diff options
author | Daniil Cherednik <dan.cherednik@gmail.com> | 2022-11-24 13:14:34 +0300 |
---|---|---|
committer | Daniil Cherednik <dan.cherednik@gmail.com> | 2022-11-24 14:46:00 +0300 |
commit | 87f7fceed34bcafb8aaff351dd493a35c916986f (patch) | |
tree | 26809ec8f550aba8eb019e59adc3d48e51913eb2 /contrib/go/_std_1.18/src/strings/strings.go | |
parent | 11bc4015b8010ae201bf3eb33db7dba425aca35e (diff) | |
download | ydb-87f7fceed34bcafb8aaff351dd493a35c916986f.tar.gz |
Ydb stable 22-4-4322.4.43
x-stable-origin-commit: 8d49d46cc834835bf3e50870516acd7376a63bcf
Diffstat (limited to 'contrib/go/_std_1.18/src/strings/strings.go')
-rw-r--r-- | contrib/go/_std_1.18/src/strings/strings.go | 1186 |
1 files changed, 1186 insertions, 0 deletions
diff --git a/contrib/go/_std_1.18/src/strings/strings.go b/contrib/go/_std_1.18/src/strings/strings.go new file mode 100644 index 0000000000..5793d9e26f --- /dev/null +++ b/contrib/go/_std_1.18/src/strings/strings.go @@ -0,0 +1,1186 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package strings implements simple functions to manipulate UTF-8 encoded strings. +// +// For information about UTF-8 strings in Go, see https://blog.golang.org/strings. +package strings + +import ( + "internal/bytealg" + "unicode" + "unicode/utf8" +) + +// explode splits s into a slice of UTF-8 strings, +// one string per Unicode character up to a maximum of n (n < 0 means no limit). +// Invalid UTF-8 sequences become correct encodings of U+FFFD. +func explode(s string, n int) []string { + l := utf8.RuneCountInString(s) + if n < 0 || n > l { + n = l + } + a := make([]string, n) + for i := 0; i < n-1; i++ { + ch, size := utf8.DecodeRuneInString(s) + a[i] = s[:size] + s = s[size:] + if ch == utf8.RuneError { + a[i] = string(utf8.RuneError) + } + } + if n > 0 { + a[n-1] = s + } + return a +} + +// Count counts the number of non-overlapping instances of substr in s. +// If substr is an empty string, Count returns 1 + the number of Unicode code points in s. +func Count(s, substr string) int { + // special case + if len(substr) == 0 { + return utf8.RuneCountInString(s) + 1 + } + if len(substr) == 1 { + return bytealg.CountString(s, substr[0]) + } + n := 0 + for { + i := Index(s, substr) + if i == -1 { + return n + } + n++ + s = s[i+len(substr):] + } +} + +// Contains reports whether substr is within s. +func Contains(s, substr string) bool { + return Index(s, substr) >= 0 +} + +// ContainsAny reports whether any Unicode code points in chars are within s. +func ContainsAny(s, chars string) bool { + return IndexAny(s, chars) >= 0 +} + +// ContainsRune reports whether the Unicode code point r is within s. +func ContainsRune(s string, r rune) bool { + return IndexRune(s, r) >= 0 +} + +// LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s. +func LastIndex(s, substr string) int { + n := len(substr) + switch { + case n == 0: + return len(s) + case n == 1: + return LastIndexByte(s, substr[0]) + case n == len(s): + if substr == s { + return 0 + } + return -1 + case n > len(s): + return -1 + } + // Rabin-Karp search from the end of the string + hashss, pow := bytealg.HashStrRev(substr) + last := len(s) - n + var h uint32 + for i := len(s) - 1; i >= last; i-- { + h = h*bytealg.PrimeRK + uint32(s[i]) + } + if h == hashss && s[last:] == substr { + return last + } + for i := last - 1; i >= 0; i-- { + h *= bytealg.PrimeRK + h += uint32(s[i]) + h -= pow * uint32(s[i+n]) + if h == hashss && s[i:i+n] == substr { + return i + } + } + return -1 +} + +// IndexByte returns the index of the first instance of c in s, or -1 if c is not present in s. +func IndexByte(s string, c byte) int { + return bytealg.IndexByteString(s, c) +} + +// IndexRune returns the index of the first instance of the Unicode code point +// r, or -1 if rune is not present in s. +// If r is utf8.RuneError, it returns the first instance of any +// invalid UTF-8 byte sequence. +func IndexRune(s string, r rune) int { + switch { + case 0 <= r && r < utf8.RuneSelf: + return IndexByte(s, byte(r)) + case r == utf8.RuneError: + for i, r := range s { + if r == utf8.RuneError { + return i + } + } + return -1 + case !utf8.ValidRune(r): + return -1 + default: + return Index(s, string(r)) + } +} + +// IndexAny returns the index of the first instance of any Unicode code point +// from chars in s, or -1 if no Unicode code point from chars is present in s. +func IndexAny(s, chars string) int { + if chars == "" { + // Avoid scanning all of s. + return -1 + } + if len(chars) == 1 { + // Avoid scanning all of s. + r := rune(chars[0]) + if r >= utf8.RuneSelf { + r = utf8.RuneError + } + return IndexRune(s, r) + } + if len(s) > 8 { + if as, isASCII := makeASCIISet(chars); isASCII { + for i := 0; i < len(s); i++ { + if as.contains(s[i]) { + return i + } + } + return -1 + } + } + for i, c := range s { + if IndexRune(chars, c) >= 0 { + return i + } + } + return -1 +} + +// LastIndexAny returns the index of the last instance of any Unicode code +// point from chars in s, or -1 if no Unicode code point from chars is +// present in s. +func LastIndexAny(s, chars string) int { + if chars == "" { + // Avoid scanning all of s. + return -1 + } + if len(s) == 1 { + rc := rune(s[0]) + if rc >= utf8.RuneSelf { + rc = utf8.RuneError + } + if IndexRune(chars, rc) >= 0 { + return 0 + } + return -1 + } + if len(s) > 8 { + if as, isASCII := makeASCIISet(chars); isASCII { + for i := len(s) - 1; i >= 0; i-- { + if as.contains(s[i]) { + return i + } + } + return -1 + } + } + if len(chars) == 1 { + rc := rune(chars[0]) + if rc >= utf8.RuneSelf { + rc = utf8.RuneError + } + for i := len(s); i > 0; { + r, size := utf8.DecodeLastRuneInString(s[:i]) + i -= size + if rc == r { + return i + } + } + return -1 + } + for i := len(s); i > 0; { + r, size := utf8.DecodeLastRuneInString(s[:i]) + i -= size + if IndexRune(chars, r) >= 0 { + return i + } + } + return -1 +} + +// LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s. +func LastIndexByte(s string, c byte) int { + for i := len(s) - 1; i >= 0; i-- { + if s[i] == c { + return i + } + } + return -1 +} + +// Generic split: splits after each instance of sep, +// including sepSave bytes of sep in the subarrays. +func genSplit(s, sep string, sepSave, n int) []string { + if n == 0 { + return nil + } + if sep == "" { + return explode(s, n) + } + if n < 0 { + n = Count(s, sep) + 1 + } + + a := make([]string, n) + n-- + i := 0 + for i < n { + m := Index(s, sep) + if m < 0 { + break + } + a[i] = s[:m+sepSave] + s = s[m+len(sep):] + i++ + } + a[i] = s + return a[:i+1] +} + +// SplitN slices s into substrings separated by sep and returns a slice of +// the substrings between those separators. +// +// The count determines the number of substrings to return: +// n > 0: at most n substrings; the last substring will be the unsplit remainder. +// n == 0: the result is nil (zero substrings) +// n < 0: all substrings +// +// Edge cases for s and sep (for example, empty strings) are handled +// as described in the documentation for Split. +// +// To split around the first instance of a separator, see Cut. +func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) } + +// SplitAfterN slices s into substrings after each instance of sep and +// returns a slice of those substrings. +// +// The count determines the number of substrings to return: +// n > 0: at most n substrings; the last substring will be the unsplit remainder. +// n == 0: the result is nil (zero substrings) +// n < 0: all substrings +// +// Edge cases for s and sep (for example, empty strings) are handled +// as described in the documentation for SplitAfter. +func SplitAfterN(s, sep string, n int) []string { + return genSplit(s, sep, len(sep), n) +} + +// Split slices s into all substrings separated by sep and returns a slice of +// the substrings between those separators. +// +// If s does not contain sep and sep is not empty, Split returns a +// slice of length 1 whose only element is s. +// +// If sep is empty, Split splits after each UTF-8 sequence. If both s +// and sep are empty, Split returns an empty slice. +// +// It is equivalent to SplitN with a count of -1. +// +// To split around the first instance of a separator, see Cut. +func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) } + +// SplitAfter slices s into all substrings after each instance of sep and +// returns a slice of those substrings. +// +// If s does not contain sep and sep is not empty, SplitAfter returns +// a slice of length 1 whose only element is s. +// +// If sep is empty, SplitAfter splits after each UTF-8 sequence. If +// both s and sep are empty, SplitAfter returns an empty slice. +// +// It is equivalent to SplitAfterN with a count of -1. +func SplitAfter(s, sep string) []string { + return genSplit(s, sep, len(sep), -1) +} + +var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1} + +// Fields splits the string s around each instance of one or more consecutive white space +// characters, as defined by unicode.IsSpace, returning a slice of substrings of s or an +// empty slice if s contains only white space. +func Fields(s string) []string { + // First count the fields. + // This is an exact count if s is ASCII, otherwise it is an approximation. + n := 0 + wasSpace := 1 + // setBits is used to track which bits are set in the bytes of s. + setBits := uint8(0) + for i := 0; i < len(s); i++ { + r := s[i] + setBits |= r + isSpace := int(asciiSpace[r]) + n += wasSpace & ^isSpace + wasSpace = isSpace + } + + if setBits >= utf8.RuneSelf { + // Some runes in the input string are not ASCII. + return FieldsFunc(s, unicode.IsSpace) + } + // ASCII fast path + a := make([]string, n) + na := 0 + fieldStart := 0 + i := 0 + // Skip spaces in the front of the input. + for i < len(s) && asciiSpace[s[i]] != 0 { + i++ + } + fieldStart = i + for i < len(s) { + if asciiSpace[s[i]] == 0 { + i++ + continue + } + a[na] = s[fieldStart:i] + na++ + i++ + // Skip spaces in between fields. + for i < len(s) && asciiSpace[s[i]] != 0 { + i++ + } + fieldStart = i + } + if fieldStart < len(s) { // Last field might end at EOF. + a[na] = s[fieldStart:] + } + return a +} + +// FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c) +// and returns an array of slices of s. If all code points in s satisfy f(c) or the +// string is empty, an empty slice is returned. +// +// FieldsFunc makes no guarantees about the order in which it calls f(c) +// and assumes that f always returns the same value for a given c. +func FieldsFunc(s string, f func(rune) bool) []string { + // A span is used to record a slice of s of the form s[start:end]. + // The start index is inclusive and the end index is exclusive. + type span struct { + start int + end int + } + spans := make([]span, 0, 32) + + // Find the field start and end indices. + // Doing this in a separate pass (rather than slicing the string s + // and collecting the result substrings right away) is significantly + // more efficient, possibly due to cache effects. + start := -1 // valid span start if >= 0 + for end, rune := range s { + if f(rune) { + if start >= 0 { + spans = append(spans, span{start, end}) + // Set start to a negative value. + // Note: using -1 here consistently and reproducibly + // slows down this code by a several percent on amd64. + start = ^start + } + } else { + if start < 0 { + start = end + } + } + } + + // Last field might end at EOF. + if start >= 0 { + spans = append(spans, span{start, len(s)}) + } + + // Create strings from recorded field indices. + a := make([]string, len(spans)) + for i, span := range spans { + a[i] = s[span.start:span.end] + } + + return a +} + +// Join concatenates the elements of its first argument to create a single string. The separator +// string sep is placed between elements in the resulting string. +func Join(elems []string, sep string) string { + switch len(elems) { + case 0: + return "" + case 1: + return elems[0] + } + n := len(sep) * (len(elems) - 1) + for i := 0; i < len(elems); i++ { + n += len(elems[i]) + } + + var b Builder + b.Grow(n) + b.WriteString(elems[0]) + for _, s := range elems[1:] { + b.WriteString(sep) + b.WriteString(s) + } + return b.String() +} + +// HasPrefix tests whether the string s begins with prefix. +func HasPrefix(s, prefix string) bool { + return len(s) >= len(prefix) && s[0:len(prefix)] == prefix +} + +// HasSuffix tests whether the string s ends with suffix. +func HasSuffix(s, suffix string) bool { + return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix +} + +// Map returns a copy of the string s with all its characters modified +// according to the mapping function. If mapping returns a negative value, the character is +// dropped from the string with no replacement. +func Map(mapping func(rune) rune, s string) string { + // In the worst case, the string can grow when mapped, making + // things unpleasant. But it's so rare we barge in assuming it's + // fine. It could also shrink but that falls out naturally. + + // The output buffer b is initialized on demand, the first + // time a character differs. + var b Builder + + for i, c := range s { + r := mapping(c) + if r == c && c != utf8.RuneError { + continue + } + + var width int + if c == utf8.RuneError { + c, width = utf8.DecodeRuneInString(s[i:]) + if width != 1 && r == c { + continue + } + } else { + width = utf8.RuneLen(c) + } + + b.Grow(len(s) + utf8.UTFMax) + b.WriteString(s[:i]) + if r >= 0 { + b.WriteRune(r) + } + + s = s[i+width:] + break + } + + // Fast path for unchanged input + if b.Cap() == 0 { // didn't call b.Grow above + return s + } + + for _, c := range s { + r := mapping(c) + + if r >= 0 { + // common case + // Due to inlining, it is more performant to determine if WriteByte should be + // invoked rather than always call WriteRune + if r < utf8.RuneSelf { + b.WriteByte(byte(r)) + } else { + // r is not a ASCII rune. + b.WriteRune(r) + } + } + } + + return b.String() +} + +// Repeat returns a new string consisting of count copies of the string s. +// +// It panics if count is negative or if +// the result of (len(s) * count) overflows. +func Repeat(s string, count int) string { + if count == 0 { + return "" + } + + // Since we cannot return an error on overflow, + // we should panic if the repeat will generate + // an overflow. + // See Issue golang.org/issue/16237 + if count < 0 { + panic("strings: negative Repeat count") + } else if len(s)*count/count != len(s) { + panic("strings: Repeat count causes overflow") + } + + n := len(s) * count + var b Builder + b.Grow(n) + b.WriteString(s) + for b.Len() < n { + if b.Len() <= n/2 { + b.WriteString(b.String()) + } else { + b.WriteString(b.String()[:n-b.Len()]) + break + } + } + return b.String() +} + +// ToUpper returns s with all Unicode letters mapped to their upper case. +func ToUpper(s string) string { + isASCII, hasLower := true, false + for i := 0; i < len(s); i++ { + c := s[i] + if c >= utf8.RuneSelf { + isASCII = false + break + } + hasLower = hasLower || ('a' <= c && c <= 'z') + } + + if isASCII { // optimize for ASCII-only strings. + if !hasLower { + return s + } + var b Builder + b.Grow(len(s)) + for i := 0; i < len(s); i++ { + c := s[i] + if 'a' <= c && c <= 'z' { + c -= 'a' - 'A' + } + b.WriteByte(c) + } + return b.String() + } + return Map(unicode.ToUpper, s) +} + +// ToLower returns s with all Unicode letters mapped to their lower case. +func ToLower(s string) string { + isASCII, hasUpper := true, false + for i := 0; i < len(s); i++ { + c := s[i] + if c >= utf8.RuneSelf { + isASCII = false + break + } + hasUpper = hasUpper || ('A' <= c && c <= 'Z') + } + + if isASCII { // optimize for ASCII-only strings. + if !hasUpper { + return s + } + var b Builder + b.Grow(len(s)) + for i := 0; i < len(s); i++ { + c := s[i] + if 'A' <= c && c <= 'Z' { + c += 'a' - 'A' + } + b.WriteByte(c) + } + return b.String() + } + return Map(unicode.ToLower, s) +} + +// ToTitle returns a copy of the string s with all Unicode letters mapped to +// their Unicode title case. +func ToTitle(s string) string { return Map(unicode.ToTitle, s) } + +// ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their +// upper case using the case mapping specified by c. +func ToUpperSpecial(c unicode.SpecialCase, s string) string { + return Map(c.ToUpper, s) +} + +// ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their +// lower case using the case mapping specified by c. +func ToLowerSpecial(c unicode.SpecialCase, s string) string { + return Map(c.ToLower, s) +} + +// ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their +// Unicode title case, giving priority to the special casing rules. +func ToTitleSpecial(c unicode.SpecialCase, s string) string { + return Map(c.ToTitle, s) +} + +// ToValidUTF8 returns a copy of the string s with each run of invalid UTF-8 byte sequences +// replaced by the replacement string, which may be empty. +func ToValidUTF8(s, replacement string) string { + var b Builder + + for i, c := range s { + if c != utf8.RuneError { + continue + } + + _, wid := utf8.DecodeRuneInString(s[i:]) + if wid == 1 { + b.Grow(len(s) + len(replacement)) + b.WriteString(s[:i]) + s = s[i:] + break + } + } + + // Fast path for unchanged input + if b.Cap() == 0 { // didn't call b.Grow above + return s + } + + invalid := false // previous byte was from an invalid UTF-8 sequence + for i := 0; i < len(s); { + c := s[i] + if c < utf8.RuneSelf { + i++ + invalid = false + b.WriteByte(c) + continue + } + _, wid := utf8.DecodeRuneInString(s[i:]) + if wid == 1 { + i++ + if !invalid { + invalid = true + b.WriteString(replacement) + } + continue + } + invalid = false + b.WriteString(s[i : i+wid]) + i += wid + } + + return b.String() +} + +// isSeparator reports whether the rune could mark a word boundary. +// TODO: update when package unicode captures more of the properties. +func isSeparator(r rune) bool { + // ASCII alphanumerics and underscore are not separators + if r <= 0x7F { + switch { + case '0' <= r && r <= '9': + return false + case 'a' <= r && r <= 'z': + return false + case 'A' <= r && r <= 'Z': + return false + case r == '_': + return false + } + return true + } + // Letters and digits are not separators + if unicode.IsLetter(r) || unicode.IsDigit(r) { + return false + } + // Otherwise, all we can do for now is treat spaces as separators. + return unicode.IsSpace(r) +} + +// Title returns a copy of the string s with all Unicode letters that begin words +// mapped to their Unicode title case. +// +// Deprecated: The rule Title uses for word boundaries does not handle Unicode +// punctuation properly. Use golang.org/x/text/cases instead. +func Title(s string) string { + // Use a closure here to remember state. + // Hackish but effective. Depends on Map scanning in order and calling + // the closure once per rune. + prev := ' ' + return Map( + func(r rune) rune { + if isSeparator(prev) { + prev = r + return unicode.ToTitle(r) + } + prev = r + return r + }, + s) +} + +// TrimLeftFunc returns a slice of the string s with all leading +// Unicode code points c satisfying f(c) removed. +func TrimLeftFunc(s string, f func(rune) bool) string { + i := indexFunc(s, f, false) + if i == -1 { + return "" + } + return s[i:] +} + +// TrimRightFunc returns a slice of the string s with all trailing +// Unicode code points c satisfying f(c) removed. +func TrimRightFunc(s string, f func(rune) bool) string { + i := lastIndexFunc(s, f, false) + if i >= 0 && s[i] >= utf8.RuneSelf { + _, wid := utf8.DecodeRuneInString(s[i:]) + i += wid + } else { + i++ + } + return s[0:i] +} + +// TrimFunc returns a slice of the string s with all leading +// and trailing Unicode code points c satisfying f(c) removed. +func TrimFunc(s string, f func(rune) bool) string { + return TrimRightFunc(TrimLeftFunc(s, f), f) +} + +// IndexFunc returns the index into s of the first Unicode +// code point satisfying f(c), or -1 if none do. +func IndexFunc(s string, f func(rune) bool) int { + return indexFunc(s, f, true) +} + +// LastIndexFunc returns the index into s of the last +// Unicode code point satisfying f(c), or -1 if none do. +func LastIndexFunc(s string, f func(rune) bool) int { + return lastIndexFunc(s, f, true) +} + +// indexFunc is the same as IndexFunc except that if +// truth==false, the sense of the predicate function is +// inverted. +func indexFunc(s string, f func(rune) bool, truth bool) int { + for i, r := range s { + if f(r) == truth { + return i + } + } + return -1 +} + +// lastIndexFunc is the same as LastIndexFunc except that if +// truth==false, the sense of the predicate function is +// inverted. +func lastIndexFunc(s string, f func(rune) bool, truth bool) int { + for i := len(s); i > 0; { + r, size := utf8.DecodeLastRuneInString(s[0:i]) + i -= size + if f(r) == truth { + return i + } + } + return -1 +} + +// asciiSet is a 32-byte value, where each bit represents the presence of a +// given ASCII character in the set. The 128-bits of the lower 16 bytes, +// starting with the least-significant bit of the lowest word to the +// most-significant bit of the highest word, map to the full range of all +// 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed, +// ensuring that any non-ASCII character will be reported as not in the set. +// This allocates a total of 32 bytes even though the upper half +// is unused to avoid bounds checks in asciiSet.contains. +type asciiSet [8]uint32 + +// makeASCIISet creates a set of ASCII characters and reports whether all +// characters in chars are ASCII. +func makeASCIISet(chars string) (as asciiSet, ok bool) { + for i := 0; i < len(chars); i++ { + c := chars[i] + if c >= utf8.RuneSelf { + return as, false + } + as[c/32] |= 1 << (c % 32) + } + return as, true +} + +// contains reports whether c is inside the set. +func (as *asciiSet) contains(c byte) bool { + return (as[c/32] & (1 << (c % 32))) != 0 +} + +// Trim returns a slice of the string s with all leading and +// trailing Unicode code points contained in cutset removed. +func Trim(s, cutset string) string { + if s == "" || cutset == "" { + return s + } + if len(cutset) == 1 && cutset[0] < utf8.RuneSelf { + return trimLeftByte(trimRightByte(s, cutset[0]), cutset[0]) + } + if as, ok := makeASCIISet(cutset); ok { + return trimLeftASCII(trimRightASCII(s, &as), &as) + } + return trimLeftUnicode(trimRightUnicode(s, cutset), cutset) +} + +// TrimLeft returns a slice of the string s with all leading +// Unicode code points contained in cutset removed. +// +// To remove a prefix, use TrimPrefix instead. +func TrimLeft(s, cutset string) string { + if s == "" || cutset == "" { + return s + } + if len(cutset) == 1 && cutset[0] < utf8.RuneSelf { + return trimLeftByte(s, cutset[0]) + } + if as, ok := makeASCIISet(cutset); ok { + return trimLeftASCII(s, &as) + } + return trimLeftUnicode(s, cutset) +} + +func trimLeftByte(s string, c byte) string { + for len(s) > 0 && s[0] == c { + s = s[1:] + } + return s +} + +func trimLeftASCII(s string, as *asciiSet) string { + for len(s) > 0 { + if !as.contains(s[0]) { + break + } + s = s[1:] + } + return s +} + +func trimLeftUnicode(s, cutset string) string { + for len(s) > 0 { + r, n := rune(s[0]), 1 + if r >= utf8.RuneSelf { + r, n = utf8.DecodeRuneInString(s) + } + if !ContainsRune(cutset, r) { + break + } + s = s[n:] + } + return s +} + +// TrimRight returns a slice of the string s, with all trailing +// Unicode code points contained in cutset removed. +// +// To remove a suffix, use TrimSuffix instead. +func TrimRight(s, cutset string) string { + if s == "" || cutset == "" { + return s + } + if len(cutset) == 1 && cutset[0] < utf8.RuneSelf { + return trimRightByte(s, cutset[0]) + } + if as, ok := makeASCIISet(cutset); ok { + return trimRightASCII(s, &as) + } + return trimRightUnicode(s, cutset) +} + +func trimRightByte(s string, c byte) string { + for len(s) > 0 && s[len(s)-1] == c { + s = s[:len(s)-1] + } + return s +} + +func trimRightASCII(s string, as *asciiSet) string { + for len(s) > 0 { + if !as.contains(s[len(s)-1]) { + break + } + s = s[:len(s)-1] + } + return s +} + +func trimRightUnicode(s, cutset string) string { + for len(s) > 0 { + r, n := rune(s[len(s)-1]), 1 + if r >= utf8.RuneSelf { + r, n = utf8.DecodeLastRuneInString(s) + } + if !ContainsRune(cutset, r) { + break + } + s = s[:len(s)-n] + } + return s +} + +// TrimSpace returns a slice of the string s, with all leading +// and trailing white space removed, as defined by Unicode. +func TrimSpace(s string) string { + // Fast path for ASCII: look for the first ASCII non-space byte + start := 0 + for ; start < len(s); start++ { + c := s[start] + if c >= utf8.RuneSelf { + // If we run into a non-ASCII byte, fall back to the + // slower unicode-aware method on the remaining bytes + return TrimFunc(s[start:], unicode.IsSpace) + } + if asciiSpace[c] == 0 { + break + } + } + + // Now look for the first ASCII non-space byte from the end + stop := len(s) + for ; stop > start; stop-- { + c := s[stop-1] + if c >= utf8.RuneSelf { + return TrimFunc(s[start:stop], unicode.IsSpace) + } + if asciiSpace[c] == 0 { + break + } + } + + // At this point s[start:stop] starts and ends with an ASCII + // non-space bytes, so we're done. Non-ASCII cases have already + // been handled above. + return s[start:stop] +} + +// TrimPrefix returns s without the provided leading prefix string. +// If s doesn't start with prefix, s is returned unchanged. +func TrimPrefix(s, prefix string) string { + if HasPrefix(s, prefix) { + return s[len(prefix):] + } + return s +} + +// TrimSuffix returns s without the provided trailing suffix string. +// If s doesn't end with suffix, s is returned unchanged. +func TrimSuffix(s, suffix string) string { + if HasSuffix(s, suffix) { + return s[:len(s)-len(suffix)] + } + return s +} + +// Replace returns a copy of the string s with the first n +// non-overlapping instances of old replaced by new. +// If old is empty, it matches at the beginning of the string +// and after each UTF-8 sequence, yielding up to k+1 replacements +// for a k-rune string. +// If n < 0, there is no limit on the number of replacements. +func Replace(s, old, new string, n int) string { + if old == new || n == 0 { + return s // avoid allocation + } + + // Compute number of replacements. + if m := Count(s, old); m == 0 { + return s // avoid allocation + } else if n < 0 || m < n { + n = m + } + + // Apply replacements to buffer. + var b Builder + b.Grow(len(s) + n*(len(new)-len(old))) + start := 0 + for i := 0; i < n; i++ { + j := start + if len(old) == 0 { + if i > 0 { + _, wid := utf8.DecodeRuneInString(s[start:]) + j += wid + } + } else { + j += Index(s[start:], old) + } + b.WriteString(s[start:j]) + b.WriteString(new) + start = j + len(old) + } + b.WriteString(s[start:]) + return b.String() +} + +// ReplaceAll returns a copy of the string s with all +// non-overlapping instances of old replaced by new. +// If old is empty, it matches at the beginning of the string +// and after each UTF-8 sequence, yielding up to k+1 replacements +// for a k-rune string. +func ReplaceAll(s, old, new string) string { + return Replace(s, old, new, -1) +} + +// EqualFold reports whether s and t, interpreted as UTF-8 strings, +// are equal under Unicode case-folding, which is a more general +// form of case-insensitivity. +func EqualFold(s, t string) bool { + for s != "" && t != "" { + // Extract first rune from each string. + var sr, tr rune + if s[0] < utf8.RuneSelf { + sr, s = rune(s[0]), s[1:] + } else { + r, size := utf8.DecodeRuneInString(s) + sr, s = r, s[size:] + } + if t[0] < utf8.RuneSelf { + tr, t = rune(t[0]), t[1:] + } else { + r, size := utf8.DecodeRuneInString(t) + tr, t = r, t[size:] + } + + // If they match, keep going; if not, return false. + + // Easy case. + if tr == sr { + continue + } + + // Make sr < tr to simplify what follows. + if tr < sr { + tr, sr = sr, tr + } + // Fast check for ASCII. + if tr < utf8.RuneSelf { + // ASCII only, sr/tr must be upper/lower case + if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' { + continue + } + return false + } + + // General case. SimpleFold(x) returns the next equivalent rune > x + // or wraps around to smaller values. + r := unicode.SimpleFold(sr) + for r != sr && r < tr { + r = unicode.SimpleFold(r) + } + if r == tr { + continue + } + return false + } + + // One string is empty. Are both? + return s == t +} + +// Index returns the index of the first instance of substr in s, or -1 if substr is not present in s. +func Index(s, substr string) int { + n := len(substr) + switch { + case n == 0: + return 0 + case n == 1: + return IndexByte(s, substr[0]) + case n == len(s): + if substr == s { + return 0 + } + return -1 + case n > len(s): + return -1 + case n <= bytealg.MaxLen: + // Use brute force when s and substr both are small + if len(s) <= bytealg.MaxBruteForce { + return bytealg.IndexString(s, substr) + } + c0 := substr[0] + c1 := substr[1] + i := 0 + t := len(s) - n + 1 + fails := 0 + for i < t { + if s[i] != c0 { + // IndexByte is faster than bytealg.IndexString, so use it as long as + // we're not getting lots of false positives. + o := IndexByte(s[i+1:t], c0) + if o < 0 { + return -1 + } + i += o + 1 + } + if s[i+1] == c1 && s[i:i+n] == substr { + return i + } + fails++ + i++ + // Switch to bytealg.IndexString when IndexByte produces too many false positives. + if fails > bytealg.Cutover(i) { + r := bytealg.IndexString(s[i:], substr) + if r >= 0 { + return r + i + } + return -1 + } + } + return -1 + } + c0 := substr[0] + c1 := substr[1] + i := 0 + t := len(s) - n + 1 + fails := 0 + for i < t { + if s[i] != c0 { + o := IndexByte(s[i+1:t], c0) + if o < 0 { + return -1 + } + i += o + 1 + } + if s[i+1] == c1 && s[i:i+n] == substr { + return i + } + i++ + fails++ + if fails >= 4+i>>4 && i < t { + // See comment in ../bytes/bytes.go. + j := bytealg.IndexRabinKarp(s[i:], substr) + if j < 0 { + return -1 + } + return i + j + } + } + return -1 +} + +// Cut slices s around the first instance of sep, +// returning the text before and after sep. +// The found result reports whether sep appears in s. +// If sep does not appear in s, cut returns s, "", false. +func Cut(s, sep string) (before, after string, found bool) { + if i := Index(s, sep); i >= 0 { + return s[:i], s[i+len(sep):], true + } + return s, "", false +} |