move(func)));
}
-#ifdef ARROW_WITH_UTF8PROC
-
-template <template <typename> class Transformer>
+#ifdef ARROW_WITH_UTF8PROC
+
+template <template <typename> class Transformer>
void MakeUnaryStringUTF8TransformKernel(std::string name, FunctionRegistry* registry,
const FunctionDoc* doc) {
auto func = std::make_shared<ScalarFunction>(name, Arity::Unary(), doc);
- ArrayKernelExec exec_32 = Transformer<StringType>::Exec;
- ArrayKernelExec exec_64 = Transformer<LargeStringType>::Exec;
- DCHECK_OK(func->AddKernel({utf8()}, utf8(), exec_32));
- DCHECK_OK(func->AddKernel({large_utf8()}, large_utf8(), exec_64));
- DCHECK_OK(registry->AddFunction(std::move(func)));
-}
-
-#endif
-
+ ArrayKernelExec exec_32 = Transformer<StringType>::Exec;
+ ArrayKernelExec exec_64 = Transformer<LargeStringType>::Exec;
+ DCHECK_OK(func->AddKernel({utf8()}, utf8(), exec_32));
+ DCHECK_OK(func->AddKernel({large_utf8()}, large_utf8(), exec_64));
+ DCHECK_OK(registry->AddFunction(std::move(func)));
+}
+
+#endif
+
// NOTE: Predicate should only populate 'status' with errors,
// leave it unmodified to indicate Status::OK()
using StringPredicate =
std::function<bool(KernelContext*, const uint8_t*, size_t, Status*)>;
-
-template <typename Type>
+
+template <typename Type>
Status ApplyPredicate(KernelContext* ctx, const ExecBatch& batch,
StringPredicate predicate, Datum* out) {
Status st = Status::OK();
- EnsureLookupTablesFilled();
- if (batch[0].kind() == Datum::ARRAY) {
- const ArrayData& input = *batch[0].array();
- ArrayIterator<Type> input_it(input);
- ArrayData* out_arr = out->mutable_array();
- ::arrow::internal::GenerateBitsUnrolled(
- out_arr->buffers[1]->mutable_data(), out_arr->offset, input.length,
- [&]() -> bool {
- util::string_view val = input_it();
+ EnsureLookupTablesFilled();
+ if (batch[0].kind() == Datum::ARRAY) {
+ const ArrayData& input = *batch[0].array();
+ ArrayIterator<Type> input_it(input);
+ ArrayData* out_arr = out->mutable_array();
+ ::arrow::internal::GenerateBitsUnrolled(
+ out_arr->buffers[1]->mutable_data(), out_arr->offset, input.length,
+ [&]() -> bool {
+ util::string_view val = input_it();
return predicate(ctx, reinterpret_cast<const uint8_t*>(val.data()), val.size(),
&st);
- });
- } else {
- const auto& input = checked_cast<const BaseBinaryScalar&>(*batch[0].scalar());
- if (input.is_valid) {
+ });
+ } else {
+ const auto& input = checked_cast<const BaseBinaryScalar&>(*batch[0].scalar());
+ if (input.is_valid) {
bool boolean_result = predicate(ctx, input.value->data(),
static_cast<size_t>(input.value->size()), &st);
// UTF decoding can lead to issues
if (st.ok()) {
out->value = std::make_shared<BooleanScalar>(boolean_result);
- }
- }
- }
+ }
+ }
+ }
return st;
-}
-
-template <typename Predicate>
+}
+
+template <typename Predicate>
void AddUnaryStringPredicate(std::string name, FunctionRegistry* registry,
const FunctionDoc* doc) {
auto func = std::make_shared<ScalarFunction>(name, Arity::Unary(), doc);
- auto exec_32 = [](KernelContext* ctx, const ExecBatch& batch, Datum* out) {
+ auto exec_32 = [](KernelContext* ctx, const ExecBatch& batch, Datum* out) {
return ApplyPredicate<StringType>(ctx, batch, Predicate::Call, out);
- };
- auto exec_64 = [](KernelContext* ctx, const ExecBatch& batch, Datum* out) {
+ };
+ auto exec_64 = [](KernelContext* ctx, const ExecBatch& batch, Datum* out) {
return ApplyPredicate<LargeStringType>(ctx, batch, Predicate::Call, out);
- };
- DCHECK_OK(func->AddKernel({utf8()}, boolean(), std::move(exec_32)));
- DCHECK_OK(func->AddKernel({large_utf8()}, boolean(), std::move(exec_64)));
- DCHECK_OK(registry->AddFunction(std::move(func)));
-}
-
+ };
+ DCHECK_OK(func->AddKernel({utf8()}, boolean(), std::move(exec_32)));
+ DCHECK_OK(func->AddKernel({large_utf8()}, boolean(), std::move(exec_64)));
+ DCHECK_OK(registry->AddFunction(std::move(func)));
+}
+
FunctionDoc StringPredicateDoc(std::string summary, std::string description) {
return FunctionDoc{std::move(summary), std::move(description), {"strings"}};
}
@@ -4041,9 +4041,9 @@ const FunctionDoc utf8_reverse_doc(
"composed of multiple codepoints."),
{"strings"});
-} // namespace
-
-void RegisterScalarStringAscii(FunctionRegistry* registry) {
+} // namespace
+
+void RegisterScalarStringAscii(FunctionRegistry* registry) {
// ascii_upper and ascii_lower are able to reuse the original offsets buffer,
// so don't preallocate them in the output.
MakeUnaryStringBatchKernel<AsciiUpper>("ascii_upper", registry, &ascii_upper_doc,
@@ -4058,7 +4058,7 @@ void RegisterScalarStringAscii(FunctionRegistry* registry) {
&ascii_rtrim_whitespace_doc);
MakeUnaryStringBatchKernel<AsciiReverse>("ascii_reverse", registry, &ascii_reverse_doc);
MakeUnaryStringBatchKernel<Utf8Reverse>("utf8_reverse", registry, &utf8_reverse_doc);
-
+
MakeUnaryStringBatchKernelWithState<AsciiCenter>("ascii_center", registry,
&ascii_center_doc);
MakeUnaryStringBatchKernelWithState<AsciiLPad>("ascii_lpad", registry, &ascii_lpad_doc);
@@ -4067,7 +4067,7 @@ void RegisterScalarStringAscii(FunctionRegistry* registry) {
&utf8_center_doc);
MakeUnaryStringBatchKernelWithState<Utf8LPad>("utf8_lpad", registry, &utf8_lpad_doc);
MakeUnaryStringBatchKernelWithState<Utf8RPad>("utf8_rpad", registry, &utf8_rpad_doc);
-
+
MakeUnaryStringBatchKernelWithState<AsciiTrim>("ascii_trim", registry, &ascii_trim_doc);
MakeUnaryStringBatchKernelWithState<AsciiLTrim>("ascii_ltrim", registry,
&ascii_ltrim_doc);
@@ -4081,16 +4081,16 @@ void RegisterScalarStringAscii(FunctionRegistry* registry) {
AddUnaryStringPredicate<IsAlphaAscii>("ascii_is_alpha", registry, &ascii_is_alpha_doc);
AddUnaryStringPredicate<IsDecimalAscii>("ascii_is_decimal", registry,
&ascii_is_decimal_doc);
- // no is_digit for ascii, since it is the same as is_decimal
+ // no is_digit for ascii, since it is the same as is_decimal
AddUnaryStringPredicate<IsLowerAscii>("ascii_is_lower", registry, &ascii_is_lower_doc);
- // no is_numeric for ascii, since it is the same as is_decimal
+ // no is_numeric for ascii, since it is the same as is_decimal
AddUnaryStringPredicate<IsPrintableAscii>("ascii_is_printable", registry,
&ascii_is_printable_doc);
AddUnaryStringPredicate<IsSpaceAscii>("ascii_is_space", registry, &ascii_is_space_doc);
AddUnaryStringPredicate<IsTitleAscii>("ascii_is_title", registry, &ascii_is_title_doc);
AddUnaryStringPredicate<IsUpperAscii>("ascii_is_upper", registry, &ascii_is_upper_doc);
-
-#ifdef ARROW_WITH_UTF8PROC
+
+#ifdef ARROW_WITH_UTF8PROC
MakeUnaryStringUTF8TransformKernel<UTF8Upper>("utf8_upper", registry, &utf8_upper_doc);
MakeUnaryStringUTF8TransformKernel<UTF8Lower>("utf8_lower", registry, &utf8_lower_doc);
MakeUnaryStringBatchKernel<UTF8TrimWhitespace>("utf8_trim_whitespace", registry,
@@ -4102,7 +4102,7 @@ void RegisterScalarStringAscii(FunctionRegistry* registry) {
MakeUnaryStringBatchKernelWithState<UTF8Trim>("utf8_trim", registry, &utf8_trim_doc);
MakeUnaryStringBatchKernelWithState<UTF8LTrim>("utf8_ltrim", registry, &utf8_ltrim_doc);
MakeUnaryStringBatchKernelWithState<UTF8RTrim>("utf8_rtrim", registry, &utf8_rtrim_doc);
-
+
AddUnaryStringPredicate<IsAlphaNumericUnicode>("utf8_is_alnum", registry,
&utf8_is_alnum_doc);
AddUnaryStringPredicate<IsAlphaUnicode>("utf8_is_alpha", registry, &utf8_is_alpha_doc);
@@ -4117,11 +4117,11 @@ void RegisterScalarStringAscii(FunctionRegistry* registry) {
AddUnaryStringPredicate<IsSpaceUnicode>("utf8_is_space", registry, &utf8_is_space_doc);
AddUnaryStringPredicate<IsTitleUnicode>("utf8_is_title", registry, &utf8_is_title_doc);
AddUnaryStringPredicate<IsUpperUnicode>("utf8_is_upper", registry, &utf8_is_upper_doc);
-#endif
-
- AddBinaryLength(registry);
+#endif
+
+ AddBinaryLength(registry);
AddUtf8Length(registry);
- AddMatchSubstring(registry);
+ AddMatchSubstring(registry);
AddFindSubstring(registry);
AddCountSubstring(registry);
MakeUnaryStringBatchKernelWithState<ReplaceSubStringPlain>(
@@ -4136,10 +4136,10 @@ void RegisterScalarStringAscii(FunctionRegistry* registry) {
AddReplaceSlice(registry);
AddSlice(registry);
AddSplit(registry);
- AddStrptime(registry);
+ AddStrptime(registry);
AddBinaryJoin(registry);
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_validity.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_validity.cc
index ead88abc0f..befb116348 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_validity.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/scalar_validity.cc
@@ -1,65 +1,65 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
#include <cmath>
-#include "arrow/compute/kernels/common.h"
-
-#include "arrow/util/bit_util.h"
-#include "arrow/util/bitmap_ops.h"
-
-namespace arrow {
-
-using internal::CopyBitmap;
-using internal::InvertBitmap;
-
-namespace compute {
-namespace internal {
-namespace {
-
-struct IsValidOperator {
+#include "arrow/compute/kernels/common.h"
+
+#include "arrow/util/bit_util.h"
+#include "arrow/util/bitmap_ops.h"
+
+namespace arrow {
+
+using internal::CopyBitmap;
+using internal::InvertBitmap;
+
+namespace compute {
+namespace internal {
+namespace {
+
+struct IsValidOperator {
static Status Call(KernelContext* ctx, const Scalar& in, Scalar* out) {
- checked_cast<BooleanScalar*>(out)->value = in.is_valid;
+ checked_cast<BooleanScalar*>(out)->value = in.is_valid;
return Status::OK();
- }
-
+ }
+
static Status Call(KernelContext* ctx, const ArrayData& arr, ArrayData* out) {
- DCHECK_EQ(out->offset, 0);
- DCHECK_LE(out->length, arr.length);
- if (arr.MayHaveNulls()) {
- // Input has nulls => output is the null (validity) bitmap.
- // To avoid copying the null bitmap, slice from the starting byte offset
- // and set the offset to the remaining bit offset.
- out->offset = arr.offset % 8;
- out->buffers[1] =
- arr.offset == 0 ? arr.buffers[0]
- : SliceBuffer(arr.buffers[0], arr.offset / 8,
- BitUtil::BytesForBits(out->length + out->offset));
+ DCHECK_EQ(out->offset, 0);
+ DCHECK_LE(out->length, arr.length);
+ if (arr.MayHaveNulls()) {
+ // Input has nulls => output is the null (validity) bitmap.
+ // To avoid copying the null bitmap, slice from the starting byte offset
+ // and set the offset to the remaining bit offset.
+ out->offset = arr.offset % 8;
+ out->buffers[1] =
+ arr.offset == 0 ? arr.buffers[0]
+ : SliceBuffer(arr.buffers[0], arr.offset / 8,
+ BitUtil::BytesForBits(out->length + out->offset));
return Status::OK();
- }
-
- // Input has no nulls => output is entirely true.
+ }
+
+ // Input has no nulls => output is entirely true.
ARROW_ASSIGN_OR_RAISE(out->buffers[1],
ctx->AllocateBitmap(out->length + out->offset));
- BitUtil::SetBitsTo(out->buffers[1]->mutable_data(), out->offset, out->length, true);
+ BitUtil::SetBitsTo(out->buffers[1]->mutable_data(), out->offset, out->length, true);
return Status::OK();
- }
-};
-
+ }
+};
+
struct IsFiniteOperator {
template <typename OutType, typename InType>
static constexpr OutType Call(KernelContext*, const InType& value, Status*) {
@@ -74,49 +74,49 @@ struct IsInfOperator {
}
};
-struct IsNullOperator {
+struct IsNullOperator {
static Status Call(KernelContext* ctx, const Scalar& in, Scalar* out) {
- checked_cast<BooleanScalar*>(out)->value = !in.is_valid;
+ checked_cast<BooleanScalar*>(out)->value = !in.is_valid;
return Status::OK();
- }
-
+ }
+
static Status Call(KernelContext* ctx, const ArrayData& arr, ArrayData* out) {
- if (arr.MayHaveNulls()) {
- // Input has nulls => output is the inverted null (validity) bitmap.
- InvertBitmap(arr.buffers[0]->data(), arr.offset, arr.length,
- out->buffers[1]->mutable_data(), out->offset);
+ if (arr.MayHaveNulls()) {
+ // Input has nulls => output is the inverted null (validity) bitmap.
+ InvertBitmap(arr.buffers[0]->data(), arr.offset, arr.length,
+ out->buffers[1]->mutable_data(), out->offset);
} else {
// Input has no nulls => output is entirely false.
BitUtil::SetBitsTo(out->buffers[1]->mutable_data(), out->offset, out->length,
false);
- }
+ }
return Status::OK();
}
};
-
+
struct IsNanOperator {
template <typename OutType, typename InType>
static constexpr OutType Call(KernelContext*, const InType& value, Status*) {
return std::isnan(value);
- }
-};
-
+ }
+};
+
void MakeFunction(std::string name, const FunctionDoc* doc,
std::vector<InputType> in_types, OutputType out_type,
- ArrayKernelExec exec, FunctionRegistry* registry,
- MemAllocation::type mem_allocation, bool can_write_into_slices) {
- Arity arity{static_cast<int>(in_types.size())};
+ ArrayKernelExec exec, FunctionRegistry* registry,
+ MemAllocation::type mem_allocation, bool can_write_into_slices) {
+ Arity arity{static_cast<int>(in_types.size())};
auto func = std::make_shared<ScalarFunction>(name, arity, doc);
-
- ScalarKernel kernel(std::move(in_types), out_type, exec);
- kernel.null_handling = NullHandling::OUTPUT_NOT_NULL;
- kernel.can_write_into_slices = can_write_into_slices;
- kernel.mem_allocation = mem_allocation;
-
- DCHECK_OK(func->AddKernel(std::move(kernel)));
- DCHECK_OK(registry->AddFunction(std::move(func)));
-}
-
+
+ ScalarKernel kernel(std::move(in_types), out_type, exec);
+ kernel.null_handling = NullHandling::OUTPUT_NOT_NULL;
+ kernel.can_write_into_slices = can_write_into_slices;
+ kernel.mem_allocation = mem_allocation;
+
+ DCHECK_OK(func->AddKernel(std::move(kernel)));
+ DCHECK_OK(registry->AddFunction(std::move(func)));
+}
+
template <typename InType, typename Op>
void AddFloatValidityKernel(const std::shared_ptr<DataType>& ty, ScalarFunction* func) {
DCHECK_OK(func->AddKernel({ty}, boolean(),
@@ -154,40 +154,40 @@ std::shared_ptr<ScalarFunction> MakeIsNanFunction(std::string name,
}
Status IsValidExec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- const Datum& arg0 = batch[0];
- if (arg0.type()->id() == Type::NA) {
- auto false_value = std::make_shared<BooleanScalar>(false);
- if (arg0.kind() == Datum::SCALAR) {
+ const Datum& arg0 = batch[0];
+ if (arg0.type()->id() == Type::NA) {
+ auto false_value = std::make_shared<BooleanScalar>(false);
+ if (arg0.kind() == Datum::SCALAR) {
out->value = false_value;
- } else {
- std::shared_ptr<Array> false_values;
+ } else {
+ std::shared_ptr<Array> false_values;
RETURN_NOT_OK(MakeArrayFromScalar(*false_value, out->length(), ctx->memory_pool())
.Value(&false_values));
- out->value = false_values->data();
- }
+ out->value = false_values->data();
+ }
return Status::OK();
- } else {
+ } else {
return applicator::SimpleUnary<IsValidOperator>(ctx, batch, out);
- }
-}
-
+ }
+}
+
Status IsNullExec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- const Datum& arg0 = batch[0];
- if (arg0.type()->id() == Type::NA) {
- if (arg0.kind() == Datum::SCALAR) {
+ const Datum& arg0 = batch[0];
+ if (arg0.type()->id() == Type::NA) {
+ if (arg0.kind() == Datum::SCALAR) {
out->value = std::make_shared<BooleanScalar>(true);
- } else {
- // Data is preallocated
- ArrayData* out_arr = out->mutable_array();
- BitUtil::SetBitsTo(out_arr->buffers[1]->mutable_data(), out_arr->offset,
- out_arr->length, true);
- }
+ } else {
+ // Data is preallocated
+ ArrayData* out_arr = out->mutable_array();
+ BitUtil::SetBitsTo(out_arr->buffers[1]->mutable_data(), out_arr->offset,
+ out_arr->length, true);
+ }
return Status::OK();
- } else {
+ } else {
return applicator::SimpleUnary<IsNullOperator>(ctx, batch, out);
- }
-}
-
+ }
+}
+
const FunctionDoc is_valid_doc(
"Return true if non-null",
("For each input value, emit true iff the value is valid (non-null)."), {"values"});
@@ -210,21 +210,21 @@ const FunctionDoc is_nan_doc("Return true if NaN",
("For each input value, emit true iff the value is NaN."),
{"values"});
-} // namespace
-
-void RegisterScalarValidity(FunctionRegistry* registry) {
+} // namespace
+
+void RegisterScalarValidity(FunctionRegistry* registry) {
MakeFunction("is_valid", &is_valid_doc, {ValueDescr::ANY}, boolean(), IsValidExec,
registry, MemAllocation::NO_PREALLOCATE, /*can_write_into_slices=*/false);
-
+
MakeFunction("is_null", &is_null_doc, {ValueDescr::ANY}, boolean(), IsNullExec,
registry, MemAllocation::PREALLOCATE,
- /*can_write_into_slices=*/true);
+ /*can_write_into_slices=*/true);
DCHECK_OK(registry->AddFunction(MakeIsFiniteFunction("is_finite", &is_finite_doc)));
DCHECK_OK(registry->AddFunction(MakeIsInfFunction("is_inf", &is_inf_doc)));
DCHECK_OK(registry->AddFunction(MakeIsNanFunction("is_nan", &is_nan_doc)));
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/util_internal.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/util_internal.cc
index 846fa26baf..df011f802c 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/util_internal.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/util_internal.cc
@@ -1,62 +1,62 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/compute/kernels/util_internal.h"
-
-#include <cstdint>
-
-#include "arrow/array/data.h"
-#include "arrow/type.h"
-#include "arrow/util/checked_cast.h"
-
-namespace arrow {
-
-using internal::checked_cast;
-
-namespace compute {
-namespace internal {
-
-const uint8_t* GetValidityBitmap(const ArrayData& data) {
- const uint8_t* bitmap = nullptr;
- if (data.buffers[0]) {
- bitmap = data.buffers[0]->data();
- }
- return bitmap;
-}
-
-int GetBitWidth(const DataType& type) {
- return checked_cast<const FixedWidthType&>(type).bit_width();
-}
-
-PrimitiveArg GetPrimitiveArg(const ArrayData& arr) {
- PrimitiveArg arg;
- arg.is_valid = GetValidityBitmap(arr);
- arg.data = arr.buffers[1]->data();
- arg.bit_width = GetBitWidth(*arr.type);
- arg.offset = arr.offset;
- arg.length = arr.length;
- if (arg.bit_width > 1) {
- arg.data += arr.offset * arg.bit_width / 8;
- }
- // This may be kUnknownNullCount
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/compute/kernels/util_internal.h"
+
+#include <cstdint>
+
+#include "arrow/array/data.h"
+#include "arrow/type.h"
+#include "arrow/util/checked_cast.h"
+
+namespace arrow {
+
+using internal::checked_cast;
+
+namespace compute {
+namespace internal {
+
+const uint8_t* GetValidityBitmap(const ArrayData& data) {
+ const uint8_t* bitmap = nullptr;
+ if (data.buffers[0]) {
+ bitmap = data.buffers[0]->data();
+ }
+ return bitmap;
+}
+
+int GetBitWidth(const DataType& type) {
+ return checked_cast<const FixedWidthType&>(type).bit_width();
+}
+
+PrimitiveArg GetPrimitiveArg(const ArrayData& arr) {
+ PrimitiveArg arg;
+ arg.is_valid = GetValidityBitmap(arr);
+ arg.data = arr.buffers[1]->data();
+ arg.bit_width = GetBitWidth(*arr.type);
+ arg.offset = arr.offset;
+ arg.length = arr.length;
+ if (arg.bit_width > 1) {
+ arg.data += arr.offset * arg.bit_width / 8;
+ }
+ // This may be kUnknownNullCount
arg.null_count = (arg.is_valid != nullptr) ? arr.null_count.load() : 0;
- return arg;
-}
-
+ return arg;
+}
+
ArrayKernelExec TrivialScalarUnaryAsArraysExec(ArrayKernelExec exec,
NullHandling::type null_handling) {
return [=](KernelContext* ctx, const ExecBatch& batch, Datum* out) -> Status {
@@ -77,6 +77,6 @@ ArrayKernelExec TrivialScalarUnaryAsArraysExec(ArrayKernelExec exec,
};
}
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/util_internal.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/util_internal.h
index 394e08da58..03d7c0da2b 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/util_internal.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/util_internal.h
@@ -1,35 +1,35 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <cstdint>
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <cstdint>
#include <utility>
-
+
#include "arrow/array/util.h"
-#include "arrow/buffer.h"
+#include "arrow/buffer.h"
#include "arrow/compute/kernels/codegen_internal.h"
#include "arrow/compute/type_fwd.h"
#include "arrow/util/bit_run_reader.h"
-
-namespace arrow {
-namespace compute {
-namespace internal {
-
+
+namespace arrow {
+namespace compute {
+namespace internal {
+
// Used in some kernels and testing - not provided by default in MSVC
// and _USE_MATH_DEFINES is not reliable with unity builds
#ifndef M_PI
@@ -42,31 +42,31 @@ namespace internal {
#define M_PI_4 0.785398163397448309616
#endif
-// An internal data structure for unpacking a primitive argument to pass to a
-// kernel implementation
-struct PrimitiveArg {
- const uint8_t* is_valid;
- // If the bit_width is a multiple of 8 (i.e. not boolean), then "data" should
- // be shifted by offset * (bit_width / 8). For bit-packed data, the offset
- // must be used when indexing.
- const uint8_t* data;
- int bit_width;
- int64_t length;
- int64_t offset;
- // This may be kUnknownNullCount if the null_count has not yet been computed,
- // so use null_count != 0 to determine "may have nulls".
- int64_t null_count;
-};
-
-// Get validity bitmap data or return nullptr if there is no validity buffer
-const uint8_t* GetValidityBitmap(const ArrayData& data);
-
-int GetBitWidth(const DataType& type);
-
-// Reduce code size by dealing with the unboxing of the kernel inputs once
-// rather than duplicating compiled code to do all these in each kernel.
-PrimitiveArg GetPrimitiveArg(const ArrayData& arr);
-
+// An internal data structure for unpacking a primitive argument to pass to a
+// kernel implementation
+struct PrimitiveArg {
+ const uint8_t* is_valid;
+ // If the bit_width is a multiple of 8 (i.e. not boolean), then "data" should
+ // be shifted by offset * (bit_width / 8). For bit-packed data, the offset
+ // must be used when indexing.
+ const uint8_t* data;
+ int bit_width;
+ int64_t length;
+ int64_t offset;
+ // This may be kUnknownNullCount if the null_count has not yet been computed,
+ // so use null_count != 0 to determine "may have nulls".
+ int64_t null_count;
+};
+
+// Get validity bitmap data or return nullptr if there is no validity buffer
+const uint8_t* GetValidityBitmap(const ArrayData& data);
+
+int GetBitWidth(const DataType& type);
+
+// Reduce code size by dealing with the unboxing of the kernel inputs once
+// rather than duplicating compiled code to do all these in each kernel.
+PrimitiveArg GetPrimitiveArg(const ArrayData& arr);
+
// Augment a unary ArrayKernelExec which supports only array-like inputs with support for
// scalar inputs. Scalars will be transformed to 1-long arrays with the scalar's value (or
// null if the scalar is null) as its only element. This 1-long array will be passed to
@@ -161,6 +161,6 @@ int64_t CopyNonNullValues(const Datum& datum, T* out) {
return n;
}
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_hash.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_hash.cc
index a68e78130f..9c37f23faf 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_hash.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_hash.cc
@@ -1,173 +1,173 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include <cstring>
-#include <mutex>
-
-#include "arrow/array/array_base.h"
-#include "arrow/array/array_dict.h"
-#include "arrow/array/array_nested.h"
-#include "arrow/array/builder_primitive.h"
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include <cstring>
+#include <mutex>
+
+#include "arrow/array/array_base.h"
+#include "arrow/array/array_dict.h"
+#include "arrow/array/array_nested.h"
+#include "arrow/array/builder_primitive.h"
#include "arrow/array/concatenate.h"
-#include "arrow/array/dict_internal.h"
-#include "arrow/array/util.h"
-#include "arrow/compute/api_vector.h"
-#include "arrow/compute/kernels/common.h"
-#include "arrow/result.h"
-#include "arrow/util/hashing.h"
-#include "arrow/util/make_unique.h"
-
-namespace arrow {
-
-using internal::DictionaryTraits;
-using internal::HashTraits;
-
-namespace compute {
-namespace internal {
-
-namespace {
-
-class ActionBase {
- public:
- ActionBase(const std::shared_ptr<DataType>& type, MemoryPool* pool)
- : type_(type), pool_(pool) {}
-
- protected:
- std::shared_ptr<DataType> type_;
- MemoryPool* pool_;
-};
-
-// ----------------------------------------------------------------------
-// Unique
-
-class UniqueAction final : public ActionBase {
- public:
- using ActionBase::ActionBase;
-
- static constexpr bool with_error_status = false;
-
+#include "arrow/array/dict_internal.h"
+#include "arrow/array/util.h"
+#include "arrow/compute/api_vector.h"
+#include "arrow/compute/kernels/common.h"
+#include "arrow/result.h"
+#include "arrow/util/hashing.h"
+#include "arrow/util/make_unique.h"
+
+namespace arrow {
+
+using internal::DictionaryTraits;
+using internal::HashTraits;
+
+namespace compute {
+namespace internal {
+
+namespace {
+
+class ActionBase {
+ public:
+ ActionBase(const std::shared_ptr<DataType>& type, MemoryPool* pool)
+ : type_(type), pool_(pool) {}
+
+ protected:
+ std::shared_ptr<DataType> type_;
+ MemoryPool* pool_;
+};
+
+// ----------------------------------------------------------------------
+// Unique
+
+class UniqueAction final : public ActionBase {
+ public:
+ using ActionBase::ActionBase;
+
+ static constexpr bool with_error_status = false;
+
UniqueAction(const std::shared_ptr<DataType>& type, const FunctionOptions* options,
MemoryPool* pool)
: ActionBase(type, pool) {}
- Status Reset() { return Status::OK(); }
-
- Status Reserve(const int64_t length) { return Status::OK(); }
-
- template <class Index>
- void ObserveNullFound(Index index) {}
-
- template <class Index>
- void ObserveNullNotFound(Index index) {}
-
- template <class Index>
- void ObserveFound(Index index) {}
-
- template <class Index>
- void ObserveNotFound(Index index) {}
-
+ Status Reset() { return Status::OK(); }
+
+ Status Reserve(const int64_t length) { return Status::OK(); }
+
+ template <class Index>
+ void ObserveNullFound(Index index) {}
+
+ template <class Index>
+ void ObserveNullNotFound(Index index) {}
+
+ template <class Index>
+ void ObserveFound(Index index) {}
+
+ template <class Index>
+ void ObserveNotFound(Index index) {}
+
bool ShouldEncodeNulls() { return true; }
- Status Flush(Datum* out) { return Status::OK(); }
-
- Status FlushFinal(Datum* out) { return Status::OK(); }
-};
-
-// ----------------------------------------------------------------------
-// Count values
-
-class ValueCountsAction final : ActionBase {
- public:
- using ActionBase::ActionBase;
-
- static constexpr bool with_error_status = true;
-
+ Status Flush(Datum* out) { return Status::OK(); }
+
+ Status FlushFinal(Datum* out) { return Status::OK(); }
+};
+
+// ----------------------------------------------------------------------
+// Count values
+
+class ValueCountsAction final : ActionBase {
+ public:
+ using ActionBase::ActionBase;
+
+ static constexpr bool with_error_status = true;
+
ValueCountsAction(const std::shared_ptr<DataType>& type, const FunctionOptions* options,
MemoryPool* pool)
- : ActionBase(type, pool), count_builder_(pool) {}
-
- Status Reserve(const int64_t length) {
- // builder size is independent of input array size.
- return Status::OK();
- }
-
- Status Reset() {
- count_builder_.Reset();
- return Status::OK();
- }
-
- // Don't do anything on flush because we don't want to finalize the builder
- // or incur the cost of memory copies.
- Status Flush(Datum* out) { return Status::OK(); }
-
- // Return the counts corresponding the MemoTable keys.
- Status FlushFinal(Datum* out) {
- std::shared_ptr<ArrayData> result;
- RETURN_NOT_OK(count_builder_.FinishInternal(&result));
- out->value = std::move(result);
- return Status::OK();
- }
-
- template <class Index>
- void ObserveNullFound(Index index) {
- count_builder_[index]++;
- }
-
- template <class Index>
- void ObserveNullNotFound(Index index) {
- ARROW_LOG(FATAL) << "ObserveNullNotFound without err_status should not be called";
- }
-
- template <class Index>
- void ObserveNullNotFound(Index index, Status* status) {
- Status s = count_builder_.Append(1);
- if (ARROW_PREDICT_FALSE(!s.ok())) {
- *status = s;
- }
- }
-
- template <class Index>
- void ObserveFound(Index slot) {
- count_builder_[slot]++;
- }
-
- template <class Index>
- void ObserveNotFound(Index slot, Status* status) {
- Status s = count_builder_.Append(1);
- if (ARROW_PREDICT_FALSE(!s.ok())) {
- *status = s;
- }
- }
-
+ : ActionBase(type, pool), count_builder_(pool) {}
+
+ Status Reserve(const int64_t length) {
+ // builder size is independent of input array size.
+ return Status::OK();
+ }
+
+ Status Reset() {
+ count_builder_.Reset();
+ return Status::OK();
+ }
+
+ // Don't do anything on flush because we don't want to finalize the builder
+ // or incur the cost of memory copies.
+ Status Flush(Datum* out) { return Status::OK(); }
+
+ // Return the counts corresponding the MemoTable keys.
+ Status FlushFinal(Datum* out) {
+ std::shared_ptr<ArrayData> result;
+ RETURN_NOT_OK(count_builder_.FinishInternal(&result));
+ out->value = std::move(result);
+ return Status::OK();
+ }
+
+ template <class Index>
+ void ObserveNullFound(Index index) {
+ count_builder_[index]++;
+ }
+
+ template <class Index>
+ void ObserveNullNotFound(Index index) {
+ ARROW_LOG(FATAL) << "ObserveNullNotFound without err_status should not be called";
+ }
+
+ template <class Index>
+ void ObserveNullNotFound(Index index, Status* status) {
+ Status s = count_builder_.Append(1);
+ if (ARROW_PREDICT_FALSE(!s.ok())) {
+ *status = s;
+ }
+ }
+
+ template <class Index>
+ void ObserveFound(Index slot) {
+ count_builder_[slot]++;
+ }
+
+ template <class Index>
+ void ObserveNotFound(Index slot, Status* status) {
+ Status s = count_builder_.Append(1);
+ if (ARROW_PREDICT_FALSE(!s.ok())) {
+ *status = s;
+ }
+ }
+
bool ShouldEncodeNulls() const { return true; }
- private:
- Int64Builder count_builder_;
-};
-
-// ----------------------------------------------------------------------
-// Dictionary encode implementation
-
-class DictEncodeAction final : public ActionBase {
- public:
- using ActionBase::ActionBase;
-
- static constexpr bool with_error_status = false;
-
+ private:
+ Int64Builder count_builder_;
+};
+
+// ----------------------------------------------------------------------
+// Dictionary encode implementation
+
+class DictEncodeAction final : public ActionBase {
+ public:
+ using ActionBase::ActionBase;
+
+ static constexpr bool with_error_status = false;
+
DictEncodeAction(const std::shared_ptr<DataType>& type, const FunctionOptions* options,
MemoryPool* pool)
: ActionBase(type, pool), indices_builder_(pool) {
@@ -175,174 +175,174 @@ class DictEncodeAction final : public ActionBase {
encode_options_ = *options_ptr;
}
}
-
- Status Reset() {
- indices_builder_.Reset();
- return Status::OK();
- }
-
- Status Reserve(const int64_t length) { return indices_builder_.Reserve(length); }
-
- template <class Index>
- void ObserveNullFound(Index index) {
+
+ Status Reset() {
+ indices_builder_.Reset();
+ return Status::OK();
+ }
+
+ Status Reserve(const int64_t length) { return indices_builder_.Reserve(length); }
+
+ template <class Index>
+ void ObserveNullFound(Index index) {
if (encode_options_.null_encoding_behavior == DictionaryEncodeOptions::MASK) {
indices_builder_.UnsafeAppendNull();
} else {
indices_builder_.UnsafeAppend(index);
}
- }
-
- template <class Index>
- void ObserveNullNotFound(Index index) {
+ }
+
+ template <class Index>
+ void ObserveNullNotFound(Index index) {
ObserveNullFound(index);
- }
-
- template <class Index>
- void ObserveFound(Index index) {
- indices_builder_.UnsafeAppend(index);
- }
-
- template <class Index>
- void ObserveNotFound(Index index) {
- ObserveFound(index);
- }
-
+ }
+
+ template <class Index>
+ void ObserveFound(Index index) {
+ indices_builder_.UnsafeAppend(index);
+ }
+
+ template <class Index>
+ void ObserveNotFound(Index index) {
+ ObserveFound(index);
+ }
+
bool ShouldEncodeNulls() {
return encode_options_.null_encoding_behavior == DictionaryEncodeOptions::ENCODE;
}
- Status Flush(Datum* out) {
- std::shared_ptr<ArrayData> result;
- RETURN_NOT_OK(indices_builder_.FinishInternal(&result));
- out->value = std::move(result);
- return Status::OK();
- }
-
- Status FlushFinal(Datum* out) { return Status::OK(); }
-
- private:
- Int32Builder indices_builder_;
+ Status Flush(Datum* out) {
+ std::shared_ptr<ArrayData> result;
+ RETURN_NOT_OK(indices_builder_.FinishInternal(&result));
+ out->value = std::move(result);
+ return Status::OK();
+ }
+
+ Status FlushFinal(Datum* out) { return Status::OK(); }
+
+ private:
+ Int32Builder indices_builder_;
DictionaryEncodeOptions encode_options_;
-};
-
-class HashKernel : public KernelState {
- public:
+};
+
+class HashKernel : public KernelState {
+ public:
HashKernel() : options_(nullptr) {}
explicit HashKernel(const FunctionOptions* options) : options_(options) {}
- // Reset for another run.
- virtual Status Reset() = 0;
-
- // Flush out accumulated results from the last invocation of Call.
- virtual Status Flush(Datum* out) = 0;
- // Flush out accumulated results across all invocations of Call. The kernel
- // should not be used until after Reset() is called.
- virtual Status FlushFinal(Datum* out) = 0;
- // Get the values (keys) accumulated in the dictionary so far.
- virtual Status GetDictionary(std::shared_ptr<ArrayData>* out) = 0;
-
- virtual std::shared_ptr<DataType> value_type() const = 0;
-
- Status Append(KernelContext* ctx, const ArrayData& input) {
- std::lock_guard<std::mutex> guard(lock_);
- return Append(input);
- }
-
- // Prepare the Action for the given input (e.g. reserve appropriately sized
- // data structures) and visit the given input with Action.
- virtual Status Append(const ArrayData& arr) = 0;
-
- protected:
+ // Reset for another run.
+ virtual Status Reset() = 0;
+
+ // Flush out accumulated results from the last invocation of Call.
+ virtual Status Flush(Datum* out) = 0;
+ // Flush out accumulated results across all invocations of Call. The kernel
+ // should not be used until after Reset() is called.
+ virtual Status FlushFinal(Datum* out) = 0;
+ // Get the values (keys) accumulated in the dictionary so far.
+ virtual Status GetDictionary(std::shared_ptr<ArrayData>* out) = 0;
+
+ virtual std::shared_ptr<DataType> value_type() const = 0;
+
+ Status Append(KernelContext* ctx, const ArrayData& input) {
+ std::lock_guard<std::mutex> guard(lock_);
+ return Append(input);
+ }
+
+ // Prepare the Action for the given input (e.g. reserve appropriately sized
+ // data structures) and visit the given input with Action.
+ virtual Status Append(const ArrayData& arr) = 0;
+
+ protected:
const FunctionOptions* options_;
- std::mutex lock_;
-};
-
-// ----------------------------------------------------------------------
-// Base class for all "regular" hash kernel implementations
-// (NullType has a separate implementation)
-
-template <typename Type, typename Scalar, typename Action,
+ std::mutex lock_;
+};
+
+// ----------------------------------------------------------------------
+// Base class for all "regular" hash kernel implementations
+// (NullType has a separate implementation)
+
+template <typename Type, typename Scalar, typename Action,
bool with_error_status = Action::with_error_status>
-class RegularHashKernel : public HashKernel {
- public:
+class RegularHashKernel : public HashKernel {
+ public:
RegularHashKernel(const std::shared_ptr<DataType>& type, const FunctionOptions* options,
MemoryPool* pool)
: HashKernel(options), pool_(pool), type_(type), action_(type, options, pool) {}
-
- Status Reset() override {
- memo_table_.reset(new MemoTable(pool_, 0));
- return action_.Reset();
- }
-
- Status Append(const ArrayData& arr) override {
- RETURN_NOT_OK(action_.Reserve(arr.length));
- return DoAppend(arr);
- }
-
- Status Flush(Datum* out) override { return action_.Flush(out); }
-
- Status FlushFinal(Datum* out) override { return action_.FlushFinal(out); }
-
- Status GetDictionary(std::shared_ptr<ArrayData>* out) override {
- return DictionaryTraits<Type>::GetDictionaryArrayData(pool_, type_, *memo_table_,
- 0 /* start_offset */, out);
- }
-
- std::shared_ptr<DataType> value_type() const override { return type_; }
-
- template <bool HasError = with_error_status>
- enable_if_t<!HasError, Status> DoAppend(const ArrayData& arr) {
- return VisitArrayDataInline<Type>(
- arr,
- [this](Scalar v) {
- auto on_found = [this](int32_t memo_index) {
- action_.ObserveFound(memo_index);
- };
- auto on_not_found = [this](int32_t memo_index) {
- action_.ObserveNotFound(memo_index);
- };
-
- int32_t unused_memo_index;
- return memo_table_->GetOrInsert(v, std::move(on_found), std::move(on_not_found),
- &unused_memo_index);
- },
- [this]() {
+
+ Status Reset() override {
+ memo_table_.reset(new MemoTable(pool_, 0));
+ return action_.Reset();
+ }
+
+ Status Append(const ArrayData& arr) override {
+ RETURN_NOT_OK(action_.Reserve(arr.length));
+ return DoAppend(arr);
+ }
+
+ Status Flush(Datum* out) override { return action_.Flush(out); }
+
+ Status FlushFinal(Datum* out) override { return action_.FlushFinal(out); }
+
+ Status GetDictionary(std::shared_ptr<ArrayData>* out) override {
+ return DictionaryTraits<Type>::GetDictionaryArrayData(pool_, type_, *memo_table_,
+ 0 /* start_offset */, out);
+ }
+
+ std::shared_ptr<DataType> value_type() const override { return type_; }
+
+ template <bool HasError = with_error_status>
+ enable_if_t<!HasError, Status> DoAppend(const ArrayData& arr) {
+ return VisitArrayDataInline<Type>(
+ arr,
+ [this](Scalar v) {
+ auto on_found = [this](int32_t memo_index) {
+ action_.ObserveFound(memo_index);
+ };
+ auto on_not_found = [this](int32_t memo_index) {
+ action_.ObserveNotFound(memo_index);
+ };
+
+ int32_t unused_memo_index;
+ return memo_table_->GetOrInsert(v, std::move(on_found), std::move(on_not_found),
+ &unused_memo_index);
+ },
+ [this]() {
if (action_.ShouldEncodeNulls()) {
- auto on_found = [this](int32_t memo_index) {
- action_.ObserveNullFound(memo_index);
- };
- auto on_not_found = [this](int32_t memo_index) {
- action_.ObserveNullNotFound(memo_index);
- };
- memo_table_->GetOrInsertNull(std::move(on_found), std::move(on_not_found));
- } else {
- action_.ObserveNullNotFound(-1);
- }
- return Status::OK();
- });
- }
-
- template <bool HasError = with_error_status>
- enable_if_t<HasError, Status> DoAppend(const ArrayData& arr) {
- return VisitArrayDataInline<Type>(
- arr,
- [this](Scalar v) {
- Status s = Status::OK();
- auto on_found = [this](int32_t memo_index) {
- action_.ObserveFound(memo_index);
- };
- auto on_not_found = [this, &s](int32_t memo_index) {
- action_.ObserveNotFound(memo_index, &s);
- };
-
- int32_t unused_memo_index;
- RETURN_NOT_OK(memo_table_->GetOrInsert(
- v, std::move(on_found), std::move(on_not_found), &unused_memo_index));
- return s;
- },
- [this]() {
- // Null
- Status s = Status::OK();
+ auto on_found = [this](int32_t memo_index) {
+ action_.ObserveNullFound(memo_index);
+ };
+ auto on_not_found = [this](int32_t memo_index) {
+ action_.ObserveNullNotFound(memo_index);
+ };
+ memo_table_->GetOrInsertNull(std::move(on_found), std::move(on_not_found));
+ } else {
+ action_.ObserveNullNotFound(-1);
+ }
+ return Status::OK();
+ });
+ }
+
+ template <bool HasError = with_error_status>
+ enable_if_t<HasError, Status> DoAppend(const ArrayData& arr) {
+ return VisitArrayDataInline<Type>(
+ arr,
+ [this](Scalar v) {
+ Status s = Status::OK();
+ auto on_found = [this](int32_t memo_index) {
+ action_.ObserveFound(memo_index);
+ };
+ auto on_not_found = [this, &s](int32_t memo_index) {
+ action_.ObserveNotFound(memo_index, &s);
+ };
+
+ int32_t unused_memo_index;
+ RETURN_NOT_OK(memo_table_->GetOrInsert(
+ v, std::move(on_found), std::move(on_not_found), &unused_memo_index));
+ return s;
+ },
+ [this]() {
+ // Null
+ Status s = Status::OK();
auto on_found = [this](int32_t memo_index) {
action_.ObserveNullFound(memo_index);
};
@@ -350,49 +350,49 @@ class RegularHashKernel : public HashKernel {
action_.ObserveNullNotFound(memo_index, &s);
};
if (action_.ShouldEncodeNulls()) {
- memo_table_->GetOrInsertNull(std::move(on_found), std::move(on_not_found));
- }
- return s;
- });
- }
-
- protected:
- using MemoTable = typename HashTraits<Type>::MemoTableType;
-
- MemoryPool* pool_;
- std::shared_ptr<DataType> type_;
- Action action_;
- std::unique_ptr<MemoTable> memo_table_;
-};
-
-// ----------------------------------------------------------------------
-// Hash kernel implementation for nulls
-
+ memo_table_->GetOrInsertNull(std::move(on_found), std::move(on_not_found));
+ }
+ return s;
+ });
+ }
+
+ protected:
+ using MemoTable = typename HashTraits<Type>::MemoTableType;
+
+ MemoryPool* pool_;
+ std::shared_ptr<DataType> type_;
+ Action action_;
+ std::unique_ptr<MemoTable> memo_table_;
+};
+
+// ----------------------------------------------------------------------
+// Hash kernel implementation for nulls
+
template <typename Action, bool with_error_status = Action::with_error_status>
-class NullHashKernel : public HashKernel {
- public:
+class NullHashKernel : public HashKernel {
+ public:
NullHashKernel(const std::shared_ptr<DataType>& type, const FunctionOptions* options,
MemoryPool* pool)
: pool_(pool), type_(type), action_(type, options, pool) {}
-
- Status Reset() override { return action_.Reset(); }
-
+
+ Status Reset() override { return action_.Reset(); }
+
Status Append(const ArrayData& arr) override { return DoAppend(arr); }
template <bool HasError = with_error_status>
enable_if_t<!HasError, Status> DoAppend(const ArrayData& arr) {
- RETURN_NOT_OK(action_.Reserve(arr.length));
- for (int64_t i = 0; i < arr.length; ++i) {
- if (i == 0) {
+ RETURN_NOT_OK(action_.Reserve(arr.length));
+ for (int64_t i = 0; i < arr.length; ++i) {
+ if (i == 0) {
seen_null_ = true;
- action_.ObserveNullNotFound(0);
- } else {
- action_.ObserveNullFound(0);
- }
- }
- return Status::OK();
- }
-
+ action_.ObserveNullNotFound(0);
+ } else {
+ action_.ObserveNullFound(0);
+ }
+ }
+ return Status::OK();
+ }
+
template <bool HasError = with_error_status>
enable_if_t<HasError, Status> DoAppend(const ArrayData& arr) {
Status s = Status::OK();
@@ -408,41 +408,41 @@ class NullHashKernel : public HashKernel {
return s;
}
- Status Flush(Datum* out) override { return action_.Flush(out); }
- Status FlushFinal(Datum* out) override { return action_.FlushFinal(out); }
-
- Status GetDictionary(std::shared_ptr<ArrayData>* out) override {
+ Status Flush(Datum* out) override { return action_.Flush(out); }
+ Status FlushFinal(Datum* out) override { return action_.FlushFinal(out); }
+
+ Status GetDictionary(std::shared_ptr<ArrayData>* out) override {
std::shared_ptr<NullArray> null_array;
if (seen_null_) {
null_array = std::make_shared<NullArray>(1);
} else {
null_array = std::make_shared<NullArray>(0);
}
- *out = null_array->data();
- return Status::OK();
- }
-
- std::shared_ptr<DataType> value_type() const override { return type_; }
-
- protected:
- MemoryPool* pool_;
- std::shared_ptr<DataType> type_;
+ *out = null_array->data();
+ return Status::OK();
+ }
+
+ std::shared_ptr<DataType> value_type() const override { return type_; }
+
+ protected:
+ MemoryPool* pool_;
+ std::shared_ptr<DataType> type_;
bool seen_null_ = false;
- Action action_;
-};
-
-// ----------------------------------------------------------------------
-// Hashing for dictionary type
-
-class DictionaryHashKernel : public HashKernel {
- public:
- explicit DictionaryHashKernel(std::unique_ptr<HashKernel> indices_kernel)
- : indices_kernel_(std::move(indices_kernel)) {}
-
- Status Reset() override { return indices_kernel_->Reset(); }
-
+ Action action_;
+};
+
+// ----------------------------------------------------------------------
+// Hashing for dictionary type
+
+class DictionaryHashKernel : public HashKernel {
+ public:
+ explicit DictionaryHashKernel(std::unique_ptr<HashKernel> indices_kernel)
+ : indices_kernel_(std::move(indices_kernel)) {}
+
+ Status Reset() override { return indices_kernel_->Reset(); }
+
Status Append(const ArrayData& arr) override {
- if (!dictionary_) {
+ if (!dictionary_) {
dictionary_ = arr.dictionary;
} else if (!MakeArray(dictionary_)->Equals(*MakeArray(arr.dictionary))) {
// NOTE: This approach computes a new dictionary unification per chunk.
@@ -468,238 +468,238 @@ class DictionaryHashKernel : public HashKernel {
auto tmp, arrow::internal::checked_cast<const DictionaryArray&>(*in_dict_array)
.Transpose(arr.type, out_dict, transpose));
return indices_kernel_->Append(*tmp->data());
- }
-
- return indices_kernel_->Append(arr);
- }
-
- Status Flush(Datum* out) override { return indices_kernel_->Flush(out); }
-
- Status FlushFinal(Datum* out) override { return indices_kernel_->FlushFinal(out); }
-
- Status GetDictionary(std::shared_ptr<ArrayData>* out) override {
- return indices_kernel_->GetDictionary(out);
- }
-
- std::shared_ptr<DataType> value_type() const override {
- return indices_kernel_->value_type();
- }
-
- std::shared_ptr<ArrayData> dictionary() const { return dictionary_; }
-
- private:
- std::unique_ptr<HashKernel> indices_kernel_;
- std::shared_ptr<ArrayData> dictionary_;
-};
-
-// ----------------------------------------------------------------------
-
-template <typename Type, typename Action, typename Enable = void>
-struct HashKernelTraits {};
-
-template <typename Type, typename Action>
-struct HashKernelTraits<Type, Action, enable_if_null<Type>> {
- using HashKernel = NullHashKernel<Action>;
-};
-
-template <typename Type, typename Action>
-struct HashKernelTraits<Type, Action, enable_if_has_c_type<Type>> {
- using HashKernel = RegularHashKernel<Type, typename Type::c_type, Action>;
-};
-
-template <typename Type, typename Action>
-struct HashKernelTraits<Type, Action, enable_if_has_string_view<Type>> {
- using HashKernel = RegularHashKernel<Type, util::string_view, Action>;
-};
-
-template <typename Type, typename Action>
+ }
+
+ return indices_kernel_->Append(arr);
+ }
+
+ Status Flush(Datum* out) override { return indices_kernel_->Flush(out); }
+
+ Status FlushFinal(Datum* out) override { return indices_kernel_->FlushFinal(out); }
+
+ Status GetDictionary(std::shared_ptr<ArrayData>* out) override {
+ return indices_kernel_->GetDictionary(out);
+ }
+
+ std::shared_ptr<DataType> value_type() const override {
+ return indices_kernel_->value_type();
+ }
+
+ std::shared_ptr<ArrayData> dictionary() const { return dictionary_; }
+
+ private:
+ std::unique_ptr<HashKernel> indices_kernel_;
+ std::shared_ptr<ArrayData> dictionary_;
+};
+
+// ----------------------------------------------------------------------
+
+template <typename Type, typename Action, typename Enable = void>
+struct HashKernelTraits {};
+
+template <typename Type, typename Action>
+struct HashKernelTraits<Type, Action, enable_if_null<Type>> {
+ using HashKernel = NullHashKernel<Action>;
+};
+
+template <typename Type, typename Action>
+struct HashKernelTraits<Type, Action, enable_if_has_c_type<Type>> {
+ using HashKernel = RegularHashKernel<Type, typename Type::c_type, Action>;
+};
+
+template <typename Type, typename Action>
+struct HashKernelTraits<Type, Action, enable_if_has_string_view<Type>> {
+ using HashKernel = RegularHashKernel<Type, util::string_view, Action>;
+};
+
+template <typename Type, typename Action>
Result<std::unique_ptr<HashKernel>> HashInitImpl(KernelContext* ctx,
const KernelInitArgs& args) {
- using HashKernelType = typename HashKernelTraits<Type, Action>::HashKernel;
+ using HashKernelType = typename HashKernelTraits<Type, Action>::HashKernel;
auto result = ::arrow::internal::make_unique<HashKernelType>(
args.inputs[0].type, args.options, ctx->memory_pool());
RETURN_NOT_OK(result->Reset());
- return std::move(result);
-}
-
-template <typename Type, typename Action>
+ return std::move(result);
+}
+
+template <typename Type, typename Action>
Result<std::unique_ptr<KernelState>> HashInit(KernelContext* ctx,
const KernelInitArgs& args) {
return HashInitImpl<Type, Action>(ctx, args);
-}
-
-template <typename Action>
-KernelInit GetHashInit(Type::type type_id) {
- // ARROW-8933: Generate only a single hash kernel per physical data
- // representation
- switch (type_id) {
- case Type::NA:
- return HashInit<NullType, Action>;
- case Type::BOOL:
- return HashInit<BooleanType, Action>;
- case Type::INT8:
- case Type::UINT8:
- return HashInit<UInt8Type, Action>;
- case Type::INT16:
- case Type::UINT16:
- return HashInit<UInt16Type, Action>;
- case Type::INT32:
- case Type::UINT32:
- case Type::FLOAT:
- case Type::DATE32:
- case Type::TIME32:
- return HashInit<UInt32Type, Action>;
- case Type::INT64:
- case Type::UINT64:
- case Type::DOUBLE:
- case Type::DATE64:
- case Type::TIME64:
- case Type::TIMESTAMP:
- case Type::DURATION:
- return HashInit<UInt64Type, Action>;
- case Type::BINARY:
- case Type::STRING:
- return HashInit<BinaryType, Action>;
- case Type::LARGE_BINARY:
- case Type::LARGE_STRING:
- return HashInit<LargeBinaryType, Action>;
- case Type::FIXED_SIZE_BINARY:
+}
+
+template <typename Action>
+KernelInit GetHashInit(Type::type type_id) {
+ // ARROW-8933: Generate only a single hash kernel per physical data
+ // representation
+ switch (type_id) {
+ case Type::NA:
+ return HashInit<NullType, Action>;
+ case Type::BOOL:
+ return HashInit<BooleanType, Action>;
+ case Type::INT8:
+ case Type::UINT8:
+ return HashInit<UInt8Type, Action>;
+ case Type::INT16:
+ case Type::UINT16:
+ return HashInit<UInt16Type, Action>;
+ case Type::INT32:
+ case Type::UINT32:
+ case Type::FLOAT:
+ case Type::DATE32:
+ case Type::TIME32:
+ return HashInit<UInt32Type, Action>;
+ case Type::INT64:
+ case Type::UINT64:
+ case Type::DOUBLE:
+ case Type::DATE64:
+ case Type::TIME64:
+ case Type::TIMESTAMP:
+ case Type::DURATION:
+ return HashInit<UInt64Type, Action>;
+ case Type::BINARY:
+ case Type::STRING:
+ return HashInit<BinaryType, Action>;
+ case Type::LARGE_BINARY:
+ case Type::LARGE_STRING:
+ return HashInit<LargeBinaryType, Action>;
+ case Type::FIXED_SIZE_BINARY:
case Type::DECIMAL128:
case Type::DECIMAL256:
- return HashInit<FixedSizeBinaryType, Action>;
- default:
- DCHECK(false);
- return nullptr;
- }
-}
-
+ return HashInit<FixedSizeBinaryType, Action>;
+ default:
+ DCHECK(false);
+ return nullptr;
+ }
+}
+
using DictionaryEncodeState = OptionsWrapper<DictionaryEncodeOptions>;
-template <typename Action>
+template <typename Action>
Result<std::unique_ptr<KernelState>> DictionaryHashInit(KernelContext* ctx,
const KernelInitArgs& args) {
- const auto& dict_type = checked_cast<const DictionaryType&>(*args.inputs[0].type);
+ const auto& dict_type = checked_cast<const DictionaryType&>(*args.inputs[0].type);
Result<std::unique_ptr<HashKernel>> indices_hasher;
- switch (dict_type.index_type()->id()) {
- case Type::INT8:
- indices_hasher = HashInitImpl<UInt8Type, Action>(ctx, args);
- break;
- case Type::INT16:
- indices_hasher = HashInitImpl<UInt16Type, Action>(ctx, args);
- break;
- case Type::INT32:
- indices_hasher = HashInitImpl<UInt32Type, Action>(ctx, args);
- break;
- case Type::INT64:
- indices_hasher = HashInitImpl<UInt64Type, Action>(ctx, args);
- break;
- default:
- DCHECK(false) << "Unsupported dictionary index type";
- break;
- }
+ switch (dict_type.index_type()->id()) {
+ case Type::INT8:
+ indices_hasher = HashInitImpl<UInt8Type, Action>(ctx, args);
+ break;
+ case Type::INT16:
+ indices_hasher = HashInitImpl<UInt16Type, Action>(ctx, args);
+ break;
+ case Type::INT32:
+ indices_hasher = HashInitImpl<UInt32Type, Action>(ctx, args);
+ break;
+ case Type::INT64:
+ indices_hasher = HashInitImpl<UInt64Type, Action>(ctx, args);
+ break;
+ default:
+ DCHECK(false) << "Unsupported dictionary index type";
+ break;
+ }
RETURN_NOT_OK(indices_hasher);
return ::arrow::internal::make_unique<DictionaryHashKernel>(
std::move(indices_hasher.ValueOrDie()));
-}
-
+}
+
Status HashExec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- auto hash_impl = checked_cast<HashKernel*>(ctx->state());
+ auto hash_impl = checked_cast<HashKernel*>(ctx->state());
RETURN_NOT_OK(hash_impl->Append(ctx, *batch[0].array()));
RETURN_NOT_OK(hash_impl->Flush(out));
return Status::OK();
-}
-
+}
+
Status UniqueFinalize(KernelContext* ctx, std::vector<Datum>* out) {
- auto hash_impl = checked_cast<HashKernel*>(ctx->state());
- std::shared_ptr<ArrayData> uniques;
+ auto hash_impl = checked_cast<HashKernel*>(ctx->state());
+ std::shared_ptr<ArrayData> uniques;
RETURN_NOT_OK(hash_impl->GetDictionary(&uniques));
- *out = {Datum(uniques)};
+ *out = {Datum(uniques)};
return Status::OK();
-}
-
+}
+
Status DictEncodeFinalize(KernelContext* ctx, std::vector<Datum>* out) {
- auto hash_impl = checked_cast<HashKernel*>(ctx->state());
- std::shared_ptr<ArrayData> uniques;
+ auto hash_impl = checked_cast<HashKernel*>(ctx->state());
+ std::shared_ptr<ArrayData> uniques;
RETURN_NOT_OK(hash_impl->GetDictionary(&uniques));
- auto dict_type = dictionary(int32(), uniques->type);
- auto dict = MakeArray(uniques);
- for (size_t i = 0; i < out->size(); ++i) {
- (*out)[i] =
- std::make_shared<DictionaryArray>(dict_type, (*out)[i].make_array(), dict);
- }
+ auto dict_type = dictionary(int32(), uniques->type);
+ auto dict = MakeArray(uniques);
+ for (size_t i = 0; i < out->size(); ++i) {
+ (*out)[i] =
+ std::make_shared<DictionaryArray>(dict_type, (*out)[i].make_array(), dict);
+ }
return Status::OK();
-}
-
-std::shared_ptr<ArrayData> BoxValueCounts(const std::shared_ptr<ArrayData>& uniques,
- const std::shared_ptr<ArrayData>& counts) {
- auto data_type =
- struct_({field(kValuesFieldName, uniques->type), field(kCountsFieldName, int64())});
- ArrayVector children = {MakeArray(uniques), MakeArray(counts)};
- return std::make_shared<StructArray>(data_type, uniques->length, children)->data();
-}
-
+}
+
+std::shared_ptr<ArrayData> BoxValueCounts(const std::shared_ptr<ArrayData>& uniques,
+ const std::shared_ptr<ArrayData>& counts) {
+ auto data_type =
+ struct_({field(kValuesFieldName, uniques->type), field(kCountsFieldName, int64())});
+ ArrayVector children = {MakeArray(uniques), MakeArray(counts)};
+ return std::make_shared<StructArray>(data_type, uniques->length, children)->data();
+}
+
Status ValueCountsFinalize(KernelContext* ctx, std::vector<Datum>* out) {
- auto hash_impl = checked_cast<HashKernel*>(ctx->state());
- std::shared_ptr<ArrayData> uniques;
- Datum value_counts;
-
+ auto hash_impl = checked_cast<HashKernel*>(ctx->state());
+ std::shared_ptr<ArrayData> uniques;
+ Datum value_counts;
+
RETURN_NOT_OK(hash_impl->GetDictionary(&uniques));
RETURN_NOT_OK(hash_impl->FlushFinal(&value_counts));
- *out = {Datum(BoxValueCounts(uniques, value_counts.array()))};
+ *out = {Datum(BoxValueCounts(uniques, value_counts.array()))};
return Status::OK();
-}
-
+}
+
Status UniqueFinalizeDictionary(KernelContext* ctx, std::vector<Datum>* out) {
RETURN_NOT_OK(UniqueFinalize(ctx, out));
- auto hash = checked_cast<DictionaryHashKernel*>(ctx->state());
- (*out)[0].mutable_array()->dictionary = hash->dictionary();
+ auto hash = checked_cast<DictionaryHashKernel*>(ctx->state());
+ (*out)[0].mutable_array()->dictionary = hash->dictionary();
return Status::OK();
-}
-
+}
+
Status ValueCountsFinalizeDictionary(KernelContext* ctx, std::vector<Datum>* out) {
- auto hash = checked_cast<DictionaryHashKernel*>(ctx->state());
- std::shared_ptr<ArrayData> uniques;
- Datum value_counts;
+ auto hash = checked_cast<DictionaryHashKernel*>(ctx->state());
+ std::shared_ptr<ArrayData> uniques;
+ Datum value_counts;
RETURN_NOT_OK(hash->GetDictionary(&uniques));
RETURN_NOT_OK(hash->FlushFinal(&value_counts));
- uniques->dictionary = hash->dictionary();
- *out = {Datum(BoxValueCounts(uniques, value_counts.array()))};
+ uniques->dictionary = hash->dictionary();
+ *out = {Datum(BoxValueCounts(uniques, value_counts.array()))};
return Status::OK();
-}
-
-ValueDescr DictEncodeOutput(KernelContext*, const std::vector<ValueDescr>& descrs) {
- return ValueDescr::Array(dictionary(int32(), descrs[0].type));
-}
-
-ValueDescr ValueCountsOutput(KernelContext*, const std::vector<ValueDescr>& descrs) {
- return ValueDescr::Array(struct_(
- {field(kValuesFieldName, descrs[0].type), field(kCountsFieldName, int64())}));
-}
-
-template <typename Action>
-void AddHashKernels(VectorFunction* func, VectorKernel base, OutputType out_ty) {
- for (const auto& ty : PrimitiveTypes()) {
- base.init = GetHashInit<Action>(ty->id());
- base.signature = KernelSignature::Make({InputType::Array(ty)}, out_ty);
- DCHECK_OK(func->AddKernel(base));
- }
-
- // Example parametric types that we want to match only on Type::type
- auto parametric_types = {time32(TimeUnit::SECOND), time64(TimeUnit::MICRO),
- timestamp(TimeUnit::SECOND), fixed_size_binary(0)};
- for (const auto& ty : parametric_types) {
- base.init = GetHashInit<Action>(ty->id());
- base.signature = KernelSignature::Make({InputType::Array(ty->id())}, out_ty);
- DCHECK_OK(func->AddKernel(base));
- }
-
+}
+
+ValueDescr DictEncodeOutput(KernelContext*, const std::vector<ValueDescr>& descrs) {
+ return ValueDescr::Array(dictionary(int32(), descrs[0].type));
+}
+
+ValueDescr ValueCountsOutput(KernelContext*, const std::vector<ValueDescr>& descrs) {
+ return ValueDescr::Array(struct_(
+ {field(kValuesFieldName, descrs[0].type), field(kCountsFieldName, int64())}));
+}
+
+template <typename Action>
+void AddHashKernels(VectorFunction* func, VectorKernel base, OutputType out_ty) {
+ for (const auto& ty : PrimitiveTypes()) {
+ base.init = GetHashInit<Action>(ty->id());
+ base.signature = KernelSignature::Make({InputType::Array(ty)}, out_ty);
+ DCHECK_OK(func->AddKernel(base));
+ }
+
+ // Example parametric types that we want to match only on Type::type
+ auto parametric_types = {time32(TimeUnit::SECOND), time64(TimeUnit::MICRO),
+ timestamp(TimeUnit::SECOND), fixed_size_binary(0)};
+ for (const auto& ty : parametric_types) {
+ base.init = GetHashInit<Action>(ty->id());
+ base.signature = KernelSignature::Make({InputType::Array(ty->id())}, out_ty);
+ DCHECK_OK(func->AddKernel(base));
+ }
+
for (auto t : {Type::DECIMAL128, Type::DECIMAL256}) {
base.init = GetHashInit<Action>(t);
base.signature = KernelSignature::Make({InputType::Array(t)}, out_ty);
DCHECK_OK(func->AddKernel(base));
}
-}
-
+}
+
const FunctionDoc unique_doc(
"Compute unique elements",
("Return an array with distinct values. Nulls in the input are ignored."),
@@ -718,65 +718,65 @@ const FunctionDoc dictionary_encode_doc(
("Return a dictionary-encoded version of the input array."), {"array"},
"DictionaryEncodeOptions");
-} // namespace
-
-void RegisterVectorHash(FunctionRegistry* registry) {
- VectorKernel base;
- base.exec = HashExec;
-
- // ----------------------------------------------------------------------
- // unique
-
- base.finalize = UniqueFinalize;
- base.output_chunked = false;
+} // namespace
+
+void RegisterVectorHash(FunctionRegistry* registry) {
+ VectorKernel base;
+ base.exec = HashExec;
+
+ // ----------------------------------------------------------------------
+ // unique
+
+ base.finalize = UniqueFinalize;
+ base.output_chunked = false;
auto unique = std::make_shared<VectorFunction>("unique", Arity::Unary(), &unique_doc);
- AddHashKernels<UniqueAction>(unique.get(), base, OutputType(FirstType));
-
- // Dictionary unique
- base.init = DictionaryHashInit<UniqueAction>;
- base.finalize = UniqueFinalizeDictionary;
- base.signature =
- KernelSignature::Make({InputType::Array(Type::DICTIONARY)}, OutputType(FirstType));
- DCHECK_OK(unique->AddKernel(base));
-
- DCHECK_OK(registry->AddFunction(std::move(unique)));
-
- // ----------------------------------------------------------------------
- // value_counts
-
- base.finalize = ValueCountsFinalize;
+ AddHashKernels<UniqueAction>(unique.get(), base, OutputType(FirstType));
+
+ // Dictionary unique
+ base.init = DictionaryHashInit<UniqueAction>;
+ base.finalize = UniqueFinalizeDictionary;
+ base.signature =
+ KernelSignature::Make({InputType::Array(Type::DICTIONARY)}, OutputType(FirstType));
+ DCHECK_OK(unique->AddKernel(base));
+
+ DCHECK_OK(registry->AddFunction(std::move(unique)));
+
+ // ----------------------------------------------------------------------
+ // value_counts
+
+ base.finalize = ValueCountsFinalize;
auto value_counts =
std::make_shared<VectorFunction>("value_counts", Arity::Unary(), &value_counts_doc);
- AddHashKernels<ValueCountsAction>(value_counts.get(), base,
- OutputType(ValueCountsOutput));
-
- // Dictionary value counts
- base.init = DictionaryHashInit<ValueCountsAction>;
- base.finalize = ValueCountsFinalizeDictionary;
- base.signature = KernelSignature::Make({InputType::Array(Type::DICTIONARY)},
- OutputType(ValueCountsOutput));
- DCHECK_OK(value_counts->AddKernel(base));
-
- DCHECK_OK(registry->AddFunction(std::move(value_counts)));
-
- // ----------------------------------------------------------------------
- // dictionary_encode
-
- base.finalize = DictEncodeFinalize;
- // Unique and ValueCounts output unchunked arrays
- base.output_chunked = true;
+ AddHashKernels<ValueCountsAction>(value_counts.get(), base,
+ OutputType(ValueCountsOutput));
+
+ // Dictionary value counts
+ base.init = DictionaryHashInit<ValueCountsAction>;
+ base.finalize = ValueCountsFinalizeDictionary;
+ base.signature = KernelSignature::Make({InputType::Array(Type::DICTIONARY)},
+ OutputType(ValueCountsOutput));
+ DCHECK_OK(value_counts->AddKernel(base));
+
+ DCHECK_OK(registry->AddFunction(std::move(value_counts)));
+
+ // ----------------------------------------------------------------------
+ // dictionary_encode
+
+ base.finalize = DictEncodeFinalize;
+ // Unique and ValueCounts output unchunked arrays
+ base.output_chunked = true;
auto dict_encode = std::make_shared<VectorFunction>("dictionary_encode", Arity::Unary(),
&dictionary_encode_doc,
&kDefaultDictionaryEncodeOptions);
- AddHashKernels<DictEncodeAction>(dict_encode.get(), base, OutputType(DictEncodeOutput));
-
- // Calling dictionary_encode on dictionary input not supported, but if it
- // ends up being needed (or convenience), a kernel could be added to make it
- // a no-op
-
- DCHECK_OK(registry->AddFunction(std::move(dict_encode)));
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+ AddHashKernels<DictEncodeAction>(dict_encode.get(), base, OutputType(DictEncodeOutput));
+
+ // Calling dictionary_encode on dictionary input not supported, but if it
+ // ends up being needed (or convenience), a kernel could be added to make it
+ // a no-op
+
+ DCHECK_OK(registry->AddFunction(std::move(dict_encode)));
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_nested.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_nested.cc
index b84640854e..627f4edf96 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_nested.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_nested.cc
@@ -1,68 +1,68 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-// Vector kernels involving nested types
-
-#include "arrow/array/array_base.h"
-#include "arrow/compute/kernels/common.h"
-#include "arrow/result.h"
-
-namespace arrow {
-namespace compute {
-namespace internal {
-namespace {
-
-template <typename Type>
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// Vector kernels involving nested types
+
+#include "arrow/array/array_base.h"
+#include "arrow/compute/kernels/common.h"
+#include "arrow/result.h"
+
+namespace arrow {
+namespace compute {
+namespace internal {
+namespace {
+
+template <typename Type>
Status ListFlatten(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- typename TypeTraits<Type>::ArrayType list_array(batch[0].array());
+ typename TypeTraits<Type>::ArrayType list_array(batch[0].array());
ARROW_ASSIGN_OR_RAISE(auto result, list_array.Flatten(ctx->memory_pool()));
out->value = result->data();
return Status::OK();
-}
-
-template <typename Type, typename offset_type = typename Type::offset_type>
+}
+
+template <typename Type, typename offset_type = typename Type::offset_type>
Status ListParentIndices(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- typename TypeTraits<Type>::ArrayType list(batch[0].array());
- ArrayData* out_arr = out->mutable_array();
-
- const offset_type* offsets = list.raw_value_offsets();
- offset_type values_length = offsets[list.length()] - offsets[0];
-
- out_arr->length = values_length;
- out_arr->null_count = 0;
+ typename TypeTraits<Type>::ArrayType list(batch[0].array());
+ ArrayData* out_arr = out->mutable_array();
+
+ const offset_type* offsets = list.raw_value_offsets();
+ offset_type values_length = offsets[list.length()] - offsets[0];
+
+ out_arr->length = values_length;
+ out_arr->null_count = 0;
ARROW_ASSIGN_OR_RAISE(out_arr->buffers[1],
ctx->Allocate(values_length * sizeof(offset_type)));
- auto out_indices = reinterpret_cast<offset_type*>(out_arr->buffers[1]->mutable_data());
- for (int64_t i = 0; i < list.length(); ++i) {
- // Note: In most cases, null slots are empty, but when they are non-empty
- // we write out the indices so make sure they are accounted for. This
- // behavior could be changed if needed in the future.
- for (offset_type j = offsets[i]; j < offsets[i + 1]; ++j) {
- *out_indices++ = static_cast<offset_type>(i);
- }
- }
+ auto out_indices = reinterpret_cast<offset_type*>(out_arr->buffers[1]->mutable_data());
+ for (int64_t i = 0; i < list.length(); ++i) {
+ // Note: In most cases, null slots are empty, but when they are non-empty
+ // we write out the indices so make sure they are accounted for. This
+ // behavior could be changed if needed in the future.
+ for (offset_type j = offsets[i]; j < offsets[i + 1]; ++j) {
+ *out_indices++ = static_cast<offset_type>(i);
+ }
+ }
return Status::OK();
-}
-
-Result<ValueDescr> ValuesType(KernelContext*, const std::vector<ValueDescr>& args) {
- const auto& list_type = checked_cast<const BaseListType&>(*args[0].type);
- return ValueDescr::Array(list_type.value_type());
-}
-
+}
+
+Result<ValueDescr> ValuesType(KernelContext*, const std::vector<ValueDescr>& args) {
+ const auto& list_type = checked_cast<const BaseListType&>(*args[0].type);
+ return ValueDescr::Array(list_type.value_type());
+}
+
const FunctionDoc list_flatten_doc(
"Flatten list values",
("`lists` must have a list-like type.\n"
@@ -77,26 +77,26 @@ const FunctionDoc list_parent_indices_doc(
"is emitted."),
{"lists"});
-} // namespace
-
-void RegisterVectorNested(FunctionRegistry* registry) {
+} // namespace
+
+void RegisterVectorNested(FunctionRegistry* registry) {
auto flatten =
std::make_shared<VectorFunction>("list_flatten", Arity::Unary(), &list_flatten_doc);
- DCHECK_OK(flatten->AddKernel({InputType::Array(Type::LIST)}, OutputType(ValuesType),
- ListFlatten<ListType>));
- DCHECK_OK(flatten->AddKernel({InputType::Array(Type::LARGE_LIST)},
- OutputType(ValuesType), ListFlatten<LargeListType>));
- DCHECK_OK(registry->AddFunction(std::move(flatten)));
-
+ DCHECK_OK(flatten->AddKernel({InputType::Array(Type::LIST)}, OutputType(ValuesType),
+ ListFlatten<ListType>));
+ DCHECK_OK(flatten->AddKernel({InputType::Array(Type::LARGE_LIST)},
+ OutputType(ValuesType), ListFlatten<LargeListType>));
+ DCHECK_OK(registry->AddFunction(std::move(flatten)));
+
auto list_parent_indices = std::make_shared<VectorFunction>(
"list_parent_indices", Arity::Unary(), &list_parent_indices_doc);
- DCHECK_OK(list_parent_indices->AddKernel({InputType::Array(Type::LIST)}, int32(),
- ListParentIndices<ListType>));
- DCHECK_OK(list_parent_indices->AddKernel({InputType::Array(Type::LARGE_LIST)}, int64(),
- ListParentIndices<LargeListType>));
- DCHECK_OK(registry->AddFunction(std::move(list_parent_indices)));
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+ DCHECK_OK(list_parent_indices->AddKernel({InputType::Array(Type::LIST)}, int32(),
+ ListParentIndices<ListType>));
+ DCHECK_OK(list_parent_indices->AddKernel({InputType::Array(Type::LARGE_LIST)}, int64(),
+ ListParentIndices<LargeListType>));
+ DCHECK_OK(registry->AddFunction(std::move(list_parent_indices)));
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_selection.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_selection.cc
index 5845a7ee2d..f4fd377eff 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_selection.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_selection.cc
@@ -1,122 +1,122 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include <algorithm>
-#include <cstring>
-#include <limits>
-
-#include "arrow/array/array_base.h"
-#include "arrow/array/array_binary.h"
-#include "arrow/array/array_dict.h"
-#include "arrow/array/array_nested.h"
-#include "arrow/array/builder_primitive.h"
-#include "arrow/array/concatenate.h"
-#include "arrow/buffer_builder.h"
-#include "arrow/chunked_array.h"
-#include "arrow/compute/api_vector.h"
-#include "arrow/compute/kernels/common.h"
-#include "arrow/compute/kernels/util_internal.h"
-#include "arrow/extension_type.h"
-#include "arrow/record_batch.h"
-#include "arrow/result.h"
-#include "arrow/table.h"
-#include "arrow/type.h"
-#include "arrow/util/bit_block_counter.h"
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include <algorithm>
+#include <cstring>
+#include <limits>
+
+#include "arrow/array/array_base.h"
+#include "arrow/array/array_binary.h"
+#include "arrow/array/array_dict.h"
+#include "arrow/array/array_nested.h"
+#include "arrow/array/builder_primitive.h"
+#include "arrow/array/concatenate.h"
+#include "arrow/buffer_builder.h"
+#include "arrow/chunked_array.h"
+#include "arrow/compute/api_vector.h"
+#include "arrow/compute/kernels/common.h"
+#include "arrow/compute/kernels/util_internal.h"
+#include "arrow/extension_type.h"
+#include "arrow/record_batch.h"
+#include "arrow/result.h"
+#include "arrow/table.h"
+#include "arrow/type.h"
+#include "arrow/util/bit_block_counter.h"
#include "arrow/util/bit_run_reader.h"
-#include "arrow/util/bit_util.h"
-#include "arrow/util/bitmap_ops.h"
-#include "arrow/util/bitmap_reader.h"
-#include "arrow/util/int_util.h"
-
-namespace arrow {
-
-using internal::BinaryBitBlockCounter;
-using internal::BitBlockCount;
-using internal::BitBlockCounter;
-using internal::CheckIndexBounds;
-using internal::CopyBitmap;
-using internal::CountSetBits;
-using internal::GetArrayView;
-using internal::GetByteWidth;
-using internal::OptionalBitBlockCounter;
-using internal::OptionalBitIndexer;
-
-namespace compute {
-namespace internal {
-
-int64_t GetFilterOutputSize(const ArrayData& filter,
- FilterOptions::NullSelectionBehavior null_selection) {
- int64_t output_size = 0;
-
- if (filter.MayHaveNulls()) {
- const uint8_t* filter_is_valid = filter.buffers[0]->data();
- BinaryBitBlockCounter bit_counter(filter.buffers[1]->data(), filter.offset,
- filter_is_valid, filter.offset, filter.length);
- int64_t position = 0;
- if (null_selection == FilterOptions::EMIT_NULL) {
- while (position < filter.length) {
- BitBlockCount block = bit_counter.NextOrNotWord();
- output_size += block.popcount;
- position += block.length;
- }
- } else {
- while (position < filter.length) {
- BitBlockCount block = bit_counter.NextAndWord();
- output_size += block.popcount;
- position += block.length;
- }
- }
- } else {
- // The filter has no nulls, so we can use CountSetBits
- output_size = CountSetBits(filter.buffers[1]->data(), filter.offset, filter.length);
- }
- return output_size;
-}
-
+#include "arrow/util/bit_util.h"
+#include "arrow/util/bitmap_ops.h"
+#include "arrow/util/bitmap_reader.h"
+#include "arrow/util/int_util.h"
+
+namespace arrow {
+
+using internal::BinaryBitBlockCounter;
+using internal::BitBlockCount;
+using internal::BitBlockCounter;
+using internal::CheckIndexBounds;
+using internal::CopyBitmap;
+using internal::CountSetBits;
+using internal::GetArrayView;
+using internal::GetByteWidth;
+using internal::OptionalBitBlockCounter;
+using internal::OptionalBitIndexer;
+
+namespace compute {
+namespace internal {
+
+int64_t GetFilterOutputSize(const ArrayData& filter,
+ FilterOptions::NullSelectionBehavior null_selection) {
+ int64_t output_size = 0;
+
+ if (filter.MayHaveNulls()) {
+ const uint8_t* filter_is_valid = filter.buffers[0]->data();
+ BinaryBitBlockCounter bit_counter(filter.buffers[1]->data(), filter.offset,
+ filter_is_valid, filter.offset, filter.length);
+ int64_t position = 0;
+ if (null_selection == FilterOptions::EMIT_NULL) {
+ while (position < filter.length) {
+ BitBlockCount block = bit_counter.NextOrNotWord();
+ output_size += block.popcount;
+ position += block.length;
+ }
+ } else {
+ while (position < filter.length) {
+ BitBlockCount block = bit_counter.NextAndWord();
+ output_size += block.popcount;
+ position += block.length;
+ }
+ }
+ } else {
+ // The filter has no nulls, so we can use CountSetBits
+ output_size = CountSetBits(filter.buffers[1]->data(), filter.offset, filter.length);
+ }
+ return output_size;
+}
+
namespace {
-template <typename IndexType>
-Result<std::shared_ptr<ArrayData>> GetTakeIndicesImpl(
- const ArrayData& filter, FilterOptions::NullSelectionBehavior null_selection,
- MemoryPool* memory_pool) {
- using T = typename IndexType::c_type;
-
- const uint8_t* filter_data = filter.buffers[1]->data();
+template <typename IndexType>
+Result<std::shared_ptr<ArrayData>> GetTakeIndicesImpl(
+ const ArrayData& filter, FilterOptions::NullSelectionBehavior null_selection,
+ MemoryPool* memory_pool) {
+ using T = typename IndexType::c_type;
+
+ const uint8_t* filter_data = filter.buffers[1]->data();
const bool have_filter_nulls = filter.MayHaveNulls();
const uint8_t* filter_is_valid =
have_filter_nulls ? filter.buffers[0]->data() : nullptr;
-
+
if (have_filter_nulls && null_selection == FilterOptions::EMIT_NULL) {
// Most complex case: the filter may have nulls and we don't drop them.
// The logic is ternary:
// - filter is null: emit null
// - filter is valid and true: emit index
// - filter is valid and false: don't emit anything
-
+
typename TypeTraits<IndexType>::BuilderType builder(memory_pool);
-
+
// The position relative to the start of the filter
T position = 0;
// The current position taking the filter offset into account
int64_t position_with_offset = filter.offset;
// To count blocks where filter_data[i] || !filter_is_valid[i]
- BinaryBitBlockCounter filter_counter(filter_data, filter.offset, filter_is_valid,
- filter.offset, filter.length);
+ BinaryBitBlockCounter filter_counter(filter_data, filter.offset, filter_is_valid,
+ filter.offset, filter.length);
BitBlockCounter is_valid_counter(filter_is_valid, filter.offset, filter.length);
while (position < filter.length) {
// true OR NOT valid
@@ -125,13 +125,13 @@ Result<std::shared_ptr<ArrayData>> GetTakeIndicesImpl(
position += selected_or_null_block.length;
position_with_offset += selected_or_null_block.length;
continue;
- }
+ }
RETURN_NOT_OK(builder.Reserve(selected_or_null_block.popcount));
-
+
// If the values are all valid and the selected_or_null_block is full,
// then we can infer that all the values are true and skip the bit checking
BitBlockCount is_valid_block = is_valid_counter.NextWord();
-
+
if (selected_or_null_block.AllSet() && is_valid_block.AllSet()) {
// All the values are selected and non-null
for (int64_t i = 0; i < selected_or_null_block.length; ++i) {
@@ -144,24 +144,24 @@ Result<std::shared_ptr<ArrayData>> GetTakeIndicesImpl(
if (BitUtil::GetBit(filter_is_valid, position_with_offset)) {
if (BitUtil::GetBit(filter_data, position_with_offset)) {
builder.UnsafeAppend(position);
- }
+ }
} else {
// Null slot, so append a null
builder.UnsafeAppendNull();
- }
+ }
++position;
++position_with_offset;
- }
- }
- }
+ }
+ }
+ }
std::shared_ptr<ArrayData> result;
RETURN_NOT_OK(builder.FinishInternal(&result));
return result;
}
-
+
// Other cases don't emit nulls and are therefore simpler.
TypedBufferBuilder<T> builder(memory_pool);
-
+
if (have_filter_nulls) {
// The filter may have nulls, so we scan the validity bitmap and the filter
// data bitmap together.
@@ -180,24 +180,24 @@ Result<std::shared_ptr<ArrayData>> GetTakeIndicesImpl(
if (and_block.AllSet()) {
// All the values are selected and non-null
for (int64_t i = 0; i < and_block.length; ++i) {
- builder.UnsafeAppend(position++);
- }
+ builder.UnsafeAppend(position++);
+ }
position_with_offset += and_block.length;
} else if (!and_block.NoneSet()) {
// Some of the values are false or null
for (int64_t i = 0; i < and_block.length; ++i) {
if (BitUtil::GetBit(filter_is_valid, position_with_offset) &&
BitUtil::GetBit(filter_data, position_with_offset)) {
- builder.UnsafeAppend(position);
- }
- ++position;
- ++position_with_offset;
- }
- } else {
+ builder.UnsafeAppend(position);
+ }
+ ++position;
+ ++position_with_offset;
+ }
+ } else {
position += and_block.length;
position_with_offset += and_block.length;
- }
- }
+ }
+ }
} else {
// The filter has no nulls, so we need only look for true values
RETURN_NOT_OK(::arrow::internal::VisitSetBitRuns(
@@ -209,1465 +209,1465 @@ Result<std::shared_ptr<ArrayData>> GetTakeIndicesImpl(
}
return Status::OK();
}));
- }
+ }
const int64_t length = builder.length();
std::shared_ptr<Buffer> out_buffer;
RETURN_NOT_OK(builder.Finish(&out_buffer));
return std::make_shared<ArrayData>(TypeTraits<IndexType>::type_singleton(), length,
BufferVector{nullptr, out_buffer}, /*null_count=*/0);
-}
-
+}
+
} // namespace
-Result<std::shared_ptr<ArrayData>> GetTakeIndices(
- const ArrayData& filter, FilterOptions::NullSelectionBehavior null_selection,
- MemoryPool* memory_pool) {
- DCHECK_EQ(filter.type->id(), Type::BOOL);
- if (filter.length <= std::numeric_limits<uint16_t>::max()) {
- return GetTakeIndicesImpl<UInt16Type>(filter, null_selection, memory_pool);
- } else if (filter.length <= std::numeric_limits<uint32_t>::max()) {
- return GetTakeIndicesImpl<UInt32Type>(filter, null_selection, memory_pool);
- } else {
- // Arrays over 4 billion elements, not especially likely.
- return Status::NotImplemented(
- "Filter length exceeds UINT32_MAX, "
- "consider a different strategy for selecting elements");
- }
-}
-
-namespace {
-
-using FilterState = OptionsWrapper<FilterOptions>;
-using TakeState = OptionsWrapper<TakeOptions>;
-
-Status PreallocateData(KernelContext* ctx, int64_t length, int bit_width,
- bool allocate_validity, ArrayData* out) {
- // Preallocate memory
- out->length = length;
- out->buffers.resize(2);
-
- if (allocate_validity) {
- ARROW_ASSIGN_OR_RAISE(out->buffers[0], ctx->AllocateBitmap(length));
- }
- if (bit_width == 1) {
- ARROW_ASSIGN_OR_RAISE(out->buffers[1], ctx->AllocateBitmap(length));
- } else {
- ARROW_ASSIGN_OR_RAISE(out->buffers[1], ctx->Allocate(length * bit_width / 8));
- }
- return Status::OK();
-}
-
-// ----------------------------------------------------------------------
-// Implement optimized take for primitive types from boolean to 1/2/4/8-byte
-// C-type based types. Use common implementation for every byte width and only
-// generate code for unsigned integer indices, since after boundschecking to
-// check for negative numbers in the indices we can safely reinterpret_cast
-// signed integers as unsigned.
-
-/// \brief The Take implementation for primitive (fixed-width) types does not
-/// use the logical Arrow type but rather the physical C type. This way we
-/// only generate one take function for each byte width.
-///
-/// This function assumes that the indices have been boundschecked.
-template <typename IndexCType, typename ValueCType>
-struct PrimitiveTakeImpl {
- static void Exec(const PrimitiveArg& values, const PrimitiveArg& indices,
- ArrayData* out_arr) {
- auto values_data = reinterpret_cast<const ValueCType*>(values.data);
- auto values_is_valid = values.is_valid;
- auto values_offset = values.offset;
-
- auto indices_data = reinterpret_cast<const IndexCType*>(indices.data);
- auto indices_is_valid = indices.is_valid;
- auto indices_offset = indices.offset;
-
- auto out = out_arr->GetMutableValues<ValueCType>(1);
- auto out_is_valid = out_arr->buffers[0]->mutable_data();
- auto out_offset = out_arr->offset;
-
- // If either the values or indices have nulls, we preemptively zero out the
- // out validity bitmap so that we don't have to use ClearBit in each
- // iteration for nulls.
- if (values.null_count != 0 || indices.null_count != 0) {
- BitUtil::SetBitsTo(out_is_valid, out_offset, indices.length, false);
- }
-
- OptionalBitBlockCounter indices_bit_counter(indices_is_valid, indices_offset,
- indices.length);
- int64_t position = 0;
- int64_t valid_count = 0;
- while (position < indices.length) {
- BitBlockCount block = indices_bit_counter.NextBlock();
- if (values.null_count == 0) {
- // Values are never null, so things are easier
- valid_count += block.popcount;
- if (block.popcount == block.length) {
- // Fastest path: neither values nor index nulls
- BitUtil::SetBitsTo(out_is_valid, out_offset + position, block.length, true);
- for (int64_t i = 0; i < block.length; ++i) {
- out[position] = values_data[indices_data[position]];
- ++position;
- }
- } else if (block.popcount > 0) {
- // Slow path: some indices but not all are null
- for (int64_t i = 0; i < block.length; ++i) {
- if (BitUtil::GetBit(indices_is_valid, indices_offset + position)) {
- // index is not null
- BitUtil::SetBit(out_is_valid, out_offset + position);
- out[position] = values_data[indices_data[position]];
- } else {
- out[position] = ValueCType{};
- }
- ++position;
- }
- } else {
- memset(out + position, 0, sizeof(ValueCType) * block.length);
- position += block.length;
- }
- } else {
- // Values have nulls, so we must do random access into the values bitmap
- if (block.popcount == block.length) {
- // Faster path: indices are not null but values may be
- for (int64_t i = 0; i < block.length; ++i) {
- if (BitUtil::GetBit(values_is_valid,
- values_offset + indices_data[position])) {
- // value is not null
- out[position] = values_data[indices_data[position]];
- BitUtil::SetBit(out_is_valid, out_offset + position);
- ++valid_count;
- } else {
- out[position] = ValueCType{};
- }
- ++position;
- }
- } else if (block.popcount > 0) {
- // Slow path: some but not all indices are null. Since we are doing
- // random access in general we have to check the value nullness one by
- // one.
- for (int64_t i = 0; i < block.length; ++i) {
- if (BitUtil::GetBit(indices_is_valid, indices_offset + position) &&
- BitUtil::GetBit(values_is_valid,
- values_offset + indices_data[position])) {
- // index is not null && value is not null
- out[position] = values_data[indices_data[position]];
- BitUtil::SetBit(out_is_valid, out_offset + position);
- ++valid_count;
- } else {
- out[position] = ValueCType{};
- }
- ++position;
- }
- } else {
- memset(out + position, 0, sizeof(ValueCType) * block.length);
- position += block.length;
- }
- }
- }
- out_arr->null_count = out_arr->length - valid_count;
- }
-};
-
-template <typename IndexCType>
-struct BooleanTakeImpl {
- static void Exec(const PrimitiveArg& values, const PrimitiveArg& indices,
- ArrayData* out_arr) {
- const uint8_t* values_data = values.data;
- auto values_is_valid = values.is_valid;
- auto values_offset = values.offset;
-
- auto indices_data = reinterpret_cast<const IndexCType*>(indices.data);
- auto indices_is_valid = indices.is_valid;
- auto indices_offset = indices.offset;
-
- auto out = out_arr->buffers[1]->mutable_data();
- auto out_is_valid = out_arr->buffers[0]->mutable_data();
- auto out_offset = out_arr->offset;
-
- // If either the values or indices have nulls, we preemptively zero out the
- // out validity bitmap so that we don't have to use ClearBit in each
- // iteration for nulls.
- if (values.null_count != 0 || indices.null_count != 0) {
- BitUtil::SetBitsTo(out_is_valid, out_offset, indices.length, false);
- }
- // Avoid uninitialized data in values array
- BitUtil::SetBitsTo(out, out_offset, indices.length, false);
-
- auto PlaceDataBit = [&](int64_t loc, IndexCType index) {
- BitUtil::SetBitTo(out, out_offset + loc,
- BitUtil::GetBit(values_data, values_offset + index));
- };
-
- OptionalBitBlockCounter indices_bit_counter(indices_is_valid, indices_offset,
- indices.length);
- int64_t position = 0;
- int64_t valid_count = 0;
- while (position < indices.length) {
- BitBlockCount block = indices_bit_counter.NextBlock();
- if (values.null_count == 0) {
- // Values are never null, so things are easier
- valid_count += block.popcount;
- if (block.popcount == block.length) {
- // Fastest path: neither values nor index nulls
- BitUtil::SetBitsTo(out_is_valid, out_offset + position, block.length, true);
- for (int64_t i = 0; i < block.length; ++i) {
- PlaceDataBit(position, indices_data[position]);
- ++position;
- }
- } else if (block.popcount > 0) {
- // Slow path: some but not all indices are null
- for (int64_t i = 0; i < block.length; ++i) {
- if (BitUtil::GetBit(indices_is_valid, indices_offset + position)) {
- // index is not null
- BitUtil::SetBit(out_is_valid, out_offset + position);
- PlaceDataBit(position, indices_data[position]);
- }
- ++position;
- }
- } else {
- position += block.length;
- }
- } else {
- // Values have nulls, so we must do random access into the values bitmap
- if (block.popcount == block.length) {
- // Faster path: indices are not null but values may be
- for (int64_t i = 0; i < block.length; ++i) {
- if (BitUtil::GetBit(values_is_valid,
- values_offset + indices_data[position])) {
- // value is not null
- BitUtil::SetBit(out_is_valid, out_offset + position);
- PlaceDataBit(position, indices_data[position]);
- ++valid_count;
- }
- ++position;
- }
- } else if (block.popcount > 0) {
- // Slow path: some but not all indices are null. Since we are doing
- // random access in general we have to check the value nullness one by
- // one.
- for (int64_t i = 0; i < block.length; ++i) {
- if (BitUtil::GetBit(indices_is_valid, indices_offset + position)) {
- // index is not null
- if (BitUtil::GetBit(values_is_valid,
- values_offset + indices_data[position])) {
- // value is not null
- PlaceDataBit(position, indices_data[position]);
- BitUtil::SetBit(out_is_valid, out_offset + position);
- ++valid_count;
- }
- }
- ++position;
- }
- } else {
- position += block.length;
- }
- }
- }
- out_arr->null_count = out_arr->length - valid_count;
- }
-};
-
-template <template <typename...> class TakeImpl, typename... Args>
-void TakeIndexDispatch(const PrimitiveArg& values, const PrimitiveArg& indices,
- ArrayData* out) {
- // With the simplifying assumption that boundschecking has taken place
- // already at a higher level, we can now assume that the index values are all
- // non-negative. Thus, we can interpret signed integers as unsigned and avoid
- // having to generate double the amount of binary code to handle each integer
- // width.
- switch (indices.bit_width) {
- case 8:
- return TakeImpl<uint8_t, Args...>::Exec(values, indices, out);
- case 16:
- return TakeImpl<uint16_t, Args...>::Exec(values, indices, out);
- case 32:
- return TakeImpl<uint32_t, Args...>::Exec(values, indices, out);
- case 64:
- return TakeImpl<uint64_t, Args...>::Exec(values, indices, out);
- default:
- DCHECK(false) << "Invalid indices byte width";
- break;
- }
-}
-
+Result<std::shared_ptr<ArrayData>> GetTakeIndices(
+ const ArrayData& filter, FilterOptions::NullSelectionBehavior null_selection,
+ MemoryPool* memory_pool) {
+ DCHECK_EQ(filter.type->id(), Type::BOOL);
+ if (filter.length <= std::numeric_limits<uint16_t>::max()) {
+ return GetTakeIndicesImpl<UInt16Type>(filter, null_selection, memory_pool);
+ } else if (filter.length <= std::numeric_limits<uint32_t>::max()) {
+ return GetTakeIndicesImpl<UInt32Type>(filter, null_selection, memory_pool);
+ } else {
+ // Arrays over 4 billion elements, not especially likely.
+ return Status::NotImplemented(
+ "Filter length exceeds UINT32_MAX, "
+ "consider a different strategy for selecting elements");
+ }
+}
+
+namespace {
+
+using FilterState = OptionsWrapper<FilterOptions>;
+using TakeState = OptionsWrapper<TakeOptions>;
+
+Status PreallocateData(KernelContext* ctx, int64_t length, int bit_width,
+ bool allocate_validity, ArrayData* out) {
+ // Preallocate memory
+ out->length = length;
+ out->buffers.resize(2);
+
+ if (allocate_validity) {
+ ARROW_ASSIGN_OR_RAISE(out->buffers[0], ctx->AllocateBitmap(length));
+ }
+ if (bit_width == 1) {
+ ARROW_ASSIGN_OR_RAISE(out->buffers[1], ctx->AllocateBitmap(length));
+ } else {
+ ARROW_ASSIGN_OR_RAISE(out->buffers[1], ctx->Allocate(length * bit_width / 8));
+ }
+ return Status::OK();
+}
+
+// ----------------------------------------------------------------------
+// Implement optimized take for primitive types from boolean to 1/2/4/8-byte
+// C-type based types. Use common implementation for every byte width and only
+// generate code for unsigned integer indices, since after boundschecking to
+// check for negative numbers in the indices we can safely reinterpret_cast
+// signed integers as unsigned.
+
+/// \brief The Take implementation for primitive (fixed-width) types does not
+/// use the logical Arrow type but rather the physical C type. This way we
+/// only generate one take function for each byte width.
+///
+/// This function assumes that the indices have been boundschecked.
+template <typename IndexCType, typename ValueCType>
+struct PrimitiveTakeImpl {
+ static void Exec(const PrimitiveArg& values, const PrimitiveArg& indices,
+ ArrayData* out_arr) {
+ auto values_data = reinterpret_cast<const ValueCType*>(values.data);
+ auto values_is_valid = values.is_valid;
+ auto values_offset = values.offset;
+
+ auto indices_data = reinterpret_cast<const IndexCType*>(indices.data);
+ auto indices_is_valid = indices.is_valid;
+ auto indices_offset = indices.offset;
+
+ auto out = out_arr->GetMutableValues<ValueCType>(1);
+ auto out_is_valid = out_arr->buffers[0]->mutable_data();
+ auto out_offset = out_arr->offset;
+
+ // If either the values or indices have nulls, we preemptively zero out the
+ // out validity bitmap so that we don't have to use ClearBit in each
+ // iteration for nulls.
+ if (values.null_count != 0 || indices.null_count != 0) {
+ BitUtil::SetBitsTo(out_is_valid, out_offset, indices.length, false);
+ }
+
+ OptionalBitBlockCounter indices_bit_counter(indices_is_valid, indices_offset,
+ indices.length);
+ int64_t position = 0;
+ int64_t valid_count = 0;
+ while (position < indices.length) {
+ BitBlockCount block = indices_bit_counter.NextBlock();
+ if (values.null_count == 0) {
+ // Values are never null, so things are easier
+ valid_count += block.popcount;
+ if (block.popcount == block.length) {
+ // Fastest path: neither values nor index nulls
+ BitUtil::SetBitsTo(out_is_valid, out_offset + position, block.length, true);
+ for (int64_t i = 0; i < block.length; ++i) {
+ out[position] = values_data[indices_data[position]];
+ ++position;
+ }
+ } else if (block.popcount > 0) {
+ // Slow path: some indices but not all are null
+ for (int64_t i = 0; i < block.length; ++i) {
+ if (BitUtil::GetBit(indices_is_valid, indices_offset + position)) {
+ // index is not null
+ BitUtil::SetBit(out_is_valid, out_offset + position);
+ out[position] = values_data[indices_data[position]];
+ } else {
+ out[position] = ValueCType{};
+ }
+ ++position;
+ }
+ } else {
+ memset(out + position, 0, sizeof(ValueCType) * block.length);
+ position += block.length;
+ }
+ } else {
+ // Values have nulls, so we must do random access into the values bitmap
+ if (block.popcount == block.length) {
+ // Faster path: indices are not null but values may be
+ for (int64_t i = 0; i < block.length; ++i) {
+ if (BitUtil::GetBit(values_is_valid,
+ values_offset + indices_data[position])) {
+ // value is not null
+ out[position] = values_data[indices_data[position]];
+ BitUtil::SetBit(out_is_valid, out_offset + position);
+ ++valid_count;
+ } else {
+ out[position] = ValueCType{};
+ }
+ ++position;
+ }
+ } else if (block.popcount > 0) {
+ // Slow path: some but not all indices are null. Since we are doing
+ // random access in general we have to check the value nullness one by
+ // one.
+ for (int64_t i = 0; i < block.length; ++i) {
+ if (BitUtil::GetBit(indices_is_valid, indices_offset + position) &&
+ BitUtil::GetBit(values_is_valid,
+ values_offset + indices_data[position])) {
+ // index is not null && value is not null
+ out[position] = values_data[indices_data[position]];
+ BitUtil::SetBit(out_is_valid, out_offset + position);
+ ++valid_count;
+ } else {
+ out[position] = ValueCType{};
+ }
+ ++position;
+ }
+ } else {
+ memset(out + position, 0, sizeof(ValueCType) * block.length);
+ position += block.length;
+ }
+ }
+ }
+ out_arr->null_count = out_arr->length - valid_count;
+ }
+};
+
+template <typename IndexCType>
+struct BooleanTakeImpl {
+ static void Exec(const PrimitiveArg& values, const PrimitiveArg& indices,
+ ArrayData* out_arr) {
+ const uint8_t* values_data = values.data;
+ auto values_is_valid = values.is_valid;
+ auto values_offset = values.offset;
+
+ auto indices_data = reinterpret_cast<const IndexCType*>(indices.data);
+ auto indices_is_valid = indices.is_valid;
+ auto indices_offset = indices.offset;
+
+ auto out = out_arr->buffers[1]->mutable_data();
+ auto out_is_valid = out_arr->buffers[0]->mutable_data();
+ auto out_offset = out_arr->offset;
+
+ // If either the values or indices have nulls, we preemptively zero out the
+ // out validity bitmap so that we don't have to use ClearBit in each
+ // iteration for nulls.
+ if (values.null_count != 0 || indices.null_count != 0) {
+ BitUtil::SetBitsTo(out_is_valid, out_offset, indices.length, false);
+ }
+ // Avoid uninitialized data in values array
+ BitUtil::SetBitsTo(out, out_offset, indices.length, false);
+
+ auto PlaceDataBit = [&](int64_t loc, IndexCType index) {
+ BitUtil::SetBitTo(out, out_offset + loc,
+ BitUtil::GetBit(values_data, values_offset + index));
+ };
+
+ OptionalBitBlockCounter indices_bit_counter(indices_is_valid, indices_offset,
+ indices.length);
+ int64_t position = 0;
+ int64_t valid_count = 0;
+ while (position < indices.length) {
+ BitBlockCount block = indices_bit_counter.NextBlock();
+ if (values.null_count == 0) {
+ // Values are never null, so things are easier
+ valid_count += block.popcount;
+ if (block.popcount == block.length) {
+ // Fastest path: neither values nor index nulls
+ BitUtil::SetBitsTo(out_is_valid, out_offset + position, block.length, true);
+ for (int64_t i = 0; i < block.length; ++i) {
+ PlaceDataBit(position, indices_data[position]);
+ ++position;
+ }
+ } else if (block.popcount > 0) {
+ // Slow path: some but not all indices are null
+ for (int64_t i = 0; i < block.length; ++i) {
+ if (BitUtil::GetBit(indices_is_valid, indices_offset + position)) {
+ // index is not null
+ BitUtil::SetBit(out_is_valid, out_offset + position);
+ PlaceDataBit(position, indices_data[position]);
+ }
+ ++position;
+ }
+ } else {
+ position += block.length;
+ }
+ } else {
+ // Values have nulls, so we must do random access into the values bitmap
+ if (block.popcount == block.length) {
+ // Faster path: indices are not null but values may be
+ for (int64_t i = 0; i < block.length; ++i) {
+ if (BitUtil::GetBit(values_is_valid,
+ values_offset + indices_data[position])) {
+ // value is not null
+ BitUtil::SetBit(out_is_valid, out_offset + position);
+ PlaceDataBit(position, indices_data[position]);
+ ++valid_count;
+ }
+ ++position;
+ }
+ } else if (block.popcount > 0) {
+ // Slow path: some but not all indices are null. Since we are doing
+ // random access in general we have to check the value nullness one by
+ // one.
+ for (int64_t i = 0; i < block.length; ++i) {
+ if (BitUtil::GetBit(indices_is_valid, indices_offset + position)) {
+ // index is not null
+ if (BitUtil::GetBit(values_is_valid,
+ values_offset + indices_data[position])) {
+ // value is not null
+ PlaceDataBit(position, indices_data[position]);
+ BitUtil::SetBit(out_is_valid, out_offset + position);
+ ++valid_count;
+ }
+ }
+ ++position;
+ }
+ } else {
+ position += block.length;
+ }
+ }
+ }
+ out_arr->null_count = out_arr->length - valid_count;
+ }
+};
+
+template <template <typename...> class TakeImpl, typename... Args>
+void TakeIndexDispatch(const PrimitiveArg& values, const PrimitiveArg& indices,
+ ArrayData* out) {
+ // With the simplifying assumption that boundschecking has taken place
+ // already at a higher level, we can now assume that the index values are all
+ // non-negative. Thus, we can interpret signed integers as unsigned and avoid
+ // having to generate double the amount of binary code to handle each integer
+ // width.
+ switch (indices.bit_width) {
+ case 8:
+ return TakeImpl<uint8_t, Args...>::Exec(values, indices, out);
+ case 16:
+ return TakeImpl<uint16_t, Args...>::Exec(values, indices, out);
+ case 32:
+ return TakeImpl<uint32_t, Args...>::Exec(values, indices, out);
+ case 64:
+ return TakeImpl<uint64_t, Args...>::Exec(values, indices, out);
+ default:
+ DCHECK(false) << "Invalid indices byte width";
+ break;
+ }
+}
+
Status PrimitiveTake(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- if (TakeState::Get(ctx).boundscheck) {
+ if (TakeState::Get(ctx).boundscheck) {
RETURN_NOT_OK(CheckIndexBounds(*batch[1].array(), batch[0].length()));
- }
-
- PrimitiveArg values = GetPrimitiveArg(*batch[0].array());
- PrimitiveArg indices = GetPrimitiveArg(*batch[1].array());
-
- ArrayData* out_arr = out->mutable_array();
-
- // TODO: When neither values nor indices contain nulls, we can skip
- // allocating the validity bitmap altogether and save time and space. A
- // streamlined PrimitiveTakeImpl would need to be written that skips all
- // interactions with the output validity bitmap, though.
+ }
+
+ PrimitiveArg values = GetPrimitiveArg(*batch[0].array());
+ PrimitiveArg indices = GetPrimitiveArg(*batch[1].array());
+
+ ArrayData* out_arr = out->mutable_array();
+
+ // TODO: When neither values nor indices contain nulls, we can skip
+ // allocating the validity bitmap altogether and save time and space. A
+ // streamlined PrimitiveTakeImpl would need to be written that skips all
+ // interactions with the output validity bitmap, though.
RETURN_NOT_OK(PreallocateData(ctx, indices.length, values.bit_width,
/*allocate_validity=*/true, out_arr));
- switch (values.bit_width) {
- case 1:
+ switch (values.bit_width) {
+ case 1:
TakeIndexDispatch<BooleanTakeImpl>(values, indices, out_arr);
break;
- case 8:
+ case 8:
TakeIndexDispatch<PrimitiveTakeImpl, int8_t>(values, indices, out_arr);
break;
- case 16:
+ case 16:
TakeIndexDispatch<PrimitiveTakeImpl, int16_t>(values, indices, out_arr);
break;
- case 32:
+ case 32:
TakeIndexDispatch<PrimitiveTakeImpl, int32_t>(values, indices, out_arr);
break;
- case 64:
+ case 64:
TakeIndexDispatch<PrimitiveTakeImpl, int64_t>(values, indices, out_arr);
break;
- default:
- DCHECK(false) << "Invalid values byte width";
- break;
- }
+ default:
+ DCHECK(false) << "Invalid values byte width";
+ break;
+ }
return Status::OK();
-}
-
-// ----------------------------------------------------------------------
-// Optimized and streamlined filter for primitive types
-
-// Use either BitBlockCounter or BinaryBitBlockCounter to quickly scan filter a
-// word at a time for the DROP selection type.
-class DropNullCounter {
- public:
- // validity bitmap may be null
- DropNullCounter(const uint8_t* validity, const uint8_t* data, int64_t offset,
- int64_t length)
- : data_counter_(data, offset, length),
- data_and_validity_counter_(data, offset, validity, offset, length),
- has_validity_(validity != nullptr) {}
-
- BitBlockCount NextBlock() {
- if (has_validity_) {
- // filter is true AND not null
- return data_and_validity_counter_.NextAndWord();
- } else {
- return data_counter_.NextWord();
- }
- }
-
- private:
- // For when just data is present, but no validity bitmap
- BitBlockCounter data_counter_;
-
- // For when both validity bitmap and data are present
- BinaryBitBlockCounter data_and_validity_counter_;
- const bool has_validity_;
-};
-
-/// \brief The Filter implementation for primitive (fixed-width) types does not
-/// use the logical Arrow type but rather the physical C type. This way we only
-/// generate one take function for each byte width. We use the same
-/// implementation here for boolean and fixed-byte-size inputs with some
-/// template specialization.
-template <typename ArrowType>
-class PrimitiveFilterImpl {
- public:
- using T = typename std::conditional<std::is_same<ArrowType, BooleanType>::value,
- uint8_t, typename ArrowType::c_type>::type;
-
- PrimitiveFilterImpl(const PrimitiveArg& values, const PrimitiveArg& filter,
- FilterOptions::NullSelectionBehavior null_selection,
- ArrayData* out_arr)
- : values_is_valid_(values.is_valid),
- values_data_(reinterpret_cast<const T*>(values.data)),
- values_null_count_(values.null_count),
- values_offset_(values.offset),
- values_length_(values.length),
- filter_is_valid_(filter.is_valid),
- filter_data_(filter.data),
- filter_null_count_(filter.null_count),
- filter_offset_(filter.offset),
- null_selection_(null_selection) {
- if (out_arr->buffers[0] != nullptr) {
- // May not be allocated if neither filter nor values contains nulls
- out_is_valid_ = out_arr->buffers[0]->mutable_data();
- }
- out_data_ = reinterpret_cast<T*>(out_arr->buffers[1]->mutable_data());
- out_offset_ = out_arr->offset;
- out_length_ = out_arr->length;
- out_position_ = 0;
- }
-
- void ExecNonNull() {
- // Fast filter when values and filter are not null
+}
+
+// ----------------------------------------------------------------------
+// Optimized and streamlined filter for primitive types
+
+// Use either BitBlockCounter or BinaryBitBlockCounter to quickly scan filter a
+// word at a time for the DROP selection type.
+class DropNullCounter {
+ public:
+ // validity bitmap may be null
+ DropNullCounter(const uint8_t* validity, const uint8_t* data, int64_t offset,
+ int64_t length)
+ : data_counter_(data, offset, length),
+ data_and_validity_counter_(data, offset, validity, offset, length),
+ has_validity_(validity != nullptr) {}
+
+ BitBlockCount NextBlock() {
+ if (has_validity_) {
+ // filter is true AND not null
+ return data_and_validity_counter_.NextAndWord();
+ } else {
+ return data_counter_.NextWord();
+ }
+ }
+
+ private:
+ // For when just data is present, but no validity bitmap
+ BitBlockCounter data_counter_;
+
+ // For when both validity bitmap and data are present
+ BinaryBitBlockCounter data_and_validity_counter_;
+ const bool has_validity_;
+};
+
+/// \brief The Filter implementation for primitive (fixed-width) types does not
+/// use the logical Arrow type but rather the physical C type. This way we only
+/// generate one take function for each byte width. We use the same
+/// implementation here for boolean and fixed-byte-size inputs with some
+/// template specialization.
+template <typename ArrowType>
+class PrimitiveFilterImpl {
+ public:
+ using T = typename std::conditional<std::is_same<ArrowType, BooleanType>::value,
+ uint8_t, typename ArrowType::c_type>::type;
+
+ PrimitiveFilterImpl(const PrimitiveArg& values, const PrimitiveArg& filter,
+ FilterOptions::NullSelectionBehavior null_selection,
+ ArrayData* out_arr)
+ : values_is_valid_(values.is_valid),
+ values_data_(reinterpret_cast<const T*>(values.data)),
+ values_null_count_(values.null_count),
+ values_offset_(values.offset),
+ values_length_(values.length),
+ filter_is_valid_(filter.is_valid),
+ filter_data_(filter.data),
+ filter_null_count_(filter.null_count),
+ filter_offset_(filter.offset),
+ null_selection_(null_selection) {
+ if (out_arr->buffers[0] != nullptr) {
+ // May not be allocated if neither filter nor values contains nulls
+ out_is_valid_ = out_arr->buffers[0]->mutable_data();
+ }
+ out_data_ = reinterpret_cast<T*>(out_arr->buffers[1]->mutable_data());
+ out_offset_ = out_arr->offset;
+ out_length_ = out_arr->length;
+ out_position_ = 0;
+ }
+
+ void ExecNonNull() {
+ // Fast filter when values and filter are not null
::arrow::internal::VisitSetBitRunsVoid(
filter_data_, filter_offset_, values_length_,
[&](int64_t position, int64_t length) { WriteValueSegment(position, length); });
- }
-
- void Exec() {
- if (filter_null_count_ == 0 && values_null_count_ == 0) {
- return ExecNonNull();
- }
-
- // Bit counters used for both null_selection behaviors
- DropNullCounter drop_null_counter(filter_is_valid_, filter_data_, filter_offset_,
- values_length_);
- OptionalBitBlockCounter data_counter(values_is_valid_, values_offset_,
- values_length_);
- OptionalBitBlockCounter filter_valid_counter(filter_is_valid_, filter_offset_,
- values_length_);
-
- auto WriteNotNull = [&](int64_t index) {
- BitUtil::SetBit(out_is_valid_, out_offset_ + out_position_);
- // Increments out_position_
- WriteValue(index);
- };
-
- auto WriteMaybeNull = [&](int64_t index) {
- BitUtil::SetBitTo(out_is_valid_, out_offset_ + out_position_,
- BitUtil::GetBit(values_is_valid_, values_offset_ + index));
- // Increments out_position_
- WriteValue(index);
- };
-
- int64_t in_position = 0;
- while (in_position < values_length_) {
- BitBlockCount filter_block = drop_null_counter.NextBlock();
- BitBlockCount filter_valid_block = filter_valid_counter.NextWord();
- BitBlockCount data_block = data_counter.NextWord();
- if (filter_block.AllSet() && data_block.AllSet()) {
- // Fastest path: all values in block are included and not null
- BitUtil::SetBitsTo(out_is_valid_, out_offset_ + out_position_,
- filter_block.length, true);
- WriteValueSegment(in_position, filter_block.length);
- in_position += filter_block.length;
- } else if (filter_block.AllSet()) {
- // Faster: all values are selected, but some values are null
- // Batch copy bits from values validity bitmap to output validity bitmap
- CopyBitmap(values_is_valid_, values_offset_ + in_position, filter_block.length,
- out_is_valid_, out_offset_ + out_position_);
- WriteValueSegment(in_position, filter_block.length);
- in_position += filter_block.length;
- } else if (filter_block.NoneSet() && null_selection_ == FilterOptions::DROP) {
- // For this exceedingly common case in low-selectivity filters we can
- // skip further analysis of the data and move on to the next block.
- in_position += filter_block.length;
- } else {
- // Some filter values are false or null
- if (data_block.AllSet()) {
- // No values are null
- if (filter_valid_block.AllSet()) {
- // Filter is non-null but some values are false
- for (int64_t i = 0; i < filter_block.length; ++i) {
- if (BitUtil::GetBit(filter_data_, filter_offset_ + in_position)) {
- WriteNotNull(in_position);
- }
- ++in_position;
- }
- } else if (null_selection_ == FilterOptions::DROP) {
- // If any values are selected, they ARE NOT null
- for (int64_t i = 0; i < filter_block.length; ++i) {
- if (BitUtil::GetBit(filter_is_valid_, filter_offset_ + in_position) &&
- BitUtil::GetBit(filter_data_, filter_offset_ + in_position)) {
- WriteNotNull(in_position);
- }
- ++in_position;
- }
- } else { // null_selection == FilterOptions::EMIT_NULL
- // Data values in this block are not null
- for (int64_t i = 0; i < filter_block.length; ++i) {
- const bool is_valid =
- BitUtil::GetBit(filter_is_valid_, filter_offset_ + in_position);
- if (is_valid &&
- BitUtil::GetBit(filter_data_, filter_offset_ + in_position)) {
- // Filter slot is non-null and set
- WriteNotNull(in_position);
- } else if (!is_valid) {
- // Filter slot is null, so we have a null in the output
- BitUtil::ClearBit(out_is_valid_, out_offset_ + out_position_);
- WriteNull();
- }
- ++in_position;
- }
- }
- } else { // !data_block.AllSet()
- // Some values are null
- if (filter_valid_block.AllSet()) {
- // Filter is non-null but some values are false
- for (int64_t i = 0; i < filter_block.length; ++i) {
- if (BitUtil::GetBit(filter_data_, filter_offset_ + in_position)) {
- WriteMaybeNull(in_position);
- }
- ++in_position;
- }
- } else if (null_selection_ == FilterOptions::DROP) {
- // If any values are selected, they ARE NOT null
- for (int64_t i = 0; i < filter_block.length; ++i) {
- if (BitUtil::GetBit(filter_is_valid_, filter_offset_ + in_position) &&
- BitUtil::GetBit(filter_data_, filter_offset_ + in_position)) {
- WriteMaybeNull(in_position);
- }
- ++in_position;
- }
- } else { // null_selection == FilterOptions::EMIT_NULL
- // Data values in this block are not null
- for (int64_t i = 0; i < filter_block.length; ++i) {
- const bool is_valid =
- BitUtil::GetBit(filter_is_valid_, filter_offset_ + in_position);
- if (is_valid &&
- BitUtil::GetBit(filter_data_, filter_offset_ + in_position)) {
- // Filter slot is non-null and set
- WriteMaybeNull(in_position);
- } else if (!is_valid) {
- // Filter slot is null, so we have a null in the output
- BitUtil::ClearBit(out_is_valid_, out_offset_ + out_position_);
- WriteNull();
- }
- ++in_position;
- }
- }
- }
- } // !filter_block.AllSet()
- } // while(in_position < values_length_)
- }
-
- // Write the next out_position given the selected in_position for the input
- // data and advance out_position
- void WriteValue(int64_t in_position) {
- out_data_[out_position_++] = values_data_[in_position];
- }
-
- void WriteValueSegment(int64_t in_start, int64_t length) {
- std::memcpy(out_data_ + out_position_, values_data_ + in_start, length * sizeof(T));
- out_position_ += length;
- }
-
- void WriteNull() {
- // Zero the memory
- out_data_[out_position_++] = T{};
- }
-
- private:
- const uint8_t* values_is_valid_;
- const T* values_data_;
- int64_t values_null_count_;
- int64_t values_offset_;
- int64_t values_length_;
- const uint8_t* filter_is_valid_;
- const uint8_t* filter_data_;
- int64_t filter_null_count_;
- int64_t filter_offset_;
- FilterOptions::NullSelectionBehavior null_selection_;
- uint8_t* out_is_valid_;
- T* out_data_;
- int64_t out_offset_;
- int64_t out_length_;
- int64_t out_position_;
-};
-
-template <>
-inline void PrimitiveFilterImpl<BooleanType>::WriteValue(int64_t in_position) {
- BitUtil::SetBitTo(out_data_, out_offset_ + out_position_++,
- BitUtil::GetBit(values_data_, values_offset_ + in_position));
-}
-
-template <>
-inline void PrimitiveFilterImpl<BooleanType>::WriteValueSegment(int64_t in_start,
- int64_t length) {
- CopyBitmap(values_data_, values_offset_ + in_start, length, out_data_,
- out_offset_ + out_position_);
- out_position_ += length;
-}
-
-template <>
-inline void PrimitiveFilterImpl<BooleanType>::WriteNull() {
- // Zero the bit
- BitUtil::ClearBit(out_data_, out_offset_ + out_position_++);
-}
-
+ }
+
+ void Exec() {
+ if (filter_null_count_ == 0 && values_null_count_ == 0) {
+ return ExecNonNull();
+ }
+
+ // Bit counters used for both null_selection behaviors
+ DropNullCounter drop_null_counter(filter_is_valid_, filter_data_, filter_offset_,
+ values_length_);
+ OptionalBitBlockCounter data_counter(values_is_valid_, values_offset_,
+ values_length_);
+ OptionalBitBlockCounter filter_valid_counter(filter_is_valid_, filter_offset_,
+ values_length_);
+
+ auto WriteNotNull = [&](int64_t index) {
+ BitUtil::SetBit(out_is_valid_, out_offset_ + out_position_);
+ // Increments out_position_
+ WriteValue(index);
+ };
+
+ auto WriteMaybeNull = [&](int64_t index) {
+ BitUtil::SetBitTo(out_is_valid_, out_offset_ + out_position_,
+ BitUtil::GetBit(values_is_valid_, values_offset_ + index));
+ // Increments out_position_
+ WriteValue(index);
+ };
+
+ int64_t in_position = 0;
+ while (in_position < values_length_) {
+ BitBlockCount filter_block = drop_null_counter.NextBlock();
+ BitBlockCount filter_valid_block = filter_valid_counter.NextWord();
+ BitBlockCount data_block = data_counter.NextWord();
+ if (filter_block.AllSet() && data_block.AllSet()) {
+ // Fastest path: all values in block are included and not null
+ BitUtil::SetBitsTo(out_is_valid_, out_offset_ + out_position_,
+ filter_block.length, true);
+ WriteValueSegment(in_position, filter_block.length);
+ in_position += filter_block.length;
+ } else if (filter_block.AllSet()) {
+ // Faster: all values are selected, but some values are null
+ // Batch copy bits from values validity bitmap to output validity bitmap
+ CopyBitmap(values_is_valid_, values_offset_ + in_position, filter_block.length,
+ out_is_valid_, out_offset_ + out_position_);
+ WriteValueSegment(in_position, filter_block.length);
+ in_position += filter_block.length;
+ } else if (filter_block.NoneSet() && null_selection_ == FilterOptions::DROP) {
+ // For this exceedingly common case in low-selectivity filters we can
+ // skip further analysis of the data and move on to the next block.
+ in_position += filter_block.length;
+ } else {
+ // Some filter values are false or null
+ if (data_block.AllSet()) {
+ // No values are null
+ if (filter_valid_block.AllSet()) {
+ // Filter is non-null but some values are false
+ for (int64_t i = 0; i < filter_block.length; ++i) {
+ if (BitUtil::GetBit(filter_data_, filter_offset_ + in_position)) {
+ WriteNotNull(in_position);
+ }
+ ++in_position;
+ }
+ } else if (null_selection_ == FilterOptions::DROP) {
+ // If any values are selected, they ARE NOT null
+ for (int64_t i = 0; i < filter_block.length; ++i) {
+ if (BitUtil::GetBit(filter_is_valid_, filter_offset_ + in_position) &&
+ BitUtil::GetBit(filter_data_, filter_offset_ + in_position)) {
+ WriteNotNull(in_position);
+ }
+ ++in_position;
+ }
+ } else { // null_selection == FilterOptions::EMIT_NULL
+ // Data values in this block are not null
+ for (int64_t i = 0; i < filter_block.length; ++i) {
+ const bool is_valid =
+ BitUtil::GetBit(filter_is_valid_, filter_offset_ + in_position);
+ if (is_valid &&
+ BitUtil::GetBit(filter_data_, filter_offset_ + in_position)) {
+ // Filter slot is non-null and set
+ WriteNotNull(in_position);
+ } else if (!is_valid) {
+ // Filter slot is null, so we have a null in the output
+ BitUtil::ClearBit(out_is_valid_, out_offset_ + out_position_);
+ WriteNull();
+ }
+ ++in_position;
+ }
+ }
+ } else { // !data_block.AllSet()
+ // Some values are null
+ if (filter_valid_block.AllSet()) {
+ // Filter is non-null but some values are false
+ for (int64_t i = 0; i < filter_block.length; ++i) {
+ if (BitUtil::GetBit(filter_data_, filter_offset_ + in_position)) {
+ WriteMaybeNull(in_position);
+ }
+ ++in_position;
+ }
+ } else if (null_selection_ == FilterOptions::DROP) {
+ // If any values are selected, they ARE NOT null
+ for (int64_t i = 0; i < filter_block.length; ++i) {
+ if (BitUtil::GetBit(filter_is_valid_, filter_offset_ + in_position) &&
+ BitUtil::GetBit(filter_data_, filter_offset_ + in_position)) {
+ WriteMaybeNull(in_position);
+ }
+ ++in_position;
+ }
+ } else { // null_selection == FilterOptions::EMIT_NULL
+ // Data values in this block are not null
+ for (int64_t i = 0; i < filter_block.length; ++i) {
+ const bool is_valid =
+ BitUtil::GetBit(filter_is_valid_, filter_offset_ + in_position);
+ if (is_valid &&
+ BitUtil::GetBit(filter_data_, filter_offset_ + in_position)) {
+ // Filter slot is non-null and set
+ WriteMaybeNull(in_position);
+ } else if (!is_valid) {
+ // Filter slot is null, so we have a null in the output
+ BitUtil::ClearBit(out_is_valid_, out_offset_ + out_position_);
+ WriteNull();
+ }
+ ++in_position;
+ }
+ }
+ }
+ } // !filter_block.AllSet()
+ } // while(in_position < values_length_)
+ }
+
+ // Write the next out_position given the selected in_position for the input
+ // data and advance out_position
+ void WriteValue(int64_t in_position) {
+ out_data_[out_position_++] = values_data_[in_position];
+ }
+
+ void WriteValueSegment(int64_t in_start, int64_t length) {
+ std::memcpy(out_data_ + out_position_, values_data_ + in_start, length * sizeof(T));
+ out_position_ += length;
+ }
+
+ void WriteNull() {
+ // Zero the memory
+ out_data_[out_position_++] = T{};
+ }
+
+ private:
+ const uint8_t* values_is_valid_;
+ const T* values_data_;
+ int64_t values_null_count_;
+ int64_t values_offset_;
+ int64_t values_length_;
+ const uint8_t* filter_is_valid_;
+ const uint8_t* filter_data_;
+ int64_t filter_null_count_;
+ int64_t filter_offset_;
+ FilterOptions::NullSelectionBehavior null_selection_;
+ uint8_t* out_is_valid_;
+ T* out_data_;
+ int64_t out_offset_;
+ int64_t out_length_;
+ int64_t out_position_;
+};
+
+template <>
+inline void PrimitiveFilterImpl<BooleanType>::WriteValue(int64_t in_position) {
+ BitUtil::SetBitTo(out_data_, out_offset_ + out_position_++,
+ BitUtil::GetBit(values_data_, values_offset_ + in_position));
+}
+
+template <>
+inline void PrimitiveFilterImpl<BooleanType>::WriteValueSegment(int64_t in_start,
+ int64_t length) {
+ CopyBitmap(values_data_, values_offset_ + in_start, length, out_data_,
+ out_offset_ + out_position_);
+ out_position_ += length;
+}
+
+template <>
+inline void PrimitiveFilterImpl<BooleanType>::WriteNull() {
+ // Zero the bit
+ BitUtil::ClearBit(out_data_, out_offset_ + out_position_++);
+}
+
Status PrimitiveFilter(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- PrimitiveArg values = GetPrimitiveArg(*batch[0].array());
- PrimitiveArg filter = GetPrimitiveArg(*batch[1].array());
- FilterOptions::NullSelectionBehavior null_selection =
- FilterState::Get(ctx).null_selection_behavior;
-
- int64_t output_length = GetFilterOutputSize(*batch[1].array(), null_selection);
-
- ArrayData* out_arr = out->mutable_array();
-
- // The output precomputed null count is unknown except in the narrow
- // condition that all the values are non-null and the filter will not cause
- // any new nulls to be created.
- if (values.null_count == 0 &&
- (null_selection == FilterOptions::DROP || filter.null_count == 0)) {
- out_arr->null_count = 0;
- } else {
- out_arr->null_count = kUnknownNullCount;
- }
-
- // When neither the values nor filter is known to have any nulls, we will
- // elect the optimized ExecNonNull path where there is no need to populate a
- // validity bitmap.
- bool allocate_validity = values.null_count != 0 || filter.null_count != 0;
-
+ PrimitiveArg values = GetPrimitiveArg(*batch[0].array());
+ PrimitiveArg filter = GetPrimitiveArg(*batch[1].array());
+ FilterOptions::NullSelectionBehavior null_selection =
+ FilterState::Get(ctx).null_selection_behavior;
+
+ int64_t output_length = GetFilterOutputSize(*batch[1].array(), null_selection);
+
+ ArrayData* out_arr = out->mutable_array();
+
+ // The output precomputed null count is unknown except in the narrow
+ // condition that all the values are non-null and the filter will not cause
+ // any new nulls to be created.
+ if (values.null_count == 0 &&
+ (null_selection == FilterOptions::DROP || filter.null_count == 0)) {
+ out_arr->null_count = 0;
+ } else {
+ out_arr->null_count = kUnknownNullCount;
+ }
+
+ // When neither the values nor filter is known to have any nulls, we will
+ // elect the optimized ExecNonNull path where there is no need to populate a
+ // validity bitmap.
+ bool allocate_validity = values.null_count != 0 || filter.null_count != 0;
+
RETURN_NOT_OK(
PreallocateData(ctx, output_length, values.bit_width, allocate_validity, out_arr));
-
- switch (values.bit_width) {
- case 1:
+
+ switch (values.bit_width) {
+ case 1:
PrimitiveFilterImpl<BooleanType>(values, filter, null_selection, out_arr).Exec();
break;
- case 8:
+ case 8:
PrimitiveFilterImpl<UInt8Type>(values, filter, null_selection, out_arr).Exec();
break;
- case 16:
+ case 16:
PrimitiveFilterImpl<UInt16Type>(values, filter, null_selection, out_arr).Exec();
break;
- case 32:
+ case 32:
PrimitiveFilterImpl<UInt32Type>(values, filter, null_selection, out_arr).Exec();
break;
- case 64:
+ case 64:
PrimitiveFilterImpl<UInt64Type>(values, filter, null_selection, out_arr).Exec();
break;
- default:
- DCHECK(false) << "Invalid values bit width";
- break;
- }
+ default:
+ DCHECK(false) << "Invalid values bit width";
+ break;
+ }
return Status::OK();
-}
-
-// ----------------------------------------------------------------------
-// Optimized filter for base binary types (32-bit and 64-bit)
-
-#define BINARY_FILTER_SETUP_COMMON() \
- auto raw_offsets = \
- reinterpret_cast<const offset_type*>(values.buffers[1]->data()) + values.offset; \
- const uint8_t* raw_data = values.buffers[2]->data(); \
- \
- TypedBufferBuilder<offset_type> offset_builder(ctx->memory_pool()); \
- TypedBufferBuilder<uint8_t> data_builder(ctx->memory_pool()); \
- RETURN_NOT_OK(offset_builder.Reserve(output_length + 1)); \
- \
- /* Presize the data builder with a rough estimate */ \
- if (values.length > 0) { \
- const double mean_value_length = (raw_offsets[values.length] - raw_offsets[0]) / \
- static_cast<double>(values.length); \
- RETURN_NOT_OK( \
- data_builder.Reserve(static_cast<int64_t>(mean_value_length * output_length))); \
- } \
- int64_t space_available = data_builder.capacity(); \
- offset_type offset = 0;
-
-#define APPEND_RAW_DATA(DATA, NBYTES) \
- if (ARROW_PREDICT_FALSE(NBYTES > space_available)) { \
- RETURN_NOT_OK(data_builder.Reserve(NBYTES)); \
- space_available = data_builder.capacity() - data_builder.length(); \
- } \
- data_builder.UnsafeAppend(DATA, NBYTES); \
- space_available -= NBYTES
-
-#define APPEND_SINGLE_VALUE() \
- do { \
- offset_type val_size = raw_offsets[in_position + 1] - raw_offsets[in_position]; \
- APPEND_RAW_DATA(raw_data + raw_offsets[in_position], val_size); \
- offset += val_size; \
- } while (0)
-
-// Optimized binary filter for the case where neither values nor filter have
-// nulls
-template <typename Type>
-Status BinaryFilterNonNullImpl(KernelContext* ctx, const ArrayData& values,
- const ArrayData& filter, int64_t output_length,
- FilterOptions::NullSelectionBehavior null_selection,
- ArrayData* out) {
- using offset_type = typename Type::offset_type;
- const auto filter_data = filter.buffers[1]->data();
-
- BINARY_FILTER_SETUP_COMMON();
-
+}
+
+// ----------------------------------------------------------------------
+// Optimized filter for base binary types (32-bit and 64-bit)
+
+#define BINARY_FILTER_SETUP_COMMON() \
+ auto raw_offsets = \
+ reinterpret_cast<const offset_type*>(values.buffers[1]->data()) + values.offset; \
+ const uint8_t* raw_data = values.buffers[2]->data(); \
+ \
+ TypedBufferBuilder<offset_type> offset_builder(ctx->memory_pool()); \
+ TypedBufferBuilder<uint8_t> data_builder(ctx->memory_pool()); \
+ RETURN_NOT_OK(offset_builder.Reserve(output_length + 1)); \
+ \
+ /* Presize the data builder with a rough estimate */ \
+ if (values.length > 0) { \
+ const double mean_value_length = (raw_offsets[values.length] - raw_offsets[0]) / \
+ static_cast<double>(values.length); \
+ RETURN_NOT_OK( \
+ data_builder.Reserve(static_cast<int64_t>(mean_value_length * output_length))); \
+ } \
+ int64_t space_available = data_builder.capacity(); \
+ offset_type offset = 0;
+
+#define APPEND_RAW_DATA(DATA, NBYTES) \
+ if (ARROW_PREDICT_FALSE(NBYTES > space_available)) { \
+ RETURN_NOT_OK(data_builder.Reserve(NBYTES)); \
+ space_available = data_builder.capacity() - data_builder.length(); \
+ } \
+ data_builder.UnsafeAppend(DATA, NBYTES); \
+ space_available -= NBYTES
+
+#define APPEND_SINGLE_VALUE() \
+ do { \
+ offset_type val_size = raw_offsets[in_position + 1] - raw_offsets[in_position]; \
+ APPEND_RAW_DATA(raw_data + raw_offsets[in_position], val_size); \
+ offset += val_size; \
+ } while (0)
+
+// Optimized binary filter for the case where neither values nor filter have
+// nulls
+template <typename Type>
+Status BinaryFilterNonNullImpl(KernelContext* ctx, const ArrayData& values,
+ const ArrayData& filter, int64_t output_length,
+ FilterOptions::NullSelectionBehavior null_selection,
+ ArrayData* out) {
+ using offset_type = typename Type::offset_type;
+ const auto filter_data = filter.buffers[1]->data();
+
+ BINARY_FILTER_SETUP_COMMON();
+
RETURN_NOT_OK(arrow::internal::VisitSetBitRuns(
filter_data, filter.offset, filter.length, [&](int64_t position, int64_t length) {
- // Bulk-append raw data
+ // Bulk-append raw data
const offset_type run_data_bytes =
(raw_offsets[position + length] - raw_offsets[position]);
APPEND_RAW_DATA(raw_data + raw_offsets[position], run_data_bytes);
- // Append offsets
+ // Append offsets
offset_type cur_offset = raw_offsets[position];
for (int64_t i = 0; i < length; ++i) {
- offset_builder.UnsafeAppend(offset);
+ offset_builder.UnsafeAppend(offset);
offset += raw_offsets[i + position + 1] - cur_offset;
cur_offset = raw_offsets[i + position + 1];
- }
+ }
return Status::OK();
}));
- offset_builder.UnsafeAppend(offset);
- out->length = output_length;
- RETURN_NOT_OK(offset_builder.Finish(&out->buffers[1]));
- return data_builder.Finish(&out->buffers[2]);
-}
-
-template <typename Type>
-Status BinaryFilterImpl(KernelContext* ctx, const ArrayData& values,
- const ArrayData& filter, int64_t output_length,
- FilterOptions::NullSelectionBehavior null_selection,
- ArrayData* out) {
- using offset_type = typename Type::offset_type;
-
- const auto filter_data = filter.buffers[1]->data();
- const uint8_t* filter_is_valid = GetValidityBitmap(filter);
- const int64_t filter_offset = filter.offset;
-
- const uint8_t* values_is_valid = GetValidityBitmap(values);
- const int64_t values_offset = values.offset;
-
- uint8_t* out_is_valid = out->buffers[0]->mutable_data();
- // Zero bits and then only have to set valid values to true
- BitUtil::SetBitsTo(out_is_valid, 0, output_length, false);
-
- // We use 3 block counters for fast scanning of the filter
- //
- // * values_valid_counter: for values null/not-null
- // * filter_valid_counter: for filter null/not-null
- // * filter_counter: for filter true/false
- OptionalBitBlockCounter values_valid_counter(values_is_valid, values_offset,
- values.length);
- OptionalBitBlockCounter filter_valid_counter(filter_is_valid, filter_offset,
- filter.length);
- BitBlockCounter filter_counter(filter_data, filter_offset, filter.length);
-
- BINARY_FILTER_SETUP_COMMON();
-
+ offset_builder.UnsafeAppend(offset);
+ out->length = output_length;
+ RETURN_NOT_OK(offset_builder.Finish(&out->buffers[1]));
+ return data_builder.Finish(&out->buffers[2]);
+}
+
+template <typename Type>
+Status BinaryFilterImpl(KernelContext* ctx, const ArrayData& values,
+ const ArrayData& filter, int64_t output_length,
+ FilterOptions::NullSelectionBehavior null_selection,
+ ArrayData* out) {
+ using offset_type = typename Type::offset_type;
+
+ const auto filter_data = filter.buffers[1]->data();
+ const uint8_t* filter_is_valid = GetValidityBitmap(filter);
+ const int64_t filter_offset = filter.offset;
+
+ const uint8_t* values_is_valid = GetValidityBitmap(values);
+ const int64_t values_offset = values.offset;
+
+ uint8_t* out_is_valid = out->buffers[0]->mutable_data();
+ // Zero bits and then only have to set valid values to true
+ BitUtil::SetBitsTo(out_is_valid, 0, output_length, false);
+
+ // We use 3 block counters for fast scanning of the filter
+ //
+ // * values_valid_counter: for values null/not-null
+ // * filter_valid_counter: for filter null/not-null
+ // * filter_counter: for filter true/false
+ OptionalBitBlockCounter values_valid_counter(values_is_valid, values_offset,
+ values.length);
+ OptionalBitBlockCounter filter_valid_counter(filter_is_valid, filter_offset,
+ filter.length);
+ BitBlockCounter filter_counter(filter_data, filter_offset, filter.length);
+
+ BINARY_FILTER_SETUP_COMMON();
+
int64_t in_position = 0;
int64_t out_position = 0;
- while (in_position < filter.length) {
- BitBlockCount filter_valid_block = filter_valid_counter.NextWord();
- BitBlockCount values_valid_block = values_valid_counter.NextWord();
- BitBlockCount filter_block = filter_counter.NextWord();
- if (filter_block.NoneSet() && null_selection == FilterOptions::DROP) {
- // For this exceedingly common case in low-selectivity filters we can
- // skip further analysis of the data and move on to the next block.
- in_position += filter_block.length;
- } else if (filter_valid_block.AllSet()) {
- // Simpler path: no filter values are null
- if (filter_block.AllSet()) {
- // Fastest path: filter values are all true and not null
- if (values_valid_block.AllSet()) {
- // The values aren't null either
- BitUtil::SetBitsTo(out_is_valid, out_position, filter_block.length, true);
-
- // Bulk-append raw data
- offset_type block_data_bytes =
- (raw_offsets[in_position + filter_block.length] - raw_offsets[in_position]);
- APPEND_RAW_DATA(raw_data + raw_offsets[in_position], block_data_bytes);
- // Append offsets
- for (int64_t i = 0; i < filter_block.length; ++i, ++in_position) {
- offset_builder.UnsafeAppend(offset);
- offset += raw_offsets[in_position + 1] - raw_offsets[in_position];
- }
- out_position += filter_block.length;
- } else {
- // Some of the values in this block are null
- for (int64_t i = 0; i < filter_block.length;
- ++i, ++in_position, ++out_position) {
- offset_builder.UnsafeAppend(offset);
- if (BitUtil::GetBit(values_is_valid, values_offset + in_position)) {
- BitUtil::SetBit(out_is_valid, out_position);
- APPEND_SINGLE_VALUE();
- }
- }
- }
- } else { // !filter_block.AllSet()
- // Some of the filter values are false, but all not null
- if (values_valid_block.AllSet()) {
- // All the values are not-null, so we can skip null checking for
- // them
- for (int64_t i = 0; i < filter_block.length; ++i, ++in_position) {
- if (BitUtil::GetBit(filter_data, filter_offset + in_position)) {
- offset_builder.UnsafeAppend(offset);
- BitUtil::SetBit(out_is_valid, out_position++);
- APPEND_SINGLE_VALUE();
- }
- }
- } else {
- // Some of the values in the block are null, so we have to check
- // each one
- for (int64_t i = 0; i < filter_block.length; ++i, ++in_position) {
- if (BitUtil::GetBit(filter_data, filter_offset + in_position)) {
- offset_builder.UnsafeAppend(offset);
- if (BitUtil::GetBit(values_is_valid, values_offset + in_position)) {
- BitUtil::SetBit(out_is_valid, out_position);
- APPEND_SINGLE_VALUE();
- }
- ++out_position;
- }
- }
- }
- }
- } else { // !filter_valid_block.AllSet()
- // Some of the filter values are null, so we have to handle the DROP
- // versus EMIT_NULL null selection behavior.
- if (null_selection == FilterOptions::DROP) {
- // Filter null values are treated as false.
- if (values_valid_block.AllSet()) {
- for (int64_t i = 0; i < filter_block.length; ++i, ++in_position) {
- if (BitUtil::GetBit(filter_is_valid, filter_offset + in_position) &&
- BitUtil::GetBit(filter_data, filter_offset + in_position)) {
- offset_builder.UnsafeAppend(offset);
- BitUtil::SetBit(out_is_valid, out_position++);
- APPEND_SINGLE_VALUE();
- }
- }
- } else {
- for (int64_t i = 0; i < filter_block.length; ++i, ++in_position) {
- if (BitUtil::GetBit(filter_is_valid, filter_offset + in_position) &&
- BitUtil::GetBit(filter_data, filter_offset + in_position)) {
- offset_builder.UnsafeAppend(offset);
- if (BitUtil::GetBit(values_is_valid, values_offset + in_position)) {
- BitUtil::SetBit(out_is_valid, out_position);
- APPEND_SINGLE_VALUE();
- }
- ++out_position;
- }
- }
- }
- } else {
- // EMIT_NULL
-
- // Filter null values are appended to output as null whether the
- // value in the corresponding slot is valid or not
- if (values_valid_block.AllSet()) {
- for (int64_t i = 0; i < filter_block.length; ++i, ++in_position) {
- const bool filter_not_null =
- BitUtil::GetBit(filter_is_valid, filter_offset + in_position);
- if (filter_not_null &&
- BitUtil::GetBit(filter_data, filter_offset + in_position)) {
- offset_builder.UnsafeAppend(offset);
- BitUtil::SetBit(out_is_valid, out_position++);
- APPEND_SINGLE_VALUE();
- } else if (!filter_not_null) {
- offset_builder.UnsafeAppend(offset);
- ++out_position;
- }
- }
- } else {
- for (int64_t i = 0; i < filter_block.length; ++i, ++in_position) {
- const bool filter_not_null =
- BitUtil::GetBit(filter_is_valid, filter_offset + in_position);
- if (filter_not_null &&
- BitUtil::GetBit(filter_data, filter_offset + in_position)) {
- offset_builder.UnsafeAppend(offset);
- if (BitUtil::GetBit(values_is_valid, values_offset + in_position)) {
- BitUtil::SetBit(out_is_valid, out_position);
- APPEND_SINGLE_VALUE();
- }
- ++out_position;
- } else if (!filter_not_null) {
- offset_builder.UnsafeAppend(offset);
- ++out_position;
- }
- }
- }
- }
- }
- }
- offset_builder.UnsafeAppend(offset);
- out->length = output_length;
- RETURN_NOT_OK(offset_builder.Finish(&out->buffers[1]));
- return data_builder.Finish(&out->buffers[2]);
-}
-
-#undef BINARY_FILTER_SETUP_COMMON
-#undef APPEND_RAW_DATA
-#undef APPEND_SINGLE_VALUE
-
+ while (in_position < filter.length) {
+ BitBlockCount filter_valid_block = filter_valid_counter.NextWord();
+ BitBlockCount values_valid_block = values_valid_counter.NextWord();
+ BitBlockCount filter_block = filter_counter.NextWord();
+ if (filter_block.NoneSet() && null_selection == FilterOptions::DROP) {
+ // For this exceedingly common case in low-selectivity filters we can
+ // skip further analysis of the data and move on to the next block.
+ in_position += filter_block.length;
+ } else if (filter_valid_block.AllSet()) {
+ // Simpler path: no filter values are null
+ if (filter_block.AllSet()) {
+ // Fastest path: filter values are all true and not null
+ if (values_valid_block.AllSet()) {
+ // The values aren't null either
+ BitUtil::SetBitsTo(out_is_valid, out_position, filter_block.length, true);
+
+ // Bulk-append raw data
+ offset_type block_data_bytes =
+ (raw_offsets[in_position + filter_block.length] - raw_offsets[in_position]);
+ APPEND_RAW_DATA(raw_data + raw_offsets[in_position], block_data_bytes);
+ // Append offsets
+ for (int64_t i = 0; i < filter_block.length; ++i, ++in_position) {
+ offset_builder.UnsafeAppend(offset);
+ offset += raw_offsets[in_position + 1] - raw_offsets[in_position];
+ }
+ out_position += filter_block.length;
+ } else {
+ // Some of the values in this block are null
+ for (int64_t i = 0; i < filter_block.length;
+ ++i, ++in_position, ++out_position) {
+ offset_builder.UnsafeAppend(offset);
+ if (BitUtil::GetBit(values_is_valid, values_offset + in_position)) {
+ BitUtil::SetBit(out_is_valid, out_position);
+ APPEND_SINGLE_VALUE();
+ }
+ }
+ }
+ } else { // !filter_block.AllSet()
+ // Some of the filter values are false, but all not null
+ if (values_valid_block.AllSet()) {
+ // All the values are not-null, so we can skip null checking for
+ // them
+ for (int64_t i = 0; i < filter_block.length; ++i, ++in_position) {
+ if (BitUtil::GetBit(filter_data, filter_offset + in_position)) {
+ offset_builder.UnsafeAppend(offset);
+ BitUtil::SetBit(out_is_valid, out_position++);
+ APPEND_SINGLE_VALUE();
+ }
+ }
+ } else {
+ // Some of the values in the block are null, so we have to check
+ // each one
+ for (int64_t i = 0; i < filter_block.length; ++i, ++in_position) {
+ if (BitUtil::GetBit(filter_data, filter_offset + in_position)) {
+ offset_builder.UnsafeAppend(offset);
+ if (BitUtil::GetBit(values_is_valid, values_offset + in_position)) {
+ BitUtil::SetBit(out_is_valid, out_position);
+ APPEND_SINGLE_VALUE();
+ }
+ ++out_position;
+ }
+ }
+ }
+ }
+ } else { // !filter_valid_block.AllSet()
+ // Some of the filter values are null, so we have to handle the DROP
+ // versus EMIT_NULL null selection behavior.
+ if (null_selection == FilterOptions::DROP) {
+ // Filter null values are treated as false.
+ if (values_valid_block.AllSet()) {
+ for (int64_t i = 0; i < filter_block.length; ++i, ++in_position) {
+ if (BitUtil::GetBit(filter_is_valid, filter_offset + in_position) &&
+ BitUtil::GetBit(filter_data, filter_offset + in_position)) {
+ offset_builder.UnsafeAppend(offset);
+ BitUtil::SetBit(out_is_valid, out_position++);
+ APPEND_SINGLE_VALUE();
+ }
+ }
+ } else {
+ for (int64_t i = 0; i < filter_block.length; ++i, ++in_position) {
+ if (BitUtil::GetBit(filter_is_valid, filter_offset + in_position) &&
+ BitUtil::GetBit(filter_data, filter_offset + in_position)) {
+ offset_builder.UnsafeAppend(offset);
+ if (BitUtil::GetBit(values_is_valid, values_offset + in_position)) {
+ BitUtil::SetBit(out_is_valid, out_position);
+ APPEND_SINGLE_VALUE();
+ }
+ ++out_position;
+ }
+ }
+ }
+ } else {
+ // EMIT_NULL
+
+ // Filter null values are appended to output as null whether the
+ // value in the corresponding slot is valid or not
+ if (values_valid_block.AllSet()) {
+ for (int64_t i = 0; i < filter_block.length; ++i, ++in_position) {
+ const bool filter_not_null =
+ BitUtil::GetBit(filter_is_valid, filter_offset + in_position);
+ if (filter_not_null &&
+ BitUtil::GetBit(filter_data, filter_offset + in_position)) {
+ offset_builder.UnsafeAppend(offset);
+ BitUtil::SetBit(out_is_valid, out_position++);
+ APPEND_SINGLE_VALUE();
+ } else if (!filter_not_null) {
+ offset_builder.UnsafeAppend(offset);
+ ++out_position;
+ }
+ }
+ } else {
+ for (int64_t i = 0; i < filter_block.length; ++i, ++in_position) {
+ const bool filter_not_null =
+ BitUtil::GetBit(filter_is_valid, filter_offset + in_position);
+ if (filter_not_null &&
+ BitUtil::GetBit(filter_data, filter_offset + in_position)) {
+ offset_builder.UnsafeAppend(offset);
+ if (BitUtil::GetBit(values_is_valid, values_offset + in_position)) {
+ BitUtil::SetBit(out_is_valid, out_position);
+ APPEND_SINGLE_VALUE();
+ }
+ ++out_position;
+ } else if (!filter_not_null) {
+ offset_builder.UnsafeAppend(offset);
+ ++out_position;
+ }
+ }
+ }
+ }
+ }
+ }
+ offset_builder.UnsafeAppend(offset);
+ out->length = output_length;
+ RETURN_NOT_OK(offset_builder.Finish(&out->buffers[1]));
+ return data_builder.Finish(&out->buffers[2]);
+}
+
+#undef BINARY_FILTER_SETUP_COMMON
+#undef APPEND_RAW_DATA
+#undef APPEND_SINGLE_VALUE
+
Status BinaryFilter(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- FilterOptions::NullSelectionBehavior null_selection =
- FilterState::Get(ctx).null_selection_behavior;
-
- const ArrayData& values = *batch[0].array();
- const ArrayData& filter = *batch[1].array();
- int64_t output_length = GetFilterOutputSize(filter, null_selection);
- ArrayData* out_arr = out->mutable_array();
-
- // The output precomputed null count is unknown except in the narrow
- // condition that all the values are non-null and the filter will not cause
- // any new nulls to be created.
- if (values.null_count == 0 &&
- (null_selection == FilterOptions::DROP || filter.null_count == 0)) {
- out_arr->null_count = 0;
- } else {
- out_arr->null_count = kUnknownNullCount;
- }
- Type::type type_id = values.type->id();
- if (values.null_count == 0 && filter.null_count == 0) {
- // Faster no-nulls case
- if (is_binary_like(type_id)) {
+ FilterOptions::NullSelectionBehavior null_selection =
+ FilterState::Get(ctx).null_selection_behavior;
+
+ const ArrayData& values = *batch[0].array();
+ const ArrayData& filter = *batch[1].array();
+ int64_t output_length = GetFilterOutputSize(filter, null_selection);
+ ArrayData* out_arr = out->mutable_array();
+
+ // The output precomputed null count is unknown except in the narrow
+ // condition that all the values are non-null and the filter will not cause
+ // any new nulls to be created.
+ if (values.null_count == 0 &&
+ (null_selection == FilterOptions::DROP || filter.null_count == 0)) {
+ out_arr->null_count = 0;
+ } else {
+ out_arr->null_count = kUnknownNullCount;
+ }
+ Type::type type_id = values.type->id();
+ if (values.null_count == 0 && filter.null_count == 0) {
+ // Faster no-nulls case
+ if (is_binary_like(type_id)) {
RETURN_NOT_OK(BinaryFilterNonNullImpl<BinaryType>(
ctx, values, filter, output_length, null_selection, out_arr));
- } else if (is_large_binary_like(type_id)) {
+ } else if (is_large_binary_like(type_id)) {
RETURN_NOT_OK(BinaryFilterNonNullImpl<LargeBinaryType>(
ctx, values, filter, output_length, null_selection, out_arr));
- } else {
- DCHECK(false);
- }
- } else {
- // Output may have nulls
+ } else {
+ DCHECK(false);
+ }
+ } else {
+ // Output may have nulls
RETURN_NOT_OK(ctx->AllocateBitmap(output_length).Value(&out_arr->buffers[0]));
- if (is_binary_like(type_id)) {
+ if (is_binary_like(type_id)) {
RETURN_NOT_OK(BinaryFilterImpl<BinaryType>(ctx, values, filter, output_length,
null_selection, out_arr));
- } else if (is_large_binary_like(type_id)) {
+ } else if (is_large_binary_like(type_id)) {
RETURN_NOT_OK(BinaryFilterImpl<LargeBinaryType>(ctx, values, filter, output_length,
null_selection, out_arr));
- } else {
- DCHECK(false);
- }
- }
+ } else {
+ DCHECK(false);
+ }
+ }
return Status::OK();
-}
-
-// ----------------------------------------------------------------------
-// Null take and filter
-
+}
+
+// ----------------------------------------------------------------------
+// Null take and filter
+
Status NullTake(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- if (TakeState::Get(ctx).boundscheck) {
+ if (TakeState::Get(ctx).boundscheck) {
RETURN_NOT_OK(CheckIndexBounds(*batch[1].array(), batch[0].length()));
- }
- // batch.length doesn't take into account the take indices
- auto new_length = batch[1].array()->length;
- out->value = std::make_shared<NullArray>(new_length)->data();
+ }
+ // batch.length doesn't take into account the take indices
+ auto new_length = batch[1].array()->length;
+ out->value = std::make_shared<NullArray>(new_length)->data();
return Status::OK();
-}
-
+}
+
Status NullFilter(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- int64_t output_length = GetFilterOutputSize(
- *batch[1].array(), FilterState::Get(ctx).null_selection_behavior);
- out->value = std::make_shared<NullArray>(output_length)->data();
+ int64_t output_length = GetFilterOutputSize(
+ *batch[1].array(), FilterState::Get(ctx).null_selection_behavior);
+ out->value = std::make_shared<NullArray>(output_length)->data();
return Status::OK();
-}
-
-// ----------------------------------------------------------------------
-// Dictionary take and filter
-
+}
+
+// ----------------------------------------------------------------------
+// Dictionary take and filter
+
Status DictionaryTake(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- DictionaryArray values(batch[0].array());
- Datum result;
+ DictionaryArray values(batch[0].array());
+ Datum result;
RETURN_NOT_OK(
Take(Datum(values.indices()), batch[1], TakeState::Get(ctx), ctx->exec_context())
.Value(&result));
- DictionaryArray taken_values(values.type(), result.make_array(), values.dictionary());
- out->value = taken_values.data();
+ DictionaryArray taken_values(values.type(), result.make_array(), values.dictionary());
+ out->value = taken_values.data();
return Status::OK();
-}
-
+}
+
Status DictionaryFilter(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- DictionaryArray dict_values(batch[0].array());
- Datum result;
+ DictionaryArray dict_values(batch[0].array());
+ Datum result;
RETURN_NOT_OK(Filter(Datum(dict_values.indices()), batch[1].array(),
FilterState::Get(ctx), ctx->exec_context())
.Value(&result));
- DictionaryArray filtered_values(dict_values.type(), result.make_array(),
- dict_values.dictionary());
- out->value = filtered_values.data();
+ DictionaryArray filtered_values(dict_values.type(), result.make_array(),
+ dict_values.dictionary());
+ out->value = filtered_values.data();
return Status::OK();
-}
-
-// ----------------------------------------------------------------------
-// Extension take and filter
-
+}
+
+// ----------------------------------------------------------------------
+// Extension take and filter
+
Status ExtensionTake(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- ExtensionArray values(batch[0].array());
- Datum result;
+ ExtensionArray values(batch[0].array());
+ Datum result;
RETURN_NOT_OK(
Take(Datum(values.storage()), batch[1], TakeState::Get(ctx), ctx->exec_context())
.Value(&result));
- ExtensionArray taken_values(values.type(), result.make_array());
- out->value = taken_values.data();
+ ExtensionArray taken_values(values.type(), result.make_array());
+ out->value = taken_values.data();
return Status::OK();
-}
-
+}
+
Status ExtensionFilter(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- ExtensionArray ext_values(batch[0].array());
- Datum result;
+ ExtensionArray ext_values(batch[0].array());
+ Datum result;
RETURN_NOT_OK(Filter(Datum(ext_values.storage()), batch[1].array(),
FilterState::Get(ctx), ctx->exec_context())
.Value(&result));
- ExtensionArray filtered_values(ext_values.type(), result.make_array());
- out->value = filtered_values.data();
+ ExtensionArray filtered_values(ext_values.type(), result.make_array());
+ out->value = filtered_values.data();
return Status::OK();
-}
-
-// ----------------------------------------------------------------------
-// Implement take for other data types where there is less performance
-// sensitivity by visiting the selected indices.
-
-// Use CRTP to dispatch to type-specific processing of take indices for each
-// unsigned integer type.
-template <typename Impl, typename Type>
-struct Selection {
- using ValuesArrayType = typename TypeTraits<Type>::ArrayType;
-
- // Forwards the generic value visitors to the take index visitor template
- template <typename IndexCType>
- struct TakeAdapter {
- static constexpr bool is_take = true;
-
- Impl* impl;
- explicit TakeAdapter(Impl* impl) : impl(impl) {}
- template <typename ValidVisitor, typename NullVisitor>
- Status Generate(ValidVisitor&& visit_valid, NullVisitor&& visit_null) {
- return impl->template VisitTake<IndexCType>(std::forward<ValidVisitor>(visit_valid),
- std::forward<NullVisitor>(visit_null));
- }
- };
-
- // Forwards the generic value visitors to the VisitFilter template
- struct FilterAdapter {
- static constexpr bool is_take = false;
-
- Impl* impl;
- explicit FilterAdapter(Impl* impl) : impl(impl) {}
- template <typename ValidVisitor, typename NullVisitor>
- Status Generate(ValidVisitor&& visit_valid, NullVisitor&& visit_null) {
- return impl->VisitFilter(std::forward<ValidVisitor>(visit_valid),
- std::forward<NullVisitor>(visit_null));
- }
- };
-
- KernelContext* ctx;
- std::shared_ptr<ArrayData> values;
- std::shared_ptr<ArrayData> selection;
- int64_t output_length;
- ArrayData* out;
- TypedBufferBuilder<bool> validity_builder;
-
- Selection(KernelContext* ctx, const ExecBatch& batch, int64_t output_length, Datum* out)
- : ctx(ctx),
- values(batch[0].array()),
- selection(batch[1].array()),
- output_length(output_length),
- out(out->mutable_array()),
- validity_builder(ctx->memory_pool()) {}
-
- virtual ~Selection() = default;
-
- Status FinishCommon() {
- out->buffers.resize(values->buffers.size());
- out->length = validity_builder.length();
- out->null_count = validity_builder.false_count();
- return validity_builder.Finish(&out->buffers[0]);
- }
-
- template <typename IndexCType, typename ValidVisitor, typename NullVisitor>
- Status VisitTake(ValidVisitor&& visit_valid, NullVisitor&& visit_null) {
- const auto indices_values = selection->GetValues<IndexCType>(1);
- const uint8_t* is_valid = GetValidityBitmap(*selection);
- OptionalBitIndexer indices_is_valid(selection->buffers[0], selection->offset);
- OptionalBitIndexer values_is_valid(values->buffers[0], values->offset);
-
- const bool values_have_nulls = values->MayHaveNulls();
- OptionalBitBlockCounter bit_counter(is_valid, selection->offset, selection->length);
- int64_t position = 0;
- while (position < selection->length) {
- BitBlockCount block = bit_counter.NextBlock();
- const bool indices_have_nulls = block.popcount < block.length;
- if (!indices_have_nulls && !values_have_nulls) {
- // Fastest path, neither indices nor values have nulls
- validity_builder.UnsafeAppend(block.length, true);
- for (int64_t i = 0; i < block.length; ++i) {
- RETURN_NOT_OK(visit_valid(indices_values[position++]));
- }
- } else if (block.popcount > 0) {
- // Since we have to branch on whether the indices are null or not, we
- // combine the "non-null indices block but some values null" and
- // "some-null indices block but values non-null" into a single loop.
- for (int64_t i = 0; i < block.length; ++i) {
- if ((!indices_have_nulls || indices_is_valid[position]) &&
- values_is_valid[indices_values[position]]) {
- validity_builder.UnsafeAppend(true);
- RETURN_NOT_OK(visit_valid(indices_values[position]));
- } else {
- validity_builder.UnsafeAppend(false);
- RETURN_NOT_OK(visit_null());
- }
- ++position;
- }
- } else {
- // The whole block is null
- validity_builder.UnsafeAppend(block.length, false);
- for (int64_t i = 0; i < block.length; ++i) {
- RETURN_NOT_OK(visit_null());
- }
- position += block.length;
- }
- }
- return Status::OK();
- }
-
- // We use the NullVisitor both for "selected" nulls as well as "emitted"
- // nulls coming from the filter when using FilterOptions::EMIT_NULL
- template <typename ValidVisitor, typename NullVisitor>
- Status VisitFilter(ValidVisitor&& visit_valid, NullVisitor&& visit_null) {
- auto null_selection = FilterState::Get(ctx).null_selection_behavior;
-
- const auto filter_data = selection->buffers[1]->data();
-
- const uint8_t* filter_is_valid = GetValidityBitmap(*selection);
- const int64_t filter_offset = selection->offset;
- OptionalBitIndexer values_is_valid(values->buffers[0], values->offset);
-
- // We use 3 block counters for fast scanning of the filter
- //
- // * values_valid_counter: for values null/not-null
- // * filter_valid_counter: for filter null/not-null
- // * filter_counter: for filter true/false
- OptionalBitBlockCounter values_valid_counter(GetValidityBitmap(*values),
- values->offset, values->length);
- OptionalBitBlockCounter filter_valid_counter(filter_is_valid, filter_offset,
- selection->length);
- BitBlockCounter filter_counter(filter_data, filter_offset, selection->length);
- int64_t in_position = 0;
-
- auto AppendNotNull = [&](int64_t index) -> Status {
- validity_builder.UnsafeAppend(true);
- return visit_valid(index);
- };
-
- auto AppendNull = [&]() -> Status {
- validity_builder.UnsafeAppend(false);
- return visit_null();
- };
-
- auto AppendMaybeNull = [&](int64_t index) -> Status {
- if (values_is_valid[index]) {
- return AppendNotNull(index);
- } else {
- return AppendNull();
- }
- };
-
- while (in_position < selection->length) {
- BitBlockCount filter_valid_block = filter_valid_counter.NextWord();
- BitBlockCount values_valid_block = values_valid_counter.NextWord();
- BitBlockCount filter_block = filter_counter.NextWord();
- if (filter_block.NoneSet() && null_selection == FilterOptions::DROP) {
- // For this exceedingly common case in low-selectivity filters we can
- // skip further analysis of the data and move on to the next block.
- in_position += filter_block.length;
- } else if (filter_valid_block.AllSet()) {
- // Simpler path: no filter values are null
- if (filter_block.AllSet()) {
- // Fastest path: filter values are all true and not null
- if (values_valid_block.AllSet()) {
- // The values aren't null either
- validity_builder.UnsafeAppend(filter_block.length, true);
- for (int64_t i = 0; i < filter_block.length; ++i) {
- RETURN_NOT_OK(visit_valid(in_position++));
- }
- } else {
- // Some of the values in this block are null
- for (int64_t i = 0; i < filter_block.length; ++i) {
- RETURN_NOT_OK(AppendMaybeNull(in_position++));
- }
- }
- } else { // !filter_block.AllSet()
- // Some of the filter values are false, but all not null
- if (values_valid_block.AllSet()) {
- // All the values are not-null, so we can skip null checking for
- // them
- for (int64_t i = 0; i < filter_block.length; ++i) {
- if (BitUtil::GetBit(filter_data, filter_offset + in_position)) {
- RETURN_NOT_OK(AppendNotNull(in_position));
- }
- ++in_position;
- }
- } else {
- // Some of the values in the block are null, so we have to check
- // each one
- for (int64_t i = 0; i < filter_block.length; ++i) {
- if (BitUtil::GetBit(filter_data, filter_offset + in_position)) {
- RETURN_NOT_OK(AppendMaybeNull(in_position));
- }
- ++in_position;
- }
- }
- }
- } else { // !filter_valid_block.AllSet()
- // Some of the filter values are null, so we have to handle the DROP
- // versus EMIT_NULL null selection behavior.
- if (null_selection == FilterOptions::DROP) {
- // Filter null values are treated as false.
- for (int64_t i = 0; i < filter_block.length; ++i) {
- if (BitUtil::GetBit(filter_is_valid, filter_offset + in_position) &&
- BitUtil::GetBit(filter_data, filter_offset + in_position)) {
- RETURN_NOT_OK(AppendMaybeNull(in_position));
- }
- ++in_position;
- }
- } else {
- // Filter null values are appended to output as null whether the
- // value in the corresponding slot is valid or not
- for (int64_t i = 0; i < filter_block.length; ++i) {
- const bool filter_not_null =
- BitUtil::GetBit(filter_is_valid, filter_offset + in_position);
- if (filter_not_null &&
- BitUtil::GetBit(filter_data, filter_offset + in_position)) {
- RETURN_NOT_OK(AppendMaybeNull(in_position));
- } else if (!filter_not_null) {
- // EMIT_NULL case
- RETURN_NOT_OK(AppendNull());
- }
- ++in_position;
- }
- }
- }
- }
- return Status::OK();
- }
-
- virtual Status Init() { return Status::OK(); }
-
- // Implementation specific finish logic
- virtual Status Finish() = 0;
-
- Status ExecTake() {
- RETURN_NOT_OK(this->validity_builder.Reserve(output_length));
- RETURN_NOT_OK(Init());
- int index_width = GetByteWidth(*this->selection->type);
-
- // CTRP dispatch here
- switch (index_width) {
- case 1: {
- Status s =
- static_cast<Impl*>(this)->template GenerateOutput<TakeAdapter<uint8_t>>();
- RETURN_NOT_OK(s);
- } break;
- case 2: {
- Status s =
- static_cast<Impl*>(this)->template GenerateOutput<TakeAdapter<uint16_t>>();
- RETURN_NOT_OK(s);
- } break;
- case 4: {
- Status s =
- static_cast<Impl*>(this)->template GenerateOutput<TakeAdapter<uint32_t>>();
- RETURN_NOT_OK(s);
- } break;
- case 8: {
- Status s =
- static_cast<Impl*>(this)->template GenerateOutput<TakeAdapter<uint64_t>>();
- RETURN_NOT_OK(s);
- } break;
- default:
- DCHECK(false) << "Invalid index width";
- break;
- }
- RETURN_NOT_OK(this->FinishCommon());
- return Finish();
- }
-
- Status ExecFilter() {
- RETURN_NOT_OK(this->validity_builder.Reserve(output_length));
- RETURN_NOT_OK(Init());
- // CRTP dispatch
- Status s = static_cast<Impl*>(this)->template GenerateOutput<FilterAdapter>();
- RETURN_NOT_OK(s);
- RETURN_NOT_OK(this->FinishCommon());
- return Finish();
- }
-};
-
-#define LIFT_BASE_MEMBERS() \
- using ValuesArrayType = typename Base::ValuesArrayType; \
- using Base::ctx; \
- using Base::values; \
- using Base::selection; \
- using Base::output_length; \
- using Base::out; \
- using Base::validity_builder
-
-static inline Status VisitNoop() { return Status::OK(); }
-
-// A selection implementation for 32-bit and 64-bit variable binary
-// types. Common generated kernels are shared between Binary/String and
-// LargeBinary/LargeString
-template <typename Type>
-struct VarBinaryImpl : public Selection<VarBinaryImpl<Type>, Type> {
- using offset_type = typename Type::offset_type;
-
- using Base = Selection<VarBinaryImpl<Type>, Type>;
- LIFT_BASE_MEMBERS();
-
- std::shared_ptr<ArrayData> values_as_binary;
- TypedBufferBuilder<offset_type> offset_builder;
- TypedBufferBuilder<uint8_t> data_builder;
-
- static constexpr int64_t kOffsetLimit = std::numeric_limits<offset_type>::max() - 1;
-
- VarBinaryImpl(KernelContext* ctx, const ExecBatch& batch, int64_t output_length,
- Datum* out)
- : Base(ctx, batch, output_length, out),
- offset_builder(ctx->memory_pool()),
- data_builder(ctx->memory_pool()) {}
-
- template <typename Adapter>
- Status GenerateOutput() {
- ValuesArrayType typed_values(this->values_as_binary);
-
- // Presize the data builder with a rough estimate of the required data size
- if (values->length > 0) {
- const double mean_value_length =
- (typed_values.total_values_length() / static_cast<double>(values->length));
-
- // TODO: See if possible to reduce output_length for take/filter cases
- // where there are nulls in the selection array
- RETURN_NOT_OK(
- data_builder.Reserve(static_cast<int64_t>(mean_value_length * output_length)));
- }
- int64_t space_available = data_builder.capacity();
-
- const offset_type* raw_offsets = typed_values.raw_value_offsets();
- const uint8_t* raw_data = typed_values.raw_data();
-
- offset_type offset = 0;
- Adapter adapter(this);
- RETURN_NOT_OK(adapter.Generate(
- [&](int64_t index) {
- offset_builder.UnsafeAppend(offset);
- offset_type val_offset = raw_offsets[index];
- offset_type val_size = raw_offsets[index + 1] - val_offset;
-
- // Use static property to prune this code from the filter path in
- // optimized builds
- if (Adapter::is_take &&
- ARROW_PREDICT_FALSE(static_cast<int64_t>(offset) +
- static_cast<int64_t>(val_size)) > kOffsetLimit) {
- return Status::Invalid("Take operation overflowed binary array capacity");
- }
- offset += val_size;
- if (ARROW_PREDICT_FALSE(val_size > space_available)) {
- RETURN_NOT_OK(data_builder.Reserve(val_size));
- space_available = data_builder.capacity() - data_builder.length();
- }
- data_builder.UnsafeAppend(raw_data + val_offset, val_size);
- space_available -= val_size;
- return Status::OK();
- },
- [&]() {
- offset_builder.UnsafeAppend(offset);
- return Status::OK();
- }));
- offset_builder.UnsafeAppend(offset);
- return Status::OK();
- }
-
- Status Init() override {
- ARROW_ASSIGN_OR_RAISE(this->values_as_binary,
- GetArrayView(this->values, TypeTraits<Type>::type_singleton()));
- return offset_builder.Reserve(output_length + 1);
- }
-
- Status Finish() override {
- RETURN_NOT_OK(offset_builder.Finish(&out->buffers[1]));
- return data_builder.Finish(&out->buffers[2]);
- }
-};
-
-struct FSBImpl : public Selection<FSBImpl, FixedSizeBinaryType> {
- using Base = Selection<FSBImpl, FixedSizeBinaryType>;
- LIFT_BASE_MEMBERS();
-
- TypedBufferBuilder<uint8_t> data_builder;
-
- FSBImpl(KernelContext* ctx, const ExecBatch& batch, int64_t output_length, Datum* out)
- : Base(ctx, batch, output_length, out), data_builder(ctx->memory_pool()) {}
-
- template <typename Adapter>
- Status GenerateOutput() {
- FixedSizeBinaryArray typed_values(this->values);
- int32_t value_size = typed_values.byte_width();
-
- RETURN_NOT_OK(data_builder.Reserve(value_size * output_length));
- Adapter adapter(this);
- return adapter.Generate(
- [&](int64_t index) {
- auto val = typed_values.GetView(index);
- data_builder.UnsafeAppend(reinterpret_cast<const uint8_t*>(val.data()),
- value_size);
- return Status::OK();
- },
- [&]() {
- data_builder.UnsafeAppend(value_size, static_cast<uint8_t>(0x00));
- return Status::OK();
- });
- }
-
- Status Finish() override { return data_builder.Finish(&out->buffers[1]); }
-};
-
-template <typename Type>
-struct ListImpl : public Selection<ListImpl<Type>, Type> {
- using offset_type = typename Type::offset_type;
-
- using Base = Selection<ListImpl<Type>, Type>;
- LIFT_BASE_MEMBERS();
-
- TypedBufferBuilder<offset_type> offset_builder;
- typename TypeTraits<Type>::OffsetBuilderType child_index_builder;
-
- ListImpl(KernelContext* ctx, const ExecBatch& batch, int64_t output_length, Datum* out)
- : Base(ctx, batch, output_length, out),
- offset_builder(ctx->memory_pool()),
- child_index_builder(ctx->memory_pool()) {}
-
- template <typename Adapter>
- Status GenerateOutput() {
- ValuesArrayType typed_values(this->values);
-
- // TODO presize child_index_builder with a similar heuristic as VarBinaryImpl
-
- offset_type offset = 0;
- Adapter adapter(this);
- RETURN_NOT_OK(adapter.Generate(
- [&](int64_t index) {
- offset_builder.UnsafeAppend(offset);
- offset_type value_offset = typed_values.value_offset(index);
- offset_type value_length = typed_values.value_length(index);
- offset += value_length;
- RETURN_NOT_OK(child_index_builder.Reserve(value_length));
- for (offset_type j = value_offset; j < value_offset + value_length; ++j) {
- child_index_builder.UnsafeAppend(j);
- }
- return Status::OK();
- },
- [&]() {
- offset_builder.UnsafeAppend(offset);
- return Status::OK();
- }));
- offset_builder.UnsafeAppend(offset);
- return Status::OK();
- }
-
- Status Init() override {
- RETURN_NOT_OK(offset_builder.Reserve(output_length + 1));
- return Status::OK();
- }
-
- Status Finish() override {
- std::shared_ptr<Array> child_indices;
- RETURN_NOT_OK(child_index_builder.Finish(&child_indices));
-
- ValuesArrayType typed_values(this->values);
-
- // No need to boundscheck the child values indices
- ARROW_ASSIGN_OR_RAISE(std::shared_ptr<Array> taken_child,
- Take(*typed_values.values(), *child_indices,
- TakeOptions::NoBoundsCheck(), ctx->exec_context()));
- RETURN_NOT_OK(offset_builder.Finish(&out->buffers[1]));
- out->child_data = {taken_child->data()};
- return Status::OK();
- }
-};
-
+}
+
+// ----------------------------------------------------------------------
+// Implement take for other data types where there is less performance
+// sensitivity by visiting the selected indices.
+
+// Use CRTP to dispatch to type-specific processing of take indices for each
+// unsigned integer type.
+template <typename Impl, typename Type>
+struct Selection {
+ using ValuesArrayType = typename TypeTraits<Type>::ArrayType;
+
+ // Forwards the generic value visitors to the take index visitor template
+ template <typename IndexCType>
+ struct TakeAdapter {
+ static constexpr bool is_take = true;
+
+ Impl* impl;
+ explicit TakeAdapter(Impl* impl) : impl(impl) {}
+ template <typename ValidVisitor, typename NullVisitor>
+ Status Generate(ValidVisitor&& visit_valid, NullVisitor&& visit_null) {
+ return impl->template VisitTake<IndexCType>(std::forward<ValidVisitor>(visit_valid),
+ std::forward<NullVisitor>(visit_null));
+ }
+ };
+
+ // Forwards the generic value visitors to the VisitFilter template
+ struct FilterAdapter {
+ static constexpr bool is_take = false;
+
+ Impl* impl;
+ explicit FilterAdapter(Impl* impl) : impl(impl) {}
+ template <typename ValidVisitor, typename NullVisitor>
+ Status Generate(ValidVisitor&& visit_valid, NullVisitor&& visit_null) {
+ return impl->VisitFilter(std::forward<ValidVisitor>(visit_valid),
+ std::forward<NullVisitor>(visit_null));
+ }
+ };
+
+ KernelContext* ctx;
+ std::shared_ptr<ArrayData> values;
+ std::shared_ptr<ArrayData> selection;
+ int64_t output_length;
+ ArrayData* out;
+ TypedBufferBuilder<bool> validity_builder;
+
+ Selection(KernelContext* ctx, const ExecBatch& batch, int64_t output_length, Datum* out)
+ : ctx(ctx),
+ values(batch[0].array()),
+ selection(batch[1].array()),
+ output_length(output_length),
+ out(out->mutable_array()),
+ validity_builder(ctx->memory_pool()) {}
+
+ virtual ~Selection() = default;
+
+ Status FinishCommon() {
+ out->buffers.resize(values->buffers.size());
+ out->length = validity_builder.length();
+ out->null_count = validity_builder.false_count();
+ return validity_builder.Finish(&out->buffers[0]);
+ }
+
+ template <typename IndexCType, typename ValidVisitor, typename NullVisitor>
+ Status VisitTake(ValidVisitor&& visit_valid, NullVisitor&& visit_null) {
+ const auto indices_values = selection->GetValues<IndexCType>(1);
+ const uint8_t* is_valid = GetValidityBitmap(*selection);
+ OptionalBitIndexer indices_is_valid(selection->buffers[0], selection->offset);
+ OptionalBitIndexer values_is_valid(values->buffers[0], values->offset);
+
+ const bool values_have_nulls = values->MayHaveNulls();
+ OptionalBitBlockCounter bit_counter(is_valid, selection->offset, selection->length);
+ int64_t position = 0;
+ while (position < selection->length) {
+ BitBlockCount block = bit_counter.NextBlock();
+ const bool indices_have_nulls = block.popcount < block.length;
+ if (!indices_have_nulls && !values_have_nulls) {
+ // Fastest path, neither indices nor values have nulls
+ validity_builder.UnsafeAppend(block.length, true);
+ for (int64_t i = 0; i < block.length; ++i) {
+ RETURN_NOT_OK(visit_valid(indices_values[position++]));
+ }
+ } else if (block.popcount > 0) {
+ // Since we have to branch on whether the indices are null or not, we
+ // combine the "non-null indices block but some values null" and
+ // "some-null indices block but values non-null" into a single loop.
+ for (int64_t i = 0; i < block.length; ++i) {
+ if ((!indices_have_nulls || indices_is_valid[position]) &&
+ values_is_valid[indices_values[position]]) {
+ validity_builder.UnsafeAppend(true);
+ RETURN_NOT_OK(visit_valid(indices_values[position]));
+ } else {
+ validity_builder.UnsafeAppend(false);
+ RETURN_NOT_OK(visit_null());
+ }
+ ++position;
+ }
+ } else {
+ // The whole block is null
+ validity_builder.UnsafeAppend(block.length, false);
+ for (int64_t i = 0; i < block.length; ++i) {
+ RETURN_NOT_OK(visit_null());
+ }
+ position += block.length;
+ }
+ }
+ return Status::OK();
+ }
+
+ // We use the NullVisitor both for "selected" nulls as well as "emitted"
+ // nulls coming from the filter when using FilterOptions::EMIT_NULL
+ template <typename ValidVisitor, typename NullVisitor>
+ Status VisitFilter(ValidVisitor&& visit_valid, NullVisitor&& visit_null) {
+ auto null_selection = FilterState::Get(ctx).null_selection_behavior;
+
+ const auto filter_data = selection->buffers[1]->data();
+
+ const uint8_t* filter_is_valid = GetValidityBitmap(*selection);
+ const int64_t filter_offset = selection->offset;
+ OptionalBitIndexer values_is_valid(values->buffers[0], values->offset);
+
+ // We use 3 block counters for fast scanning of the filter
+ //
+ // * values_valid_counter: for values null/not-null
+ // * filter_valid_counter: for filter null/not-null
+ // * filter_counter: for filter true/false
+ OptionalBitBlockCounter values_valid_counter(GetValidityBitmap(*values),
+ values->offset, values->length);
+ OptionalBitBlockCounter filter_valid_counter(filter_is_valid, filter_offset,
+ selection->length);
+ BitBlockCounter filter_counter(filter_data, filter_offset, selection->length);
+ int64_t in_position = 0;
+
+ auto AppendNotNull = [&](int64_t index) -> Status {
+ validity_builder.UnsafeAppend(true);
+ return visit_valid(index);
+ };
+
+ auto AppendNull = [&]() -> Status {
+ validity_builder.UnsafeAppend(false);
+ return visit_null();
+ };
+
+ auto AppendMaybeNull = [&](int64_t index) -> Status {
+ if (values_is_valid[index]) {
+ return AppendNotNull(index);
+ } else {
+ return AppendNull();
+ }
+ };
+
+ while (in_position < selection->length) {
+ BitBlockCount filter_valid_block = filter_valid_counter.NextWord();
+ BitBlockCount values_valid_block = values_valid_counter.NextWord();
+ BitBlockCount filter_block = filter_counter.NextWord();
+ if (filter_block.NoneSet() && null_selection == FilterOptions::DROP) {
+ // For this exceedingly common case in low-selectivity filters we can
+ // skip further analysis of the data and move on to the next block.
+ in_position += filter_block.length;
+ } else if (filter_valid_block.AllSet()) {
+ // Simpler path: no filter values are null
+ if (filter_block.AllSet()) {
+ // Fastest path: filter values are all true and not null
+ if (values_valid_block.AllSet()) {
+ // The values aren't null either
+ validity_builder.UnsafeAppend(filter_block.length, true);
+ for (int64_t i = 0; i < filter_block.length; ++i) {
+ RETURN_NOT_OK(visit_valid(in_position++));
+ }
+ } else {
+ // Some of the values in this block are null
+ for (int64_t i = 0; i < filter_block.length; ++i) {
+ RETURN_NOT_OK(AppendMaybeNull(in_position++));
+ }
+ }
+ } else { // !filter_block.AllSet()
+ // Some of the filter values are false, but all not null
+ if (values_valid_block.AllSet()) {
+ // All the values are not-null, so we can skip null checking for
+ // them
+ for (int64_t i = 0; i < filter_block.length; ++i) {
+ if (BitUtil::GetBit(filter_data, filter_offset + in_position)) {
+ RETURN_NOT_OK(AppendNotNull(in_position));
+ }
+ ++in_position;
+ }
+ } else {
+ // Some of the values in the block are null, so we have to check
+ // each one
+ for (int64_t i = 0; i < filter_block.length; ++i) {
+ if (BitUtil::GetBit(filter_data, filter_offset + in_position)) {
+ RETURN_NOT_OK(AppendMaybeNull(in_position));
+ }
+ ++in_position;
+ }
+ }
+ }
+ } else { // !filter_valid_block.AllSet()
+ // Some of the filter values are null, so we have to handle the DROP
+ // versus EMIT_NULL null selection behavior.
+ if (null_selection == FilterOptions::DROP) {
+ // Filter null values are treated as false.
+ for (int64_t i = 0; i < filter_block.length; ++i) {
+ if (BitUtil::GetBit(filter_is_valid, filter_offset + in_position) &&
+ BitUtil::GetBit(filter_data, filter_offset + in_position)) {
+ RETURN_NOT_OK(AppendMaybeNull(in_position));
+ }
+ ++in_position;
+ }
+ } else {
+ // Filter null values are appended to output as null whether the
+ // value in the corresponding slot is valid or not
+ for (int64_t i = 0; i < filter_block.length; ++i) {
+ const bool filter_not_null =
+ BitUtil::GetBit(filter_is_valid, filter_offset + in_position);
+ if (filter_not_null &&
+ BitUtil::GetBit(filter_data, filter_offset + in_position)) {
+ RETURN_NOT_OK(AppendMaybeNull(in_position));
+ } else if (!filter_not_null) {
+ // EMIT_NULL case
+ RETURN_NOT_OK(AppendNull());
+ }
+ ++in_position;
+ }
+ }
+ }
+ }
+ return Status::OK();
+ }
+
+ virtual Status Init() { return Status::OK(); }
+
+ // Implementation specific finish logic
+ virtual Status Finish() = 0;
+
+ Status ExecTake() {
+ RETURN_NOT_OK(this->validity_builder.Reserve(output_length));
+ RETURN_NOT_OK(Init());
+ int index_width = GetByteWidth(*this->selection->type);
+
+ // CTRP dispatch here
+ switch (index_width) {
+ case 1: {
+ Status s =
+ static_cast<Impl*>(this)->template GenerateOutput<TakeAdapter<uint8_t>>();
+ RETURN_NOT_OK(s);
+ } break;
+ case 2: {
+ Status s =
+ static_cast<Impl*>(this)->template GenerateOutput<TakeAdapter<uint16_t>>();
+ RETURN_NOT_OK(s);
+ } break;
+ case 4: {
+ Status s =
+ static_cast<Impl*>(this)->template GenerateOutput<TakeAdapter<uint32_t>>();
+ RETURN_NOT_OK(s);
+ } break;
+ case 8: {
+ Status s =
+ static_cast<Impl*>(this)->template GenerateOutput<TakeAdapter<uint64_t>>();
+ RETURN_NOT_OK(s);
+ } break;
+ default:
+ DCHECK(false) << "Invalid index width";
+ break;
+ }
+ RETURN_NOT_OK(this->FinishCommon());
+ return Finish();
+ }
+
+ Status ExecFilter() {
+ RETURN_NOT_OK(this->validity_builder.Reserve(output_length));
+ RETURN_NOT_OK(Init());
+ // CRTP dispatch
+ Status s = static_cast<Impl*>(this)->template GenerateOutput<FilterAdapter>();
+ RETURN_NOT_OK(s);
+ RETURN_NOT_OK(this->FinishCommon());
+ return Finish();
+ }
+};
+
+#define LIFT_BASE_MEMBERS() \
+ using ValuesArrayType = typename Base::ValuesArrayType; \
+ using Base::ctx; \
+ using Base::values; \
+ using Base::selection; \
+ using Base::output_length; \
+ using Base::out; \
+ using Base::validity_builder
+
+static inline Status VisitNoop() { return Status::OK(); }
+
+// A selection implementation for 32-bit and 64-bit variable binary
+// types. Common generated kernels are shared between Binary/String and
+// LargeBinary/LargeString
+template <typename Type>
+struct VarBinaryImpl : public Selection<VarBinaryImpl<Type>, Type> {
+ using offset_type = typename Type::offset_type;
+
+ using Base = Selection<VarBinaryImpl<Type>, Type>;
+ LIFT_BASE_MEMBERS();
+
+ std::shared_ptr<ArrayData> values_as_binary;
+ TypedBufferBuilder<offset_type> offset_builder;
+ TypedBufferBuilder<uint8_t> data_builder;
+
+ static constexpr int64_t kOffsetLimit = std::numeric_limits<offset_type>::max() - 1;
+
+ VarBinaryImpl(KernelContext* ctx, const ExecBatch& batch, int64_t output_length,
+ Datum* out)
+ : Base(ctx, batch, output_length, out),
+ offset_builder(ctx->memory_pool()),
+ data_builder(ctx->memory_pool()) {}
+
+ template <typename Adapter>
+ Status GenerateOutput() {
+ ValuesArrayType typed_values(this->values_as_binary);
+
+ // Presize the data builder with a rough estimate of the required data size
+ if (values->length > 0) {
+ const double mean_value_length =
+ (typed_values.total_values_length() / static_cast<double>(values->length));
+
+ // TODO: See if possible to reduce output_length for take/filter cases
+ // where there are nulls in the selection array
+ RETURN_NOT_OK(
+ data_builder.Reserve(static_cast<int64_t>(mean_value_length * output_length)));
+ }
+ int64_t space_available = data_builder.capacity();
+
+ const offset_type* raw_offsets = typed_values.raw_value_offsets();
+ const uint8_t* raw_data = typed_values.raw_data();
+
+ offset_type offset = 0;
+ Adapter adapter(this);
+ RETURN_NOT_OK(adapter.Generate(
+ [&](int64_t index) {
+ offset_builder.UnsafeAppend(offset);
+ offset_type val_offset = raw_offsets[index];
+ offset_type val_size = raw_offsets[index + 1] - val_offset;
+
+ // Use static property to prune this code from the filter path in
+ // optimized builds
+ if (Adapter::is_take &&
+ ARROW_PREDICT_FALSE(static_cast<int64_t>(offset) +
+ static_cast<int64_t>(val_size)) > kOffsetLimit) {
+ return Status::Invalid("Take operation overflowed binary array capacity");
+ }
+ offset += val_size;
+ if (ARROW_PREDICT_FALSE(val_size > space_available)) {
+ RETURN_NOT_OK(data_builder.Reserve(val_size));
+ space_available = data_builder.capacity() - data_builder.length();
+ }
+ data_builder.UnsafeAppend(raw_data + val_offset, val_size);
+ space_available -= val_size;
+ return Status::OK();
+ },
+ [&]() {
+ offset_builder.UnsafeAppend(offset);
+ return Status::OK();
+ }));
+ offset_builder.UnsafeAppend(offset);
+ return Status::OK();
+ }
+
+ Status Init() override {
+ ARROW_ASSIGN_OR_RAISE(this->values_as_binary,
+ GetArrayView(this->values, TypeTraits<Type>::type_singleton()));
+ return offset_builder.Reserve(output_length + 1);
+ }
+
+ Status Finish() override {
+ RETURN_NOT_OK(offset_builder.Finish(&out->buffers[1]));
+ return data_builder.Finish(&out->buffers[2]);
+ }
+};
+
+struct FSBImpl : public Selection<FSBImpl, FixedSizeBinaryType> {
+ using Base = Selection<FSBImpl, FixedSizeBinaryType>;
+ LIFT_BASE_MEMBERS();
+
+ TypedBufferBuilder<uint8_t> data_builder;
+
+ FSBImpl(KernelContext* ctx, const ExecBatch& batch, int64_t output_length, Datum* out)
+ : Base(ctx, batch, output_length, out), data_builder(ctx->memory_pool()) {}
+
+ template <typename Adapter>
+ Status GenerateOutput() {
+ FixedSizeBinaryArray typed_values(this->values);
+ int32_t value_size = typed_values.byte_width();
+
+ RETURN_NOT_OK(data_builder.Reserve(value_size * output_length));
+ Adapter adapter(this);
+ return adapter.Generate(
+ [&](int64_t index) {
+ auto val = typed_values.GetView(index);
+ data_builder.UnsafeAppend(reinterpret_cast<const uint8_t*>(val.data()),
+ value_size);
+ return Status::OK();
+ },
+ [&]() {
+ data_builder.UnsafeAppend(value_size, static_cast<uint8_t>(0x00));
+ return Status::OK();
+ });
+ }
+
+ Status Finish() override { return data_builder.Finish(&out->buffers[1]); }
+};
+
+template <typename Type>
+struct ListImpl : public Selection<ListImpl<Type>, Type> {
+ using offset_type = typename Type::offset_type;
+
+ using Base = Selection<ListImpl<Type>, Type>;
+ LIFT_BASE_MEMBERS();
+
+ TypedBufferBuilder<offset_type> offset_builder;
+ typename TypeTraits<Type>::OffsetBuilderType child_index_builder;
+
+ ListImpl(KernelContext* ctx, const ExecBatch& batch, int64_t output_length, Datum* out)
+ : Base(ctx, batch, output_length, out),
+ offset_builder(ctx->memory_pool()),
+ child_index_builder(ctx->memory_pool()) {}
+
+ template <typename Adapter>
+ Status GenerateOutput() {
+ ValuesArrayType typed_values(this->values);
+
+ // TODO presize child_index_builder with a similar heuristic as VarBinaryImpl
+
+ offset_type offset = 0;
+ Adapter adapter(this);
+ RETURN_NOT_OK(adapter.Generate(
+ [&](int64_t index) {
+ offset_builder.UnsafeAppend(offset);
+ offset_type value_offset = typed_values.value_offset(index);
+ offset_type value_length = typed_values.value_length(index);
+ offset += value_length;
+ RETURN_NOT_OK(child_index_builder.Reserve(value_length));
+ for (offset_type j = value_offset; j < value_offset + value_length; ++j) {
+ child_index_builder.UnsafeAppend(j);
+ }
+ return Status::OK();
+ },
+ [&]() {
+ offset_builder.UnsafeAppend(offset);
+ return Status::OK();
+ }));
+ offset_builder.UnsafeAppend(offset);
+ return Status::OK();
+ }
+
+ Status Init() override {
+ RETURN_NOT_OK(offset_builder.Reserve(output_length + 1));
+ return Status::OK();
+ }
+
+ Status Finish() override {
+ std::shared_ptr<Array> child_indices;
+ RETURN_NOT_OK(child_index_builder.Finish(&child_indices));
+
+ ValuesArrayType typed_values(this->values);
+
+ // No need to boundscheck the child values indices
+ ARROW_ASSIGN_OR_RAISE(std::shared_ptr<Array> taken_child,
+ Take(*typed_values.values(), *child_indices,
+ TakeOptions::NoBoundsCheck(), ctx->exec_context()));
+ RETURN_NOT_OK(offset_builder.Finish(&out->buffers[1]));
+ out->child_data = {taken_child->data()};
+ return Status::OK();
+ }
+};
+
struct DenseUnionImpl : public Selection<DenseUnionImpl, DenseUnionType> {
using Base = Selection<DenseUnionImpl, DenseUnionType>;
LIFT_BASE_MEMBERS();
@@ -1743,144 +1743,144 @@ struct DenseUnionImpl : public Selection<DenseUnionImpl, DenseUnionType> {
}
};
-struct FSLImpl : public Selection<FSLImpl, FixedSizeListType> {
- Int64Builder child_index_builder;
-
- using Base = Selection<FSLImpl, FixedSizeListType>;
- LIFT_BASE_MEMBERS();
-
- FSLImpl(KernelContext* ctx, const ExecBatch& batch, int64_t output_length, Datum* out)
- : Base(ctx, batch, output_length, out), child_index_builder(ctx->memory_pool()) {}
-
- template <typename Adapter>
- Status GenerateOutput() {
- ValuesArrayType typed_values(this->values);
- int32_t list_size = typed_values.list_type()->list_size();
-
- /// We must take list_size elements even for null elements of
- /// indices.
- RETURN_NOT_OK(child_index_builder.Reserve(output_length * list_size));
-
- Adapter adapter(this);
- return adapter.Generate(
- [&](int64_t index) {
- int64_t offset = index * list_size;
- for (int64_t j = offset; j < offset + list_size; ++j) {
- child_index_builder.UnsafeAppend(j);
- }
- return Status::OK();
- },
- [&]() { return child_index_builder.AppendNulls(list_size); });
- }
-
- Status Finish() override {
- std::shared_ptr<Array> child_indices;
- RETURN_NOT_OK(child_index_builder.Finish(&child_indices));
-
- ValuesArrayType typed_values(this->values);
-
- // No need to boundscheck the child values indices
- ARROW_ASSIGN_OR_RAISE(std::shared_ptr<Array> taken_child,
- Take(*typed_values.values(), *child_indices,
- TakeOptions::NoBoundsCheck(), ctx->exec_context()));
- out->child_data = {taken_child->data()};
- return Status::OK();
- }
-};
-
-// ----------------------------------------------------------------------
-// Struct selection implementations
-
-// We need a slightly different approach for StructType. For Take, we can
-// invoke Take on each struct field's data with boundschecking disabled. For
-// Filter on the other hand, if we naively call Filter on each field, then the
-// filter output length will have to be redundantly computed. Thus, for Filter
-// we instead convert the filter to selection indices and then invoke take.
-
-// Struct selection implementation. ONLY used for Take
-struct StructImpl : public Selection<StructImpl, StructType> {
- using Base = Selection<StructImpl, StructType>;
- LIFT_BASE_MEMBERS();
- using Base::Base;
-
- template <typename Adapter>
- Status GenerateOutput() {
- StructArray typed_values(values);
- Adapter adapter(this);
- // There's nothing to do for Struct except to generate the validity bitmap
- return adapter.Generate([&](int64_t index) { return Status::OK(); },
- /*visit_null=*/VisitNoop);
- }
-
- Status Finish() override {
- StructArray typed_values(values);
-
- // Select from children without boundschecking
- out->child_data.resize(values->type->num_fields());
- for (int field_index = 0; field_index < values->type->num_fields(); ++field_index) {
- ARROW_ASSIGN_OR_RAISE(Datum taken_field,
- Take(Datum(typed_values.field(field_index)), Datum(selection),
- TakeOptions::NoBoundsCheck(), ctx->exec_context()));
- out->child_data[field_index] = taken_field.array();
- }
- return Status::OK();
- }
-};
-
+struct FSLImpl : public Selection<FSLImpl, FixedSizeListType> {
+ Int64Builder child_index_builder;
+
+ using Base = Selection<FSLImpl, FixedSizeListType>;
+ LIFT_BASE_MEMBERS();
+
+ FSLImpl(KernelContext* ctx, const ExecBatch& batch, int64_t output_length, Datum* out)
+ : Base(ctx, batch, output_length, out), child_index_builder(ctx->memory_pool()) {}
+
+ template <typename Adapter>
+ Status GenerateOutput() {
+ ValuesArrayType typed_values(this->values);
+ int32_t list_size = typed_values.list_type()->list_size();
+
+ /// We must take list_size elements even for null elements of
+ /// indices.
+ RETURN_NOT_OK(child_index_builder.Reserve(output_length * list_size));
+
+ Adapter adapter(this);
+ return adapter.Generate(
+ [&](int64_t index) {
+ int64_t offset = index * list_size;
+ for (int64_t j = offset; j < offset + list_size; ++j) {
+ child_index_builder.UnsafeAppend(j);
+ }
+ return Status::OK();
+ },
+ [&]() { return child_index_builder.AppendNulls(list_size); });
+ }
+
+ Status Finish() override {
+ std::shared_ptr<Array> child_indices;
+ RETURN_NOT_OK(child_index_builder.Finish(&child_indices));
+
+ ValuesArrayType typed_values(this->values);
+
+ // No need to boundscheck the child values indices
+ ARROW_ASSIGN_OR_RAISE(std::shared_ptr<Array> taken_child,
+ Take(*typed_values.values(), *child_indices,
+ TakeOptions::NoBoundsCheck(), ctx->exec_context()));
+ out->child_data = {taken_child->data()};
+ return Status::OK();
+ }
+};
+
+// ----------------------------------------------------------------------
+// Struct selection implementations
+
+// We need a slightly different approach for StructType. For Take, we can
+// invoke Take on each struct field's data with boundschecking disabled. For
+// Filter on the other hand, if we naively call Filter on each field, then the
+// filter output length will have to be redundantly computed. Thus, for Filter
+// we instead convert the filter to selection indices and then invoke take.
+
+// Struct selection implementation. ONLY used for Take
+struct StructImpl : public Selection<StructImpl, StructType> {
+ using Base = Selection<StructImpl, StructType>;
+ LIFT_BASE_MEMBERS();
+ using Base::Base;
+
+ template <typename Adapter>
+ Status GenerateOutput() {
+ StructArray typed_values(values);
+ Adapter adapter(this);
+ // There's nothing to do for Struct except to generate the validity bitmap
+ return adapter.Generate([&](int64_t index) { return Status::OK(); },
+ /*visit_null=*/VisitNoop);
+ }
+
+ Status Finish() override {
+ StructArray typed_values(values);
+
+ // Select from children without boundschecking
+ out->child_data.resize(values->type->num_fields());
+ for (int field_index = 0; field_index < values->type->num_fields(); ++field_index) {
+ ARROW_ASSIGN_OR_RAISE(Datum taken_field,
+ Take(Datum(typed_values.field(field_index)), Datum(selection),
+ TakeOptions::NoBoundsCheck(), ctx->exec_context()));
+ out->child_data[field_index] = taken_field.array();
+ }
+ return Status::OK();
+ }
+};
+
Status StructFilter(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- // Transform filter to selection indices and then use Take.
- std::shared_ptr<ArrayData> indices;
+ // Transform filter to selection indices and then use Take.
+ std::shared_ptr<ArrayData> indices;
RETURN_NOT_OK(GetTakeIndices(*batch[1].array(),
FilterState::Get(ctx).null_selection_behavior,
ctx->memory_pool())
.Value(&indices));
-
- Datum result;
+
+ Datum result;
RETURN_NOT_OK(
Take(batch[0], Datum(indices), TakeOptions::NoBoundsCheck(), ctx->exec_context())
.Value(&result));
- out->value = result.array();
+ out->value = result.array();
return Status::OK();
-}
-
-#undef LIFT_BASE_MEMBERS
-
-// ----------------------------------------------------------------------
-// Implement Filter metafunction
-
-Result<std::shared_ptr<RecordBatch>> FilterRecordBatch(const RecordBatch& batch,
- const Datum& filter,
- const FunctionOptions* options,
- ExecContext* ctx) {
- if (batch.num_rows() != filter.length()) {
- return Status::Invalid("Filter inputs must all be the same length");
- }
-
- // Convert filter to selection vector/indices and use Take
- const auto& filter_opts = *static_cast<const FilterOptions*>(options);
- ARROW_ASSIGN_OR_RAISE(
- std::shared_ptr<ArrayData> indices,
+}
+
+#undef LIFT_BASE_MEMBERS
+
+// ----------------------------------------------------------------------
+// Implement Filter metafunction
+
+Result<std::shared_ptr<RecordBatch>> FilterRecordBatch(const RecordBatch& batch,
+ const Datum& filter,
+ const FunctionOptions* options,
+ ExecContext* ctx) {
+ if (batch.num_rows() != filter.length()) {
+ return Status::Invalid("Filter inputs must all be the same length");
+ }
+
+ // Convert filter to selection vector/indices and use Take
+ const auto& filter_opts = *static_cast<const FilterOptions*>(options);
+ ARROW_ASSIGN_OR_RAISE(
+ std::shared_ptr<ArrayData> indices,
GetTakeIndices(*filter.array(), filter_opts.null_selection_behavior,
ctx->memory_pool()));
- std::vector<std::shared_ptr<Array>> columns(batch.num_columns());
- for (int i = 0; i < batch.num_columns(); ++i) {
- ARROW_ASSIGN_OR_RAISE(Datum out, Take(batch.column(i)->data(), Datum(indices),
- TakeOptions::NoBoundsCheck(), ctx));
- columns[i] = out.make_array();
- }
+ std::vector<std::shared_ptr<Array>> columns(batch.num_columns());
+ for (int i = 0; i < batch.num_columns(); ++i) {
+ ARROW_ASSIGN_OR_RAISE(Datum out, Take(batch.column(i)->data(), Datum(indices),
+ TakeOptions::NoBoundsCheck(), ctx));
+ columns[i] = out.make_array();
+ }
return RecordBatch::Make(batch.schema(), indices->length, std::move(columns));
-}
-
-Result<std::shared_ptr<Table>> FilterTable(const Table& table, const Datum& filter,
- const FunctionOptions* options,
- ExecContext* ctx) {
- if (table.num_rows() != filter.length()) {
- return Status::Invalid("Filter inputs must all be the same length");
- }
+}
+
+Result<std::shared_ptr<Table>> FilterTable(const Table& table, const Datum& filter,
+ const FunctionOptions* options,
+ ExecContext* ctx) {
+ if (table.num_rows() != filter.length()) {
+ return Status::Invalid("Filter inputs must all be the same length");
+ }
if (table.num_rows() == 0) {
return Table::Make(table.schema(), table.columns(), 0);
}
-
+
// Last input element will be the filter array
const int num_columns = table.num_columns();
std::vector<ArrayVector> inputs(num_columns + 1);
@@ -1914,7 +1914,7 @@ Result<std::shared_ptr<Table>> FilterTable(const Table& table, const Datum& filt
for (int64_t i = 0; i < num_chunks; ++i) {
const ArrayData& filter_chunk = *inputs.back()[i]->data();
- ARROW_ASSIGN_OR_RAISE(
+ ARROW_ASSIGN_OR_RAISE(
const auto indices,
GetTakeIndices(filter_chunk, filter_opts.null_selection_behavior,
ctx->memory_pool()));
@@ -1930,7 +1930,7 @@ Result<std::shared_ptr<Table>> FilterTable(const Table& table, const Datum& filt
}
out_num_rows += indices->length;
}
- }
+ }
ChunkedArrayVector out_chunks(num_columns);
for (int i = 0; i < num_columns; ++i) {
@@ -1938,10 +1938,10 @@ Result<std::shared_ptr<Table>> FilterTable(const Table& table, const Datum& filt
table.column(i)->type());
}
return Table::Make(table.schema(), std::move(out_chunks), out_num_rows);
-}
-
-static auto kDefaultFilterOptions = FilterOptions::Defaults();
-
+}
+
+static auto kDefaultFilterOptions = FilterOptions::Defaults();
+
const FunctionDoc filter_doc(
"Filter with a boolean selection filter",
("The output is populated with values from the input at positions\n"
@@ -1949,244 +1949,244 @@ const FunctionDoc filter_doc(
"are handled based on FilterOptions."),
{"input", "selection_filter"}, "FilterOptions");
-class FilterMetaFunction : public MetaFunction {
- public:
- FilterMetaFunction()
+class FilterMetaFunction : public MetaFunction {
+ public:
+ FilterMetaFunction()
: MetaFunction("filter", Arity::Binary(), &filter_doc, &kDefaultFilterOptions) {}
-
- Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
- const FunctionOptions* options,
- ExecContext* ctx) const override {
- if (args[1].type()->id() != Type::BOOL) {
- return Status::NotImplemented("Filter argument must be boolean type");
- }
-
- if (args[0].kind() == Datum::RECORD_BATCH) {
- auto values_batch = args[0].record_batch();
- ARROW_ASSIGN_OR_RAISE(
- std::shared_ptr<RecordBatch> out_batch,
- FilterRecordBatch(*args[0].record_batch(), args[1], options, ctx));
- return Datum(out_batch);
- } else if (args[0].kind() == Datum::TABLE) {
- ARROW_ASSIGN_OR_RAISE(std::shared_ptr<Table> out_table,
- FilterTable(*args[0].table(), args[1], options, ctx));
- return Datum(out_table);
- } else {
- return CallFunction("array_filter", args, options, ctx);
- }
- }
-};
-
-// ----------------------------------------------------------------------
-// Implement Take metafunction
-
-// Shorthand naming of these functions
-// A -> Array
-// C -> ChunkedArray
-// R -> RecordBatch
-// T -> Table
-
-Result<std::shared_ptr<Array>> TakeAA(const Array& values, const Array& indices,
- const TakeOptions& options, ExecContext* ctx) {
- ARROW_ASSIGN_OR_RAISE(Datum result,
- CallFunction("array_take", {values, indices}, &options, ctx));
- return result.make_array();
-}
-
-Result<std::shared_ptr<ChunkedArray>> TakeCA(const ChunkedArray& values,
- const Array& indices,
- const TakeOptions& options,
- ExecContext* ctx) {
- auto num_chunks = values.num_chunks();
- std::vector<std::shared_ptr<Array>> new_chunks(1); // Hard-coded 1 for now
- std::shared_ptr<Array> current_chunk;
-
- // Case 1: `values` has a single chunk, so just use it
- if (num_chunks == 1) {
- current_chunk = values.chunk(0);
- } else {
- // TODO Case 2: See if all `indices` fall in the same chunk and call Array Take on it
- // See
- // https://github.com/apache/arrow/blob/6f2c9041137001f7a9212f244b51bc004efc29af/r/src/compute.cpp#L123-L151
- // TODO Case 3: If indices are sorted, can slice them and call Array Take
-
- // Case 4: Else, concatenate chunks and call Array Take
- ARROW_ASSIGN_OR_RAISE(current_chunk,
- Concatenate(values.chunks(), ctx->memory_pool()));
- }
- // Call Array Take on our single chunk
- ARROW_ASSIGN_OR_RAISE(new_chunks[0], TakeAA(*current_chunk, indices, options, ctx));
- return std::make_shared<ChunkedArray>(std::move(new_chunks));
-}
-
-Result<std::shared_ptr<ChunkedArray>> TakeCC(const ChunkedArray& values,
- const ChunkedArray& indices,
- const TakeOptions& options,
- ExecContext* ctx) {
- auto num_chunks = indices.num_chunks();
- std::vector<std::shared_ptr<Array>> new_chunks(num_chunks);
- for (int i = 0; i < num_chunks; i++) {
- // Take with that indices chunk
- // Note that as currently implemented, this is inefficient because `values`
- // will get concatenated on every iteration of this loop
- ARROW_ASSIGN_OR_RAISE(std::shared_ptr<ChunkedArray> current_chunk,
- TakeCA(values, *indices.chunk(i), options, ctx));
- // Concatenate the result to make a single array for this chunk
- ARROW_ASSIGN_OR_RAISE(new_chunks[i],
- Concatenate(current_chunk->chunks(), ctx->memory_pool()));
- }
- return std::make_shared<ChunkedArray>(std::move(new_chunks));
-}
-
-Result<std::shared_ptr<ChunkedArray>> TakeAC(const Array& values,
- const ChunkedArray& indices,
- const TakeOptions& options,
- ExecContext* ctx) {
- auto num_chunks = indices.num_chunks();
- std::vector<std::shared_ptr<Array>> new_chunks(num_chunks);
- for (int i = 0; i < num_chunks; i++) {
- // Take with that indices chunk
- ARROW_ASSIGN_OR_RAISE(new_chunks[i], TakeAA(values, *indices.chunk(i), options, ctx));
- }
- return std::make_shared<ChunkedArray>(std::move(new_chunks));
-}
-
-Result<std::shared_ptr<RecordBatch>> TakeRA(const RecordBatch& batch,
- const Array& indices,
- const TakeOptions& options,
- ExecContext* ctx) {
- auto ncols = batch.num_columns();
- auto nrows = indices.length();
- std::vector<std::shared_ptr<Array>> columns(ncols);
- for (int j = 0; j < ncols; j++) {
- ARROW_ASSIGN_OR_RAISE(columns[j], TakeAA(*batch.column(j), indices, options, ctx));
- }
+
+ Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
+ const FunctionOptions* options,
+ ExecContext* ctx) const override {
+ if (args[1].type()->id() != Type::BOOL) {
+ return Status::NotImplemented("Filter argument must be boolean type");
+ }
+
+ if (args[0].kind() == Datum::RECORD_BATCH) {
+ auto values_batch = args[0].record_batch();
+ ARROW_ASSIGN_OR_RAISE(
+ std::shared_ptr<RecordBatch> out_batch,
+ FilterRecordBatch(*args[0].record_batch(), args[1], options, ctx));
+ return Datum(out_batch);
+ } else if (args[0].kind() == Datum::TABLE) {
+ ARROW_ASSIGN_OR_RAISE(std::shared_ptr<Table> out_table,
+ FilterTable(*args[0].table(), args[1], options, ctx));
+ return Datum(out_table);
+ } else {
+ return CallFunction("array_filter", args, options, ctx);
+ }
+ }
+};
+
+// ----------------------------------------------------------------------
+// Implement Take metafunction
+
+// Shorthand naming of these functions
+// A -> Array
+// C -> ChunkedArray
+// R -> RecordBatch
+// T -> Table
+
+Result<std::shared_ptr<Array>> TakeAA(const Array& values, const Array& indices,
+ const TakeOptions& options, ExecContext* ctx) {
+ ARROW_ASSIGN_OR_RAISE(Datum result,
+ CallFunction("array_take", {values, indices}, &options, ctx));
+ return result.make_array();
+}
+
+Result<std::shared_ptr<ChunkedArray>> TakeCA(const ChunkedArray& values,
+ const Array& indices,
+ const TakeOptions& options,
+ ExecContext* ctx) {
+ auto num_chunks = values.num_chunks();
+ std::vector<std::shared_ptr<Array>> new_chunks(1); // Hard-coded 1 for now
+ std::shared_ptr<Array> current_chunk;
+
+ // Case 1: `values` has a single chunk, so just use it
+ if (num_chunks == 1) {
+ current_chunk = values.chunk(0);
+ } else {
+ // TODO Case 2: See if all `indices` fall in the same chunk and call Array Take on it
+ // See
+ // https://github.com/apache/arrow/blob/6f2c9041137001f7a9212f244b51bc004efc29af/r/src/compute.cpp#L123-L151
+ // TODO Case 3: If indices are sorted, can slice them and call Array Take
+
+ // Case 4: Else, concatenate chunks and call Array Take
+ ARROW_ASSIGN_OR_RAISE(current_chunk,
+ Concatenate(values.chunks(), ctx->memory_pool()));
+ }
+ // Call Array Take on our single chunk
+ ARROW_ASSIGN_OR_RAISE(new_chunks[0], TakeAA(*current_chunk, indices, options, ctx));
+ return std::make_shared<ChunkedArray>(std::move(new_chunks));
+}
+
+Result<std::shared_ptr<ChunkedArray>> TakeCC(const ChunkedArray& values,
+ const ChunkedArray& indices,
+ const TakeOptions& options,
+ ExecContext* ctx) {
+ auto num_chunks = indices.num_chunks();
+ std::vector<std::shared_ptr<Array>> new_chunks(num_chunks);
+ for (int i = 0; i < num_chunks; i++) {
+ // Take with that indices chunk
+ // Note that as currently implemented, this is inefficient because `values`
+ // will get concatenated on every iteration of this loop
+ ARROW_ASSIGN_OR_RAISE(std::shared_ptr<ChunkedArray> current_chunk,
+ TakeCA(values, *indices.chunk(i), options, ctx));
+ // Concatenate the result to make a single array for this chunk
+ ARROW_ASSIGN_OR_RAISE(new_chunks[i],
+ Concatenate(current_chunk->chunks(), ctx->memory_pool()));
+ }
+ return std::make_shared<ChunkedArray>(std::move(new_chunks));
+}
+
+Result<std::shared_ptr<ChunkedArray>> TakeAC(const Array& values,
+ const ChunkedArray& indices,
+ const TakeOptions& options,
+ ExecContext* ctx) {
+ auto num_chunks = indices.num_chunks();
+ std::vector<std::shared_ptr<Array>> new_chunks(num_chunks);
+ for (int i = 0; i < num_chunks; i++) {
+ // Take with that indices chunk
+ ARROW_ASSIGN_OR_RAISE(new_chunks[i], TakeAA(values, *indices.chunk(i), options, ctx));
+ }
+ return std::make_shared<ChunkedArray>(std::move(new_chunks));
+}
+
+Result<std::shared_ptr<RecordBatch>> TakeRA(const RecordBatch& batch,
+ const Array& indices,
+ const TakeOptions& options,
+ ExecContext* ctx) {
+ auto ncols = batch.num_columns();
+ auto nrows = indices.length();
+ std::vector<std::shared_ptr<Array>> columns(ncols);
+ for (int j = 0; j < ncols; j++) {
+ ARROW_ASSIGN_OR_RAISE(columns[j], TakeAA(*batch.column(j), indices, options, ctx));
+ }
return RecordBatch::Make(batch.schema(), nrows, std::move(columns));
-}
-
-Result<std::shared_ptr<Table>> TakeTA(const Table& table, const Array& indices,
- const TakeOptions& options, ExecContext* ctx) {
- auto ncols = table.num_columns();
- std::vector<std::shared_ptr<ChunkedArray>> columns(ncols);
-
- for (int j = 0; j < ncols; j++) {
- ARROW_ASSIGN_OR_RAISE(columns[j], TakeCA(*table.column(j), indices, options, ctx));
- }
+}
+
+Result<std::shared_ptr<Table>> TakeTA(const Table& table, const Array& indices,
+ const TakeOptions& options, ExecContext* ctx) {
+ auto ncols = table.num_columns();
+ std::vector<std::shared_ptr<ChunkedArray>> columns(ncols);
+
+ for (int j = 0; j < ncols; j++) {
+ ARROW_ASSIGN_OR_RAISE(columns[j], TakeCA(*table.column(j), indices, options, ctx));
+ }
return Table::Make(table.schema(), std::move(columns));
-}
-
-Result<std::shared_ptr<Table>> TakeTC(const Table& table, const ChunkedArray& indices,
- const TakeOptions& options, ExecContext* ctx) {
- auto ncols = table.num_columns();
- std::vector<std::shared_ptr<ChunkedArray>> columns(ncols);
- for (int j = 0; j < ncols; j++) {
- ARROW_ASSIGN_OR_RAISE(columns[j], TakeCC(*table.column(j), indices, options, ctx));
- }
+}
+
+Result<std::shared_ptr<Table>> TakeTC(const Table& table, const ChunkedArray& indices,
+ const TakeOptions& options, ExecContext* ctx) {
+ auto ncols = table.num_columns();
+ std::vector<std::shared_ptr<ChunkedArray>> columns(ncols);
+ for (int j = 0; j < ncols; j++) {
+ ARROW_ASSIGN_OR_RAISE(columns[j], TakeCC(*table.column(j), indices, options, ctx));
+ }
return Table::Make(table.schema(), std::move(columns));
-}
-
-static auto kDefaultTakeOptions = TakeOptions::Defaults();
-
+}
+
+static auto kDefaultTakeOptions = TakeOptions::Defaults();
+
const FunctionDoc take_doc(
"Select values from an input based on indices from another array",
("The output is populated with values from the input at positions\n"
"given by `indices`. Nulls in `indices` emit null in the output."),
{"input", "indices"}, "TakeOptions");
-// Metafunction for dispatching to different Take implementations other than
-// Array-Array.
-//
-// TODO: Revamp approach to executing Take operations. In addition to being
-// overly complex dispatching, there is no parallelization.
-class TakeMetaFunction : public MetaFunction {
- public:
+// Metafunction for dispatching to different Take implementations other than
+// Array-Array.
+//
+// TODO: Revamp approach to executing Take operations. In addition to being
+// overly complex dispatching, there is no parallelization.
+class TakeMetaFunction : public MetaFunction {
+ public:
TakeMetaFunction()
: MetaFunction("take", Arity::Binary(), &take_doc, &kDefaultTakeOptions) {}
-
- Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
- const FunctionOptions* options,
- ExecContext* ctx) const override {
- Datum::Kind index_kind = args[1].kind();
- const TakeOptions& take_opts = static_cast<const TakeOptions&>(*options);
- switch (args[0].kind()) {
- case Datum::ARRAY:
- if (index_kind == Datum::ARRAY) {
- return TakeAA(*args[0].make_array(), *args[1].make_array(), take_opts, ctx);
- } else if (index_kind == Datum::CHUNKED_ARRAY) {
- return TakeAC(*args[0].make_array(), *args[1].chunked_array(), take_opts, ctx);
- }
- break;
- case Datum::CHUNKED_ARRAY:
- if (index_kind == Datum::ARRAY) {
- return TakeCA(*args[0].chunked_array(), *args[1].make_array(), take_opts, ctx);
- } else if (index_kind == Datum::CHUNKED_ARRAY) {
- return TakeCC(*args[0].chunked_array(), *args[1].chunked_array(), take_opts,
- ctx);
- }
- break;
- case Datum::RECORD_BATCH:
- if (index_kind == Datum::ARRAY) {
- return TakeRA(*args[0].record_batch(), *args[1].make_array(), take_opts, ctx);
- }
- break;
- case Datum::TABLE:
- if (index_kind == Datum::ARRAY) {
- return TakeTA(*args[0].table(), *args[1].make_array(), take_opts, ctx);
- } else if (index_kind == Datum::CHUNKED_ARRAY) {
- return TakeTC(*args[0].table(), *args[1].chunked_array(), take_opts, ctx);
- }
- break;
- default:
- break;
- }
- return Status::NotImplemented(
- "Unsupported types for take operation: "
- "values=",
- args[0].ToString(), "indices=", args[1].ToString());
- }
-};
-
-// ----------------------------------------------------------------------
-
-template <typename Impl>
+
+ Result<Datum> ExecuteImpl(const std::vector<Datum>& args,
+ const FunctionOptions* options,
+ ExecContext* ctx) const override {
+ Datum::Kind index_kind = args[1].kind();
+ const TakeOptions& take_opts = static_cast<const TakeOptions&>(*options);
+ switch (args[0].kind()) {
+ case Datum::ARRAY:
+ if (index_kind == Datum::ARRAY) {
+ return TakeAA(*args[0].make_array(), *args[1].make_array(), take_opts, ctx);
+ } else if (index_kind == Datum::CHUNKED_ARRAY) {
+ return TakeAC(*args[0].make_array(), *args[1].chunked_array(), take_opts, ctx);
+ }
+ break;
+ case Datum::CHUNKED_ARRAY:
+ if (index_kind == Datum::ARRAY) {
+ return TakeCA(*args[0].chunked_array(), *args[1].make_array(), take_opts, ctx);
+ } else if (index_kind == Datum::CHUNKED_ARRAY) {
+ return TakeCC(*args[0].chunked_array(), *args[1].chunked_array(), take_opts,
+ ctx);
+ }
+ break;
+ case Datum::RECORD_BATCH:
+ if (index_kind == Datum::ARRAY) {
+ return TakeRA(*args[0].record_batch(), *args[1].make_array(), take_opts, ctx);
+ }
+ break;
+ case Datum::TABLE:
+ if (index_kind == Datum::ARRAY) {
+ return TakeTA(*args[0].table(), *args[1].make_array(), take_opts, ctx);
+ } else if (index_kind == Datum::CHUNKED_ARRAY) {
+ return TakeTC(*args[0].table(), *args[1].chunked_array(), take_opts, ctx);
+ }
+ break;
+ default:
+ break;
+ }
+ return Status::NotImplemented(
+ "Unsupported types for take operation: "
+ "values=",
+ args[0].ToString(), "indices=", args[1].ToString());
+ }
+};
+
+// ----------------------------------------------------------------------
+
+template <typename Impl>
Status FilterExec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- // TODO: where are the values and filter length equality checked?
- int64_t output_length = GetFilterOutputSize(
- *batch[1].array(), FilterState::Get(ctx).null_selection_behavior);
- Impl kernel(ctx, batch, output_length, out);
+ // TODO: where are the values and filter length equality checked?
+ int64_t output_length = GetFilterOutputSize(
+ *batch[1].array(), FilterState::Get(ctx).null_selection_behavior);
+ Impl kernel(ctx, batch, output_length, out);
return kernel.ExecFilter();
-}
-
-template <typename Impl>
+}
+
+template <typename Impl>
Status TakeExec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
- if (TakeState::Get(ctx).boundscheck) {
+ if (TakeState::Get(ctx).boundscheck) {
RETURN_NOT_OK(CheckIndexBounds(*batch[1].array(), batch[0].length()));
- }
- Impl kernel(ctx, batch, /*output_length=*/batch[1].length(), out);
+ }
+ Impl kernel(ctx, batch, /*output_length=*/batch[1].length(), out);
return kernel.ExecTake();
-}
-
-struct SelectionKernelDescr {
- InputType input;
- ArrayKernelExec exec;
-};
-
+}
+
+struct SelectionKernelDescr {
+ InputType input;
+ ArrayKernelExec exec;
+};
+
void RegisterSelectionFunction(const std::string& name, const FunctionDoc* doc,
VectorKernel base_kernel, InputType selection_type,
- const std::vector<SelectionKernelDescr>& descrs,
- const FunctionOptions* default_options,
- FunctionRegistry* registry) {
+ const std::vector<SelectionKernelDescr>& descrs,
+ const FunctionOptions* default_options,
+ FunctionRegistry* registry) {
auto func =
std::make_shared<VectorFunction>(name, Arity::Binary(), doc, default_options);
- for (auto& descr : descrs) {
- base_kernel.signature = KernelSignature::Make(
- {std::move(descr.input), selection_type}, OutputType(FirstType));
- base_kernel.exec = descr.exec;
- DCHECK_OK(func->AddKernel(base_kernel));
- }
- DCHECK_OK(registry->AddFunction(std::move(func)));
-}
-
+ for (auto& descr : descrs) {
+ base_kernel.signature = KernelSignature::Make(
+ {std::move(descr.input), selection_type}, OutputType(FirstType));
+ base_kernel.exec = descr.exec;
+ DCHECK_OK(func->AddKernel(base_kernel));
+ }
+ DCHECK_OK(registry->AddFunction(std::move(func)));
+}
+
const FunctionDoc array_filter_doc(
"Filter with a boolean selection filter",
("The output is populated with values from the input `array` at positions\n"
@@ -2200,69 +2200,69 @@ const FunctionDoc array_take_doc(
"given by `indices`. Nulls in `indices` emit null in the output."),
{"array", "indices"}, "TakeOptions");
-} // namespace
-
-void RegisterVectorSelection(FunctionRegistry* registry) {
- // Filter kernels
- std::vector<SelectionKernelDescr> filter_kernel_descrs = {
- {InputType(match::Primitive(), ValueDescr::ARRAY), PrimitiveFilter},
- {InputType(match::BinaryLike(), ValueDescr::ARRAY), BinaryFilter},
- {InputType(match::LargeBinaryLike(), ValueDescr::ARRAY), BinaryFilter},
- {InputType::Array(Type::FIXED_SIZE_BINARY), FilterExec<FSBImpl>},
- {InputType::Array(null()), NullFilter},
- {InputType::Array(Type::DECIMAL), FilterExec<FSBImpl>},
- {InputType::Array(Type::DICTIONARY), DictionaryFilter},
- {InputType::Array(Type::EXTENSION), ExtensionFilter},
- {InputType::Array(Type::LIST), FilterExec<ListImpl<ListType>>},
- {InputType::Array(Type::LARGE_LIST), FilterExec<ListImpl<LargeListType>>},
- {InputType::Array(Type::FIXED_SIZE_LIST), FilterExec<FSLImpl>},
+} // namespace
+
+void RegisterVectorSelection(FunctionRegistry* registry) {
+ // Filter kernels
+ std::vector<SelectionKernelDescr> filter_kernel_descrs = {
+ {InputType(match::Primitive(), ValueDescr::ARRAY), PrimitiveFilter},
+ {InputType(match::BinaryLike(), ValueDescr::ARRAY), BinaryFilter},
+ {InputType(match::LargeBinaryLike(), ValueDescr::ARRAY), BinaryFilter},
+ {InputType::Array(Type::FIXED_SIZE_BINARY), FilterExec<FSBImpl>},
+ {InputType::Array(null()), NullFilter},
+ {InputType::Array(Type::DECIMAL), FilterExec<FSBImpl>},
+ {InputType::Array(Type::DICTIONARY), DictionaryFilter},
+ {InputType::Array(Type::EXTENSION), ExtensionFilter},
+ {InputType::Array(Type::LIST), FilterExec<ListImpl<ListType>>},
+ {InputType::Array(Type::LARGE_LIST), FilterExec<ListImpl<LargeListType>>},
+ {InputType::Array(Type::FIXED_SIZE_LIST), FilterExec<FSLImpl>},
{InputType::Array(Type::DENSE_UNION), FilterExec<DenseUnionImpl>},
- {InputType::Array(Type::STRUCT), StructFilter},
- // TODO: Reuse ListType kernel for MAP
- {InputType::Array(Type::MAP), FilterExec<ListImpl<MapType>>},
- };
-
- VectorKernel filter_base;
- filter_base.init = FilterState::Init;
+ {InputType::Array(Type::STRUCT), StructFilter},
+ // TODO: Reuse ListType kernel for MAP
+ {InputType::Array(Type::MAP), FilterExec<ListImpl<MapType>>},
+ };
+
+ VectorKernel filter_base;
+ filter_base.init = FilterState::Init;
RegisterSelectionFunction("array_filter", &array_filter_doc, filter_base,
- /*selection_type=*/InputType::Array(boolean()),
- filter_kernel_descrs, &kDefaultFilterOptions, registry);
-
- DCHECK_OK(registry->AddFunction(std::make_shared<FilterMetaFunction>()));
-
- // Take kernels
- std::vector<SelectionKernelDescr> take_kernel_descrs = {
- {InputType(match::Primitive(), ValueDescr::ARRAY), PrimitiveTake},
- {InputType(match::BinaryLike(), ValueDescr::ARRAY),
- TakeExec<VarBinaryImpl<BinaryType>>},
- {InputType(match::LargeBinaryLike(), ValueDescr::ARRAY),
- TakeExec<VarBinaryImpl<LargeBinaryType>>},
- {InputType::Array(Type::FIXED_SIZE_BINARY), TakeExec<FSBImpl>},
- {InputType::Array(null()), NullTake},
+ /*selection_type=*/InputType::Array(boolean()),
+ filter_kernel_descrs, &kDefaultFilterOptions, registry);
+
+ DCHECK_OK(registry->AddFunction(std::make_shared<FilterMetaFunction>()));
+
+ // Take kernels
+ std::vector<SelectionKernelDescr> take_kernel_descrs = {
+ {InputType(match::Primitive(), ValueDescr::ARRAY), PrimitiveTake},
+ {InputType(match::BinaryLike(), ValueDescr::ARRAY),
+ TakeExec<VarBinaryImpl<BinaryType>>},
+ {InputType(match::LargeBinaryLike(), ValueDescr::ARRAY),
+ TakeExec<VarBinaryImpl<LargeBinaryType>>},
+ {InputType::Array(Type::FIXED_SIZE_BINARY), TakeExec<FSBImpl>},
+ {InputType::Array(null()), NullTake},
{InputType::Array(Type::DECIMAL128), TakeExec<FSBImpl>},
{InputType::Array(Type::DECIMAL256), TakeExec<FSBImpl>},
- {InputType::Array(Type::DICTIONARY), DictionaryTake},
- {InputType::Array(Type::EXTENSION), ExtensionTake},
- {InputType::Array(Type::LIST), TakeExec<ListImpl<ListType>>},
- {InputType::Array(Type::LARGE_LIST), TakeExec<ListImpl<LargeListType>>},
- {InputType::Array(Type::FIXED_SIZE_LIST), TakeExec<FSLImpl>},
+ {InputType::Array(Type::DICTIONARY), DictionaryTake},
+ {InputType::Array(Type::EXTENSION), ExtensionTake},
+ {InputType::Array(Type::LIST), TakeExec<ListImpl<ListType>>},
+ {InputType::Array(Type::LARGE_LIST), TakeExec<ListImpl<LargeListType>>},
+ {InputType::Array(Type::FIXED_SIZE_LIST), TakeExec<FSLImpl>},
{InputType::Array(Type::DENSE_UNION), TakeExec<DenseUnionImpl>},
- {InputType::Array(Type::STRUCT), TakeExec<StructImpl>},
- // TODO: Reuse ListType kernel for MAP
- {InputType::Array(Type::MAP), TakeExec<ListImpl<MapType>>},
- };
-
- VectorKernel take_base;
- take_base.init = TakeState::Init;
- take_base.can_execute_chunkwise = false;
- RegisterSelectionFunction(
+ {InputType::Array(Type::STRUCT), TakeExec<StructImpl>},
+ // TODO: Reuse ListType kernel for MAP
+ {InputType::Array(Type::MAP), TakeExec<ListImpl<MapType>>},
+ };
+
+ VectorKernel take_base;
+ take_base.init = TakeState::Init;
+ take_base.can_execute_chunkwise = false;
+ RegisterSelectionFunction(
"array_take", &array_take_doc, take_base,
- /*selection_type=*/InputType(match::Integer(), ValueDescr::ARRAY),
- take_kernel_descrs, &kDefaultTakeOptions, registry);
-
- DCHECK_OK(registry->AddFunction(std::make_shared<TakeMetaFunction>()));
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+ /*selection_type=*/InputType(match::Integer(), ValueDescr::ARRAY),
+ take_kernel_descrs, &kDefaultTakeOptions, registry);
+
+ DCHECK_OK(registry->AddFunction(std::make_shared<TakeMetaFunction>()));
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_sort.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_sort.cc
index 7fa43e715d..b7e7adc70e 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_sort.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/kernels/vector_sort.cc
@@ -1,30 +1,30 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include <algorithm>
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include <algorithm>
#include <cmath>
-#include <limits>
-#include <numeric>
+#include <limits>
+#include <numeric>
#include <type_traits>
#include <utility>
-
-#include "arrow/array/data.h"
-#include "arrow/compute/api_vector.h"
-#include "arrow/compute/kernels/common.h"
+
+#include "arrow/array/data.h"
+#include "arrow/compute/api_vector.h"
+#include "arrow/compute/kernels/common.h"
#include "arrow/compute/kernels/util_internal.h"
#include "arrow/table.h"
#include "arrow/type_traits.h"
@@ -32,16 +32,16 @@
#include "arrow/util/bitmap.h"
#include "arrow/util/bitmap_ops.h"
#include "arrow/util/checked_cast.h"
-#include "arrow/util/optional.h"
+#include "arrow/util/optional.h"
#include "arrow/visitor_inline.h"
-
-namespace arrow {
+
+namespace arrow {
using internal::checked_cast;
-namespace compute {
+namespace compute {
namespace internal {
-
+
// Visit all physical types for which sorting is implemented.
#define VISIT_PHYSICAL_TYPES(VISIT) \
VISIT(BooleanType) \
@@ -61,8 +61,8 @@ namespace internal {
VISIT(Decimal128Type) \
VISIT(Decimal256Type)
-namespace {
-
+namespace {
+
// The target chunk in a chunked array.
template <typename ArrayType>
struct ResolvedChunk {
@@ -315,59 +315,59 @@ uint64_t* PartitionNulls(uint64_t* indices_begin, uint64_t* indices_end,
null_count);
}
-// ----------------------------------------------------------------------
-// partition_nth_indices implementation
-
-// We need to preserve the options
-using PartitionNthToIndicesState = internal::OptionsWrapper<PartitionNthOptions>;
-
-template <typename OutType, typename InType>
-struct PartitionNthToIndices {
- using ArrayType = typename TypeTraits<InType>::ArrayType;
+// ----------------------------------------------------------------------
+// partition_nth_indices implementation
+
+// We need to preserve the options
+using PartitionNthToIndicesState = internal::OptionsWrapper<PartitionNthOptions>;
+
+template <typename OutType, typename InType>
+struct PartitionNthToIndices {
+ using ArrayType = typename TypeTraits<InType>::ArrayType;
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
using GetView = GetViewType<InType>;
- if (ctx->state() == nullptr) {
+ if (ctx->state() == nullptr) {
return Status::Invalid("NthToIndices requires PartitionNthOptions");
- }
-
+ }
+
ArrayType arr(batch[0].array());
-
- int64_t pivot = PartitionNthToIndicesState::Get(ctx).pivot;
- if (pivot > arr.length()) {
+
+ int64_t pivot = PartitionNthToIndicesState::Get(ctx).pivot;
+ if (pivot > arr.length()) {
return Status::IndexError("NthToIndices index out of bound");
- }
- ArrayData* out_arr = out->mutable_array();
- uint64_t* out_begin = out_arr->GetMutableValues<uint64_t>(1);
- uint64_t* out_end = out_begin + arr.length();
- std::iota(out_begin, out_end, 0);
- if (pivot == arr.length()) {
+ }
+ ArrayData* out_arr = out->mutable_array();
+ uint64_t* out_begin = out_arr->GetMutableValues<uint64_t>(1);
+ uint64_t* out_end = out_begin + arr.length();
+ std::iota(out_begin, out_end, 0);
+ if (pivot == arr.length()) {
return Status::OK();
- }
+ }
auto nulls_begin =
PartitionNulls<ArrayType, NonStablePartitioner>(out_begin, out_end, arr, 0);
- auto nth_begin = out_begin + pivot;
- if (nth_begin < nulls_begin) {
- std::nth_element(out_begin, nth_begin, nulls_begin,
- [&arr](uint64_t left, uint64_t right) {
+ auto nth_begin = out_begin + pivot;
+ if (nth_begin < nulls_begin) {
+ std::nth_element(out_begin, nth_begin, nulls_begin,
+ [&arr](uint64_t left, uint64_t right) {
const auto lval = GetView::LogicalValue(arr.GetView(left));
const auto rval = GetView::LogicalValue(arr.GetView(right));
return lval < rval;
- });
- }
+ });
+ }
return Status::OK();
- }
-};
-
+ }
+};
+
// ----------------------------------------------------------------------
// Array sorting implementations
-template <typename ArrayType, typename VisitorNotNull, typename VisitorNull>
-inline void VisitRawValuesInline(const ArrayType& values,
- VisitorNotNull&& visitor_not_null,
- VisitorNull&& visitor_null) {
- const auto data = values.raw_values();
+template <typename ArrayType, typename VisitorNotNull, typename VisitorNull>
+inline void VisitRawValuesInline(const ArrayType& values,
+ VisitorNotNull&& visitor_not_null,
+ VisitorNull&& visitor_null) {
+ const auto data = values.raw_values();
VisitBitBlocksVoid(
values.null_bitmap(), values.offset(), values.length(),
[&](int64_t i) { visitor_not_null(data[i]); }, [&]() { visitor_null(); });
@@ -383,20 +383,20 @@ inline void VisitRawValuesInline(const BooleanArray& values,
values.null_bitmap(), values.offset(), values.length(),
[&](int64_t i) { visitor_not_null(BitUtil::GetBit(data, values.offset() + i)); },
[&]() { visitor_null(); });
- } else {
+ } else {
// Can avoid GetBit() overhead in the no-nulls case
VisitBitBlocksVoid(
values.data()->buffers[1], values.offset(), values.length(),
[&](int64_t i) { visitor_not_null(true); }, [&]() { visitor_not_null(false); });
- }
-}
-
-template <typename ArrowType>
+ }
+}
+
+template <typename ArrowType>
class ArrayCompareSorter {
- using ArrayType = typename TypeTraits<ArrowType>::ArrayType;
+ using ArrayType = typename TypeTraits<ArrowType>::ArrayType;
using GetView = GetViewType<ArrowType>;
-
- public:
+
+ public:
// Returns where null starts.
//
// `offset` is used when this is called on a chunk of a chunked array
@@ -420,54 +420,54 @@ class ArrayCompareSorter {
// If we use 'right < left' here, '<' is only required.
return rhs < lhs;
});
- }
+ }
return nulls_begin;
- }
-};
-
-template <typename ArrowType>
+ }
+};
+
+template <typename ArrowType>
class ArrayCountSorter {
- using ArrayType = typename TypeTraits<ArrowType>::ArrayType;
- using c_type = typename ArrowType::c_type;
-
- public:
+ using ArrayType = typename TypeTraits<ArrowType>::ArrayType;
+ using c_type = typename ArrowType::c_type;
+
+ public:
ArrayCountSorter() = default;
-
+
explicit ArrayCountSorter(c_type min, c_type max) { SetMinMax(min, max); }
-
- // Assume: max >= min && (max - min) < 4Gi
- void SetMinMax(c_type min, c_type max) {
- min_ = min;
- value_range_ = static_cast<uint32_t>(max - min) + 1;
- }
-
+
+ // Assume: max >= min && (max - min) < 4Gi
+ void SetMinMax(c_type min, c_type max) {
+ min_ = min;
+ value_range_ = static_cast<uint32_t>(max - min) + 1;
+ }
+
// Returns where null starts.
uint64_t* Sort(uint64_t* indices_begin, uint64_t* indices_end, const ArrayType& values,
int64_t offset, const ArraySortOptions& options) {
- // 32bit counter performs much better than 64bit one
- if (values.length() < (1LL << 32)) {
+ // 32bit counter performs much better than 64bit one
+ if (values.length() < (1LL << 32)) {
return SortInternal<uint32_t>(indices_begin, indices_end, values, offset, options);
- } else {
+ } else {
return SortInternal<uint64_t>(indices_begin, indices_end, values, offset, options);
- }
- }
-
- private:
- c_type min_{0};
- uint32_t value_range_{0};
-
+ }
+ }
+
+ private:
+ c_type min_{0};
+ uint32_t value_range_{0};
+
// Returns where null starts.
//
// `offset` is used when this is called on a chunk of a chunked array
- template <typename CounterType>
+ template <typename CounterType>
uint64_t* SortInternal(uint64_t* indices_begin, uint64_t* indices_end,
const ArrayType& values, int64_t offset,
const ArraySortOptions& options) {
- const uint32_t value_range = value_range_;
-
- // first slot reserved for prefix sum
- std::vector<CounterType> counts(1 + value_range);
-
+ const uint32_t value_range = value_range_;
+
+ // first slot reserved for prefix sum
+ std::vector<CounterType> counts(1 + value_range);
+
if (options.order == SortOrder::Ascending) {
VisitRawValuesInline(
values, [&](c_type v) { ++counts[v - min_ + 1]; }, []() {});
@@ -497,7 +497,7 @@ class ArrayCountSorter {
}
}
};
-
+
using ::arrow::internal::Bitmap;
template <>
@@ -526,135 +526,135 @@ class ArrayCountSorter<BooleanType> {
} else {
// zeros start after ones
counts[0] = ones;
- }
- VisitRawValuesInline(
+ }
+ VisitRawValuesInline(
values, [&](bool v) { indices_begin[counts[v]++] = index++; },
[&]() { indices_begin[null_position++] = index++; });
return nulls_begin;
- }
-};
-
-// Sort integers with counting sort or comparison based sorting algorithm
-// - Use O(n) counting sort if values are in a small range
-// - Use O(nlogn) std::stable_sort otherwise
-template <typename ArrowType>
+ }
+};
+
+// Sort integers with counting sort or comparison based sorting algorithm
+// - Use O(n) counting sort if values are in a small range
+// - Use O(nlogn) std::stable_sort otherwise
+template <typename ArrowType>
class ArrayCountOrCompareSorter {
- using ArrayType = typename TypeTraits<ArrowType>::ArrayType;
- using c_type = typename ArrowType::c_type;
-
- public:
+ using ArrayType = typename TypeTraits<ArrowType>::ArrayType;
+ using c_type = typename ArrowType::c_type;
+
+ public:
// Returns where null starts.
//
// `offset` is used when this is called on a chunk of a chunked array
uint64_t* Sort(uint64_t* indices_begin, uint64_t* indices_end, const ArrayType& values,
int64_t offset, const ArraySortOptions& options) {
- if (values.length() >= countsort_min_len_ && values.length() > values.null_count()) {
+ if (values.length() >= countsort_min_len_ && values.length() > values.null_count()) {
c_type min, max;
std::tie(min, max) = GetMinMax<c_type>(*values.data());
-
- // For signed int32/64, (max - min) may overflow and trigger UBSAN.
- // Cast to largest unsigned type(uint64_t) before subtraction.
- if (static_cast<uint64_t>(max) - static_cast<uint64_t>(min) <=
- countsort_max_range_) {
- count_sorter_.SetMinMax(min, max);
+
+ // For signed int32/64, (max - min) may overflow and trigger UBSAN.
+ // Cast to largest unsigned type(uint64_t) before subtraction.
+ if (static_cast<uint64_t>(max) - static_cast<uint64_t>(min) <=
+ countsort_max_range_) {
+ count_sorter_.SetMinMax(min, max);
return count_sorter_.Sort(indices_begin, indices_end, values, offset, options);
- }
- }
-
+ }
+ }
+
return compare_sorter_.Sort(indices_begin, indices_end, values, offset, options);
- }
-
- private:
+ }
+
+ private:
ArrayCompareSorter<ArrowType> compare_sorter_;
ArrayCountSorter<ArrowType> count_sorter_;
-
- // Cross point to prefer counting sort than stl::stable_sort(merge sort)
- // - array to be sorted is longer than "count_min_len_"
- // - value range (max-min) is within "count_max_range_"
- //
- // The optimal setting depends heavily on running CPU. Below setting is
- // conservative to adapt to various hardware and keep code simple.
- // It's possible to decrease array-len and/or increase value-range to cover
- // more cases, or setup a table for best array-len/value-range combinations.
- // See https://issues.apache.org/jira/browse/ARROW-1571 for detailed analysis.
- static const uint32_t countsort_min_len_ = 1024;
- static const uint32_t countsort_max_range_ = 4096;
-};
-
-template <typename Type, typename Enable = void>
+
+ // Cross point to prefer counting sort than stl::stable_sort(merge sort)
+ // - array to be sorted is longer than "count_min_len_"
+ // - value range (max-min) is within "count_max_range_"
+ //
+ // The optimal setting depends heavily on running CPU. Below setting is
+ // conservative to adapt to various hardware and keep code simple.
+ // It's possible to decrease array-len and/or increase value-range to cover
+ // more cases, or setup a table for best array-len/value-range combinations.
+ // See https://issues.apache.org/jira/browse/ARROW-1571 for detailed analysis.
+ static const uint32_t countsort_min_len_ = 1024;
+ static const uint32_t countsort_max_range_ = 4096;
+};
+
+template <typename Type, typename Enable = void>
struct ArraySorter;
-
-template <>
+
+template <>
struct ArraySorter<BooleanType> {
ArrayCountSorter<BooleanType> impl;
-};
-
-template <>
+};
+
+template <>
struct ArraySorter<UInt8Type> {
ArrayCountSorter<UInt8Type> impl;
ArraySorter() : impl(0, 255) {}
-};
-
+};
+
template <>
struct ArraySorter<Int8Type> {
ArrayCountSorter<Int8Type> impl;
ArraySorter() : impl(-128, 127) {}
};
-template <typename Type>
+template <typename Type>
struct ArraySorter<Type, enable_if_t<(is_integer_type<Type>::value &&
(sizeof(typename Type::c_type) > 1)) ||
is_temporal_type<Type>::value>> {
ArrayCountOrCompareSorter<Type> impl;
-};
-
-template <typename Type>
+};
+
+template <typename Type>
struct ArraySorter<
Type, enable_if_t<is_floating_type<Type>::value || is_base_binary_type<Type>::value ||
is_fixed_size_binary_type<Type>::value>> {
ArrayCompareSorter<Type> impl;
-};
-
+};
+
using ArraySortIndicesState = internal::OptionsWrapper<ArraySortOptions>;
-template <typename OutType, typename InType>
+template <typename OutType, typename InType>
struct ArraySortIndices {
- using ArrayType = typename TypeTraits<InType>::ArrayType;
+ using ArrayType = typename TypeTraits<InType>::ArrayType;
static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) {
const auto& options = ArraySortIndicesState::Get(ctx);
ArrayType arr(batch[0].array());
- ArrayData* out_arr = out->mutable_array();
- uint64_t* out_begin = out_arr->GetMutableValues<uint64_t>(1);
- uint64_t* out_end = out_begin + arr.length();
+ ArrayData* out_arr = out->mutable_array();
+ uint64_t* out_begin = out_arr->GetMutableValues<uint64_t>(1);
+ uint64_t* out_end = out_begin + arr.length();
std::iota(out_begin, out_end, 0);
-
+
ArraySorter<InType> sorter;
sorter.impl.Sort(out_begin, out_end, arr, 0, options);
return Status::OK();
- }
-};
-
-// Sort indices kernels implemented for
-//
+ }
+};
+
+// Sort indices kernels implemented for
+//
// * Boolean type
-// * Number types
-// * Base binary types
-
-template <template <typename...> class ExecTemplate>
-void AddSortingKernels(VectorKernel base, VectorFunction* func) {
+// * Number types
+// * Base binary types
+
+template <template <typename...> class ExecTemplate>
+void AddSortingKernels(VectorKernel base, VectorFunction* func) {
// bool type
base.signature = KernelSignature::Make({InputType::Array(boolean())}, uint64());
base.exec = ExecTemplate<UInt64Type, BooleanType>::Exec;
DCHECK_OK(func->AddKernel(base));
- for (const auto& ty : NumericTypes()) {
+ for (const auto& ty : NumericTypes()) {
auto physical_type = GetPhysicalType(ty);
- base.signature = KernelSignature::Make({InputType::Array(ty)}, uint64());
+ base.signature = KernelSignature::Make({InputType::Array(ty)}, uint64());
base.exec = GenerateNumeric<ExecTemplate, UInt64Type>(*physical_type);
- DCHECK_OK(func->AddKernel(base));
- }
+ DCHECK_OK(func->AddKernel(base));
+ }
for (const auto& ty : TemporalTypes()) {
auto physical_type = GetPhysicalType(ty);
base.signature = KernelSignature::Make({InputType::Array(ty)}, uint64());
@@ -666,18 +666,18 @@ void AddSortingKernels(VectorKernel base, VectorFunction* func) {
base.exec = GenerateDecimal<ExecTemplate, UInt64Type>(id);
DCHECK_OK(func->AddKernel(base));
}
- for (const auto& ty : BaseBinaryTypes()) {
+ for (const auto& ty : BaseBinaryTypes()) {
auto physical_type = GetPhysicalType(ty);
- base.signature = KernelSignature::Make({InputType::Array(ty)}, uint64());
+ base.signature = KernelSignature::Make({InputType::Array(ty)}, uint64());
base.exec = GenerateVarBinaryBase<ExecTemplate, UInt64Type>(*physical_type);
- DCHECK_OK(func->AddKernel(base));
- }
+ DCHECK_OK(func->AddKernel(base));
+ }
base.signature =
KernelSignature::Make({InputType::Array(Type::FIXED_SIZE_BINARY)}, uint64());
base.exec = ExecTemplate<UInt64Type, FixedSizeBinaryType>::Exec;
DCHECK_OK(func->AddKernel(base));
-}
-
+}
+
// ----------------------------------------------------------------------
// ChunkedArray sorting implementations
@@ -1808,31 +1808,31 @@ const FunctionDoc partition_nth_indices_doc(
} // namespace
-void RegisterVectorSort(FunctionRegistry* registry) {
- // The kernel outputs into preallocated memory and is never null
- VectorKernel base;
- base.mem_allocation = MemAllocation::PREALLOCATE;
- base.null_handling = NullHandling::OUTPUT_NOT_NULL;
-
+void RegisterVectorSort(FunctionRegistry* registry) {
+ // The kernel outputs into preallocated memory and is never null
+ VectorKernel base;
+ base.mem_allocation = MemAllocation::PREALLOCATE;
+ base.null_handling = NullHandling::OUTPUT_NOT_NULL;
+
auto array_sort_indices = std::make_shared<VectorFunction>(
"array_sort_indices", Arity::Unary(), &array_sort_indices_doc,
&kDefaultArraySortOptions);
base.init = ArraySortIndicesState::Init;
AddSortingKernels<ArraySortIndices>(base, array_sort_indices.get());
DCHECK_OK(registry->AddFunction(std::move(array_sort_indices)));
-
+
DCHECK_OK(registry->AddFunction(std::make_shared<SortIndicesMetaFunction>()));
- // partition_nth_indices has a parameter so needs its init function
+ // partition_nth_indices has a parameter so needs its init function
auto part_indices = std::make_shared<VectorFunction>(
"partition_nth_indices", Arity::Unary(), &partition_nth_indices_doc);
- base.init = PartitionNthToIndicesState::Init;
- AddSortingKernels<PartitionNthToIndices>(base, part_indices.get());
- DCHECK_OK(registry->AddFunction(std::move(part_indices)));
-}
-
+ base.init = PartitionNthToIndicesState::Init;
+ AddSortingKernels<PartitionNthToIndices>(base, part_indices.get());
+ DCHECK_OK(registry->AddFunction(std::move(part_indices)));
+}
+
#undef VISIT_PHYSICAL_TYPES
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/registry.cc b/contrib/libs/apache/arrow/cpp/src/arrow/compute/registry.cc
index ca7b613730..7439faa7b2 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/registry.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/registry.cc
@@ -1,64 +1,64 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/compute/registry.h"
-
-#include <algorithm>
-#include <memory>
-#include <mutex>
-#include <unordered_map>
-#include <utility>
-
-#include "arrow/compute/function.h"
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/compute/registry.h"
+
+#include <algorithm>
+#include <memory>
+#include <mutex>
+#include <unordered_map>
+#include <utility>
+
+#include "arrow/compute/function.h"
#include "arrow/compute/function_internal.h"
-#include "arrow/compute/registry_internal.h"
-#include "arrow/status.h"
+#include "arrow/compute/registry_internal.h"
+#include "arrow/status.h"
#include "arrow/util/logging.h"
-
-namespace arrow {
-namespace compute {
-
-class FunctionRegistry::FunctionRegistryImpl {
- public:
- Status AddFunction(std::shared_ptr<Function> function, bool allow_overwrite) {
+
+namespace arrow {
+namespace compute {
+
+class FunctionRegistry::FunctionRegistryImpl {
+ public:
+ Status AddFunction(std::shared_ptr<Function> function, bool allow_overwrite) {
RETURN_NOT_OK(function->Validate());
- std::lock_guard<std::mutex> mutation_guard(lock_);
-
- const std::string& name = function->name();
- auto it = name_to_function_.find(name);
- if (it != name_to_function_.end() && !allow_overwrite) {
- return Status::KeyError("Already have a function registered with name: ", name);
- }
- name_to_function_[name] = std::move(function);
- return Status::OK();
- }
-
- Status AddAlias(const std::string& target_name, const std::string& source_name) {
- std::lock_guard<std::mutex> mutation_guard(lock_);
-
- auto it = name_to_function_.find(source_name);
- if (it == name_to_function_.end()) {
- return Status::KeyError("No function registered with name: ", source_name);
- }
- name_to_function_[target_name] = it->second;
- return Status::OK();
- }
-
+ std::lock_guard<std::mutex> mutation_guard(lock_);
+
+ const std::string& name = function->name();
+ auto it = name_to_function_.find(name);
+ if (it != name_to_function_.end() && !allow_overwrite) {
+ return Status::KeyError("Already have a function registered with name: ", name);
+ }
+ name_to_function_[name] = std::move(function);
+ return Status::OK();
+ }
+
+ Status AddAlias(const std::string& target_name, const std::string& source_name) {
+ std::lock_guard<std::mutex> mutation_guard(lock_);
+
+ auto it = name_to_function_.find(source_name);
+ if (it == name_to_function_.end()) {
+ return Status::KeyError("No function registered with name: ", source_name);
+ }
+ name_to_function_[target_name] = it->second;
+ return Status::OK();
+ }
+
Status AddFunctionOptionsType(const FunctionOptionsType* options_type,
bool allow_overwrite = false) {
std::lock_guard<std::mutex> mutation_guard(lock_);
@@ -73,23 +73,23 @@ class FunctionRegistry::FunctionRegistryImpl {
return Status::OK();
}
- Result<std::shared_ptr<Function>> GetFunction(const std::string& name) const {
- auto it = name_to_function_.find(name);
- if (it == name_to_function_.end()) {
- return Status::KeyError("No function registered with name: ", name);
- }
- return it->second;
- }
-
- std::vector<std::string> GetFunctionNames() const {
- std::vector<std::string> results;
- for (auto it : name_to_function_) {
- results.push_back(it.first);
- }
- std::sort(results.begin(), results.end());
- return results;
- }
-
+ Result<std::shared_ptr<Function>> GetFunction(const std::string& name) const {
+ auto it = name_to_function_.find(name);
+ if (it == name_to_function_.end()) {
+ return Status::KeyError("No function registered with name: ", name);
+ }
+ return it->second;
+ }
+
+ std::vector<std::string> GetFunctionNames() const {
+ std::vector<std::string> results;
+ for (auto it : name_to_function_) {
+ results.push_back(it.first);
+ }
+ std::sort(results.begin(), results.end());
+ return results;
+ }
+
Result<const FunctionOptionsType*> GetFunctionOptionsType(
const std::string& name) const {
auto it = name_to_options_type_.find(name);
@@ -99,80 +99,80 @@ class FunctionRegistry::FunctionRegistryImpl {
return it->second;
}
- int num_functions() const { return static_cast<int>(name_to_function_.size()); }
-
- private:
- std::mutex lock_;
- std::unordered_map<std::string, std::shared_ptr<Function>> name_to_function_;
+ int num_functions() const { return static_cast<int>(name_to_function_.size()); }
+
+ private:
+ std::mutex lock_;
+ std::unordered_map<std::string, std::shared_ptr<Function>> name_to_function_;
std::unordered_map<std::string, const FunctionOptionsType*> name_to_options_type_;
-};
-
-std::unique_ptr<FunctionRegistry> FunctionRegistry::Make() {
- return std::unique_ptr<FunctionRegistry>(new FunctionRegistry());
-}
-
-FunctionRegistry::FunctionRegistry() { impl_.reset(new FunctionRegistryImpl()); }
-
-FunctionRegistry::~FunctionRegistry() {}
-
-Status FunctionRegistry::AddFunction(std::shared_ptr<Function> function,
- bool allow_overwrite) {
- return impl_->AddFunction(std::move(function), allow_overwrite);
-}
-
-Status FunctionRegistry::AddAlias(const std::string& target_name,
- const std::string& source_name) {
- return impl_->AddAlias(target_name, source_name);
-}
-
+};
+
+std::unique_ptr<FunctionRegistry> FunctionRegistry::Make() {
+ return std::unique_ptr<FunctionRegistry>(new FunctionRegistry());
+}
+
+FunctionRegistry::FunctionRegistry() { impl_.reset(new FunctionRegistryImpl()); }
+
+FunctionRegistry::~FunctionRegistry() {}
+
+Status FunctionRegistry::AddFunction(std::shared_ptr<Function> function,
+ bool allow_overwrite) {
+ return impl_->AddFunction(std::move(function), allow_overwrite);
+}
+
+Status FunctionRegistry::AddAlias(const std::string& target_name,
+ const std::string& source_name) {
+ return impl_->AddAlias(target_name, source_name);
+}
+
Status FunctionRegistry::AddFunctionOptionsType(const FunctionOptionsType* options_type,
bool allow_overwrite) {
return impl_->AddFunctionOptionsType(options_type, allow_overwrite);
}
-Result<std::shared_ptr<Function>> FunctionRegistry::GetFunction(
- const std::string& name) const {
- return impl_->GetFunction(name);
-}
-
-std::vector<std::string> FunctionRegistry::GetFunctionNames() const {
- return impl_->GetFunctionNames();
-}
-
+Result<std::shared_ptr<Function>> FunctionRegistry::GetFunction(
+ const std::string& name) const {
+ return impl_->GetFunction(name);
+}
+
+std::vector<std::string> FunctionRegistry::GetFunctionNames() const {
+ return impl_->GetFunctionNames();
+}
+
Result<const FunctionOptionsType*> FunctionRegistry::GetFunctionOptionsType(
const std::string& name) const {
return impl_->GetFunctionOptionsType(name);
}
-int FunctionRegistry::num_functions() const { return impl_->num_functions(); }
-
-namespace internal {
-
-static std::unique_ptr<FunctionRegistry> CreateBuiltInRegistry() {
- auto registry = FunctionRegistry::Make();
-
- // Scalar functions
- RegisterScalarArithmetic(registry.get());
- RegisterScalarBoolean(registry.get());
- RegisterScalarCast(registry.get());
- RegisterScalarComparison(registry.get());
- RegisterScalarNested(registry.get());
- RegisterScalarSetLookup(registry.get());
- RegisterScalarStringAscii(registry.get());
- RegisterScalarValidity(registry.get());
- RegisterScalarFillNull(registry.get());
+int FunctionRegistry::num_functions() const { return impl_->num_functions(); }
+
+namespace internal {
+
+static std::unique_ptr<FunctionRegistry> CreateBuiltInRegistry() {
+ auto registry = FunctionRegistry::Make();
+
+ // Scalar functions
+ RegisterScalarArithmetic(registry.get());
+ RegisterScalarBoolean(registry.get());
+ RegisterScalarCast(registry.get());
+ RegisterScalarComparison(registry.get());
+ RegisterScalarNested(registry.get());
+ RegisterScalarSetLookup(registry.get());
+ RegisterScalarStringAscii(registry.get());
+ RegisterScalarValidity(registry.get());
+ RegisterScalarFillNull(registry.get());
RegisterScalarIfElse(registry.get());
RegisterScalarTemporal(registry.get());
-
+
RegisterScalarOptions(registry.get());
-
- // Vector functions
- RegisterVectorHash(registry.get());
+
+ // Vector functions
+ RegisterVectorHash(registry.get());
RegisterVectorReplace(registry.get());
- RegisterVectorSelection(registry.get());
- RegisterVectorNested(registry.get());
- RegisterVectorSort(registry.get());
-
+ RegisterVectorSelection(registry.get());
+ RegisterVectorNested(registry.get());
+ RegisterVectorSort(registry.get());
+
RegisterVectorOptions(registry.get());
// Aggregate functions
@@ -185,15 +185,15 @@ static std::unique_ptr<FunctionRegistry> CreateBuiltInRegistry() {
RegisterAggregateOptions(registry.get());
- return registry;
-}
-
-} // namespace internal
-
-FunctionRegistry* GetFunctionRegistry() {
- static auto g_registry = internal::CreateBuiltInRegistry();
- return g_registry.get();
-}
-
-} // namespace compute
-} // namespace arrow
+ return registry;
+}
+
+} // namespace internal
+
+FunctionRegistry* GetFunctionRegistry() {
+ static auto g_registry = internal::CreateBuiltInRegistry();
+ return g_registry.get();
+}
+
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/registry.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/registry.h
index e83036db6a..6769ecf79c 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/registry.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/registry.h
@@ -1,93 +1,93 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-// NOTE: API is EXPERIMENTAL and will change without going through a
-// deprecation cycle
-
-#pragma once
-
-#include <memory>
-#include <string>
-#include <vector>
-
-#include "arrow/result.h"
-#include "arrow/status.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-namespace compute {
-
-class Function;
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+// NOTE: API is EXPERIMENTAL and will change without going through a
+// deprecation cycle
+
+#pragma once
+
+#include <memory>
+#include <string>
+#include <vector>
+
+#include "arrow/result.h"
+#include "arrow/status.h"
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+namespace compute {
+
+class Function;
class FunctionOptionsType;
-
-/// \brief A mutable central function registry for built-in functions as well
-/// as user-defined functions. Functions are implementations of
-/// arrow::compute::Function.
-///
-/// Generally, each function contains kernels which are implementations of a
-/// function for a specific argument signature. After looking up a function in
-/// the registry, one can either execute it eagerly with Function::Execute or
-/// use one of the function's dispatch methods to pick a suitable kernel for
-/// lower-level function execution.
-class ARROW_EXPORT FunctionRegistry {
- public:
- ~FunctionRegistry();
-
- /// \brief Construct a new registry. Most users only need to use the global
- /// registry
- static std::unique_ptr<FunctionRegistry> Make();
-
- /// \brief Add a new function to the registry. Returns Status::KeyError if a
- /// function with the same name is already registered
- Status AddFunction(std::shared_ptr<Function> function, bool allow_overwrite = false);
-
- /// \brief Add aliases for the given function name. Returns Status::KeyError if the
- /// function with the given name is not registered
- Status AddAlias(const std::string& target_name, const std::string& source_name);
-
+
+/// \brief A mutable central function registry for built-in functions as well
+/// as user-defined functions. Functions are implementations of
+/// arrow::compute::Function.
+///
+/// Generally, each function contains kernels which are implementations of a
+/// function for a specific argument signature. After looking up a function in
+/// the registry, one can either execute it eagerly with Function::Execute or
+/// use one of the function's dispatch methods to pick a suitable kernel for
+/// lower-level function execution.
+class ARROW_EXPORT FunctionRegistry {
+ public:
+ ~FunctionRegistry();
+
+ /// \brief Construct a new registry. Most users only need to use the global
+ /// registry
+ static std::unique_ptr<FunctionRegistry> Make();
+
+ /// \brief Add a new function to the registry. Returns Status::KeyError if a
+ /// function with the same name is already registered
+ Status AddFunction(std::shared_ptr<Function> function, bool allow_overwrite = false);
+
+ /// \brief Add aliases for the given function name. Returns Status::KeyError if the
+ /// function with the given name is not registered
+ Status AddAlias(const std::string& target_name, const std::string& source_name);
+
/// \brief Add a new function options type to the registry. Returns Status::KeyError if
/// a function options type with the same name is already registered
Status AddFunctionOptionsType(const FunctionOptionsType* options_type,
bool allow_overwrite = false);
- /// \brief Retrieve a function by name from the registry
- Result<std::shared_ptr<Function>> GetFunction(const std::string& name) const;
-
- /// \brief Return vector of all entry names in the registry. Helpful for
- /// displaying a manifest of available functions
- std::vector<std::string> GetFunctionNames() const;
-
+ /// \brief Retrieve a function by name from the registry
+ Result<std::shared_ptr<Function>> GetFunction(const std::string& name) const;
+
+ /// \brief Return vector of all entry names in the registry. Helpful for
+ /// displaying a manifest of available functions
+ std::vector<std::string> GetFunctionNames() const;
+
/// \brief Retrieve a function options type by name from the registry
Result<const FunctionOptionsType*> GetFunctionOptionsType(
const std::string& name) const;
- /// \brief The number of currently registered functions
- int num_functions() const;
-
- private:
- FunctionRegistry();
-
- // Use PIMPL pattern to not have std::unordered_map here
- class FunctionRegistryImpl;
- std::unique_ptr<FunctionRegistryImpl> impl_;
-};
-
-/// \brief Return the process-global function registry
-ARROW_EXPORT FunctionRegistry* GetFunctionRegistry();
-
-} // namespace compute
-} // namespace arrow
+ /// \brief The number of currently registered functions
+ int num_functions() const;
+
+ private:
+ FunctionRegistry();
+
+ // Use PIMPL pattern to not have std::unordered_map here
+ class FunctionRegistryImpl;
+ std::unique_ptr<FunctionRegistryImpl> impl_;
+};
+
+/// \brief Return the process-global function registry
+ARROW_EXPORT FunctionRegistry* GetFunctionRegistry();
+
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/registry_internal.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/registry_internal.h
index 892b54341d..f078bc5510 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/registry_internal.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/registry_internal.h
@@ -1,63 +1,63 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-namespace arrow {
-namespace compute {
-
-class FunctionRegistry;
-
-namespace internal {
-
-// Built-in scalar / elementwise functions
-void RegisterScalarArithmetic(FunctionRegistry* registry);
-void RegisterScalarBoolean(FunctionRegistry* registry);
-void RegisterScalarCast(FunctionRegistry* registry);
-void RegisterScalarComparison(FunctionRegistry* registry);
-void RegisterScalarNested(FunctionRegistry* registry);
-void RegisterScalarSetLookup(FunctionRegistry* registry);
-void RegisterScalarStringAscii(FunctionRegistry* registry);
-void RegisterScalarValidity(FunctionRegistry* registry);
-void RegisterScalarFillNull(FunctionRegistry* registry);
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+namespace arrow {
+namespace compute {
+
+class FunctionRegistry;
+
+namespace internal {
+
+// Built-in scalar / elementwise functions
+void RegisterScalarArithmetic(FunctionRegistry* registry);
+void RegisterScalarBoolean(FunctionRegistry* registry);
+void RegisterScalarCast(FunctionRegistry* registry);
+void RegisterScalarComparison(FunctionRegistry* registry);
+void RegisterScalarNested(FunctionRegistry* registry);
+void RegisterScalarSetLookup(FunctionRegistry* registry);
+void RegisterScalarStringAscii(FunctionRegistry* registry);
+void RegisterScalarValidity(FunctionRegistry* registry);
+void RegisterScalarFillNull(FunctionRegistry* registry);
void RegisterScalarIfElse(FunctionRegistry* registry);
void RegisterScalarTemporal(FunctionRegistry* registry);
-
+
void RegisterScalarOptions(FunctionRegistry* registry);
-// Vector functions
-void RegisterVectorHash(FunctionRegistry* registry);
+// Vector functions
+void RegisterVectorHash(FunctionRegistry* registry);
void RegisterVectorReplace(FunctionRegistry* registry);
-void RegisterVectorSelection(FunctionRegistry* registry);
-void RegisterVectorNested(FunctionRegistry* registry);
-void RegisterVectorSort(FunctionRegistry* registry);
-
+void RegisterVectorSelection(FunctionRegistry* registry);
+void RegisterVectorNested(FunctionRegistry* registry);
+void RegisterVectorSort(FunctionRegistry* registry);
+
void RegisterVectorOptions(FunctionRegistry* registry);
-// Aggregate functions
-void RegisterScalarAggregateBasic(FunctionRegistry* registry);
+// Aggregate functions
+void RegisterScalarAggregateBasic(FunctionRegistry* registry);
void RegisterScalarAggregateMode(FunctionRegistry* registry);
void RegisterScalarAggregateQuantile(FunctionRegistry* registry);
void RegisterScalarAggregateTDigest(FunctionRegistry* registry);
void RegisterScalarAggregateVariance(FunctionRegistry* registry);
void RegisterHashAggregateBasic(FunctionRegistry* registry);
-
+
void RegisterAggregateOptions(FunctionRegistry* registry);
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/type_fwd.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/type_fwd.h
index eebc8c1b67..167cda6a04 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/type_fwd.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/type_fwd.h
@@ -1,48 +1,48 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-namespace arrow {
-
-struct Datum;
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+namespace arrow {
+
+struct Datum;
struct ValueDescr;
-
-namespace compute {
-
+
+namespace compute {
+
class Function;
class FunctionOptions;
class CastOptions;
struct ExecBatch;
-class ExecContext;
-class KernelContext;
-
-struct Kernel;
-struct ScalarKernel;
-struct ScalarAggregateKernel;
-struct VectorKernel;
-
+class ExecContext;
+class KernelContext;
+
+struct Kernel;
+struct ScalarKernel;
+struct ScalarAggregateKernel;
+struct VectorKernel;
+
struct KernelState;
class Expression;
class ExecNode;
class ExecPlan;
-} // namespace compute
-} // namespace arrow
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/compute/util_internal.h b/contrib/libs/apache/arrow/cpp/src/arrow/compute/util_internal.h
index 396c2ca2a0..4f7e43dae5 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/compute/util_internal.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/compute/util_internal.h
@@ -1,32 +1,32 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include "arrow/buffer.h"
-
-namespace arrow {
-namespace compute {
-namespace internal {
-
-static inline void ZeroMemory(Buffer* buffer) {
- std::memset(buffer->mutable_data(), 0, buffer->size());
-}
-
-} // namespace internal
-} // namespace compute
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include "arrow/buffer.h"
+
+namespace arrow {
+namespace compute {
+namespace internal {
+
+static inline void ZeroMemory(Buffer* buffer) {
+ std::memset(buffer->mutable_data(), 0, buffer->size());
+}
+
+} // namespace internal
+} // namespace compute
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/api.h b/contrib/libs/apache/arrow/cpp/src/arrow/csv/api.h
index 7bf3931576..ed247e369b 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/api.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/api.h
@@ -1,26 +1,26 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include "arrow/csv/options.h"
-#include "arrow/csv/reader.h"
-
-// The writer depends on compute module for casting.
-#ifdef ARROW_COMPUTE
-#include "arrow/csv/writer.h"
-#endif
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include "arrow/csv/options.h"
+#include "arrow/csv/reader.h"
+
+// The writer depends on compute module for casting.
+#ifdef ARROW_COMPUTE
+#include "arrow/csv/writer.h"
+#endif
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/chunker.cc b/contrib/libs/apache/arrow/cpp/src/arrow/csv/chunker.cc
index b3a0dead59..900f2d6228 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/chunker.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/chunker.cc
@@ -1,300 +1,300 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/csv/chunker.h"
-
-#include <cstdint>
-#include <memory>
-#include <utility>
-
-#include "arrow/status.h"
-#include "arrow/util/logging.h"
-#include "arrow/util/make_unique.h"
-#include "arrow/util/string_view.h"
-
-namespace arrow {
-namespace csv {
-
-namespace {
-
-// NOTE: csvmonkey (https://github.com/dw/csvmonkey) has optimization ideas
-
-template <bool quoting, bool escaping>
-class Lexer {
- public:
- enum State {
- FIELD_START,
- IN_FIELD,
- AT_ESCAPE,
- IN_QUOTED_FIELD,
- AT_QUOTED_QUOTE,
- AT_QUOTED_ESCAPE
- };
-
- explicit Lexer(const ParseOptions& options) : options_(options) {
- DCHECK_EQ(quoting, options_.quoting);
- DCHECK_EQ(escaping, options_.escaping);
- }
-
- const char* ReadLine(const char* data, const char* data_end) {
- // The parsing state machine
- char c;
- DCHECK_GT(data_end - data, 0);
- if (ARROW_PREDICT_TRUE(state_ == FIELD_START)) {
- goto FieldStart;
- }
- switch (state_) {
- case FIELD_START:
- goto FieldStart;
- case IN_FIELD:
- goto InField;
- case AT_ESCAPE:
- goto AtEscape;
- case IN_QUOTED_FIELD:
- goto InQuotedField;
- case AT_QUOTED_QUOTE:
- goto AtQuotedQuote;
- case AT_QUOTED_ESCAPE:
- goto AtQuotedEscape;
- }
-
- FieldStart:
- // At the start of a field
- if (ARROW_PREDICT_FALSE(data == data_end)) {
- state_ = FIELD_START;
- goto AbortLine;
- }
- // Quoting is only recognized at start of field
- if (quoting && *data == options_.quote_char) {
- data++;
- goto InQuotedField;
- } else {
- goto InField;
- }
-
- InField:
- // Inside a non-quoted part of a field
- if (ARROW_PREDICT_FALSE(data == data_end)) {
- state_ = IN_FIELD;
- goto AbortLine;
- }
- c = *data++;
- if (escaping && ARROW_PREDICT_FALSE(c == options_.escape_char)) {
- if (ARROW_PREDICT_FALSE(data == data_end)) {
- state_ = AT_ESCAPE;
- goto AbortLine;
- }
- data++;
- goto InField;
- }
- if (ARROW_PREDICT_FALSE(c == '\r')) {
- if (ARROW_PREDICT_TRUE(data != data_end) && *data == '\n') {
- data++;
- }
- goto LineEnd;
- }
- if (ARROW_PREDICT_FALSE(c == '\n')) {
- goto LineEnd;
- }
- if (ARROW_PREDICT_FALSE(c == options_.delimiter)) {
- goto FieldEnd;
- }
- goto InField;
-
- AtEscape:
- // Coming here if last block ended on a non-quoted escape
- data++;
- goto InField;
-
- InQuotedField:
- // Inside a quoted part of a field
- if (ARROW_PREDICT_FALSE(data == data_end)) {
- state_ = IN_QUOTED_FIELD;
- goto AbortLine;
- }
- c = *data++;
- if (escaping && ARROW_PREDICT_FALSE(c == options_.escape_char)) {
- if (ARROW_PREDICT_FALSE(data == data_end)) {
- state_ = AT_QUOTED_ESCAPE;
- goto AbortLine;
- }
- data++;
- goto InQuotedField;
- }
- if (ARROW_PREDICT_FALSE(c == options_.quote_char)) {
- if (ARROW_PREDICT_FALSE(data == data_end)) {
- state_ = AT_QUOTED_QUOTE;
- goto AbortLine;
- }
- if (options_.double_quote && *data == options_.quote_char) {
- // Double-quoting
- data++;
- } else {
- // End of single-quoting
- goto InField;
- }
- }
- goto InQuotedField;
-
- AtQuotedEscape:
- // Coming here if last block ended on a quoted escape
- data++;
- goto InQuotedField;
-
- AtQuotedQuote:
- // Coming here if last block ended on a quoted quote
- if (options_.double_quote && *data == options_.quote_char) {
- // Double-quoting
- data++;
- goto InQuotedField;
- } else {
- // End of single-quoting
- goto InField;
- }
-
- FieldEnd:
- // At the end of a field
- goto FieldStart;
-
- LineEnd:
- state_ = FIELD_START;
- return data;
-
- AbortLine:
- // Truncated line
- return nullptr;
- }
-
- protected:
- const ParseOptions& options_;
- State state_ = FIELD_START;
-};
-
-// A BoundaryFinder implementation that assumes CSV cells can contain raw newlines,
-// and uses actual CSV lexing to delimit them.
-template <bool quoting, bool escaping>
-class LexingBoundaryFinder : public BoundaryFinder {
- public:
- explicit LexingBoundaryFinder(ParseOptions options) : options_(std::move(options)) {}
-
- Status FindFirst(util::string_view partial, util::string_view block,
- int64_t* out_pos) override {
- Lexer<quoting, escaping> lexer(options_);
-
- const char* line_end =
- lexer.ReadLine(partial.data(), partial.data() + partial.size());
- DCHECK_EQ(line_end, nullptr); // Otherwise `partial` is a whole CSV line
- line_end = lexer.ReadLine(block.data(), block.data() + block.size());
-
- if (line_end == nullptr) {
- // No complete CSV line
- *out_pos = -1;
- } else {
- *out_pos = static_cast<int64_t>(line_end - block.data());
- DCHECK_GT(*out_pos, 0);
- }
- return Status::OK();
- }
-
- Status FindLast(util::string_view block, int64_t* out_pos) override {
- Lexer<quoting, escaping> lexer(options_);
-
- const char* data = block.data();
- const char* const data_end = block.data() + block.size();
-
- while (data < data_end) {
- const char* line_end = lexer.ReadLine(data, data_end);
- if (line_end == nullptr) {
- // Cannot read any further
- break;
- }
- DCHECK_GT(line_end, data);
- data = line_end;
- }
- if (data == block.data()) {
- // No complete CSV line
- *out_pos = -1;
- } else {
- *out_pos = static_cast<int64_t>(data - block.data());
- DCHECK_GT(*out_pos, 0);
- }
- return Status::OK();
- }
-
- Status FindNth(util::string_view partial, util::string_view block, int64_t count,
- int64_t* out_pos, int64_t* num_found) override {
- Lexer<quoting, escaping> lexer(options_);
- int64_t found = 0;
- const char* data = block.data();
- const char* const data_end = block.data() + block.size();
-
- const char* line_end;
- if (partial.size()) {
- line_end = lexer.ReadLine(partial.data(), partial.data() + partial.size());
- DCHECK_EQ(line_end, nullptr); // Otherwise `partial` is a whole CSV line
- }
-
- for (; data < data_end && found < count; ++found) {
- line_end = lexer.ReadLine(data, data_end);
- if (line_end == nullptr) {
- // Cannot read any further
- break;
- }
- DCHECK_GT(line_end, data);
- data = line_end;
- }
-
- if (data == block.data()) {
- // No complete CSV line
- *out_pos = kNoDelimiterFound;
- } else {
- *out_pos = static_cast<int64_t>(data - block.data());
- }
- *num_found = found;
- return Status::OK();
- }
-
- protected:
- ParseOptions options_;
-};
-
-} // namespace
-
-std::unique_ptr<Chunker> MakeChunker(const ParseOptions& options) {
- std::shared_ptr<BoundaryFinder> delimiter;
- if (!options.newlines_in_values) {
- delimiter = MakeNewlineBoundaryFinder();
- } else {
- if (options.quoting) {
- if (options.escaping) {
- delimiter = std::make_shared<LexingBoundaryFinder<true, true>>(options);
- } else {
- delimiter = std::make_shared<LexingBoundaryFinder<true, false>>(options);
- }
- } else {
- if (options.escaping) {
- delimiter = std::make_shared<LexingBoundaryFinder<false, true>>(options);
- } else {
- delimiter = std::make_shared<LexingBoundaryFinder<false, false>>(options);
- }
- }
- }
- return internal::make_unique<Chunker>(std::move(delimiter));
-}
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/csv/chunker.h"
+
+#include <cstdint>
+#include <memory>
+#include <utility>
+
+#include "arrow/status.h"
+#include "arrow/util/logging.h"
+#include "arrow/util/make_unique.h"
+#include "arrow/util/string_view.h"
+
+namespace arrow {
+namespace csv {
+
+namespace {
+
+// NOTE: csvmonkey (https://github.com/dw/csvmonkey) has optimization ideas
+
+template <bool quoting, bool escaping>
+class Lexer {
+ public:
+ enum State {
+ FIELD_START,
+ IN_FIELD,
+ AT_ESCAPE,
+ IN_QUOTED_FIELD,
+ AT_QUOTED_QUOTE,
+ AT_QUOTED_ESCAPE
+ };
+
+ explicit Lexer(const ParseOptions& options) : options_(options) {
+ DCHECK_EQ(quoting, options_.quoting);
+ DCHECK_EQ(escaping, options_.escaping);
+ }
+
+ const char* ReadLine(const char* data, const char* data_end) {
+ // The parsing state machine
+ char c;
+ DCHECK_GT(data_end - data, 0);
+ if (ARROW_PREDICT_TRUE(state_ == FIELD_START)) {
+ goto FieldStart;
+ }
+ switch (state_) {
+ case FIELD_START:
+ goto FieldStart;
+ case IN_FIELD:
+ goto InField;
+ case AT_ESCAPE:
+ goto AtEscape;
+ case IN_QUOTED_FIELD:
+ goto InQuotedField;
+ case AT_QUOTED_QUOTE:
+ goto AtQuotedQuote;
+ case AT_QUOTED_ESCAPE:
+ goto AtQuotedEscape;
+ }
+
+ FieldStart:
+ // At the start of a field
+ if (ARROW_PREDICT_FALSE(data == data_end)) {
+ state_ = FIELD_START;
+ goto AbortLine;
+ }
+ // Quoting is only recognized at start of field
+ if (quoting && *data == options_.quote_char) {
+ data++;
+ goto InQuotedField;
+ } else {
+ goto InField;
+ }
+
+ InField:
+ // Inside a non-quoted part of a field
+ if (ARROW_PREDICT_FALSE(data == data_end)) {
+ state_ = IN_FIELD;
+ goto AbortLine;
+ }
+ c = *data++;
+ if (escaping && ARROW_PREDICT_FALSE(c == options_.escape_char)) {
+ if (ARROW_PREDICT_FALSE(data == data_end)) {
+ state_ = AT_ESCAPE;
+ goto AbortLine;
+ }
+ data++;
+ goto InField;
+ }
+ if (ARROW_PREDICT_FALSE(c == '\r')) {
+ if (ARROW_PREDICT_TRUE(data != data_end) && *data == '\n') {
+ data++;
+ }
+ goto LineEnd;
+ }
+ if (ARROW_PREDICT_FALSE(c == '\n')) {
+ goto LineEnd;
+ }
+ if (ARROW_PREDICT_FALSE(c == options_.delimiter)) {
+ goto FieldEnd;
+ }
+ goto InField;
+
+ AtEscape:
+ // Coming here if last block ended on a non-quoted escape
+ data++;
+ goto InField;
+
+ InQuotedField:
+ // Inside a quoted part of a field
+ if (ARROW_PREDICT_FALSE(data == data_end)) {
+ state_ = IN_QUOTED_FIELD;
+ goto AbortLine;
+ }
+ c = *data++;
+ if (escaping && ARROW_PREDICT_FALSE(c == options_.escape_char)) {
+ if (ARROW_PREDICT_FALSE(data == data_end)) {
+ state_ = AT_QUOTED_ESCAPE;
+ goto AbortLine;
+ }
+ data++;
+ goto InQuotedField;
+ }
+ if (ARROW_PREDICT_FALSE(c == options_.quote_char)) {
+ if (ARROW_PREDICT_FALSE(data == data_end)) {
+ state_ = AT_QUOTED_QUOTE;
+ goto AbortLine;
+ }
+ if (options_.double_quote && *data == options_.quote_char) {
+ // Double-quoting
+ data++;
+ } else {
+ // End of single-quoting
+ goto InField;
+ }
+ }
+ goto InQuotedField;
+
+ AtQuotedEscape:
+ // Coming here if last block ended on a quoted escape
+ data++;
+ goto InQuotedField;
+
+ AtQuotedQuote:
+ // Coming here if last block ended on a quoted quote
+ if (options_.double_quote && *data == options_.quote_char) {
+ // Double-quoting
+ data++;
+ goto InQuotedField;
+ } else {
+ // End of single-quoting
+ goto InField;
+ }
+
+ FieldEnd:
+ // At the end of a field
+ goto FieldStart;
+
+ LineEnd:
+ state_ = FIELD_START;
+ return data;
+
+ AbortLine:
+ // Truncated line
+ return nullptr;
+ }
+
+ protected:
+ const ParseOptions& options_;
+ State state_ = FIELD_START;
+};
+
+// A BoundaryFinder implementation that assumes CSV cells can contain raw newlines,
+// and uses actual CSV lexing to delimit them.
+template <bool quoting, bool escaping>
+class LexingBoundaryFinder : public BoundaryFinder {
+ public:
+ explicit LexingBoundaryFinder(ParseOptions options) : options_(std::move(options)) {}
+
+ Status FindFirst(util::string_view partial, util::string_view block,
+ int64_t* out_pos) override {
+ Lexer<quoting, escaping> lexer(options_);
+
+ const char* line_end =
+ lexer.ReadLine(partial.data(), partial.data() + partial.size());
+ DCHECK_EQ(line_end, nullptr); // Otherwise `partial` is a whole CSV line
+ line_end = lexer.ReadLine(block.data(), block.data() + block.size());
+
+ if (line_end == nullptr) {
+ // No complete CSV line
+ *out_pos = -1;
+ } else {
+ *out_pos = static_cast<int64_t>(line_end - block.data());
+ DCHECK_GT(*out_pos, 0);
+ }
+ return Status::OK();
+ }
+
+ Status FindLast(util::string_view block, int64_t* out_pos) override {
+ Lexer<quoting, escaping> lexer(options_);
+
+ const char* data = block.data();
+ const char* const data_end = block.data() + block.size();
+
+ while (data < data_end) {
+ const char* line_end = lexer.ReadLine(data, data_end);
+ if (line_end == nullptr) {
+ // Cannot read any further
+ break;
+ }
+ DCHECK_GT(line_end, data);
+ data = line_end;
+ }
+ if (data == block.data()) {
+ // No complete CSV line
+ *out_pos = -1;
+ } else {
+ *out_pos = static_cast<int64_t>(data - block.data());
+ DCHECK_GT(*out_pos, 0);
+ }
+ return Status::OK();
+ }
+
+ Status FindNth(util::string_view partial, util::string_view block, int64_t count,
+ int64_t* out_pos, int64_t* num_found) override {
+ Lexer<quoting, escaping> lexer(options_);
+ int64_t found = 0;
+ const char* data = block.data();
+ const char* const data_end = block.data() + block.size();
+
+ const char* line_end;
+ if (partial.size()) {
+ line_end = lexer.ReadLine(partial.data(), partial.data() + partial.size());
+ DCHECK_EQ(line_end, nullptr); // Otherwise `partial` is a whole CSV line
+ }
+
+ for (; data < data_end && found < count; ++found) {
+ line_end = lexer.ReadLine(data, data_end);
+ if (line_end == nullptr) {
+ // Cannot read any further
+ break;
+ }
+ DCHECK_GT(line_end, data);
+ data = line_end;
+ }
+
+ if (data == block.data()) {
+ // No complete CSV line
+ *out_pos = kNoDelimiterFound;
+ } else {
+ *out_pos = static_cast<int64_t>(data - block.data());
+ }
+ *num_found = found;
+ return Status::OK();
+ }
+
+ protected:
+ ParseOptions options_;
+};
+
+} // namespace
+
+std::unique_ptr<Chunker> MakeChunker(const ParseOptions& options) {
+ std::shared_ptr<BoundaryFinder> delimiter;
+ if (!options.newlines_in_values) {
+ delimiter = MakeNewlineBoundaryFinder();
+ } else {
+ if (options.quoting) {
+ if (options.escaping) {
+ delimiter = std::make_shared<LexingBoundaryFinder<true, true>>(options);
+ } else {
+ delimiter = std::make_shared<LexingBoundaryFinder<true, false>>(options);
+ }
+ } else {
+ if (options.escaping) {
+ delimiter = std::make_shared<LexingBoundaryFinder<false, true>>(options);
+ } else {
+ delimiter = std::make_shared<LexingBoundaryFinder<false, false>>(options);
+ }
+ }
+ }
+ return internal::make_unique<Chunker>(std::move(delimiter));
+}
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/chunker.h b/contrib/libs/apache/arrow/cpp/src/arrow/csv/chunker.h
index 662b16ec40..bcebd6572e 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/chunker.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/chunker.h
@@ -1,36 +1,36 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <cstdint>
-#include <memory>
-
-#include "arrow/csv/options.h"
-#include "arrow/status.h"
-#include "arrow/util/delimiting.h"
-#include "arrow/util/macros.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-namespace csv {
-
-ARROW_EXPORT
-std::unique_ptr<Chunker> MakeChunker(const ParseOptions& options);
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <cstdint>
+#include <memory>
+
+#include "arrow/csv/options.h"
+#include "arrow/status.h"
+#include "arrow/util/delimiting.h"
+#include "arrow/util/macros.h"
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+namespace csv {
+
+ARROW_EXPORT
+std::unique_ptr<Chunker> MakeChunker(const ParseOptions& options);
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_builder.cc b/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_builder.cc
index bc97442873..910ca1980c 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_builder.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_builder.cc
@@ -1,367 +1,367 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include <cstddef>
-#include <cstdint>
-#include <memory>
-#include <mutex>
-#include <sstream>
-#include <string>
-#include <utility>
-#include <vector>
-
-#include "arrow/array.h"
-#include "arrow/array/builder_base.h"
-#include "arrow/chunked_array.h"
-#include "arrow/csv/column_builder.h"
-#include "arrow/csv/converter.h"
-#include "arrow/csv/inference_internal.h"
-#include "arrow/csv/options.h"
-#include "arrow/csv/parser.h"
-#include "arrow/status.h"
-#include "arrow/type.h"
-#include "arrow/type_fwd.h"
-#include "arrow/util/logging.h"
-#include "arrow/util/task_group.h"
-
-namespace arrow {
-namespace csv {
-
-class BlockParser;
-
-using internal::TaskGroup;
-
-class ConcreteColumnBuilder : public ColumnBuilder {
- public:
- explicit ConcreteColumnBuilder(MemoryPool* pool,
- std::shared_ptr<internal::TaskGroup> task_group,
- int32_t col_index = -1)
- : ColumnBuilder(std::move(task_group)), pool_(pool), col_index_(col_index) {}
-
- void Append(const std::shared_ptr<BlockParser>& parser) override {
- Insert(static_cast<int64_t>(chunks_.size()), parser);
- }
-
- Result<std::shared_ptr<ChunkedArray>> Finish() override {
- std::lock_guard<std::mutex> lock(mutex_);
-
- return FinishUnlocked();
- }
-
- protected:
- virtual std::shared_ptr<DataType> type() const = 0;
-
- Result<std::shared_ptr<ChunkedArray>> FinishUnlocked() {
- auto type = this->type();
- for (const auto& chunk : chunks_) {
- if (chunk == nullptr) {
- return Status::UnknownError("a chunk failed converting for an unknown reason");
- }
- DCHECK_EQ(chunk->type()->id(), type->id()) << "Chunk types not equal!";
- }
- return std::make_shared<ChunkedArray>(chunks_, std::move(type));
- }
-
- void ReserveChunks(int64_t block_index) {
- // Create a null Array pointer at the back at the list.
- std::lock_guard<std::mutex> lock(mutex_);
- ReserveChunksUnlocked(block_index);
- }
-
- void ReserveChunksUnlocked(int64_t block_index) {
- // Create a null Array pointer at the back at the list.
- size_t chunk_index = static_cast<size_t>(block_index);
- if (chunks_.size() <= chunk_index) {
- chunks_.resize(chunk_index + 1);
- }
- }
-
- Status SetChunk(int64_t chunk_index, Result<std::shared_ptr<Array>> maybe_array) {
- std::lock_guard<std::mutex> lock(mutex_);
- return SetChunkUnlocked(chunk_index, std::move(maybe_array));
- }
-
- Status SetChunkUnlocked(int64_t chunk_index,
- Result<std::shared_ptr<Array>> maybe_array) {
- // Should not insert an already built chunk
- DCHECK_EQ(chunks_[chunk_index], nullptr);
-
- if (maybe_array.ok()) {
- chunks_[chunk_index] = *std::move(maybe_array);
- return Status::OK();
- } else {
- return WrapConversionError(maybe_array.status());
- }
- }
-
- Status WrapConversionError(const Status& st) {
- if (ARROW_PREDICT_TRUE(st.ok())) {
- return st;
- } else {
- std::stringstream ss;
- ss << "In CSV column #" << col_index_ << ": " << st.message();
- return st.WithMessage(ss.str());
- }
- }
-
- MemoryPool* pool_;
- int32_t col_index_;
-
- ArrayVector chunks_;
-
- std::mutex mutex_;
-};
-
-//////////////////////////////////////////////////////////////////////////
-// Null column builder implementation (for a column not in the CSV file)
-
-class NullColumnBuilder : public ConcreteColumnBuilder {
- public:
- explicit NullColumnBuilder(const std::shared_ptr<DataType>& type, MemoryPool* pool,
- const std::shared_ptr<internal::TaskGroup>& task_group)
- : ConcreteColumnBuilder(pool, task_group), type_(type) {}
-
- void Insert(int64_t block_index, const std::shared_ptr<BlockParser>& parser) override;
-
- protected:
- std::shared_ptr<DataType> type() const override { return type_; }
-
- std::shared_ptr<DataType> type_;
-};
-
-void NullColumnBuilder::Insert(int64_t block_index,
- const std::shared_ptr<BlockParser>& parser) {
- ReserveChunks(block_index);
-
- // Spawn a task that will build an array of nulls with the right DataType
- const int32_t num_rows = parser->num_rows();
- DCHECK_GE(num_rows, 0);
-
- task_group_->Append([=]() -> Status {
- std::unique_ptr<ArrayBuilder> builder;
- RETURN_NOT_OK(MakeBuilder(pool_, type_, &builder));
- std::shared_ptr<Array> res;
- RETURN_NOT_OK(builder->AppendNulls(num_rows));
- RETURN_NOT_OK(builder->Finish(&res));
-
- return SetChunk(block_index, res);
- });
-}
-
-//////////////////////////////////////////////////////////////////////////
-// Pre-typed column builder implementation
-
-class TypedColumnBuilder : public ConcreteColumnBuilder {
- public:
- TypedColumnBuilder(const std::shared_ptr<DataType>& type, int32_t col_index,
- const ConvertOptions& options, MemoryPool* pool,
- const std::shared_ptr<internal::TaskGroup>& task_group)
- : ConcreteColumnBuilder(pool, task_group, col_index),
- type_(type),
- options_(options) {}
-
- Status Init();
-
- void Insert(int64_t block_index, const std::shared_ptr<BlockParser>& parser) override;
-
- protected:
- std::shared_ptr<DataType> type() const override { return type_; }
-
- std::shared_ptr<DataType> type_;
- // CAUTION: ConvertOptions can grow large (if it customizes hundreds or
- // thousands of columns), so avoid copying it in each TypedColumnBuilder.
- const ConvertOptions& options_;
-
- std::shared_ptr<Converter> converter_;
-};
-
-Status TypedColumnBuilder::Init() {
- ARROW_ASSIGN_OR_RAISE(converter_, Converter::Make(type_, options_, pool_));
- return Status::OK();
-}
-
-void TypedColumnBuilder::Insert(int64_t block_index,
- const std::shared_ptr<BlockParser>& parser) {
- DCHECK_NE(converter_, nullptr);
-
- ReserveChunks(block_index);
-
- // We're careful that all references in the closure outlive the Append() call
- task_group_->Append([=]() -> Status {
- return SetChunk(block_index, converter_->Convert(*parser, col_index_));
- });
-}
-
-//////////////////////////////////////////////////////////////////////////
-// Type-inferring column builder implementation
-
-class InferringColumnBuilder : public ConcreteColumnBuilder {
- public:
- InferringColumnBuilder(int32_t col_index, const ConvertOptions& options,
- MemoryPool* pool,
- const std::shared_ptr<internal::TaskGroup>& task_group)
- : ConcreteColumnBuilder(pool, task_group, col_index),
- options_(options),
- infer_status_(options) {}
-
- Status Init();
-
- void Insert(int64_t block_index, const std::shared_ptr<BlockParser>& parser) override;
- Result<std::shared_ptr<ChunkedArray>> Finish() override;
-
- protected:
- std::shared_ptr<DataType> type() const override {
- DCHECK_NE(converter_, nullptr);
- return converter_->type();
- }
-
- Status UpdateType();
- Status TryConvertChunk(int64_t chunk_index);
- // This must be called unlocked!
- void ScheduleConvertChunk(int64_t chunk_index);
-
- // CAUTION: ConvertOptions can grow large (if it customizes hundreds or
- // thousands of columns), so avoid copying it in each InferringColumnBuilder.
- const ConvertOptions& options_;
-
- // Current inference status
- InferStatus infer_status_;
- std::shared_ptr<Converter> converter_;
-
- // The parsers corresponding to each chunk (for reconverting)
- std::vector<std::shared_ptr<BlockParser>> parsers_;
-};
-
-Status InferringColumnBuilder::Init() { return UpdateType(); }
-
-Status InferringColumnBuilder::UpdateType() {
- return infer_status_.MakeConverter(pool_).Value(&converter_);
-}
-
-void InferringColumnBuilder::ScheduleConvertChunk(int64_t chunk_index) {
- task_group_->Append([=]() { return TryConvertChunk(chunk_index); });
-}
-
-Status InferringColumnBuilder::TryConvertChunk(int64_t chunk_index) {
- std::unique_lock<std::mutex> lock(mutex_);
- std::shared_ptr<Converter> converter = converter_;
- std::shared_ptr<BlockParser> parser = parsers_[chunk_index];
- InferKind kind = infer_status_.kind();
-
- DCHECK_NE(parser, nullptr);
-
- lock.unlock();
- auto maybe_array = converter->Convert(*parser, col_index_);
- lock.lock();
-
- if (kind != infer_status_.kind()) {
- // infer_kind_ was changed by another task, reconvert
- lock.unlock();
- ScheduleConvertChunk(chunk_index);
- return Status::OK();
- }
-
- if (maybe_array.ok() || !infer_status_.can_loosen_type()) {
- // Conversion succeeded, or failed definitively
- if (!infer_status_.can_loosen_type()) {
- // We won't try to reconvert anymore
- parsers_[chunk_index].reset();
- }
- return SetChunkUnlocked(chunk_index, maybe_array);
- }
-
- // Conversion failed, try another type
- infer_status_.LoosenType(maybe_array.status());
- RETURN_NOT_OK(UpdateType());
-
- // Reconvert past finished chunks
- // (unfinished chunks will notice by themselves if they need reconverting)
- const auto nchunks = static_cast<int64_t>(chunks_.size());
- for (int64_t i = 0; i < nchunks; ++i) {
- if (i != chunk_index && chunks_[i]) {
- // We're assuming the chunk was converted using the wrong type
- // (which should be true unless the executor reorders tasks)
- chunks_[i].reset();
- lock.unlock();
- ScheduleConvertChunk(i);
- lock.lock();
- }
- }
-
- // Reconvert this chunk
- lock.unlock();
- ScheduleConvertChunk(chunk_index);
-
- return Status::OK();
-}
-
-void InferringColumnBuilder::Insert(int64_t block_index,
- const std::shared_ptr<BlockParser>& parser) {
- // Create a slot for the new chunk and spawn a task to convert it
- size_t chunk_index = static_cast<size_t>(block_index);
- {
- std::lock_guard<std::mutex> lock(mutex_);
-
- DCHECK_NE(converter_, nullptr);
- if (parsers_.size() <= chunk_index) {
- parsers_.resize(chunk_index + 1);
- }
- // Should not insert an already converting chunk
- DCHECK_EQ(parsers_[chunk_index], nullptr);
- parsers_[chunk_index] = parser;
- ReserveChunksUnlocked(block_index);
- }
-
- ScheduleConvertChunk(chunk_index);
-}
-
-Result<std::shared_ptr<ChunkedArray>> InferringColumnBuilder::Finish() {
- std::lock_guard<std::mutex> lock(mutex_);
-
- parsers_.clear();
- return FinishUnlocked();
-}
-
-//////////////////////////////////////////////////////////////////////////
-// Factory functions
-
-Result<std::shared_ptr<ColumnBuilder>> ColumnBuilder::Make(
- MemoryPool* pool, const std::shared_ptr<DataType>& type, int32_t col_index,
- const ConvertOptions& options, const std::shared_ptr<TaskGroup>& task_group) {
- auto ptr =
- std::make_shared<TypedColumnBuilder>(type, col_index, options, pool, task_group);
- RETURN_NOT_OK(ptr->Init());
- return ptr;
-}
-
-Result<std::shared_ptr<ColumnBuilder>> ColumnBuilder::Make(
- MemoryPool* pool, int32_t col_index, const ConvertOptions& options,
- const std::shared_ptr<TaskGroup>& task_group) {
- auto ptr =
- std::make_shared<InferringColumnBuilder>(col_index, options, pool, task_group);
- RETURN_NOT_OK(ptr->Init());
- return ptr;
-}
-
-Result<std::shared_ptr<ColumnBuilder>> ColumnBuilder::MakeNull(
- MemoryPool* pool, const std::shared_ptr<DataType>& type,
- const std::shared_ptr<internal::TaskGroup>& task_group) {
- return std::make_shared<NullColumnBuilder>(type, pool, task_group);
-}
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include <cstddef>
+#include <cstdint>
+#include <memory>
+#include <mutex>
+#include <sstream>
+#include <string>
+#include <utility>
+#include <vector>
+
+#include "arrow/array.h"
+#include "arrow/array/builder_base.h"
+#include "arrow/chunked_array.h"
+#include "arrow/csv/column_builder.h"
+#include "arrow/csv/converter.h"
+#include "arrow/csv/inference_internal.h"
+#include "arrow/csv/options.h"
+#include "arrow/csv/parser.h"
+#include "arrow/status.h"
+#include "arrow/type.h"
+#include "arrow/type_fwd.h"
+#include "arrow/util/logging.h"
+#include "arrow/util/task_group.h"
+
+namespace arrow {
+namespace csv {
+
+class BlockParser;
+
+using internal::TaskGroup;
+
+class ConcreteColumnBuilder : public ColumnBuilder {
+ public:
+ explicit ConcreteColumnBuilder(MemoryPool* pool,
+ std::shared_ptr<internal::TaskGroup> task_group,
+ int32_t col_index = -1)
+ : ColumnBuilder(std::move(task_group)), pool_(pool), col_index_(col_index) {}
+
+ void Append(const std::shared_ptr<BlockParser>& parser) override {
+ Insert(static_cast<int64_t>(chunks_.size()), parser);
+ }
+
+ Result<std::shared_ptr<ChunkedArray>> Finish() override {
+ std::lock_guard<std::mutex> lock(mutex_);
+
+ return FinishUnlocked();
+ }
+
+ protected:
+ virtual std::shared_ptr<DataType> type() const = 0;
+
+ Result<std::shared_ptr<ChunkedArray>> FinishUnlocked() {
+ auto type = this->type();
+ for (const auto& chunk : chunks_) {
+ if (chunk == nullptr) {
+ return Status::UnknownError("a chunk failed converting for an unknown reason");
+ }
+ DCHECK_EQ(chunk->type()->id(), type->id()) << "Chunk types not equal!";
+ }
+ return std::make_shared<ChunkedArray>(chunks_, std::move(type));
+ }
+
+ void ReserveChunks(int64_t block_index) {
+ // Create a null Array pointer at the back at the list.
+ std::lock_guard<std::mutex> lock(mutex_);
+ ReserveChunksUnlocked(block_index);
+ }
+
+ void ReserveChunksUnlocked(int64_t block_index) {
+ // Create a null Array pointer at the back at the list.
+ size_t chunk_index = static_cast<size_t>(block_index);
+ if (chunks_.size() <= chunk_index) {
+ chunks_.resize(chunk_index + 1);
+ }
+ }
+
+ Status SetChunk(int64_t chunk_index, Result<std::shared_ptr<Array>> maybe_array) {
+ std::lock_guard<std::mutex> lock(mutex_);
+ return SetChunkUnlocked(chunk_index, std::move(maybe_array));
+ }
+
+ Status SetChunkUnlocked(int64_t chunk_index,
+ Result<std::shared_ptr<Array>> maybe_array) {
+ // Should not insert an already built chunk
+ DCHECK_EQ(chunks_[chunk_index], nullptr);
+
+ if (maybe_array.ok()) {
+ chunks_[chunk_index] = *std::move(maybe_array);
+ return Status::OK();
+ } else {
+ return WrapConversionError(maybe_array.status());
+ }
+ }
+
+ Status WrapConversionError(const Status& st) {
+ if (ARROW_PREDICT_TRUE(st.ok())) {
+ return st;
+ } else {
+ std::stringstream ss;
+ ss << "In CSV column #" << col_index_ << ": " << st.message();
+ return st.WithMessage(ss.str());
+ }
+ }
+
+ MemoryPool* pool_;
+ int32_t col_index_;
+
+ ArrayVector chunks_;
+
+ std::mutex mutex_;
+};
+
+//////////////////////////////////////////////////////////////////////////
+// Null column builder implementation (for a column not in the CSV file)
+
+class NullColumnBuilder : public ConcreteColumnBuilder {
+ public:
+ explicit NullColumnBuilder(const std::shared_ptr<DataType>& type, MemoryPool* pool,
+ const std::shared_ptr<internal::TaskGroup>& task_group)
+ : ConcreteColumnBuilder(pool, task_group), type_(type) {}
+
+ void Insert(int64_t block_index, const std::shared_ptr<BlockParser>& parser) override;
+
+ protected:
+ std::shared_ptr<DataType> type() const override { return type_; }
+
+ std::shared_ptr<DataType> type_;
+};
+
+void NullColumnBuilder::Insert(int64_t block_index,
+ const std::shared_ptr<BlockParser>& parser) {
+ ReserveChunks(block_index);
+
+ // Spawn a task that will build an array of nulls with the right DataType
+ const int32_t num_rows = parser->num_rows();
+ DCHECK_GE(num_rows, 0);
+
+ task_group_->Append([=]() -> Status {
+ std::unique_ptr<ArrayBuilder> builder;
+ RETURN_NOT_OK(MakeBuilder(pool_, type_, &builder));
+ std::shared_ptr<Array> res;
+ RETURN_NOT_OK(builder->AppendNulls(num_rows));
+ RETURN_NOT_OK(builder->Finish(&res));
+
+ return SetChunk(block_index, res);
+ });
+}
+
+//////////////////////////////////////////////////////////////////////////
+// Pre-typed column builder implementation
+
+class TypedColumnBuilder : public ConcreteColumnBuilder {
+ public:
+ TypedColumnBuilder(const std::shared_ptr<DataType>& type, int32_t col_index,
+ const ConvertOptions& options, MemoryPool* pool,
+ const std::shared_ptr<internal::TaskGroup>& task_group)
+ : ConcreteColumnBuilder(pool, task_group, col_index),
+ type_(type),
+ options_(options) {}
+
+ Status Init();
+
+ void Insert(int64_t block_index, const std::shared_ptr<BlockParser>& parser) override;
+
+ protected:
+ std::shared_ptr<DataType> type() const override { return type_; }
+
+ std::shared_ptr<DataType> type_;
+ // CAUTION: ConvertOptions can grow large (if it customizes hundreds or
+ // thousands of columns), so avoid copying it in each TypedColumnBuilder.
+ const ConvertOptions& options_;
+
+ std::shared_ptr<Converter> converter_;
+};
+
+Status TypedColumnBuilder::Init() {
+ ARROW_ASSIGN_OR_RAISE(converter_, Converter::Make(type_, options_, pool_));
+ return Status::OK();
+}
+
+void TypedColumnBuilder::Insert(int64_t block_index,
+ const std::shared_ptr<BlockParser>& parser) {
+ DCHECK_NE(converter_, nullptr);
+
+ ReserveChunks(block_index);
+
+ // We're careful that all references in the closure outlive the Append() call
+ task_group_->Append([=]() -> Status {
+ return SetChunk(block_index, converter_->Convert(*parser, col_index_));
+ });
+}
+
+//////////////////////////////////////////////////////////////////////////
+// Type-inferring column builder implementation
+
+class InferringColumnBuilder : public ConcreteColumnBuilder {
+ public:
+ InferringColumnBuilder(int32_t col_index, const ConvertOptions& options,
+ MemoryPool* pool,
+ const std::shared_ptr<internal::TaskGroup>& task_group)
+ : ConcreteColumnBuilder(pool, task_group, col_index),
+ options_(options),
+ infer_status_(options) {}
+
+ Status Init();
+
+ void Insert(int64_t block_index, const std::shared_ptr<BlockParser>& parser) override;
+ Result<std::shared_ptr<ChunkedArray>> Finish() override;
+
+ protected:
+ std::shared_ptr<DataType> type() const override {
+ DCHECK_NE(converter_, nullptr);
+ return converter_->type();
+ }
+
+ Status UpdateType();
+ Status TryConvertChunk(int64_t chunk_index);
+ // This must be called unlocked!
+ void ScheduleConvertChunk(int64_t chunk_index);
+
+ // CAUTION: ConvertOptions can grow large (if it customizes hundreds or
+ // thousands of columns), so avoid copying it in each InferringColumnBuilder.
+ const ConvertOptions& options_;
+
+ // Current inference status
+ InferStatus infer_status_;
+ std::shared_ptr<Converter> converter_;
+
+ // The parsers corresponding to each chunk (for reconverting)
+ std::vector<std::shared_ptr<BlockParser>> parsers_;
+};
+
+Status InferringColumnBuilder::Init() { return UpdateType(); }
+
+Status InferringColumnBuilder::UpdateType() {
+ return infer_status_.MakeConverter(pool_).Value(&converter_);
+}
+
+void InferringColumnBuilder::ScheduleConvertChunk(int64_t chunk_index) {
+ task_group_->Append([=]() { return TryConvertChunk(chunk_index); });
+}
+
+Status InferringColumnBuilder::TryConvertChunk(int64_t chunk_index) {
+ std::unique_lock<std::mutex> lock(mutex_);
+ std::shared_ptr<Converter> converter = converter_;
+ std::shared_ptr<BlockParser> parser = parsers_[chunk_index];
+ InferKind kind = infer_status_.kind();
+
+ DCHECK_NE(parser, nullptr);
+
+ lock.unlock();
+ auto maybe_array = converter->Convert(*parser, col_index_);
+ lock.lock();
+
+ if (kind != infer_status_.kind()) {
+ // infer_kind_ was changed by another task, reconvert
+ lock.unlock();
+ ScheduleConvertChunk(chunk_index);
+ return Status::OK();
+ }
+
+ if (maybe_array.ok() || !infer_status_.can_loosen_type()) {
+ // Conversion succeeded, or failed definitively
+ if (!infer_status_.can_loosen_type()) {
+ // We won't try to reconvert anymore
+ parsers_[chunk_index].reset();
+ }
+ return SetChunkUnlocked(chunk_index, maybe_array);
+ }
+
+ // Conversion failed, try another type
+ infer_status_.LoosenType(maybe_array.status());
+ RETURN_NOT_OK(UpdateType());
+
+ // Reconvert past finished chunks
+ // (unfinished chunks will notice by themselves if they need reconverting)
+ const auto nchunks = static_cast<int64_t>(chunks_.size());
+ for (int64_t i = 0; i < nchunks; ++i) {
+ if (i != chunk_index && chunks_[i]) {
+ // We're assuming the chunk was converted using the wrong type
+ // (which should be true unless the executor reorders tasks)
+ chunks_[i].reset();
+ lock.unlock();
+ ScheduleConvertChunk(i);
+ lock.lock();
+ }
+ }
+
+ // Reconvert this chunk
+ lock.unlock();
+ ScheduleConvertChunk(chunk_index);
+
+ return Status::OK();
+}
+
+void InferringColumnBuilder::Insert(int64_t block_index,
+ const std::shared_ptr<BlockParser>& parser) {
+ // Create a slot for the new chunk and spawn a task to convert it
+ size_t chunk_index = static_cast<size_t>(block_index);
+ {
+ std::lock_guard<std::mutex> lock(mutex_);
+
+ DCHECK_NE(converter_, nullptr);
+ if (parsers_.size() <= chunk_index) {
+ parsers_.resize(chunk_index + 1);
+ }
+ // Should not insert an already converting chunk
+ DCHECK_EQ(parsers_[chunk_index], nullptr);
+ parsers_[chunk_index] = parser;
+ ReserveChunksUnlocked(block_index);
+ }
+
+ ScheduleConvertChunk(chunk_index);
+}
+
+Result<std::shared_ptr<ChunkedArray>> InferringColumnBuilder::Finish() {
+ std::lock_guard<std::mutex> lock(mutex_);
+
+ parsers_.clear();
+ return FinishUnlocked();
+}
+
+//////////////////////////////////////////////////////////////////////////
+// Factory functions
+
+Result<std::shared_ptr<ColumnBuilder>> ColumnBuilder::Make(
+ MemoryPool* pool, const std::shared_ptr<DataType>& type, int32_t col_index,
+ const ConvertOptions& options, const std::shared_ptr<TaskGroup>& task_group) {
+ auto ptr =
+ std::make_shared<TypedColumnBuilder>(type, col_index, options, pool, task_group);
+ RETURN_NOT_OK(ptr->Init());
+ return ptr;
+}
+
+Result<std::shared_ptr<ColumnBuilder>> ColumnBuilder::Make(
+ MemoryPool* pool, int32_t col_index, const ConvertOptions& options,
+ const std::shared_ptr<TaskGroup>& task_group) {
+ auto ptr =
+ std::make_shared<InferringColumnBuilder>(col_index, options, pool, task_group);
+ RETURN_NOT_OK(ptr->Init());
+ return ptr;
+}
+
+Result<std::shared_ptr<ColumnBuilder>> ColumnBuilder::MakeNull(
+ MemoryPool* pool, const std::shared_ptr<DataType>& type,
+ const std::shared_ptr<internal::TaskGroup>& task_group) {
+ return std::make_shared<NullColumnBuilder>(type, pool, task_group);
+}
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_builder.h b/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_builder.h
index 170a8ad067..72bb46586e 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_builder.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_builder.h
@@ -1,78 +1,78 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <cstdint>
-#include <memory>
-#include <utility>
-
-#include "arrow/result.h"
-#include "arrow/type_fwd.h"
-#include "arrow/util/type_fwd.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-namespace csv {
-
-class BlockParser;
-struct ConvertOptions;
-
-class ARROW_EXPORT ColumnBuilder {
- public:
- virtual ~ColumnBuilder() = default;
-
- /// Spawn a task that will try to convert and append the given CSV block.
- /// All calls to Append() should happen on the same thread, otherwise
- /// call Insert() instead.
- virtual void Append(const std::shared_ptr<BlockParser>& parser) = 0;
-
- /// Spawn a task that will try to convert and insert the given CSV block
- virtual void Insert(int64_t block_index,
- const std::shared_ptr<BlockParser>& parser) = 0;
-
- /// Return the final chunked array. The TaskGroup _must_ have finished!
- virtual Result<std::shared_ptr<ChunkedArray>> Finish() = 0;
-
- std::shared_ptr<internal::TaskGroup> task_group() { return task_group_; }
-
- /// Construct a strictly-typed ColumnBuilder.
- static Result<std::shared_ptr<ColumnBuilder>> Make(
- MemoryPool* pool, const std::shared_ptr<DataType>& type, int32_t col_index,
- const ConvertOptions& options,
- const std::shared_ptr<internal::TaskGroup>& task_group);
-
- /// Construct a type-inferring ColumnBuilder.
- static Result<std::shared_ptr<ColumnBuilder>> Make(
- MemoryPool* pool, int32_t col_index, const ConvertOptions& options,
- const std::shared_ptr<internal::TaskGroup>& task_group);
-
- /// Construct a ColumnBuilder for a column of nulls
- /// (i.e. not present in the CSV file).
- static Result<std::shared_ptr<ColumnBuilder>> MakeNull(
- MemoryPool* pool, const std::shared_ptr<DataType>& type,
- const std::shared_ptr<internal::TaskGroup>& task_group);
-
- protected:
- explicit ColumnBuilder(std::shared_ptr<internal::TaskGroup> task_group)
- : task_group_(std::move(task_group)) {}
-
- std::shared_ptr<internal::TaskGroup> task_group_;
-};
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <cstdint>
+#include <memory>
+#include <utility>
+
+#include "arrow/result.h"
+#include "arrow/type_fwd.h"
+#include "arrow/util/type_fwd.h"
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+namespace csv {
+
+class BlockParser;
+struct ConvertOptions;
+
+class ARROW_EXPORT ColumnBuilder {
+ public:
+ virtual ~ColumnBuilder() = default;
+
+ /// Spawn a task that will try to convert and append the given CSV block.
+ /// All calls to Append() should happen on the same thread, otherwise
+ /// call Insert() instead.
+ virtual void Append(const std::shared_ptr<BlockParser>& parser) = 0;
+
+ /// Spawn a task that will try to convert and insert the given CSV block
+ virtual void Insert(int64_t block_index,
+ const std::shared_ptr<BlockParser>& parser) = 0;
+
+ /// Return the final chunked array. The TaskGroup _must_ have finished!
+ virtual Result<std::shared_ptr<ChunkedArray>> Finish() = 0;
+
+ std::shared_ptr<internal::TaskGroup> task_group() { return task_group_; }
+
+ /// Construct a strictly-typed ColumnBuilder.
+ static Result<std::shared_ptr<ColumnBuilder>> Make(
+ MemoryPool* pool, const std::shared_ptr<DataType>& type, int32_t col_index,
+ const ConvertOptions& options,
+ const std::shared_ptr<internal::TaskGroup>& task_group);
+
+ /// Construct a type-inferring ColumnBuilder.
+ static Result<std::shared_ptr<ColumnBuilder>> Make(
+ MemoryPool* pool, int32_t col_index, const ConvertOptions& options,
+ const std::shared_ptr<internal::TaskGroup>& task_group);
+
+ /// Construct a ColumnBuilder for a column of nulls
+ /// (i.e. not present in the CSV file).
+ static Result<std::shared_ptr<ColumnBuilder>> MakeNull(
+ MemoryPool* pool, const std::shared_ptr<DataType>& type,
+ const std::shared_ptr<internal::TaskGroup>& task_group);
+
+ protected:
+ explicit ColumnBuilder(std::shared_ptr<internal::TaskGroup> task_group)
+ : task_group_(std::move(task_group)) {}
+
+ std::shared_ptr<internal::TaskGroup> task_group_;
+};
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_decoder.cc b/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_decoder.cc
index 436d703a9c..70d8e90b35 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_decoder.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_decoder.cc
@@ -1,243 +1,243 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/csv/column_decoder.h"
-
-#include <cstddef>
-#include <cstdint>
-#include <memory>
-#include <sstream>
-#include <string>
-#include <utility>
-
-#include "arrow/array.h"
-#include "arrow/array/builder_base.h"
-#include "arrow/csv/converter.h"
-#include "arrow/csv/inference_internal.h"
-#include "arrow/csv/options.h"
-#include "arrow/csv/parser.h"
-#include "arrow/status.h"
-#include "arrow/type.h"
-#include "arrow/type_fwd.h"
-#include "arrow/util/future.h"
-#include "arrow/util/logging.h"
-#include "arrow/util/task_group.h"
-
-namespace arrow {
-namespace csv {
-
-using internal::TaskGroup;
-
-class ConcreteColumnDecoder : public ColumnDecoder {
- public:
- explicit ConcreteColumnDecoder(MemoryPool* pool, int32_t col_index = -1)
- : ColumnDecoder(), pool_(pool), col_index_(col_index) {}
-
- protected:
- // XXX useful?
- virtual std::shared_ptr<DataType> type() const = 0;
-
- Result<std::shared_ptr<Array>> WrapConversionError(
- const Result<std::shared_ptr<Array>>& result) {
- if (ARROW_PREDICT_TRUE(result.ok())) {
- return result;
- } else {
- const auto& st = result.status();
- std::stringstream ss;
- ss << "In CSV column #" << col_index_ << ": " << st.message();
- return st.WithMessage(ss.str());
- }
- }
-
- MemoryPool* pool_;
- int32_t col_index_;
- internal::Executor* executor_;
-};
-
-//////////////////////////////////////////////////////////////////////////
-// Null column decoder implementation (for a column not in the CSV file)
-
-class NullColumnDecoder : public ConcreteColumnDecoder {
- public:
- explicit NullColumnDecoder(const std::shared_ptr<DataType>& type, MemoryPool* pool)
- : ConcreteColumnDecoder(pool), type_(type) {}
-
- Future<std::shared_ptr<Array>> Decode(
- const std::shared_ptr<BlockParser>& parser) override;
-
- protected:
- std::shared_ptr<DataType> type() const override { return type_; }
-
- std::shared_ptr<DataType> type_;
-};
-
-Future<std::shared_ptr<Array>> NullColumnDecoder::Decode(
- const std::shared_ptr<BlockParser>& parser) {
- DCHECK_GE(parser->num_rows(), 0);
- return WrapConversionError(MakeArrayOfNull(type_, parser->num_rows(), pool_));
-}
-
-//////////////////////////////////////////////////////////////////////////
-// Pre-typed column decoder implementation
-
-class TypedColumnDecoder : public ConcreteColumnDecoder {
- public:
- TypedColumnDecoder(const std::shared_ptr<DataType>& type, int32_t col_index,
- const ConvertOptions& options, MemoryPool* pool)
- : ConcreteColumnDecoder(pool, col_index), type_(type), options_(options) {}
-
- Status Init();
-
- Future<std::shared_ptr<Array>> Decode(
- const std::shared_ptr<BlockParser>& parser) override;
-
- protected:
- std::shared_ptr<DataType> type() const override { return type_; }
-
- std::shared_ptr<DataType> type_;
- // CAUTION: ConvertOptions can grow large (if it customizes hundreds or
- // thousands of columns), so avoid copying it in each TypedColumnDecoder.
- const ConvertOptions& options_;
-
- std::shared_ptr<Converter> converter_;
-};
-
-Status TypedColumnDecoder::Init() {
- ARROW_ASSIGN_OR_RAISE(converter_, Converter::Make(type_, options_, pool_));
- return Status::OK();
-}
-
-Future<std::shared_ptr<Array>> TypedColumnDecoder::Decode(
- const std::shared_ptr<BlockParser>& parser) {
- DCHECK_NE(converter_, nullptr);
- return Future<std::shared_ptr<Array>>::MakeFinished(
- WrapConversionError(converter_->Convert(*parser, col_index_)));
-}
-
-//////////////////////////////////////////////////////////////////////////
-// Type-inferring column builder implementation
-
-class InferringColumnDecoder : public ConcreteColumnDecoder {
- public:
- InferringColumnDecoder(int32_t col_index, const ConvertOptions& options,
- MemoryPool* pool)
- : ConcreteColumnDecoder(pool, col_index),
- options_(options),
- infer_status_(options),
- type_frozen_(false) {
- first_inference_run_ = Future<>::Make();
- first_inferrer_ = 0;
- }
-
- Status Init();
-
- Future<std::shared_ptr<Array>> Decode(
- const std::shared_ptr<BlockParser>& parser) override;
-
- protected:
- std::shared_ptr<DataType> type() const override {
- DCHECK_NE(converter_, nullptr);
- return converter_->type();
- }
-
- Status UpdateType();
- Result<std::shared_ptr<Array>> RunInference(const std::shared_ptr<BlockParser>& parser);
-
- // CAUTION: ConvertOptions can grow large (if it customizes hundreds or
- // thousands of columns), so avoid copying it in each InferringColumnDecoder.
- const ConvertOptions& options_;
-
- // Current inference status
- InferStatus infer_status_;
- bool type_frozen_;
- std::atomic<int> first_inferrer_;
- Future<> first_inference_run_;
- std::shared_ptr<Converter> converter_;
-};
-
-Status InferringColumnDecoder::Init() { return UpdateType(); }
-
-Status InferringColumnDecoder::UpdateType() {
- return infer_status_.MakeConverter(pool_).Value(&converter_);
-}
-
-Result<std::shared_ptr<Array>> InferringColumnDecoder::RunInference(
- const std::shared_ptr<BlockParser>& parser) {
- while (true) {
- // (no one else should be updating converter_ concurrently)
- auto maybe_array = converter_->Convert(*parser, col_index_);
-
- if (maybe_array.ok() || !infer_status_.can_loosen_type()) {
- // Conversion succeeded, or failed definitively
- DCHECK(!type_frozen_);
- type_frozen_ = true;
- return maybe_array;
- }
- // Conversion failed temporarily, try another type
- infer_status_.LoosenType(maybe_array.status());
- auto update_status = UpdateType();
- if (!update_status.ok()) {
- return update_status;
- }
- }
-}
-
-Future<std::shared_ptr<Array>> InferringColumnDecoder::Decode(
- const std::shared_ptr<BlockParser>& parser) {
- bool already_taken = first_inferrer_.fetch_or(1);
- // First block: run inference
- if (!already_taken) {
- auto maybe_array = RunInference(parser);
- first_inference_run_.MarkFinished();
- return Future<std::shared_ptr<Array>>::MakeFinished(std::move(maybe_array));
- }
-
- // Non-first block: wait for inference to finish on first block now,
- // without blocking a TaskGroup thread.
- return first_inference_run_.Then([this, parser] {
- DCHECK(type_frozen_);
- auto maybe_array = converter_->Convert(*parser, col_index_);
- return WrapConversionError(converter_->Convert(*parser, col_index_));
- });
-}
-
-//////////////////////////////////////////////////////////////////////////
-// Factory functions
-
-Result<std::shared_ptr<ColumnDecoder>> ColumnDecoder::Make(
- MemoryPool* pool, int32_t col_index, const ConvertOptions& options) {
- auto ptr = std::make_shared<InferringColumnDecoder>(col_index, options, pool);
- RETURN_NOT_OK(ptr->Init());
- return ptr;
-}
-
-Result<std::shared_ptr<ColumnDecoder>> ColumnDecoder::Make(
- MemoryPool* pool, std::shared_ptr<DataType> type, int32_t col_index,
- const ConvertOptions& options) {
- auto ptr =
- std::make_shared<TypedColumnDecoder>(std::move(type), col_index, options, pool);
- RETURN_NOT_OK(ptr->Init());
- return ptr;
-}
-
-Result<std::shared_ptr<ColumnDecoder>> ColumnDecoder::MakeNull(
- MemoryPool* pool, std::shared_ptr<DataType> type) {
- return std::make_shared<NullColumnDecoder>(std::move(type), pool);
-}
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/csv/column_decoder.h"
+
+#include <cstddef>
+#include <cstdint>
+#include <memory>
+#include <sstream>
+#include <string>
+#include <utility>
+
+#include "arrow/array.h"
+#include "arrow/array/builder_base.h"
+#include "arrow/csv/converter.h"
+#include "arrow/csv/inference_internal.h"
+#include "arrow/csv/options.h"
+#include "arrow/csv/parser.h"
+#include "arrow/status.h"
+#include "arrow/type.h"
+#include "arrow/type_fwd.h"
+#include "arrow/util/future.h"
+#include "arrow/util/logging.h"
+#include "arrow/util/task_group.h"
+
+namespace arrow {
+namespace csv {
+
+using internal::TaskGroup;
+
+class ConcreteColumnDecoder : public ColumnDecoder {
+ public:
+ explicit ConcreteColumnDecoder(MemoryPool* pool, int32_t col_index = -1)
+ : ColumnDecoder(), pool_(pool), col_index_(col_index) {}
+
+ protected:
+ // XXX useful?
+ virtual std::shared_ptr<DataType> type() const = 0;
+
+ Result<std::shared_ptr<Array>> WrapConversionError(
+ const Result<std::shared_ptr<Array>>& result) {
+ if (ARROW_PREDICT_TRUE(result.ok())) {
+ return result;
+ } else {
+ const auto& st = result.status();
+ std::stringstream ss;
+ ss << "In CSV column #" << col_index_ << ": " << st.message();
+ return st.WithMessage(ss.str());
+ }
+ }
+
+ MemoryPool* pool_;
+ int32_t col_index_;
+ internal::Executor* executor_;
+};
+
+//////////////////////////////////////////////////////////////////////////
+// Null column decoder implementation (for a column not in the CSV file)
+
+class NullColumnDecoder : public ConcreteColumnDecoder {
+ public:
+ explicit NullColumnDecoder(const std::shared_ptr<DataType>& type, MemoryPool* pool)
+ : ConcreteColumnDecoder(pool), type_(type) {}
+
+ Future<std::shared_ptr<Array>> Decode(
+ const std::shared_ptr<BlockParser>& parser) override;
+
+ protected:
+ std::shared_ptr<DataType> type() const override { return type_; }
+
+ std::shared_ptr<DataType> type_;
+};
+
+Future<std::shared_ptr<Array>> NullColumnDecoder::Decode(
+ const std::shared_ptr<BlockParser>& parser) {
+ DCHECK_GE(parser->num_rows(), 0);
+ return WrapConversionError(MakeArrayOfNull(type_, parser->num_rows(), pool_));
+}
+
+//////////////////////////////////////////////////////////////////////////
+// Pre-typed column decoder implementation
+
+class TypedColumnDecoder : public ConcreteColumnDecoder {
+ public:
+ TypedColumnDecoder(const std::shared_ptr<DataType>& type, int32_t col_index,
+ const ConvertOptions& options, MemoryPool* pool)
+ : ConcreteColumnDecoder(pool, col_index), type_(type), options_(options) {}
+
+ Status Init();
+
+ Future<std::shared_ptr<Array>> Decode(
+ const std::shared_ptr<BlockParser>& parser) override;
+
+ protected:
+ std::shared_ptr<DataType> type() const override { return type_; }
+
+ std::shared_ptr<DataType> type_;
+ // CAUTION: ConvertOptions can grow large (if it customizes hundreds or
+ // thousands of columns), so avoid copying it in each TypedColumnDecoder.
+ const ConvertOptions& options_;
+
+ std::shared_ptr<Converter> converter_;
+};
+
+Status TypedColumnDecoder::Init() {
+ ARROW_ASSIGN_OR_RAISE(converter_, Converter::Make(type_, options_, pool_));
+ return Status::OK();
+}
+
+Future<std::shared_ptr<Array>> TypedColumnDecoder::Decode(
+ const std::shared_ptr<BlockParser>& parser) {
+ DCHECK_NE(converter_, nullptr);
+ return Future<std::shared_ptr<Array>>::MakeFinished(
+ WrapConversionError(converter_->Convert(*parser, col_index_)));
+}
+
+//////////////////////////////////////////////////////////////////////////
+// Type-inferring column builder implementation
+
+class InferringColumnDecoder : public ConcreteColumnDecoder {
+ public:
+ InferringColumnDecoder(int32_t col_index, const ConvertOptions& options,
+ MemoryPool* pool)
+ : ConcreteColumnDecoder(pool, col_index),
+ options_(options),
+ infer_status_(options),
+ type_frozen_(false) {
+ first_inference_run_ = Future<>::Make();
+ first_inferrer_ = 0;
+ }
+
+ Status Init();
+
+ Future<std::shared_ptr<Array>> Decode(
+ const std::shared_ptr<BlockParser>& parser) override;
+
+ protected:
+ std::shared_ptr<DataType> type() const override {
+ DCHECK_NE(converter_, nullptr);
+ return converter_->type();
+ }
+
+ Status UpdateType();
+ Result<std::shared_ptr<Array>> RunInference(const std::shared_ptr<BlockParser>& parser);
+
+ // CAUTION: ConvertOptions can grow large (if it customizes hundreds or
+ // thousands of columns), so avoid copying it in each InferringColumnDecoder.
+ const ConvertOptions& options_;
+
+ // Current inference status
+ InferStatus infer_status_;
+ bool type_frozen_;
+ std::atomic<int> first_inferrer_;
+ Future<> first_inference_run_;
+ std::shared_ptr<Converter> converter_;
+};
+
+Status InferringColumnDecoder::Init() { return UpdateType(); }
+
+Status InferringColumnDecoder::UpdateType() {
+ return infer_status_.MakeConverter(pool_).Value(&converter_);
+}
+
+Result<std::shared_ptr<Array>> InferringColumnDecoder::RunInference(
+ const std::shared_ptr<BlockParser>& parser) {
+ while (true) {
+ // (no one else should be updating converter_ concurrently)
+ auto maybe_array = converter_->Convert(*parser, col_index_);
+
+ if (maybe_array.ok() || !infer_status_.can_loosen_type()) {
+ // Conversion succeeded, or failed definitively
+ DCHECK(!type_frozen_);
+ type_frozen_ = true;
+ return maybe_array;
+ }
+ // Conversion failed temporarily, try another type
+ infer_status_.LoosenType(maybe_array.status());
+ auto update_status = UpdateType();
+ if (!update_status.ok()) {
+ return update_status;
+ }
+ }
+}
+
+Future<std::shared_ptr<Array>> InferringColumnDecoder::Decode(
+ const std::shared_ptr<BlockParser>& parser) {
+ bool already_taken = first_inferrer_.fetch_or(1);
+ // First block: run inference
+ if (!already_taken) {
+ auto maybe_array = RunInference(parser);
+ first_inference_run_.MarkFinished();
+ return Future<std::shared_ptr<Array>>::MakeFinished(std::move(maybe_array));
+ }
+
+ // Non-first block: wait for inference to finish on first block now,
+ // without blocking a TaskGroup thread.
+ return first_inference_run_.Then([this, parser] {
+ DCHECK(type_frozen_);
+ auto maybe_array = converter_->Convert(*parser, col_index_);
+ return WrapConversionError(converter_->Convert(*parser, col_index_));
+ });
+}
+
+//////////////////////////////////////////////////////////////////////////
+// Factory functions
+
+Result<std::shared_ptr<ColumnDecoder>> ColumnDecoder::Make(
+ MemoryPool* pool, int32_t col_index, const ConvertOptions& options) {
+ auto ptr = std::make_shared<InferringColumnDecoder>(col_index, options, pool);
+ RETURN_NOT_OK(ptr->Init());
+ return ptr;
+}
+
+Result<std::shared_ptr<ColumnDecoder>> ColumnDecoder::Make(
+ MemoryPool* pool, std::shared_ptr<DataType> type, int32_t col_index,
+ const ConvertOptions& options) {
+ auto ptr =
+ std::make_shared<TypedColumnDecoder>(std::move(type), col_index, options, pool);
+ RETURN_NOT_OK(ptr->Init());
+ return ptr;
+}
+
+Result<std::shared_ptr<ColumnDecoder>> ColumnDecoder::MakeNull(
+ MemoryPool* pool, std::shared_ptr<DataType> type) {
+ return std::make_shared<NullColumnDecoder>(std::move(type), pool);
+}
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_decoder.h b/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_decoder.h
index 5fbbd5df58..1b72573dee 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_decoder.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/column_decoder.h
@@ -1,64 +1,64 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <cstdint>
-#include <memory>
-#include <utility>
-
-#include "arrow/result.h"
-#include "arrow/type_fwd.h"
-#include "arrow/util/type_fwd.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-namespace csv {
-
-class BlockParser;
-struct ConvertOptions;
-
-class ARROW_EXPORT ColumnDecoder {
- public:
- virtual ~ColumnDecoder() = default;
-
- /// Spawn a task that will try to convert and insert the given CSV block
- virtual Future<std::shared_ptr<Array>> Decode(
- const std::shared_ptr<BlockParser>& parser) = 0;
-
- /// Construct a strictly-typed ColumnDecoder.
- static Result<std::shared_ptr<ColumnDecoder>> Make(MemoryPool* pool,
- std::shared_ptr<DataType> type,
- int32_t col_index,
- const ConvertOptions& options);
-
- /// Construct a type-inferring ColumnDecoder.
- /// Inference will run only on the first block, the type will be frozen afterwards.
- static Result<std::shared_ptr<ColumnDecoder>> Make(MemoryPool* pool, int32_t col_index,
- const ConvertOptions& options);
-
- /// Construct a ColumnDecoder for a column of nulls
- /// (i.e. not present in the CSV file).
- static Result<std::shared_ptr<ColumnDecoder>> MakeNull(MemoryPool* pool,
- std::shared_ptr<DataType> type);
-
- protected:
- ColumnDecoder() = default;
-};
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <cstdint>
+#include <memory>
+#include <utility>
+
+#include "arrow/result.h"
+#include "arrow/type_fwd.h"
+#include "arrow/util/type_fwd.h"
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+namespace csv {
+
+class BlockParser;
+struct ConvertOptions;
+
+class ARROW_EXPORT ColumnDecoder {
+ public:
+ virtual ~ColumnDecoder() = default;
+
+ /// Spawn a task that will try to convert and insert the given CSV block
+ virtual Future<std::shared_ptr<Array>> Decode(
+ const std::shared_ptr<BlockParser>& parser) = 0;
+
+ /// Construct a strictly-typed ColumnDecoder.
+ static Result<std::shared_ptr<ColumnDecoder>> Make(MemoryPool* pool,
+ std::shared_ptr<DataType> type,
+ int32_t col_index,
+ const ConvertOptions& options);
+
+ /// Construct a type-inferring ColumnDecoder.
+ /// Inference will run only on the first block, the type will be frozen afterwards.
+ static Result<std::shared_ptr<ColumnDecoder>> Make(MemoryPool* pool, int32_t col_index,
+ const ConvertOptions& options);
+
+ /// Construct a ColumnDecoder for a column of nulls
+ /// (i.e. not present in the CSV file).
+ static Result<std::shared_ptr<ColumnDecoder>> MakeNull(MemoryPool* pool,
+ std::shared_ptr<DataType> type);
+
+ protected:
+ ColumnDecoder() = default;
+};
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/converter.cc b/contrib/libs/apache/arrow/cpp/src/arrow/csv/converter.cc
index cb72b22b40..5d0386c6ca 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/converter.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/converter.cc
@@ -1,692 +1,692 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/csv/converter.h"
-
-#include <cstring>
-#include <limits>
-#include <sstream>
-#include <string>
-#include <type_traits>
-#include <vector>
-
-#include "arrow/array/builder_binary.h"
-#include "arrow/array/builder_decimal.h"
-#include "arrow/array/builder_dict.h"
-#include "arrow/array/builder_primitive.h"
-#include "arrow/csv/parser.h"
-#include "arrow/status.h"
-#include "arrow/type.h"
-#include "arrow/type_fwd.h"
-#include "arrow/type_traits.h"
-#include "arrow/util/checked_cast.h"
-#include "arrow/util/decimal.h"
-#include "arrow/util/trie.h"
-#include "arrow/util/utf8.h"
-#include "arrow/util/value_parsing.h" // IWYU pragma: keep
-
-namespace arrow {
-namespace csv {
-
-using internal::checked_cast;
-using internal::Trie;
-using internal::TrieBuilder;
-
-namespace {
-
-Status GenericConversionError(const std::shared_ptr<DataType>& type, const uint8_t* data,
- uint32_t size) {
- return Status::Invalid("CSV conversion error to ", type->ToString(),
- ": invalid value '",
- std::string(reinterpret_cast<const char*>(data), size), "'");
-}
-
-inline bool IsWhitespace(uint8_t c) {
- if (ARROW_PREDICT_TRUE(c > ' ')) {
- return false;
- }
- return c == ' ' || c == '\t';
-}
-
-// Updates data_inout and size_inout to not include leading/trailing whitespace
-// characters.
-inline void TrimWhiteSpace(const uint8_t** data_inout, uint32_t* size_inout) {
- const uint8_t*& data = *data_inout;
- uint32_t& size = *size_inout;
- // Skip trailing whitespace
- if (ARROW_PREDICT_TRUE(size > 0) && ARROW_PREDICT_FALSE(IsWhitespace(data[size - 1]))) {
- const uint8_t* p = data + size - 1;
- while (size > 0 && IsWhitespace(*p)) {
- --size;
- --p;
- }
- }
- // Skip leading whitespace
- if (ARROW_PREDICT_TRUE(size > 0) && ARROW_PREDICT_FALSE(IsWhitespace(data[0]))) {
- while (size > 0 && IsWhitespace(*data)) {
- --size;
- ++data;
- }
- }
-}
-
-Status InitializeTrie(const std::vector<std::string>& inputs, Trie* trie) {
- TrieBuilder builder;
- for (const auto& s : inputs) {
- RETURN_NOT_OK(builder.Append(s, true /* allow_duplicates */));
- }
- *trie = builder.Finish();
- return Status::OK();
-}
-
-// Presize a builder based on parser contents
-template <typename BuilderType>
-enable_if_t<!is_base_binary_type<typename BuilderType::TypeClass>::value, Status>
-PresizeBuilder(const BlockParser& parser, BuilderType* builder) {
- return builder->Resize(parser.num_rows());
-}
-
-// Same, for variable-sized binary builders
-template <typename T>
-Status PresizeBuilder(const BlockParser& parser, BaseBinaryBuilder<T>* builder) {
- RETURN_NOT_OK(builder->Resize(parser.num_rows()));
- return builder->ReserveData(parser.num_bytes());
-}
-
-/////////////////////////////////////////////////////////////////////////
-// Per-type value decoders
-
-struct ValueDecoder {
- explicit ValueDecoder(const std::shared_ptr<DataType>& type,
- const ConvertOptions& options)
- : type_(type), options_(options) {}
-
- Status Initialize() {
- // TODO no need to build a separate Trie for each instance
- return InitializeTrie(options_.null_values, &null_trie_);
- }
-
- bool IsNull(const uint8_t* data, uint32_t size, bool quoted) {
- if (quoted) {
- return false;
- }
- return null_trie_.Find(
- util::string_view(reinterpret_cast<const char*>(data), size)) >= 0;
- }
-
- protected:
- Trie null_trie_;
- std::shared_ptr<DataType> type_;
- const ConvertOptions& options_;
-};
-
-//
-// Value decoder for fixed-size binary
-//
-
-struct FixedSizeBinaryValueDecoder : public ValueDecoder {
- using value_type = const uint8_t*;
-
- explicit FixedSizeBinaryValueDecoder(const std::shared_ptr<DataType>& type,
- const ConvertOptions& options)
- : ValueDecoder(type, options),
- byte_width_(checked_cast<const FixedSizeBinaryType&>(*type).byte_width()) {}
-
- Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
- if (ARROW_PREDICT_FALSE(size != byte_width_)) {
- return Status::Invalid("CSV conversion error to ", type_->ToString(), ": got a ",
- size, "-byte long string");
- }
- *out = data;
- return Status::OK();
- }
-
- protected:
- const uint32_t byte_width_;
-};
-
-//
-// Value decoder for variable-size binary
-//
-
-template <bool CheckUTF8>
-struct BinaryValueDecoder : public ValueDecoder {
- using value_type = util::string_view;
-
- using ValueDecoder::ValueDecoder;
-
- Status Initialize() {
- util::InitializeUTF8();
- return ValueDecoder::Initialize();
- }
-
- Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
- if (CheckUTF8 && ARROW_PREDICT_FALSE(!util::ValidateUTF8(data, size))) {
- return Status::Invalid("CSV conversion error to ", type_->ToString(),
- ": invalid UTF8 data");
- }
- *out = {reinterpret_cast<const char*>(data), size};
- return Status::OK();
- }
-
- bool IsNull(const uint8_t* data, uint32_t size, bool quoted) {
- return options_.strings_can_be_null &&
- (!quoted || options_.quoted_strings_can_be_null) &&
- ValueDecoder::IsNull(data, size, false /* quoted */);
- }
-};
-
-//
-// Value decoder for integers and floats
-//
-
-template <typename T>
-struct NumericValueDecoder : public ValueDecoder {
- using value_type = typename T::c_type;
-
- using ValueDecoder::ValueDecoder;
-
- Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
- // XXX should quoted values be allowed at all?
- TrimWhiteSpace(&data, &size);
- if (ARROW_PREDICT_FALSE(
- !internal::ParseValue<T>(reinterpret_cast<const char*>(data), size, out))) {
- return GenericConversionError(type_, data, size);
- }
- return Status::OK();
- }
-};
-
-//
-// Value decoder for booleans
-//
-
-struct BooleanValueDecoder : public ValueDecoder {
- using value_type = bool;
-
- using ValueDecoder::ValueDecoder;
-
- Status Initialize() {
- // TODO no need to build separate Tries for each instance
- RETURN_NOT_OK(InitializeTrie(options_.true_values, &true_trie_));
- RETURN_NOT_OK(InitializeTrie(options_.false_values, &false_trie_));
- return ValueDecoder::Initialize();
- }
-
- Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
- // XXX should quoted values be allowed at all?
- if (false_trie_.Find(util::string_view(reinterpret_cast<const char*>(data), size)) >=
- 0) {
- *out = false;
- return Status::OK();
- }
- if (ARROW_PREDICT_TRUE(true_trie_.Find(util::string_view(
- reinterpret_cast<const char*>(data), size)) >= 0)) {
- *out = true;
- return Status::OK();
- }
- return GenericConversionError(type_, data, size);
- }
-
- protected:
- Trie true_trie_;
- Trie false_trie_;
-};
-
-//
-// Value decoder for decimals
-//
-
-struct DecimalValueDecoder : public ValueDecoder {
- using value_type = Decimal128;
-
- explicit DecimalValueDecoder(const std::shared_ptr<DataType>& type,
- const ConvertOptions& options)
- : ValueDecoder(type, options),
- decimal_type_(internal::checked_cast<const DecimalType&>(*type_)),
- type_precision_(decimal_type_.precision()),
- type_scale_(decimal_type_.scale()) {}
-
- Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
- TrimWhiteSpace(&data, &size);
- Decimal128 decimal;
- int32_t precision, scale;
- util::string_view view(reinterpret_cast<const char*>(data), size);
- RETURN_NOT_OK(Decimal128::FromString(view, &decimal, &precision, &scale));
- if (precision > type_precision_) {
- return Status::Invalid("Error converting '", view, "' to ", type_->ToString(),
- ": precision not supported by type.");
- }
- if (scale != type_scale_) {
- ARROW_ASSIGN_OR_RAISE(*out, decimal.Rescale(scale, type_scale_));
- } else {
- *out = std::move(decimal);
- }
- return Status::OK();
- }
-
- protected:
- const DecimalType& decimal_type_;
- const int32_t type_precision_;
- const int32_t type_scale_;
-};
-
-//
-// Value decoders for timestamps
-//
-
-struct InlineISO8601ValueDecoder : public ValueDecoder {
- using value_type = int64_t;
-
- explicit InlineISO8601ValueDecoder(const std::shared_ptr<DataType>& type,
- const ConvertOptions& options)
- : ValueDecoder(type, options),
- unit_(checked_cast<const TimestampType&>(*type_).unit()) {}
-
- Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
- if (ARROW_PREDICT_FALSE(!internal::ParseTimestampISO8601(
- reinterpret_cast<const char*>(data), size, unit_, out))) {
- return GenericConversionError(type_, data, size);
- }
- return Status::OK();
- }
-
- protected:
- TimeUnit::type unit_;
-};
-
-struct SingleParserTimestampValueDecoder : public ValueDecoder {
- using value_type = int64_t;
-
- explicit SingleParserTimestampValueDecoder(const std::shared_ptr<DataType>& type,
- const ConvertOptions& options)
- : ValueDecoder(type, options),
- unit_(checked_cast<const TimestampType&>(*type_).unit()),
- parser_(*options_.timestamp_parsers[0]) {}
-
- Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
- if (ARROW_PREDICT_FALSE(
- !parser_(reinterpret_cast<const char*>(data), size, unit_, out))) {
- return GenericConversionError(type_, data, size);
- }
- return Status::OK();
- }
-
- protected:
- TimeUnit::type unit_;
- const TimestampParser& parser_;
-};
-
-struct MultipleParsersTimestampValueDecoder : public ValueDecoder {
- using value_type = int64_t;
-
- explicit MultipleParsersTimestampValueDecoder(const std::shared_ptr<DataType>& type,
- const ConvertOptions& options)
- : ValueDecoder(type, options),
- unit_(checked_cast<const TimestampType&>(*type_).unit()),
- parsers_(GetParsers(options_)) {}
-
- Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
- for (const auto& parser : parsers_) {
- if (parser->operator()(reinterpret_cast<const char*>(data), size, unit_, out)) {
- return Status::OK();
- }
- }
- return GenericConversionError(type_, data, size);
- }
-
- protected:
- using ParserVector = std::vector<const TimestampParser*>;
-
- static ParserVector GetParsers(const ConvertOptions& options) {
- ParserVector parsers(options.timestamp_parsers.size());
- for (size_t i = 0; i < options.timestamp_parsers.size(); ++i) {
- parsers[i] = options.timestamp_parsers[i].get();
- }
- return parsers;
- }
-
- TimeUnit::type unit_;
- std::vector<const TimestampParser*> parsers_;
-};
-
-/////////////////////////////////////////////////////////////////////////
-// Concrete Converter hierarchy
-
-class ConcreteConverter : public Converter {
- public:
- using Converter::Converter;
-};
-
-class ConcreteDictionaryConverter : public DictionaryConverter {
- public:
- using DictionaryConverter::DictionaryConverter;
-};
-
-//
-// Concrete Converter for nulls
-//
-
-class NullConverter : public ConcreteConverter {
- public:
- NullConverter(const std::shared_ptr<DataType>& type, const ConvertOptions& options,
- MemoryPool* pool)
- : ConcreteConverter(type, options, pool), decoder_(type_, options_) {}
-
- Result<std::shared_ptr<Array>> Convert(const BlockParser& parser,
- int32_t col_index) override {
- NullBuilder builder(pool_);
-
- auto visit = [&](const uint8_t* data, uint32_t size, bool quoted) -> Status {
- if (ARROW_PREDICT_TRUE(decoder_.IsNull(data, size, quoted))) {
- return builder.AppendNull();
- } else {
- return GenericConversionError(type_, data, size);
- }
- };
- RETURN_NOT_OK(parser.VisitColumn(col_index, visit));
- std::shared_ptr<Array> res;
- RETURN_NOT_OK(builder.Finish(&res));
- return res;
- }
-
- protected:
- Status Initialize() override { return decoder_.Initialize(); }
-
- ValueDecoder decoder_;
-};
-
-//
-// Concrete Converter for primitives
-//
-
-template <typename T, typename ValueDecoderType>
-class PrimitiveConverter : public ConcreteConverter {
- public:
- PrimitiveConverter(const std::shared_ptr<DataType>& type, const ConvertOptions& options,
- MemoryPool* pool)
- : ConcreteConverter(type, options, pool), decoder_(type_, options_) {}
-
- Result<std::shared_ptr<Array>> Convert(const BlockParser& parser,
- int32_t col_index) override {
- using BuilderType = typename TypeTraits<T>::BuilderType;
- using value_type = typename ValueDecoderType::value_type;
-
- BuilderType builder(type_, pool_);
- RETURN_NOT_OK(PresizeBuilder(parser, &builder));
-
- auto visit = [&](const uint8_t* data, uint32_t size, bool quoted) -> Status {
- if (decoder_.IsNull(data, size, quoted /* quoted */)) {
- return builder.AppendNull();
- }
- value_type value{};
- RETURN_NOT_OK(decoder_.Decode(data, size, quoted, &value));
- builder.UnsafeAppend(value);
- return Status::OK();
- };
- RETURN_NOT_OK(parser.VisitColumn(col_index, visit));
-
- std::shared_ptr<Array> res;
- RETURN_NOT_OK(builder.Finish(&res));
- return res;
- }
-
- protected:
- Status Initialize() override { return decoder_.Initialize(); }
-
- ValueDecoderType decoder_;
-};
-
-//
-// Concrete Converter for dictionaries
-//
-
-template <typename T, typename ValueDecoderType>
-class TypedDictionaryConverter : public ConcreteDictionaryConverter {
- public:
- TypedDictionaryConverter(const std::shared_ptr<DataType>& value_type,
- const ConvertOptions& options, MemoryPool* pool)
- : ConcreteDictionaryConverter(value_type, options, pool),
- decoder_(value_type, options_) {}
-
- Result<std::shared_ptr<Array>> Convert(const BlockParser& parser,
- int32_t col_index) override {
- // We use a fixed index width so that all column chunks get the same index type
- using BuilderType = Dictionary32Builder<T>;
- using value_type = typename ValueDecoderType::value_type;
-
- BuilderType builder(value_type_, pool_);
- RETURN_NOT_OK(PresizeBuilder(parser, &builder));
-
- auto visit = [&](const uint8_t* data, uint32_t size, bool quoted) -> Status {
- if (decoder_.IsNull(data, size, quoted /* quoted */)) {
- return builder.AppendNull();
- }
- if (ARROW_PREDICT_FALSE(builder.dictionary_length() > max_cardinality_)) {
- return Status::IndexError("Dictionary length exceeded max cardinality");
- }
- value_type value{};
- RETURN_NOT_OK(decoder_.Decode(data, size, quoted, &value));
- return builder.Append(value);
- };
- RETURN_NOT_OK(parser.VisitColumn(col_index, visit));
-
- std::shared_ptr<Array> res;
- RETURN_NOT_OK(builder.Finish(&res));
- return res;
- }
-
- void SetMaxCardinality(int32_t max_length) override { max_cardinality_ = max_length; }
-
- protected:
- Status Initialize() override {
- util::InitializeUTF8();
- return decoder_.Initialize();
- }
-
- ValueDecoderType decoder_;
- int32_t max_cardinality_ = std::numeric_limits<int32_t>::max();
-};
-
-//
-// Concrete Converter factory for timestamps
-//
-
-template <template <typename, typename> class ConverterType>
-std::shared_ptr<Converter> MakeTimestampConverter(const std::shared_ptr<DataType>& type,
- const ConvertOptions& options,
- MemoryPool* pool) {
- if (options.timestamp_parsers.size() == 0) {
- // Default to ISO-8601
- return std::make_shared<ConverterType<TimestampType, InlineISO8601ValueDecoder>>(
- type, options, pool);
- } else if (options.timestamp_parsers.size() == 1) {
- // Single user-supplied converter
- return std::make_shared<
- ConverterType<TimestampType, SingleParserTimestampValueDecoder>>(type, options,
- pool);
- } else {
- // Multiple converters, must iterate for each value
- return std::make_shared<
- ConverterType<TimestampType, MultipleParsersTimestampValueDecoder>>(type, options,
- pool);
- }
-}
-
-} // namespace
-
-/////////////////////////////////////////////////////////////////////////
-// Base Converter class implementation
-
-Converter::Converter(const std::shared_ptr<DataType>& type, const ConvertOptions& options,
- MemoryPool* pool)
- : options_(options), pool_(pool), type_(type) {}
-
-DictionaryConverter::DictionaryConverter(const std::shared_ptr<DataType>& value_type,
- const ConvertOptions& options, MemoryPool* pool)
- : Converter(dictionary(int32(), value_type), options, pool),
- value_type_(value_type) {}
-
-Result<std::shared_ptr<Converter>> Converter::Make(const std::shared_ptr<DataType>& type,
- const ConvertOptions& options,
- MemoryPool* pool) {
- std::shared_ptr<Converter> ptr;
-
- switch (type->id()) {
-#define CONVERTER_CASE(TYPE_ID, CONVERTER_TYPE) \
- case TYPE_ID: \
- ptr.reset(new CONVERTER_TYPE(type, options, pool)); \
- break;
-
-#define NUMERIC_CONVERTER_CASE(TYPE_ID, TYPE_CLASS) \
- CONVERTER_CASE(TYPE_ID, \
- (PrimitiveConverter<TYPE_CLASS, NumericValueDecoder<TYPE_CLASS>>))
-
- CONVERTER_CASE(Type::NA, NullConverter)
- NUMERIC_CONVERTER_CASE(Type::INT8, Int8Type)
- NUMERIC_CONVERTER_CASE(Type::INT16, Int16Type)
- NUMERIC_CONVERTER_CASE(Type::INT32, Int32Type)
- NUMERIC_CONVERTER_CASE(Type::INT64, Int64Type)
- NUMERIC_CONVERTER_CASE(Type::UINT8, UInt8Type)
- NUMERIC_CONVERTER_CASE(Type::UINT16, UInt16Type)
- NUMERIC_CONVERTER_CASE(Type::UINT32, UInt32Type)
- NUMERIC_CONVERTER_CASE(Type::UINT64, UInt64Type)
- NUMERIC_CONVERTER_CASE(Type::FLOAT, FloatType)
- NUMERIC_CONVERTER_CASE(Type::DOUBLE, DoubleType)
- NUMERIC_CONVERTER_CASE(Type::DATE32, Date32Type)
- NUMERIC_CONVERTER_CASE(Type::DATE64, Date64Type)
- CONVERTER_CASE(Type::BOOL, (PrimitiveConverter<BooleanType, BooleanValueDecoder>))
- CONVERTER_CASE(Type::BINARY,
- (PrimitiveConverter<BinaryType, BinaryValueDecoder<false>>))
- CONVERTER_CASE(Type::LARGE_BINARY,
- (PrimitiveConverter<LargeBinaryType, BinaryValueDecoder<false>>))
- CONVERTER_CASE(Type::FIXED_SIZE_BINARY,
- (PrimitiveConverter<FixedSizeBinaryType, FixedSizeBinaryValueDecoder>))
- CONVERTER_CASE(Type::DECIMAL,
- (PrimitiveConverter<Decimal128Type, DecimalValueDecoder>))
-
- case Type::TIMESTAMP:
- ptr = MakeTimestampConverter<PrimitiveConverter>(type, options, pool);
- break;
-
- case Type::STRING:
- if (options.check_utf8) {
- ptr = std::make_shared<PrimitiveConverter<StringType, BinaryValueDecoder<true>>>(
- type, options, pool);
- } else {
- ptr = std::make_shared<PrimitiveConverter<StringType, BinaryValueDecoder<false>>>(
- type, options, pool);
- }
- break;
-
- case Type::LARGE_STRING:
- if (options.check_utf8) {
- ptr = std::make_shared<
- PrimitiveConverter<LargeStringType, BinaryValueDecoder<true>>>(type, options,
- pool);
- } else {
- ptr = std::make_shared<
- PrimitiveConverter<LargeStringType, BinaryValueDecoder<false>>>(type, options,
- pool);
- }
- break;
-
- case Type::DICTIONARY: {
- const auto& dict_type = checked_cast<const DictionaryType&>(*type);
- if (dict_type.index_type()->id() != Type::INT32) {
- return Status::NotImplemented(
- "CSV conversion to dictionary only supported for int32 indices, "
- "got ",
- type->ToString());
- }
- return DictionaryConverter::Make(dict_type.value_type(), options, pool);
- }
-
- default: {
- return Status::NotImplemented("CSV conversion to ", type->ToString(),
- " is not supported");
- }
-
-#undef CONVERTER_CASE
-#undef NUMERIC_CONVERTER_CASE
- }
- RETURN_NOT_OK(ptr->Initialize());
- return ptr;
-}
-
-Result<std::shared_ptr<DictionaryConverter>> DictionaryConverter::Make(
- const std::shared_ptr<DataType>& type, const ConvertOptions& options,
- MemoryPool* pool) {
- std::shared_ptr<DictionaryConverter> ptr;
-
- switch (type->id()) {
-#define CONVERTER_CASE(TYPE_ID, TYPE, VALUE_DECODER_TYPE) \
- case TYPE_ID: \
- ptr.reset( \
- new TypedDictionaryConverter<TYPE, VALUE_DECODER_TYPE>(type, options, pool)); \
- break;
-
- // XXX Are 32-bit types useful?
- CONVERTER_CASE(Type::INT32, Int32Type, NumericValueDecoder<Int32Type>)
- CONVERTER_CASE(Type::INT64, Int64Type, NumericValueDecoder<Int64Type>)
- CONVERTER_CASE(Type::UINT32, UInt32Type, NumericValueDecoder<UInt32Type>)
- CONVERTER_CASE(Type::UINT64, UInt64Type, NumericValueDecoder<UInt64Type>)
- CONVERTER_CASE(Type::FLOAT, FloatType, NumericValueDecoder<FloatType>)
- CONVERTER_CASE(Type::DOUBLE, DoubleType, NumericValueDecoder<DoubleType>)
- CONVERTER_CASE(Type::DECIMAL, Decimal128Type, DecimalValueDecoder)
- CONVERTER_CASE(Type::FIXED_SIZE_BINARY, FixedSizeBinaryType,
- FixedSizeBinaryValueDecoder)
- CONVERTER_CASE(Type::BINARY, BinaryType, BinaryValueDecoder<false>)
- CONVERTER_CASE(Type::LARGE_BINARY, LargeBinaryType, BinaryValueDecoder<false>)
-
- case Type::STRING:
- if (options.check_utf8) {
- ptr = std::make_shared<
- TypedDictionaryConverter<StringType, BinaryValueDecoder<true>>>(type, options,
- pool);
- } else {
- ptr = std::make_shared<
- TypedDictionaryConverter<StringType, BinaryValueDecoder<false>>>(
- type, options, pool);
- }
- break;
-
- case Type::LARGE_STRING:
- if (options.check_utf8) {
- ptr = std::make_shared<
- TypedDictionaryConverter<LargeStringType, BinaryValueDecoder<true>>>(
- type, options, pool);
- } else {
- ptr = std::make_shared<
- TypedDictionaryConverter<LargeStringType, BinaryValueDecoder<false>>>(
- type, options, pool);
- }
- break;
-
- default: {
- return Status::NotImplemented("CSV dictionary conversion to ", type->ToString(),
- " is not supported");
- }
-
-#undef CONVERTER_CASE
- }
- RETURN_NOT_OK(ptr->Initialize());
- return ptr;
-}
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/csv/converter.h"
+
+#include <cstring>
+#include <limits>
+#include <sstream>
+#include <string>
+#include <type_traits>
+#include <vector>
+
+#include "arrow/array/builder_binary.h"
+#include "arrow/array/builder_decimal.h"
+#include "arrow/array/builder_dict.h"
+#include "arrow/array/builder_primitive.h"
+#include "arrow/csv/parser.h"
+#include "arrow/status.h"
+#include "arrow/type.h"
+#include "arrow/type_fwd.h"
+#include "arrow/type_traits.h"
+#include "arrow/util/checked_cast.h"
+#include "arrow/util/decimal.h"
+#include "arrow/util/trie.h"
+#include "arrow/util/utf8.h"
+#include "arrow/util/value_parsing.h" // IWYU pragma: keep
+
+namespace arrow {
+namespace csv {
+
+using internal::checked_cast;
+using internal::Trie;
+using internal::TrieBuilder;
+
+namespace {
+
+Status GenericConversionError(const std::shared_ptr<DataType>& type, const uint8_t* data,
+ uint32_t size) {
+ return Status::Invalid("CSV conversion error to ", type->ToString(),
+ ": invalid value '",
+ std::string(reinterpret_cast<const char*>(data), size), "'");
+}
+
+inline bool IsWhitespace(uint8_t c) {
+ if (ARROW_PREDICT_TRUE(c > ' ')) {
+ return false;
+ }
+ return c == ' ' || c == '\t';
+}
+
+// Updates data_inout and size_inout to not include leading/trailing whitespace
+// characters.
+inline void TrimWhiteSpace(const uint8_t** data_inout, uint32_t* size_inout) {
+ const uint8_t*& data = *data_inout;
+ uint32_t& size = *size_inout;
+ // Skip trailing whitespace
+ if (ARROW_PREDICT_TRUE(size > 0) && ARROW_PREDICT_FALSE(IsWhitespace(data[size - 1]))) {
+ const uint8_t* p = data + size - 1;
+ while (size > 0 && IsWhitespace(*p)) {
+ --size;
+ --p;
+ }
+ }
+ // Skip leading whitespace
+ if (ARROW_PREDICT_TRUE(size > 0) && ARROW_PREDICT_FALSE(IsWhitespace(data[0]))) {
+ while (size > 0 && IsWhitespace(*data)) {
+ --size;
+ ++data;
+ }
+ }
+}
+
+Status InitializeTrie(const std::vector<std::string>& inputs, Trie* trie) {
+ TrieBuilder builder;
+ for (const auto& s : inputs) {
+ RETURN_NOT_OK(builder.Append(s, true /* allow_duplicates */));
+ }
+ *trie = builder.Finish();
+ return Status::OK();
+}
+
+// Presize a builder based on parser contents
+template <typename BuilderType>
+enable_if_t<!is_base_binary_type<typename BuilderType::TypeClass>::value, Status>
+PresizeBuilder(const BlockParser& parser, BuilderType* builder) {
+ return builder->Resize(parser.num_rows());
+}
+
+// Same, for variable-sized binary builders
+template <typename T>
+Status PresizeBuilder(const BlockParser& parser, BaseBinaryBuilder<T>* builder) {
+ RETURN_NOT_OK(builder->Resize(parser.num_rows()));
+ return builder->ReserveData(parser.num_bytes());
+}
+
+/////////////////////////////////////////////////////////////////////////
+// Per-type value decoders
+
+struct ValueDecoder {
+ explicit ValueDecoder(const std::shared_ptr<DataType>& type,
+ const ConvertOptions& options)
+ : type_(type), options_(options) {}
+
+ Status Initialize() {
+ // TODO no need to build a separate Trie for each instance
+ return InitializeTrie(options_.null_values, &null_trie_);
+ }
+
+ bool IsNull(const uint8_t* data, uint32_t size, bool quoted) {
+ if (quoted) {
+ return false;
+ }
+ return null_trie_.Find(
+ util::string_view(reinterpret_cast<const char*>(data), size)) >= 0;
+ }
+
+ protected:
+ Trie null_trie_;
+ std::shared_ptr<DataType> type_;
+ const ConvertOptions& options_;
+};
+
+//
+// Value decoder for fixed-size binary
+//
+
+struct FixedSizeBinaryValueDecoder : public ValueDecoder {
+ using value_type = const uint8_t*;
+
+ explicit FixedSizeBinaryValueDecoder(const std::shared_ptr<DataType>& type,
+ const ConvertOptions& options)
+ : ValueDecoder(type, options),
+ byte_width_(checked_cast<const FixedSizeBinaryType&>(*type).byte_width()) {}
+
+ Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
+ if (ARROW_PREDICT_FALSE(size != byte_width_)) {
+ return Status::Invalid("CSV conversion error to ", type_->ToString(), ": got a ",
+ size, "-byte long string");
+ }
+ *out = data;
+ return Status::OK();
+ }
+
+ protected:
+ const uint32_t byte_width_;
+};
+
+//
+// Value decoder for variable-size binary
+//
+
+template <bool CheckUTF8>
+struct BinaryValueDecoder : public ValueDecoder {
+ using value_type = util::string_view;
+
+ using ValueDecoder::ValueDecoder;
+
+ Status Initialize() {
+ util::InitializeUTF8();
+ return ValueDecoder::Initialize();
+ }
+
+ Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
+ if (CheckUTF8 && ARROW_PREDICT_FALSE(!util::ValidateUTF8(data, size))) {
+ return Status::Invalid("CSV conversion error to ", type_->ToString(),
+ ": invalid UTF8 data");
+ }
+ *out = {reinterpret_cast<const char*>(data), size};
+ return Status::OK();
+ }
+
+ bool IsNull(const uint8_t* data, uint32_t size, bool quoted) {
+ return options_.strings_can_be_null &&
+ (!quoted || options_.quoted_strings_can_be_null) &&
+ ValueDecoder::IsNull(data, size, false /* quoted */);
+ }
+};
+
+//
+// Value decoder for integers and floats
+//
+
+template <typename T>
+struct NumericValueDecoder : public ValueDecoder {
+ using value_type = typename T::c_type;
+
+ using ValueDecoder::ValueDecoder;
+
+ Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
+ // XXX should quoted values be allowed at all?
+ TrimWhiteSpace(&data, &size);
+ if (ARROW_PREDICT_FALSE(
+ !internal::ParseValue<T>(reinterpret_cast<const char*>(data), size, out))) {
+ return GenericConversionError(type_, data, size);
+ }
+ return Status::OK();
+ }
+};
+
+//
+// Value decoder for booleans
+//
+
+struct BooleanValueDecoder : public ValueDecoder {
+ using value_type = bool;
+
+ using ValueDecoder::ValueDecoder;
+
+ Status Initialize() {
+ // TODO no need to build separate Tries for each instance
+ RETURN_NOT_OK(InitializeTrie(options_.true_values, &true_trie_));
+ RETURN_NOT_OK(InitializeTrie(options_.false_values, &false_trie_));
+ return ValueDecoder::Initialize();
+ }
+
+ Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
+ // XXX should quoted values be allowed at all?
+ if (false_trie_.Find(util::string_view(reinterpret_cast<const char*>(data), size)) >=
+ 0) {
+ *out = false;
+ return Status::OK();
+ }
+ if (ARROW_PREDICT_TRUE(true_trie_.Find(util::string_view(
+ reinterpret_cast<const char*>(data), size)) >= 0)) {
+ *out = true;
+ return Status::OK();
+ }
+ return GenericConversionError(type_, data, size);
+ }
+
+ protected:
+ Trie true_trie_;
+ Trie false_trie_;
+};
+
+//
+// Value decoder for decimals
+//
+
+struct DecimalValueDecoder : public ValueDecoder {
+ using value_type = Decimal128;
+
+ explicit DecimalValueDecoder(const std::shared_ptr<DataType>& type,
+ const ConvertOptions& options)
+ : ValueDecoder(type, options),
+ decimal_type_(internal::checked_cast<const DecimalType&>(*type_)),
+ type_precision_(decimal_type_.precision()),
+ type_scale_(decimal_type_.scale()) {}
+
+ Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
+ TrimWhiteSpace(&data, &size);
+ Decimal128 decimal;
+ int32_t precision, scale;
+ util::string_view view(reinterpret_cast<const char*>(data), size);
+ RETURN_NOT_OK(Decimal128::FromString(view, &decimal, &precision, &scale));
+ if (precision > type_precision_) {
+ return Status::Invalid("Error converting '", view, "' to ", type_->ToString(),
+ ": precision not supported by type.");
+ }
+ if (scale != type_scale_) {
+ ARROW_ASSIGN_OR_RAISE(*out, decimal.Rescale(scale, type_scale_));
+ } else {
+ *out = std::move(decimal);
+ }
+ return Status::OK();
+ }
+
+ protected:
+ const DecimalType& decimal_type_;
+ const int32_t type_precision_;
+ const int32_t type_scale_;
+};
+
+//
+// Value decoders for timestamps
+//
+
+struct InlineISO8601ValueDecoder : public ValueDecoder {
+ using value_type = int64_t;
+
+ explicit InlineISO8601ValueDecoder(const std::shared_ptr<DataType>& type,
+ const ConvertOptions& options)
+ : ValueDecoder(type, options),
+ unit_(checked_cast<const TimestampType&>(*type_).unit()) {}
+
+ Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
+ if (ARROW_PREDICT_FALSE(!internal::ParseTimestampISO8601(
+ reinterpret_cast<const char*>(data), size, unit_, out))) {
+ return GenericConversionError(type_, data, size);
+ }
+ return Status::OK();
+ }
+
+ protected:
+ TimeUnit::type unit_;
+};
+
+struct SingleParserTimestampValueDecoder : public ValueDecoder {
+ using value_type = int64_t;
+
+ explicit SingleParserTimestampValueDecoder(const std::shared_ptr<DataType>& type,
+ const ConvertOptions& options)
+ : ValueDecoder(type, options),
+ unit_(checked_cast<const TimestampType&>(*type_).unit()),
+ parser_(*options_.timestamp_parsers[0]) {}
+
+ Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
+ if (ARROW_PREDICT_FALSE(
+ !parser_(reinterpret_cast<const char*>(data), size, unit_, out))) {
+ return GenericConversionError(type_, data, size);
+ }
+ return Status::OK();
+ }
+
+ protected:
+ TimeUnit::type unit_;
+ const TimestampParser& parser_;
+};
+
+struct MultipleParsersTimestampValueDecoder : public ValueDecoder {
+ using value_type = int64_t;
+
+ explicit MultipleParsersTimestampValueDecoder(const std::shared_ptr<DataType>& type,
+ const ConvertOptions& options)
+ : ValueDecoder(type, options),
+ unit_(checked_cast<const TimestampType&>(*type_).unit()),
+ parsers_(GetParsers(options_)) {}
+
+ Status Decode(const uint8_t* data, uint32_t size, bool quoted, value_type* out) {
+ for (const auto& parser : parsers_) {
+ if (parser->operator()(reinterpret_cast<const char*>(data), size, unit_, out)) {
+ return Status::OK();
+ }
+ }
+ return GenericConversionError(type_, data, size);
+ }
+
+ protected:
+ using ParserVector = std::vector<const TimestampParser*>;
+
+ static ParserVector GetParsers(const ConvertOptions& options) {
+ ParserVector parsers(options.timestamp_parsers.size());
+ for (size_t i = 0; i < options.timestamp_parsers.size(); ++i) {
+ parsers[i] = options.timestamp_parsers[i].get();
+ }
+ return parsers;
+ }
+
+ TimeUnit::type unit_;
+ std::vector<const TimestampParser*> parsers_;
+};
+
+/////////////////////////////////////////////////////////////////////////
+// Concrete Converter hierarchy
+
+class ConcreteConverter : public Converter {
+ public:
+ using Converter::Converter;
+};
+
+class ConcreteDictionaryConverter : public DictionaryConverter {
+ public:
+ using DictionaryConverter::DictionaryConverter;
+};
+
+//
+// Concrete Converter for nulls
+//
+
+class NullConverter : public ConcreteConverter {
+ public:
+ NullConverter(const std::shared_ptr<DataType>& type, const ConvertOptions& options,
+ MemoryPool* pool)
+ : ConcreteConverter(type, options, pool), decoder_(type_, options_) {}
+
+ Result<std::shared_ptr<Array>> Convert(const BlockParser& parser,
+ int32_t col_index) override {
+ NullBuilder builder(pool_);
+
+ auto visit = [&](const uint8_t* data, uint32_t size, bool quoted) -> Status {
+ if (ARROW_PREDICT_TRUE(decoder_.IsNull(data, size, quoted))) {
+ return builder.AppendNull();
+ } else {
+ return GenericConversionError(type_, data, size);
+ }
+ };
+ RETURN_NOT_OK(parser.VisitColumn(col_index, visit));
+ std::shared_ptr<Array> res;
+ RETURN_NOT_OK(builder.Finish(&res));
+ return res;
+ }
+
+ protected:
+ Status Initialize() override { return decoder_.Initialize(); }
+
+ ValueDecoder decoder_;
+};
+
+//
+// Concrete Converter for primitives
+//
+
+template <typename T, typename ValueDecoderType>
+class PrimitiveConverter : public ConcreteConverter {
+ public:
+ PrimitiveConverter(const std::shared_ptr<DataType>& type, const ConvertOptions& options,
+ MemoryPool* pool)
+ : ConcreteConverter(type, options, pool), decoder_(type_, options_) {}
+
+ Result<std::shared_ptr<Array>> Convert(const BlockParser& parser,
+ int32_t col_index) override {
+ using BuilderType = typename TypeTraits<T>::BuilderType;
+ using value_type = typename ValueDecoderType::value_type;
+
+ BuilderType builder(type_, pool_);
+ RETURN_NOT_OK(PresizeBuilder(parser, &builder));
+
+ auto visit = [&](const uint8_t* data, uint32_t size, bool quoted) -> Status {
+ if (decoder_.IsNull(data, size, quoted /* quoted */)) {
+ return builder.AppendNull();
+ }
+ value_type value{};
+ RETURN_NOT_OK(decoder_.Decode(data, size, quoted, &value));
+ builder.UnsafeAppend(value);
+ return Status::OK();
+ };
+ RETURN_NOT_OK(parser.VisitColumn(col_index, visit));
+
+ std::shared_ptr<Array> res;
+ RETURN_NOT_OK(builder.Finish(&res));
+ return res;
+ }
+
+ protected:
+ Status Initialize() override { return decoder_.Initialize(); }
+
+ ValueDecoderType decoder_;
+};
+
+//
+// Concrete Converter for dictionaries
+//
+
+template <typename T, typename ValueDecoderType>
+class TypedDictionaryConverter : public ConcreteDictionaryConverter {
+ public:
+ TypedDictionaryConverter(const std::shared_ptr<DataType>& value_type,
+ const ConvertOptions& options, MemoryPool* pool)
+ : ConcreteDictionaryConverter(value_type, options, pool),
+ decoder_(value_type, options_) {}
+
+ Result<std::shared_ptr<Array>> Convert(const BlockParser& parser,
+ int32_t col_index) override {
+ // We use a fixed index width so that all column chunks get the same index type
+ using BuilderType = Dictionary32Builder<T>;
+ using value_type = typename ValueDecoderType::value_type;
+
+ BuilderType builder(value_type_, pool_);
+ RETURN_NOT_OK(PresizeBuilder(parser, &builder));
+
+ auto visit = [&](const uint8_t* data, uint32_t size, bool quoted) -> Status {
+ if (decoder_.IsNull(data, size, quoted /* quoted */)) {
+ return builder.AppendNull();
+ }
+ if (ARROW_PREDICT_FALSE(builder.dictionary_length() > max_cardinality_)) {
+ return Status::IndexError("Dictionary length exceeded max cardinality");
+ }
+ value_type value{};
+ RETURN_NOT_OK(decoder_.Decode(data, size, quoted, &value));
+ return builder.Append(value);
+ };
+ RETURN_NOT_OK(parser.VisitColumn(col_index, visit));
+
+ std::shared_ptr<Array> res;
+ RETURN_NOT_OK(builder.Finish(&res));
+ return res;
+ }
+
+ void SetMaxCardinality(int32_t max_length) override { max_cardinality_ = max_length; }
+
+ protected:
+ Status Initialize() override {
+ util::InitializeUTF8();
+ return decoder_.Initialize();
+ }
+
+ ValueDecoderType decoder_;
+ int32_t max_cardinality_ = std::numeric_limits<int32_t>::max();
+};
+
+//
+// Concrete Converter factory for timestamps
+//
+
+template <template <typename, typename> class ConverterType>
+std::shared_ptr<Converter> MakeTimestampConverter(const std::shared_ptr<DataType>& type,
+ const ConvertOptions& options,
+ MemoryPool* pool) {
+ if (options.timestamp_parsers.size() == 0) {
+ // Default to ISO-8601
+ return std::make_shared<ConverterType<TimestampType, InlineISO8601ValueDecoder>>(
+ type, options, pool);
+ } else if (options.timestamp_parsers.size() == 1) {
+ // Single user-supplied converter
+ return std::make_shared<
+ ConverterType<TimestampType, SingleParserTimestampValueDecoder>>(type, options,
+ pool);
+ } else {
+ // Multiple converters, must iterate for each value
+ return std::make_shared<
+ ConverterType<TimestampType, MultipleParsersTimestampValueDecoder>>(type, options,
+ pool);
+ }
+}
+
+} // namespace
+
+/////////////////////////////////////////////////////////////////////////
+// Base Converter class implementation
+
+Converter::Converter(const std::shared_ptr<DataType>& type, const ConvertOptions& options,
+ MemoryPool* pool)
+ : options_(options), pool_(pool), type_(type) {}
+
+DictionaryConverter::DictionaryConverter(const std::shared_ptr<DataType>& value_type,
+ const ConvertOptions& options, MemoryPool* pool)
+ : Converter(dictionary(int32(), value_type), options, pool),
+ value_type_(value_type) {}
+
+Result<std::shared_ptr<Converter>> Converter::Make(const std::shared_ptr<DataType>& type,
+ const ConvertOptions& options,
+ MemoryPool* pool) {
+ std::shared_ptr<Converter> ptr;
+
+ switch (type->id()) {
+#define CONVERTER_CASE(TYPE_ID, CONVERTER_TYPE) \
+ case TYPE_ID: \
+ ptr.reset(new CONVERTER_TYPE(type, options, pool)); \
+ break;
+
+#define NUMERIC_CONVERTER_CASE(TYPE_ID, TYPE_CLASS) \
+ CONVERTER_CASE(TYPE_ID, \
+ (PrimitiveConverter<TYPE_CLASS, NumericValueDecoder<TYPE_CLASS>>))
+
+ CONVERTER_CASE(Type::NA, NullConverter)
+ NUMERIC_CONVERTER_CASE(Type::INT8, Int8Type)
+ NUMERIC_CONVERTER_CASE(Type::INT16, Int16Type)
+ NUMERIC_CONVERTER_CASE(Type::INT32, Int32Type)
+ NUMERIC_CONVERTER_CASE(Type::INT64, Int64Type)
+ NUMERIC_CONVERTER_CASE(Type::UINT8, UInt8Type)
+ NUMERIC_CONVERTER_CASE(Type::UINT16, UInt16Type)
+ NUMERIC_CONVERTER_CASE(Type::UINT32, UInt32Type)
+ NUMERIC_CONVERTER_CASE(Type::UINT64, UInt64Type)
+ NUMERIC_CONVERTER_CASE(Type::FLOAT, FloatType)
+ NUMERIC_CONVERTER_CASE(Type::DOUBLE, DoubleType)
+ NUMERIC_CONVERTER_CASE(Type::DATE32, Date32Type)
+ NUMERIC_CONVERTER_CASE(Type::DATE64, Date64Type)
+ CONVERTER_CASE(Type::BOOL, (PrimitiveConverter<BooleanType, BooleanValueDecoder>))
+ CONVERTER_CASE(Type::BINARY,
+ (PrimitiveConverter<BinaryType, BinaryValueDecoder<false>>))
+ CONVERTER_CASE(Type::LARGE_BINARY,
+ (PrimitiveConverter<LargeBinaryType, BinaryValueDecoder<false>>))
+ CONVERTER_CASE(Type::FIXED_SIZE_BINARY,
+ (PrimitiveConverter<FixedSizeBinaryType, FixedSizeBinaryValueDecoder>))
+ CONVERTER_CASE(Type::DECIMAL,
+ (PrimitiveConverter<Decimal128Type, DecimalValueDecoder>))
+
+ case Type::TIMESTAMP:
+ ptr = MakeTimestampConverter<PrimitiveConverter>(type, options, pool);
+ break;
+
+ case Type::STRING:
+ if (options.check_utf8) {
+ ptr = std::make_shared<PrimitiveConverter<StringType, BinaryValueDecoder<true>>>(
+ type, options, pool);
+ } else {
+ ptr = std::make_shared<PrimitiveConverter<StringType, BinaryValueDecoder<false>>>(
+ type, options, pool);
+ }
+ break;
+
+ case Type::LARGE_STRING:
+ if (options.check_utf8) {
+ ptr = std::make_shared<
+ PrimitiveConverter<LargeStringType, BinaryValueDecoder<true>>>(type, options,
+ pool);
+ } else {
+ ptr = std::make_shared<
+ PrimitiveConverter<LargeStringType, BinaryValueDecoder<false>>>(type, options,
+ pool);
+ }
+ break;
+
+ case Type::DICTIONARY: {
+ const auto& dict_type = checked_cast<const DictionaryType&>(*type);
+ if (dict_type.index_type()->id() != Type::INT32) {
+ return Status::NotImplemented(
+ "CSV conversion to dictionary only supported for int32 indices, "
+ "got ",
+ type->ToString());
+ }
+ return DictionaryConverter::Make(dict_type.value_type(), options, pool);
+ }
+
+ default: {
+ return Status::NotImplemented("CSV conversion to ", type->ToString(),
+ " is not supported");
+ }
+
+#undef CONVERTER_CASE
+#undef NUMERIC_CONVERTER_CASE
+ }
+ RETURN_NOT_OK(ptr->Initialize());
+ return ptr;
+}
+
+Result<std::shared_ptr<DictionaryConverter>> DictionaryConverter::Make(
+ const std::shared_ptr<DataType>& type, const ConvertOptions& options,
+ MemoryPool* pool) {
+ std::shared_ptr<DictionaryConverter> ptr;
+
+ switch (type->id()) {
+#define CONVERTER_CASE(TYPE_ID, TYPE, VALUE_DECODER_TYPE) \
+ case TYPE_ID: \
+ ptr.reset( \
+ new TypedDictionaryConverter<TYPE, VALUE_DECODER_TYPE>(type, options, pool)); \
+ break;
+
+ // XXX Are 32-bit types useful?
+ CONVERTER_CASE(Type::INT32, Int32Type, NumericValueDecoder<Int32Type>)
+ CONVERTER_CASE(Type::INT64, Int64Type, NumericValueDecoder<Int64Type>)
+ CONVERTER_CASE(Type::UINT32, UInt32Type, NumericValueDecoder<UInt32Type>)
+ CONVERTER_CASE(Type::UINT64, UInt64Type, NumericValueDecoder<UInt64Type>)
+ CONVERTER_CASE(Type::FLOAT, FloatType, NumericValueDecoder<FloatType>)
+ CONVERTER_CASE(Type::DOUBLE, DoubleType, NumericValueDecoder<DoubleType>)
+ CONVERTER_CASE(Type::DECIMAL, Decimal128Type, DecimalValueDecoder)
+ CONVERTER_CASE(Type::FIXED_SIZE_BINARY, FixedSizeBinaryType,
+ FixedSizeBinaryValueDecoder)
+ CONVERTER_CASE(Type::BINARY, BinaryType, BinaryValueDecoder<false>)
+ CONVERTER_CASE(Type::LARGE_BINARY, LargeBinaryType, BinaryValueDecoder<false>)
+
+ case Type::STRING:
+ if (options.check_utf8) {
+ ptr = std::make_shared<
+ TypedDictionaryConverter<StringType, BinaryValueDecoder<true>>>(type, options,
+ pool);
+ } else {
+ ptr = std::make_shared<
+ TypedDictionaryConverter<StringType, BinaryValueDecoder<false>>>(
+ type, options, pool);
+ }
+ break;
+
+ case Type::LARGE_STRING:
+ if (options.check_utf8) {
+ ptr = std::make_shared<
+ TypedDictionaryConverter<LargeStringType, BinaryValueDecoder<true>>>(
+ type, options, pool);
+ } else {
+ ptr = std::make_shared<
+ TypedDictionaryConverter<LargeStringType, BinaryValueDecoder<false>>>(
+ type, options, pool);
+ }
+ break;
+
+ default: {
+ return Status::NotImplemented("CSV dictionary conversion to ", type->ToString(),
+ " is not supported");
+ }
+
+#undef CONVERTER_CASE
+ }
+ RETURN_NOT_OK(ptr->Initialize());
+ return ptr;
+}
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/converter.h b/contrib/libs/apache/arrow/cpp/src/arrow/csv/converter.h
index 639f692f26..3bf1cb898f 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/converter.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/converter.h
@@ -1,82 +1,82 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <cstdint>
-#include <memory>
-
-#include "arrow/csv/options.h"
-#include "arrow/result.h"
-#include "arrow/type_fwd.h"
-#include "arrow/util/macros.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-namespace csv {
-
-class BlockParser;
-
-class ARROW_EXPORT Converter {
- public:
- Converter(const std::shared_ptr<DataType>& type, const ConvertOptions& options,
- MemoryPool* pool);
- virtual ~Converter() = default;
-
- virtual Result<std::shared_ptr<Array>> Convert(const BlockParser& parser,
- int32_t col_index) = 0;
-
- std::shared_ptr<DataType> type() const { return type_; }
-
- // Create a Converter for the given data type
- static Result<std::shared_ptr<Converter>> Make(
- const std::shared_ptr<DataType>& type, const ConvertOptions& options,
- MemoryPool* pool = default_memory_pool());
-
- protected:
- ARROW_DISALLOW_COPY_AND_ASSIGN(Converter);
-
- virtual Status Initialize() = 0;
-
- // CAUTION: ConvertOptions can grow large (if it customizes hundreds or
- // thousands of columns), so avoid copying it in each Converter.
- const ConvertOptions& options_;
- MemoryPool* pool_;
- std::shared_ptr<DataType> type_;
-};
-
-class ARROW_EXPORT DictionaryConverter : public Converter {
- public:
- DictionaryConverter(const std::shared_ptr<DataType>& value_type,
- const ConvertOptions& options, MemoryPool* pool);
-
- // If the dictionary length goes above this value, conversion will fail
- // with Status::IndexError.
- virtual void SetMaxCardinality(int32_t max_length) = 0;
-
- // Create a Converter for the given dictionary value type.
- // The dictionary index type will always be Int32.
- static Result<std::shared_ptr<DictionaryConverter>> Make(
- const std::shared_ptr<DataType>& value_type, const ConvertOptions& options,
- MemoryPool* pool = default_memory_pool());
-
- protected:
- std::shared_ptr<DataType> value_type_;
-};
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <cstdint>
+#include <memory>
+
+#include "arrow/csv/options.h"
+#include "arrow/result.h"
+#include "arrow/type_fwd.h"
+#include "arrow/util/macros.h"
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+namespace csv {
+
+class BlockParser;
+
+class ARROW_EXPORT Converter {
+ public:
+ Converter(const std::shared_ptr<DataType>& type, const ConvertOptions& options,
+ MemoryPool* pool);
+ virtual ~Converter() = default;
+
+ virtual Result<std::shared_ptr<Array>> Convert(const BlockParser& parser,
+ int32_t col_index) = 0;
+
+ std::shared_ptr<DataType> type() const { return type_; }
+
+ // Create a Converter for the given data type
+ static Result<std::shared_ptr<Converter>> Make(
+ const std::shared_ptr<DataType>& type, const ConvertOptions& options,
+ MemoryPool* pool = default_memory_pool());
+
+ protected:
+ ARROW_DISALLOW_COPY_AND_ASSIGN(Converter);
+
+ virtual Status Initialize() = 0;
+
+ // CAUTION: ConvertOptions can grow large (if it customizes hundreds or
+ // thousands of columns), so avoid copying it in each Converter.
+ const ConvertOptions& options_;
+ MemoryPool* pool_;
+ std::shared_ptr<DataType> type_;
+};
+
+class ARROW_EXPORT DictionaryConverter : public Converter {
+ public:
+ DictionaryConverter(const std::shared_ptr<DataType>& value_type,
+ const ConvertOptions& options, MemoryPool* pool);
+
+ // If the dictionary length goes above this value, conversion will fail
+ // with Status::IndexError.
+ virtual void SetMaxCardinality(int32_t max_length) = 0;
+
+ // Create a Converter for the given dictionary value type.
+ // The dictionary index type will always be Int32.
+ static Result<std::shared_ptr<DictionaryConverter>> Make(
+ const std::shared_ptr<DataType>& value_type, const ConvertOptions& options,
+ MemoryPool* pool = default_memory_pool());
+
+ protected:
+ std::shared_ptr<DataType> value_type_;
+};
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/inference_internal.h b/contrib/libs/apache/arrow/cpp/src/arrow/csv/inference_internal.h
index 42486a1eba..9549a55bea 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/inference_internal.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/inference_internal.h
@@ -1,150 +1,150 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <memory>
-
-#include "arrow/csv/converter.h"
-#include "arrow/csv/options.h"
-#include "arrow/util/logging.h"
-
-namespace arrow {
-namespace csv {
-
-enum class InferKind {
- Null,
- Integer,
- Boolean,
- Real,
- Date,
- Timestamp,
- TimestampNS,
- TextDict,
- BinaryDict,
- Text,
- Binary
-};
-
-class InferStatus {
- public:
- explicit InferStatus(const ConvertOptions& options)
- : kind_(InferKind::Null), can_loosen_type_(true), options_(options) {}
-
- InferKind kind() const { return kind_; }
-
- bool can_loosen_type() const { return can_loosen_type_; }
-
- void LoosenType(const Status& conversion_error) {
- DCHECK(can_loosen_type_);
-
- switch (kind_) {
- case InferKind::Null:
- return SetKind(InferKind::Integer);
- case InferKind::Integer:
- return SetKind(InferKind::Boolean);
- case InferKind::Boolean:
- return SetKind(InferKind::Date);
- case InferKind::Date:
- return SetKind(InferKind::Timestamp);
- case InferKind::Timestamp:
- return SetKind(InferKind::TimestampNS);
- case InferKind::TimestampNS:
- return SetKind(InferKind::Real);
- case InferKind::Real:
- if (options_.auto_dict_encode) {
- return SetKind(InferKind::TextDict);
- } else {
- return SetKind(InferKind::Text);
- }
- case InferKind::TextDict:
- if (conversion_error.IsIndexError()) {
- // Cardinality too large, fall back to non-dict encoding
- return SetKind(InferKind::Text);
- } else {
- // Assuming UTF8 validation failure
- return SetKind(InferKind::BinaryDict);
- }
- break;
- case InferKind::BinaryDict:
- // Assuming cardinality too large
- return SetKind(InferKind::Binary);
- case InferKind::Text:
- // Assuming UTF8 validation failure
- return SetKind(InferKind::Binary);
- default:
- ARROW_LOG(FATAL) << "Shouldn't come here";
- }
- }
-
- Result<std::shared_ptr<Converter>> MakeConverter(MemoryPool* pool) {
- auto make_converter =
- [&](std::shared_ptr<DataType> type) -> Result<std::shared_ptr<Converter>> {
- return Converter::Make(type, options_, pool);
- };
-
- auto make_dict_converter =
- [&](std::shared_ptr<DataType> type) -> Result<std::shared_ptr<Converter>> {
- ARROW_ASSIGN_OR_RAISE(auto dict_converter,
- DictionaryConverter::Make(type, options_, pool));
- dict_converter->SetMaxCardinality(options_.auto_dict_max_cardinality);
- return dict_converter;
- };
-
- switch (kind_) {
- case InferKind::Null:
- return make_converter(null());
- case InferKind::Integer:
- return make_converter(int64());
- case InferKind::Boolean:
- return make_converter(boolean());
- case InferKind::Date:
- return make_converter(date32());
- case InferKind::Timestamp:
- return make_converter(timestamp(TimeUnit::SECOND));
- case InferKind::TimestampNS:
- return make_converter(timestamp(TimeUnit::NANO));
- case InferKind::Real:
- return make_converter(float64());
- case InferKind::Text:
- return make_converter(utf8());
- case InferKind::Binary:
- return make_converter(binary());
- case InferKind::TextDict:
- return make_dict_converter(utf8());
- case InferKind::BinaryDict:
- return make_dict_converter(binary());
- }
- return Status::UnknownError("Shouldn't come here");
- }
-
- protected:
- void SetKind(InferKind kind) {
- kind_ = kind;
- if (kind == InferKind::Binary) {
- // Binary is the catch-all type
- can_loosen_type_ = false;
- }
- }
-
- InferKind kind_;
- bool can_loosen_type_;
- const ConvertOptions& options_;
-};
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <memory>
+
+#include "arrow/csv/converter.h"
+#include "arrow/csv/options.h"
+#include "arrow/util/logging.h"
+
+namespace arrow {
+namespace csv {
+
+enum class InferKind {
+ Null,
+ Integer,
+ Boolean,
+ Real,
+ Date,
+ Timestamp,
+ TimestampNS,
+ TextDict,
+ BinaryDict,
+ Text,
+ Binary
+};
+
+class InferStatus {
+ public:
+ explicit InferStatus(const ConvertOptions& options)
+ : kind_(InferKind::Null), can_loosen_type_(true), options_(options) {}
+
+ InferKind kind() const { return kind_; }
+
+ bool can_loosen_type() const { return can_loosen_type_; }
+
+ void LoosenType(const Status& conversion_error) {
+ DCHECK(can_loosen_type_);
+
+ switch (kind_) {
+ case InferKind::Null:
+ return SetKind(InferKind::Integer);
+ case InferKind::Integer:
+ return SetKind(InferKind::Boolean);
+ case InferKind::Boolean:
+ return SetKind(InferKind::Date);
+ case InferKind::Date:
+ return SetKind(InferKind::Timestamp);
+ case InferKind::Timestamp:
+ return SetKind(InferKind::TimestampNS);
+ case InferKind::TimestampNS:
+ return SetKind(InferKind::Real);
+ case InferKind::Real:
+ if (options_.auto_dict_encode) {
+ return SetKind(InferKind::TextDict);
+ } else {
+ return SetKind(InferKind::Text);
+ }
+ case InferKind::TextDict:
+ if (conversion_error.IsIndexError()) {
+ // Cardinality too large, fall back to non-dict encoding
+ return SetKind(InferKind::Text);
+ } else {
+ // Assuming UTF8 validation failure
+ return SetKind(InferKind::BinaryDict);
+ }
+ break;
+ case InferKind::BinaryDict:
+ // Assuming cardinality too large
+ return SetKind(InferKind::Binary);
+ case InferKind::Text:
+ // Assuming UTF8 validation failure
+ return SetKind(InferKind::Binary);
+ default:
+ ARROW_LOG(FATAL) << "Shouldn't come here";
+ }
+ }
+
+ Result<std::shared_ptr<Converter>> MakeConverter(MemoryPool* pool) {
+ auto make_converter =
+ [&](std::shared_ptr<DataType> type) -> Result<std::shared_ptr<Converter>> {
+ return Converter::Make(type, options_, pool);
+ };
+
+ auto make_dict_converter =
+ [&](std::shared_ptr<DataType> type) -> Result<std::shared_ptr<Converter>> {
+ ARROW_ASSIGN_OR_RAISE(auto dict_converter,
+ DictionaryConverter::Make(type, options_, pool));
+ dict_converter->SetMaxCardinality(options_.auto_dict_max_cardinality);
+ return dict_converter;
+ };
+
+ switch (kind_) {
+ case InferKind::Null:
+ return make_converter(null());
+ case InferKind::Integer:
+ return make_converter(int64());
+ case InferKind::Boolean:
+ return make_converter(boolean());
+ case InferKind::Date:
+ return make_converter(date32());
+ case InferKind::Timestamp:
+ return make_converter(timestamp(TimeUnit::SECOND));
+ case InferKind::TimestampNS:
+ return make_converter(timestamp(TimeUnit::NANO));
+ case InferKind::Real:
+ return make_converter(float64());
+ case InferKind::Text:
+ return make_converter(utf8());
+ case InferKind::Binary:
+ return make_converter(binary());
+ case InferKind::TextDict:
+ return make_dict_converter(utf8());
+ case InferKind::BinaryDict:
+ return make_dict_converter(binary());
+ }
+ return Status::UnknownError("Shouldn't come here");
+ }
+
+ protected:
+ void SetKind(InferKind kind) {
+ kind_ = kind;
+ if (kind == InferKind::Binary) {
+ // Binary is the catch-all type
+ can_loosen_type_ = false;
+ }
+ }
+
+ InferKind kind_;
+ bool can_loosen_type_;
+ const ConvertOptions& options_;
+};
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/options.cc b/contrib/libs/apache/arrow/cpp/src/arrow/csv/options.cc
index c71cfdaf29..f15fada47e 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/options.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/options.cc
@@ -1,83 +1,83 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/csv/options.h"
-
-namespace arrow {
-namespace csv {
-
-ParseOptions ParseOptions::Defaults() { return ParseOptions(); }
-
-Status ParseOptions::Validate() const {
- if (ARROW_PREDICT_FALSE(delimiter == '\n' || delimiter == '\r')) {
- return Status::Invalid("ParseOptions: delimiter cannot be \\r or \\n");
- }
- if (ARROW_PREDICT_FALSE(quoting && (quote_char == '\n' || quote_char == '\r'))) {
- return Status::Invalid("ParseOptions: quote_char cannot be \\r or \\n");
- }
- if (ARROW_PREDICT_FALSE(escaping && (escape_char == '\n' || escape_char == '\r'))) {
- return Status::Invalid("ParseOptions: escape_char cannot be \\r or \\n");
- }
- return Status::OK();
-}
-
-ConvertOptions ConvertOptions::Defaults() {
- auto options = ConvertOptions();
- // Same default null / true / false spellings as in Pandas.
- options.null_values = {"", "#N/A", "#N/A N/A", "#NA", "-1.#IND", "-1.#QNAN",
- "-NaN", "-nan", "1.#IND", "1.#QNAN", "N/A", "NA",
- "NULL", "NaN", "n/a", "nan", "null"};
- options.true_values = {"1", "True", "TRUE", "true"};
- options.false_values = {"0", "False", "FALSE", "false"};
- return options;
-}
-
-Status ConvertOptions::Validate() const { return Status::OK(); }
-
-ReadOptions ReadOptions::Defaults() { return ReadOptions(); }
-
-Status ReadOptions::Validate() const {
- if (ARROW_PREDICT_FALSE(block_size < 1)) {
- // Min is 1 because some tests use really small block sizes
- return Status::Invalid("ReadOptions: block_size must be at least 1: ", block_size);
- }
- if (ARROW_PREDICT_FALSE(skip_rows < 0)) {
- return Status::Invalid("ReadOptions: skip_rows cannot be negative: ", skip_rows);
- }
- if (ARROW_PREDICT_FALSE(skip_rows_after_names < 0)) {
- return Status::Invalid("ReadOptions: skip_rows_after_names cannot be negative: ",
- skip_rows_after_names);
- }
- if (ARROW_PREDICT_FALSE(autogenerate_column_names && !column_names.empty())) {
- return Status::Invalid(
- "ReadOptions: autogenerate_column_names cannot be true when column_names are "
- "provided");
- }
- return Status::OK();
-}
-
-WriteOptions WriteOptions::Defaults() { return WriteOptions(); }
-
-Status WriteOptions::Validate() const {
- if (ARROW_PREDICT_FALSE(batch_size < 1)) {
- return Status::Invalid("WriteOptions: batch_size must be at least 1: ", batch_size);
- }
- return Status::OK();
-}
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/csv/options.h"
+
+namespace arrow {
+namespace csv {
+
+ParseOptions ParseOptions::Defaults() { return ParseOptions(); }
+
+Status ParseOptions::Validate() const {
+ if (ARROW_PREDICT_FALSE(delimiter == '\n' || delimiter == '\r')) {
+ return Status::Invalid("ParseOptions: delimiter cannot be \\r or \\n");
+ }
+ if (ARROW_PREDICT_FALSE(quoting && (quote_char == '\n' || quote_char == '\r'))) {
+ return Status::Invalid("ParseOptions: quote_char cannot be \\r or \\n");
+ }
+ if (ARROW_PREDICT_FALSE(escaping && (escape_char == '\n' || escape_char == '\r'))) {
+ return Status::Invalid("ParseOptions: escape_char cannot be \\r or \\n");
+ }
+ return Status::OK();
+}
+
+ConvertOptions ConvertOptions::Defaults() {
+ auto options = ConvertOptions();
+ // Same default null / true / false spellings as in Pandas.
+ options.null_values = {"", "#N/A", "#N/A N/A", "#NA", "-1.#IND", "-1.#QNAN",
+ "-NaN", "-nan", "1.#IND", "1.#QNAN", "N/A", "NA",
+ "NULL", "NaN", "n/a", "nan", "null"};
+ options.true_values = {"1", "True", "TRUE", "true"};
+ options.false_values = {"0", "False", "FALSE", "false"};
+ return options;
+}
+
+Status ConvertOptions::Validate() const { return Status::OK(); }
+
+ReadOptions ReadOptions::Defaults() { return ReadOptions(); }
+
+Status ReadOptions::Validate() const {
+ if (ARROW_PREDICT_FALSE(block_size < 1)) {
+ // Min is 1 because some tests use really small block sizes
+ return Status::Invalid("ReadOptions: block_size must be at least 1: ", block_size);
+ }
+ if (ARROW_PREDICT_FALSE(skip_rows < 0)) {
+ return Status::Invalid("ReadOptions: skip_rows cannot be negative: ", skip_rows);
+ }
+ if (ARROW_PREDICT_FALSE(skip_rows_after_names < 0)) {
+ return Status::Invalid("ReadOptions: skip_rows_after_names cannot be negative: ",
+ skip_rows_after_names);
+ }
+ if (ARROW_PREDICT_FALSE(autogenerate_column_names && !column_names.empty())) {
+ return Status::Invalid(
+ "ReadOptions: autogenerate_column_names cannot be true when column_names are "
+ "provided");
+ }
+ return Status::OK();
+}
+
+WriteOptions WriteOptions::Defaults() { return WriteOptions(); }
+
+Status WriteOptions::Validate() const {
+ if (ARROW_PREDICT_FALSE(batch_size < 1)) {
+ return Status::Invalid("WriteOptions: batch_size must be at least 1: ", batch_size);
+ }
+ return Status::OK();
+}
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/options.h b/contrib/libs/apache/arrow/cpp/src/arrow/csv/options.h
index 5face6f32d..9e6f704af9 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/options.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/options.h
@@ -1,189 +1,189 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <cstdint>
-#include <memory>
-#include <string>
-#include <unordered_map>
-#include <vector>
-
-#include "arrow/csv/type_fwd.h"
-#include "arrow/io/interfaces.h"
-#include "arrow/status.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-
-class DataType;
-class TimestampParser;
-
-namespace csv {
-
-// Silly workaround for https://github.com/michaeljones/breathe/issues/453
-constexpr char kDefaultEscapeChar = '\\';
-
-struct ARROW_EXPORT ParseOptions {
- // Parsing options
-
- /// Field delimiter
- char delimiter = ',';
- /// Whether quoting is used
- bool quoting = true;
- /// Quoting character (if `quoting` is true)
- char quote_char = '"';
- /// Whether a quote inside a value is double-quoted
- bool double_quote = true;
- /// Whether escaping is used
- bool escaping = false;
- /// Escaping character (if `escaping` is true)
- char escape_char = kDefaultEscapeChar;
- /// Whether values are allowed to contain CR (0x0d) and LF (0x0a) characters
- bool newlines_in_values = false;
- /// Whether empty lines are ignored. If false, an empty line represents
- /// a single empty value (assuming a one-column CSV file).
- bool ignore_empty_lines = true;
-
- /// Create parsing options with default values
- static ParseOptions Defaults();
-
- /// \brief Test that all set options are valid
- Status Validate() const;
-};
-
-struct ARROW_EXPORT ConvertOptions {
- // Conversion options
-
- /// Whether to check UTF8 validity of string columns
- bool check_utf8 = true;
- /// Optional per-column types (disabling type inference on those columns)
- std::unordered_map<std::string, std::shared_ptr<DataType>> column_types;
- /// Recognized spellings for null values
- std::vector<std::string> null_values;
- /// Recognized spellings for boolean true values
- std::vector<std::string> true_values;
- /// Recognized spellings for boolean false values
- std::vector<std::string> false_values;
-
- /// Whether string / binary columns can have null values.
- ///
- /// If true, then strings in "null_values" are considered null for string columns.
- /// If false, then all strings are valid string values.
- bool strings_can_be_null = false;
- /// Whether string / binary columns can have quoted null values.
- ///
- /// If true *and* `strings_can_be_null` is true, then quoted strings in
- /// "null_values" are also considered null for string columns. Otherwise,
- /// quoted strings are never considered null.
- bool quoted_strings_can_be_null = true;
-
- /// Whether to try to automatically dict-encode string / binary data.
- /// If true, then when type inference detects a string or binary column,
- /// it is dict-encoded up to `auto_dict_max_cardinality` distinct values
- /// (per chunk), after which it switches to regular encoding.
- ///
- /// This setting is ignored for non-inferred columns (those in `column_types`).
- bool auto_dict_encode = false;
- int32_t auto_dict_max_cardinality = 50;
-
- // XXX Should we have a separate FilterOptions?
-
- /// If non-empty, indicates the names of columns from the CSV file that should
- /// be actually read and converted (in the vector's order).
- /// Columns not in this vector will be ignored.
- std::vector<std::string> include_columns;
- /// If false, columns in `include_columns` but not in the CSV file will error out.
- /// If true, columns in `include_columns` but not in the CSV file will produce
- /// a column of nulls (whose type is selected using `column_types`,
- /// or null by default)
- /// This option is ignored if `include_columns` is empty.
- bool include_missing_columns = false;
-
- /// User-defined timestamp parsers, using the virtual parser interface in
- /// arrow/util/value_parsing.h. More than one parser can be specified, and
- /// the CSV conversion logic will try parsing values starting from the
- /// beginning of this vector. If no parsers are specified, we use the default
- /// built-in ISO-8601 parser.
- std::vector<std::shared_ptr<TimestampParser>> timestamp_parsers;
-
- /// Create conversion options with default values, including conventional
- /// values for `null_values`, `true_values` and `false_values`
- static ConvertOptions Defaults();
-
- /// \brief Test that all set options are valid
- Status Validate() const;
-};
-
-struct ARROW_EXPORT ReadOptions {
- // Reader options
-
- /// Whether to use the global CPU thread pool
- bool use_threads = true;
-
- /// \brief Block size we request from the IO layer.
- ///
- /// This will determine multi-threading granularity as well as
- /// the size of individual record batches.
- /// Minimum valid value for block size is 1
- int32_t block_size = 1 << 20; // 1 MB
-
- /// Number of header rows to skip (not including the row of column names, if any)
- int32_t skip_rows = 0;
-
- /// Number of rows to skip after the column names are read, if any
- int32_t skip_rows_after_names = 0;
-
- /// Column names for the target table.
- /// If empty, fall back on autogenerate_column_names.
- std::vector<std::string> column_names;
-
- /// Whether to autogenerate column names if `column_names` is empty.
- /// If true, column names will be of the form "f0", "f1"...
- /// If false, column names will be read from the first CSV row after `skip_rows`.
- bool autogenerate_column_names = false;
-
- /// Create read options with default values
- static ReadOptions Defaults();
-
- /// \brief Test that all set options are valid
- Status Validate() const;
-};
-
-/// Experimental
-struct ARROW_EXPORT WriteOptions {
- /// Whether to write an initial header line with column names
- bool include_header = true;
-
- /// \brief Maximum number of rows processed at a time
- ///
- /// The CSV writer converts and writes data in batches of N rows.
- /// This number can impact performance.
- int32_t batch_size = 1024;
-
- /// \brief IO context for writing.
- io::IOContext io_context;
-
- /// Create write options with default values
- static WriteOptions Defaults();
-
- /// \brief Test that all set options are valid
- Status Validate() const;
-};
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <cstdint>
+#include <memory>
+#include <string>
+#include <unordered_map>
+#include <vector>
+
+#include "arrow/csv/type_fwd.h"
+#include "arrow/io/interfaces.h"
+#include "arrow/status.h"
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+
+class DataType;
+class TimestampParser;
+
+namespace csv {
+
+// Silly workaround for https://github.com/michaeljones/breathe/issues/453
+constexpr char kDefaultEscapeChar = '\\';
+
+struct ARROW_EXPORT ParseOptions {
+ // Parsing options
+
+ /// Field delimiter
+ char delimiter = ',';
+ /// Whether quoting is used
+ bool quoting = true;
+ /// Quoting character (if `quoting` is true)
+ char quote_char = '"';
+ /// Whether a quote inside a value is double-quoted
+ bool double_quote = true;
+ /// Whether escaping is used
+ bool escaping = false;
+ /// Escaping character (if `escaping` is true)
+ char escape_char = kDefaultEscapeChar;
+ /// Whether values are allowed to contain CR (0x0d) and LF (0x0a) characters
+ bool newlines_in_values = false;
+ /// Whether empty lines are ignored. If false, an empty line represents
+ /// a single empty value (assuming a one-column CSV file).
+ bool ignore_empty_lines = true;
+
+ /// Create parsing options with default values
+ static ParseOptions Defaults();
+
+ /// \brief Test that all set options are valid
+ Status Validate() const;
+};
+
+struct ARROW_EXPORT ConvertOptions {
+ // Conversion options
+
+ /// Whether to check UTF8 validity of string columns
+ bool check_utf8 = true;
+ /// Optional per-column types (disabling type inference on those columns)
+ std::unordered_map<std::string, std::shared_ptr<DataType>> column_types;
+ /// Recognized spellings for null values
+ std::vector<std::string> null_values;
+ /// Recognized spellings for boolean true values
+ std::vector<std::string> true_values;
+ /// Recognized spellings for boolean false values
+ std::vector<std::string> false_values;
+
+ /// Whether string / binary columns can have null values.
+ ///
+ /// If true, then strings in "null_values" are considered null for string columns.
+ /// If false, then all strings are valid string values.
+ bool strings_can_be_null = false;
+ /// Whether string / binary columns can have quoted null values.
+ ///
+ /// If true *and* `strings_can_be_null` is true, then quoted strings in
+ /// "null_values" are also considered null for string columns. Otherwise,
+ /// quoted strings are never considered null.
+ bool quoted_strings_can_be_null = true;
+
+ /// Whether to try to automatically dict-encode string / binary data.
+ /// If true, then when type inference detects a string or binary column,
+ /// it is dict-encoded up to `auto_dict_max_cardinality` distinct values
+ /// (per chunk), after which it switches to regular encoding.
+ ///
+ /// This setting is ignored for non-inferred columns (those in `column_types`).
+ bool auto_dict_encode = false;
+ int32_t auto_dict_max_cardinality = 50;
+
+ // XXX Should we have a separate FilterOptions?
+
+ /// If non-empty, indicates the names of columns from the CSV file that should
+ /// be actually read and converted (in the vector's order).
+ /// Columns not in this vector will be ignored.
+ std::vector<std::string> include_columns;
+ /// If false, columns in `include_columns` but not in the CSV file will error out.
+ /// If true, columns in `include_columns` but not in the CSV file will produce
+ /// a column of nulls (whose type is selected using `column_types`,
+ /// or null by default)
+ /// This option is ignored if `include_columns` is empty.
+ bool include_missing_columns = false;
+
+ /// User-defined timestamp parsers, using the virtual parser interface in
+ /// arrow/util/value_parsing.h. More than one parser can be specified, and
+ /// the CSV conversion logic will try parsing values starting from the
+ /// beginning of this vector. If no parsers are specified, we use the default
+ /// built-in ISO-8601 parser.
+ std::vector<std::shared_ptr<TimestampParser>> timestamp_parsers;
+
+ /// Create conversion options with default values, including conventional
+ /// values for `null_values`, `true_values` and `false_values`
+ static ConvertOptions Defaults();
+
+ /// \brief Test that all set options are valid
+ Status Validate() const;
+};
+
+struct ARROW_EXPORT ReadOptions {
+ // Reader options
+
+ /// Whether to use the global CPU thread pool
+ bool use_threads = true;
+
+ /// \brief Block size we request from the IO layer.
+ ///
+ /// This will determine multi-threading granularity as well as
+ /// the size of individual record batches.
+ /// Minimum valid value for block size is 1
+ int32_t block_size = 1 << 20; // 1 MB
+
+ /// Number of header rows to skip (not including the row of column names, if any)
+ int32_t skip_rows = 0;
+
+ /// Number of rows to skip after the column names are read, if any
+ int32_t skip_rows_after_names = 0;
+
+ /// Column names for the target table.
+ /// If empty, fall back on autogenerate_column_names.
+ std::vector<std::string> column_names;
+
+ /// Whether to autogenerate column names if `column_names` is empty.
+ /// If true, column names will be of the form "f0", "f1"...
+ /// If false, column names will be read from the first CSV row after `skip_rows`.
+ bool autogenerate_column_names = false;
+
+ /// Create read options with default values
+ static ReadOptions Defaults();
+
+ /// \brief Test that all set options are valid
+ Status Validate() const;
+};
+
+/// Experimental
+struct ARROW_EXPORT WriteOptions {
+ /// Whether to write an initial header line with column names
+ bool include_header = true;
+
+ /// \brief Maximum number of rows processed at a time
+ ///
+ /// The CSV writer converts and writes data in batches of N rows.
+ /// This number can impact performance.
+ int32_t batch_size = 1024;
+
+ /// \brief IO context for writing.
+ io::IOContext io_context;
+
+ /// Create write options with default values
+ static WriteOptions Defaults();
+
+ /// \brief Test that all set options are valid
+ Status Validate() const;
+};
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/parser.cc b/contrib/libs/apache/arrow/cpp/src/arrow/csv/parser.cc
index 446f36a4ee..0e1fd91c51 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/parser.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/parser.cc
@@ -1,581 +1,581 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/csv/parser.h"
-
-#include <algorithm>
-#include <cstdio>
-#include <limits>
-#include <utility>
-
-#include "arrow/memory_pool.h"
-#include "arrow/result.h"
-#include "arrow/status.h"
-#include "arrow/util/logging.h"
-
-namespace arrow {
-namespace csv {
-
-using detail::DataBatch;
-using detail::ParsedValueDesc;
-
-namespace {
-
-template <typename... Args>
-Status ParseError(Args&&... args) {
- return Status::Invalid("CSV parse error: ", std::forward<Args>(args)...);
-}
-
-Status MismatchingColumns(int32_t expected, int32_t actual, int64_t row_num,
- util::string_view row) {
- std::string ellipse;
- if (row.length() > 100) {
- row = row.substr(0, 96);
- ellipse = " ...";
- }
- if (row_num < 0) {
- return ParseError("Expected ", expected, " columns, got ", actual, ": ", row,
- ellipse);
- }
- return ParseError("Row #", row_num, ": Expected ", expected, " columns, got ", actual,
- ": ", row, ellipse);
-}
-
-inline bool IsControlChar(uint8_t c) { return c < ' '; }
-
-template <bool Quoting, bool Escaping>
-class SpecializedOptions {
- public:
- static constexpr bool quoting = Quoting;
- static constexpr bool escaping = Escaping;
-};
-
-// A helper class allocating the buffer for parsed values and writing into it
-// without any further resizes, except at the end.
-class PresizedDataWriter {
- public:
- PresizedDataWriter(MemoryPool* pool, uint32_t size)
- : parsed_size_(0), parsed_capacity_(size) {
- parsed_buffer_ = *AllocateResizableBuffer(parsed_capacity_, pool);
- parsed_ = parsed_buffer_->mutable_data();
- }
-
- void Finish(std::shared_ptr<Buffer>* out_parsed) {
- ARROW_CHECK_OK(parsed_buffer_->Resize(parsed_size_));
- *out_parsed = parsed_buffer_;
- }
-
- void BeginLine() { saved_parsed_size_ = parsed_size_; }
-
- void PushFieldChar(char c) {
- DCHECK_LT(parsed_size_, parsed_capacity_);
- parsed_[parsed_size_++] = static_cast<uint8_t>(c);
- }
-
- // Rollback the state that was saved in BeginLine()
- void RollbackLine() { parsed_size_ = saved_parsed_size_; }
-
- int64_t size() { return parsed_size_; }
-
- protected:
- std::shared_ptr<ResizableBuffer> parsed_buffer_;
- uint8_t* parsed_;
- int64_t parsed_size_;
- int64_t parsed_capacity_;
- // Checkpointing, for when an incomplete line is encountered at end of block
- int64_t saved_parsed_size_;
-};
-
-template <typename Derived>
-class ValueDescWriter {
- public:
- Derived* derived() { return static_cast<Derived*>(this); }
-
- template <typename DataWriter>
- void Start(DataWriter& parsed_writer) {
- derived()->PushValue(
- {static_cast<uint32_t>(parsed_writer.size()) & 0x7fffffffU, false});
- }
-
- void BeginLine() { saved_values_size_ = values_size_; }
-
- // Rollback the state that was saved in BeginLine()
- void RollbackLine() { values_size_ = saved_values_size_; }
-
- void StartField(bool quoted) { quoted_ = quoted; }
-
- template <typename DataWriter>
- void FinishField(DataWriter* parsed_writer) {
- derived()->PushValue(
- {static_cast<uint32_t>(parsed_writer->size()) & 0x7fffffffU, quoted_});
- }
-
- void Finish(std::shared_ptr<Buffer>* out_values) {
- ARROW_CHECK_OK(values_buffer_->Resize(values_size_ * sizeof(*values_)));
- *out_values = values_buffer_;
- }
-
- protected:
- ValueDescWriter(MemoryPool* pool, int64_t values_capacity)
- : values_size_(0), values_capacity_(values_capacity) {
- values_buffer_ = *AllocateResizableBuffer(values_capacity_ * sizeof(*values_), pool);
- values_ = reinterpret_cast<ParsedValueDesc*>(values_buffer_->mutable_data());
- }
-
- std::shared_ptr<ResizableBuffer> values_buffer_;
- ParsedValueDesc* values_;
- int64_t values_size_;
- int64_t values_capacity_;
- bool quoted_;
- // Checkpointing, for when an incomplete line is encountered at end of block
- int64_t saved_values_size_;
-};
-
-// A helper class handling a growable buffer for values offsets. This class is
-// used when the number of columns is not yet known and we therefore cannot
-// efficiently presize the target area for a given number of rows.
-class ResizableValueDescWriter : public ValueDescWriter<ResizableValueDescWriter> {
- public:
- explicit ResizableValueDescWriter(MemoryPool* pool)
- : ValueDescWriter(pool, /*values_capacity=*/256) {}
-
- void PushValue(ParsedValueDesc v) {
- if (ARROW_PREDICT_FALSE(values_size_ == values_capacity_)) {
- values_capacity_ = values_capacity_ * 2;
- ARROW_CHECK_OK(values_buffer_->Resize(values_capacity_ * sizeof(*values_)));
- values_ = reinterpret_cast<ParsedValueDesc*>(values_buffer_->mutable_data());
- }
- values_[values_size_++] = v;
- }
-};
-
-// A helper class allocating the buffer for values offsets and writing into it
-// without any further resizes, except at the end. This class is used once the
-// number of columns is known, as it eliminates resizes and generates simpler,
-// faster CSV parsing code.
-class PresizedValueDescWriter : public ValueDescWriter<PresizedValueDescWriter> {
- public:
- PresizedValueDescWriter(MemoryPool* pool, int32_t num_rows, int32_t num_cols)
- : ValueDescWriter(pool, /*values_capacity=*/1 + num_rows * num_cols) {}
-
- void PushValue(ParsedValueDesc v) {
- DCHECK_LT(values_size_, values_capacity_);
- values_[values_size_++] = v;
- }
-};
-
-} // namespace
-
-class BlockParserImpl {
- public:
- BlockParserImpl(MemoryPool* pool, ParseOptions options, int32_t num_cols,
- int64_t first_row, int32_t max_num_rows)
- : pool_(pool),
- options_(options),
- first_row_(first_row),
- max_num_rows_(max_num_rows),
- batch_(num_cols) {}
-
- const DataBatch& parsed_batch() const { return batch_; }
-
- int64_t first_row_num() const { return first_row_; }
-
- template <typename SpecializedOptions, typename ValueDescWriter, typename DataWriter>
- Status ParseLine(ValueDescWriter* values_writer, DataWriter* parsed_writer,
- const char* data, const char* data_end, bool is_final,
- const char** out_data) {
- int32_t num_cols = 0;
- char c;
- const auto start = data;
-
- DCHECK_GT(data_end, data);
-
- auto FinishField = [&]() { values_writer->FinishField(parsed_writer); };
-
- values_writer->BeginLine();
- parsed_writer->BeginLine();
-
- // The parsing state machine
-
- // Special case empty lines: do we start with a newline separator?
- c = *data;
- if (ARROW_PREDICT_FALSE(IsControlChar(c))) {
- if (c == '\r') {
- data++;
- if (data < data_end && *data == '\n') {
- data++;
- }
- goto EmptyLine;
- }
- if (c == '\n') {
- data++;
- goto EmptyLine;
- }
- }
-
- FieldStart:
- // At the start of a field
- // Quoting is only recognized at start of field
- if (SpecializedOptions::quoting &&
- ARROW_PREDICT_FALSE(*data == options_.quote_char)) {
- ++data;
- values_writer->StartField(true /* quoted */);
- goto InQuotedField;
- } else {
- values_writer->StartField(false /* quoted */);
- goto InField;
- }
-
- InField:
- // Inside a non-quoted part of a field
- if (ARROW_PREDICT_FALSE(data == data_end)) {
- goto AbortLine;
- }
- c = *data++;
- if (SpecializedOptions::escaping && ARROW_PREDICT_FALSE(c == options_.escape_char)) {
- if (ARROW_PREDICT_FALSE(data == data_end)) {
- goto AbortLine;
- }
- c = *data++;
- parsed_writer->PushFieldChar(c);
- goto InField;
- }
- if (ARROW_PREDICT_FALSE(c == options_.delimiter)) {
- goto FieldEnd;
- }
- if (ARROW_PREDICT_FALSE(IsControlChar(c))) {
- if (c == '\r') {
- // In the middle of a newline separator?
- if (ARROW_PREDICT_TRUE(data < data_end) && *data == '\n') {
- data++;
- }
- goto LineEnd;
- }
- if (c == '\n') {
- goto LineEnd;
- }
- }
- parsed_writer->PushFieldChar(c);
- goto InField;
-
- InQuotedField:
- // Inside a quoted part of a field
- if (ARROW_PREDICT_FALSE(data == data_end)) {
- goto AbortLine;
- }
- c = *data++;
- if (SpecializedOptions::escaping && ARROW_PREDICT_FALSE(c == options_.escape_char)) {
- if (ARROW_PREDICT_FALSE(data == data_end)) {
- goto AbortLine;
- }
- c = *data++;
- parsed_writer->PushFieldChar(c);
- goto InQuotedField;
- }
- if (ARROW_PREDICT_FALSE(c == options_.quote_char)) {
- if (options_.double_quote && ARROW_PREDICT_TRUE(data < data_end) &&
- ARROW_PREDICT_FALSE(*data == options_.quote_char)) {
- // Double-quoting
- ++data;
- } else {
- // End of single-quoting
- goto InField;
- }
- }
- parsed_writer->PushFieldChar(c);
- goto InQuotedField;
-
- FieldEnd:
- // At the end of a field
- FinishField();
- ++num_cols;
- if (ARROW_PREDICT_FALSE(data == data_end)) {
- goto AbortLine;
- }
- goto FieldStart;
-
- LineEnd:
- // At the end of line
- FinishField();
- ++num_cols;
- if (ARROW_PREDICT_FALSE(num_cols != batch_.num_cols_)) {
- if (batch_.num_cols_ == -1) {
- batch_.num_cols_ = num_cols;
- } else {
- // Find the end of the line without newline or carriage return
- auto end = data;
- if (*(end - 1) == '\n') {
- --end;
- }
- if (*(end - 1) == '\r') {
- --end;
- }
- return MismatchingColumns(batch_.num_cols_, num_cols,
- first_row_ < 0 ? -1 : first_row_ + batch_.num_rows_,
- util::string_view(start, end - start));
- }
- }
- ++batch_.num_rows_;
- *out_data = data;
- return Status::OK();
-
- AbortLine:
- // Not a full line except perhaps if in final block
- if (is_final) {
- goto LineEnd;
- }
- // Truncated line at end of block, rewind parsed state
- values_writer->RollbackLine();
- parsed_writer->RollbackLine();
- return Status::OK();
-
- EmptyLine:
- if (!options_.ignore_empty_lines) {
- if (batch_.num_cols_ == -1) {
- // Consider as single value
- batch_.num_cols_ = 1;
- }
- // Record as row of empty (null?) values
- while (num_cols++ < batch_.num_cols_) {
- values_writer->StartField(false /* quoted */);
- FinishField();
- }
- ++batch_.num_rows_;
- }
- *out_data = data;
- return Status::OK();
- }
-
- template <typename SpecializedOptions, typename ValueDescWriter, typename DataWriter>
- Status ParseChunk(ValueDescWriter* values_writer, DataWriter* parsed_writer,
- const char* data, const char* data_end, bool is_final,
- int32_t rows_in_chunk, const char** out_data,
- bool* finished_parsing) {
- int32_t num_rows_deadline = batch_.num_rows_ + rows_in_chunk;
-
- while (data < data_end && batch_.num_rows_ < num_rows_deadline) {
- const char* line_end = data;
- RETURN_NOT_OK(ParseLine<SpecializedOptions>(values_writer, parsed_writer, data,
- data_end, is_final, &line_end));
- if (line_end == data) {
- // Cannot parse any further
- *finished_parsing = true;
- break;
- }
- data = line_end;
- }
- // Append new buffers and update size
- std::shared_ptr<Buffer> values_buffer;
- values_writer->Finish(&values_buffer);
- if (values_buffer->size() > 0) {
- values_size_ +=
- static_cast<int32_t>(values_buffer->size() / sizeof(ParsedValueDesc) - 1);
- batch_.values_buffers_.push_back(std::move(values_buffer));
- }
- *out_data = data;
- return Status::OK();
- }
-
- template <typename SpecializedOptions>
- Status ParseSpecialized(const std::vector<util::string_view>& views, bool is_final,
- uint32_t* out_size) {
- batch_ = DataBatch{batch_.num_cols_};
- values_size_ = 0;
-
- size_t total_view_length = 0;
- for (const auto& view : views) {
- total_view_length += view.length();
- }
- if (total_view_length > std::numeric_limits<uint32_t>::max()) {
- return Status::Invalid("CSV block too large");
- }
-
- PresizedDataWriter parsed_writer(pool_, static_cast<uint32_t>(total_view_length));
- uint32_t total_parsed_length = 0;
-
- for (const auto& view : views) {
- const char* data = view.data();
- const char* data_end = view.data() + view.length();
- bool finished_parsing = false;
-
- if (batch_.num_cols_ == -1) {
- // Can't presize values when the number of columns is not known, first parse
- // a single line
- const int32_t rows_in_chunk = 1;
- ResizableValueDescWriter values_writer(pool_);
- values_writer.Start(parsed_writer);
-
- RETURN_NOT_OK(ParseChunk<SpecializedOptions>(&values_writer, &parsed_writer, data,
- data_end, is_final, rows_in_chunk,
- &data, &finished_parsing));
- if (batch_.num_cols_ == -1) {
- return ParseError("Empty CSV file or block: cannot infer number of columns");
- }
- }
-
- while (!finished_parsing && data < data_end && batch_.num_rows_ < max_num_rows_) {
- // We know the number of columns, so can presize a values array for
- // a given number of rows
- DCHECK_GE(batch_.num_cols_, 0);
-
- int32_t rows_in_chunk;
- constexpr int32_t kTargetChunkSize = 32768; // in number of values
- if (batch_.num_cols_ > 0) {
- rows_in_chunk = std::min(std::max(kTargetChunkSize / batch_.num_cols_, 512),
- max_num_rows_ - batch_.num_rows_);
- } else {
- rows_in_chunk = std::min(kTargetChunkSize, max_num_rows_ - batch_.num_rows_);
- }
-
- PresizedValueDescWriter values_writer(pool_, rows_in_chunk, batch_.num_cols_);
- values_writer.Start(parsed_writer);
-
- RETURN_NOT_OK(ParseChunk<SpecializedOptions>(&values_writer, &parsed_writer, data,
- data_end, is_final, rows_in_chunk,
- &data, &finished_parsing));
- }
- DCHECK_GE(data, view.data());
- DCHECK_LE(data, data_end);
- total_parsed_length += static_cast<uint32_t>(data - view.data());
-
- if (data < data_end) {
- // Stopped early, for some reason
- break;
- }
- }
-
- parsed_writer.Finish(&batch_.parsed_buffer_);
- batch_.parsed_size_ = static_cast<int32_t>(batch_.parsed_buffer_->size());
- batch_.parsed_ = batch_.parsed_buffer_->data();
-
- if (batch_.num_cols_ == -1) {
- DCHECK_EQ(batch_.num_rows_, 0);
- }
- DCHECK_EQ(values_size_, batch_.num_rows_ * batch_.num_cols_);
-#ifndef NDEBUG
- if (batch_.num_rows_ > 0) {
- // Ending parsed offset should be equal to number of parsed bytes
- DCHECK_GT(batch_.values_buffers_.size(), 0);
- const auto& last_values_buffer = batch_.values_buffers_.back();
- const auto last_values =
- reinterpret_cast<const ParsedValueDesc*>(last_values_buffer->data());
- const auto last_values_size = last_values_buffer->size() / sizeof(ParsedValueDesc);
- const auto check_parsed_size =
- static_cast<int32_t>(last_values[last_values_size - 1].offset);
- DCHECK_EQ(batch_.parsed_size_, check_parsed_size);
- } else {
- DCHECK_EQ(batch_.parsed_size_, 0);
- }
-#endif
- *out_size = static_cast<uint32_t>(total_parsed_length);
- return Status::OK();
- }
-
- Status Parse(const std::vector<util::string_view>& data, bool is_final,
- uint32_t* out_size) {
- if (options_.quoting) {
- if (options_.escaping) {
- return ParseSpecialized<SpecializedOptions<true, true>>(data, is_final, out_size);
- } else {
- return ParseSpecialized<SpecializedOptions<true, false>>(data, is_final,
- out_size);
- }
- } else {
- if (options_.escaping) {
- return ParseSpecialized<SpecializedOptions<false, true>>(data, is_final,
- out_size);
- } else {
- return ParseSpecialized<SpecializedOptions<false, false>>(data, is_final,
- out_size);
- }
- }
- }
-
- protected:
- MemoryPool* pool_;
- const ParseOptions options_;
- const int64_t first_row_;
- // The maximum number of rows to parse from a block
- int32_t max_num_rows_;
-
- // Unparsed data size
- int32_t values_size_;
- // Parsed data batch
- DataBatch batch_;
-};
-
-BlockParser::BlockParser(ParseOptions options, int32_t num_cols, int64_t first_row,
- int32_t max_num_rows)
- : BlockParser(default_memory_pool(), options, num_cols, first_row, max_num_rows) {}
-
-BlockParser::BlockParser(MemoryPool* pool, ParseOptions options, int32_t num_cols,
- int64_t first_row, int32_t max_num_rows)
- : impl_(new BlockParserImpl(pool, std::move(options), num_cols, first_row,
- max_num_rows)) {}
-
-BlockParser::~BlockParser() {}
-
-Status BlockParser::Parse(const std::vector<util::string_view>& data,
- uint32_t* out_size) {
- return impl_->Parse(data, false /* is_final */, out_size);
-}
-
-Status BlockParser::ParseFinal(const std::vector<util::string_view>& data,
- uint32_t* out_size) {
- return impl_->Parse(data, true /* is_final */, out_size);
-}
-
-Status BlockParser::Parse(util::string_view data, uint32_t* out_size) {
- return impl_->Parse({data}, false /* is_final */, out_size);
-}
-
-Status BlockParser::ParseFinal(util::string_view data, uint32_t* out_size) {
- return impl_->Parse({data}, true /* is_final */, out_size);
-}
-
-const DataBatch& BlockParser::parsed_batch() const { return impl_->parsed_batch(); }
-
-int64_t BlockParser::first_row_num() const { return impl_->first_row_num(); }
-
-int32_t SkipRows(const uint8_t* data, uint32_t size, int32_t num_rows,
- const uint8_t** out_data) {
- const auto end = data + size;
- int32_t skipped_rows = 0;
- *out_data = data;
-
- for (; skipped_rows < num_rows; ++skipped_rows) {
- uint8_t c;
- do {
- while (ARROW_PREDICT_FALSE(data < end && !IsControlChar(*data))) {
- ++data;
- }
- if (ARROW_PREDICT_FALSE(data == end)) {
- return skipped_rows;
- }
- c = *data++;
- } while (c != '\r' && c != '\n');
- if (c == '\r' && data < end && *data == '\n') {
- ++data;
- }
- *out_data = data;
- }
-
- return skipped_rows;
-}
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/csv/parser.h"
+
+#include <algorithm>
+#include <cstdio>
+#include <limits>
+#include <utility>
+
+#include "arrow/memory_pool.h"
+#include "arrow/result.h"
+#include "arrow/status.h"
+#include "arrow/util/logging.h"
+
+namespace arrow {
+namespace csv {
+
+using detail::DataBatch;
+using detail::ParsedValueDesc;
+
+namespace {
+
+template <typename... Args>
+Status ParseError(Args&&... args) {
+ return Status::Invalid("CSV parse error: ", std::forward<Args>(args)...);
+}
+
+Status MismatchingColumns(int32_t expected, int32_t actual, int64_t row_num,
+ util::string_view row) {
+ std::string ellipse;
+ if (row.length() > 100) {
+ row = row.substr(0, 96);
+ ellipse = " ...";
+ }
+ if (row_num < 0) {
+ return ParseError("Expected ", expected, " columns, got ", actual, ": ", row,
+ ellipse);
+ }
+ return ParseError("Row #", row_num, ": Expected ", expected, " columns, got ", actual,
+ ": ", row, ellipse);
+}
+
+inline bool IsControlChar(uint8_t c) { return c < ' '; }
+
+template <bool Quoting, bool Escaping>
+class SpecializedOptions {
+ public:
+ static constexpr bool quoting = Quoting;
+ static constexpr bool escaping = Escaping;
+};
+
+// A helper class allocating the buffer for parsed values and writing into it
+// without any further resizes, except at the end.
+class PresizedDataWriter {
+ public:
+ PresizedDataWriter(MemoryPool* pool, uint32_t size)
+ : parsed_size_(0), parsed_capacity_(size) {
+ parsed_buffer_ = *AllocateResizableBuffer(parsed_capacity_, pool);
+ parsed_ = parsed_buffer_->mutable_data();
+ }
+
+ void Finish(std::shared_ptr<Buffer>* out_parsed) {
+ ARROW_CHECK_OK(parsed_buffer_->Resize(parsed_size_));
+ *out_parsed = parsed_buffer_;
+ }
+
+ void BeginLine() { saved_parsed_size_ = parsed_size_; }
+
+ void PushFieldChar(char c) {
+ DCHECK_LT(parsed_size_, parsed_capacity_);
+ parsed_[parsed_size_++] = static_cast<uint8_t>(c);
+ }
+
+ // Rollback the state that was saved in BeginLine()
+ void RollbackLine() { parsed_size_ = saved_parsed_size_; }
+
+ int64_t size() { return parsed_size_; }
+
+ protected:
+ std::shared_ptr<ResizableBuffer> parsed_buffer_;
+ uint8_t* parsed_;
+ int64_t parsed_size_;
+ int64_t parsed_capacity_;
+ // Checkpointing, for when an incomplete line is encountered at end of block
+ int64_t saved_parsed_size_;
+};
+
+template <typename Derived>
+class ValueDescWriter {
+ public:
+ Derived* derived() { return static_cast<Derived*>(this); }
+
+ template <typename DataWriter>
+ void Start(DataWriter& parsed_writer) {
+ derived()->PushValue(
+ {static_cast<uint32_t>(parsed_writer.size()) & 0x7fffffffU, false});
+ }
+
+ void BeginLine() { saved_values_size_ = values_size_; }
+
+ // Rollback the state that was saved in BeginLine()
+ void RollbackLine() { values_size_ = saved_values_size_; }
+
+ void StartField(bool quoted) { quoted_ = quoted; }
+
+ template <typename DataWriter>
+ void FinishField(DataWriter* parsed_writer) {
+ derived()->PushValue(
+ {static_cast<uint32_t>(parsed_writer->size()) & 0x7fffffffU, quoted_});
+ }
+
+ void Finish(std::shared_ptr<Buffer>* out_values) {
+ ARROW_CHECK_OK(values_buffer_->Resize(values_size_ * sizeof(*values_)));
+ *out_values = values_buffer_;
+ }
+
+ protected:
+ ValueDescWriter(MemoryPool* pool, int64_t values_capacity)
+ : values_size_(0), values_capacity_(values_capacity) {
+ values_buffer_ = *AllocateResizableBuffer(values_capacity_ * sizeof(*values_), pool);
+ values_ = reinterpret_cast<ParsedValueDesc*>(values_buffer_->mutable_data());
+ }
+
+ std::shared_ptr<ResizableBuffer> values_buffer_;
+ ParsedValueDesc* values_;
+ int64_t values_size_;
+ int64_t values_capacity_;
+ bool quoted_;
+ // Checkpointing, for when an incomplete line is encountered at end of block
+ int64_t saved_values_size_;
+};
+
+// A helper class handling a growable buffer for values offsets. This class is
+// used when the number of columns is not yet known and we therefore cannot
+// efficiently presize the target area for a given number of rows.
+class ResizableValueDescWriter : public ValueDescWriter<ResizableValueDescWriter> {
+ public:
+ explicit ResizableValueDescWriter(MemoryPool* pool)
+ : ValueDescWriter(pool, /*values_capacity=*/256) {}
+
+ void PushValue(ParsedValueDesc v) {
+ if (ARROW_PREDICT_FALSE(values_size_ == values_capacity_)) {
+ values_capacity_ = values_capacity_ * 2;
+ ARROW_CHECK_OK(values_buffer_->Resize(values_capacity_ * sizeof(*values_)));
+ values_ = reinterpret_cast<ParsedValueDesc*>(values_buffer_->mutable_data());
+ }
+ values_[values_size_++] = v;
+ }
+};
+
+// A helper class allocating the buffer for values offsets and writing into it
+// without any further resizes, except at the end. This class is used once the
+// number of columns is known, as it eliminates resizes and generates simpler,
+// faster CSV parsing code.
+class PresizedValueDescWriter : public ValueDescWriter<PresizedValueDescWriter> {
+ public:
+ PresizedValueDescWriter(MemoryPool* pool, int32_t num_rows, int32_t num_cols)
+ : ValueDescWriter(pool, /*values_capacity=*/1 + num_rows * num_cols) {}
+
+ void PushValue(ParsedValueDesc v) {
+ DCHECK_LT(values_size_, values_capacity_);
+ values_[values_size_++] = v;
+ }
+};
+
+} // namespace
+
+class BlockParserImpl {
+ public:
+ BlockParserImpl(MemoryPool* pool, ParseOptions options, int32_t num_cols,
+ int64_t first_row, int32_t max_num_rows)
+ : pool_(pool),
+ options_(options),
+ first_row_(first_row),
+ max_num_rows_(max_num_rows),
+ batch_(num_cols) {}
+
+ const DataBatch& parsed_batch() const { return batch_; }
+
+ int64_t first_row_num() const { return first_row_; }
+
+ template <typename SpecializedOptions, typename ValueDescWriter, typename DataWriter>
+ Status ParseLine(ValueDescWriter* values_writer, DataWriter* parsed_writer,
+ const char* data, const char* data_end, bool is_final,
+ const char** out_data) {
+ int32_t num_cols = 0;
+ char c;
+ const auto start = data;
+
+ DCHECK_GT(data_end, data);
+
+ auto FinishField = [&]() { values_writer->FinishField(parsed_writer); };
+
+ values_writer->BeginLine();
+ parsed_writer->BeginLine();
+
+ // The parsing state machine
+
+ // Special case empty lines: do we start with a newline separator?
+ c = *data;
+ if (ARROW_PREDICT_FALSE(IsControlChar(c))) {
+ if (c == '\r') {
+ data++;
+ if (data < data_end && *data == '\n') {
+ data++;
+ }
+ goto EmptyLine;
+ }
+ if (c == '\n') {
+ data++;
+ goto EmptyLine;
+ }
+ }
+
+ FieldStart:
+ // At the start of a field
+ // Quoting is only recognized at start of field
+ if (SpecializedOptions::quoting &&
+ ARROW_PREDICT_FALSE(*data == options_.quote_char)) {
+ ++data;
+ values_writer->StartField(true /* quoted */);
+ goto InQuotedField;
+ } else {
+ values_writer->StartField(false /* quoted */);
+ goto InField;
+ }
+
+ InField:
+ // Inside a non-quoted part of a field
+ if (ARROW_PREDICT_FALSE(data == data_end)) {
+ goto AbortLine;
+ }
+ c = *data++;
+ if (SpecializedOptions::escaping && ARROW_PREDICT_FALSE(c == options_.escape_char)) {
+ if (ARROW_PREDICT_FALSE(data == data_end)) {
+ goto AbortLine;
+ }
+ c = *data++;
+ parsed_writer->PushFieldChar(c);
+ goto InField;
+ }
+ if (ARROW_PREDICT_FALSE(c == options_.delimiter)) {
+ goto FieldEnd;
+ }
+ if (ARROW_PREDICT_FALSE(IsControlChar(c))) {
+ if (c == '\r') {
+ // In the middle of a newline separator?
+ if (ARROW_PREDICT_TRUE(data < data_end) && *data == '\n') {
+ data++;
+ }
+ goto LineEnd;
+ }
+ if (c == '\n') {
+ goto LineEnd;
+ }
+ }
+ parsed_writer->PushFieldChar(c);
+ goto InField;
+
+ InQuotedField:
+ // Inside a quoted part of a field
+ if (ARROW_PREDICT_FALSE(data == data_end)) {
+ goto AbortLine;
+ }
+ c = *data++;
+ if (SpecializedOptions::escaping && ARROW_PREDICT_FALSE(c == options_.escape_char)) {
+ if (ARROW_PREDICT_FALSE(data == data_end)) {
+ goto AbortLine;
+ }
+ c = *data++;
+ parsed_writer->PushFieldChar(c);
+ goto InQuotedField;
+ }
+ if (ARROW_PREDICT_FALSE(c == options_.quote_char)) {
+ if (options_.double_quote && ARROW_PREDICT_TRUE(data < data_end) &&
+ ARROW_PREDICT_FALSE(*data == options_.quote_char)) {
+ // Double-quoting
+ ++data;
+ } else {
+ // End of single-quoting
+ goto InField;
+ }
+ }
+ parsed_writer->PushFieldChar(c);
+ goto InQuotedField;
+
+ FieldEnd:
+ // At the end of a field
+ FinishField();
+ ++num_cols;
+ if (ARROW_PREDICT_FALSE(data == data_end)) {
+ goto AbortLine;
+ }
+ goto FieldStart;
+
+ LineEnd:
+ // At the end of line
+ FinishField();
+ ++num_cols;
+ if (ARROW_PREDICT_FALSE(num_cols != batch_.num_cols_)) {
+ if (batch_.num_cols_ == -1) {
+ batch_.num_cols_ = num_cols;
+ } else {
+ // Find the end of the line without newline or carriage return
+ auto end = data;
+ if (*(end - 1) == '\n') {
+ --end;
+ }
+ if (*(end - 1) == '\r') {
+ --end;
+ }
+ return MismatchingColumns(batch_.num_cols_, num_cols,
+ first_row_ < 0 ? -1 : first_row_ + batch_.num_rows_,
+ util::string_view(start, end - start));
+ }
+ }
+ ++batch_.num_rows_;
+ *out_data = data;
+ return Status::OK();
+
+ AbortLine:
+ // Not a full line except perhaps if in final block
+ if (is_final) {
+ goto LineEnd;
+ }
+ // Truncated line at end of block, rewind parsed state
+ values_writer->RollbackLine();
+ parsed_writer->RollbackLine();
+ return Status::OK();
+
+ EmptyLine:
+ if (!options_.ignore_empty_lines) {
+ if (batch_.num_cols_ == -1) {
+ // Consider as single value
+ batch_.num_cols_ = 1;
+ }
+ // Record as row of empty (null?) values
+ while (num_cols++ < batch_.num_cols_) {
+ values_writer->StartField(false /* quoted */);
+ FinishField();
+ }
+ ++batch_.num_rows_;
+ }
+ *out_data = data;
+ return Status::OK();
+ }
+
+ template <typename SpecializedOptions, typename ValueDescWriter, typename DataWriter>
+ Status ParseChunk(ValueDescWriter* values_writer, DataWriter* parsed_writer,
+ const char* data, const char* data_end, bool is_final,
+ int32_t rows_in_chunk, const char** out_data,
+ bool* finished_parsing) {
+ int32_t num_rows_deadline = batch_.num_rows_ + rows_in_chunk;
+
+ while (data < data_end && batch_.num_rows_ < num_rows_deadline) {
+ const char* line_end = data;
+ RETURN_NOT_OK(ParseLine<SpecializedOptions>(values_writer, parsed_writer, data,
+ data_end, is_final, &line_end));
+ if (line_end == data) {
+ // Cannot parse any further
+ *finished_parsing = true;
+ break;
+ }
+ data = line_end;
+ }
+ // Append new buffers and update size
+ std::shared_ptr<Buffer> values_buffer;
+ values_writer->Finish(&values_buffer);
+ if (values_buffer->size() > 0) {
+ values_size_ +=
+ static_cast<int32_t>(values_buffer->size() / sizeof(ParsedValueDesc) - 1);
+ batch_.values_buffers_.push_back(std::move(values_buffer));
+ }
+ *out_data = data;
+ return Status::OK();
+ }
+
+ template <typename SpecializedOptions>
+ Status ParseSpecialized(const std::vector<util::string_view>& views, bool is_final,
+ uint32_t* out_size) {
+ batch_ = DataBatch{batch_.num_cols_};
+ values_size_ = 0;
+
+ size_t total_view_length = 0;
+ for (const auto& view : views) {
+ total_view_length += view.length();
+ }
+ if (total_view_length > std::numeric_limits<uint32_t>::max()) {
+ return Status::Invalid("CSV block too large");
+ }
+
+ PresizedDataWriter parsed_writer(pool_, static_cast<uint32_t>(total_view_length));
+ uint32_t total_parsed_length = 0;
+
+ for (const auto& view : views) {
+ const char* data = view.data();
+ const char* data_end = view.data() + view.length();
+ bool finished_parsing = false;
+
+ if (batch_.num_cols_ == -1) {
+ // Can't presize values when the number of columns is not known, first parse
+ // a single line
+ const int32_t rows_in_chunk = 1;
+ ResizableValueDescWriter values_writer(pool_);
+ values_writer.Start(parsed_writer);
+
+ RETURN_NOT_OK(ParseChunk<SpecializedOptions>(&values_writer, &parsed_writer, data,
+ data_end, is_final, rows_in_chunk,
+ &data, &finished_parsing));
+ if (batch_.num_cols_ == -1) {
+ return ParseError("Empty CSV file or block: cannot infer number of columns");
+ }
+ }
+
+ while (!finished_parsing && data < data_end && batch_.num_rows_ < max_num_rows_) {
+ // We know the number of columns, so can presize a values array for
+ // a given number of rows
+ DCHECK_GE(batch_.num_cols_, 0);
+
+ int32_t rows_in_chunk;
+ constexpr int32_t kTargetChunkSize = 32768; // in number of values
+ if (batch_.num_cols_ > 0) {
+ rows_in_chunk = std::min(std::max(kTargetChunkSize / batch_.num_cols_, 512),
+ max_num_rows_ - batch_.num_rows_);
+ } else {
+ rows_in_chunk = std::min(kTargetChunkSize, max_num_rows_ - batch_.num_rows_);
+ }
+
+ PresizedValueDescWriter values_writer(pool_, rows_in_chunk, batch_.num_cols_);
+ values_writer.Start(parsed_writer);
+
+ RETURN_NOT_OK(ParseChunk<SpecializedOptions>(&values_writer, &parsed_writer, data,
+ data_end, is_final, rows_in_chunk,
+ &data, &finished_parsing));
+ }
+ DCHECK_GE(data, view.data());
+ DCHECK_LE(data, data_end);
+ total_parsed_length += static_cast<uint32_t>(data - view.data());
+
+ if (data < data_end) {
+ // Stopped early, for some reason
+ break;
+ }
+ }
+
+ parsed_writer.Finish(&batch_.parsed_buffer_);
+ batch_.parsed_size_ = static_cast<int32_t>(batch_.parsed_buffer_->size());
+ batch_.parsed_ = batch_.parsed_buffer_->data();
+
+ if (batch_.num_cols_ == -1) {
+ DCHECK_EQ(batch_.num_rows_, 0);
+ }
+ DCHECK_EQ(values_size_, batch_.num_rows_ * batch_.num_cols_);
+#ifndef NDEBUG
+ if (batch_.num_rows_ > 0) {
+ // Ending parsed offset should be equal to number of parsed bytes
+ DCHECK_GT(batch_.values_buffers_.size(), 0);
+ const auto& last_values_buffer = batch_.values_buffers_.back();
+ const auto last_values =
+ reinterpret_cast<const ParsedValueDesc*>(last_values_buffer->data());
+ const auto last_values_size = last_values_buffer->size() / sizeof(ParsedValueDesc);
+ const auto check_parsed_size =
+ static_cast<int32_t>(last_values[last_values_size - 1].offset);
+ DCHECK_EQ(batch_.parsed_size_, check_parsed_size);
+ } else {
+ DCHECK_EQ(batch_.parsed_size_, 0);
+ }
+#endif
+ *out_size = static_cast<uint32_t>(total_parsed_length);
+ return Status::OK();
+ }
+
+ Status Parse(const std::vector<util::string_view>& data, bool is_final,
+ uint32_t* out_size) {
+ if (options_.quoting) {
+ if (options_.escaping) {
+ return ParseSpecialized<SpecializedOptions<true, true>>(data, is_final, out_size);
+ } else {
+ return ParseSpecialized<SpecializedOptions<true, false>>(data, is_final,
+ out_size);
+ }
+ } else {
+ if (options_.escaping) {
+ return ParseSpecialized<SpecializedOptions<false, true>>(data, is_final,
+ out_size);
+ } else {
+ return ParseSpecialized<SpecializedOptions<false, false>>(data, is_final,
+ out_size);
+ }
+ }
+ }
+
+ protected:
+ MemoryPool* pool_;
+ const ParseOptions options_;
+ const int64_t first_row_;
+ // The maximum number of rows to parse from a block
+ int32_t max_num_rows_;
+
+ // Unparsed data size
+ int32_t values_size_;
+ // Parsed data batch
+ DataBatch batch_;
+};
+
+BlockParser::BlockParser(ParseOptions options, int32_t num_cols, int64_t first_row,
+ int32_t max_num_rows)
+ : BlockParser(default_memory_pool(), options, num_cols, first_row, max_num_rows) {}
+
+BlockParser::BlockParser(MemoryPool* pool, ParseOptions options, int32_t num_cols,
+ int64_t first_row, int32_t max_num_rows)
+ : impl_(new BlockParserImpl(pool, std::move(options), num_cols, first_row,
+ max_num_rows)) {}
+
+BlockParser::~BlockParser() {}
+
+Status BlockParser::Parse(const std::vector<util::string_view>& data,
+ uint32_t* out_size) {
+ return impl_->Parse(data, false /* is_final */, out_size);
+}
+
+Status BlockParser::ParseFinal(const std::vector<util::string_view>& data,
+ uint32_t* out_size) {
+ return impl_->Parse(data, true /* is_final */, out_size);
+}
+
+Status BlockParser::Parse(util::string_view data, uint32_t* out_size) {
+ return impl_->Parse({data}, false /* is_final */, out_size);
+}
+
+Status BlockParser::ParseFinal(util::string_view data, uint32_t* out_size) {
+ return impl_->Parse({data}, true /* is_final */, out_size);
+}
+
+const DataBatch& BlockParser::parsed_batch() const { return impl_->parsed_batch(); }
+
+int64_t BlockParser::first_row_num() const { return impl_->first_row_num(); }
+
+int32_t SkipRows(const uint8_t* data, uint32_t size, int32_t num_rows,
+ const uint8_t** out_data) {
+ const auto end = data + size;
+ int32_t skipped_rows = 0;
+ *out_data = data;
+
+ for (; skipped_rows < num_rows; ++skipped_rows) {
+ uint8_t c;
+ do {
+ while (ARROW_PREDICT_FALSE(data < end && !IsControlChar(*data))) {
+ ++data;
+ }
+ if (ARROW_PREDICT_FALSE(data == end)) {
+ return skipped_rows;
+ }
+ c = *data++;
+ } while (c != '\r' && c != '\n');
+ if (c == '\r' && data < end && *data == '\n') {
+ ++data;
+ }
+ *out_data = data;
+ }
+
+ return skipped_rows;
+}
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/parser.h b/contrib/libs/apache/arrow/cpp/src/arrow/csv/parser.h
index ffc735c228..76ba0fbaf3 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/parser.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/parser.h
@@ -1,202 +1,202 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <cstddef>
-#include <cstdint>
-#include <memory>
-#include <vector>
-
-#include "arrow/buffer.h"
-#include "arrow/csv/options.h"
-#include "arrow/status.h"
-#include "arrow/util/macros.h"
-#include "arrow/util/string_view.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-
-class MemoryPool;
-
-namespace csv {
-
-/// Skip at most num_rows from the given input. The input pointer is updated
-/// and the number of actually skipped rows is returns (may be less than
-/// requested if the input is too short).
-ARROW_EXPORT
-int32_t SkipRows(const uint8_t* data, uint32_t size, int32_t num_rows,
- const uint8_t** out_data);
-
-class BlockParserImpl;
-
-namespace detail {
-
-struct ParsedValueDesc {
- uint32_t offset : 31;
- bool quoted : 1;
-};
-
-class ARROW_EXPORT DataBatch {
- public:
- explicit DataBatch(int32_t num_cols) : num_cols_(num_cols) {}
-
- /// \brief Return the number of parsed rows
- int32_t num_rows() const { return num_rows_; }
- /// \brief Return the number of parsed columns
- int32_t num_cols() const { return num_cols_; }
- /// \brief Return the total size in bytes of parsed data
- uint32_t num_bytes() const { return parsed_size_; }
-
- template <typename Visitor>
- Status VisitColumn(int32_t col_index, int64_t first_row, Visitor&& visit) const {
- using detail::ParsedValueDesc;
-
- int64_t row = first_row;
- for (size_t buf_index = 0; buf_index < values_buffers_.size(); ++buf_index) {
- const auto& values_buffer = values_buffers_[buf_index];
- const auto values = reinterpret_cast<const ParsedValueDesc*>(values_buffer->data());
- const auto max_pos =
- static_cast<int32_t>(values_buffer->size() / sizeof(ParsedValueDesc)) - 1;
- for (int32_t pos = col_index; pos < max_pos; pos += num_cols_, ++row) {
- auto start = values[pos].offset;
- auto stop = values[pos + 1].offset;
- auto quoted = values[pos + 1].quoted;
- Status status = visit(parsed_ + start, stop - start, quoted);
- if (ARROW_PREDICT_FALSE(!status.ok())) {
- if (first_row >= 0) {
- status = status.WithMessage("Row #", row, ": ", status.message());
- }
- ARROW_RETURN_NOT_OK(status);
- }
- }
- }
- return Status::OK();
- }
-
- template <typename Visitor>
- Status VisitLastRow(Visitor&& visit) const {
- using detail::ParsedValueDesc;
-
- const auto& values_buffer = values_buffers_.back();
- const auto values = reinterpret_cast<const ParsedValueDesc*>(values_buffer->data());
- const auto start_pos =
- static_cast<int32_t>(values_buffer->size() / sizeof(ParsedValueDesc)) -
- num_cols_ - 1;
- for (int32_t col_index = 0; col_index < num_cols_; ++col_index) {
- auto start = values[start_pos + col_index].offset;
- auto stop = values[start_pos + col_index + 1].offset;
- auto quoted = values[start_pos + col_index + 1].quoted;
- ARROW_RETURN_NOT_OK(visit(parsed_ + start, stop - start, quoted));
- }
- return Status::OK();
- }
-
- protected:
- // The number of rows in this batch
- int32_t num_rows_ = 0;
- // The number of columns
- int32_t num_cols_ = 0;
-
- // XXX should we ensure the parsed buffer is padded with 8 or 16 excess zero bytes?
- // It may help with null parsing...
- std::vector<std::shared_ptr<Buffer>> values_buffers_;
- std::shared_ptr<Buffer> parsed_buffer_;
- const uint8_t* parsed_ = NULLPTR;
- int32_t parsed_size_ = 0;
-
- friend class ::arrow::csv::BlockParserImpl;
-};
-
-} // namespace detail
-
-constexpr int32_t kMaxParserNumRows = 100000;
-
-/// \class BlockParser
-/// \brief A reusable block-based parser for CSV data
-///
-/// The parser takes a block of CSV data and delimits rows and fields,
-/// unquoting and unescaping them on the fly. Parsed data is own by the
-/// parser, so the original buffer can be discarded after Parse() returns.
-///
-/// If the block is truncated (i.e. not all data can be parsed), it is up
-/// to the caller to arrange the next block to start with the trailing data.
-/// Also, if the previous block ends with CR (0x0d) and a new block starts
-/// with LF (0x0a), the parser will consider the leading newline as an empty
-/// line; the caller should therefore strip it.
-class ARROW_EXPORT BlockParser {
- public:
- explicit BlockParser(ParseOptions options, int32_t num_cols = -1,
- int64_t first_row = -1, int32_t max_num_rows = kMaxParserNumRows);
- explicit BlockParser(MemoryPool* pool, ParseOptions options, int32_t num_cols = -1,
- int64_t first_row = -1, int32_t max_num_rows = kMaxParserNumRows);
- ~BlockParser();
-
- /// \brief Parse a block of data
- ///
- /// Parse a block of CSV data, ingesting up to max_num_rows rows.
- /// The number of bytes actually parsed is returned in out_size.
- Status Parse(util::string_view data, uint32_t* out_size);
-
- /// \brief Parse sequential blocks of data
- ///
- /// Only the last block is allowed to be truncated.
- Status Parse(const std::vector<util::string_view>& data, uint32_t* out_size);
-
- /// \brief Parse the final block of data
- ///
- /// Like Parse(), but called with the final block in a file.
- /// The last row may lack a trailing line separator.
- Status ParseFinal(util::string_view data, uint32_t* out_size);
-
- /// \brief Parse the final sequential blocks of data
- ///
- /// Only the last block is allowed to be truncated.
- Status ParseFinal(const std::vector<util::string_view>& data, uint32_t* out_size);
-
- /// \brief Return the number of parsed rows
- int32_t num_rows() const { return parsed_batch().num_rows(); }
- /// \brief Return the number of parsed columns
- int32_t num_cols() const { return parsed_batch().num_cols(); }
- /// \brief Return the total size in bytes of parsed data
- uint32_t num_bytes() const { return parsed_batch().num_bytes(); }
- /// \brief Return the row number of the first row in the block or -1 if unsupported
- int64_t first_row_num() const;
-
- /// \brief Visit parsed values in a column
- ///
- /// The signature of the visitor is
- /// Status(const uint8_t* data, uint32_t size, bool quoted)
- template <typename Visitor>
- Status VisitColumn(int32_t col_index, Visitor&& visit) const {
- return parsed_batch().VisitColumn(col_index, first_row_num(),
- std::forward<Visitor>(visit));
- }
-
- template <typename Visitor>
- Status VisitLastRow(Visitor&& visit) const {
- return parsed_batch().VisitLastRow(std::forward<Visitor>(visit));
- }
-
- protected:
- std::unique_ptr<BlockParserImpl> impl_;
-
- const detail::DataBatch& parsed_batch() const;
-};
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <cstddef>
+#include <cstdint>
+#include <memory>
+#include <vector>
+
+#include "arrow/buffer.h"
+#include "arrow/csv/options.h"
+#include "arrow/status.h"
+#include "arrow/util/macros.h"
+#include "arrow/util/string_view.h"
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+
+class MemoryPool;
+
+namespace csv {
+
+/// Skip at most num_rows from the given input. The input pointer is updated
+/// and the number of actually skipped rows is returns (may be less than
+/// requested if the input is too short).
+ARROW_EXPORT
+int32_t SkipRows(const uint8_t* data, uint32_t size, int32_t num_rows,
+ const uint8_t** out_data);
+
+class BlockParserImpl;
+
+namespace detail {
+
+struct ParsedValueDesc {
+ uint32_t offset : 31;
+ bool quoted : 1;
+};
+
+class ARROW_EXPORT DataBatch {
+ public:
+ explicit DataBatch(int32_t num_cols) : num_cols_(num_cols) {}
+
+ /// \brief Return the number of parsed rows
+ int32_t num_rows() const { return num_rows_; }
+ /// \brief Return the number of parsed columns
+ int32_t num_cols() const { return num_cols_; }
+ /// \brief Return the total size in bytes of parsed data
+ uint32_t num_bytes() const { return parsed_size_; }
+
+ template <typename Visitor>
+ Status VisitColumn(int32_t col_index, int64_t first_row, Visitor&& visit) const {
+ using detail::ParsedValueDesc;
+
+ int64_t row = first_row;
+ for (size_t buf_index = 0; buf_index < values_buffers_.size(); ++buf_index) {
+ const auto& values_buffer = values_buffers_[buf_index];
+ const auto values = reinterpret_cast<const ParsedValueDesc*>(values_buffer->data());
+ const auto max_pos =
+ static_cast<int32_t>(values_buffer->size() / sizeof(ParsedValueDesc)) - 1;
+ for (int32_t pos = col_index; pos < max_pos; pos += num_cols_, ++row) {
+ auto start = values[pos].offset;
+ auto stop = values[pos + 1].offset;
+ auto quoted = values[pos + 1].quoted;
+ Status status = visit(parsed_ + start, stop - start, quoted);
+ if (ARROW_PREDICT_FALSE(!status.ok())) {
+ if (first_row >= 0) {
+ status = status.WithMessage("Row #", row, ": ", status.message());
+ }
+ ARROW_RETURN_NOT_OK(status);
+ }
+ }
+ }
+ return Status::OK();
+ }
+
+ template <typename Visitor>
+ Status VisitLastRow(Visitor&& visit) const {
+ using detail::ParsedValueDesc;
+
+ const auto& values_buffer = values_buffers_.back();
+ const auto values = reinterpret_cast<const ParsedValueDesc*>(values_buffer->data());
+ const auto start_pos =
+ static_cast<int32_t>(values_buffer->size() / sizeof(ParsedValueDesc)) -
+ num_cols_ - 1;
+ for (int32_t col_index = 0; col_index < num_cols_; ++col_index) {
+ auto start = values[start_pos + col_index].offset;
+ auto stop = values[start_pos + col_index + 1].offset;
+ auto quoted = values[start_pos + col_index + 1].quoted;
+ ARROW_RETURN_NOT_OK(visit(parsed_ + start, stop - start, quoted));
+ }
+ return Status::OK();
+ }
+
+ protected:
+ // The number of rows in this batch
+ int32_t num_rows_ = 0;
+ // The number of columns
+ int32_t num_cols_ = 0;
+
+ // XXX should we ensure the parsed buffer is padded with 8 or 16 excess zero bytes?
+ // It may help with null parsing...
+ std::vector<std::shared_ptr<Buffer>> values_buffers_;
+ std::shared_ptr<Buffer> parsed_buffer_;
+ const uint8_t* parsed_ = NULLPTR;
+ int32_t parsed_size_ = 0;
+
+ friend class ::arrow::csv::BlockParserImpl;
+};
+
+} // namespace detail
+
+constexpr int32_t kMaxParserNumRows = 100000;
+
+/// \class BlockParser
+/// \brief A reusable block-based parser for CSV data
+///
+/// The parser takes a block of CSV data and delimits rows and fields,
+/// unquoting and unescaping them on the fly. Parsed data is own by the
+/// parser, so the original buffer can be discarded after Parse() returns.
+///
+/// If the block is truncated (i.e. not all data can be parsed), it is up
+/// to the caller to arrange the next block to start with the trailing data.
+/// Also, if the previous block ends with CR (0x0d) and a new block starts
+/// with LF (0x0a), the parser will consider the leading newline as an empty
+/// line; the caller should therefore strip it.
+class ARROW_EXPORT BlockParser {
+ public:
+ explicit BlockParser(ParseOptions options, int32_t num_cols = -1,
+ int64_t first_row = -1, int32_t max_num_rows = kMaxParserNumRows);
+ explicit BlockParser(MemoryPool* pool, ParseOptions options, int32_t num_cols = -1,
+ int64_t first_row = -1, int32_t max_num_rows = kMaxParserNumRows);
+ ~BlockParser();
+
+ /// \brief Parse a block of data
+ ///
+ /// Parse a block of CSV data, ingesting up to max_num_rows rows.
+ /// The number of bytes actually parsed is returned in out_size.
+ Status Parse(util::string_view data, uint32_t* out_size);
+
+ /// \brief Parse sequential blocks of data
+ ///
+ /// Only the last block is allowed to be truncated.
+ Status Parse(const std::vector<util::string_view>& data, uint32_t* out_size);
+
+ /// \brief Parse the final block of data
+ ///
+ /// Like Parse(), but called with the final block in a file.
+ /// The last row may lack a trailing line separator.
+ Status ParseFinal(util::string_view data, uint32_t* out_size);
+
+ /// \brief Parse the final sequential blocks of data
+ ///
+ /// Only the last block is allowed to be truncated.
+ Status ParseFinal(const std::vector<util::string_view>& data, uint32_t* out_size);
+
+ /// \brief Return the number of parsed rows
+ int32_t num_rows() const { return parsed_batch().num_rows(); }
+ /// \brief Return the number of parsed columns
+ int32_t num_cols() const { return parsed_batch().num_cols(); }
+ /// \brief Return the total size in bytes of parsed data
+ uint32_t num_bytes() const { return parsed_batch().num_bytes(); }
+ /// \brief Return the row number of the first row in the block or -1 if unsupported
+ int64_t first_row_num() const;
+
+ /// \brief Visit parsed values in a column
+ ///
+ /// The signature of the visitor is
+ /// Status(const uint8_t* data, uint32_t size, bool quoted)
+ template <typename Visitor>
+ Status VisitColumn(int32_t col_index, Visitor&& visit) const {
+ return parsed_batch().VisitColumn(col_index, first_row_num(),
+ std::forward<Visitor>(visit));
+ }
+
+ template <typename Visitor>
+ Status VisitLastRow(Visitor&& visit) const {
+ return parsed_batch().VisitLastRow(std::forward<Visitor>(visit));
+ }
+
+ protected:
+ std::unique_ptr<BlockParserImpl> impl_;
+
+ const detail::DataBatch& parsed_batch() const;
+};
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/reader.cc b/contrib/libs/apache/arrow/cpp/src/arrow/csv/reader.cc
index 1a7836561d..d31d39ccf8 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/reader.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/reader.cc
@@ -1,1279 +1,1279 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/csv/reader.h"
-
-#include <cstdint>
-#include <cstring>
-#include <functional>
-#include <limits>
-#include <memory>
-#include <sstream>
-#include <string>
-#include <unordered_map>
-#include <utility>
-#include <vector>
-
-#include "arrow/array.h"
-#include "arrow/buffer.h"
-#include "arrow/csv/chunker.h"
-#include "arrow/csv/column_builder.h"
-#include "arrow/csv/column_decoder.h"
-#include "arrow/csv/options.h"
-#include "arrow/csv/parser.h"
-#include "arrow/io/interfaces.h"
-#include "arrow/result.h"
-#include "arrow/status.h"
-#include "arrow/table.h"
-#include "arrow/type.h"
-#include "arrow/type_fwd.h"
-#include "arrow/util/async_generator.h"
-#include "arrow/util/future.h"
-#include "arrow/util/iterator.h"
-#include "arrow/util/logging.h"
-#include "arrow/util/macros.h"
-#include "arrow/util/optional.h"
-#include "arrow/util/task_group.h"
-#include "arrow/util/thread_pool.h"
-#include "arrow/util/utf8.h"
-#include "arrow/util/vector.h"
-
-namespace arrow {
-namespace csv {
-
-using internal::Executor;
-
-namespace {
-
-struct ConversionSchema {
- struct Column {
- std::string name;
- // Physical column index in CSV file
- int32_t index;
- // If true, make a column of nulls
- bool is_missing;
- // If set, convert the CSV column to this type
- // If unset (and is_missing is false), infer the type from the CSV column
- std::shared_ptr<DataType> type;
- };
-
- static Column NullColumn(std::string col_name, std::shared_ptr<DataType> type) {
- return Column{std::move(col_name), -1, true, std::move(type)};
- }
-
- static Column TypedColumn(std::string col_name, int32_t col_index,
- std::shared_ptr<DataType> type) {
- return Column{std::move(col_name), col_index, false, std::move(type)};
- }
-
- static Column InferredColumn(std::string col_name, int32_t col_index) {
- return Column{std::move(col_name), col_index, false, nullptr};
- }
-
- std::vector<Column> columns;
-};
-
-// An iterator of Buffers that makes sure there is no straddling CRLF sequence.
-class CSVBufferIterator {
- public:
- static Iterator<std::shared_ptr<Buffer>> Make(
- Iterator<std::shared_ptr<Buffer>> buffer_iterator) {
- Transformer<std::shared_ptr<Buffer>, std::shared_ptr<Buffer>> fn =
- CSVBufferIterator();
- return MakeTransformedIterator(std::move(buffer_iterator), fn);
- }
-
- static AsyncGenerator<std::shared_ptr<Buffer>> MakeAsync(
- AsyncGenerator<std::shared_ptr<Buffer>> buffer_iterator) {
- Transformer<std::shared_ptr<Buffer>, std::shared_ptr<Buffer>> fn =
- CSVBufferIterator();
- return MakeTransformedGenerator(std::move(buffer_iterator), fn);
- }
-
- Result<TransformFlow<std::shared_ptr<Buffer>>> operator()(std::shared_ptr<Buffer> buf) {
- if (buf == nullptr) {
- // EOF
- return TransformFinish();
- }
-
- int64_t offset = 0;
- if (first_buffer_) {
- ARROW_ASSIGN_OR_RAISE(auto data, util::SkipUTF8BOM(buf->data(), buf->size()));
- offset += data - buf->data();
- DCHECK_GE(offset, 0);
- first_buffer_ = false;
- }
-
- if (trailing_cr_ && buf->data()[offset] == '\n') {
- // Skip '\r\n' line separator that started at the end of previous buffer
- ++offset;
- }
-
- trailing_cr_ = (buf->data()[buf->size() - 1] == '\r');
- buf = SliceBuffer(buf, offset);
- if (buf->size() == 0) {
- // EOF
- return TransformFinish();
- } else {
- return TransformYield(buf);
- }
- }
-
- protected:
- bool first_buffer_ = true;
- // Whether there was a trailing CR at the end of last received buffer
- bool trailing_cr_ = false;
-};
-
-struct CSVBlock {
- // (partial + completion + buffer) is an entire delimited CSV buffer.
- std::shared_ptr<Buffer> partial;
- std::shared_ptr<Buffer> completion;
- std::shared_ptr<Buffer> buffer;
- int64_t block_index;
- bool is_final;
- int64_t bytes_skipped;
- std::function<Status(int64_t)> consume_bytes;
-};
-
-} // namespace
-} // namespace csv
-
-template <>
-struct IterationTraits<csv::CSVBlock> {
- static csv::CSVBlock End() { return csv::CSVBlock{{}, {}, {}, -1, true, 0, {}}; }
- static bool IsEnd(const csv::CSVBlock& val) { return val.block_index < 0; }
-};
-
-namespace csv {
-namespace {
-
-// This is a callable that can be used to transform an iterator. The source iterator
-// will contain buffers of data and the output iterator will contain delimited CSV
-// blocks. util::optional is used so that there is an end token (required by the
-// iterator APIs (e.g. Visit)) even though an empty optional is never used in this code.
-class BlockReader {
- public:
- BlockReader(std::unique_ptr<Chunker> chunker, std::shared_ptr<Buffer> first_buffer,
- int64_t skip_rows)
- : chunker_(std::move(chunker)),
- partial_(std::make_shared<Buffer>("")),
- buffer_(std::move(first_buffer)),
- skip_rows_(skip_rows) {}
-
- protected:
- std::unique_ptr<Chunker> chunker_;
- std::shared_ptr<Buffer> partial_, buffer_;
- int64_t skip_rows_;
- int64_t block_index_ = 0;
- // Whether there was a trailing CR at the end of last received buffer
- bool trailing_cr_ = false;
-};
-
-// An object that reads delimited CSV blocks for serial use.
-// The number of bytes consumed should be notified after each read,
-// using CSVBlock::consume_bytes.
-class SerialBlockReader : public BlockReader {
- public:
- using BlockReader::BlockReader;
-
- static Iterator<CSVBlock> MakeIterator(
- Iterator<std::shared_ptr<Buffer>> buffer_iterator, std::unique_ptr<Chunker> chunker,
- std::shared_ptr<Buffer> first_buffer, int64_t skip_rows) {
- auto block_reader =
- std::make_shared<SerialBlockReader>(std::move(chunker), first_buffer, skip_rows);
- // Wrap shared pointer in callable
- Transformer<std::shared_ptr<Buffer>, CSVBlock> block_reader_fn =
- [block_reader](std::shared_ptr<Buffer> buf) {
- return (*block_reader)(std::move(buf));
- };
- return MakeTransformedIterator(std::move(buffer_iterator), block_reader_fn);
- }
-
- static AsyncGenerator<CSVBlock> MakeAsyncIterator(
- AsyncGenerator<std::shared_ptr<Buffer>> buffer_generator,
- std::unique_ptr<Chunker> chunker, std::shared_ptr<Buffer> first_buffer,
- int64_t skip_rows) {
- auto block_reader =
- std::make_shared<SerialBlockReader>(std::move(chunker), first_buffer, skip_rows);
- // Wrap shared pointer in callable
- Transformer<std::shared_ptr<Buffer>, CSVBlock> block_reader_fn =
- [block_reader](std::shared_ptr<Buffer> next) {
- return (*block_reader)(std::move(next));
- };
- return MakeTransformedGenerator(std::move(buffer_generator), block_reader_fn);
- }
-
- Result<TransformFlow<CSVBlock>> operator()(std::shared_ptr<Buffer> next_buffer) {
- if (buffer_ == nullptr) {
- return TransformFinish();
- }
-
- bool is_final = (next_buffer == nullptr);
- int64_t bytes_skipped = 0;
-
- if (skip_rows_) {
- bytes_skipped += partial_->size();
- auto orig_size = buffer_->size();
- RETURN_NOT_OK(
- chunker_->ProcessSkip(partial_, buffer_, is_final, &skip_rows_, &buffer_));
- bytes_skipped += orig_size - buffer_->size();
- auto empty = std::make_shared<Buffer>(nullptr, 0);
- if (skip_rows_) {
- // Still have rows beyond this buffer to skip return empty block
- partial_ = std::move(buffer_);
- buffer_ = next_buffer;
- return TransformYield<CSVBlock>(CSVBlock{empty, empty, empty, block_index_++,
- is_final, bytes_skipped,
- [](int64_t) { return Status::OK(); }});
- }
- partial_ = std::move(empty);
- }
-
- std::shared_ptr<Buffer> completion;
-
- if (is_final) {
- // End of file reached => compute completion from penultimate block
- RETURN_NOT_OK(chunker_->ProcessFinal(partial_, buffer_, &completion, &buffer_));
- } else {
- // Get completion of partial from previous block.
- RETURN_NOT_OK(
- chunker_->ProcessWithPartial(partial_, buffer_, &completion, &buffer_));
- }
- int64_t bytes_before_buffer = partial_->size() + completion->size();
-
- auto consume_bytes = [this, bytes_before_buffer,
- next_buffer](int64_t nbytes) -> Status {
- DCHECK_GE(nbytes, 0);
- auto offset = nbytes - bytes_before_buffer;
- if (offset < 0) {
- // Should not happen
- return Status::Invalid("CSV parser got out of sync with chunker");
- }
- partial_ = SliceBuffer(buffer_, offset);
- buffer_ = next_buffer;
- return Status::OK();
- };
-
- return TransformYield<CSVBlock>(CSVBlock{partial_, completion, buffer_,
- block_index_++, is_final, bytes_skipped,
- std::move(consume_bytes)});
- }
-};
-
-// An object that reads delimited CSV blocks for threaded use.
-class ThreadedBlockReader : public BlockReader {
- public:
- using BlockReader::BlockReader;
-
- static AsyncGenerator<CSVBlock> MakeAsyncIterator(
- AsyncGenerator<std::shared_ptr<Buffer>> buffer_generator,
- std::unique_ptr<Chunker> chunker, std::shared_ptr<Buffer> first_buffer,
- int64_t skip_rows) {
- auto block_reader = std::make_shared<ThreadedBlockReader>(std::move(chunker),
- first_buffer, skip_rows);
- // Wrap shared pointer in callable
- Transformer<std::shared_ptr<Buffer>, CSVBlock> block_reader_fn =
- [block_reader](std::shared_ptr<Buffer> next) { return (*block_reader)(next); };
- return MakeTransformedGenerator(std::move(buffer_generator), block_reader_fn);
- }
-
- Result<TransformFlow<CSVBlock>> operator()(std::shared_ptr<Buffer> next_buffer) {
- if (buffer_ == nullptr) {
- // EOF
- return TransformFinish();
- }
-
- bool is_final = (next_buffer == nullptr);
-
- auto current_partial = std::move(partial_);
- auto current_buffer = std::move(buffer_);
- int64_t bytes_skipped = 0;
-
- if (skip_rows_) {
- auto orig_size = current_buffer->size();
- bytes_skipped = current_partial->size();
- RETURN_NOT_OK(chunker_->ProcessSkip(current_partial, current_buffer, is_final,
- &skip_rows_, &current_buffer));
- bytes_skipped += orig_size - current_buffer->size();
- current_partial = std::make_shared<Buffer>(nullptr, 0);
- if (skip_rows_) {
- partial_ = std::move(current_buffer);
- buffer_ = std::move(next_buffer);
- return TransformYield<CSVBlock>(CSVBlock{current_partial,
- current_partial,
- current_partial,
- block_index_++,
- is_final,
- bytes_skipped,
- {}});
- }
- }
-
- std::shared_ptr<Buffer> whole, completion, next_partial;
-
- if (is_final) {
- // End of file reached => compute completion from penultimate block
- RETURN_NOT_OK(
- chunker_->ProcessFinal(current_partial, current_buffer, &completion, &whole));
- } else {
- // Get completion of partial from previous block.
- std::shared_ptr<Buffer> starts_with_whole;
- // Get completion of partial from previous block.
- RETURN_NOT_OK(chunker_->ProcessWithPartial(current_partial, current_buffer,
- &completion, &starts_with_whole));
-
- // Get a complete CSV block inside `partial + block`, and keep
- // the rest for the next iteration.
- RETURN_NOT_OK(chunker_->Process(starts_with_whole, &whole, &next_partial));
- }
-
- partial_ = std::move(next_partial);
- buffer_ = std::move(next_buffer);
-
- return TransformYield<CSVBlock>(CSVBlock{
- current_partial, completion, whole, block_index_++, is_final, bytes_skipped, {}});
- }
-};
-
-struct ParsedBlock {
- std::shared_ptr<BlockParser> parser;
- int64_t block_index;
- int64_t bytes_parsed_or_skipped;
-};
-
-struct DecodedBlock {
- std::shared_ptr<RecordBatch> record_batch;
- // Represents the number of input bytes represented by this batch
- // This will include bytes skipped when skipping rows after the header
- int64_t bytes_processed;
-};
-
-} // namespace
-
-} // namespace csv
-
-template <>
-struct IterationTraits<csv::ParsedBlock> {
- static csv::ParsedBlock End() { return csv::ParsedBlock{nullptr, -1, -1}; }
- static bool IsEnd(const csv::ParsedBlock& val) { return val.block_index < 0; }
-};
-
-template <>
-struct IterationTraits<csv::DecodedBlock> {
- static csv::DecodedBlock End() { return csv::DecodedBlock{nullptr, -1}; }
- static bool IsEnd(const csv::DecodedBlock& val) { return val.bytes_processed < 0; }
-};
-
-namespace csv {
-namespace {
-
-// A function object that takes in a buffer of CSV data and returns a parsed batch of CSV
-// data (CSVBlock -> ParsedBlock) for use with MakeMappedGenerator.
-// The parsed batch contains a list of offsets for each of the columns so that columns
-// can be individually scanned
-//
-// This operator is not re-entrant
-class BlockParsingOperator {
- public:
- BlockParsingOperator(io::IOContext io_context, ParseOptions parse_options,
- int num_csv_cols, int64_t first_row)
- : io_context_(io_context),
- parse_options_(parse_options),
- num_csv_cols_(num_csv_cols),
- count_rows_(first_row >= 0),
- num_rows_seen_(first_row) {}
-
- Result<ParsedBlock> operator()(const CSVBlock& block) {
- constexpr int32_t max_num_rows = std::numeric_limits<int32_t>::max();
- auto parser = std::make_shared<BlockParser>(
- io_context_.pool(), parse_options_, num_csv_cols_, num_rows_seen_, max_num_rows);
-
- std::shared_ptr<Buffer> straddling;
- std::vector<util::string_view> views;
- if (block.partial->size() != 0 || block.completion->size() != 0) {
- if (block.partial->size() == 0) {
- straddling = block.completion;
- } else if (block.completion->size() == 0) {
- straddling = block.partial;
- } else {
- ARROW_ASSIGN_OR_RAISE(
- straddling,
- ConcatenateBuffers({block.partial, block.completion}, io_context_.pool()));
- }
- views = {util::string_view(*straddling), util::string_view(*block.buffer)};
- } else {
- views = {util::string_view(*block.buffer)};
- }
- uint32_t parsed_size;
- if (block.is_final) {
- RETURN_NOT_OK(parser->ParseFinal(views, &parsed_size));
- } else {
- RETURN_NOT_OK(parser->Parse(views, &parsed_size));
- }
- if (count_rows_) {
- num_rows_seen_ += parser->num_rows();
- }
- RETURN_NOT_OK(block.consume_bytes(parsed_size));
- return ParsedBlock{std::move(parser), block.block_index,
- static_cast<int64_t>(parsed_size) + block.bytes_skipped};
- }
-
- private:
- io::IOContext io_context_;
- ParseOptions parse_options_;
- int num_csv_cols_;
- bool count_rows_;
- int64_t num_rows_seen_;
-};
-
-// A function object that takes in parsed batch of CSV data and decodes it to an arrow
-// record batch (ParsedBlock -> DecodedBlock) for use with MakeMappedGenerator.
-class BlockDecodingOperator {
- public:
- Future<DecodedBlock> operator()(const ParsedBlock& block) {
- DCHECK(!state_->column_decoders.empty());
- std::vector<Future<std::shared_ptr<Array>>> decoded_array_futs;
- for (auto& decoder : state_->column_decoders) {
- decoded_array_futs.push_back(decoder->Decode(block.parser));
- }
- auto bytes_parsed_or_skipped = block.bytes_parsed_or_skipped;
- auto decoded_arrays_fut = All(std::move(decoded_array_futs));
- auto state = state_;
- return decoded_arrays_fut.Then(
- [state, bytes_parsed_or_skipped](
- const std::vector<Result<std::shared_ptr<Array>>>& maybe_decoded_arrays)
- -> Result<DecodedBlock> {
- ARROW_ASSIGN_OR_RAISE(auto decoded_arrays,
- internal::UnwrapOrRaise(maybe_decoded_arrays));
-
- ARROW_ASSIGN_OR_RAISE(auto batch,
- state->DecodedArraysToBatch(std::move(decoded_arrays)));
- return DecodedBlock{std::move(batch), bytes_parsed_or_skipped};
- });
- }
-
- static Result<BlockDecodingOperator> Make(io::IOContext io_context,
- ConvertOptions convert_options,
- ConversionSchema conversion_schema) {
- BlockDecodingOperator op(std::move(io_context), std::move(convert_options),
- std::move(conversion_schema));
- RETURN_NOT_OK(op.state_->MakeColumnDecoders(io_context));
- return op;
- }
-
- private:
- BlockDecodingOperator(io::IOContext io_context, ConvertOptions convert_options,
- ConversionSchema conversion_schema)
- : state_(std::make_shared<State>(std::move(io_context), std::move(convert_options),
- std::move(conversion_schema))) {}
-
- struct State {
- State(io::IOContext io_context, ConvertOptions convert_options,
- ConversionSchema conversion_schema)
- : convert_options(std::move(convert_options)),
- conversion_schema(std::move(conversion_schema)) {}
-
- Result<std::shared_ptr<RecordBatch>> DecodedArraysToBatch(
- std::vector<std::shared_ptr<Array>> arrays) {
- if (schema == nullptr) {
- FieldVector fields(arrays.size());
- for (size_t i = 0; i < arrays.size(); ++i) {
- fields[i] = field(conversion_schema.columns[i].name, arrays[i]->type());
- }
- schema = arrow::schema(std::move(fields));
- }
- const auto n_rows = arrays[0]->length();
- return RecordBatch::Make(schema, n_rows, std::move(arrays));
- }
-
- // Make column decoders from conversion schema
- Status MakeColumnDecoders(io::IOContext io_context) {
- for (const auto& column : conversion_schema.columns) {
- std::shared_ptr<ColumnDecoder> decoder;
- if (column.is_missing) {
- ARROW_ASSIGN_OR_RAISE(decoder,
- ColumnDecoder::MakeNull(io_context.pool(), column.type));
- } else if (column.type != nullptr) {
- ARROW_ASSIGN_OR_RAISE(
- decoder, ColumnDecoder::Make(io_context.pool(), column.type, column.index,
- convert_options));
- } else {
- ARROW_ASSIGN_OR_RAISE(
- decoder,
- ColumnDecoder::Make(io_context.pool(), column.index, convert_options));
- }
- column_decoders.push_back(std::move(decoder));
- }
- return Status::OK();
- }
-
- ConvertOptions convert_options;
- ConversionSchema conversion_schema;
- std::vector<std::shared_ptr<ColumnDecoder>> column_decoders;
- std::shared_ptr<Schema> schema;
- };
-
- std::shared_ptr<State> state_;
-};
-
-/////////////////////////////////////////////////////////////////////////
-// Base class for common functionality
-
-class ReaderMixin {
- public:
- ReaderMixin(io::IOContext io_context, std::shared_ptr<io::InputStream> input,
- const ReadOptions& read_options, const ParseOptions& parse_options,
- const ConvertOptions& convert_options, bool count_rows)
- : io_context_(std::move(io_context)),
- read_options_(read_options),
- parse_options_(parse_options),
- convert_options_(convert_options),
- count_rows_(count_rows),
- num_rows_seen_(count_rows_ ? 1 : -1),
- input_(std::move(input)) {}
-
- protected:
- // Read header and column names from buffer, create column builders
- // Returns the # of bytes consumed
- Result<int64_t> ProcessHeader(const std::shared_ptr<Buffer>& buf,
- std::shared_ptr<Buffer>* rest) {
- const uint8_t* data = buf->data();
- const auto data_end = data + buf->size();
- DCHECK_GT(data_end - data, 0);
-
- if (read_options_.skip_rows) {
- // Skip initial rows (potentially invalid CSV data)
- auto num_skipped_rows = SkipRows(data, static_cast<uint32_t>(data_end - data),
- read_options_.skip_rows, &data);
- if (num_skipped_rows < read_options_.skip_rows) {
- return Status::Invalid(
- "Could not skip initial ", read_options_.skip_rows,
- " rows from CSV file, "
- "either file is too short or header is larger than block size");
- }
- if (count_rows_) {
- num_rows_seen_ += num_skipped_rows;
- }
- }
-
- if (read_options_.column_names.empty()) {
- // Parse one row (either to read column names or to know the number of columns)
- BlockParser parser(io_context_.pool(), parse_options_, num_csv_cols_,
- num_rows_seen_, 1);
- uint32_t parsed_size = 0;
- RETURN_NOT_OK(parser.Parse(
- util::string_view(reinterpret_cast<const char*>(data), data_end - data),
- &parsed_size));
- if (parser.num_rows() != 1) {
- return Status::Invalid(
- "Could not read first row from CSV file, either "
- "file is too short or header is larger than block size");
- }
- if (parser.num_cols() == 0) {
- return Status::Invalid("No columns in CSV file");
- }
-
- if (read_options_.autogenerate_column_names) {
- column_names_ = GenerateColumnNames(parser.num_cols());
- } else {
- // Read column names from header row
- auto visit = [&](const uint8_t* data, uint32_t size, bool quoted) -> Status {
- column_names_.emplace_back(reinterpret_cast<const char*>(data), size);
- return Status::OK();
- };
- RETURN_NOT_OK(parser.VisitLastRow(visit));
- DCHECK_EQ(static_cast<size_t>(parser.num_cols()), column_names_.size());
- // Skip parsed header row
- data += parsed_size;
- if (count_rows_) {
- ++num_rows_seen_;
- }
- }
- } else {
- column_names_ = read_options_.column_names;
- }
-
- if (count_rows_) {
- // increase rows seen to skip past rows which will be skipped
- num_rows_seen_ += read_options_.skip_rows_after_names;
- }
-
- auto bytes_consumed = data - buf->data();
- *rest = SliceBuffer(buf, bytes_consumed);
-
- num_csv_cols_ = static_cast<int32_t>(column_names_.size());
- DCHECK_GT(num_csv_cols_, 0);
-
- RETURN_NOT_OK(MakeConversionSchema());
- return bytes_consumed;
- }
-
- std::vector<std::string> GenerateColumnNames(int32_t num_cols) {
- std::vector<std::string> res;
- res.reserve(num_cols);
- for (int32_t i = 0; i < num_cols; ++i) {
- std::stringstream ss;
- ss << "f" << i;
- res.push_back(ss.str());
- }
- return res;
- }
-
- // Make conversion schema from options and parsed CSV header
- Status MakeConversionSchema() {
- // Append a column converted from CSV data
- auto append_csv_column = [&](std::string col_name, int32_t col_index) {
- // Does the named column have a fixed type?
- auto it = convert_options_.column_types.find(col_name);
- if (it == convert_options_.column_types.end()) {
- conversion_schema_.columns.push_back(
- ConversionSchema::InferredColumn(std::move(col_name), col_index));
- } else {
- conversion_schema_.columns.push_back(
- ConversionSchema::TypedColumn(std::move(col_name), col_index, it->second));
- }
- };
-
- // Append a column of nulls
- auto append_null_column = [&](std::string col_name) {
- // If the named column has a fixed type, use it, otherwise use null()
- std::shared_ptr<DataType> type;
- auto it = convert_options_.column_types.find(col_name);
- if (it == convert_options_.column_types.end()) {
- type = null();
- } else {
- type = it->second;
- }
- conversion_schema_.columns.push_back(
- ConversionSchema::NullColumn(std::move(col_name), std::move(type)));
- };
-
- if (convert_options_.include_columns.empty()) {
- // Include all columns in CSV file order
- for (int32_t col_index = 0; col_index < num_csv_cols_; ++col_index) {
- append_csv_column(column_names_[col_index], col_index);
- }
- } else {
- // Include columns from `include_columns` (in that order)
- // Compute indices of columns in the CSV file
- std::unordered_map<std::string, int32_t> col_indices;
- col_indices.reserve(column_names_.size());
- for (int32_t i = 0; i < static_cast<int32_t>(column_names_.size()); ++i) {
- col_indices.emplace(column_names_[i], i);
- }
-
- for (const auto& col_name : convert_options_.include_columns) {
- auto it = col_indices.find(col_name);
- if (it != col_indices.end()) {
- append_csv_column(col_name, it->second);
- } else if (convert_options_.include_missing_columns) {
- append_null_column(col_name);
- } else {
- return Status::KeyError("Column '", col_name,
- "' in include_columns "
- "does not exist in CSV file");
- }
- }
- }
- return Status::OK();
- }
-
- struct ParseResult {
- std::shared_ptr<BlockParser> parser;
- int64_t parsed_bytes;
- };
-
- Result<ParseResult> Parse(const std::shared_ptr<Buffer>& partial,
- const std::shared_ptr<Buffer>& completion,
- const std::shared_ptr<Buffer>& block, int64_t block_index,
- bool is_final) {
- static constexpr int32_t max_num_rows = std::numeric_limits<int32_t>::max();
- auto parser = std::make_shared<BlockParser>(
- io_context_.pool(), parse_options_, num_csv_cols_, num_rows_seen_, max_num_rows);
-
- std::shared_ptr<Buffer> straddling;
- std::vector<util::string_view> views;
- if (partial->size() != 0 || completion->size() != 0) {
- if (partial->size() == 0) {
- straddling = completion;
- } else if (completion->size() == 0) {
- straddling = partial;
- } else {
- ARROW_ASSIGN_OR_RAISE(
- straddling, ConcatenateBuffers({partial, completion}, io_context_.pool()));
- }
- views = {util::string_view(*straddling), util::string_view(*block)};
- } else {
- views = {util::string_view(*block)};
- }
- uint32_t parsed_size;
- if (is_final) {
- RETURN_NOT_OK(parser->ParseFinal(views, &parsed_size));
- } else {
- RETURN_NOT_OK(parser->Parse(views, &parsed_size));
- }
- if (count_rows_) {
- num_rows_seen_ += parser->num_rows();
- }
- return ParseResult{std::move(parser), static_cast<int64_t>(parsed_size)};
- }
-
- io::IOContext io_context_;
- ReadOptions read_options_;
- ParseOptions parse_options_;
- ConvertOptions convert_options_;
-
- // Number of columns in the CSV file
- int32_t num_csv_cols_ = -1;
- // Whether num_rows_seen_ tracks the number of rows seen in the CSV being parsed
- bool count_rows_;
- // Number of rows seen in the csv. Not used if count_rows is false
- int64_t num_rows_seen_;
- // Column names in the CSV file
- std::vector<std::string> column_names_;
- ConversionSchema conversion_schema_;
-
- std::shared_ptr<io::InputStream> input_;
- std::shared_ptr<internal::TaskGroup> task_group_;
-};
-
-/////////////////////////////////////////////////////////////////////////
-// Base class for one-shot table readers
-
-class BaseTableReader : public ReaderMixin, public csv::TableReader {
- public:
- using ReaderMixin::ReaderMixin;
-
- virtual Status Init() = 0;
-
- Future<std::shared_ptr<Table>> ReadAsync() override {
- return Future<std::shared_ptr<Table>>::MakeFinished(Read());
- }
-
- protected:
- // Make column builders from conversion schema
- Status MakeColumnBuilders() {
- for (const auto& column : conversion_schema_.columns) {
- std::shared_ptr<ColumnBuilder> builder;
- if (column.is_missing) {
- ARROW_ASSIGN_OR_RAISE(builder, ColumnBuilder::MakeNull(io_context_.pool(),
- column.type, task_group_));
- } else if (column.type != nullptr) {
- ARROW_ASSIGN_OR_RAISE(
- builder, ColumnBuilder::Make(io_context_.pool(), column.type, column.index,
- convert_options_, task_group_));
- } else {
- ARROW_ASSIGN_OR_RAISE(builder,
- ColumnBuilder::Make(io_context_.pool(), column.index,
- convert_options_, task_group_));
- }
- column_builders_.push_back(std::move(builder));
- }
- return Status::OK();
- }
-
- Result<int64_t> ParseAndInsert(const std::shared_ptr<Buffer>& partial,
- const std::shared_ptr<Buffer>& completion,
- const std::shared_ptr<Buffer>& block,
- int64_t block_index, bool is_final) {
- ARROW_ASSIGN_OR_RAISE(auto result,
- Parse(partial, completion, block, block_index, is_final));
- RETURN_NOT_OK(ProcessData(result.parser, block_index));
- return result.parsed_bytes;
- }
-
- // Trigger conversion of parsed block data
- Status ProcessData(const std::shared_ptr<BlockParser>& parser, int64_t block_index) {
- for (auto& builder : column_builders_) {
- builder->Insert(block_index, parser);
- }
- return Status::OK();
- }
-
- Result<std::shared_ptr<Table>> MakeTable() {
- DCHECK_EQ(column_builders_.size(), conversion_schema_.columns.size());
-
- std::vector<std::shared_ptr<Field>> fields;
- std::vector<std::shared_ptr<ChunkedArray>> columns;
-
- for (int32_t i = 0; i < static_cast<int32_t>(column_builders_.size()); ++i) {
- const auto& column = conversion_schema_.columns[i];
- ARROW_ASSIGN_OR_RAISE(auto array, column_builders_[i]->Finish());
- fields.push_back(::arrow::field(column.name, array->type()));
- columns.emplace_back(std::move(array));
- }
- return Table::Make(schema(std::move(fields)), std::move(columns));
- }
-
- // Column builders for target Table (in ConversionSchema order)
- std::vector<std::shared_ptr<ColumnBuilder>> column_builders_;
-};
-
-/////////////////////////////////////////////////////////////////////////
-// Base class for streaming readers
-
-class StreamingReaderImpl : public ReaderMixin,
- public csv::StreamingReader,
- public std::enable_shared_from_this<StreamingReaderImpl> {
- public:
- StreamingReaderImpl(io::IOContext io_context, std::shared_ptr<io::InputStream> input,
- const ReadOptions& read_options, const ParseOptions& parse_options,
- const ConvertOptions& convert_options, bool count_rows)
- : ReaderMixin(io_context, std::move(input), read_options, parse_options,
- convert_options, count_rows),
- bytes_decoded_(std::make_shared<std::atomic<int64_t>>(0)) {}
-
- Future<> Init(Executor* cpu_executor) {
- ARROW_ASSIGN_OR_RAISE(auto istream_it,
- io::MakeInputStreamIterator(input_, read_options_.block_size));
-
- // TODO Consider exposing readahead as a read option (ARROW-12090)
- ARROW_ASSIGN_OR_RAISE(auto bg_it, MakeBackgroundGenerator(std::move(istream_it),
- io_context_.executor()));
-
- auto transferred_it = MakeTransferredGenerator(bg_it, cpu_executor);
-
- auto buffer_generator = CSVBufferIterator::MakeAsync(std::move(transferred_it));
-
- int max_readahead = cpu_executor->GetCapacity();
- auto self = shared_from_this();
-
- return buffer_generator().Then([self, buffer_generator, max_readahead](
- const std::shared_ptr<Buffer>& first_buffer) {
- return self->InitAfterFirstBuffer(first_buffer, buffer_generator, max_readahead);
- });
- }
-
- std::shared_ptr<Schema> schema() const override { return schema_; }
-
- int64_t bytes_read() const override { return bytes_decoded_->load(); }
-
- Status ReadNext(std::shared_ptr<RecordBatch>* batch) override {
- auto next_fut = ReadNextAsync();
- auto next_result = next_fut.result();
- return std::move(next_result).Value(batch);
- }
-
- Future<std::shared_ptr<RecordBatch>> ReadNextAsync() override {
- return record_batch_gen_();
- }
-
- protected:
- Future<> InitAfterFirstBuffer(const std::shared_ptr<Buffer>& first_buffer,
- AsyncGenerator<std::shared_ptr<Buffer>> buffer_generator,
- int max_readahead) {
- if (first_buffer == nullptr) {
- return Status::Invalid("Empty CSV file");
- }
-
- std::shared_ptr<Buffer> after_header;
- ARROW_ASSIGN_OR_RAISE(auto header_bytes_consumed,
- ProcessHeader(first_buffer, &after_header));
- bytes_decoded_->fetch_add(header_bytes_consumed);
-
- auto parser_op =
- BlockParsingOperator(io_context_, parse_options_, num_csv_cols_, num_rows_seen_);
- ARROW_ASSIGN_OR_RAISE(
- auto decoder_op,
- BlockDecodingOperator::Make(io_context_, convert_options_, conversion_schema_));
-
- auto block_gen = SerialBlockReader::MakeAsyncIterator(
- std::move(buffer_generator), MakeChunker(parse_options_), std::move(after_header),
- read_options_.skip_rows_after_names);
- auto parsed_block_gen =
- MakeMappedGenerator(std::move(block_gen), std::move(parser_op));
- auto rb_gen = MakeMappedGenerator(std::move(parsed_block_gen), std::move(decoder_op));
-
- auto self = shared_from_this();
- return rb_gen().Then([self, rb_gen, max_readahead](const DecodedBlock& first_block) {
- return self->InitAfterFirstBatch(first_block, std::move(rb_gen), max_readahead);
- });
- }
-
- Status InitAfterFirstBatch(const DecodedBlock& first_block,
- AsyncGenerator<DecodedBlock> batch_gen, int max_readahead) {
- schema_ = first_block.record_batch->schema();
-
- AsyncGenerator<DecodedBlock> readahead_gen;
- if (read_options_.use_threads) {
- readahead_gen = MakeReadaheadGenerator(std::move(batch_gen), max_readahead);
- } else {
- readahead_gen = std::move(batch_gen);
- }
-
- AsyncGenerator<DecodedBlock> restarted_gen;
- // Streaming reader should not emit empty record batches
- if (first_block.record_batch->num_rows() > 0) {
- restarted_gen = MakeGeneratorStartsWith({first_block}, std::move(readahead_gen));
- } else {
- restarted_gen = std::move(readahead_gen);
- }
-
- auto bytes_decoded = bytes_decoded_;
- auto unwrap_and_record_bytes =
- [bytes_decoded](
- const DecodedBlock& block) -> Result<std::shared_ptr<RecordBatch>> {
- bytes_decoded->fetch_add(block.bytes_processed);
- return block.record_batch;
- };
-
- auto unwrapped =
- MakeMappedGenerator(std::move(restarted_gen), std::move(unwrap_and_record_bytes));
-
- record_batch_gen_ = MakeCancellable(std::move(unwrapped), io_context_.stop_token());
- return Status::OK();
- }
-
- std::shared_ptr<Schema> schema_;
- AsyncGenerator<std::shared_ptr<RecordBatch>> record_batch_gen_;
- // bytes which have been decoded and asked for by the caller
- std::shared_ptr<std::atomic<int64_t>> bytes_decoded_;
-};
-
-/////////////////////////////////////////////////////////////////////////
-// Serial TableReader implementation
-
-class SerialTableReader : public BaseTableReader {
- public:
- using BaseTableReader::BaseTableReader;
-
- Status Init() override {
- ARROW_ASSIGN_OR_RAISE(auto istream_it,
- io::MakeInputStreamIterator(input_, read_options_.block_size));
-
- // Since we're converting serially, no need to readahead more than one block
- int32_t block_queue_size = 1;
- ARROW_ASSIGN_OR_RAISE(auto rh_it,
- MakeReadaheadIterator(std::move(istream_it), block_queue_size));
- buffer_iterator_ = CSVBufferIterator::Make(std::move(rh_it));
- return Status::OK();
- }
-
- Result<std::shared_ptr<Table>> Read() override {
- task_group_ = internal::TaskGroup::MakeSerial(io_context_.stop_token());
-
- // First block
- ARROW_ASSIGN_OR_RAISE(auto first_buffer, buffer_iterator_.Next());
- if (first_buffer == nullptr) {
- return Status::Invalid("Empty CSV file");
- }
- RETURN_NOT_OK(ProcessHeader(first_buffer, &first_buffer));
- RETURN_NOT_OK(MakeColumnBuilders());
-
- auto block_iterator = SerialBlockReader::MakeIterator(
- std::move(buffer_iterator_), MakeChunker(parse_options_), std::move(first_buffer),
- read_options_.skip_rows_after_names);
- while (true) {
- RETURN_NOT_OK(io_context_.stop_token().Poll());
-
- ARROW_ASSIGN_OR_RAISE(auto maybe_block, block_iterator.Next());
- if (IsIterationEnd(maybe_block)) {
- // EOF
- break;
- }
- ARROW_ASSIGN_OR_RAISE(
- int64_t parsed_bytes,
- ParseAndInsert(maybe_block.partial, maybe_block.completion, maybe_block.buffer,
- maybe_block.block_index, maybe_block.is_final));
- RETURN_NOT_OK(maybe_block.consume_bytes(parsed_bytes));
- }
- // Finish conversion, create schema and table
- RETURN_NOT_OK(task_group_->Finish());
- return MakeTable();
- }
-
- protected:
- Iterator<std::shared_ptr<Buffer>> buffer_iterator_;
-};
-
-class AsyncThreadedTableReader
- : public BaseTableReader,
- public std::enable_shared_from_this<AsyncThreadedTableReader> {
- public:
- using BaseTableReader::BaseTableReader;
-
- AsyncThreadedTableReader(io::IOContext io_context,
- std::shared_ptr<io::InputStream> input,
- const ReadOptions& read_options,
- const ParseOptions& parse_options,
- const ConvertOptions& convert_options, Executor* cpu_executor)
- // Count rows is currently not supported during parallel read
- : BaseTableReader(std::move(io_context), input, read_options, parse_options,
- convert_options, /*count_rows=*/false),
- cpu_executor_(cpu_executor) {}
-
- ~AsyncThreadedTableReader() override {
- if (task_group_) {
- // In case of error, make sure all pending tasks are finished before
- // we start destroying BaseTableReader members
- ARROW_UNUSED(task_group_->Finish());
- }
- }
-
- Status Init() override {
- ARROW_ASSIGN_OR_RAISE(auto istream_it,
- io::MakeInputStreamIterator(input_, read_options_.block_size));
-
- int max_readahead = cpu_executor_->GetCapacity();
- int readahead_restart = std::max(1, max_readahead / 2);
-
- ARROW_ASSIGN_OR_RAISE(
- auto bg_it, MakeBackgroundGenerator(std::move(istream_it), io_context_.executor(),
- max_readahead, readahead_restart));
-
- auto transferred_it = MakeTransferredGenerator(bg_it, cpu_executor_);
- buffer_generator_ = CSVBufferIterator::MakeAsync(std::move(transferred_it));
- return Status::OK();
- }
-
- Result<std::shared_ptr<Table>> Read() override { return ReadAsync().result(); }
-
- Future<std::shared_ptr<Table>> ReadAsync() override {
- task_group_ =
- internal::TaskGroup::MakeThreaded(cpu_executor_, io_context_.stop_token());
-
- auto self = shared_from_this();
- return ProcessFirstBuffer().Then([self](const std::shared_ptr<Buffer>& first_buffer) {
- auto block_generator = ThreadedBlockReader::MakeAsyncIterator(
- self->buffer_generator_, MakeChunker(self->parse_options_),
- std::move(first_buffer), self->read_options_.skip_rows_after_names);
-
- std::function<Status(CSVBlock)> block_visitor =
- [self](CSVBlock maybe_block) -> Status {
- // The logic in VisitAsyncGenerator ensures that we will never be
- // passed an empty block (visit does not call with the end token) so
- // we can be assured maybe_block has a value.
- DCHECK_GE(maybe_block.block_index, 0);
- DCHECK(!maybe_block.consume_bytes);
-
- // Launch parse task
- self->task_group_->Append([self, maybe_block] {
- return self
- ->ParseAndInsert(maybe_block.partial, maybe_block.completion,
- maybe_block.buffer, maybe_block.block_index,
- maybe_block.is_final)
- .status();
- });
- return Status::OK();
- };
-
- return VisitAsyncGenerator(std::move(block_generator), block_visitor)
- .Then([self]() -> Future<> {
- // By this point we've added all top level tasks so it is safe to call
- // FinishAsync
- return self->task_group_->FinishAsync();
- })
- .Then([self]() -> Result<std::shared_ptr<Table>> {
- // Finish conversion, create schema and table
- return self->MakeTable();
- });
- });
- }
-
- protected:
- Future<std::shared_ptr<Buffer>> ProcessFirstBuffer() {
- // First block
- auto first_buffer_future = buffer_generator_();
- return first_buffer_future.Then([this](const std::shared_ptr<Buffer>& first_buffer)
- -> Result<std::shared_ptr<Buffer>> {
- if (first_buffer == nullptr) {
- return Status::Invalid("Empty CSV file");
- }
- std::shared_ptr<Buffer> first_buffer_processed;
- RETURN_NOT_OK(ProcessHeader(first_buffer, &first_buffer_processed));
- RETURN_NOT_OK(MakeColumnBuilders());
- return first_buffer_processed;
- });
- }
-
- Executor* cpu_executor_;
- AsyncGenerator<std::shared_ptr<Buffer>> buffer_generator_;
-};
-
-Result<std::shared_ptr<TableReader>> MakeTableReader(
- MemoryPool* pool, io::IOContext io_context, std::shared_ptr<io::InputStream> input,
- const ReadOptions& read_options, const ParseOptions& parse_options,
- const ConvertOptions& convert_options) {
- RETURN_NOT_OK(parse_options.Validate());
- RETURN_NOT_OK(read_options.Validate());
- RETURN_NOT_OK(convert_options.Validate());
- std::shared_ptr<BaseTableReader> reader;
- if (read_options.use_threads) {
- auto cpu_executor = internal::GetCpuThreadPool();
- reader = std::make_shared<AsyncThreadedTableReader>(
- io_context, input, read_options, parse_options, convert_options, cpu_executor);
- } else {
- reader = std::make_shared<SerialTableReader>(io_context, input, read_options,
- parse_options, convert_options,
- /*count_rows=*/true);
- }
- RETURN_NOT_OK(reader->Init());
- return reader;
-}
-
-Future<std::shared_ptr<StreamingReader>> MakeStreamingReader(
- io::IOContext io_context, std::shared_ptr<io::InputStream> input,
- internal::Executor* cpu_executor, const ReadOptions& read_options,
- const ParseOptions& parse_options, const ConvertOptions& convert_options) {
- RETURN_NOT_OK(parse_options.Validate());
- RETURN_NOT_OK(read_options.Validate());
- RETURN_NOT_OK(convert_options.Validate());
- std::shared_ptr<StreamingReaderImpl> reader;
- reader = std::make_shared<StreamingReaderImpl>(
- io_context, input, read_options, parse_options, convert_options,
- /*count_rows=*/!read_options.use_threads || cpu_executor->GetCapacity() == 1);
- return reader->Init(cpu_executor).Then([reader] {
- return std::dynamic_pointer_cast<StreamingReader>(reader);
- });
-}
-
-/////////////////////////////////////////////////////////////////////////
-// Row count implementation
-
-class CSVRowCounter : public ReaderMixin,
- public std::enable_shared_from_this<CSVRowCounter> {
- public:
- CSVRowCounter(io::IOContext io_context, Executor* cpu_executor,
- std::shared_ptr<io::InputStream> input, const ReadOptions& read_options,
- const ParseOptions& parse_options)
- : ReaderMixin(io_context, std::move(input), read_options, parse_options,
- ConvertOptions::Defaults(), /*count_rows=*/true),
- cpu_executor_(cpu_executor),
- row_count_(0) {}
-
- Future<int64_t> Count() {
- auto self = shared_from_this();
- return Init(self).Then([self]() { return self->DoCount(self); });
- }
-
- private:
- Future<> Init(const std::shared_ptr<CSVRowCounter>& self) {
- ARROW_ASSIGN_OR_RAISE(auto istream_it,
- io::MakeInputStreamIterator(input_, read_options_.block_size));
- // TODO Consider exposing readahead as a read option (ARROW-12090)
- ARROW_ASSIGN_OR_RAISE(auto bg_it, MakeBackgroundGenerator(std::move(istream_it),
- io_context_.executor()));
- auto transferred_it = MakeTransferredGenerator(bg_it, cpu_executor_);
- auto buffer_generator = CSVBufferIterator::MakeAsync(std::move(transferred_it));
-
- return buffer_generator().Then(
- [self, buffer_generator](std::shared_ptr<Buffer> first_buffer) {
- if (!first_buffer) {
- return Status::Invalid("Empty CSV file");
- }
- RETURN_NOT_OK(self->ProcessHeader(first_buffer, &first_buffer));
- self->block_generator_ = SerialBlockReader::MakeAsyncIterator(
- buffer_generator, MakeChunker(self->parse_options_),
- std::move(first_buffer), 0);
- return Status::OK();
- });
- }
-
- Future<int64_t> DoCount(const std::shared_ptr<CSVRowCounter>& self) {
- // count_cb must return a value instead of Status/Future<> to work with
- // MakeMappedGenerator, and it must use a type with a valid end value to work with
- // IterationEnd.
- std::function<Result<util::optional<int64_t>>(const CSVBlock&)> count_cb =
- [self](const CSVBlock& maybe_block) -> Result<util::optional<int64_t>> {
- ARROW_ASSIGN_OR_RAISE(
- auto parser,
- self->Parse(maybe_block.partial, maybe_block.completion, maybe_block.buffer,
- maybe_block.block_index, maybe_block.is_final));
- RETURN_NOT_OK(maybe_block.consume_bytes(parser.parsed_bytes));
- self->row_count_ += parser.parser->num_rows();
- return parser.parser->num_rows();
- };
- auto count_gen = MakeMappedGenerator(block_generator_, std::move(count_cb));
- return DiscardAllFromAsyncGenerator(count_gen).Then(
- [self]() { return self->row_count_; });
- }
-
- Executor* cpu_executor_;
- AsyncGenerator<CSVBlock> block_generator_;
- int64_t row_count_;
-};
-
-} // namespace
-
-/////////////////////////////////////////////////////////////////////////
-// Factory functions
-
-Result<std::shared_ptr<TableReader>> TableReader::Make(
- io::IOContext io_context, std::shared_ptr<io::InputStream> input,
- const ReadOptions& read_options, const ParseOptions& parse_options,
- const ConvertOptions& convert_options) {
- return MakeTableReader(io_context.pool(), io_context, std::move(input), read_options,
- parse_options, convert_options);
-}
-
-Result<std::shared_ptr<TableReader>> TableReader::Make(
- MemoryPool* pool, io::IOContext io_context, std::shared_ptr<io::InputStream> input,
- const ReadOptions& read_options, const ParseOptions& parse_options,
- const ConvertOptions& convert_options) {
- return MakeTableReader(pool, io_context, std::move(input), read_options, parse_options,
- convert_options);
-}
-
-Result<std::shared_ptr<StreamingReader>> StreamingReader::Make(
- MemoryPool* pool, std::shared_ptr<io::InputStream> input,
- const ReadOptions& read_options, const ParseOptions& parse_options,
- const ConvertOptions& convert_options) {
- auto io_context = io::IOContext(pool);
- auto cpu_executor = internal::GetCpuThreadPool();
- auto reader_fut = MakeStreamingReader(io_context, std::move(input), cpu_executor,
- read_options, parse_options, convert_options);
- auto reader_result = reader_fut.result();
- ARROW_ASSIGN_OR_RAISE(auto reader, reader_result);
- return reader;
-}
-
-Result<std::shared_ptr<StreamingReader>> StreamingReader::Make(
- io::IOContext io_context, std::shared_ptr<io::InputStream> input,
- const ReadOptions& read_options, const ParseOptions& parse_options,
- const ConvertOptions& convert_options) {
- auto cpu_executor = internal::GetCpuThreadPool();
- auto reader_fut = MakeStreamingReader(io_context, std::move(input), cpu_executor,
- read_options, parse_options, convert_options);
- auto reader_result = reader_fut.result();
- ARROW_ASSIGN_OR_RAISE(auto reader, reader_result);
- return reader;
-}
-
-Future<std::shared_ptr<StreamingReader>> StreamingReader::MakeAsync(
- io::IOContext io_context, std::shared_ptr<io::InputStream> input,
- internal::Executor* cpu_executor, const ReadOptions& read_options,
- const ParseOptions& parse_options, const ConvertOptions& convert_options) {
- return MakeStreamingReader(io_context, std::move(input), cpu_executor, read_options,
- parse_options, convert_options);
-}
-
-Future<int64_t> CountRowsAsync(io::IOContext io_context,
- std::shared_ptr<io::InputStream> input,
- internal::Executor* cpu_executor,
- const ReadOptions& read_options,
- const ParseOptions& parse_options) {
- RETURN_NOT_OK(parse_options.Validate());
- RETURN_NOT_OK(read_options.Validate());
- auto counter = std::make_shared<CSVRowCounter>(
- io_context, cpu_executor, std::move(input), read_options, parse_options);
- return counter->Count();
-}
-
-} // namespace csv
-
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/csv/reader.h"
+
+#include <cstdint>
+#include <cstring>
+#include <functional>
+#include <limits>
+#include <memory>
+#include <sstream>
+#include <string>
+#include <unordered_map>
+#include <utility>
+#include <vector>
+
+#include "arrow/array.h"
+#include "arrow/buffer.h"
+#include "arrow/csv/chunker.h"
+#include "arrow/csv/column_builder.h"
+#include "arrow/csv/column_decoder.h"
+#include "arrow/csv/options.h"
+#include "arrow/csv/parser.h"
+#include "arrow/io/interfaces.h"
+#include "arrow/result.h"
+#include "arrow/status.h"
+#include "arrow/table.h"
+#include "arrow/type.h"
+#include "arrow/type_fwd.h"
+#include "arrow/util/async_generator.h"
+#include "arrow/util/future.h"
+#include "arrow/util/iterator.h"
+#include "arrow/util/logging.h"
+#include "arrow/util/macros.h"
+#include "arrow/util/optional.h"
+#include "arrow/util/task_group.h"
+#include "arrow/util/thread_pool.h"
+#include "arrow/util/utf8.h"
+#include "arrow/util/vector.h"
+
+namespace arrow {
+namespace csv {
+
+using internal::Executor;
+
+namespace {
+
+struct ConversionSchema {
+ struct Column {
+ std::string name;
+ // Physical column index in CSV file
+ int32_t index;
+ // If true, make a column of nulls
+ bool is_missing;
+ // If set, convert the CSV column to this type
+ // If unset (and is_missing is false), infer the type from the CSV column
+ std::shared_ptr<DataType> type;
+ };
+
+ static Column NullColumn(std::string col_name, std::shared_ptr<DataType> type) {
+ return Column{std::move(col_name), -1, true, std::move(type)};
+ }
+
+ static Column TypedColumn(std::string col_name, int32_t col_index,
+ std::shared_ptr<DataType> type) {
+ return Column{std::move(col_name), col_index, false, std::move(type)};
+ }
+
+ static Column InferredColumn(std::string col_name, int32_t col_index) {
+ return Column{std::move(col_name), col_index, false, nullptr};
+ }
+
+ std::vector<Column> columns;
+};
+
+// An iterator of Buffers that makes sure there is no straddling CRLF sequence.
+class CSVBufferIterator {
+ public:
+ static Iterator<std::shared_ptr<Buffer>> Make(
+ Iterator<std::shared_ptr<Buffer>> buffer_iterator) {
+ Transformer<std::shared_ptr<Buffer>, std::shared_ptr<Buffer>> fn =
+ CSVBufferIterator();
+ return MakeTransformedIterator(std::move(buffer_iterator), fn);
+ }
+
+ static AsyncGenerator<std::shared_ptr<Buffer>> MakeAsync(
+ AsyncGenerator<std::shared_ptr<Buffer>> buffer_iterator) {
+ Transformer<std::shared_ptr<Buffer>, std::shared_ptr<Buffer>> fn =
+ CSVBufferIterator();
+ return MakeTransformedGenerator(std::move(buffer_iterator), fn);
+ }
+
+ Result<TransformFlow<std::shared_ptr<Buffer>>> operator()(std::shared_ptr<Buffer> buf) {
+ if (buf == nullptr) {
+ // EOF
+ return TransformFinish();
+ }
+
+ int64_t offset = 0;
+ if (first_buffer_) {
+ ARROW_ASSIGN_OR_RAISE(auto data, util::SkipUTF8BOM(buf->data(), buf->size()));
+ offset += data - buf->data();
+ DCHECK_GE(offset, 0);
+ first_buffer_ = false;
+ }
+
+ if (trailing_cr_ && buf->data()[offset] == '\n') {
+ // Skip '\r\n' line separator that started at the end of previous buffer
+ ++offset;
+ }
+
+ trailing_cr_ = (buf->data()[buf->size() - 1] == '\r');
+ buf = SliceBuffer(buf, offset);
+ if (buf->size() == 0) {
+ // EOF
+ return TransformFinish();
+ } else {
+ return TransformYield(buf);
+ }
+ }
+
+ protected:
+ bool first_buffer_ = true;
+ // Whether there was a trailing CR at the end of last received buffer
+ bool trailing_cr_ = false;
+};
+
+struct CSVBlock {
+ // (partial + completion + buffer) is an entire delimited CSV buffer.
+ std::shared_ptr<Buffer> partial;
+ std::shared_ptr<Buffer> completion;
+ std::shared_ptr<Buffer> buffer;
+ int64_t block_index;
+ bool is_final;
+ int64_t bytes_skipped;
+ std::function<Status(int64_t)> consume_bytes;
+};
+
+} // namespace
+} // namespace csv
+
+template <>
+struct IterationTraits<csv::CSVBlock> {
+ static csv::CSVBlock End() { return csv::CSVBlock{{}, {}, {}, -1, true, 0, {}}; }
+ static bool IsEnd(const csv::CSVBlock& val) { return val.block_index < 0; }
+};
+
+namespace csv {
+namespace {
+
+// This is a callable that can be used to transform an iterator. The source iterator
+// will contain buffers of data and the output iterator will contain delimited CSV
+// blocks. util::optional is used so that there is an end token (required by the
+// iterator APIs (e.g. Visit)) even though an empty optional is never used in this code.
+class BlockReader {
+ public:
+ BlockReader(std::unique_ptr<Chunker> chunker, std::shared_ptr<Buffer> first_buffer,
+ int64_t skip_rows)
+ : chunker_(std::move(chunker)),
+ partial_(std::make_shared<Buffer>("")),
+ buffer_(std::move(first_buffer)),
+ skip_rows_(skip_rows) {}
+
+ protected:
+ std::unique_ptr<Chunker> chunker_;
+ std::shared_ptr<Buffer> partial_, buffer_;
+ int64_t skip_rows_;
+ int64_t block_index_ = 0;
+ // Whether there was a trailing CR at the end of last received buffer
+ bool trailing_cr_ = false;
+};
+
+// An object that reads delimited CSV blocks for serial use.
+// The number of bytes consumed should be notified after each read,
+// using CSVBlock::consume_bytes.
+class SerialBlockReader : public BlockReader {
+ public:
+ using BlockReader::BlockReader;
+
+ static Iterator<CSVBlock> MakeIterator(
+ Iterator<std::shared_ptr<Buffer>> buffer_iterator, std::unique_ptr<Chunker> chunker,
+ std::shared_ptr<Buffer> first_buffer, int64_t skip_rows) {
+ auto block_reader =
+ std::make_shared<SerialBlockReader>(std::move(chunker), first_buffer, skip_rows);
+ // Wrap shared pointer in callable
+ Transformer<std::shared_ptr<Buffer>, CSVBlock> block_reader_fn =
+ [block_reader](std::shared_ptr<Buffer> buf) {
+ return (*block_reader)(std::move(buf));
+ };
+ return MakeTransformedIterator(std::move(buffer_iterator), block_reader_fn);
+ }
+
+ static AsyncGenerator<CSVBlock> MakeAsyncIterator(
+ AsyncGenerator<std::shared_ptr<Buffer>> buffer_generator,
+ std::unique_ptr<Chunker> chunker, std::shared_ptr<Buffer> first_buffer,
+ int64_t skip_rows) {
+ auto block_reader =
+ std::make_shared<SerialBlockReader>(std::move(chunker), first_buffer, skip_rows);
+ // Wrap shared pointer in callable
+ Transformer<std::shared_ptr<Buffer>, CSVBlock> block_reader_fn =
+ [block_reader](std::shared_ptr<Buffer> next) {
+ return (*block_reader)(std::move(next));
+ };
+ return MakeTransformedGenerator(std::move(buffer_generator), block_reader_fn);
+ }
+
+ Result<TransformFlow<CSVBlock>> operator()(std::shared_ptr<Buffer> next_buffer) {
+ if (buffer_ == nullptr) {
+ return TransformFinish();
+ }
+
+ bool is_final = (next_buffer == nullptr);
+ int64_t bytes_skipped = 0;
+
+ if (skip_rows_) {
+ bytes_skipped += partial_->size();
+ auto orig_size = buffer_->size();
+ RETURN_NOT_OK(
+ chunker_->ProcessSkip(partial_, buffer_, is_final, &skip_rows_, &buffer_));
+ bytes_skipped += orig_size - buffer_->size();
+ auto empty = std::make_shared<Buffer>(nullptr, 0);
+ if (skip_rows_) {
+ // Still have rows beyond this buffer to skip return empty block
+ partial_ = std::move(buffer_);
+ buffer_ = next_buffer;
+ return TransformYield<CSVBlock>(CSVBlock{empty, empty, empty, block_index_++,
+ is_final, bytes_skipped,
+ [](int64_t) { return Status::OK(); }});
+ }
+ partial_ = std::move(empty);
+ }
+
+ std::shared_ptr<Buffer> completion;
+
+ if (is_final) {
+ // End of file reached => compute completion from penultimate block
+ RETURN_NOT_OK(chunker_->ProcessFinal(partial_, buffer_, &completion, &buffer_));
+ } else {
+ // Get completion of partial from previous block.
+ RETURN_NOT_OK(
+ chunker_->ProcessWithPartial(partial_, buffer_, &completion, &buffer_));
+ }
+ int64_t bytes_before_buffer = partial_->size() + completion->size();
+
+ auto consume_bytes = [this, bytes_before_buffer,
+ next_buffer](int64_t nbytes) -> Status {
+ DCHECK_GE(nbytes, 0);
+ auto offset = nbytes - bytes_before_buffer;
+ if (offset < 0) {
+ // Should not happen
+ return Status::Invalid("CSV parser got out of sync with chunker");
+ }
+ partial_ = SliceBuffer(buffer_, offset);
+ buffer_ = next_buffer;
+ return Status::OK();
+ };
+
+ return TransformYield<CSVBlock>(CSVBlock{partial_, completion, buffer_,
+ block_index_++, is_final, bytes_skipped,
+ std::move(consume_bytes)});
+ }
+};
+
+// An object that reads delimited CSV blocks for threaded use.
+class ThreadedBlockReader : public BlockReader {
+ public:
+ using BlockReader::BlockReader;
+
+ static AsyncGenerator<CSVBlock> MakeAsyncIterator(
+ AsyncGenerator<std::shared_ptr<Buffer>> buffer_generator,
+ std::unique_ptr<Chunker> chunker, std::shared_ptr<Buffer> first_buffer,
+ int64_t skip_rows) {
+ auto block_reader = std::make_shared<ThreadedBlockReader>(std::move(chunker),
+ first_buffer, skip_rows);
+ // Wrap shared pointer in callable
+ Transformer<std::shared_ptr<Buffer>, CSVBlock> block_reader_fn =
+ [block_reader](std::shared_ptr<Buffer> next) { return (*block_reader)(next); };
+ return MakeTransformedGenerator(std::move(buffer_generator), block_reader_fn);
+ }
+
+ Result<TransformFlow<CSVBlock>> operator()(std::shared_ptr<Buffer> next_buffer) {
+ if (buffer_ == nullptr) {
+ // EOF
+ return TransformFinish();
+ }
+
+ bool is_final = (next_buffer == nullptr);
+
+ auto current_partial = std::move(partial_);
+ auto current_buffer = std::move(buffer_);
+ int64_t bytes_skipped = 0;
+
+ if (skip_rows_) {
+ auto orig_size = current_buffer->size();
+ bytes_skipped = current_partial->size();
+ RETURN_NOT_OK(chunker_->ProcessSkip(current_partial, current_buffer, is_final,
+ &skip_rows_, &current_buffer));
+ bytes_skipped += orig_size - current_buffer->size();
+ current_partial = std::make_shared<Buffer>(nullptr, 0);
+ if (skip_rows_) {
+ partial_ = std::move(current_buffer);
+ buffer_ = std::move(next_buffer);
+ return TransformYield<CSVBlock>(CSVBlock{current_partial,
+ current_partial,
+ current_partial,
+ block_index_++,
+ is_final,
+ bytes_skipped,
+ {}});
+ }
+ }
+
+ std::shared_ptr<Buffer> whole, completion, next_partial;
+
+ if (is_final) {
+ // End of file reached => compute completion from penultimate block
+ RETURN_NOT_OK(
+ chunker_->ProcessFinal(current_partial, current_buffer, &completion, &whole));
+ } else {
+ // Get completion of partial from previous block.
+ std::shared_ptr<Buffer> starts_with_whole;
+ // Get completion of partial from previous block.
+ RETURN_NOT_OK(chunker_->ProcessWithPartial(current_partial, current_buffer,
+ &completion, &starts_with_whole));
+
+ // Get a complete CSV block inside `partial + block`, and keep
+ // the rest for the next iteration.
+ RETURN_NOT_OK(chunker_->Process(starts_with_whole, &whole, &next_partial));
+ }
+
+ partial_ = std::move(next_partial);
+ buffer_ = std::move(next_buffer);
+
+ return TransformYield<CSVBlock>(CSVBlock{
+ current_partial, completion, whole, block_index_++, is_final, bytes_skipped, {}});
+ }
+};
+
+struct ParsedBlock {
+ std::shared_ptr<BlockParser> parser;
+ int64_t block_index;
+ int64_t bytes_parsed_or_skipped;
+};
+
+struct DecodedBlock {
+ std::shared_ptr<RecordBatch> record_batch;
+ // Represents the number of input bytes represented by this batch
+ // This will include bytes skipped when skipping rows after the header
+ int64_t bytes_processed;
+};
+
+} // namespace
+
+} // namespace csv
+
+template <>
+struct IterationTraits<csv::ParsedBlock> {
+ static csv::ParsedBlock End() { return csv::ParsedBlock{nullptr, -1, -1}; }
+ static bool IsEnd(const csv::ParsedBlock& val) { return val.block_index < 0; }
+};
+
+template <>
+struct IterationTraits<csv::DecodedBlock> {
+ static csv::DecodedBlock End() { return csv::DecodedBlock{nullptr, -1}; }
+ static bool IsEnd(const csv::DecodedBlock& val) { return val.bytes_processed < 0; }
+};
+
+namespace csv {
+namespace {
+
+// A function object that takes in a buffer of CSV data and returns a parsed batch of CSV
+// data (CSVBlock -> ParsedBlock) for use with MakeMappedGenerator.
+// The parsed batch contains a list of offsets for each of the columns so that columns
+// can be individually scanned
+//
+// This operator is not re-entrant
+class BlockParsingOperator {
+ public:
+ BlockParsingOperator(io::IOContext io_context, ParseOptions parse_options,
+ int num_csv_cols, int64_t first_row)
+ : io_context_(io_context),
+ parse_options_(parse_options),
+ num_csv_cols_(num_csv_cols),
+ count_rows_(first_row >= 0),
+ num_rows_seen_(first_row) {}
+
+ Result<ParsedBlock> operator()(const CSVBlock& block) {
+ constexpr int32_t max_num_rows = std::numeric_limits<int32_t>::max();
+ auto parser = std::make_shared<BlockParser>(
+ io_context_.pool(), parse_options_, num_csv_cols_, num_rows_seen_, max_num_rows);
+
+ std::shared_ptr<Buffer> straddling;
+ std::vector<util::string_view> views;
+ if (block.partial->size() != 0 || block.completion->size() != 0) {
+ if (block.partial->size() == 0) {
+ straddling = block.completion;
+ } else if (block.completion->size() == 0) {
+ straddling = block.partial;
+ } else {
+ ARROW_ASSIGN_OR_RAISE(
+ straddling,
+ ConcatenateBuffers({block.partial, block.completion}, io_context_.pool()));
+ }
+ views = {util::string_view(*straddling), util::string_view(*block.buffer)};
+ } else {
+ views = {util::string_view(*block.buffer)};
+ }
+ uint32_t parsed_size;
+ if (block.is_final) {
+ RETURN_NOT_OK(parser->ParseFinal(views, &parsed_size));
+ } else {
+ RETURN_NOT_OK(parser->Parse(views, &parsed_size));
+ }
+ if (count_rows_) {
+ num_rows_seen_ += parser->num_rows();
+ }
+ RETURN_NOT_OK(block.consume_bytes(parsed_size));
+ return ParsedBlock{std::move(parser), block.block_index,
+ static_cast<int64_t>(parsed_size) + block.bytes_skipped};
+ }
+
+ private:
+ io::IOContext io_context_;
+ ParseOptions parse_options_;
+ int num_csv_cols_;
+ bool count_rows_;
+ int64_t num_rows_seen_;
+};
+
+// A function object that takes in parsed batch of CSV data and decodes it to an arrow
+// record batch (ParsedBlock -> DecodedBlock) for use with MakeMappedGenerator.
+class BlockDecodingOperator {
+ public:
+ Future<DecodedBlock> operator()(const ParsedBlock& block) {
+ DCHECK(!state_->column_decoders.empty());
+ std::vector<Future<std::shared_ptr<Array>>> decoded_array_futs;
+ for (auto& decoder : state_->column_decoders) {
+ decoded_array_futs.push_back(decoder->Decode(block.parser));
+ }
+ auto bytes_parsed_or_skipped = block.bytes_parsed_or_skipped;
+ auto decoded_arrays_fut = All(std::move(decoded_array_futs));
+ auto state = state_;
+ return decoded_arrays_fut.Then(
+ [state, bytes_parsed_or_skipped](
+ const std::vector<Result<std::shared_ptr<Array>>>& maybe_decoded_arrays)
+ -> Result<DecodedBlock> {
+ ARROW_ASSIGN_OR_RAISE(auto decoded_arrays,
+ internal::UnwrapOrRaise(maybe_decoded_arrays));
+
+ ARROW_ASSIGN_OR_RAISE(auto batch,
+ state->DecodedArraysToBatch(std::move(decoded_arrays)));
+ return DecodedBlock{std::move(batch), bytes_parsed_or_skipped};
+ });
+ }
+
+ static Result<BlockDecodingOperator> Make(io::IOContext io_context,
+ ConvertOptions convert_options,
+ ConversionSchema conversion_schema) {
+ BlockDecodingOperator op(std::move(io_context), std::move(convert_options),
+ std::move(conversion_schema));
+ RETURN_NOT_OK(op.state_->MakeColumnDecoders(io_context));
+ return op;
+ }
+
+ private:
+ BlockDecodingOperator(io::IOContext io_context, ConvertOptions convert_options,
+ ConversionSchema conversion_schema)
+ : state_(std::make_shared<State>(std::move(io_context), std::move(convert_options),
+ std::move(conversion_schema))) {}
+
+ struct State {
+ State(io::IOContext io_context, ConvertOptions convert_options,
+ ConversionSchema conversion_schema)
+ : convert_options(std::move(convert_options)),
+ conversion_schema(std::move(conversion_schema)) {}
+
+ Result<std::shared_ptr<RecordBatch>> DecodedArraysToBatch(
+ std::vector<std::shared_ptr<Array>> arrays) {
+ if (schema == nullptr) {
+ FieldVector fields(arrays.size());
+ for (size_t i = 0; i < arrays.size(); ++i) {
+ fields[i] = field(conversion_schema.columns[i].name, arrays[i]->type());
+ }
+ schema = arrow::schema(std::move(fields));
+ }
+ const auto n_rows = arrays[0]->length();
+ return RecordBatch::Make(schema, n_rows, std::move(arrays));
+ }
+
+ // Make column decoders from conversion schema
+ Status MakeColumnDecoders(io::IOContext io_context) {
+ for (const auto& column : conversion_schema.columns) {
+ std::shared_ptr<ColumnDecoder> decoder;
+ if (column.is_missing) {
+ ARROW_ASSIGN_OR_RAISE(decoder,
+ ColumnDecoder::MakeNull(io_context.pool(), column.type));
+ } else if (column.type != nullptr) {
+ ARROW_ASSIGN_OR_RAISE(
+ decoder, ColumnDecoder::Make(io_context.pool(), column.type, column.index,
+ convert_options));
+ } else {
+ ARROW_ASSIGN_OR_RAISE(
+ decoder,
+ ColumnDecoder::Make(io_context.pool(), column.index, convert_options));
+ }
+ column_decoders.push_back(std::move(decoder));
+ }
+ return Status::OK();
+ }
+
+ ConvertOptions convert_options;
+ ConversionSchema conversion_schema;
+ std::vector<std::shared_ptr<ColumnDecoder>> column_decoders;
+ std::shared_ptr<Schema> schema;
+ };
+
+ std::shared_ptr<State> state_;
+};
+
+/////////////////////////////////////////////////////////////////////////
+// Base class for common functionality
+
+class ReaderMixin {
+ public:
+ ReaderMixin(io::IOContext io_context, std::shared_ptr<io::InputStream> input,
+ const ReadOptions& read_options, const ParseOptions& parse_options,
+ const ConvertOptions& convert_options, bool count_rows)
+ : io_context_(std::move(io_context)),
+ read_options_(read_options),
+ parse_options_(parse_options),
+ convert_options_(convert_options),
+ count_rows_(count_rows),
+ num_rows_seen_(count_rows_ ? 1 : -1),
+ input_(std::move(input)) {}
+
+ protected:
+ // Read header and column names from buffer, create column builders
+ // Returns the # of bytes consumed
+ Result<int64_t> ProcessHeader(const std::shared_ptr<Buffer>& buf,
+ std::shared_ptr<Buffer>* rest) {
+ const uint8_t* data = buf->data();
+ const auto data_end = data + buf->size();
+ DCHECK_GT(data_end - data, 0);
+
+ if (read_options_.skip_rows) {
+ // Skip initial rows (potentially invalid CSV data)
+ auto num_skipped_rows = SkipRows(data, static_cast<uint32_t>(data_end - data),
+ read_options_.skip_rows, &data);
+ if (num_skipped_rows < read_options_.skip_rows) {
+ return Status::Invalid(
+ "Could not skip initial ", read_options_.skip_rows,
+ " rows from CSV file, "
+ "either file is too short or header is larger than block size");
+ }
+ if (count_rows_) {
+ num_rows_seen_ += num_skipped_rows;
+ }
+ }
+
+ if (read_options_.column_names.empty()) {
+ // Parse one row (either to read column names or to know the number of columns)
+ BlockParser parser(io_context_.pool(), parse_options_, num_csv_cols_,
+ num_rows_seen_, 1);
+ uint32_t parsed_size = 0;
+ RETURN_NOT_OK(parser.Parse(
+ util::string_view(reinterpret_cast<const char*>(data), data_end - data),
+ &parsed_size));
+ if (parser.num_rows() != 1) {
+ return Status::Invalid(
+ "Could not read first row from CSV file, either "
+ "file is too short or header is larger than block size");
+ }
+ if (parser.num_cols() == 0) {
+ return Status::Invalid("No columns in CSV file");
+ }
+
+ if (read_options_.autogenerate_column_names) {
+ column_names_ = GenerateColumnNames(parser.num_cols());
+ } else {
+ // Read column names from header row
+ auto visit = [&](const uint8_t* data, uint32_t size, bool quoted) -> Status {
+ column_names_.emplace_back(reinterpret_cast<const char*>(data), size);
+ return Status::OK();
+ };
+ RETURN_NOT_OK(parser.VisitLastRow(visit));
+ DCHECK_EQ(static_cast<size_t>(parser.num_cols()), column_names_.size());
+ // Skip parsed header row
+ data += parsed_size;
+ if (count_rows_) {
+ ++num_rows_seen_;
+ }
+ }
+ } else {
+ column_names_ = read_options_.column_names;
+ }
+
+ if (count_rows_) {
+ // increase rows seen to skip past rows which will be skipped
+ num_rows_seen_ += read_options_.skip_rows_after_names;
+ }
+
+ auto bytes_consumed = data - buf->data();
+ *rest = SliceBuffer(buf, bytes_consumed);
+
+ num_csv_cols_ = static_cast<int32_t>(column_names_.size());
+ DCHECK_GT(num_csv_cols_, 0);
+
+ RETURN_NOT_OK(MakeConversionSchema());
+ return bytes_consumed;
+ }
+
+ std::vector<std::string> GenerateColumnNames(int32_t num_cols) {
+ std::vector<std::string> res;
+ res.reserve(num_cols);
+ for (int32_t i = 0; i < num_cols; ++i) {
+ std::stringstream ss;
+ ss << "f" << i;
+ res.push_back(ss.str());
+ }
+ return res;
+ }
+
+ // Make conversion schema from options and parsed CSV header
+ Status MakeConversionSchema() {
+ // Append a column converted from CSV data
+ auto append_csv_column = [&](std::string col_name, int32_t col_index) {
+ // Does the named column have a fixed type?
+ auto it = convert_options_.column_types.find(col_name);
+ if (it == convert_options_.column_types.end()) {
+ conversion_schema_.columns.push_back(
+ ConversionSchema::InferredColumn(std::move(col_name), col_index));
+ } else {
+ conversion_schema_.columns.push_back(
+ ConversionSchema::TypedColumn(std::move(col_name), col_index, it->second));
+ }
+ };
+
+ // Append a column of nulls
+ auto append_null_column = [&](std::string col_name) {
+ // If the named column has a fixed type, use it, otherwise use null()
+ std::shared_ptr<DataType> type;
+ auto it = convert_options_.column_types.find(col_name);
+ if (it == convert_options_.column_types.end()) {
+ type = null();
+ } else {
+ type = it->second;
+ }
+ conversion_schema_.columns.push_back(
+ ConversionSchema::NullColumn(std::move(col_name), std::move(type)));
+ };
+
+ if (convert_options_.include_columns.empty()) {
+ // Include all columns in CSV file order
+ for (int32_t col_index = 0; col_index < num_csv_cols_; ++col_index) {
+ append_csv_column(column_names_[col_index], col_index);
+ }
+ } else {
+ // Include columns from `include_columns` (in that order)
+ // Compute indices of columns in the CSV file
+ std::unordered_map<std::string, int32_t> col_indices;
+ col_indices.reserve(column_names_.size());
+ for (int32_t i = 0; i < static_cast<int32_t>(column_names_.size()); ++i) {
+ col_indices.emplace(column_names_[i], i);
+ }
+
+ for (const auto& col_name : convert_options_.include_columns) {
+ auto it = col_indices.find(col_name);
+ if (it != col_indices.end()) {
+ append_csv_column(col_name, it->second);
+ } else if (convert_options_.include_missing_columns) {
+ append_null_column(col_name);
+ } else {
+ return Status::KeyError("Column '", col_name,
+ "' in include_columns "
+ "does not exist in CSV file");
+ }
+ }
+ }
+ return Status::OK();
+ }
+
+ struct ParseResult {
+ std::shared_ptr<BlockParser> parser;
+ int64_t parsed_bytes;
+ };
+
+ Result<ParseResult> Parse(const std::shared_ptr<Buffer>& partial,
+ const std::shared_ptr<Buffer>& completion,
+ const std::shared_ptr<Buffer>& block, int64_t block_index,
+ bool is_final) {
+ static constexpr int32_t max_num_rows = std::numeric_limits<int32_t>::max();
+ auto parser = std::make_shared<BlockParser>(
+ io_context_.pool(), parse_options_, num_csv_cols_, num_rows_seen_, max_num_rows);
+
+ std::shared_ptr<Buffer> straddling;
+ std::vector<util::string_view> views;
+ if (partial->size() != 0 || completion->size() != 0) {
+ if (partial->size() == 0) {
+ straddling = completion;
+ } else if (completion->size() == 0) {
+ straddling = partial;
+ } else {
+ ARROW_ASSIGN_OR_RAISE(
+ straddling, ConcatenateBuffers({partial, completion}, io_context_.pool()));
+ }
+ views = {util::string_view(*straddling), util::string_view(*block)};
+ } else {
+ views = {util::string_view(*block)};
+ }
+ uint32_t parsed_size;
+ if (is_final) {
+ RETURN_NOT_OK(parser->ParseFinal(views, &parsed_size));
+ } else {
+ RETURN_NOT_OK(parser->Parse(views, &parsed_size));
+ }
+ if (count_rows_) {
+ num_rows_seen_ += parser->num_rows();
+ }
+ return ParseResult{std::move(parser), static_cast<int64_t>(parsed_size)};
+ }
+
+ io::IOContext io_context_;
+ ReadOptions read_options_;
+ ParseOptions parse_options_;
+ ConvertOptions convert_options_;
+
+ // Number of columns in the CSV file
+ int32_t num_csv_cols_ = -1;
+ // Whether num_rows_seen_ tracks the number of rows seen in the CSV being parsed
+ bool count_rows_;
+ // Number of rows seen in the csv. Not used if count_rows is false
+ int64_t num_rows_seen_;
+ // Column names in the CSV file
+ std::vector<std::string> column_names_;
+ ConversionSchema conversion_schema_;
+
+ std::shared_ptr<io::InputStream> input_;
+ std::shared_ptr<internal::TaskGroup> task_group_;
+};
+
+/////////////////////////////////////////////////////////////////////////
+// Base class for one-shot table readers
+
+class BaseTableReader : public ReaderMixin, public csv::TableReader {
+ public:
+ using ReaderMixin::ReaderMixin;
+
+ virtual Status Init() = 0;
+
+ Future<std::shared_ptr<Table>> ReadAsync() override {
+ return Future<std::shared_ptr<Table>>::MakeFinished(Read());
+ }
+
+ protected:
+ // Make column builders from conversion schema
+ Status MakeColumnBuilders() {
+ for (const auto& column : conversion_schema_.columns) {
+ std::shared_ptr<ColumnBuilder> builder;
+ if (column.is_missing) {
+ ARROW_ASSIGN_OR_RAISE(builder, ColumnBuilder::MakeNull(io_context_.pool(),
+ column.type, task_group_));
+ } else if (column.type != nullptr) {
+ ARROW_ASSIGN_OR_RAISE(
+ builder, ColumnBuilder::Make(io_context_.pool(), column.type, column.index,
+ convert_options_, task_group_));
+ } else {
+ ARROW_ASSIGN_OR_RAISE(builder,
+ ColumnBuilder::Make(io_context_.pool(), column.index,
+ convert_options_, task_group_));
+ }
+ column_builders_.push_back(std::move(builder));
+ }
+ return Status::OK();
+ }
+
+ Result<int64_t> ParseAndInsert(const std::shared_ptr<Buffer>& partial,
+ const std::shared_ptr<Buffer>& completion,
+ const std::shared_ptr<Buffer>& block,
+ int64_t block_index, bool is_final) {
+ ARROW_ASSIGN_OR_RAISE(auto result,
+ Parse(partial, completion, block, block_index, is_final));
+ RETURN_NOT_OK(ProcessData(result.parser, block_index));
+ return result.parsed_bytes;
+ }
+
+ // Trigger conversion of parsed block data
+ Status ProcessData(const std::shared_ptr<BlockParser>& parser, int64_t block_index) {
+ for (auto& builder : column_builders_) {
+ builder->Insert(block_index, parser);
+ }
+ return Status::OK();
+ }
+
+ Result<std::shared_ptr<Table>> MakeTable() {
+ DCHECK_EQ(column_builders_.size(), conversion_schema_.columns.size());
+
+ std::vector<std::shared_ptr<Field>> fields;
+ std::vector<std::shared_ptr<ChunkedArray>> columns;
+
+ for (int32_t i = 0; i < static_cast<int32_t>(column_builders_.size()); ++i) {
+ const auto& column = conversion_schema_.columns[i];
+ ARROW_ASSIGN_OR_RAISE(auto array, column_builders_[i]->Finish());
+ fields.push_back(::arrow::field(column.name, array->type()));
+ columns.emplace_back(std::move(array));
+ }
+ return Table::Make(schema(std::move(fields)), std::move(columns));
+ }
+
+ // Column builders for target Table (in ConversionSchema order)
+ std::vector<std::shared_ptr<ColumnBuilder>> column_builders_;
+};
+
+/////////////////////////////////////////////////////////////////////////
+// Base class for streaming readers
+
+class StreamingReaderImpl : public ReaderMixin,
+ public csv::StreamingReader,
+ public std::enable_shared_from_this<StreamingReaderImpl> {
+ public:
+ StreamingReaderImpl(io::IOContext io_context, std::shared_ptr<io::InputStream> input,
+ const ReadOptions& read_options, const ParseOptions& parse_options,
+ const ConvertOptions& convert_options, bool count_rows)
+ : ReaderMixin(io_context, std::move(input), read_options, parse_options,
+ convert_options, count_rows),
+ bytes_decoded_(std::make_shared<std::atomic<int64_t>>(0)) {}
+
+ Future<> Init(Executor* cpu_executor) {
+ ARROW_ASSIGN_OR_RAISE(auto istream_it,
+ io::MakeInputStreamIterator(input_, read_options_.block_size));
+
+ // TODO Consider exposing readahead as a read option (ARROW-12090)
+ ARROW_ASSIGN_OR_RAISE(auto bg_it, MakeBackgroundGenerator(std::move(istream_it),
+ io_context_.executor()));
+
+ auto transferred_it = MakeTransferredGenerator(bg_it, cpu_executor);
+
+ auto buffer_generator = CSVBufferIterator::MakeAsync(std::move(transferred_it));
+
+ int max_readahead = cpu_executor->GetCapacity();
+ auto self = shared_from_this();
+
+ return buffer_generator().Then([self, buffer_generator, max_readahead](
+ const std::shared_ptr<Buffer>& first_buffer) {
+ return self->InitAfterFirstBuffer(first_buffer, buffer_generator, max_readahead);
+ });
+ }
+
+ std::shared_ptr<Schema> schema() const override { return schema_; }
+
+ int64_t bytes_read() const override { return bytes_decoded_->load(); }
+
+ Status ReadNext(std::shared_ptr<RecordBatch>* batch) override {
+ auto next_fut = ReadNextAsync();
+ auto next_result = next_fut.result();
+ return std::move(next_result).Value(batch);
+ }
+
+ Future<std::shared_ptr<RecordBatch>> ReadNextAsync() override {
+ return record_batch_gen_();
+ }
+
+ protected:
+ Future<> InitAfterFirstBuffer(const std::shared_ptr<Buffer>& first_buffer,
+ AsyncGenerator<std::shared_ptr<Buffer>> buffer_generator,
+ int max_readahead) {
+ if (first_buffer == nullptr) {
+ return Status::Invalid("Empty CSV file");
+ }
+
+ std::shared_ptr<Buffer> after_header;
+ ARROW_ASSIGN_OR_RAISE(auto header_bytes_consumed,
+ ProcessHeader(first_buffer, &after_header));
+ bytes_decoded_->fetch_add(header_bytes_consumed);
+
+ auto parser_op =
+ BlockParsingOperator(io_context_, parse_options_, num_csv_cols_, num_rows_seen_);
+ ARROW_ASSIGN_OR_RAISE(
+ auto decoder_op,
+ BlockDecodingOperator::Make(io_context_, convert_options_, conversion_schema_));
+
+ auto block_gen = SerialBlockReader::MakeAsyncIterator(
+ std::move(buffer_generator), MakeChunker(parse_options_), std::move(after_header),
+ read_options_.skip_rows_after_names);
+ auto parsed_block_gen =
+ MakeMappedGenerator(std::move(block_gen), std::move(parser_op));
+ auto rb_gen = MakeMappedGenerator(std::move(parsed_block_gen), std::move(decoder_op));
+
+ auto self = shared_from_this();
+ return rb_gen().Then([self, rb_gen, max_readahead](const DecodedBlock& first_block) {
+ return self->InitAfterFirstBatch(first_block, std::move(rb_gen), max_readahead);
+ });
+ }
+
+ Status InitAfterFirstBatch(const DecodedBlock& first_block,
+ AsyncGenerator<DecodedBlock> batch_gen, int max_readahead) {
+ schema_ = first_block.record_batch->schema();
+
+ AsyncGenerator<DecodedBlock> readahead_gen;
+ if (read_options_.use_threads) {
+ readahead_gen = MakeReadaheadGenerator(std::move(batch_gen), max_readahead);
+ } else {
+ readahead_gen = std::move(batch_gen);
+ }
+
+ AsyncGenerator<DecodedBlock> restarted_gen;
+ // Streaming reader should not emit empty record batches
+ if (first_block.record_batch->num_rows() > 0) {
+ restarted_gen = MakeGeneratorStartsWith({first_block}, std::move(readahead_gen));
+ } else {
+ restarted_gen = std::move(readahead_gen);
+ }
+
+ auto bytes_decoded = bytes_decoded_;
+ auto unwrap_and_record_bytes =
+ [bytes_decoded](
+ const DecodedBlock& block) -> Result<std::shared_ptr<RecordBatch>> {
+ bytes_decoded->fetch_add(block.bytes_processed);
+ return block.record_batch;
+ };
+
+ auto unwrapped =
+ MakeMappedGenerator(std::move(restarted_gen), std::move(unwrap_and_record_bytes));
+
+ record_batch_gen_ = MakeCancellable(std::move(unwrapped), io_context_.stop_token());
+ return Status::OK();
+ }
+
+ std::shared_ptr<Schema> schema_;
+ AsyncGenerator<std::shared_ptr<RecordBatch>> record_batch_gen_;
+ // bytes which have been decoded and asked for by the caller
+ std::shared_ptr<std::atomic<int64_t>> bytes_decoded_;
+};
+
+/////////////////////////////////////////////////////////////////////////
+// Serial TableReader implementation
+
+class SerialTableReader : public BaseTableReader {
+ public:
+ using BaseTableReader::BaseTableReader;
+
+ Status Init() override {
+ ARROW_ASSIGN_OR_RAISE(auto istream_it,
+ io::MakeInputStreamIterator(input_, read_options_.block_size));
+
+ // Since we're converting serially, no need to readahead more than one block
+ int32_t block_queue_size = 1;
+ ARROW_ASSIGN_OR_RAISE(auto rh_it,
+ MakeReadaheadIterator(std::move(istream_it), block_queue_size));
+ buffer_iterator_ = CSVBufferIterator::Make(std::move(rh_it));
+ return Status::OK();
+ }
+
+ Result<std::shared_ptr<Table>> Read() override {
+ task_group_ = internal::TaskGroup::MakeSerial(io_context_.stop_token());
+
+ // First block
+ ARROW_ASSIGN_OR_RAISE(auto first_buffer, buffer_iterator_.Next());
+ if (first_buffer == nullptr) {
+ return Status::Invalid("Empty CSV file");
+ }
+ RETURN_NOT_OK(ProcessHeader(first_buffer, &first_buffer));
+ RETURN_NOT_OK(MakeColumnBuilders());
+
+ auto block_iterator = SerialBlockReader::MakeIterator(
+ std::move(buffer_iterator_), MakeChunker(parse_options_), std::move(first_buffer),
+ read_options_.skip_rows_after_names);
+ while (true) {
+ RETURN_NOT_OK(io_context_.stop_token().Poll());
+
+ ARROW_ASSIGN_OR_RAISE(auto maybe_block, block_iterator.Next());
+ if (IsIterationEnd(maybe_block)) {
+ // EOF
+ break;
+ }
+ ARROW_ASSIGN_OR_RAISE(
+ int64_t parsed_bytes,
+ ParseAndInsert(maybe_block.partial, maybe_block.completion, maybe_block.buffer,
+ maybe_block.block_index, maybe_block.is_final));
+ RETURN_NOT_OK(maybe_block.consume_bytes(parsed_bytes));
+ }
+ // Finish conversion, create schema and table
+ RETURN_NOT_OK(task_group_->Finish());
+ return MakeTable();
+ }
+
+ protected:
+ Iterator<std::shared_ptr<Buffer>> buffer_iterator_;
+};
+
+class AsyncThreadedTableReader
+ : public BaseTableReader,
+ public std::enable_shared_from_this<AsyncThreadedTableReader> {
+ public:
+ using BaseTableReader::BaseTableReader;
+
+ AsyncThreadedTableReader(io::IOContext io_context,
+ std::shared_ptr<io::InputStream> input,
+ const ReadOptions& read_options,
+ const ParseOptions& parse_options,
+ const ConvertOptions& convert_options, Executor* cpu_executor)
+ // Count rows is currently not supported during parallel read
+ : BaseTableReader(std::move(io_context), input, read_options, parse_options,
+ convert_options, /*count_rows=*/false),
+ cpu_executor_(cpu_executor) {}
+
+ ~AsyncThreadedTableReader() override {
+ if (task_group_) {
+ // In case of error, make sure all pending tasks are finished before
+ // we start destroying BaseTableReader members
+ ARROW_UNUSED(task_group_->Finish());
+ }
+ }
+
+ Status Init() override {
+ ARROW_ASSIGN_OR_RAISE(auto istream_it,
+ io::MakeInputStreamIterator(input_, read_options_.block_size));
+
+ int max_readahead = cpu_executor_->GetCapacity();
+ int readahead_restart = std::max(1, max_readahead / 2);
+
+ ARROW_ASSIGN_OR_RAISE(
+ auto bg_it, MakeBackgroundGenerator(std::move(istream_it), io_context_.executor(),
+ max_readahead, readahead_restart));
+
+ auto transferred_it = MakeTransferredGenerator(bg_it, cpu_executor_);
+ buffer_generator_ = CSVBufferIterator::MakeAsync(std::move(transferred_it));
+ return Status::OK();
+ }
+
+ Result<std::shared_ptr<Table>> Read() override { return ReadAsync().result(); }
+
+ Future<std::shared_ptr<Table>> ReadAsync() override {
+ task_group_ =
+ internal::TaskGroup::MakeThreaded(cpu_executor_, io_context_.stop_token());
+
+ auto self = shared_from_this();
+ return ProcessFirstBuffer().Then([self](const std::shared_ptr<Buffer>& first_buffer) {
+ auto block_generator = ThreadedBlockReader::MakeAsyncIterator(
+ self->buffer_generator_, MakeChunker(self->parse_options_),
+ std::move(first_buffer), self->read_options_.skip_rows_after_names);
+
+ std::function<Status(CSVBlock)> block_visitor =
+ [self](CSVBlock maybe_block) -> Status {
+ // The logic in VisitAsyncGenerator ensures that we will never be
+ // passed an empty block (visit does not call with the end token) so
+ // we can be assured maybe_block has a value.
+ DCHECK_GE(maybe_block.block_index, 0);
+ DCHECK(!maybe_block.consume_bytes);
+
+ // Launch parse task
+ self->task_group_->Append([self, maybe_block] {
+ return self
+ ->ParseAndInsert(maybe_block.partial, maybe_block.completion,
+ maybe_block.buffer, maybe_block.block_index,
+ maybe_block.is_final)
+ .status();
+ });
+ return Status::OK();
+ };
+
+ return VisitAsyncGenerator(std::move(block_generator), block_visitor)
+ .Then([self]() -> Future<> {
+ // By this point we've added all top level tasks so it is safe to call
+ // FinishAsync
+ return self->task_group_->FinishAsync();
+ })
+ .Then([self]() -> Result<std::shared_ptr<Table>> {
+ // Finish conversion, create schema and table
+ return self->MakeTable();
+ });
+ });
+ }
+
+ protected:
+ Future<std::shared_ptr<Buffer>> ProcessFirstBuffer() {
+ // First block
+ auto first_buffer_future = buffer_generator_();
+ return first_buffer_future.Then([this](const std::shared_ptr<Buffer>& first_buffer)
+ -> Result<std::shared_ptr<Buffer>> {
+ if (first_buffer == nullptr) {
+ return Status::Invalid("Empty CSV file");
+ }
+ std::shared_ptr<Buffer> first_buffer_processed;
+ RETURN_NOT_OK(ProcessHeader(first_buffer, &first_buffer_processed));
+ RETURN_NOT_OK(MakeColumnBuilders());
+ return first_buffer_processed;
+ });
+ }
+
+ Executor* cpu_executor_;
+ AsyncGenerator<std::shared_ptr<Buffer>> buffer_generator_;
+};
+
+Result<std::shared_ptr<TableReader>> MakeTableReader(
+ MemoryPool* pool, io::IOContext io_context, std::shared_ptr<io::InputStream> input,
+ const ReadOptions& read_options, const ParseOptions& parse_options,
+ const ConvertOptions& convert_options) {
+ RETURN_NOT_OK(parse_options.Validate());
+ RETURN_NOT_OK(read_options.Validate());
+ RETURN_NOT_OK(convert_options.Validate());
+ std::shared_ptr<BaseTableReader> reader;
+ if (read_options.use_threads) {
+ auto cpu_executor = internal::GetCpuThreadPool();
+ reader = std::make_shared<AsyncThreadedTableReader>(
+ io_context, input, read_options, parse_options, convert_options, cpu_executor);
+ } else {
+ reader = std::make_shared<SerialTableReader>(io_context, input, read_options,
+ parse_options, convert_options,
+ /*count_rows=*/true);
+ }
+ RETURN_NOT_OK(reader->Init());
+ return reader;
+}
+
+Future<std::shared_ptr<StreamingReader>> MakeStreamingReader(
+ io::IOContext io_context, std::shared_ptr<io::InputStream> input,
+ internal::Executor* cpu_executor, const ReadOptions& read_options,
+ const ParseOptions& parse_options, const ConvertOptions& convert_options) {
+ RETURN_NOT_OK(parse_options.Validate());
+ RETURN_NOT_OK(read_options.Validate());
+ RETURN_NOT_OK(convert_options.Validate());
+ std::shared_ptr<StreamingReaderImpl> reader;
+ reader = std::make_shared<StreamingReaderImpl>(
+ io_context, input, read_options, parse_options, convert_options,
+ /*count_rows=*/!read_options.use_threads || cpu_executor->GetCapacity() == 1);
+ return reader->Init(cpu_executor).Then([reader] {
+ return std::dynamic_pointer_cast<StreamingReader>(reader);
+ });
+}
+
+/////////////////////////////////////////////////////////////////////////
+// Row count implementation
+
+class CSVRowCounter : public ReaderMixin,
+ public std::enable_shared_from_this<CSVRowCounter> {
+ public:
+ CSVRowCounter(io::IOContext io_context, Executor* cpu_executor,
+ std::shared_ptr<io::InputStream> input, const ReadOptions& read_options,
+ const ParseOptions& parse_options)
+ : ReaderMixin(io_context, std::move(input), read_options, parse_options,
+ ConvertOptions::Defaults(), /*count_rows=*/true),
+ cpu_executor_(cpu_executor),
+ row_count_(0) {}
+
+ Future<int64_t> Count() {
+ auto self = shared_from_this();
+ return Init(self).Then([self]() { return self->DoCount(self); });
+ }
+
+ private:
+ Future<> Init(const std::shared_ptr<CSVRowCounter>& self) {
+ ARROW_ASSIGN_OR_RAISE(auto istream_it,
+ io::MakeInputStreamIterator(input_, read_options_.block_size));
+ // TODO Consider exposing readahead as a read option (ARROW-12090)
+ ARROW_ASSIGN_OR_RAISE(auto bg_it, MakeBackgroundGenerator(std::move(istream_it),
+ io_context_.executor()));
+ auto transferred_it = MakeTransferredGenerator(bg_it, cpu_executor_);
+ auto buffer_generator = CSVBufferIterator::MakeAsync(std::move(transferred_it));
+
+ return buffer_generator().Then(
+ [self, buffer_generator](std::shared_ptr<Buffer> first_buffer) {
+ if (!first_buffer) {
+ return Status::Invalid("Empty CSV file");
+ }
+ RETURN_NOT_OK(self->ProcessHeader(first_buffer, &first_buffer));
+ self->block_generator_ = SerialBlockReader::MakeAsyncIterator(
+ buffer_generator, MakeChunker(self->parse_options_),
+ std::move(first_buffer), 0);
+ return Status::OK();
+ });
+ }
+
+ Future<int64_t> DoCount(const std::shared_ptr<CSVRowCounter>& self) {
+ // count_cb must return a value instead of Status/Future<> to work with
+ // MakeMappedGenerator, and it must use a type with a valid end value to work with
+ // IterationEnd.
+ std::function<Result<util::optional<int64_t>>(const CSVBlock&)> count_cb =
+ [self](const CSVBlock& maybe_block) -> Result<util::optional<int64_t>> {
+ ARROW_ASSIGN_OR_RAISE(
+ auto parser,
+ self->Parse(maybe_block.partial, maybe_block.completion, maybe_block.buffer,
+ maybe_block.block_index, maybe_block.is_final));
+ RETURN_NOT_OK(maybe_block.consume_bytes(parser.parsed_bytes));
+ self->row_count_ += parser.parser->num_rows();
+ return parser.parser->num_rows();
+ };
+ auto count_gen = MakeMappedGenerator(block_generator_, std::move(count_cb));
+ return DiscardAllFromAsyncGenerator(count_gen).Then(
+ [self]() { return self->row_count_; });
+ }
+
+ Executor* cpu_executor_;
+ AsyncGenerator<CSVBlock> block_generator_;
+ int64_t row_count_;
+};
+
+} // namespace
+
+/////////////////////////////////////////////////////////////////////////
+// Factory functions
+
+Result<std::shared_ptr<TableReader>> TableReader::Make(
+ io::IOContext io_context, std::shared_ptr<io::InputStream> input,
+ const ReadOptions& read_options, const ParseOptions& parse_options,
+ const ConvertOptions& convert_options) {
+ return MakeTableReader(io_context.pool(), io_context, std::move(input), read_options,
+ parse_options, convert_options);
+}
+
+Result<std::shared_ptr<TableReader>> TableReader::Make(
+ MemoryPool* pool, io::IOContext io_context, std::shared_ptr<io::InputStream> input,
+ const ReadOptions& read_options, const ParseOptions& parse_options,
+ const ConvertOptions& convert_options) {
+ return MakeTableReader(pool, io_context, std::move(input), read_options, parse_options,
+ convert_options);
+}
+
+Result<std::shared_ptr<StreamingReader>> StreamingReader::Make(
+ MemoryPool* pool, std::shared_ptr<io::InputStream> input,
+ const ReadOptions& read_options, const ParseOptions& parse_options,
+ const ConvertOptions& convert_options) {
+ auto io_context = io::IOContext(pool);
+ auto cpu_executor = internal::GetCpuThreadPool();
+ auto reader_fut = MakeStreamingReader(io_context, std::move(input), cpu_executor,
+ read_options, parse_options, convert_options);
+ auto reader_result = reader_fut.result();
+ ARROW_ASSIGN_OR_RAISE(auto reader, reader_result);
+ return reader;
+}
+
+Result<std::shared_ptr<StreamingReader>> StreamingReader::Make(
+ io::IOContext io_context, std::shared_ptr<io::InputStream> input,
+ const ReadOptions& read_options, const ParseOptions& parse_options,
+ const ConvertOptions& convert_options) {
+ auto cpu_executor = internal::GetCpuThreadPool();
+ auto reader_fut = MakeStreamingReader(io_context, std::move(input), cpu_executor,
+ read_options, parse_options, convert_options);
+ auto reader_result = reader_fut.result();
+ ARROW_ASSIGN_OR_RAISE(auto reader, reader_result);
+ return reader;
+}
+
+Future<std::shared_ptr<StreamingReader>> StreamingReader::MakeAsync(
+ io::IOContext io_context, std::shared_ptr<io::InputStream> input,
+ internal::Executor* cpu_executor, const ReadOptions& read_options,
+ const ParseOptions& parse_options, const ConvertOptions& convert_options) {
+ return MakeStreamingReader(io_context, std::move(input), cpu_executor, read_options,
+ parse_options, convert_options);
+}
+
+Future<int64_t> CountRowsAsync(io::IOContext io_context,
+ std::shared_ptr<io::InputStream> input,
+ internal::Executor* cpu_executor,
+ const ReadOptions& read_options,
+ const ParseOptions& parse_options) {
+ RETURN_NOT_OK(parse_options.Validate());
+ RETURN_NOT_OK(read_options.Validate());
+ auto counter = std::make_shared<CSVRowCounter>(
+ io_context, cpu_executor, std::move(input), read_options, parse_options);
+ return counter->Count();
+}
+
+} // namespace csv
+
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/reader.h b/contrib/libs/apache/arrow/cpp/src/arrow/csv/reader.h
index 48f02882b1..b1c1749f4b 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/reader.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/reader.h
@@ -1,123 +1,123 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <memory>
-
-#include "arrow/csv/options.h" // IWYU pragma: keep
-#include "arrow/io/interfaces.h"
-#include "arrow/record_batch.h"
-#include "arrow/result.h"
-#include "arrow/type.h"
-#include "arrow/type_fwd.h"
-#include "arrow/util/future.h"
-#include "arrow/util/thread_pool.h"
-#include "arrow/util/visibility.h"
-
-namespace arrow {
-namespace io {
-class InputStream;
-} // namespace io
-
-namespace csv {
-
-/// A class that reads an entire CSV file into a Arrow Table
-class ARROW_EXPORT TableReader {
- public:
- virtual ~TableReader() = default;
-
- /// Read the entire CSV file and convert it to a Arrow Table
- virtual Result<std::shared_ptr<Table>> Read() = 0;
- /// Read the entire CSV file and convert it to a Arrow Table
- virtual Future<std::shared_ptr<Table>> ReadAsync() = 0;
-
- /// Create a TableReader instance
- static Result<std::shared_ptr<TableReader>> Make(io::IOContext io_context,
- std::shared_ptr<io::InputStream> input,
- const ReadOptions&,
- const ParseOptions&,
- const ConvertOptions&);
-
- ARROW_DEPRECATED("Use MemoryPool-less variant (the IOContext holds a pool already)")
- static Result<std::shared_ptr<TableReader>> Make(
- MemoryPool* pool, io::IOContext io_context, std::shared_ptr<io::InputStream> input,
- const ReadOptions&, const ParseOptions&, const ConvertOptions&);
-};
-
-/// \brief A class that reads a CSV file incrementally
-///
-/// Caveats:
-/// - For now, this is always single-threaded (regardless of `ReadOptions::use_threads`.
-/// - Type inference is done on the first block and types are frozen afterwards;
-/// to make sure the right data types are inferred, either set
-/// `ReadOptions::block_size` to a large enough value, or use
-/// `ConvertOptions::column_types` to set the desired data types explicitly.
-class ARROW_EXPORT StreamingReader : public RecordBatchReader {
- public:
- virtual ~StreamingReader() = default;
-
- virtual Future<std::shared_ptr<RecordBatch>> ReadNextAsync() = 0;
-
- /// \brief Return the number of bytes which have been read and processed
- ///
- /// The returned number includes CSV bytes which the StreamingReader has
- /// finished processing, but not bytes for which some processing (e.g.
- /// CSV parsing or conversion to Arrow layout) is still ongoing.
- ///
- /// Furthermore, the following rules apply:
- /// - bytes skipped by `ReadOptions.skip_rows` are counted as being read before
- /// any records are returned.
- /// - bytes read while parsing the header are counted as being read before any
- /// records are returned.
- /// - bytes skipped by `ReadOptions.skip_rows_after_names` are counted after the
- /// first batch is returned.
- virtual int64_t bytes_read() const = 0;
-
- /// Create a StreamingReader instance
- ///
- /// This involves some I/O as the first batch must be loaded during the creation process
- /// so it is returned as a future
- ///
- /// Currently, the StreamingReader is not async-reentrant and does not do any fan-out
- /// parsing (see ARROW-11889)
- static Future<std::shared_ptr<StreamingReader>> MakeAsync(
- io::IOContext io_context, std::shared_ptr<io::InputStream> input,
- internal::Executor* cpu_executor, const ReadOptions&, const ParseOptions&,
- const ConvertOptions&);
-
- static Result<std::shared_ptr<StreamingReader>> Make(
- io::IOContext io_context, std::shared_ptr<io::InputStream> input,
- const ReadOptions&, const ParseOptions&, const ConvertOptions&);
-
- ARROW_DEPRECATED("Use IOContext-based overload")
- static Result<std::shared_ptr<StreamingReader>> Make(
- MemoryPool* pool, std::shared_ptr<io::InputStream> input,
- const ReadOptions& read_options, const ParseOptions& parse_options,
- const ConvertOptions& convert_options);
-};
-
-/// \brief Count the logical rows of data in a CSV file (i.e. the
-/// number of rows you would get if you read the file into a table).
-ARROW_EXPORT
-Future<int64_t> CountRowsAsync(io::IOContext io_context,
- std::shared_ptr<io::InputStream> input,
- internal::Executor* cpu_executor, const ReadOptions&,
- const ParseOptions&);
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <memory>
+
+#include "arrow/csv/options.h" // IWYU pragma: keep
+#include "arrow/io/interfaces.h"
+#include "arrow/record_batch.h"
+#include "arrow/result.h"
+#include "arrow/type.h"
+#include "arrow/type_fwd.h"
+#include "arrow/util/future.h"
+#include "arrow/util/thread_pool.h"
+#include "arrow/util/visibility.h"
+
+namespace arrow {
+namespace io {
+class InputStream;
+} // namespace io
+
+namespace csv {
+
+/// A class that reads an entire CSV file into a Arrow Table
+class ARROW_EXPORT TableReader {
+ public:
+ virtual ~TableReader() = default;
+
+ /// Read the entire CSV file and convert it to a Arrow Table
+ virtual Result<std::shared_ptr<Table>> Read() = 0;
+ /// Read the entire CSV file and convert it to a Arrow Table
+ virtual Future<std::shared_ptr<Table>> ReadAsync() = 0;
+
+ /// Create a TableReader instance
+ static Result<std::shared_ptr<TableReader>> Make(io::IOContext io_context,
+ std::shared_ptr<io::InputStream> input,
+ const ReadOptions&,
+ const ParseOptions&,
+ const ConvertOptions&);
+
+ ARROW_DEPRECATED("Use MemoryPool-less variant (the IOContext holds a pool already)")
+ static Result<std::shared_ptr<TableReader>> Make(
+ MemoryPool* pool, io::IOContext io_context, std::shared_ptr<io::InputStream> input,
+ const ReadOptions&, const ParseOptions&, const ConvertOptions&);
+};
+
+/// \brief A class that reads a CSV file incrementally
+///
+/// Caveats:
+/// - For now, this is always single-threaded (regardless of `ReadOptions::use_threads`.
+/// - Type inference is done on the first block and types are frozen afterwards;
+/// to make sure the right data types are inferred, either set
+/// `ReadOptions::block_size` to a large enough value, or use
+/// `ConvertOptions::column_types` to set the desired data types explicitly.
+class ARROW_EXPORT StreamingReader : public RecordBatchReader {
+ public:
+ virtual ~StreamingReader() = default;
+
+ virtual Future<std::shared_ptr<RecordBatch>> ReadNextAsync() = 0;
+
+ /// \brief Return the number of bytes which have been read and processed
+ ///
+ /// The returned number includes CSV bytes which the StreamingReader has
+ /// finished processing, but not bytes for which some processing (e.g.
+ /// CSV parsing or conversion to Arrow layout) is still ongoing.
+ ///
+ /// Furthermore, the following rules apply:
+ /// - bytes skipped by `ReadOptions.skip_rows` are counted as being read before
+ /// any records are returned.
+ /// - bytes read while parsing the header are counted as being read before any
+ /// records are returned.
+ /// - bytes skipped by `ReadOptions.skip_rows_after_names` are counted after the
+ /// first batch is returned.
+ virtual int64_t bytes_read() const = 0;
+
+ /// Create a StreamingReader instance
+ ///
+ /// This involves some I/O as the first batch must be loaded during the creation process
+ /// so it is returned as a future
+ ///
+ /// Currently, the StreamingReader is not async-reentrant and does not do any fan-out
+ /// parsing (see ARROW-11889)
+ static Future<std::shared_ptr<StreamingReader>> MakeAsync(
+ io::IOContext io_context, std::shared_ptr<io::InputStream> input,
+ internal::Executor* cpu_executor, const ReadOptions&, const ParseOptions&,
+ const ConvertOptions&);
+
+ static Result<std::shared_ptr<StreamingReader>> Make(
+ io::IOContext io_context, std::shared_ptr<io::InputStream> input,
+ const ReadOptions&, const ParseOptions&, const ConvertOptions&);
+
+ ARROW_DEPRECATED("Use IOContext-based overload")
+ static Result<std::shared_ptr<StreamingReader>> Make(
+ MemoryPool* pool, std::shared_ptr<io::InputStream> input,
+ const ReadOptions& read_options, const ParseOptions& parse_options,
+ const ConvertOptions& convert_options);
+};
+
+/// \brief Count the logical rows of data in a CSV file (i.e. the
+/// number of rows you would get if you read the file into a table).
+ARROW_EXPORT
+Future<int64_t> CountRowsAsync(io::IOContext io_context,
+ std::shared_ptr<io::InputStream> input,
+ internal::Executor* cpu_executor, const ReadOptions&,
+ const ParseOptions&);
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/type_fwd.h b/contrib/libs/apache/arrow/cpp/src/arrow/csv/type_fwd.h
index c0a53847a9..e34a1ab7f5 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/type_fwd.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/type_fwd.h
@@ -1,28 +1,28 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-namespace arrow {
-namespace csv {
-
-class TableReader;
-struct ConvertOptions;
-struct ReadOptions;
-struct ParseOptions;
-struct WriteOptions;
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+namespace arrow {
+namespace csv {
+
+class TableReader;
+struct ConvertOptions;
+struct ReadOptions;
+struct ParseOptions;
+struct WriteOptions;
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/writer.cc b/contrib/libs/apache/arrow/cpp/src/arrow/csv/writer.cc
index 1b782cae7d..ac58350221 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/writer.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/writer.cc
@@ -1,460 +1,460 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#include "arrow/csv/writer.h"
-#include "arrow/array.h"
-#include "arrow/compute/cast.h"
-#include "arrow/io/interfaces.h"
-#include "arrow/ipc/writer.h"
-#include "arrow/record_batch.h"
-#include "arrow/result.h"
-#include "arrow/result_internal.h"
-#include "arrow/stl_allocator.h"
-#include "arrow/util/iterator.h"
-#include "arrow/util/logging.h"
-#include "arrow/util/make_unique.h"
-
-#include "arrow/visitor_inline.h"
-
-namespace arrow {
-namespace csv {
-// This implementation is intentionally light on configurability to minimize the size of
-// the initial PR. Aditional features can be added as there is demand and interest to
-// implement them.
-//
-// The algorithm used here at a high level is to break RecordBatches/Tables into slices
-// and convert each slice independently. A slice is then converted to CSV by first
-// scanning each column to determine the size of its contents when rendered as a string in
-// CSV. For non-string types this requires casting the value to string (which is cached).
-// This data is used to understand the precise length of each row and a single allocation
-// for the final CSV data buffer. Once the final size is known each column is then
-// iterated over again to place its contents into the CSV data buffer. The rationale for
-// choosing this approach is it allows for reuse of the cast functionality in the compute
-// module and inline data visiting functionality in the core library. A performance
-// comparison has not been done using a naive single-pass approach. This approach might
-// still be competitive due to reduction in the number of per row branches necessary with
-// a single pass approach. Profiling would likely yield further opportunities for
-// optimization with this approach.
-
-namespace {
-
-struct SliceIteratorFunctor {
- Result<std::shared_ptr<RecordBatch>> Next() {
- if (current_offset < batch->num_rows()) {
- std::shared_ptr<RecordBatch> next = batch->Slice(current_offset, slice_size);
- current_offset += slice_size;
- return next;
- }
- return IterationTraits<std::shared_ptr<RecordBatch>>::End();
- }
- const RecordBatch* const batch;
- const int64_t slice_size;
- int64_t current_offset;
-};
-
-RecordBatchIterator RecordBatchSliceIterator(const RecordBatch& batch,
- int64_t slice_size) {
- SliceIteratorFunctor functor = {&batch, slice_size, /*offset=*/static_cast<int64_t>(0)};
- return RecordBatchIterator(std::move(functor));
-}
-
-// Counts the number of characters that need escaping in s.
-int64_t CountEscapes(util::string_view s) {
- return static_cast<int64_t>(std::count(s.begin(), s.end(), '"'));
-}
-
-// Matching quote pair character length.
-constexpr int64_t kQuoteCount = 2;
-constexpr int64_t kQuoteDelimiterCount = kQuoteCount + /*end_char*/ 1;
-
-// Interface for generating CSV data per column.
-// The intended usage is to iteratively call UpdateRowLengths for a column and
-// then PopulateColumns. PopulateColumns must be called in the reverse order of the
-// populators (it populates data backwards).
-class ColumnPopulator {
- public:
- ColumnPopulator(MemoryPool* pool, char end_char) : end_char_(end_char), pool_(pool) {}
-
- virtual ~ColumnPopulator() = default;
-
- // Adds the number of characters each entry in data will add to to elements
- // in row_lengths.
- Status UpdateRowLengths(const Array& data, int32_t* row_lengths) {
- compute::ExecContext ctx(pool_);
- // Populators are intented to be applied to reasonably small data. In most cases
- // threading overhead would not be justified.
- ctx.set_use_threads(false);
- ASSIGN_OR_RAISE(
- std::shared_ptr<Array> casted,
- compute::Cast(data, /*to_type=*/utf8(), compute::CastOptions(), &ctx));
- casted_array_ = internal::checked_pointer_cast<StringArray>(casted);
- return UpdateRowLengths(row_lengths);
- }
-
- // Places string data onto each row in output and updates the corresponding row
- // row pointers in preparation for calls to other (preceding) ColumnPopulators.
- // Args:
- // output: character buffer to write to.
- // offsets: an array of end of row column within the the output buffer (values are
- // one past the end of the position to write to).
- virtual void PopulateColumns(char* output, int32_t* offsets) const = 0;
-
- protected:
- virtual Status UpdateRowLengths(int32_t* row_lengths) = 0;
- std::shared_ptr<StringArray> casted_array_;
- const char end_char_;
-
- private:
- MemoryPool* const pool_;
-};
-
-// Copies the contents of to out properly escaping any necessary characters.
-// Returns the position prior to last copied character (out_end is decremented).
-char* EscapeReverse(arrow::util::string_view s, char* out_end) {
- for (const char* val = s.data() + s.length() - 1; val >= s.data(); val--, out_end--) {
- if (*val == '"') {
- *out_end = *val;
- out_end--;
- }
- *out_end = *val;
- }
- return out_end;
-}
-
-// Populator for non-string types. This populator relies on compute Cast functionality to
-// String if it doesn't exist it will be an error. it also assumes the resulting string
-// from a cast does not require quoting or escaping.
-class UnquotedColumnPopulator : public ColumnPopulator {
- public:
- explicit UnquotedColumnPopulator(MemoryPool* memory_pool, char end_char)
- : ColumnPopulator(memory_pool, end_char) {}
-
- Status UpdateRowLengths(int32_t* row_lengths) override {
- for (int x = 0; x < casted_array_->length(); x++) {
- row_lengths[x] += casted_array_->value_length(x);
- }
- return Status::OK();
- }
-
- void PopulateColumns(char* output, int32_t* offsets) const override {
- VisitArrayDataInline<StringType>(
- *casted_array_->data(),
- [&](arrow::util::string_view s) {
- int64_t next_column_offset = s.length() + /*end_char*/ 1;
- memcpy((output + *offsets - next_column_offset), s.data(), s.length());
- *(output + *offsets - 1) = end_char_;
- *offsets -= static_cast<int32_t>(next_column_offset);
- offsets++;
- },
- [&]() {
- // Nulls are empty (unquoted) to distinguish with empty string.
- *(output + *offsets - 1) = end_char_;
- *offsets -= 1;
- offsets++;
- });
- }
-};
-
-// Strings need special handling to ensure they are escaped properly.
-// This class handles escaping assuming that all strings will be quoted
-// and that the only character within the string that needs to escaped is
-// a quote character (") and escaping is done my adding another quote.
-class QuotedColumnPopulator : public ColumnPopulator {
- public:
- QuotedColumnPopulator(MemoryPool* pool, char end_char)
- : ColumnPopulator(pool, end_char) {}
-
- Status UpdateRowLengths(int32_t* row_lengths) override {
- const StringArray& input = *casted_array_;
- int row_number = 0;
- row_needs_escaping_.resize(casted_array_->length());
- VisitArrayDataInline<StringType>(
- *input.data(),
- [&](arrow::util::string_view s) {
- int64_t escaped_count = CountEscapes(s);
- // TODO: Maybe use 64 bit row lengths or safe cast?
- row_needs_escaping_[row_number] = escaped_count > 0;
- row_lengths[row_number] += static_cast<int32_t>(s.length()) +
- static_cast<int32_t>(escaped_count + kQuoteCount);
- row_number++;
- },
- [&]() {
- row_needs_escaping_[row_number] = false;
- row_number++;
- });
- return Status::OK();
- }
-
- void PopulateColumns(char* output, int32_t* offsets) const override {
- auto needs_escaping = row_needs_escaping_.begin();
- VisitArrayDataInline<StringType>(
- *(casted_array_->data()),
- [&](arrow::util::string_view s) {
- // still needs string content length to be added
- char* row_end = output + *offsets;
- int32_t next_column_offset = 0;
- if (!*needs_escaping) {
- next_column_offset = static_cast<int32_t>(s.length() + kQuoteDelimiterCount);
- memcpy(row_end - next_column_offset + /*quote_offset=*/1, s.data(),
- s.length());
- } else {
- // Adjust row_end by 3: 1 quote char, 1 end char and 1 to position at the
- // first position to write to.
- next_column_offset =
- static_cast<int32_t>(row_end - EscapeReverse(s, row_end - 3));
- }
- *(row_end - next_column_offset) = '"';
- *(row_end - 2) = '"';
- *(row_end - 1) = end_char_;
- *offsets -= next_column_offset;
- offsets++;
- needs_escaping++;
- },
- [&]() {
- // Nulls are empty (unquoted) to distinguish with empty string.
- *(output + *offsets - 1) = end_char_;
- *offsets -= 1;
- offsets++;
- needs_escaping++;
- });
- }
-
- private:
- // Older version of GCC don't support custom allocators
- // at some point we should change this to use memory_pool
- // backed allocator.
- std::vector<bool> row_needs_escaping_;
-};
-
-struct PopulatorFactory {
- template <typename TypeClass>
- enable_if_t<is_base_binary_type<TypeClass>::value ||
- std::is_same<FixedSizeBinaryType, TypeClass>::value,
- Status>
- Visit(const TypeClass& type) {
- populator = new QuotedColumnPopulator(pool, end_char);
- return Status::OK();
- }
-
- template <typename TypeClass>
- enable_if_dictionary<TypeClass, Status> Visit(const TypeClass& type) {
- return VisitTypeInline(*type.value_type(), this);
- }
-
- template <typename TypeClass>
- enable_if_t<is_nested_type<TypeClass>::value || is_extension_type<TypeClass>::value,
- Status>
- Visit(const TypeClass& type) {
- return Status::Invalid("Unsupported Type:", type.ToString());
- }
-
- template <typename TypeClass>
- enable_if_t<is_primitive_ctype<TypeClass>::value || is_decimal_type<TypeClass>::value ||
- is_null_type<TypeClass>::value || is_temporal_type<TypeClass>::value,
- Status>
- Visit(const TypeClass& type) {
- populator = new UnquotedColumnPopulator(pool, end_char);
- return Status::OK();
- }
-
- char end_char;
- MemoryPool* pool;
- ColumnPopulator* populator;
-};
-
-Result<std::unique_ptr<ColumnPopulator>> MakePopulator(const Field& field, char end_char,
- MemoryPool* pool) {
- PopulatorFactory factory{end_char, pool, nullptr};
- RETURN_NOT_OK(VisitTypeInline(*field.type(), &factory));
- return std::unique_ptr<ColumnPopulator>(factory.populator);
-}
-
-class CSVWriterImpl : public ipc::RecordBatchWriter {
- public:
- static Result<std::shared_ptr<CSVWriterImpl>> Make(
- io::OutputStream* sink, std::shared_ptr<io::OutputStream> owned_sink,
- std::shared_ptr<Schema> schema, const WriteOptions& options) {
- RETURN_NOT_OK(options.Validate());
- std::vector<std::unique_ptr<ColumnPopulator>> populators(schema->num_fields());
- for (int col = 0; col < schema->num_fields(); col++) {
- char end_char = col < schema->num_fields() - 1 ? ',' : '\n';
- ASSIGN_OR_RAISE(populators[col], MakePopulator(*schema->field(col), end_char,
- options.io_context.pool()));
- }
- auto writer = std::make_shared<CSVWriterImpl>(
- sink, std::move(owned_sink), std::move(schema), std::move(populators), options);
- RETURN_NOT_OK(writer->PrepareForContentsWrite());
- if (options.include_header) {
- RETURN_NOT_OK(writer->WriteHeader());
- }
- return writer;
- }
-
- Status WriteRecordBatch(const RecordBatch& batch) override {
- RecordBatchIterator iterator = RecordBatchSliceIterator(batch, options_.batch_size);
- for (auto maybe_slice : iterator) {
- ASSIGN_OR_RAISE(std::shared_ptr<RecordBatch> slice, maybe_slice);
- RETURN_NOT_OK(TranslateMinimalBatch(*slice));
- RETURN_NOT_OK(sink_->Write(data_buffer_));
- stats_.num_record_batches++;
- }
- return Status::OK();
- }
-
- Status WriteTable(const Table& table, int64_t max_chunksize) override {
- TableBatchReader reader(table);
- reader.set_chunksize(max_chunksize > 0 ? max_chunksize : options_.batch_size);
- std::shared_ptr<RecordBatch> batch;
- RETURN_NOT_OK(reader.ReadNext(&batch));
- while (batch != nullptr) {
- RETURN_NOT_OK(TranslateMinimalBatch(*batch));
- RETURN_NOT_OK(sink_->Write(data_buffer_));
- RETURN_NOT_OK(reader.ReadNext(&batch));
- stats_.num_record_batches++;
- }
-
- return Status::OK();
- }
-
- Status Close() override { return Status::OK(); }
-
- ipc::WriteStats stats() const override { return stats_; }
-
- CSVWriterImpl(io::OutputStream* sink, std::shared_ptr<io::OutputStream> owned_sink,
- std::shared_ptr<Schema> schema,
- std::vector<std::unique_ptr<ColumnPopulator>> populators,
- const WriteOptions& options)
- : sink_(sink),
- owned_sink_(std::move(owned_sink)),
- column_populators_(std::move(populators)),
- offsets_(0, 0, ::arrow::stl::allocator<char*>(options.io_context.pool())),
- schema_(std::move(schema)),
- options_(options) {}
-
- private:
- Status PrepareForContentsWrite() {
- // Only called once, as part of initialization
- if (data_buffer_ == nullptr) {
- ASSIGN_OR_RAISE(data_buffer_,
- AllocateResizableBuffer(
- options_.batch_size * schema_->num_fields() * kColumnSizeGuess,
- options_.io_context.pool()));
- }
- return Status::OK();
- }
-
- int64_t CalculateHeaderSize() const {
- int64_t header_length = 0;
- for (int col = 0; col < schema_->num_fields(); col++) {
- const std::string& col_name = schema_->field(col)->name();
- header_length += col_name.size();
- header_length += CountEscapes(col_name);
- }
- return header_length + (kQuoteDelimiterCount * schema_->num_fields());
- }
-
- Status WriteHeader() {
- // Only called once, as part of initialization
- RETURN_NOT_OK(data_buffer_->Resize(CalculateHeaderSize(), /*shrink_to_fit=*/false));
- char* next =
- reinterpret_cast<char*>(data_buffer_->mutable_data() + data_buffer_->size() - 1);
- for (int col = schema_->num_fields() - 1; col >= 0; col--) {
- *next-- = ',';
- *next-- = '"';
- next = EscapeReverse(schema_->field(col)->name(), next);
- *next-- = '"';
- }
- *(data_buffer_->mutable_data() + data_buffer_->size() - 1) = '\n';
- DCHECK_EQ(reinterpret_cast<uint8_t*>(next + 1), data_buffer_->data());
- return sink_->Write(data_buffer_);
- }
-
- Status TranslateMinimalBatch(const RecordBatch& batch) {
- if (batch.num_rows() == 0) {
- return Status::OK();
- }
- offsets_.resize(batch.num_rows());
- std::fill(offsets_.begin(), offsets_.end(), 0);
-
- // Calculate relative offsets for each row (excluding delimiters)
- for (int32_t col = 0; col < static_cast<int32_t>(column_populators_.size()); col++) {
- RETURN_NOT_OK(
- column_populators_[col]->UpdateRowLengths(*batch.column(col), offsets_.data()));
- }
- // Calculate cumulalative offsets for each row (including delimiters).
- offsets_[0] += batch.num_columns();
- for (int64_t row = 1; row < batch.num_rows(); row++) {
- offsets_[row] += offsets_[row - 1] + /*delimiter lengths*/ batch.num_columns();
- }
- // Resize the target buffer to required size. We assume batch to batch sizes
- // should be pretty close so don't shrink the buffer to avoid allocation churn.
- RETURN_NOT_OK(data_buffer_->Resize(offsets_.back(), /*shrink_to_fit=*/false));
-
- // Use the offsets to populate contents.
- for (auto populator = column_populators_.rbegin();
- populator != column_populators_.rend(); populator++) {
- (*populator)
- ->PopulateColumns(reinterpret_cast<char*>(data_buffer_->mutable_data()),
- offsets_.data());
- }
- DCHECK_EQ(0, offsets_[0]);
- return Status::OK();
- }
-
- static constexpr int64_t kColumnSizeGuess = 8;
- io::OutputStream* sink_;
- std::shared_ptr<io::OutputStream> owned_sink_;
- std::vector<std::unique_ptr<ColumnPopulator>> column_populators_;
- std::vector<int32_t, arrow::stl::allocator<int32_t>> offsets_;
- std::shared_ptr<ResizableBuffer> data_buffer_;
- const std::shared_ptr<Schema> schema_;
- const WriteOptions options_;
- ipc::WriteStats stats_;
-};
-
-} // namespace
-
-Status WriteCSV(const Table& table, const WriteOptions& options,
- arrow::io::OutputStream* output) {
- ASSIGN_OR_RAISE(auto writer, MakeCSVWriter(output, table.schema(), options));
- RETURN_NOT_OK(writer->WriteTable(table));
- return writer->Close();
-}
-
-Status WriteCSV(const RecordBatch& batch, const WriteOptions& options,
- arrow::io::OutputStream* output) {
- ASSIGN_OR_RAISE(auto writer, MakeCSVWriter(output, batch.schema(), options));
- RETURN_NOT_OK(writer->WriteRecordBatch(batch));
- return writer->Close();
-}
-
-ARROW_EXPORT
-Result<std::shared_ptr<ipc::RecordBatchWriter>> MakeCSVWriter(
- std::shared_ptr<io::OutputStream> sink, const std::shared_ptr<Schema>& schema,
- const WriteOptions& options) {
- return CSVWriterImpl::Make(sink.get(), sink, schema, options);
-}
-
-ARROW_EXPORT
-Result<std::shared_ptr<ipc::RecordBatchWriter>> MakeCSVWriter(
- io::OutputStream* sink, const std::shared_ptr<Schema>& schema,
- const WriteOptions& options) {
- return CSVWriterImpl::Make(sink, nullptr, schema, options);
-}
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/csv/writer.h"
+#include "arrow/array.h"
+#include "arrow/compute/cast.h"
+#include "arrow/io/interfaces.h"
+#include "arrow/ipc/writer.h"
+#include "arrow/record_batch.h"
+#include "arrow/result.h"
+#include "arrow/result_internal.h"
+#include "arrow/stl_allocator.h"
+#include "arrow/util/iterator.h"
+#include "arrow/util/logging.h"
+#include "arrow/util/make_unique.h"
+
+#include "arrow/visitor_inline.h"
+
+namespace arrow {
+namespace csv {
+// This implementation is intentionally light on configurability to minimize the size of
+// the initial PR. Aditional features can be added as there is demand and interest to
+// implement them.
+//
+// The algorithm used here at a high level is to break RecordBatches/Tables into slices
+// and convert each slice independently. A slice is then converted to CSV by first
+// scanning each column to determine the size of its contents when rendered as a string in
+// CSV. For non-string types this requires casting the value to string (which is cached).
+// This data is used to understand the precise length of each row and a single allocation
+// for the final CSV data buffer. Once the final size is known each column is then
+// iterated over again to place its contents into the CSV data buffer. The rationale for
+// choosing this approach is it allows for reuse of the cast functionality in the compute
+// module and inline data visiting functionality in the core library. A performance
+// comparison has not been done using a naive single-pass approach. This approach might
+// still be competitive due to reduction in the number of per row branches necessary with
+// a single pass approach. Profiling would likely yield further opportunities for
+// optimization with this approach.
+
+namespace {
+
+struct SliceIteratorFunctor {
+ Result<std::shared_ptr<RecordBatch>> Next() {
+ if (current_offset < batch->num_rows()) {
+ std::shared_ptr<RecordBatch> next = batch->Slice(current_offset, slice_size);
+ current_offset += slice_size;
+ return next;
+ }
+ return IterationTraits<std::shared_ptr<RecordBatch>>::End();
+ }
+ const RecordBatch* const batch;
+ const int64_t slice_size;
+ int64_t current_offset;
+};
+
+RecordBatchIterator RecordBatchSliceIterator(const RecordBatch& batch,
+ int64_t slice_size) {
+ SliceIteratorFunctor functor = {&batch, slice_size, /*offset=*/static_cast<int64_t>(0)};
+ return RecordBatchIterator(std::move(functor));
+}
+
+// Counts the number of characters that need escaping in s.
+int64_t CountEscapes(util::string_view s) {
+ return static_cast<int64_t>(std::count(s.begin(), s.end(), '"'));
+}
+
+// Matching quote pair character length.
+constexpr int64_t kQuoteCount = 2;
+constexpr int64_t kQuoteDelimiterCount = kQuoteCount + /*end_char*/ 1;
+
+// Interface for generating CSV data per column.
+// The intended usage is to iteratively call UpdateRowLengths for a column and
+// then PopulateColumns. PopulateColumns must be called in the reverse order of the
+// populators (it populates data backwards).
+class ColumnPopulator {
+ public:
+ ColumnPopulator(MemoryPool* pool, char end_char) : end_char_(end_char), pool_(pool) {}
+
+ virtual ~ColumnPopulator() = default;
+
+ // Adds the number of characters each entry in data will add to to elements
+ // in row_lengths.
+ Status UpdateRowLengths(const Array& data, int32_t* row_lengths) {
+ compute::ExecContext ctx(pool_);
+ // Populators are intented to be applied to reasonably small data. In most cases
+ // threading overhead would not be justified.
+ ctx.set_use_threads(false);
+ ASSIGN_OR_RAISE(
+ std::shared_ptr<Array> casted,
+ compute::Cast(data, /*to_type=*/utf8(), compute::CastOptions(), &ctx));
+ casted_array_ = internal::checked_pointer_cast<StringArray>(casted);
+ return UpdateRowLengths(row_lengths);
+ }
+
+ // Places string data onto each row in output and updates the corresponding row
+ // row pointers in preparation for calls to other (preceding) ColumnPopulators.
+ // Args:
+ // output: character buffer to write to.
+ // offsets: an array of end of row column within the the output buffer (values are
+ // one past the end of the position to write to).
+ virtual void PopulateColumns(char* output, int32_t* offsets) const = 0;
+
+ protected:
+ virtual Status UpdateRowLengths(int32_t* row_lengths) = 0;
+ std::shared_ptr<StringArray> casted_array_;
+ const char end_char_;
+
+ private:
+ MemoryPool* const pool_;
+};
+
+// Copies the contents of to out properly escaping any necessary characters.
+// Returns the position prior to last copied character (out_end is decremented).
+char* EscapeReverse(arrow::util::string_view s, char* out_end) {
+ for (const char* val = s.data() + s.length() - 1; val >= s.data(); val--, out_end--) {
+ if (*val == '"') {
+ *out_end = *val;
+ out_end--;
+ }
+ *out_end = *val;
+ }
+ return out_end;
+}
+
+// Populator for non-string types. This populator relies on compute Cast functionality to
+// String if it doesn't exist it will be an error. it also assumes the resulting string
+// from a cast does not require quoting or escaping.
+class UnquotedColumnPopulator : public ColumnPopulator {
+ public:
+ explicit UnquotedColumnPopulator(MemoryPool* memory_pool, char end_char)
+ : ColumnPopulator(memory_pool, end_char) {}
+
+ Status UpdateRowLengths(int32_t* row_lengths) override {
+ for (int x = 0; x < casted_array_->length(); x++) {
+ row_lengths[x] += casted_array_->value_length(x);
+ }
+ return Status::OK();
+ }
+
+ void PopulateColumns(char* output, int32_t* offsets) const override {
+ VisitArrayDataInline<StringType>(
+ *casted_array_->data(),
+ [&](arrow::util::string_view s) {
+ int64_t next_column_offset = s.length() + /*end_char*/ 1;
+ memcpy((output + *offsets - next_column_offset), s.data(), s.length());
+ *(output + *offsets - 1) = end_char_;
+ *offsets -= static_cast<int32_t>(next_column_offset);
+ offsets++;
+ },
+ [&]() {
+ // Nulls are empty (unquoted) to distinguish with empty string.
+ *(output + *offsets - 1) = end_char_;
+ *offsets -= 1;
+ offsets++;
+ });
+ }
+};
+
+// Strings need special handling to ensure they are escaped properly.
+// This class handles escaping assuming that all strings will be quoted
+// and that the only character within the string that needs to escaped is
+// a quote character (") and escaping is done my adding another quote.
+class QuotedColumnPopulator : public ColumnPopulator {
+ public:
+ QuotedColumnPopulator(MemoryPool* pool, char end_char)
+ : ColumnPopulator(pool, end_char) {}
+
+ Status UpdateRowLengths(int32_t* row_lengths) override {
+ const StringArray& input = *casted_array_;
+ int row_number = 0;
+ row_needs_escaping_.resize(casted_array_->length());
+ VisitArrayDataInline<StringType>(
+ *input.data(),
+ [&](arrow::util::string_view s) {
+ int64_t escaped_count = CountEscapes(s);
+ // TODO: Maybe use 64 bit row lengths or safe cast?
+ row_needs_escaping_[row_number] = escaped_count > 0;
+ row_lengths[row_number] += static_cast<int32_t>(s.length()) +
+ static_cast<int32_t>(escaped_count + kQuoteCount);
+ row_number++;
+ },
+ [&]() {
+ row_needs_escaping_[row_number] = false;
+ row_number++;
+ });
+ return Status::OK();
+ }
+
+ void PopulateColumns(char* output, int32_t* offsets) const override {
+ auto needs_escaping = row_needs_escaping_.begin();
+ VisitArrayDataInline<StringType>(
+ *(casted_array_->data()),
+ [&](arrow::util::string_view s) {
+ // still needs string content length to be added
+ char* row_end = output + *offsets;
+ int32_t next_column_offset = 0;
+ if (!*needs_escaping) {
+ next_column_offset = static_cast<int32_t>(s.length() + kQuoteDelimiterCount);
+ memcpy(row_end - next_column_offset + /*quote_offset=*/1, s.data(),
+ s.length());
+ } else {
+ // Adjust row_end by 3: 1 quote char, 1 end char and 1 to position at the
+ // first position to write to.
+ next_column_offset =
+ static_cast<int32_t>(row_end - EscapeReverse(s, row_end - 3));
+ }
+ *(row_end - next_column_offset) = '"';
+ *(row_end - 2) = '"';
+ *(row_end - 1) = end_char_;
+ *offsets -= next_column_offset;
+ offsets++;
+ needs_escaping++;
+ },
+ [&]() {
+ // Nulls are empty (unquoted) to distinguish with empty string.
+ *(output + *offsets - 1) = end_char_;
+ *offsets -= 1;
+ offsets++;
+ needs_escaping++;
+ });
+ }
+
+ private:
+ // Older version of GCC don't support custom allocators
+ // at some point we should change this to use memory_pool
+ // backed allocator.
+ std::vector<bool> row_needs_escaping_;
+};
+
+struct PopulatorFactory {
+ template <typename TypeClass>
+ enable_if_t<is_base_binary_type<TypeClass>::value ||
+ std::is_same<FixedSizeBinaryType, TypeClass>::value,
+ Status>
+ Visit(const TypeClass& type) {
+ populator = new QuotedColumnPopulator(pool, end_char);
+ return Status::OK();
+ }
+
+ template <typename TypeClass>
+ enable_if_dictionary<TypeClass, Status> Visit(const TypeClass& type) {
+ return VisitTypeInline(*type.value_type(), this);
+ }
+
+ template <typename TypeClass>
+ enable_if_t<is_nested_type<TypeClass>::value || is_extension_type<TypeClass>::value,
+ Status>
+ Visit(const TypeClass& type) {
+ return Status::Invalid("Unsupported Type:", type.ToString());
+ }
+
+ template <typename TypeClass>
+ enable_if_t<is_primitive_ctype<TypeClass>::value || is_decimal_type<TypeClass>::value ||
+ is_null_type<TypeClass>::value || is_temporal_type<TypeClass>::value,
+ Status>
+ Visit(const TypeClass& type) {
+ populator = new UnquotedColumnPopulator(pool, end_char);
+ return Status::OK();
+ }
+
+ char end_char;
+ MemoryPool* pool;
+ ColumnPopulator* populator;
+};
+
+Result<std::unique_ptr<ColumnPopulator>> MakePopulator(const Field& field, char end_char,
+ MemoryPool* pool) {
+ PopulatorFactory factory{end_char, pool, nullptr};
+ RETURN_NOT_OK(VisitTypeInline(*field.type(), &factory));
+ return std::unique_ptr<ColumnPopulator>(factory.populator);
+}
+
+class CSVWriterImpl : public ipc::RecordBatchWriter {
+ public:
+ static Result<std::shared_ptr<CSVWriterImpl>> Make(
+ io::OutputStream* sink, std::shared_ptr<io::OutputStream> owned_sink,
+ std::shared_ptr<Schema> schema, const WriteOptions& options) {
+ RETURN_NOT_OK(options.Validate());
+ std::vector<std::unique_ptr<ColumnPopulator>> populators(schema->num_fields());
+ for (int col = 0; col < schema->num_fields(); col++) {
+ char end_char = col < schema->num_fields() - 1 ? ',' : '\n';
+ ASSIGN_OR_RAISE(populators[col], MakePopulator(*schema->field(col), end_char,
+ options.io_context.pool()));
+ }
+ auto writer = std::make_shared<CSVWriterImpl>(
+ sink, std::move(owned_sink), std::move(schema), std::move(populators), options);
+ RETURN_NOT_OK(writer->PrepareForContentsWrite());
+ if (options.include_header) {
+ RETURN_NOT_OK(writer->WriteHeader());
+ }
+ return writer;
+ }
+
+ Status WriteRecordBatch(const RecordBatch& batch) override {
+ RecordBatchIterator iterator = RecordBatchSliceIterator(batch, options_.batch_size);
+ for (auto maybe_slice : iterator) {
+ ASSIGN_OR_RAISE(std::shared_ptr<RecordBatch> slice, maybe_slice);
+ RETURN_NOT_OK(TranslateMinimalBatch(*slice));
+ RETURN_NOT_OK(sink_->Write(data_buffer_));
+ stats_.num_record_batches++;
+ }
+ return Status::OK();
+ }
+
+ Status WriteTable(const Table& table, int64_t max_chunksize) override {
+ TableBatchReader reader(table);
+ reader.set_chunksize(max_chunksize > 0 ? max_chunksize : options_.batch_size);
+ std::shared_ptr<RecordBatch> batch;
+ RETURN_NOT_OK(reader.ReadNext(&batch));
+ while (batch != nullptr) {
+ RETURN_NOT_OK(TranslateMinimalBatch(*batch));
+ RETURN_NOT_OK(sink_->Write(data_buffer_));
+ RETURN_NOT_OK(reader.ReadNext(&batch));
+ stats_.num_record_batches++;
+ }
+
+ return Status::OK();
+ }
+
+ Status Close() override { return Status::OK(); }
+
+ ipc::WriteStats stats() const override { return stats_; }
+
+ CSVWriterImpl(io::OutputStream* sink, std::shared_ptr<io::OutputStream> owned_sink,
+ std::shared_ptr<Schema> schema,
+ std::vector<std::unique_ptr<ColumnPopulator>> populators,
+ const WriteOptions& options)
+ : sink_(sink),
+ owned_sink_(std::move(owned_sink)),
+ column_populators_(std::move(populators)),
+ offsets_(0, 0, ::arrow::stl::allocator<char*>(options.io_context.pool())),
+ schema_(std::move(schema)),
+ options_(options) {}
+
+ private:
+ Status PrepareForContentsWrite() {
+ // Only called once, as part of initialization
+ if (data_buffer_ == nullptr) {
+ ASSIGN_OR_RAISE(data_buffer_,
+ AllocateResizableBuffer(
+ options_.batch_size * schema_->num_fields() * kColumnSizeGuess,
+ options_.io_context.pool()));
+ }
+ return Status::OK();
+ }
+
+ int64_t CalculateHeaderSize() const {
+ int64_t header_length = 0;
+ for (int col = 0; col < schema_->num_fields(); col++) {
+ const std::string& col_name = schema_->field(col)->name();
+ header_length += col_name.size();
+ header_length += CountEscapes(col_name);
+ }
+ return header_length + (kQuoteDelimiterCount * schema_->num_fields());
+ }
+
+ Status WriteHeader() {
+ // Only called once, as part of initialization
+ RETURN_NOT_OK(data_buffer_->Resize(CalculateHeaderSize(), /*shrink_to_fit=*/false));
+ char* next =
+ reinterpret_cast<char*>(data_buffer_->mutable_data() + data_buffer_->size() - 1);
+ for (int col = schema_->num_fields() - 1; col >= 0; col--) {
+ *next-- = ',';
+ *next-- = '"';
+ next = EscapeReverse(schema_->field(col)->name(), next);
+ *next-- = '"';
+ }
+ *(data_buffer_->mutable_data() + data_buffer_->size() - 1) = '\n';
+ DCHECK_EQ(reinterpret_cast<uint8_t*>(next + 1), data_buffer_->data());
+ return sink_->Write(data_buffer_);
+ }
+
+ Status TranslateMinimalBatch(const RecordBatch& batch) {
+ if (batch.num_rows() == 0) {
+ return Status::OK();
+ }
+ offsets_.resize(batch.num_rows());
+ std::fill(offsets_.begin(), offsets_.end(), 0);
+
+ // Calculate relative offsets for each row (excluding delimiters)
+ for (int32_t col = 0; col < static_cast<int32_t>(column_populators_.size()); col++) {
+ RETURN_NOT_OK(
+ column_populators_[col]->UpdateRowLengths(*batch.column(col), offsets_.data()));
+ }
+ // Calculate cumulalative offsets for each row (including delimiters).
+ offsets_[0] += batch.num_columns();
+ for (int64_t row = 1; row < batch.num_rows(); row++) {
+ offsets_[row] += offsets_[row - 1] + /*delimiter lengths*/ batch.num_columns();
+ }
+ // Resize the target buffer to required size. We assume batch to batch sizes
+ // should be pretty close so don't shrink the buffer to avoid allocation churn.
+ RETURN_NOT_OK(data_buffer_->Resize(offsets_.back(), /*shrink_to_fit=*/false));
+
+ // Use the offsets to populate contents.
+ for (auto populator = column_populators_.rbegin();
+ populator != column_populators_.rend(); populator++) {
+ (*populator)
+ ->PopulateColumns(reinterpret_cast<char*>(data_buffer_->mutable_data()),
+ offsets_.data());
+ }
+ DCHECK_EQ(0, offsets_[0]);
+ return Status::OK();
+ }
+
+ static constexpr int64_t kColumnSizeGuess = 8;
+ io::OutputStream* sink_;
+ std::shared_ptr<io::OutputStream> owned_sink_;
+ std::vector<std::unique_ptr<ColumnPopulator>> column_populators_;
+ std::vector<int32_t, arrow::stl::allocator<int32_t>> offsets_;
+ std::shared_ptr<ResizableBuffer> data_buffer_;
+ const std::shared_ptr<Schema> schema_;
+ const WriteOptions options_;
+ ipc::WriteStats stats_;
+};
+
+} // namespace
+
+Status WriteCSV(const Table& table, const WriteOptions& options,
+ arrow::io::OutputStream* output) {
+ ASSIGN_OR_RAISE(auto writer, MakeCSVWriter(output, table.schema(), options));
+ RETURN_NOT_OK(writer->WriteTable(table));
+ return writer->Close();
+}
+
+Status WriteCSV(const RecordBatch& batch, const WriteOptions& options,
+ arrow::io::OutputStream* output) {
+ ASSIGN_OR_RAISE(auto writer, MakeCSVWriter(output, batch.schema(), options));
+ RETURN_NOT_OK(writer->WriteRecordBatch(batch));
+ return writer->Close();
+}
+
+ARROW_EXPORT
+Result<std::shared_ptr<ipc::RecordBatchWriter>> MakeCSVWriter(
+ std::shared_ptr<io::OutputStream> sink, const std::shared_ptr<Schema>& schema,
+ const WriteOptions& options) {
+ return CSVWriterImpl::Make(sink.get(), sink, schema, options);
+}
+
+ARROW_EXPORT
+Result<std::shared_ptr<ipc::RecordBatchWriter>> MakeCSVWriter(
+ io::OutputStream* sink, const std::shared_ptr<Schema>& schema,
+ const WriteOptions& options) {
+ return CSVWriterImpl::Make(sink, nullptr, schema, options);
+}
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/csv/writer.h b/contrib/libs/apache/arrow/cpp/src/arrow/csv/writer.h
index 2f1442ae0a..bb31b223a8 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/csv/writer.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/csv/writer.h
@@ -1,73 +1,73 @@
-// Licensed to the Apache Software Foundation (ASF) under one
-// or more contributor license agreements. See the NOTICE file
-// distributed with this work for additional information
-// regarding copyright ownership. The ASF licenses this file
-// to you under the Apache License, Version 2.0 (the
-// "License"); you may not use this file except in compliance
-// with the License. You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing,
-// software distributed under the License is distributed on an
-// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
-// KIND, either express or implied. See the License for the
-// specific language governing permissions and limitations
-// under the License.
-
-#pragma once
-
-#include <memory>
-
-#include "arrow/csv/options.h"
-#include "arrow/io/interfaces.h"
-#include "arrow/ipc/type_fwd.h"
-#include "arrow/record_batch.h"
-#include "arrow/table.h"
-
-namespace arrow {
-namespace csv {
-// Functionality for converting Arrow data to Comma separated value text.
-// This library supports all primitive types that can be cast to a StringArrays.
-// It applies to following formatting rules:
-// - For non-binary types no quotes surround values. Nulls are represented as the empty
-// string.
-// - For binary types all non-null data is quoted (and quotes within data are escaped
-// with an additional quote).
-// Null values are empty and unquoted.
-// - LF (\n) is always used as a line ending.
-
-/// \brief Converts table to a CSV and writes the results to output.
-/// Experimental
-ARROW_EXPORT Status WriteCSV(const Table& table, const WriteOptions& options,
- arrow::io::OutputStream* output);
-/// \brief Converts batch to CSV and writes the results to output.
-/// Experimental
-ARROW_EXPORT Status WriteCSV(const RecordBatch& batch, const WriteOptions& options,
- arrow::io::OutputStream* output);
-
-/// \brief Create a new CSV writer. User is responsible for closing the
-/// actual OutputStream.
-///
-/// \param[in] sink output stream to write to
-/// \param[in] schema the schema of the record batches to be written
-/// \param[in] options options for serialization
-/// \return Result<std::shared_ptr<RecordBatchWriter>>
-ARROW_EXPORT
-Result<std::shared_ptr<ipc::RecordBatchWriter>> MakeCSVWriter(
- std::shared_ptr<io::OutputStream> sink, const std::shared_ptr<Schema>& schema,
- const WriteOptions& options = WriteOptions::Defaults());
-
-/// \brief Create a new CSV writer.
-///
-/// \param[in] sink output stream to write to (does not take ownership)
-/// \param[in] schema the schema of the record batches to be written
-/// \param[in] options options for serialization
-/// \return Result<std::shared_ptr<RecordBatchWriter>>
-ARROW_EXPORT
-Result<std::shared_ptr<ipc::RecordBatchWriter>> MakeCSVWriter(
- io::OutputStream* sink, const std::shared_ptr<Schema>& schema,
- const WriteOptions& options = WriteOptions::Defaults());
-
-} // namespace csv
-} // namespace arrow
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#pragma once
+
+#include <memory>
+
+#include "arrow/csv/options.h"
+#include "arrow/io/interfaces.h"
+#include "arrow/ipc/type_fwd.h"
+#include "arrow/record_batch.h"
+#include "arrow/table.h"
+
+namespace arrow {
+namespace csv {
+// Functionality for converting Arrow data to Comma separated value text.
+// This library supports all primitive types that can be cast to a StringArrays.
+// It applies to following formatting rules:
+// - For non-binary types no quotes surround values. Nulls are represented as the empty
+// string.
+// - For binary types all non-null data is quoted (and quotes within data are escaped
+// with an additional quote).
+// Null values are empty and unquoted.
+// - LF (\n) is always used as a line ending.
+
+/// \brief Converts table to a CSV and writes the results to output.
+/// Experimental
+ARROW_EXPORT Status WriteCSV(const Table& table, const WriteOptions& options,
+ arrow::io::OutputStream* output);
+/// \brief Converts batch to CSV and writes the results to output.
+/// Experimental
+ARROW_EXPORT Status WriteCSV(const RecordBatch& batch, const WriteOptions& options,
+ arrow::io::OutputStream* output);
+
+/// \brief Create a new CSV writer. User is responsible for closing the
+/// actual OutputStream.
+///
+/// \param[in] sink output stream to write to
+/// \param[in] schema the schema of the record batches to be written
+/// \param[in] options options for serialization
+/// \return Result<std::shared_ptr<RecordBatchWriter>>
+ARROW_EXPORT
+Result<std::shared_ptr<ipc::RecordBatchWriter>> MakeCSVWriter(
+ std::shared_ptr<io::OutputStream> sink, const std::shared_ptr<Schema>& schema,
+ const WriteOptions& options = WriteOptions::Defaults());
+
+/// \brief Create a new CSV writer.
+///
+/// \param[in] sink output stream to write to (does not take ownership)
+/// \param[in] schema the schema of the record batches to be written
+/// \param[in] options options for serialization
+/// \return Result<std::shared_ptr<RecordBatchWriter>>
+ARROW_EXPORT
+Result<std::shared_ptr<ipc::RecordBatchWriter>> MakeCSVWriter(
+ io::OutputStream* sink, const std::shared_ptr<Schema>& schema,
+ const WriteOptions& options = WriteOptions::Defaults());
+
+} // namespace csv
+} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/util/int128_internal.h b/contrib/libs/apache/arrow/cpp/src/arrow/util/int128_internal.h
index 1d494671a9..b7d40118b4 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/util/int128_internal.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/util/int128_internal.h
@@ -20,7 +20,7 @@
#include "arrow/util/macros.h"
#ifndef ARROW_USE_NATIVE_INT128
-#include <boost/multiprecision/cpp_int.hpp>
+#include <boost/multiprecision/cpp_int.hpp>
#endif
namespace arrow {
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/util/logging.cc b/contrib/libs/apache/arrow/cpp/src/arrow/util/logging.cc
index 65359b4408..f212d3d406 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/util/logging.cc
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/util/logging.cc
@@ -28,7 +28,7 @@
#include <signal.h>
#include <vector>
-#error #include "glog/logging.h"
+#error #include "glog/logging.h"
// Restore our versions of DCHECK and friends, as GLog defines its own
#undef DCHECK
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/util/optional.h b/contrib/libs/apache/arrow/cpp/src/arrow/util/optional.h
index b824b499bb..546c74bb32 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/util/optional.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/util/optional.h
@@ -17,17 +17,17 @@
#pragma once
-#include <optional>
+#include <optional>
namespace arrow {
namespace util {
template <typename T>
-using optional = std::optional<T>;
+using optional = std::optional<T>;
-using std::bad_optional_access;
-using std::make_optional;
-using std::nullopt;
+using std::bad_optional_access;
+using std::make_optional;
+using std::nullopt;
} // namespace util
} // namespace arrow
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/ios.h b/contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/ios.h
index 46567d69b1..f3edfcd1dc 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/ios.h
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/ios.h
@@ -1,53 +1,53 @@
-//
-// ios.h
-// DateTimeLib
-//
-// The MIT License (MIT)
-//
-// Copyright (c) 2016 Alexander Kormanovsky
-//
-// Permission is hereby granted, free of charge, to any person obtaining a copy
-// of this software and associated documentation files (the "Software"), to deal
-// in the Software without restriction, including without limitation the rights
-// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-// copies of the Software, and to permit persons to whom the Software is
-// furnished to do so, subject to the following conditions:
-//
-// The above copyright notice and this permission notice shall be included in all
-// copies or substantial portions of the Software.
-//
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-// SOFTWARE.
-
-#ifndef ios_hpp
-#define ios_hpp
-
-#if __APPLE__
-# include <TargetConditionals.h>
-# if TARGET_OS_IPHONE
-# include <string>
-
- namespace arrow_vendored
- {
- namespace date
- {
- namespace iOSUtils
- {
-
- std::string get_tzdata_path();
- std::string get_current_timezone();
-
- } // namespace iOSUtils
- } // namespace date
- } // namespace arrow_vendored
-
-# endif // TARGET_OS_IPHONE
-#else // !__APPLE__
-# define TARGET_OS_IPHONE 0
-#endif // !__APPLE__
-#endif // ios_hpp
+//
+// ios.h
+// DateTimeLib
+//
+// The MIT License (MIT)
+//
+// Copyright (c) 2016 Alexander Kormanovsky
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+#ifndef ios_hpp
+#define ios_hpp
+
+#if __APPLE__
+# include <TargetConditionals.h>
+# if TARGET_OS_IPHONE
+# include <string>
+
+ namespace arrow_vendored
+ {
+ namespace date
+ {
+ namespace iOSUtils
+ {
+
+ std::string get_tzdata_path();
+ std::string get_current_timezone();
+
+ } // namespace iOSUtils
+ } // namespace date
+ } // namespace arrow_vendored
+
+# endif // TARGET_OS_IPHONE
+#else // !__APPLE__
+# define TARGET_OS_IPHONE 0
+#endif // !__APPLE__
+#endif // ios_hpp
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/ios.mm b/contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/ios.mm
index 18c521201d..7d432afe85 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/ios.mm
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/ios.mm
@@ -1,340 +1,340 @@
-//
-// The MIT License (MIT)
-//
-// Copyright (c) 2016 Alexander Kormanovsky
-//
-// Permission is hereby granted, free of charge, to any person obtaining a copy
-// of this software and associated documentation files (the "Software"), to deal
-// in the Software without restriction, including without limitation the rights
-// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-// copies of the Software, and to permit persons to whom the Software is
-// furnished to do so, subject to the following conditions:
-//
-// The above copyright notice and this permission notice shall be included in all
-// copies or substantial portions of the Software.
-//
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-// SOFTWARE.
-//
-
-#include "ios.h"
-
-#if TARGET_OS_IPHONE
-
-#include <Foundation/Foundation.h>
-
-#include <fstream>
-#include <zlib.h>
-#include <sys/stat.h>
-
-#ifndef TAR_DEBUG
-# define TAR_DEBUG 0
-#endif
-
-#define INTERNAL_DIR "Library"
-#define TZDATA_DIR "tzdata"
-#define TARGZ_EXTENSION "tar.gz"
-
-#define TAR_BLOCK_SIZE 512
-#define TAR_TYPE_POSITION 156
-#define TAR_NAME_POSITION 0
-#define TAR_NAME_SIZE 100
-#define TAR_SIZE_POSITION 124
-#define TAR_SIZE_SIZE 12
-
-namespace arrow_vendored
-{
-namespace date
-{
- namespace iOSUtils
- {
-
- struct TarInfo
- {
- char objType;
- std::string objName;
- size_t realContentSize; // writable size without padding zeroes
- size_t blocksContentSize; // adjusted size to 512 bytes blocks
- bool success;
- };
-
- std::string convertCFStringRefPathToCStringPath(CFStringRef ref);
- bool extractTzdata(CFURLRef homeUrl, CFURLRef archiveUrl, std::string destPath);
- TarInfo getTarObjectInfo(std::ifstream &readStream);
- std::string getTarObject(std::ifstream &readStream, int64_t size);
- bool writeFile(const std::string &tzdataPath, const std::string &fileName,
- const std::string &data, size_t realContentSize);
-
- std::string
- get_current_timezone()
- {
- CFTimeZoneRef tzRef = CFTimeZoneCopySystem();
- CFStringRef tzNameRef = CFTimeZoneGetName(tzRef);
- CFIndex bufferSize = CFStringGetLength(tzNameRef) + 1;
- char buffer[bufferSize];
-
- if (CFStringGetCString(tzNameRef, buffer, bufferSize, kCFStringEncodingUTF8))
- {
- CFRelease(tzRef);
- return std::string(buffer);
- }
-
- CFRelease(tzRef);
-
- return "";
- }
-
- std::string
- get_tzdata_path()
- {
- CFURLRef homeUrlRef = CFCopyHomeDirectoryURL();
- CFStringRef homePath = CFURLCopyPath(homeUrlRef);
- std::string path(std::string(convertCFStringRefPathToCStringPath(homePath)) +
- INTERNAL_DIR + "/" + TZDATA_DIR);
- std::string result_path(std::string(convertCFStringRefPathToCStringPath(homePath)) +
- INTERNAL_DIR);
-
- if (access(path.c_str(), F_OK) == 0)
- {
-#if TAR_DEBUG
- printf("tzdata dir exists\n");
-#endif
- CFRelease(homeUrlRef);
- CFRelease(homePath);
-
- return result_path;
- }
-
- CFBundleRef mainBundle = CFBundleGetMainBundle();
- CFArrayRef paths = CFBundleCopyResourceURLsOfType(mainBundle, CFSTR(TARGZ_EXTENSION),
- NULL);
-
- if (CFArrayGetCount(paths) != 0)
- {
- // get archive path, assume there is no other tar.gz in bundle
- CFURLRef archiveUrl = static_cast<CFURLRef>(CFArrayGetValueAtIndex(paths, 0));
- CFStringRef archiveName = CFURLCopyPath(archiveUrl);
- archiveUrl = CFBundleCopyResourceURL(mainBundle, archiveName, NULL, NULL);
-
- extractTzdata(homeUrlRef, archiveUrl, path);
-
- CFRelease(archiveUrl);
- CFRelease(archiveName);
- }
-
- CFRelease(homeUrlRef);
- CFRelease(homePath);
- CFRelease(paths);
-
- return result_path;
- }
-
- std::string
- convertCFStringRefPathToCStringPath(CFStringRef ref)
- {
- CFIndex bufferSize = CFStringGetMaximumSizeOfFileSystemRepresentation(ref);
- char *buffer = new char[bufferSize];
- CFStringGetFileSystemRepresentation(ref, buffer, bufferSize);
- auto result = std::string(buffer);
- delete[] buffer;
- return result;
- }
-
- bool
- extractTzdata(CFURLRef homeUrl, CFURLRef archiveUrl, std::string destPath)
- {
- std::string TAR_TMP_PATH = "/tmp.tar";
-
- CFStringRef homeStringRef = CFURLCopyPath(homeUrl);
- auto homePath = convertCFStringRefPathToCStringPath(homeStringRef);
- CFRelease(homeStringRef);
-
- CFStringRef archiveStringRef = CFURLCopyPath(archiveUrl);
- auto archivePath = convertCFStringRefPathToCStringPath(archiveStringRef);
- CFRelease(archiveStringRef);
-
- // create Library path
- auto libraryPath = homePath + INTERNAL_DIR;
-
- // create tzdata path
- auto tzdataPath = libraryPath + "/" + TZDATA_DIR;
-
- // -- replace %20 with " "
- const std::string search = "%20";
- const std::string replacement = " ";
- size_t pos = 0;
-
- while ((pos = archivePath.find(search, pos)) != std::string::npos) {
- archivePath.replace(pos, search.length(), replacement);
- pos += replacement.length();
- }
-
- gzFile tarFile = gzopen(archivePath.c_str(), "rb");
-
- // create tar unpacking path
- auto tarPath = libraryPath + TAR_TMP_PATH;
-
- // create tzdata directory
- mkdir(destPath.c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
-
- // ======= extract tar ========
-
- std::ofstream os(tarPath.c_str(), std::ofstream::out | std::ofstream::app);
- unsigned int bufferLength = 1024 * 256; // 256Kb
- unsigned char *buffer = (unsigned char *)malloc(bufferLength);
- bool success = true;
-
- while (true)
- {
- int readBytes = gzread(tarFile, buffer, bufferLength);
-
- if (readBytes > 0)
- {
- os.write((char *) &buffer[0], readBytes);
- }
- else
- if (readBytes == 0)
- {
- break;
- }
- else
- if (readBytes == -1)
- {
- printf("decompression failed\n");
- success = false;
- break;
- }
- else
- {
- printf("unexpected zlib state\n");
- success = false;
- break;
- }
- }
-
- os.close();
- free(buffer);
- gzclose(tarFile);
-
- if (!success)
- {
- remove(tarPath.c_str());
- return false;
- }
-
- // ======== extract files =========
-
- uint64_t location = 0; // Position in the file
-
- // get file size
- struct stat stat_buf;
- int res = stat(tarPath.c_str(), &stat_buf);
- if (res != 0)
- {
- printf("error file size\n");
- remove(tarPath.c_str());
- return false;
- }
- int64_t tarSize = stat_buf.st_size;
-
- // create read stream
- std::ifstream is(tarPath.c_str(), std::ifstream::in | std::ifstream::binary);
-
- // process files
- while (location < tarSize)
- {
- TarInfo info = getTarObjectInfo(is);
-
- if (!info.success || info.realContentSize == 0)
- {
- break; // something wrong or all files are read
- }
-
- switch (info.objType)
- {
- case '0': // file
- case '\0': //
- {
- std::string obj = getTarObject(is, info.blocksContentSize);
-#if TAR_DEBUG
- size += info.realContentSize;
- printf("#%i %s file size %lld written total %ld from %lld\n", ++count,
- info.objName.c_str(), info.realContentSize, size, tarSize);
-#endif
- writeFile(tzdataPath, info.objName, obj, info.realContentSize);
- location += info.blocksContentSize;
-
- break;
- }
- }
- }
-
- remove(tarPath.c_str());
-
- return true;
- }
-
- TarInfo
- getTarObjectInfo(std::ifstream &readStream)
- {
- int64_t length = TAR_BLOCK_SIZE;
- char buffer[length];
- char type;
- char name[TAR_NAME_SIZE + 1];
- char sizeBuf[TAR_SIZE_SIZE + 1];
-
- readStream.read(buffer, length);
-
- memcpy(&type, &buffer[TAR_TYPE_POSITION], 1);
-
- memset(&name, '\0', TAR_NAME_SIZE + 1);
- memcpy(&name, &buffer[TAR_NAME_POSITION], TAR_NAME_SIZE);
-
- memset(&sizeBuf, '\0', TAR_SIZE_SIZE + 1);
- memcpy(&sizeBuf, &buffer[TAR_SIZE_POSITION], TAR_SIZE_SIZE);
- size_t realSize = strtol(sizeBuf, NULL, 8);
- size_t blocksSize = realSize + (TAR_BLOCK_SIZE - (realSize % TAR_BLOCK_SIZE));
-
- return {type, std::string(name), realSize, blocksSize, true};
- }
-
- std::string
- getTarObject(std::ifstream &readStream, int64_t size)
- {
- char buffer[size];
- readStream.read(buffer, size);
- return std::string(buffer);
- }
-
- bool
- writeFile(const std::string &tzdataPath, const std::string &fileName, const std::string &data,
- size_t realContentSize)
- {
- std::ofstream os(tzdataPath + "/" + fileName, std::ofstream::out | std::ofstream::binary);
-
- if (!os) {
- return false;
- }
-
- // trim empty space
- char trimmedData[realContentSize + 1];
- memset(&trimmedData, '\0', realContentSize);
- memcpy(&trimmedData, data.c_str(), realContentSize);
-
- // write
- os.write(trimmedData, realContentSize);
- os.close();
-
- return true;
- }
-
- } // namespace iOSUtils
-} // namespace date
-} // namespace arrow_vendored
-
-#endif // TARGET_OS_IPHONE
+//
+// The MIT License (MIT)
+//
+// Copyright (c) 2016 Alexander Kormanovsky
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+//
+
+#include "ios.h"
+
+#if TARGET_OS_IPHONE
+
+#include <Foundation/Foundation.h>
+
+#include <fstream>
+#include <zlib.h>
+#include <sys/stat.h>
+
+#ifndef TAR_DEBUG
+# define TAR_DEBUG 0
+#endif
+
+#define INTERNAL_DIR "Library"
+#define TZDATA_DIR "tzdata"
+#define TARGZ_EXTENSION "tar.gz"
+
+#define TAR_BLOCK_SIZE 512
+#define TAR_TYPE_POSITION 156
+#define TAR_NAME_POSITION 0
+#define TAR_NAME_SIZE 100
+#define TAR_SIZE_POSITION 124
+#define TAR_SIZE_SIZE 12
+
+namespace arrow_vendored
+{
+namespace date
+{
+ namespace iOSUtils
+ {
+
+ struct TarInfo
+ {
+ char objType;
+ std::string objName;
+ size_t realContentSize; // writable size without padding zeroes
+ size_t blocksContentSize; // adjusted size to 512 bytes blocks
+ bool success;
+ };
+
+ std::string convertCFStringRefPathToCStringPath(CFStringRef ref);
+ bool extractTzdata(CFURLRef homeUrl, CFURLRef archiveUrl, std::string destPath);
+ TarInfo getTarObjectInfo(std::ifstream &readStream);
+ std::string getTarObject(std::ifstream &readStream, int64_t size);
+ bool writeFile(const std::string &tzdataPath, const std::string &fileName,
+ const std::string &data, size_t realContentSize);
+
+ std::string
+ get_current_timezone()
+ {
+ CFTimeZoneRef tzRef = CFTimeZoneCopySystem();
+ CFStringRef tzNameRef = CFTimeZoneGetName(tzRef);
+ CFIndex bufferSize = CFStringGetLength(tzNameRef) + 1;
+ char buffer[bufferSize];
+
+ if (CFStringGetCString(tzNameRef, buffer, bufferSize, kCFStringEncodingUTF8))
+ {
+ CFRelease(tzRef);
+ return std::string(buffer);
+ }
+
+ CFRelease(tzRef);
+
+ return "";
+ }
+
+ std::string
+ get_tzdata_path()
+ {
+ CFURLRef homeUrlRef = CFCopyHomeDirectoryURL();
+ CFStringRef homePath = CFURLCopyPath(homeUrlRef);
+ std::string path(std::string(convertCFStringRefPathToCStringPath(homePath)) +
+ INTERNAL_DIR + "/" + TZDATA_DIR);
+ std::string result_path(std::string(convertCFStringRefPathToCStringPath(homePath)) +
+ INTERNAL_DIR);
+
+ if (access(path.c_str(), F_OK) == 0)
+ {
+#if TAR_DEBUG
+ printf("tzdata dir exists\n");
+#endif
+ CFRelease(homeUrlRef);
+ CFRelease(homePath);
+
+ return result_path;
+ }
+
+ CFBundleRef mainBundle = CFBundleGetMainBundle();
+ CFArrayRef paths = CFBundleCopyResourceURLsOfType(mainBundle, CFSTR(TARGZ_EXTENSION),
+ NULL);
+
+ if (CFArrayGetCount(paths) != 0)
+ {
+ // get archive path, assume there is no other tar.gz in bundle
+ CFURLRef archiveUrl = static_cast<CFURLRef>(CFArrayGetValueAtIndex(paths, 0));
+ CFStringRef archiveName = CFURLCopyPath(archiveUrl);
+ archiveUrl = CFBundleCopyResourceURL(mainBundle, archiveName, NULL, NULL);
+
+ extractTzdata(homeUrlRef, archiveUrl, path);
+
+ CFRelease(archiveUrl);
+ CFRelease(archiveName);
+ }
+
+ CFRelease(homeUrlRef);
+ CFRelease(homePath);
+ CFRelease(paths);
+
+ return result_path;
+ }
+
+ std::string
+ convertCFStringRefPathToCStringPath(CFStringRef ref)
+ {
+ CFIndex bufferSize = CFStringGetMaximumSizeOfFileSystemRepresentation(ref);
+ char *buffer = new char[bufferSize];
+ CFStringGetFileSystemRepresentation(ref, buffer, bufferSize);
+ auto result = std::string(buffer);
+ delete[] buffer;
+ return result;
+ }
+
+ bool
+ extractTzdata(CFURLRef homeUrl, CFURLRef archiveUrl, std::string destPath)
+ {
+ std::string TAR_TMP_PATH = "/tmp.tar";
+
+ CFStringRef homeStringRef = CFURLCopyPath(homeUrl);
+ auto homePath = convertCFStringRefPathToCStringPath(homeStringRef);
+ CFRelease(homeStringRef);
+
+ CFStringRef archiveStringRef = CFURLCopyPath(archiveUrl);
+ auto archivePath = convertCFStringRefPathToCStringPath(archiveStringRef);
+ CFRelease(archiveStringRef);
+
+ // create Library path
+ auto libraryPath = homePath + INTERNAL_DIR;
+
+ // create tzdata path
+ auto tzdataPath = libraryPath + "/" + TZDATA_DIR;
+
+ // -- replace %20 with " "
+ const std::string search = "%20";
+ const std::string replacement = " ";
+ size_t pos = 0;
+
+ while ((pos = archivePath.find(search, pos)) != std::string::npos) {
+ archivePath.replace(pos, search.length(), replacement);
+ pos += replacement.length();
+ }
+
+ gzFile tarFile = gzopen(archivePath.c_str(), "rb");
+
+ // create tar unpacking path
+ auto tarPath = libraryPath + TAR_TMP_PATH;
+
+ // create tzdata directory
+ mkdir(destPath.c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);
+
+ // ======= extract tar ========
+
+ std::ofstream os(tarPath.c_str(), std::ofstream::out | std::ofstream::app);
+ unsigned int bufferLength = 1024 * 256; // 256Kb
+ unsigned char *buffer = (unsigned char *)malloc(bufferLength);
+ bool success = true;
+
+ while (true)
+ {
+ int readBytes = gzread(tarFile, buffer, bufferLength);
+
+ if (readBytes > 0)
+ {
+ os.write((char *) &buffer[0], readBytes);
+ }
+ else
+ if (readBytes == 0)
+ {
+ break;
+ }
+ else
+ if (readBytes == -1)
+ {
+ printf("decompression failed\n");
+ success = false;
+ break;
+ }
+ else
+ {
+ printf("unexpected zlib state\n");
+ success = false;
+ break;
+ }
+ }
+
+ os.close();
+ free(buffer);
+ gzclose(tarFile);
+
+ if (!success)
+ {
+ remove(tarPath.c_str());
+ return false;
+ }
+
+ // ======== extract files =========
+
+ uint64_t location = 0; // Position in the file
+
+ // get file size
+ struct stat stat_buf;
+ int res = stat(tarPath.c_str(), &stat_buf);
+ if (res != 0)
+ {
+ printf("error file size\n");
+ remove(tarPath.c_str());
+ return false;
+ }
+ int64_t tarSize = stat_buf.st_size;
+
+ // create read stream
+ std::ifstream is(tarPath.c_str(), std::ifstream::in | std::ifstream::binary);
+
+ // process files
+ while (location < tarSize)
+ {
+ TarInfo info = getTarObjectInfo(is);
+
+ if (!info.success || info.realContentSize == 0)
+ {
+ break; // something wrong or all files are read
+ }
+
+ switch (info.objType)
+ {
+ case '0': // file
+ case '\0': //
+ {
+ std::string obj = getTarObject(is, info.blocksContentSize);
+#if TAR_DEBUG
+ size += info.realContentSize;
+ printf("#%i %s file size %lld written total %ld from %lld\n", ++count,
+ info.objName.c_str(), info.realContentSize, size, tarSize);
+#endif
+ writeFile(tzdataPath, info.objName, obj, info.realContentSize);
+ location += info.blocksContentSize;
+
+ break;
+ }
+ }
+ }
+
+ remove(tarPath.c_str());
+
+ return true;
+ }
+
+ TarInfo
+ getTarObjectInfo(std::ifstream &readStream)
+ {
+ int64_t length = TAR_BLOCK_SIZE;
+ char buffer[length];
+ char type;
+ char name[TAR_NAME_SIZE + 1];
+ char sizeBuf[TAR_SIZE_SIZE + 1];
+
+ readStream.read(buffer, length);
+
+ memcpy(&type, &buffer[TAR_TYPE_POSITION], 1);
+
+ memset(&name, '\0', TAR_NAME_SIZE + 1);
+ memcpy(&name, &buffer[TAR_NAME_POSITION], TAR_NAME_SIZE);
+
+ memset(&sizeBuf, '\0', TAR_SIZE_SIZE + 1);
+ memcpy(&sizeBuf, &buffer[TAR_SIZE_POSITION], TAR_SIZE_SIZE);
+ size_t realSize = strtol(sizeBuf, NULL, 8);
+ size_t blocksSize = realSize + (TAR_BLOCK_SIZE - (realSize % TAR_BLOCK_SIZE));
+
+ return {type, std::string(name), realSize, blocksSize, true};
+ }
+
+ std::string
+ getTarObject(std::ifstream &readStream, int64_t size)
+ {
+ char buffer[size];
+ readStream.read(buffer, size);
+ return std::string(buffer);
+ }
+
+ bool
+ writeFile(const std::string &tzdataPath, const std::string &fileName, const std::string &data,
+ size_t realContentSize)
+ {
+ std::ofstream os(tzdataPath + "/" + fileName, std::ofstream::out | std::ofstream::binary);
+
+ if (!os) {
+ return false;
+ }
+
+ // trim empty space
+ char trimmedData[realContentSize + 1];
+ memset(&trimmedData, '\0', realContentSize);
+ memcpy(&trimmedData, data.c_str(), realContentSize);
+
+ // write
+ os.write(trimmedData, realContentSize);
+ os.close();
+
+ return true;
+ }
+
+ } // namespace iOSUtils
+} // namespace date
+} // namespace arrow_vendored
+
+#endif // TARGET_OS_IPHONE
diff --git a/contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/tz.cpp b/contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/tz.cpp
index e80e392bd7..b1ae8a70fe 100644
--- a/contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/tz.cpp
+++ b/contrib/libs/apache/arrow/cpp/src/arrow/vendored/datetime/tz.cpp
@@ -89,7 +89,7 @@
#include "tz_private.h"
#ifdef __APPLE__
-# include "ios.h"
+# include "ios.h"
#else
# define TARGET_OS_IPHONE 0
# define TARGET_OS_SIMULATOR 0
@@ -1309,7 +1309,7 @@ void
detail::Rule::split(std::vector<Rule>& rules, std::size_t i, std::size_t k, std::size_t& e)
{
using namespace date;
- using difference_type = std::iterator_traits<std::vector<Rule>::iterator>::difference_type;
+ using difference_type = std::iterator_traits<std::vector<Rule>::iterator>::difference_type;
// rules[i].starting_year_ <= rules[k].starting_year_ &&
// rules[i].ending_year_ >= rules[k].starting_year_ &&
// (rules[i].starting_year_ != rules[k].starting_year_ ||
@@ -1377,7 +1377,7 @@ detail::Rule::split(std::vector<Rule>& rules, std::size_t i, std::size_t k, std:
void
detail::Rule::split_overlaps(std::vector<Rule>& rules, std::size_t i, std::size_t& e)
{
- using difference_type = std::iterator_traits<std::vector<Rule>::iterator>::difference_type;
+ using difference_type = std::iterator_traits<std::vector<Rule>::iterator>::difference_type;
auto j = i;
for (; i + 1 < e; ++i)
{
@@ -1401,7 +1401,7 @@ detail::Rule::split_overlaps(std::vector<Rule>& rules, std::size_t i, std::size_
void
detail::Rule::split_overlaps(std::vector<Rule>& rules)
{
- using difference_type = std::iterator_traits<std::vector<Rule>::iterator>::difference_type;
+ using difference_type = std::iterator_traits<std::vector<Rule>::iterator>::difference_type;
for (std::size_t i = 0; i < rules.size();)
{
auto e = static_cast<std::size_t>(std::upper_bound(
diff --git a/contrib/libs/apache/arrow/src/arrow/util/config.h b/contrib/libs/apache/arrow/src/arrow/util/config.h
index 2d46017e47..49dfcf79a3 100644
--- a/contrib/libs/apache/arrow/src/arrow/util/config.h
+++ b/contrib/libs/apache/arrow/src/arrow/util/config.h
@@ -35,7 +35,7 @@
#define ARROW_PACKAGE_KIND ""
#define ARROW_COMPUTE
-#define ARROW_CSV
+#define ARROW_CSV
/* #undef ARROW_DATASET */
/* #undef ARROW_FILESYSTEM */
/* #undef ARROW_FLIGHT */
diff --git a/contrib/libs/apache/arrow/ya.make b/contrib/libs/apache/arrow/ya.make
index 27b9235d9e..e85b49d3f6 100644
--- a/contrib/libs/apache/arrow/ya.make
+++ b/contrib/libs/apache/arrow/ya.make
@@ -1,4 +1,4 @@
-# Generated by devtools/yamaker from nixpkgs 3322db8e36d0b32700737d8de7315bd9e9c2b21a.
+# Generated by devtools/yamaker from nixpkgs 3322db8e36d0b32700737d8de7315bd9e9c2b21a.
LIBRARY()
@@ -35,7 +35,7 @@ PEERDIR(
contrib/libs/lz4
contrib/libs/re2
contrib/libs/snappy
- contrib/libs/utf8proc
+ contrib/libs/utf8proc
contrib/libs/xxhash
contrib/libs/zlib
contrib/libs/zstd
@@ -53,9 +53,9 @@ ADDINCL(
contrib/libs/flatbuffers/include
contrib/libs/lz4
contrib/libs/re2
- contrib/libs/utf8proc
+ contrib/libs/utf8proc
contrib/libs/zstd/include
- contrib/restricted/boost
+ contrib/restricted/boost
)
NO_COMPILER_WARNINGS()
@@ -63,14 +63,14 @@ NO_COMPILER_WARNINGS()
NO_UTIL()
CFLAGS(
- GLOBAL -DARROW_STATIC
+ GLOBAL -DARROW_STATIC
-DARROW_EXPORTING
-DARROW_WITH_BROTLI
-DARROW_WITH_LZ4
-DARROW_WITH_RE2
-DARROW_WITH_SNAPPY
-DARROW_WITH_TIMING_TESTS
- -DARROW_WITH_UTF8PROC
+ -DARROW_WITH_UTF8PROC
-DARROW_WITH_ZLIB
-DARROW_WITH_ZSTD
-DHAVE_INTTYPES_H
@@ -80,9 +80,9 @@ CFLAGS(
)
IF (NOT OS_WINDOWS)
- CFLAGS(
- -DHAVE_NETINET_IN_H
- )
+ CFLAGS(
+ -DHAVE_NETINET_IN_H
+ )
ENDIF()
SRCS(
@@ -159,14 +159,14 @@ SRCS(
cpp/src/arrow/compute/kernels/vector_sort.cc
cpp/src/arrow/compute/registry.cc
cpp/src/arrow/config.cc
- cpp/src/arrow/csv/chunker.cc
- cpp/src/arrow/csv/column_builder.cc
- cpp/src/arrow/csv/column_decoder.cc
- cpp/src/arrow/csv/converter.cc
- cpp/src/arrow/csv/options.cc
- cpp/src/arrow/csv/parser.cc
- cpp/src/arrow/csv/reader.cc
- cpp/src/arrow/csv/writer.cc
+ cpp/src/arrow/csv/chunker.cc
+ cpp/src/arrow/csv/column_builder.cc
+ cpp/src/arrow/csv/column_decoder.cc
+ cpp/src/arrow/csv/converter.cc
+ cpp/src/arrow/csv/options.cc
+ cpp/src/arrow/csv/parser.cc
+ cpp/src/arrow/csv/reader.cc
+ cpp/src/arrow/csv/writer.cc
cpp/src/arrow/datum.cc
cpp/src/arrow/device.cc
cpp/src/arrow/extension_type.cc