diff options
author | Daniil Cherednik <dan.cherednik@gmail.com> | 2022-11-24 13:14:34 +0300 |
---|---|---|
committer | Daniil Cherednik <dan.cherednik@gmail.com> | 2022-11-24 14:46:00 +0300 |
commit | 87f7fceed34bcafb8aaff351dd493a35c916986f (patch) | |
tree | 26809ec8f550aba8eb019e59adc3d48e51913eb2 /contrib/go/_std_1.18/src/reflect/value.go | |
parent | 11bc4015b8010ae201bf3eb33db7dba425aca35e (diff) | |
download | ydb-38c0b87ea9b8ab54a793f4246ecdee802a8227dc.tar.gz |
Ydb stable 22-4-4322.4.43
x-stable-origin-commit: 8d49d46cc834835bf3e50870516acd7376a63bcf
Diffstat (limited to 'contrib/go/_std_1.18/src/reflect/value.go')
-rw-r--r-- | contrib/go/_std_1.18/src/reflect/value.go | 3532 |
1 files changed, 3532 insertions, 0 deletions
diff --git a/contrib/go/_std_1.18/src/reflect/value.go b/contrib/go/_std_1.18/src/reflect/value.go new file mode 100644 index 0000000000..147b402b2a --- /dev/null +++ b/contrib/go/_std_1.18/src/reflect/value.go @@ -0,0 +1,3532 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package reflect + +import ( + "errors" + "internal/abi" + "internal/goarch" + "internal/itoa" + "internal/unsafeheader" + "math" + "runtime" + "unsafe" +) + +// Value is the reflection interface to a Go value. +// +// Not all methods apply to all kinds of values. Restrictions, +// if any, are noted in the documentation for each method. +// Use the Kind method to find out the kind of value before +// calling kind-specific methods. Calling a method +// inappropriate to the kind of type causes a run time panic. +// +// The zero Value represents no value. +// Its IsValid method returns false, its Kind method returns Invalid, +// its String method returns "<invalid Value>", and all other methods panic. +// Most functions and methods never return an invalid value. +// If one does, its documentation states the conditions explicitly. +// +// A Value can be used concurrently by multiple goroutines provided that +// the underlying Go value can be used concurrently for the equivalent +// direct operations. +// +// To compare two Values, compare the results of the Interface method. +// Using == on two Values does not compare the underlying values +// they represent. +type Value struct { + // typ holds the type of the value represented by a Value. + typ *rtype + + // Pointer-valued data or, if flagIndir is set, pointer to data. + // Valid when either flagIndir is set or typ.pointers() is true. + ptr unsafe.Pointer + + // flag holds metadata about the value. + // The lowest bits are flag bits: + // - flagStickyRO: obtained via unexported not embedded field, so read-only + // - flagEmbedRO: obtained via unexported embedded field, so read-only + // - flagIndir: val holds a pointer to the data + // - flagAddr: v.CanAddr is true (implies flagIndir) + // - flagMethod: v is a method value. + // The next five bits give the Kind of the value. + // This repeats typ.Kind() except for method values. + // The remaining 23+ bits give a method number for method values. + // If flag.kind() != Func, code can assume that flagMethod is unset. + // If ifaceIndir(typ), code can assume that flagIndir is set. + flag + + // A method value represents a curried method invocation + // like r.Read for some receiver r. The typ+val+flag bits describe + // the receiver r, but the flag's Kind bits say Func (methods are + // functions), and the top bits of the flag give the method number + // in r's type's method table. +} + +type flag uintptr + +const ( + flagKindWidth = 5 // there are 27 kinds + flagKindMask flag = 1<<flagKindWidth - 1 + flagStickyRO flag = 1 << 5 + flagEmbedRO flag = 1 << 6 + flagIndir flag = 1 << 7 + flagAddr flag = 1 << 8 + flagMethod flag = 1 << 9 + flagMethodShift = 10 + flagRO flag = flagStickyRO | flagEmbedRO +) + +func (f flag) kind() Kind { + return Kind(f & flagKindMask) +} + +func (f flag) ro() flag { + if f&flagRO != 0 { + return flagStickyRO + } + return 0 +} + +// pointer returns the underlying pointer represented by v. +// v.Kind() must be Pointer, Map, Chan, Func, or UnsafePointer +// if v.Kind() == Pointer, the base type must not be go:notinheap. +func (v Value) pointer() unsafe.Pointer { + if v.typ.size != goarch.PtrSize || !v.typ.pointers() { + panic("can't call pointer on a non-pointer Value") + } + if v.flag&flagIndir != 0 { + return *(*unsafe.Pointer)(v.ptr) + } + return v.ptr +} + +// packEface converts v to the empty interface. +func packEface(v Value) any { + t := v.typ + var i any + e := (*emptyInterface)(unsafe.Pointer(&i)) + // First, fill in the data portion of the interface. + switch { + case ifaceIndir(t): + if v.flag&flagIndir == 0 { + panic("bad indir") + } + // Value is indirect, and so is the interface we're making. + ptr := v.ptr + if v.flag&flagAddr != 0 { + // TODO: pass safe boolean from valueInterface so + // we don't need to copy if safe==true? + c := unsafe_New(t) + typedmemmove(t, c, ptr) + ptr = c + } + e.word = ptr + case v.flag&flagIndir != 0: + // Value is indirect, but interface is direct. We need + // to load the data at v.ptr into the interface data word. + e.word = *(*unsafe.Pointer)(v.ptr) + default: + // Value is direct, and so is the interface. + e.word = v.ptr + } + // Now, fill in the type portion. We're very careful here not + // to have any operation between the e.word and e.typ assignments + // that would let the garbage collector observe the partially-built + // interface value. + e.typ = t + return i +} + +// unpackEface converts the empty interface i to a Value. +func unpackEface(i any) Value { + e := (*emptyInterface)(unsafe.Pointer(&i)) + // NOTE: don't read e.word until we know whether it is really a pointer or not. + t := e.typ + if t == nil { + return Value{} + } + f := flag(t.Kind()) + if ifaceIndir(t) { + f |= flagIndir + } + return Value{t, e.word, f} +} + +// A ValueError occurs when a Value method is invoked on +// a Value that does not support it. Such cases are documented +// in the description of each method. +type ValueError struct { + Method string + Kind Kind +} + +func (e *ValueError) Error() string { + if e.Kind == 0 { + return "reflect: call of " + e.Method + " on zero Value" + } + return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value" +} + +// methodName returns the name of the calling method, +// assumed to be two stack frames above. +func methodName() string { + pc, _, _, _ := runtime.Caller(2) + f := runtime.FuncForPC(pc) + if f == nil { + return "unknown method" + } + return f.Name() +} + +// methodNameSkip is like methodName, but skips another stack frame. +// This is a separate function so that reflect.flag.mustBe will be inlined. +func methodNameSkip() string { + pc, _, _, _ := runtime.Caller(3) + f := runtime.FuncForPC(pc) + if f == nil { + return "unknown method" + } + return f.Name() +} + +// emptyInterface is the header for an interface{} value. +type emptyInterface struct { + typ *rtype + word unsafe.Pointer +} + +// nonEmptyInterface is the header for an interface value with methods. +type nonEmptyInterface struct { + // see ../runtime/iface.go:/Itab + itab *struct { + ityp *rtype // static interface type + typ *rtype // dynamic concrete type + hash uint32 // copy of typ.hash + _ [4]byte + fun [100000]unsafe.Pointer // method table + } + word unsafe.Pointer +} + +// mustBe panics if f's kind is not expected. +// Making this a method on flag instead of on Value +// (and embedding flag in Value) means that we can write +// the very clear v.mustBe(Bool) and have it compile into +// v.flag.mustBe(Bool), which will only bother to copy the +// single important word for the receiver. +func (f flag) mustBe(expected Kind) { + // TODO(mvdan): use f.kind() again once mid-stack inlining gets better + if Kind(f&flagKindMask) != expected { + panic(&ValueError{methodName(), f.kind()}) + } +} + +// mustBeExported panics if f records that the value was obtained using +// an unexported field. +func (f flag) mustBeExported() { + if f == 0 || f&flagRO != 0 { + f.mustBeExportedSlow() + } +} + +func (f flag) mustBeExportedSlow() { + if f == 0 { + panic(&ValueError{methodNameSkip(), Invalid}) + } + if f&flagRO != 0 { + panic("reflect: " + methodNameSkip() + " using value obtained using unexported field") + } +} + +// mustBeAssignable panics if f records that the value is not assignable, +// which is to say that either it was obtained using an unexported field +// or it is not addressable. +func (f flag) mustBeAssignable() { + if f&flagRO != 0 || f&flagAddr == 0 { + f.mustBeAssignableSlow() + } +} + +func (f flag) mustBeAssignableSlow() { + if f == 0 { + panic(&ValueError{methodNameSkip(), Invalid}) + } + // Assignable if addressable and not read-only. + if f&flagRO != 0 { + panic("reflect: " + methodNameSkip() + " using value obtained using unexported field") + } + if f&flagAddr == 0 { + panic("reflect: " + methodNameSkip() + " using unaddressable value") + } +} + +// Addr returns a pointer value representing the address of v. +// It panics if CanAddr() returns false. +// Addr is typically used to obtain a pointer to a struct field +// or slice element in order to call a method that requires a +// pointer receiver. +func (v Value) Addr() Value { + if v.flag&flagAddr == 0 { + panic("reflect.Value.Addr of unaddressable value") + } + // Preserve flagRO instead of using v.flag.ro() so that + // v.Addr().Elem() is equivalent to v (#32772) + fl := v.flag & flagRO + return Value{v.typ.ptrTo(), v.ptr, fl | flag(Pointer)} +} + +// Bool returns v's underlying value. +// It panics if v's kind is not Bool. +func (v Value) Bool() bool { + v.mustBe(Bool) + return *(*bool)(v.ptr) +} + +// Bytes returns v's underlying value. +// It panics if v's underlying value is not a slice of bytes. +func (v Value) Bytes() []byte { + v.mustBe(Slice) + if v.typ.Elem().Kind() != Uint8 { + panic("reflect.Value.Bytes of non-byte slice") + } + // Slice is always bigger than a word; assume flagIndir. + return *(*[]byte)(v.ptr) +} + +// runes returns v's underlying value. +// It panics if v's underlying value is not a slice of runes (int32s). +func (v Value) runes() []rune { + v.mustBe(Slice) + if v.typ.Elem().Kind() != Int32 { + panic("reflect.Value.Bytes of non-rune slice") + } + // Slice is always bigger than a word; assume flagIndir. + return *(*[]rune)(v.ptr) +} + +// CanAddr reports whether the value's address can be obtained with Addr. +// Such values are called addressable. A value is addressable if it is +// an element of a slice, an element of an addressable array, +// a field of an addressable struct, or the result of dereferencing a pointer. +// If CanAddr returns false, calling Addr will panic. +func (v Value) CanAddr() bool { + return v.flag&flagAddr != 0 +} + +// CanSet reports whether the value of v can be changed. +// A Value can be changed only if it is addressable and was not +// obtained by the use of unexported struct fields. +// If CanSet returns false, calling Set or any type-specific +// setter (e.g., SetBool, SetInt) will panic. +func (v Value) CanSet() bool { + return v.flag&(flagAddr|flagRO) == flagAddr +} + +// Call calls the function v with the input arguments in. +// For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]). +// Call panics if v's Kind is not Func. +// It returns the output results as Values. +// As in Go, each input argument must be assignable to the +// type of the function's corresponding input parameter. +// If v is a variadic function, Call creates the variadic slice parameter +// itself, copying in the corresponding values. +func (v Value) Call(in []Value) []Value { + v.mustBe(Func) + v.mustBeExported() + return v.call("Call", in) +} + +// CallSlice calls the variadic function v with the input arguments in, +// assigning the slice in[len(in)-1] to v's final variadic argument. +// For example, if len(in) == 3, v.CallSlice(in) represents the Go call v(in[0], in[1], in[2]...). +// CallSlice panics if v's Kind is not Func or if v is not variadic. +// It returns the output results as Values. +// As in Go, each input argument must be assignable to the +// type of the function's corresponding input parameter. +func (v Value) CallSlice(in []Value) []Value { + v.mustBe(Func) + v.mustBeExported() + return v.call("CallSlice", in) +} + +var callGC bool // for testing; see TestCallMethodJump and TestCallArgLive + +const debugReflectCall = false + +func (v Value) call(op string, in []Value) []Value { + // Get function pointer, type. + t := (*funcType)(unsafe.Pointer(v.typ)) + var ( + fn unsafe.Pointer + rcvr Value + rcvrtype *rtype + ) + if v.flag&flagMethod != 0 { + rcvr = v + rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift) + } else if v.flag&flagIndir != 0 { + fn = *(*unsafe.Pointer)(v.ptr) + } else { + fn = v.ptr + } + + if fn == nil { + panic("reflect.Value.Call: call of nil function") + } + + isSlice := op == "CallSlice" + n := t.NumIn() + isVariadic := t.IsVariadic() + if isSlice { + if !isVariadic { + panic("reflect: CallSlice of non-variadic function") + } + if len(in) < n { + panic("reflect: CallSlice with too few input arguments") + } + if len(in) > n { + panic("reflect: CallSlice with too many input arguments") + } + } else { + if isVariadic { + n-- + } + if len(in) < n { + panic("reflect: Call with too few input arguments") + } + if !isVariadic && len(in) > n { + panic("reflect: Call with too many input arguments") + } + } + for _, x := range in { + if x.Kind() == Invalid { + panic("reflect: " + op + " using zero Value argument") + } + } + for i := 0; i < n; i++ { + if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) { + panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String()) + } + } + if !isSlice && isVariadic { + // prepare slice for remaining values + m := len(in) - n + slice := MakeSlice(t.In(n), m, m) + elem := t.In(n).Elem() + for i := 0; i < m; i++ { + x := in[n+i] + if xt := x.Type(); !xt.AssignableTo(elem) { + panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op) + } + slice.Index(i).Set(x) + } + origIn := in + in = make([]Value, n+1) + copy(in[:n], origIn) + in[n] = slice + } + + nin := len(in) + if nin != t.NumIn() { + panic("reflect.Value.Call: wrong argument count") + } + nout := t.NumOut() + + // Register argument space. + var regArgs abi.RegArgs + + // Compute frame type. + frametype, framePool, abi := funcLayout(t, rcvrtype) + + // Allocate a chunk of memory for frame if needed. + var stackArgs unsafe.Pointer + if frametype.size != 0 { + if nout == 0 { + stackArgs = framePool.Get().(unsafe.Pointer) + } else { + // Can't use pool if the function has return values. + // We will leak pointer to args in ret, so its lifetime is not scoped. + stackArgs = unsafe_New(frametype) + } + } + frameSize := frametype.size + + if debugReflectCall { + println("reflect.call", t.String()) + abi.dump() + } + + // Copy inputs into args. + + // Handle receiver. + inStart := 0 + if rcvrtype != nil { + // Guaranteed to only be one word in size, + // so it will only take up exactly 1 abiStep (either + // in a register or on the stack). + switch st := abi.call.steps[0]; st.kind { + case abiStepStack: + storeRcvr(rcvr, stackArgs) + case abiStepIntReg, abiStepPointer: + // Even pointers can go into the uintptr slot because + // they'll be kept alive by the Values referenced by + // this frame. Reflection forces these to be heap-allocated, + // so we don't need to worry about stack copying. + storeRcvr(rcvr, unsafe.Pointer(®Args.Ints[st.ireg])) + case abiStepFloatReg: + storeRcvr(rcvr, unsafe.Pointer(®Args.Floats[st.freg])) + default: + panic("unknown ABI parameter kind") + } + inStart = 1 + } + + // Handle arguments. + for i, v := range in { + v.mustBeExported() + targ := t.In(i).(*rtype) + // TODO(mknyszek): Figure out if it's possible to get some + // scratch space for this assignment check. Previously, it + // was possible to use space in the argument frame. + v = v.assignTo("reflect.Value.Call", targ, nil) + stepsLoop: + for _, st := range abi.call.stepsForValue(i + inStart) { + switch st.kind { + case abiStepStack: + // Copy values to the "stack." + addr := add(stackArgs, st.stkOff, "precomputed stack arg offset") + if v.flag&flagIndir != 0 { + typedmemmove(targ, addr, v.ptr) + } else { + *(*unsafe.Pointer)(addr) = v.ptr + } + // There's only one step for a stack-allocated value. + break stepsLoop + case abiStepIntReg, abiStepPointer: + // Copy values to "integer registers." + if v.flag&flagIndir != 0 { + offset := add(v.ptr, st.offset, "precomputed value offset") + if st.kind == abiStepPointer { + // Duplicate this pointer in the pointer area of the + // register space. Otherwise, there's the potential for + // this to be the last reference to v.ptr. + regArgs.Ptrs[st.ireg] = *(*unsafe.Pointer)(offset) + } + intToReg(®Args, st.ireg, st.size, offset) + } else { + if st.kind == abiStepPointer { + // See the comment in abiStepPointer case above. + regArgs.Ptrs[st.ireg] = v.ptr + } + regArgs.Ints[st.ireg] = uintptr(v.ptr) + } + case abiStepFloatReg: + // Copy values to "float registers." + if v.flag&flagIndir == 0 { + panic("attempted to copy pointer to FP register") + } + offset := add(v.ptr, st.offset, "precomputed value offset") + floatToReg(®Args, st.freg, st.size, offset) + default: + panic("unknown ABI part kind") + } + } + } + // TODO(mknyszek): Remove this when we no longer have + // caller reserved spill space. + frameSize = align(frameSize, goarch.PtrSize) + frameSize += abi.spill + + // Mark pointers in registers for the return path. + regArgs.ReturnIsPtr = abi.outRegPtrs + + if debugReflectCall { + regArgs.Dump() + } + + // For testing; see TestCallArgLive. + if callGC { + runtime.GC() + } + + // Call. + call(frametype, fn, stackArgs, uint32(frametype.size), uint32(abi.retOffset), uint32(frameSize), ®Args) + + // For testing; see TestCallMethodJump. + if callGC { + runtime.GC() + } + + var ret []Value + if nout == 0 { + if stackArgs != nil { + typedmemclr(frametype, stackArgs) + framePool.Put(stackArgs) + } + } else { + if stackArgs != nil { + // Zero the now unused input area of args, + // because the Values returned by this function contain pointers to the args object, + // and will thus keep the args object alive indefinitely. + typedmemclrpartial(frametype, stackArgs, 0, abi.retOffset) + } + + // Wrap Values around return values in args. + ret = make([]Value, nout) + for i := 0; i < nout; i++ { + tv := t.Out(i) + if tv.Size() == 0 { + // For zero-sized return value, args+off may point to the next object. + // In this case, return the zero value instead. + ret[i] = Zero(tv) + continue + } + steps := abi.ret.stepsForValue(i) + if st := steps[0]; st.kind == abiStepStack { + // This value is on the stack. If part of a value is stack + // allocated, the entire value is according to the ABI. So + // just make an indirection into the allocated frame. + fl := flagIndir | flag(tv.Kind()) + ret[i] = Value{tv.common(), add(stackArgs, st.stkOff, "tv.Size() != 0"), fl} + // Note: this does introduce false sharing between results - + // if any result is live, they are all live. + // (And the space for the args is live as well, but as we've + // cleared that space it isn't as big a deal.) + continue + } + + // Handle pointers passed in registers. + if !ifaceIndir(tv.common()) { + // Pointer-valued data gets put directly + // into v.ptr. + if steps[0].kind != abiStepPointer { + print("kind=", steps[0].kind, ", type=", tv.String(), "\n") + panic("mismatch between ABI description and types") + } + ret[i] = Value{tv.common(), regArgs.Ptrs[steps[0].ireg], flag(tv.Kind())} + continue + } + + // All that's left is values passed in registers that we need to + // create space for and copy values back into. + // + // TODO(mknyszek): We make a new allocation for each register-allocated + // value, but previously we could always point into the heap-allocated + // stack frame. This is a regression that could be fixed by adding + // additional space to the allocated stack frame and storing the + // register-allocated return values into the allocated stack frame and + // referring there in the resulting Value. + s := unsafe_New(tv.common()) + for _, st := range steps { + switch st.kind { + case abiStepIntReg: + offset := add(s, st.offset, "precomputed value offset") + intFromReg(®Args, st.ireg, st.size, offset) + case abiStepPointer: + s := add(s, st.offset, "precomputed value offset") + *((*unsafe.Pointer)(s)) = regArgs.Ptrs[st.ireg] + case abiStepFloatReg: + offset := add(s, st.offset, "precomputed value offset") + floatFromReg(®Args, st.freg, st.size, offset) + case abiStepStack: + panic("register-based return value has stack component") + default: + panic("unknown ABI part kind") + } + } + ret[i] = Value{tv.common(), s, flagIndir | flag(tv.Kind())} + } + } + + return ret +} + +// callReflect is the call implementation used by a function +// returned by MakeFunc. In many ways it is the opposite of the +// method Value.call above. The method above converts a call using Values +// into a call of a function with a concrete argument frame, while +// callReflect converts a call of a function with a concrete argument +// frame into a call using Values. +// It is in this file so that it can be next to the call method above. +// The remainder of the MakeFunc implementation is in makefunc.go. +// +// NOTE: This function must be marked as a "wrapper" in the generated code, +// so that the linker can make it work correctly for panic and recover. +// The gc compilers know to do that for the name "reflect.callReflect". +// +// ctxt is the "closure" generated by MakeFunc. +// frame is a pointer to the arguments to that closure on the stack. +// retValid points to a boolean which should be set when the results +// section of frame is set. +// +// regs contains the argument values passed in registers and will contain +// the values returned from ctxt.fn in registers. +func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer, retValid *bool, regs *abi.RegArgs) { + if callGC { + // Call GC upon entry during testing. + // Getting our stack scanned here is the biggest hazard, because + // our caller (makeFuncStub) could have failed to place the last + // pointer to a value in regs' pointer space, in which case it + // won't be visible to the GC. + runtime.GC() + } + ftyp := ctxt.ftyp + f := ctxt.fn + + _, _, abi := funcLayout(ftyp, nil) + + // Copy arguments into Values. + ptr := frame + in := make([]Value, 0, int(ftyp.inCount)) + for i, typ := range ftyp.in() { + if typ.Size() == 0 { + in = append(in, Zero(typ)) + continue + } + v := Value{typ, nil, flag(typ.Kind())} + steps := abi.call.stepsForValue(i) + if st := steps[0]; st.kind == abiStepStack { + if ifaceIndir(typ) { + // value cannot be inlined in interface data. + // Must make a copy, because f might keep a reference to it, + // and we cannot let f keep a reference to the stack frame + // after this function returns, not even a read-only reference. + v.ptr = unsafe_New(typ) + if typ.size > 0 { + typedmemmove(typ, v.ptr, add(ptr, st.stkOff, "typ.size > 0")) + } + v.flag |= flagIndir + } else { + v.ptr = *(*unsafe.Pointer)(add(ptr, st.stkOff, "1-ptr")) + } + } else { + if ifaceIndir(typ) { + // All that's left is values passed in registers that we need to + // create space for the values. + v.flag |= flagIndir + v.ptr = unsafe_New(typ) + for _, st := range steps { + switch st.kind { + case abiStepIntReg: + offset := add(v.ptr, st.offset, "precomputed value offset") + intFromReg(regs, st.ireg, st.size, offset) + case abiStepPointer: + s := add(v.ptr, st.offset, "precomputed value offset") + *((*unsafe.Pointer)(s)) = regs.Ptrs[st.ireg] + case abiStepFloatReg: + offset := add(v.ptr, st.offset, "precomputed value offset") + floatFromReg(regs, st.freg, st.size, offset) + case abiStepStack: + panic("register-based return value has stack component") + default: + panic("unknown ABI part kind") + } + } + } else { + // Pointer-valued data gets put directly + // into v.ptr. + if steps[0].kind != abiStepPointer { + print("kind=", steps[0].kind, ", type=", typ.String(), "\n") + panic("mismatch between ABI description and types") + } + v.ptr = regs.Ptrs[steps[0].ireg] + } + } + in = append(in, v) + } + + // Call underlying function. + out := f(in) + numOut := ftyp.NumOut() + if len(out) != numOut { + panic("reflect: wrong return count from function created by MakeFunc") + } + + // Copy results back into argument frame and register space. + if numOut > 0 { + for i, typ := range ftyp.out() { + v := out[i] + if v.typ == nil { + panic("reflect: function created by MakeFunc using " + funcName(f) + + " returned zero Value") + } + if v.flag&flagRO != 0 { + panic("reflect: function created by MakeFunc using " + funcName(f) + + " returned value obtained from unexported field") + } + if typ.size == 0 { + continue + } + + // Convert v to type typ if v is assignable to a variable + // of type t in the language spec. + // See issue 28761. + // + // + // TODO(mknyszek): In the switch to the register ABI we lost + // the scratch space here for the register cases (and + // temporarily for all the cases). + // + // If/when this happens, take note of the following: + // + // We must clear the destination before calling assignTo, + // in case assignTo writes (with memory barriers) to the + // target location used as scratch space. See issue 39541. + v = v.assignTo("reflect.MakeFunc", typ, nil) + stepsLoop: + for _, st := range abi.ret.stepsForValue(i) { + switch st.kind { + case abiStepStack: + // Copy values to the "stack." + addr := add(ptr, st.stkOff, "precomputed stack arg offset") + // Do not use write barriers. The stack space used + // for this call is not adequately zeroed, and we + // are careful to keep the arguments alive until we + // return to makeFuncStub's caller. + if v.flag&flagIndir != 0 { + memmove(addr, v.ptr, st.size) + } else { + // This case must be a pointer type. + *(*uintptr)(addr) = uintptr(v.ptr) + } + // There's only one step for a stack-allocated value. + break stepsLoop + case abiStepIntReg, abiStepPointer: + // Copy values to "integer registers." + if v.flag&flagIndir != 0 { + offset := add(v.ptr, st.offset, "precomputed value offset") + intToReg(regs, st.ireg, st.size, offset) + } else { + // Only populate the Ints space on the return path. + // This is safe because out is kept alive until the + // end of this function, and the return path through + // makeFuncStub has no preemption, so these pointers + // are always visible to the GC. + regs.Ints[st.ireg] = uintptr(v.ptr) + } + case abiStepFloatReg: + // Copy values to "float registers." + if v.flag&flagIndir == 0 { + panic("attempted to copy pointer to FP register") + } + offset := add(v.ptr, st.offset, "precomputed value offset") + floatToReg(regs, st.freg, st.size, offset) + default: + panic("unknown ABI part kind") + } + } + } + } + + // Announce that the return values are valid. + // After this point the runtime can depend on the return values being valid. + *retValid = true + + // We have to make sure that the out slice lives at least until + // the runtime knows the return values are valid. Otherwise, the + // return values might not be scanned by anyone during a GC. + // (out would be dead, and the return slots not yet alive.) + runtime.KeepAlive(out) + + // runtime.getArgInfo expects to be able to find ctxt on the + // stack when it finds our caller, makeFuncStub. Make sure it + // doesn't get garbage collected. + runtime.KeepAlive(ctxt) +} + +// methodReceiver returns information about the receiver +// described by v. The Value v may or may not have the +// flagMethod bit set, so the kind cached in v.flag should +// not be used. +// The return value rcvrtype gives the method's actual receiver type. +// The return value t gives the method type signature (without the receiver). +// The return value fn is a pointer to the method code. +func methodReceiver(op string, v Value, methodIndex int) (rcvrtype *rtype, t *funcType, fn unsafe.Pointer) { + i := methodIndex + if v.typ.Kind() == Interface { + tt := (*interfaceType)(unsafe.Pointer(v.typ)) + if uint(i) >= uint(len(tt.methods)) { + panic("reflect: internal error: invalid method index") + } + m := &tt.methods[i] + if !tt.nameOff(m.name).isExported() { + panic("reflect: " + op + " of unexported method") + } + iface := (*nonEmptyInterface)(v.ptr) + if iface.itab == nil { + panic("reflect: " + op + " of method on nil interface value") + } + rcvrtype = iface.itab.typ + fn = unsafe.Pointer(&iface.itab.fun[i]) + t = (*funcType)(unsafe.Pointer(tt.typeOff(m.typ))) + } else { + rcvrtype = v.typ + ms := v.typ.exportedMethods() + if uint(i) >= uint(len(ms)) { + panic("reflect: internal error: invalid method index") + } + m := ms[i] + if !v.typ.nameOff(m.name).isExported() { + panic("reflect: " + op + " of unexported method") + } + ifn := v.typ.textOff(m.ifn) + fn = unsafe.Pointer(&ifn) + t = (*funcType)(unsafe.Pointer(v.typ.typeOff(m.mtyp))) + } + return +} + +// v is a method receiver. Store at p the word which is used to +// encode that receiver at the start of the argument list. +// Reflect uses the "interface" calling convention for +// methods, which always uses one word to record the receiver. +func storeRcvr(v Value, p unsafe.Pointer) { + t := v.typ + if t.Kind() == Interface { + // the interface data word becomes the receiver word + iface := (*nonEmptyInterface)(v.ptr) + *(*unsafe.Pointer)(p) = iface.word + } else if v.flag&flagIndir != 0 && !ifaceIndir(t) { + *(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr) + } else { + *(*unsafe.Pointer)(p) = v.ptr + } +} + +// align returns the result of rounding x up to a multiple of n. +// n must be a power of two. +func align(x, n uintptr) uintptr { + return (x + n - 1) &^ (n - 1) +} + +// callMethod is the call implementation used by a function returned +// by makeMethodValue (used by v.Method(i).Interface()). +// It is a streamlined version of the usual reflect call: the caller has +// already laid out the argument frame for us, so we don't have +// to deal with individual Values for each argument. +// It is in this file so that it can be next to the two similar functions above. +// The remainder of the makeMethodValue implementation is in makefunc.go. +// +// NOTE: This function must be marked as a "wrapper" in the generated code, +// so that the linker can make it work correctly for panic and recover. +// The gc compilers know to do that for the name "reflect.callMethod". +// +// ctxt is the "closure" generated by makeVethodValue. +// frame is a pointer to the arguments to that closure on the stack. +// retValid points to a boolean which should be set when the results +// section of frame is set. +// +// regs contains the argument values passed in registers and will contain +// the values returned from ctxt.fn in registers. +func callMethod(ctxt *methodValue, frame unsafe.Pointer, retValid *bool, regs *abi.RegArgs) { + rcvr := ctxt.rcvr + rcvrType, valueFuncType, methodFn := methodReceiver("call", rcvr, ctxt.method) + + // There are two ABIs at play here. + // + // methodValueCall was invoked with the ABI assuming there was no + // receiver ("value ABI") and that's what frame and regs are holding. + // + // Meanwhile, we need to actually call the method with a receiver, which + // has its own ABI ("method ABI"). Everything that follows is a translation + // between the two. + _, _, valueABI := funcLayout(valueFuncType, nil) + valueFrame, valueRegs := frame, regs + methodFrameType, methodFramePool, methodABI := funcLayout(valueFuncType, rcvrType) + + // Make a new frame that is one word bigger so we can store the receiver. + // This space is used for both arguments and return values. + methodFrame := methodFramePool.Get().(unsafe.Pointer) + var methodRegs abi.RegArgs + + // Deal with the receiver. It's guaranteed to only be one word in size. + if st := methodABI.call.steps[0]; st.kind == abiStepStack { + // Only copy the receiver to the stack if the ABI says so. + // Otherwise, it'll be in a register already. + storeRcvr(rcvr, methodFrame) + } else { + // Put the receiver in a register. + storeRcvr(rcvr, unsafe.Pointer(&methodRegs.Ints)) + } + + // Translate the rest of the arguments. + for i, t := range valueFuncType.in() { + valueSteps := valueABI.call.stepsForValue(i) + methodSteps := methodABI.call.stepsForValue(i + 1) + + // Zero-sized types are trivial: nothing to do. + if len(valueSteps) == 0 { + if len(methodSteps) != 0 { + panic("method ABI and value ABI do not align") + } + continue + } + + // There are four cases to handle in translating each + // argument: + // 1. Stack -> stack translation. + // 2. Stack -> registers translation. + // 3. Registers -> stack translation. + // 4. Registers -> registers translation. + + // If the value ABI passes the value on the stack, + // then the method ABI does too, because it has strictly + // fewer arguments. Simply copy between the two. + if vStep := valueSteps[0]; vStep.kind == abiStepStack { + mStep := methodSteps[0] + // Handle stack -> stack translation. + if mStep.kind == abiStepStack { + if vStep.size != mStep.size { + panic("method ABI and value ABI do not align") + } + typedmemmove(t, + add(methodFrame, mStep.stkOff, "precomputed stack offset"), + add(valueFrame, vStep.stkOff, "precomputed stack offset")) + continue + } + // Handle stack -> register translation. + for _, mStep := range methodSteps { + from := add(valueFrame, vStep.stkOff+mStep.offset, "precomputed stack offset") + switch mStep.kind { + case abiStepPointer: + // Do the pointer copy directly so we get a write barrier. + methodRegs.Ptrs[mStep.ireg] = *(*unsafe.Pointer)(from) + fallthrough // We need to make sure this ends up in Ints, too. + case abiStepIntReg: + intToReg(&methodRegs, mStep.ireg, mStep.size, from) + case abiStepFloatReg: + floatToReg(&methodRegs, mStep.freg, mStep.size, from) + default: + panic("unexpected method step") + } + } + continue + } + // Handle register -> stack translation. + if mStep := methodSteps[0]; mStep.kind == abiStepStack { + for _, vStep := range valueSteps { + to := add(methodFrame, mStep.stkOff+vStep.offset, "precomputed stack offset") + switch vStep.kind { + case abiStepPointer: + // Do the pointer copy directly so we get a write barrier. + *(*unsafe.Pointer)(to) = valueRegs.Ptrs[vStep.ireg] + case abiStepIntReg: + intFromReg(valueRegs, vStep.ireg, vStep.size, to) + case abiStepFloatReg: + floatFromReg(valueRegs, vStep.freg, vStep.size, to) + default: + panic("unexpected value step") + } + } + continue + } + // Handle register -> register translation. + if len(valueSteps) != len(methodSteps) { + // Because it's the same type for the value, and it's assigned + // to registers both times, it should always take up the same + // number of registers for each ABI. + panic("method ABI and value ABI don't align") + } + for i, vStep := range valueSteps { + mStep := methodSteps[i] + if mStep.kind != vStep.kind { + panic("method ABI and value ABI don't align") + } + switch vStep.kind { + case abiStepPointer: + // Copy this too, so we get a write barrier. + methodRegs.Ptrs[mStep.ireg] = valueRegs.Ptrs[vStep.ireg] + fallthrough + case abiStepIntReg: + methodRegs.Ints[mStep.ireg] = valueRegs.Ints[vStep.ireg] + case abiStepFloatReg: + methodRegs.Floats[mStep.freg] = valueRegs.Floats[vStep.freg] + default: + panic("unexpected value step") + } + } + } + + methodFrameSize := methodFrameType.size + // TODO(mknyszek): Remove this when we no longer have + // caller reserved spill space. + methodFrameSize = align(methodFrameSize, goarch.PtrSize) + methodFrameSize += methodABI.spill + + // Mark pointers in registers for the return path. + methodRegs.ReturnIsPtr = methodABI.outRegPtrs + + // Call. + // Call copies the arguments from scratch to the stack, calls fn, + // and then copies the results back into scratch. + call(methodFrameType, methodFn, methodFrame, uint32(methodFrameType.size), uint32(methodABI.retOffset), uint32(methodFrameSize), &methodRegs) + + // Copy return values. + // + // This is somewhat simpler because both ABIs have an identical + // return value ABI (the types are identical). As a result, register + // results can simply be copied over. Stack-allocated values are laid + // out the same, but are at different offsets from the start of the frame + // Ignore any changes to args. + // Avoid constructing out-of-bounds pointers if there are no return values. + // because the arguments may be laid out differently. + if valueRegs != nil { + *valueRegs = methodRegs + } + if retSize := methodFrameType.size - methodABI.retOffset; retSize > 0 { + valueRet := add(valueFrame, valueABI.retOffset, "valueFrame's size > retOffset") + methodRet := add(methodFrame, methodABI.retOffset, "methodFrame's size > retOffset") + // This copies to the stack. Write barriers are not needed. + memmove(valueRet, methodRet, retSize) + } + + // Tell the runtime it can now depend on the return values + // being properly initialized. + *retValid = true + + // Clear the scratch space and put it back in the pool. + // This must happen after the statement above, so that the return + // values will always be scanned by someone. + typedmemclr(methodFrameType, methodFrame) + methodFramePool.Put(methodFrame) + + // See the comment in callReflect. + runtime.KeepAlive(ctxt) + + // Keep valueRegs alive because it may hold live pointer results. + // The caller (methodValueCall) has it as a stack object, which is only + // scanned when there is a reference to it. + runtime.KeepAlive(valueRegs) +} + +// funcName returns the name of f, for use in error messages. +func funcName(f func([]Value) []Value) string { + pc := *(*uintptr)(unsafe.Pointer(&f)) + rf := runtime.FuncForPC(pc) + if rf != nil { + return rf.Name() + } + return "closure" +} + +// Cap returns v's capacity. +// It panics if v's Kind is not Array, Chan, or Slice. +func (v Value) Cap() int { + k := v.kind() + switch k { + case Array: + return v.typ.Len() + case Chan: + return chancap(v.pointer()) + case Slice: + // Slice is always bigger than a word; assume flagIndir. + return (*unsafeheader.Slice)(v.ptr).Cap + } + panic(&ValueError{"reflect.Value.Cap", v.kind()}) +} + +// Close closes the channel v. +// It panics if v's Kind is not Chan. +func (v Value) Close() { + v.mustBe(Chan) + v.mustBeExported() + chanclose(v.pointer()) +} + +// CanComplex reports whether Complex can be used without panicking. +func (v Value) CanComplex() bool { + switch v.kind() { + case Complex64, Complex128: + return true + default: + return false + } +} + +// Complex returns v's underlying value, as a complex128. +// It panics if v's Kind is not Complex64 or Complex128 +func (v Value) Complex() complex128 { + k := v.kind() + switch k { + case Complex64: + return complex128(*(*complex64)(v.ptr)) + case Complex128: + return *(*complex128)(v.ptr) + } + panic(&ValueError{"reflect.Value.Complex", v.kind()}) +} + +// Elem returns the value that the interface v contains +// or that the pointer v points to. +// It panics if v's Kind is not Interface or Pointer. +// It returns the zero Value if v is nil. +func (v Value) Elem() Value { + k := v.kind() + switch k { + case Interface: + var eface any + if v.typ.NumMethod() == 0 { + eface = *(*any)(v.ptr) + } else { + eface = (any)(*(*interface { + M() + })(v.ptr)) + } + x := unpackEface(eface) + if x.flag != 0 { + x.flag |= v.flag.ro() + } + return x + case Pointer: + ptr := v.ptr + if v.flag&flagIndir != 0 { + if ifaceIndir(v.typ) { + // This is a pointer to a not-in-heap object. ptr points to a uintptr + // in the heap. That uintptr is the address of a not-in-heap object. + // In general, pointers to not-in-heap objects can be total junk. + // But Elem() is asking to dereference it, so the user has asserted + // that at least it is a valid pointer (not just an integer stored in + // a pointer slot). So let's check, to make sure that it isn't a pointer + // that the runtime will crash on if it sees it during GC or write barriers. + // Since it is a not-in-heap pointer, all pointers to the heap are + // forbidden! That makes the test pretty easy. + // See issue 48399. + if !verifyNotInHeapPtr(*(*uintptr)(ptr)) { + panic("reflect: reflect.Value.Elem on an invalid notinheap pointer") + } + } + ptr = *(*unsafe.Pointer)(ptr) + } + // The returned value's address is v's value. + if ptr == nil { + return Value{} + } + tt := (*ptrType)(unsafe.Pointer(v.typ)) + typ := tt.elem + fl := v.flag&flagRO | flagIndir | flagAddr + fl |= flag(typ.Kind()) + return Value{typ, ptr, fl} + } + panic(&ValueError{"reflect.Value.Elem", v.kind()}) +} + +// Field returns the i'th field of the struct v. +// It panics if v's Kind is not Struct or i is out of range. +func (v Value) Field(i int) Value { + if v.kind() != Struct { + panic(&ValueError{"reflect.Value.Field", v.kind()}) + } + tt := (*structType)(unsafe.Pointer(v.typ)) + if uint(i) >= uint(len(tt.fields)) { + panic("reflect: Field index out of range") + } + field := &tt.fields[i] + typ := field.typ + + // Inherit permission bits from v, but clear flagEmbedRO. + fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind()) + // Using an unexported field forces flagRO. + if !field.name.isExported() { + if field.embedded() { + fl |= flagEmbedRO + } else { + fl |= flagStickyRO + } + } + // Either flagIndir is set and v.ptr points at struct, + // or flagIndir is not set and v.ptr is the actual struct data. + // In the former case, we want v.ptr + offset. + // In the latter case, we must have field.offset = 0, + // so v.ptr + field.offset is still the correct address. + ptr := add(v.ptr, field.offset(), "same as non-reflect &v.field") + return Value{typ, ptr, fl} +} + +// FieldByIndex returns the nested field corresponding to index. +// It panics if evaluation requires stepping through a nil +// pointer or a field that is not a struct. +func (v Value) FieldByIndex(index []int) Value { + if len(index) == 1 { + return v.Field(index[0]) + } + v.mustBe(Struct) + for i, x := range index { + if i > 0 { + if v.Kind() == Pointer && v.typ.Elem().Kind() == Struct { + if v.IsNil() { + panic("reflect: indirection through nil pointer to embedded struct") + } + v = v.Elem() + } + } + v = v.Field(x) + } + return v +} + +// FieldByIndexErr returns the nested field corresponding to index. +// It returns an error if evaluation requires stepping through a nil +// pointer, but panics if it must step through a field that +// is not a struct. +func (v Value) FieldByIndexErr(index []int) (Value, error) { + if len(index) == 1 { + return v.Field(index[0]), nil + } + v.mustBe(Struct) + for i, x := range index { + if i > 0 { + if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct { + if v.IsNil() { + return Value{}, errors.New("reflect: indirection through nil pointer to embedded struct field " + v.typ.Elem().Name()) + } + v = v.Elem() + } + } + v = v.Field(x) + } + return v, nil +} + +// FieldByName returns the struct field with the given name. +// It returns the zero Value if no field was found. +// It panics if v's Kind is not struct. +func (v Value) FieldByName(name string) Value { + v.mustBe(Struct) + if f, ok := v.typ.FieldByName(name); ok { + return v.FieldByIndex(f.Index) + } + return Value{} +} + +// FieldByNameFunc returns the struct field with a name +// that satisfies the match function. +// It panics if v's Kind is not struct. +// It returns the zero Value if no field was found. +func (v Value) FieldByNameFunc(match func(string) bool) Value { + if f, ok := v.typ.FieldByNameFunc(match); ok { + return v.FieldByIndex(f.Index) + } + return Value{} +} + +// CanFloat reports whether Float can be used without panicking. +func (v Value) CanFloat() bool { + switch v.kind() { + case Float32, Float64: + return true + default: + return false + } +} + +// Float returns v's underlying value, as a float64. +// It panics if v's Kind is not Float32 or Float64 +func (v Value) Float() float64 { + k := v.kind() + switch k { + case Float32: + return float64(*(*float32)(v.ptr)) + case Float64: + return *(*float64)(v.ptr) + } + panic(&ValueError{"reflect.Value.Float", v.kind()}) +} + +var uint8Type = TypeOf(uint8(0)).(*rtype) + +// Index returns v's i'th element. +// It panics if v's Kind is not Array, Slice, or String or i is out of range. +func (v Value) Index(i int) Value { + switch v.kind() { + case Array: + tt := (*arrayType)(unsafe.Pointer(v.typ)) + if uint(i) >= uint(tt.len) { + panic("reflect: array index out of range") + } + typ := tt.elem + offset := uintptr(i) * typ.size + + // Either flagIndir is set and v.ptr points at array, + // or flagIndir is not set and v.ptr is the actual array data. + // In the former case, we want v.ptr + offset. + // In the latter case, we must be doing Index(0), so offset = 0, + // so v.ptr + offset is still the correct address. + val := add(v.ptr, offset, "same as &v[i], i < tt.len") + fl := v.flag&(flagIndir|flagAddr) | v.flag.ro() | flag(typ.Kind()) // bits same as overall array + return Value{typ, val, fl} + + case Slice: + // Element flag same as Elem of Pointer. + // Addressable, indirect, possibly read-only. + s := (*unsafeheader.Slice)(v.ptr) + if uint(i) >= uint(s.Len) { + panic("reflect: slice index out of range") + } + tt := (*sliceType)(unsafe.Pointer(v.typ)) + typ := tt.elem + val := arrayAt(s.Data, i, typ.size, "i < s.Len") + fl := flagAddr | flagIndir | v.flag.ro() | flag(typ.Kind()) + return Value{typ, val, fl} + + case String: + s := (*unsafeheader.String)(v.ptr) + if uint(i) >= uint(s.Len) { + panic("reflect: string index out of range") + } + p := arrayAt(s.Data, i, 1, "i < s.Len") + fl := v.flag.ro() | flag(Uint8) | flagIndir + return Value{uint8Type, p, fl} + } + panic(&ValueError{"reflect.Value.Index", v.kind()}) +} + +// CanInt reports whether Int can be used without panicking. +func (v Value) CanInt() bool { + switch v.kind() { + case Int, Int8, Int16, Int32, Int64: + return true + default: + return false + } +} + +// Int returns v's underlying value, as an int64. +// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64. +func (v Value) Int() int64 { + k := v.kind() + p := v.ptr + switch k { + case Int: + return int64(*(*int)(p)) + case Int8: + return int64(*(*int8)(p)) + case Int16: + return int64(*(*int16)(p)) + case Int32: + return int64(*(*int32)(p)) + case Int64: + return *(*int64)(p) + } + panic(&ValueError{"reflect.Value.Int", v.kind()}) +} + +// CanInterface reports whether Interface can be used without panicking. +func (v Value) CanInterface() bool { + if v.flag == 0 { + panic(&ValueError{"reflect.Value.CanInterface", Invalid}) + } + return v.flag&flagRO == 0 +} + +// Interface returns v's current value as an interface{}. +// It is equivalent to: +// var i interface{} = (v's underlying value) +// It panics if the Value was obtained by accessing +// unexported struct fields. +func (v Value) Interface() (i any) { + return valueInterface(v, true) +} + +func valueInterface(v Value, safe bool) any { + if v.flag == 0 { + panic(&ValueError{"reflect.Value.Interface", Invalid}) + } + if safe && v.flag&flagRO != 0 { + // Do not allow access to unexported values via Interface, + // because they might be pointers that should not be + // writable or methods or function that should not be callable. + panic("reflect.Value.Interface: cannot return value obtained from unexported field or method") + } + if v.flag&flagMethod != 0 { + v = makeMethodValue("Interface", v) + } + + if v.kind() == Interface { + // Special case: return the element inside the interface. + // Empty interface has one layout, all interfaces with + // methods have a second layout. + if v.NumMethod() == 0 { + return *(*any)(v.ptr) + } + return *(*interface { + M() + })(v.ptr) + } + + // TODO: pass safe to packEface so we don't need to copy if safe==true? + return packEface(v) +} + +// InterfaceData returns a pair of unspecified uintptr values. +// It panics if v's Kind is not Interface. +// +// In earlier versions of Go, this function returned the interface's +// value as a uintptr pair. As of Go 1.4, the implementation of +// interface values precludes any defined use of InterfaceData. +// +// Deprecated: The memory representation of interface values is not +// compatible with InterfaceData. +func (v Value) InterfaceData() [2]uintptr { + v.mustBe(Interface) + // We treat this as a read operation, so we allow + // it even for unexported data, because the caller + // has to import "unsafe" to turn it into something + // that can be abused. + // Interface value is always bigger than a word; assume flagIndir. + return *(*[2]uintptr)(v.ptr) +} + +// IsNil reports whether its argument v is nil. The argument must be +// a chan, func, interface, map, pointer, or slice value; if it is +// not, IsNil panics. Note that IsNil is not always equivalent to a +// regular comparison with nil in Go. For example, if v was created +// by calling ValueOf with an uninitialized interface variable i, +// i==nil will be true but v.IsNil will panic as v will be the zero +// Value. +func (v Value) IsNil() bool { + k := v.kind() + switch k { + case Chan, Func, Map, Pointer, UnsafePointer: + if v.flag&flagMethod != 0 { + return false + } + ptr := v.ptr + if v.flag&flagIndir != 0 { + ptr = *(*unsafe.Pointer)(ptr) + } + return ptr == nil + case Interface, Slice: + // Both interface and slice are nil if first word is 0. + // Both are always bigger than a word; assume flagIndir. + return *(*unsafe.Pointer)(v.ptr) == nil + } + panic(&ValueError{"reflect.Value.IsNil", v.kind()}) +} + +// IsValid reports whether v represents a value. +// It returns false if v is the zero Value. +// If IsValid returns false, all other methods except String panic. +// Most functions and methods never return an invalid Value. +// If one does, its documentation states the conditions explicitly. +func (v Value) IsValid() bool { + return v.flag != 0 +} + +// IsZero reports whether v is the zero value for its type. +// It panics if the argument is invalid. +func (v Value) IsZero() bool { + switch v.kind() { + case Bool: + return !v.Bool() + case Int, Int8, Int16, Int32, Int64: + return v.Int() == 0 + case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: + return v.Uint() == 0 + case Float32, Float64: + return math.Float64bits(v.Float()) == 0 + case Complex64, Complex128: + c := v.Complex() + return math.Float64bits(real(c)) == 0 && math.Float64bits(imag(c)) == 0 + case Array: + for i := 0; i < v.Len(); i++ { + if !v.Index(i).IsZero() { + return false + } + } + return true + case Chan, Func, Interface, Map, Pointer, Slice, UnsafePointer: + return v.IsNil() + case String: + return v.Len() == 0 + case Struct: + for i := 0; i < v.NumField(); i++ { + if !v.Field(i).IsZero() { + return false + } + } + return true + default: + // This should never happens, but will act as a safeguard for + // later, as a default value doesn't makes sense here. + panic(&ValueError{"reflect.Value.IsZero", v.Kind()}) + } +} + +// Kind returns v's Kind. +// If v is the zero Value (IsValid returns false), Kind returns Invalid. +func (v Value) Kind() Kind { + return v.kind() +} + +// Len returns v's length. +// It panics if v's Kind is not Array, Chan, Map, Slice, or String. +func (v Value) Len() int { + k := v.kind() + switch k { + case Array: + tt := (*arrayType)(unsafe.Pointer(v.typ)) + return int(tt.len) + case Chan: + return chanlen(v.pointer()) + case Map: + return maplen(v.pointer()) + case Slice: + // Slice is bigger than a word; assume flagIndir. + return (*unsafeheader.Slice)(v.ptr).Len + case String: + // String is bigger than a word; assume flagIndir. + return (*unsafeheader.String)(v.ptr).Len + } + panic(&ValueError{"reflect.Value.Len", v.kind()}) +} + +var stringType = TypeOf("").(*rtype) + +// MapIndex returns the value associated with key in the map v. +// It panics if v's Kind is not Map. +// It returns the zero Value if key is not found in the map or if v represents a nil map. +// As in Go, the key's value must be assignable to the map's key type. +func (v Value) MapIndex(key Value) Value { + v.mustBe(Map) + tt := (*mapType)(unsafe.Pointer(v.typ)) + + // Do not require key to be exported, so that DeepEqual + // and other programs can use all the keys returned by + // MapKeys as arguments to MapIndex. If either the map + // or the key is unexported, though, the result will be + // considered unexported. This is consistent with the + // behavior for structs, which allow read but not write + // of unexported fields. + + var e unsafe.Pointer + if (tt.key == stringType || key.kind() == String) && tt.key == key.typ && tt.elem.size <= maxValSize { + k := *(*string)(key.ptr) + e = mapaccess_faststr(v.typ, v.pointer(), k) + } else { + key = key.assignTo("reflect.Value.MapIndex", tt.key, nil) + var k unsafe.Pointer + if key.flag&flagIndir != 0 { + k = key.ptr + } else { + k = unsafe.Pointer(&key.ptr) + } + e = mapaccess(v.typ, v.pointer(), k) + } + if e == nil { + return Value{} + } + typ := tt.elem + fl := (v.flag | key.flag).ro() + fl |= flag(typ.Kind()) + return copyVal(typ, fl, e) +} + +// MapKeys returns a slice containing all the keys present in the map, +// in unspecified order. +// It panics if v's Kind is not Map. +// It returns an empty slice if v represents a nil map. +func (v Value) MapKeys() []Value { + v.mustBe(Map) + tt := (*mapType)(unsafe.Pointer(v.typ)) + keyType := tt.key + + fl := v.flag.ro() | flag(keyType.Kind()) + + m := v.pointer() + mlen := int(0) + if m != nil { + mlen = maplen(m) + } + var it hiter + mapiterinit(v.typ, m, &it) + a := make([]Value, mlen) + var i int + for i = 0; i < len(a); i++ { + key := mapiterkey(&it) + if key == nil { + // Someone deleted an entry from the map since we + // called maplen above. It's a data race, but nothing + // we can do about it. + break + } + a[i] = copyVal(keyType, fl, key) + mapiternext(&it) + } + return a[:i] +} + +// hiter's structure matches runtime.hiter's structure. +// Having a clone here allows us to embed a map iterator +// inside type MapIter so that MapIters can be re-used +// without doing any allocations. +type hiter struct { + key unsafe.Pointer + elem unsafe.Pointer + t unsafe.Pointer + h unsafe.Pointer + buckets unsafe.Pointer + bptr unsafe.Pointer + overflow *[]unsafe.Pointer + oldoverflow *[]unsafe.Pointer + startBucket uintptr + offset uint8 + wrapped bool + B uint8 + i uint8 + bucket uintptr + checkBucket uintptr +} + +func (h *hiter) initialized() bool { + return h.t != nil +} + +// A MapIter is an iterator for ranging over a map. +// See Value.MapRange. +type MapIter struct { + m Value + hiter hiter +} + +// Key returns the key of iter's current map entry. +func (iter *MapIter) Key() Value { + if !iter.hiter.initialized() { + panic("MapIter.Key called before Next") + } + iterkey := mapiterkey(&iter.hiter) + if iterkey == nil { + panic("MapIter.Key called on exhausted iterator") + } + + t := (*mapType)(unsafe.Pointer(iter.m.typ)) + ktype := t.key + return copyVal(ktype, iter.m.flag.ro()|flag(ktype.Kind()), iterkey) +} + +// SetIterKey assigns to v the key of iter's current map entry. +// It is equivalent to v.Set(iter.Key()), but it avoids allocating a new Value. +// As in Go, the key must be assignable to v's type. +func (v Value) SetIterKey(iter *MapIter) { + if !iter.hiter.initialized() { + panic("reflect: Value.SetIterKey called before Next") + } + iterkey := mapiterkey(&iter.hiter) + if iterkey == nil { + panic("reflect: Value.SetIterKey called on exhausted iterator") + } + + v.mustBeAssignable() + var target unsafe.Pointer + if v.kind() == Interface { + target = v.ptr + } + + t := (*mapType)(unsafe.Pointer(iter.m.typ)) + ktype := t.key + + key := Value{ktype, iterkey, iter.m.flag | flag(ktype.Kind()) | flagIndir} + key = key.assignTo("reflect.MapIter.SetKey", v.typ, target) + typedmemmove(v.typ, v.ptr, key.ptr) +} + +// Value returns the value of iter's current map entry. +func (iter *MapIter) Value() Value { + if !iter.hiter.initialized() { + panic("MapIter.Value called before Next") + } + iterelem := mapiterelem(&iter.hiter) + if iterelem == nil { + panic("MapIter.Value called on exhausted iterator") + } + + t := (*mapType)(unsafe.Pointer(iter.m.typ)) + vtype := t.elem + return copyVal(vtype, iter.m.flag.ro()|flag(vtype.Kind()), iterelem) +} + +// SetIterValue assigns to v the value of iter's current map entry. +// It is equivalent to v.Set(iter.Value()), but it avoids allocating a new Value. +// As in Go, the value must be assignable to v's type. +func (v Value) SetIterValue(iter *MapIter) { + if !iter.hiter.initialized() { + panic("reflect: Value.SetIterValue called before Next") + } + iterelem := mapiterelem(&iter.hiter) + if iterelem == nil { + panic("reflect: Value.SetIterValue called on exhausted iterator") + } + + v.mustBeAssignable() + var target unsafe.Pointer + if v.kind() == Interface { + target = v.ptr + } + + t := (*mapType)(unsafe.Pointer(iter.m.typ)) + vtype := t.elem + + elem := Value{vtype, iterelem, iter.m.flag | flag(vtype.Kind()) | flagIndir} + elem = elem.assignTo("reflect.MapIter.SetValue", v.typ, target) + typedmemmove(v.typ, v.ptr, elem.ptr) +} + +// Next advances the map iterator and reports whether there is another +// entry. It returns false when iter is exhausted; subsequent +// calls to Key, Value, or Next will panic. +func (iter *MapIter) Next() bool { + if !iter.m.IsValid() { + panic("MapIter.Next called on an iterator that does not have an associated map Value") + } + if !iter.hiter.initialized() { + mapiterinit(iter.m.typ, iter.m.pointer(), &iter.hiter) + } else { + if mapiterkey(&iter.hiter) == nil { + panic("MapIter.Next called on exhausted iterator") + } + mapiternext(&iter.hiter) + } + return mapiterkey(&iter.hiter) != nil +} + +// Reset modifies iter to iterate over v. +// It panics if v's Kind is not Map and v is not the zero Value. +// Reset(Value{}) causes iter to not to refer to any map, +// which may allow the previously iterated-over map to be garbage collected. +func (iter *MapIter) Reset(v Value) { + if v.IsValid() { + v.mustBe(Map) + } + iter.m = v + iter.hiter = hiter{} +} + +// MapRange returns a range iterator for a map. +// It panics if v's Kind is not Map. +// +// Call Next to advance the iterator, and Key/Value to access each entry. +// Next returns false when the iterator is exhausted. +// MapRange follows the same iteration semantics as a range statement. +// +// Example: +// +// iter := reflect.ValueOf(m).MapRange() +// for iter.Next() { +// k := iter.Key() +// v := iter.Value() +// ... +// } +// +func (v Value) MapRange() *MapIter { + v.mustBe(Map) + return &MapIter{m: v} +} + +// copyVal returns a Value containing the map key or value at ptr, +// allocating a new variable as needed. +func copyVal(typ *rtype, fl flag, ptr unsafe.Pointer) Value { + if ifaceIndir(typ) { + // Copy result so future changes to the map + // won't change the underlying value. + c := unsafe_New(typ) + typedmemmove(typ, c, ptr) + return Value{typ, c, fl | flagIndir} + } + return Value{typ, *(*unsafe.Pointer)(ptr), fl} +} + +// Method returns a function value corresponding to v's i'th method. +// The arguments to a Call on the returned function should not include +// a receiver; the returned function will always use v as the receiver. +// Method panics if i is out of range or if v is a nil interface value. +func (v Value) Method(i int) Value { + if v.typ == nil { + panic(&ValueError{"reflect.Value.Method", Invalid}) + } + if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) { + panic("reflect: Method index out of range") + } + if v.typ.Kind() == Interface && v.IsNil() { + panic("reflect: Method on nil interface value") + } + fl := v.flag.ro() | (v.flag & flagIndir) + fl |= flag(Func) + fl |= flag(i)<<flagMethodShift | flagMethod + return Value{v.typ, v.ptr, fl} +} + +// NumMethod returns the number of exported methods in the value's method set. +func (v Value) NumMethod() int { + if v.typ == nil { + panic(&ValueError{"reflect.Value.NumMethod", Invalid}) + } + if v.flag&flagMethod != 0 { + return 0 + } + return v.typ.NumMethod() +} + +// MethodByName returns a function value corresponding to the method +// of v with the given name. +// The arguments to a Call on the returned function should not include +// a receiver; the returned function will always use v as the receiver. +// It returns the zero Value if no method was found. +func (v Value) MethodByName(name string) Value { + if v.typ == nil { + panic(&ValueError{"reflect.Value.MethodByName", Invalid}) + } + if v.flag&flagMethod != 0 { + return Value{} + } + m, ok := v.typ.MethodByName(name) + if !ok { + return Value{} + } + return v.Method(m.Index) +} + +// NumField returns the number of fields in the struct v. +// It panics if v's Kind is not Struct. +func (v Value) NumField() int { + v.mustBe(Struct) + tt := (*structType)(unsafe.Pointer(v.typ)) + return len(tt.fields) +} + +// OverflowComplex reports whether the complex128 x cannot be represented by v's type. +// It panics if v's Kind is not Complex64 or Complex128. +func (v Value) OverflowComplex(x complex128) bool { + k := v.kind() + switch k { + case Complex64: + return overflowFloat32(real(x)) || overflowFloat32(imag(x)) + case Complex128: + return false + } + panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()}) +} + +// OverflowFloat reports whether the float64 x cannot be represented by v's type. +// It panics if v's Kind is not Float32 or Float64. +func (v Value) OverflowFloat(x float64) bool { + k := v.kind() + switch k { + case Float32: + return overflowFloat32(x) + case Float64: + return false + } + panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()}) +} + +func overflowFloat32(x float64) bool { + if x < 0 { + x = -x + } + return math.MaxFloat32 < x && x <= math.MaxFloat64 +} + +// OverflowInt reports whether the int64 x cannot be represented by v's type. +// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64. +func (v Value) OverflowInt(x int64) bool { + k := v.kind() + switch k { + case Int, Int8, Int16, Int32, Int64: + bitSize := v.typ.size * 8 + trunc := (x << (64 - bitSize)) >> (64 - bitSize) + return x != trunc + } + panic(&ValueError{"reflect.Value.OverflowInt", v.kind()}) +} + +// OverflowUint reports whether the uint64 x cannot be represented by v's type. +// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64. +func (v Value) OverflowUint(x uint64) bool { + k := v.kind() + switch k { + case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64: + bitSize := v.typ.size * 8 + trunc := (x << (64 - bitSize)) >> (64 - bitSize) + return x != trunc + } + panic(&ValueError{"reflect.Value.OverflowUint", v.kind()}) +} + +//go:nocheckptr +// This prevents inlining Value.Pointer when -d=checkptr is enabled, +// which ensures cmd/compile can recognize unsafe.Pointer(v.Pointer()) +// and make an exception. + +// Pointer returns v's value as a uintptr. +// It returns uintptr instead of unsafe.Pointer so that +// code using reflect cannot obtain unsafe.Pointers +// without importing the unsafe package explicitly. +// It panics if v's Kind is not Chan, Func, Map, Pointer, Slice, or UnsafePointer. +// +// If v's Kind is Func, the returned pointer is an underlying +// code pointer, but not necessarily enough to identify a +// single function uniquely. The only guarantee is that the +// result is zero if and only if v is a nil func Value. +// +// If v's Kind is Slice, the returned pointer is to the first +// element of the slice. If the slice is nil the returned value +// is 0. If the slice is empty but non-nil the return value is non-zero. +// +// It's preferred to use uintptr(Value.UnsafePointer()) to get the equivalent result. +func (v Value) Pointer() uintptr { + k := v.kind() + switch k { + case Pointer: + if v.typ.ptrdata == 0 { + val := *(*uintptr)(v.ptr) + // Since it is a not-in-heap pointer, all pointers to the heap are + // forbidden! See comment in Value.Elem and issue #48399. + if !verifyNotInHeapPtr(val) { + panic("reflect: reflect.Value.Pointer on an invalid notinheap pointer") + } + return val + } + fallthrough + case Chan, Map, UnsafePointer: + return uintptr(v.pointer()) + case Func: + if v.flag&flagMethod != 0 { + // As the doc comment says, the returned pointer is an + // underlying code pointer but not necessarily enough to + // identify a single function uniquely. All method expressions + // created via reflect have the same underlying code pointer, + // so their Pointers are equal. The function used here must + // match the one used in makeMethodValue. + return methodValueCallCodePtr() + } + p := v.pointer() + // Non-nil func value points at data block. + // First word of data block is actual code. + if p != nil { + p = *(*unsafe.Pointer)(p) + } + return uintptr(p) + + case Slice: + return (*SliceHeader)(v.ptr).Data + } + panic(&ValueError{"reflect.Value.Pointer", v.kind()}) +} + +// Recv receives and returns a value from the channel v. +// It panics if v's Kind is not Chan. +// The receive blocks until a value is ready. +// The boolean value ok is true if the value x corresponds to a send +// on the channel, false if it is a zero value received because the channel is closed. +func (v Value) Recv() (x Value, ok bool) { + v.mustBe(Chan) + v.mustBeExported() + return v.recv(false) +} + +// internal recv, possibly non-blocking (nb). +// v is known to be a channel. +func (v Value) recv(nb bool) (val Value, ok bool) { + tt := (*chanType)(unsafe.Pointer(v.typ)) + if ChanDir(tt.dir)&RecvDir == 0 { + panic("reflect: recv on send-only channel") + } + t := tt.elem + val = Value{t, nil, flag(t.Kind())} + var p unsafe.Pointer + if ifaceIndir(t) { + p = unsafe_New(t) + val.ptr = p + val.flag |= flagIndir + } else { + p = unsafe.Pointer(&val.ptr) + } + selected, ok := chanrecv(v.pointer(), nb, p) + if !selected { + val = Value{} + } + return +} + +// Send sends x on the channel v. +// It panics if v's kind is not Chan or if x's type is not the same type as v's element type. +// As in Go, x's value must be assignable to the channel's element type. +func (v Value) Send(x Value) { + v.mustBe(Chan) + v.mustBeExported() + v.send(x, false) +} + +// internal send, possibly non-blocking. +// v is known to be a channel. +func (v Value) send(x Value, nb bool) (selected bool) { + tt := (*chanType)(unsafe.Pointer(v.typ)) + if ChanDir(tt.dir)&SendDir == 0 { + panic("reflect: send on recv-only channel") + } + x.mustBeExported() + x = x.assignTo("reflect.Value.Send", tt.elem, nil) + var p unsafe.Pointer + if x.flag&flagIndir != 0 { + p = x.ptr + } else { + p = unsafe.Pointer(&x.ptr) + } + return chansend(v.pointer(), p, nb) +} + +// Set assigns x to the value v. +// It panics if CanSet returns false. +// As in Go, x's value must be assignable to v's type. +func (v Value) Set(x Value) { + v.mustBeAssignable() + x.mustBeExported() // do not let unexported x leak + var target unsafe.Pointer + if v.kind() == Interface { + target = v.ptr + } + x = x.assignTo("reflect.Set", v.typ, target) + if x.flag&flagIndir != 0 { + if x.ptr == unsafe.Pointer(&zeroVal[0]) { + typedmemclr(v.typ, v.ptr) + } else { + typedmemmove(v.typ, v.ptr, x.ptr) + } + } else { + *(*unsafe.Pointer)(v.ptr) = x.ptr + } +} + +// SetBool sets v's underlying value. +// It panics if v's Kind is not Bool or if CanSet() is false. +func (v Value) SetBool(x bool) { + v.mustBeAssignable() + v.mustBe(Bool) + *(*bool)(v.ptr) = x +} + +// SetBytes sets v's underlying value. +// It panics if v's underlying value is not a slice of bytes. +func (v Value) SetBytes(x []byte) { + v.mustBeAssignable() + v.mustBe(Slice) + if v.typ.Elem().Kind() != Uint8 { + panic("reflect.Value.SetBytes of non-byte slice") + } + *(*[]byte)(v.ptr) = x +} + +// setRunes sets v's underlying value. +// It panics if v's underlying value is not a slice of runes (int32s). +func (v Value) setRunes(x []rune) { + v.mustBeAssignable() + v.mustBe(Slice) + if v.typ.Elem().Kind() != Int32 { + panic("reflect.Value.setRunes of non-rune slice") + } + *(*[]rune)(v.ptr) = x +} + +// SetComplex sets v's underlying value to x. +// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false. +func (v Value) SetComplex(x complex128) { + v.mustBeAssignable() + switch k := v.kind(); k { + default: + panic(&ValueError{"reflect.Value.SetComplex", v.kind()}) + case Complex64: + *(*complex64)(v.ptr) = complex64(x) + case Complex128: + *(*complex128)(v.ptr) = x + } +} + +// SetFloat sets v's underlying value to x. +// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false. +func (v Value) SetFloat(x float64) { + v.mustBeAssignable() + switch k := v.kind(); k { + default: + panic(&ValueError{"reflect.Value.SetFloat", v.kind()}) + case Float32: + *(*float32)(v.ptr) = float32(x) + case Float64: + *(*float64)(v.ptr) = x + } +} + +// SetInt sets v's underlying value to x. +// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false. +func (v Value) SetInt(x int64) { + v.mustBeAssignable() + switch k := v.kind(); k { + default: + panic(&ValueError{"reflect.Value.SetInt", v.kind()}) + case Int: + *(*int)(v.ptr) = int(x) + case Int8: + *(*int8)(v.ptr) = int8(x) + case Int16: + *(*int16)(v.ptr) = int16(x) + case Int32: + *(*int32)(v.ptr) = int32(x) + case Int64: + *(*int64)(v.ptr) = x + } +} + +// SetLen sets v's length to n. +// It panics if v's Kind is not Slice or if n is negative or +// greater than the capacity of the slice. +func (v Value) SetLen(n int) { + v.mustBeAssignable() + v.mustBe(Slice) + s := (*unsafeheader.Slice)(v.ptr) + if uint(n) > uint(s.Cap) { + panic("reflect: slice length out of range in SetLen") + } + s.Len = n +} + +// SetCap sets v's capacity to n. +// It panics if v's Kind is not Slice or if n is smaller than the length or +// greater than the capacity of the slice. +func (v Value) SetCap(n int) { + v.mustBeAssignable() + v.mustBe(Slice) + s := (*unsafeheader.Slice)(v.ptr) + if n < s.Len || n > s.Cap { + panic("reflect: slice capacity out of range in SetCap") + } + s.Cap = n +} + +// SetMapIndex sets the element associated with key in the map v to elem. +// It panics if v's Kind is not Map. +// If elem is the zero Value, SetMapIndex deletes the key from the map. +// Otherwise if v holds a nil map, SetMapIndex will panic. +// As in Go, key's elem must be assignable to the map's key type, +// and elem's value must be assignable to the map's elem type. +func (v Value) SetMapIndex(key, elem Value) { + v.mustBe(Map) + v.mustBeExported() + key.mustBeExported() + tt := (*mapType)(unsafe.Pointer(v.typ)) + + if (tt.key == stringType || key.kind() == String) && tt.key == key.typ && tt.elem.size <= maxValSize { + k := *(*string)(key.ptr) + if elem.typ == nil { + mapdelete_faststr(v.typ, v.pointer(), k) + return + } + elem.mustBeExported() + elem = elem.assignTo("reflect.Value.SetMapIndex", tt.elem, nil) + var e unsafe.Pointer + if elem.flag&flagIndir != 0 { + e = elem.ptr + } else { + e = unsafe.Pointer(&elem.ptr) + } + mapassign_faststr(v.typ, v.pointer(), k, e) + return + } + + key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil) + var k unsafe.Pointer + if key.flag&flagIndir != 0 { + k = key.ptr + } else { + k = unsafe.Pointer(&key.ptr) + } + if elem.typ == nil { + mapdelete(v.typ, v.pointer(), k) + return + } + elem.mustBeExported() + elem = elem.assignTo("reflect.Value.SetMapIndex", tt.elem, nil) + var e unsafe.Pointer + if elem.flag&flagIndir != 0 { + e = elem.ptr + } else { + e = unsafe.Pointer(&elem.ptr) + } + mapassign(v.typ, v.pointer(), k, e) +} + +// SetUint sets v's underlying value to x. +// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false. +func (v Value) SetUint(x uint64) { + v.mustBeAssignable() + switch k := v.kind(); k { + default: + panic(&ValueError{"reflect.Value.SetUint", v.kind()}) + case Uint: + *(*uint)(v.ptr) = uint(x) + case Uint8: + *(*uint8)(v.ptr) = uint8(x) + case Uint16: + *(*uint16)(v.ptr) = uint16(x) + case Uint32: + *(*uint32)(v.ptr) = uint32(x) + case Uint64: + *(*uint64)(v.ptr) = x + case Uintptr: + *(*uintptr)(v.ptr) = uintptr(x) + } +} + +// SetPointer sets the unsafe.Pointer value v to x. +// It panics if v's Kind is not UnsafePointer. +func (v Value) SetPointer(x unsafe.Pointer) { + v.mustBeAssignable() + v.mustBe(UnsafePointer) + *(*unsafe.Pointer)(v.ptr) = x +} + +// SetString sets v's underlying value to x. +// It panics if v's Kind is not String or if CanSet() is false. +func (v Value) SetString(x string) { + v.mustBeAssignable() + v.mustBe(String) + *(*string)(v.ptr) = x +} + +// Slice returns v[i:j]. +// It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array, +// or if the indexes are out of bounds. +func (v Value) Slice(i, j int) Value { + var ( + cap int + typ *sliceType + base unsafe.Pointer + ) + switch kind := v.kind(); kind { + default: + panic(&ValueError{"reflect.Value.Slice", v.kind()}) + + case Array: + if v.flag&flagAddr == 0 { + panic("reflect.Value.Slice: slice of unaddressable array") + } + tt := (*arrayType)(unsafe.Pointer(v.typ)) + cap = int(tt.len) + typ = (*sliceType)(unsafe.Pointer(tt.slice)) + base = v.ptr + + case Slice: + typ = (*sliceType)(unsafe.Pointer(v.typ)) + s := (*unsafeheader.Slice)(v.ptr) + base = s.Data + cap = s.Cap + + case String: + s := (*unsafeheader.String)(v.ptr) + if i < 0 || j < i || j > s.Len { + panic("reflect.Value.Slice: string slice index out of bounds") + } + var t unsafeheader.String + if i < s.Len { + t = unsafeheader.String{Data: arrayAt(s.Data, i, 1, "i < s.Len"), Len: j - i} + } + return Value{v.typ, unsafe.Pointer(&t), v.flag} + } + + if i < 0 || j < i || j > cap { + panic("reflect.Value.Slice: slice index out of bounds") + } + + // Declare slice so that gc can see the base pointer in it. + var x []unsafe.Pointer + + // Reinterpret as *unsafeheader.Slice to edit. + s := (*unsafeheader.Slice)(unsafe.Pointer(&x)) + s.Len = j - i + s.Cap = cap - i + if cap-i > 0 { + s.Data = arrayAt(base, i, typ.elem.Size(), "i < cap") + } else { + // do not advance pointer, to avoid pointing beyond end of slice + s.Data = base + } + + fl := v.flag.ro() | flagIndir | flag(Slice) + return Value{typ.common(), unsafe.Pointer(&x), fl} +} + +// Slice3 is the 3-index form of the slice operation: it returns v[i:j:k]. +// It panics if v's Kind is not Array or Slice, or if v is an unaddressable array, +// or if the indexes are out of bounds. +func (v Value) Slice3(i, j, k int) Value { + var ( + cap int + typ *sliceType + base unsafe.Pointer + ) + switch kind := v.kind(); kind { + default: + panic(&ValueError{"reflect.Value.Slice3", v.kind()}) + + case Array: + if v.flag&flagAddr == 0 { + panic("reflect.Value.Slice3: slice of unaddressable array") + } + tt := (*arrayType)(unsafe.Pointer(v.typ)) + cap = int(tt.len) + typ = (*sliceType)(unsafe.Pointer(tt.slice)) + base = v.ptr + + case Slice: + typ = (*sliceType)(unsafe.Pointer(v.typ)) + s := (*unsafeheader.Slice)(v.ptr) + base = s.Data + cap = s.Cap + } + + if i < 0 || j < i || k < j || k > cap { + panic("reflect.Value.Slice3: slice index out of bounds") + } + + // Declare slice so that the garbage collector + // can see the base pointer in it. + var x []unsafe.Pointer + + // Reinterpret as *unsafeheader.Slice to edit. + s := (*unsafeheader.Slice)(unsafe.Pointer(&x)) + s.Len = j - i + s.Cap = k - i + if k-i > 0 { + s.Data = arrayAt(base, i, typ.elem.Size(), "i < k <= cap") + } else { + // do not advance pointer, to avoid pointing beyond end of slice + s.Data = base + } + + fl := v.flag.ro() | flagIndir | flag(Slice) + return Value{typ.common(), unsafe.Pointer(&x), fl} +} + +// String returns the string v's underlying value, as a string. +// String is a special case because of Go's String method convention. +// Unlike the other getters, it does not panic if v's Kind is not String. +// Instead, it returns a string of the form "<T value>" where T is v's type. +// The fmt package treats Values specially. It does not call their String +// method implicitly but instead prints the concrete values they hold. +func (v Value) String() string { + switch k := v.kind(); k { + case Invalid: + return "<invalid Value>" + case String: + return *(*string)(v.ptr) + } + // If you call String on a reflect.Value of other type, it's better to + // print something than to panic. Useful in debugging. + return "<" + v.Type().String() + " Value>" +} + +// TryRecv attempts to receive a value from the channel v but will not block. +// It panics if v's Kind is not Chan. +// If the receive delivers a value, x is the transferred value and ok is true. +// If the receive cannot finish without blocking, x is the zero Value and ok is false. +// If the channel is closed, x is the zero value for the channel's element type and ok is false. +func (v Value) TryRecv() (x Value, ok bool) { + v.mustBe(Chan) + v.mustBeExported() + return v.recv(true) +} + +// TrySend attempts to send x on the channel v but will not block. +// It panics if v's Kind is not Chan. +// It reports whether the value was sent. +// As in Go, x's value must be assignable to the channel's element type. +func (v Value) TrySend(x Value) bool { + v.mustBe(Chan) + v.mustBeExported() + return v.send(x, true) +} + +// Type returns v's type. +func (v Value) Type() Type { + f := v.flag + if f == 0 { + panic(&ValueError{"reflect.Value.Type", Invalid}) + } + if f&flagMethod == 0 { + // Easy case + return v.typ + } + + // Method value. + // v.typ describes the receiver, not the method type. + i := int(v.flag) >> flagMethodShift + if v.typ.Kind() == Interface { + // Method on interface. + tt := (*interfaceType)(unsafe.Pointer(v.typ)) + if uint(i) >= uint(len(tt.methods)) { + panic("reflect: internal error: invalid method index") + } + m := &tt.methods[i] + return v.typ.typeOff(m.typ) + } + // Method on concrete type. + ms := v.typ.exportedMethods() + if uint(i) >= uint(len(ms)) { + panic("reflect: internal error: invalid method index") + } + m := ms[i] + return v.typ.typeOff(m.mtyp) +} + +// CanUint reports whether Uint can be used without panicking. +func (v Value) CanUint() bool { + switch v.kind() { + case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: + return true + default: + return false + } +} + +// Uint returns v's underlying value, as a uint64. +// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64. +func (v Value) Uint() uint64 { + k := v.kind() + p := v.ptr + switch k { + case Uint: + return uint64(*(*uint)(p)) + case Uint8: + return uint64(*(*uint8)(p)) + case Uint16: + return uint64(*(*uint16)(p)) + case Uint32: + return uint64(*(*uint32)(p)) + case Uint64: + return *(*uint64)(p) + case Uintptr: + return uint64(*(*uintptr)(p)) + } + panic(&ValueError{"reflect.Value.Uint", v.kind()}) +} + +//go:nocheckptr +// This prevents inlining Value.UnsafeAddr when -d=checkptr is enabled, +// which ensures cmd/compile can recognize unsafe.Pointer(v.UnsafeAddr()) +// and make an exception. + +// UnsafeAddr returns a pointer to v's data, as a uintptr. +// It is for advanced clients that also import the "unsafe" package. +// It panics if v is not addressable. +// +// It's preferred to use uintptr(Value.Addr().UnsafePointer()) to get the equivalent result. +func (v Value) UnsafeAddr() uintptr { + if v.typ == nil { + panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid}) + } + if v.flag&flagAddr == 0 { + panic("reflect.Value.UnsafeAddr of unaddressable value") + } + return uintptr(v.ptr) +} + +// UnsafePointer returns v's value as a unsafe.Pointer. +// It panics if v's Kind is not Chan, Func, Map, Pointer, Slice, or UnsafePointer. +// +// If v's Kind is Func, the returned pointer is an underlying +// code pointer, but not necessarily enough to identify a +// single function uniquely. The only guarantee is that the +// result is zero if and only if v is a nil func Value. +// +// If v's Kind is Slice, the returned pointer is to the first +// element of the slice. If the slice is nil the returned value +// is nil. If the slice is empty but non-nil the return value is non-nil. +func (v Value) UnsafePointer() unsafe.Pointer { + k := v.kind() + switch k { + case Pointer: + if v.typ.ptrdata == 0 { + // Since it is a not-in-heap pointer, all pointers to the heap are + // forbidden! See comment in Value.Elem and issue #48399. + if !verifyNotInHeapPtr(*(*uintptr)(v.ptr)) { + panic("reflect: reflect.Value.UnsafePointer on an invalid notinheap pointer") + } + return *(*unsafe.Pointer)(v.ptr) + } + fallthrough + case Chan, Map, UnsafePointer: + return v.pointer() + case Func: + if v.flag&flagMethod != 0 { + // As the doc comment says, the returned pointer is an + // underlying code pointer but not necessarily enough to + // identify a single function uniquely. All method expressions + // created via reflect have the same underlying code pointer, + // so their Pointers are equal. The function used here must + // match the one used in makeMethodValue. + code := methodValueCallCodePtr() + return *(*unsafe.Pointer)(unsafe.Pointer(&code)) + } + p := v.pointer() + // Non-nil func value points at data block. + // First word of data block is actual code. + if p != nil { + p = *(*unsafe.Pointer)(p) + } + return p + + case Slice: + return (*unsafeheader.Slice)(v.ptr).Data + } + panic(&ValueError{"reflect.Value.UnsafePointer", v.kind()}) +} + +// StringHeader is the runtime representation of a string. +// It cannot be used safely or portably and its representation may +// change in a later release. +// Moreover, the Data field is not sufficient to guarantee the data +// it references will not be garbage collected, so programs must keep +// a separate, correctly typed pointer to the underlying data. +type StringHeader struct { + Data uintptr + Len int +} + +// SliceHeader is the runtime representation of a slice. +// It cannot be used safely or portably and its representation may +// change in a later release. +// Moreover, the Data field is not sufficient to guarantee the data +// it references will not be garbage collected, so programs must keep +// a separate, correctly typed pointer to the underlying data. +type SliceHeader struct { + Data uintptr + Len int + Cap int +} + +func typesMustMatch(what string, t1, t2 Type) { + if t1 != t2 { + panic(what + ": " + t1.String() + " != " + t2.String()) + } +} + +// arrayAt returns the i-th element of p, +// an array whose elements are eltSize bytes wide. +// The array pointed at by p must have at least i+1 elements: +// it is invalid (but impossible to check here) to pass i >= len, +// because then the result will point outside the array. +// whySafe must explain why i < len. (Passing "i < len" is fine; +// the benefit is to surface this assumption at the call site.) +func arrayAt(p unsafe.Pointer, i int, eltSize uintptr, whySafe string) unsafe.Pointer { + return add(p, uintptr(i)*eltSize, "i < len") +} + +// grow grows the slice s so that it can hold extra more values, allocating +// more capacity if needed. It also returns the old and new slice lengths. +func grow(s Value, extra int) (Value, int, int) { + i0 := s.Len() + i1 := i0 + extra + if i1 < i0 { + panic("reflect.Append: slice overflow") + } + m := s.Cap() + if i1 <= m { + return s.Slice(0, i1), i0, i1 + } + if m == 0 { + m = extra + } else { + const threshold = 256 + for m < i1 { + if i0 < threshold { + m += m + } else { + m += (m + 3*threshold) / 4 + } + } + } + t := MakeSlice(s.Type(), i1, m) + Copy(t, s) + return t, i0, i1 +} + +// Append appends the values x to a slice s and returns the resulting slice. +// As in Go, each x's value must be assignable to the slice's element type. +func Append(s Value, x ...Value) Value { + s.mustBe(Slice) + s, i0, i1 := grow(s, len(x)) + for i, j := i0, 0; i < i1; i, j = i+1, j+1 { + s.Index(i).Set(x[j]) + } + return s +} + +// AppendSlice appends a slice t to a slice s and returns the resulting slice. +// The slices s and t must have the same element type. +func AppendSlice(s, t Value) Value { + s.mustBe(Slice) + t.mustBe(Slice) + typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem()) + s, i0, i1 := grow(s, t.Len()) + Copy(s.Slice(i0, i1), t) + return s +} + +// Copy copies the contents of src into dst until either +// dst has been filled or src has been exhausted. +// It returns the number of elements copied. +// Dst and src each must have kind Slice or Array, and +// dst and src must have the same element type. +// +// As a special case, src can have kind String if the element type of dst is kind Uint8. +func Copy(dst, src Value) int { + dk := dst.kind() + if dk != Array && dk != Slice { + panic(&ValueError{"reflect.Copy", dk}) + } + if dk == Array { + dst.mustBeAssignable() + } + dst.mustBeExported() + + sk := src.kind() + var stringCopy bool + if sk != Array && sk != Slice { + stringCopy = sk == String && dst.typ.Elem().Kind() == Uint8 + if !stringCopy { + panic(&ValueError{"reflect.Copy", sk}) + } + } + src.mustBeExported() + + de := dst.typ.Elem() + if !stringCopy { + se := src.typ.Elem() + typesMustMatch("reflect.Copy", de, se) + } + + var ds, ss unsafeheader.Slice + if dk == Array { + ds.Data = dst.ptr + ds.Len = dst.Len() + ds.Cap = ds.Len + } else { + ds = *(*unsafeheader.Slice)(dst.ptr) + } + if sk == Array { + ss.Data = src.ptr + ss.Len = src.Len() + ss.Cap = ss.Len + } else if sk == Slice { + ss = *(*unsafeheader.Slice)(src.ptr) + } else { + sh := *(*unsafeheader.String)(src.ptr) + ss.Data = sh.Data + ss.Len = sh.Len + ss.Cap = sh.Len + } + + return typedslicecopy(de.common(), ds, ss) +} + +// A runtimeSelect is a single case passed to rselect. +// This must match ../runtime/select.go:/runtimeSelect +type runtimeSelect struct { + dir SelectDir // SelectSend, SelectRecv or SelectDefault + typ *rtype // channel type + ch unsafe.Pointer // channel + val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir) +} + +// rselect runs a select. It returns the index of the chosen case. +// If the case was a receive, val is filled in with the received value. +// The conventional OK bool indicates whether the receive corresponds +// to a sent value. +//go:noescape +func rselect([]runtimeSelect) (chosen int, recvOK bool) + +// A SelectDir describes the communication direction of a select case. +type SelectDir int + +// NOTE: These values must match ../runtime/select.go:/selectDir. + +const ( + _ SelectDir = iota + SelectSend // case Chan <- Send + SelectRecv // case <-Chan: + SelectDefault // default +) + +// A SelectCase describes a single case in a select operation. +// The kind of case depends on Dir, the communication direction. +// +// If Dir is SelectDefault, the case represents a default case. +// Chan and Send must be zero Values. +// +// If Dir is SelectSend, the case represents a send operation. +// Normally Chan's underlying value must be a channel, and Send's underlying value must be +// assignable to the channel's element type. As a special case, if Chan is a zero Value, +// then the case is ignored, and the field Send will also be ignored and may be either zero +// or non-zero. +// +// If Dir is SelectRecv, the case represents a receive operation. +// Normally Chan's underlying value must be a channel and Send must be a zero Value. +// If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value. +// When a receive operation is selected, the received Value is returned by Select. +// +type SelectCase struct { + Dir SelectDir // direction of case + Chan Value // channel to use (for send or receive) + Send Value // value to send (for send) +} + +// Select executes a select operation described by the list of cases. +// Like the Go select statement, it blocks until at least one of the cases +// can proceed, makes a uniform pseudo-random choice, +// and then executes that case. It returns the index of the chosen case +// and, if that case was a receive operation, the value received and a +// boolean indicating whether the value corresponds to a send on the channel +// (as opposed to a zero value received because the channel is closed). +// Select supports a maximum of 65536 cases. +func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) { + if len(cases) > 65536 { + panic("reflect.Select: too many cases (max 65536)") + } + // NOTE: Do not trust that caller is not modifying cases data underfoot. + // The range is safe because the caller cannot modify our copy of the len + // and each iteration makes its own copy of the value c. + var runcases []runtimeSelect + if len(cases) > 4 { + // Slice is heap allocated due to runtime dependent capacity. + runcases = make([]runtimeSelect, len(cases)) + } else { + // Slice can be stack allocated due to constant capacity. + runcases = make([]runtimeSelect, len(cases), 4) + } + + haveDefault := false + for i, c := range cases { + rc := &runcases[i] + rc.dir = c.Dir + switch c.Dir { + default: + panic("reflect.Select: invalid Dir") + + case SelectDefault: // default + if haveDefault { + panic("reflect.Select: multiple default cases") + } + haveDefault = true + if c.Chan.IsValid() { + panic("reflect.Select: default case has Chan value") + } + if c.Send.IsValid() { + panic("reflect.Select: default case has Send value") + } + + case SelectSend: + ch := c.Chan + if !ch.IsValid() { + break + } + ch.mustBe(Chan) + ch.mustBeExported() + tt := (*chanType)(unsafe.Pointer(ch.typ)) + if ChanDir(tt.dir)&SendDir == 0 { + panic("reflect.Select: SendDir case using recv-only channel") + } + rc.ch = ch.pointer() + rc.typ = &tt.rtype + v := c.Send + if !v.IsValid() { + panic("reflect.Select: SendDir case missing Send value") + } + v.mustBeExported() + v = v.assignTo("reflect.Select", tt.elem, nil) + if v.flag&flagIndir != 0 { + rc.val = v.ptr + } else { + rc.val = unsafe.Pointer(&v.ptr) + } + + case SelectRecv: + if c.Send.IsValid() { + panic("reflect.Select: RecvDir case has Send value") + } + ch := c.Chan + if !ch.IsValid() { + break + } + ch.mustBe(Chan) + ch.mustBeExported() + tt := (*chanType)(unsafe.Pointer(ch.typ)) + if ChanDir(tt.dir)&RecvDir == 0 { + panic("reflect.Select: RecvDir case using send-only channel") + } + rc.ch = ch.pointer() + rc.typ = &tt.rtype + rc.val = unsafe_New(tt.elem) + } + } + + chosen, recvOK = rselect(runcases) + if runcases[chosen].dir == SelectRecv { + tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ)) + t := tt.elem + p := runcases[chosen].val + fl := flag(t.Kind()) + if ifaceIndir(t) { + recv = Value{t, p, fl | flagIndir} + } else { + recv = Value{t, *(*unsafe.Pointer)(p), fl} + } + } + return chosen, recv, recvOK +} + +/* + * constructors + */ + +// implemented in package runtime +func unsafe_New(*rtype) unsafe.Pointer +func unsafe_NewArray(*rtype, int) unsafe.Pointer + +// MakeSlice creates a new zero-initialized slice value +// for the specified slice type, length, and capacity. +func MakeSlice(typ Type, len, cap int) Value { + if typ.Kind() != Slice { + panic("reflect.MakeSlice of non-slice type") + } + if len < 0 { + panic("reflect.MakeSlice: negative len") + } + if cap < 0 { + panic("reflect.MakeSlice: negative cap") + } + if len > cap { + panic("reflect.MakeSlice: len > cap") + } + + s := unsafeheader.Slice{Data: unsafe_NewArray(typ.Elem().(*rtype), cap), Len: len, Cap: cap} + return Value{typ.(*rtype), unsafe.Pointer(&s), flagIndir | flag(Slice)} +} + +// MakeChan creates a new channel with the specified type and buffer size. +func MakeChan(typ Type, buffer int) Value { + if typ.Kind() != Chan { + panic("reflect.MakeChan of non-chan type") + } + if buffer < 0 { + panic("reflect.MakeChan: negative buffer size") + } + if typ.ChanDir() != BothDir { + panic("reflect.MakeChan: unidirectional channel type") + } + t := typ.(*rtype) + ch := makechan(t, buffer) + return Value{t, ch, flag(Chan)} +} + +// MakeMap creates a new map with the specified type. +func MakeMap(typ Type) Value { + return MakeMapWithSize(typ, 0) +} + +// MakeMapWithSize creates a new map with the specified type +// and initial space for approximately n elements. +func MakeMapWithSize(typ Type, n int) Value { + if typ.Kind() != Map { + panic("reflect.MakeMapWithSize of non-map type") + } + t := typ.(*rtype) + m := makemap(t, n) + return Value{t, m, flag(Map)} +} + +// Indirect returns the value that v points to. +// If v is a nil pointer, Indirect returns a zero Value. +// If v is not a pointer, Indirect returns v. +func Indirect(v Value) Value { + if v.Kind() != Pointer { + return v + } + return v.Elem() +} + +// ValueOf returns a new Value initialized to the concrete value +// stored in the interface i. ValueOf(nil) returns the zero Value. +func ValueOf(i any) Value { + if i == nil { + return Value{} + } + + // TODO: Maybe allow contents of a Value to live on the stack. + // For now we make the contents always escape to the heap. It + // makes life easier in a few places (see chanrecv/mapassign + // comment below). + escapes(i) + + return unpackEface(i) +} + +// Zero returns a Value representing the zero value for the specified type. +// The result is different from the zero value of the Value struct, +// which represents no value at all. +// For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0. +// The returned value is neither addressable nor settable. +func Zero(typ Type) Value { + if typ == nil { + panic("reflect: Zero(nil)") + } + t := typ.(*rtype) + fl := flag(t.Kind()) + if ifaceIndir(t) { + var p unsafe.Pointer + if t.size <= maxZero { + p = unsafe.Pointer(&zeroVal[0]) + } else { + p = unsafe_New(t) + } + return Value{t, p, fl | flagIndir} + } + return Value{t, nil, fl} +} + +// must match declarations in runtime/map.go. +const maxZero = 1024 + +//go:linkname zeroVal runtime.zeroVal +var zeroVal [maxZero]byte + +// New returns a Value representing a pointer to a new zero value +// for the specified type. That is, the returned Value's Type is PointerTo(typ). +func New(typ Type) Value { + if typ == nil { + panic("reflect: New(nil)") + } + t := typ.(*rtype) + pt := t.ptrTo() + if ifaceIndir(pt) { + // This is a pointer to a go:notinheap type. + panic("reflect: New of type that may not be allocated in heap (possibly undefined cgo C type)") + } + ptr := unsafe_New(t) + fl := flag(Pointer) + return Value{pt, ptr, fl} +} + +// NewAt returns a Value representing a pointer to a value of the +// specified type, using p as that pointer. +func NewAt(typ Type, p unsafe.Pointer) Value { + fl := flag(Pointer) + t := typ.(*rtype) + return Value{t.ptrTo(), p, fl} +} + +// assignTo returns a value v that can be assigned directly to typ. +// It panics if v is not assignable to typ. +// For a conversion to an interface type, target is a suggested scratch space to use. +// target must be initialized memory (or nil). +func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value { + if v.flag&flagMethod != 0 { + v = makeMethodValue(context, v) + } + + switch { + case directlyAssignable(dst, v.typ): + // Overwrite type so that they match. + // Same memory layout, so no harm done. + fl := v.flag&(flagAddr|flagIndir) | v.flag.ro() + fl |= flag(dst.Kind()) + return Value{dst, v.ptr, fl} + + case implements(dst, v.typ): + if target == nil { + target = unsafe_New(dst) + } + if v.Kind() == Interface && v.IsNil() { + // A nil ReadWriter passed to nil Reader is OK, + // but using ifaceE2I below will panic. + // Avoid the panic by returning a nil dst (e.g., Reader) explicitly. + return Value{dst, nil, flag(Interface)} + } + x := valueInterface(v, false) + if dst.NumMethod() == 0 { + *(*any)(target) = x + } else { + ifaceE2I(dst, x, target) + } + return Value{dst, target, flagIndir | flag(Interface)} + } + + // Failed. + panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String()) +} + +// Convert returns the value v converted to type t. +// If the usual Go conversion rules do not allow conversion +// of the value v to type t, or if converting v to type t panics, Convert panics. +func (v Value) Convert(t Type) Value { + if v.flag&flagMethod != 0 { + v = makeMethodValue("Convert", v) + } + op := convertOp(t.common(), v.typ) + if op == nil { + panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String()) + } + return op(v, t) +} + +// CanConvert reports whether the value v can be converted to type t. +// If v.CanConvert(t) returns true then v.Convert(t) will not panic. +func (v Value) CanConvert(t Type) bool { + vt := v.Type() + if !vt.ConvertibleTo(t) { + return false + } + // Currently the only conversion that is OK in terms of type + // but that can panic depending on the value is converting + // from slice to pointer-to-array. + if vt.Kind() == Slice && t.Kind() == Pointer && t.Elem().Kind() == Array { + n := t.Elem().Len() + if n > v.Len() { + return false + } + } + return true +} + +// convertOp returns the function to convert a value of type src +// to a value of type dst. If the conversion is illegal, convertOp returns nil. +func convertOp(dst, src *rtype) func(Value, Type) Value { + switch src.Kind() { + case Int, Int8, Int16, Int32, Int64: + switch dst.Kind() { + case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: + return cvtInt + case Float32, Float64: + return cvtIntFloat + case String: + return cvtIntString + } + + case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: + switch dst.Kind() { + case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: + return cvtUint + case Float32, Float64: + return cvtUintFloat + case String: + return cvtUintString + } + + case Float32, Float64: + switch dst.Kind() { + case Int, Int8, Int16, Int32, Int64: + return cvtFloatInt + case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: + return cvtFloatUint + case Float32, Float64: + return cvtFloat + } + + case Complex64, Complex128: + switch dst.Kind() { + case Complex64, Complex128: + return cvtComplex + } + + case String: + if dst.Kind() == Slice && dst.Elem().PkgPath() == "" { + switch dst.Elem().Kind() { + case Uint8: + return cvtStringBytes + case Int32: + return cvtStringRunes + } + } + + case Slice: + if dst.Kind() == String && src.Elem().PkgPath() == "" { + switch src.Elem().Kind() { + case Uint8: + return cvtBytesString + case Int32: + return cvtRunesString + } + } + // "x is a slice, T is a pointer-to-array type, + // and the slice and array types have identical element types." + if dst.Kind() == Pointer && dst.Elem().Kind() == Array && src.Elem() == dst.Elem().Elem() { + return cvtSliceArrayPtr + } + + case Chan: + if dst.Kind() == Chan && specialChannelAssignability(dst, src) { + return cvtDirect + } + } + + // dst and src have same underlying type. + if haveIdenticalUnderlyingType(dst, src, false) { + return cvtDirect + } + + // dst and src are non-defined pointer types with same underlying base type. + if dst.Kind() == Pointer && dst.Name() == "" && + src.Kind() == Pointer && src.Name() == "" && + haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common(), false) { + return cvtDirect + } + + if implements(dst, src) { + if src.Kind() == Interface { + return cvtI2I + } + return cvtT2I + } + + return nil +} + +// makeInt returns a Value of type t equal to bits (possibly truncated), +// where t is a signed or unsigned int type. +func makeInt(f flag, bits uint64, t Type) Value { + typ := t.common() + ptr := unsafe_New(typ) + switch typ.size { + case 1: + *(*uint8)(ptr) = uint8(bits) + case 2: + *(*uint16)(ptr) = uint16(bits) + case 4: + *(*uint32)(ptr) = uint32(bits) + case 8: + *(*uint64)(ptr) = bits + } + return Value{typ, ptr, f | flagIndir | flag(typ.Kind())} +} + +// makeFloat returns a Value of type t equal to v (possibly truncated to float32), +// where t is a float32 or float64 type. +func makeFloat(f flag, v float64, t Type) Value { + typ := t.common() + ptr := unsafe_New(typ) + switch typ.size { + case 4: + *(*float32)(ptr) = float32(v) + case 8: + *(*float64)(ptr) = v + } + return Value{typ, ptr, f | flagIndir | flag(typ.Kind())} +} + +// makeFloat returns a Value of type t equal to v, where t is a float32 type. +func makeFloat32(f flag, v float32, t Type) Value { + typ := t.common() + ptr := unsafe_New(typ) + *(*float32)(ptr) = v + return Value{typ, ptr, f | flagIndir | flag(typ.Kind())} +} + +// makeComplex returns a Value of type t equal to v (possibly truncated to complex64), +// where t is a complex64 or complex128 type. +func makeComplex(f flag, v complex128, t Type) Value { + typ := t.common() + ptr := unsafe_New(typ) + switch typ.size { + case 8: + *(*complex64)(ptr) = complex64(v) + case 16: + *(*complex128)(ptr) = v + } + return Value{typ, ptr, f | flagIndir | flag(typ.Kind())} +} + +func makeString(f flag, v string, t Type) Value { + ret := New(t).Elem() + ret.SetString(v) + ret.flag = ret.flag&^flagAddr | f + return ret +} + +func makeBytes(f flag, v []byte, t Type) Value { + ret := New(t).Elem() + ret.SetBytes(v) + ret.flag = ret.flag&^flagAddr | f + return ret +} + +func makeRunes(f flag, v []rune, t Type) Value { + ret := New(t).Elem() + ret.setRunes(v) + ret.flag = ret.flag&^flagAddr | f + return ret +} + +// These conversion functions are returned by convertOp +// for classes of conversions. For example, the first function, cvtInt, +// takes any value v of signed int type and returns the value converted +// to type t, where t is any signed or unsigned int type. + +// convertOp: intXX -> [u]intXX +func cvtInt(v Value, t Type) Value { + return makeInt(v.flag.ro(), uint64(v.Int()), t) +} + +// convertOp: uintXX -> [u]intXX +func cvtUint(v Value, t Type) Value { + return makeInt(v.flag.ro(), v.Uint(), t) +} + +// convertOp: floatXX -> intXX +func cvtFloatInt(v Value, t Type) Value { + return makeInt(v.flag.ro(), uint64(int64(v.Float())), t) +} + +// convertOp: floatXX -> uintXX +func cvtFloatUint(v Value, t Type) Value { + return makeInt(v.flag.ro(), uint64(v.Float()), t) +} + +// convertOp: intXX -> floatXX +func cvtIntFloat(v Value, t Type) Value { + return makeFloat(v.flag.ro(), float64(v.Int()), t) +} + +// convertOp: uintXX -> floatXX +func cvtUintFloat(v Value, t Type) Value { + return makeFloat(v.flag.ro(), float64(v.Uint()), t) +} + +// convertOp: floatXX -> floatXX +func cvtFloat(v Value, t Type) Value { + if v.Type().Kind() == Float32 && t.Kind() == Float32 { + // Don't do any conversion if both types have underlying type float32. + // This avoids converting to float64 and back, which will + // convert a signaling NaN to a quiet NaN. See issue 36400. + return makeFloat32(v.flag.ro(), *(*float32)(v.ptr), t) + } + return makeFloat(v.flag.ro(), v.Float(), t) +} + +// convertOp: complexXX -> complexXX +func cvtComplex(v Value, t Type) Value { + return makeComplex(v.flag.ro(), v.Complex(), t) +} + +// convertOp: intXX -> string +func cvtIntString(v Value, t Type) Value { + s := "\uFFFD" + if x := v.Int(); int64(rune(x)) == x { + s = string(rune(x)) + } + return makeString(v.flag.ro(), s, t) +} + +// convertOp: uintXX -> string +func cvtUintString(v Value, t Type) Value { + s := "\uFFFD" + if x := v.Uint(); uint64(rune(x)) == x { + s = string(rune(x)) + } + return makeString(v.flag.ro(), s, t) +} + +// convertOp: []byte -> string +func cvtBytesString(v Value, t Type) Value { + return makeString(v.flag.ro(), string(v.Bytes()), t) +} + +// convertOp: string -> []byte +func cvtStringBytes(v Value, t Type) Value { + return makeBytes(v.flag.ro(), []byte(v.String()), t) +} + +// convertOp: []rune -> string +func cvtRunesString(v Value, t Type) Value { + return makeString(v.flag.ro(), string(v.runes()), t) +} + +// convertOp: string -> []rune +func cvtStringRunes(v Value, t Type) Value { + return makeRunes(v.flag.ro(), []rune(v.String()), t) +} + +// convertOp: []T -> *[N]T +func cvtSliceArrayPtr(v Value, t Type) Value { + n := t.Elem().Len() + if n > v.Len() { + panic("reflect: cannot convert slice with length " + itoa.Itoa(v.Len()) + " to pointer to array with length " + itoa.Itoa(n)) + } + h := (*unsafeheader.Slice)(v.ptr) + return Value{t.common(), h.Data, v.flag&^(flagIndir|flagAddr|flagKindMask) | flag(Pointer)} +} + +// convertOp: direct copy +func cvtDirect(v Value, typ Type) Value { + f := v.flag + t := typ.common() + ptr := v.ptr + if f&flagAddr != 0 { + // indirect, mutable word - make a copy + c := unsafe_New(t) + typedmemmove(t, c, ptr) + ptr = c + f &^= flagAddr + } + return Value{t, ptr, v.flag.ro() | f} // v.flag.ro()|f == f? +} + +// convertOp: concrete -> interface +func cvtT2I(v Value, typ Type) Value { + target := unsafe_New(typ.common()) + x := valueInterface(v, false) + if typ.NumMethod() == 0 { + *(*any)(target) = x + } else { + ifaceE2I(typ.(*rtype), x, target) + } + return Value{typ.common(), target, v.flag.ro() | flagIndir | flag(Interface)} +} + +// convertOp: interface -> interface +func cvtI2I(v Value, typ Type) Value { + if v.IsNil() { + ret := Zero(typ) + ret.flag |= v.flag.ro() + return ret + } + return cvtT2I(v.Elem(), typ) +} + +// implemented in ../runtime +func chancap(ch unsafe.Pointer) int +func chanclose(ch unsafe.Pointer) +func chanlen(ch unsafe.Pointer) int + +// Note: some of the noescape annotations below are technically a lie, +// but safe in the context of this package. Functions like chansend +// and mapassign don't escape the referent, but may escape anything +// the referent points to (they do shallow copies of the referent). +// It is safe in this package because the referent may only point +// to something a Value may point to, and that is always in the heap +// (due to the escapes() call in ValueOf). + +//go:noescape +func chanrecv(ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool) + +//go:noescape +func chansend(ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool + +func makechan(typ *rtype, size int) (ch unsafe.Pointer) +func makemap(t *rtype, cap int) (m unsafe.Pointer) + +//go:noescape +func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer) + +//go:noescape +func mapaccess_faststr(t *rtype, m unsafe.Pointer, key string) (val unsafe.Pointer) + +//go:noescape +func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer) + +//go:noescape +func mapassign_faststr(t *rtype, m unsafe.Pointer, key string, val unsafe.Pointer) + +//go:noescape +func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer) + +//go:noescape +func mapdelete_faststr(t *rtype, m unsafe.Pointer, key string) + +//go:noescape +func mapiterinit(t *rtype, m unsafe.Pointer, it *hiter) + +//go:noescape +func mapiterkey(it *hiter) (key unsafe.Pointer) + +//go:noescape +func mapiterelem(it *hiter) (elem unsafe.Pointer) + +//go:noescape +func mapiternext(it *hiter) + +//go:noescape +func maplen(m unsafe.Pointer) int + +// call calls fn with "stackArgsSize" bytes of stack arguments laid out +// at stackArgs and register arguments laid out in regArgs. frameSize is +// the total amount of stack space that will be reserved by call, so this +// should include enough space to spill register arguments to the stack in +// case of preemption. +// +// After fn returns, call copies stackArgsSize-stackRetOffset result bytes +// back into stackArgs+stackRetOffset before returning, for any return +// values passed on the stack. Register-based return values will be found +// in the same regArgs structure. +// +// regArgs must also be prepared with an appropriate ReturnIsPtr bitmap +// indicating which registers will contain pointer-valued return values. The +// purpose of this bitmap is to keep pointers visible to the GC between +// returning from reflectcall and actually using them. +// +// If copying result bytes back from the stack, the caller must pass the +// argument frame type as stackArgsType, so that call can execute appropriate +// write barriers during the copy. +// +// Arguments passed through to call do not escape. The type is used only in a +// very limited callee of call, the stackArgs are copied, and regArgs is only +// used in the call frame. +//go:noescape +//go:linkname call runtime.reflectcall +func call(stackArgsType *rtype, f, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs) + +func ifaceE2I(t *rtype, src any, dst unsafe.Pointer) + +// memmove copies size bytes to dst from src. No write barriers are used. +//go:noescape +func memmove(dst, src unsafe.Pointer, size uintptr) + +// typedmemmove copies a value of type t to dst from src. +//go:noescape +func typedmemmove(t *rtype, dst, src unsafe.Pointer) + +// typedmemmovepartial is like typedmemmove but assumes that +// dst and src point off bytes into the value and only copies size bytes. +//go:noescape +func typedmemmovepartial(t *rtype, dst, src unsafe.Pointer, off, size uintptr) + +// typedmemclr zeros the value at ptr of type t. +//go:noescape +func typedmemclr(t *rtype, ptr unsafe.Pointer) + +// typedmemclrpartial is like typedmemclr but assumes that +// dst points off bytes into the value and only clears size bytes. +//go:noescape +func typedmemclrpartial(t *rtype, ptr unsafe.Pointer, off, size uintptr) + +// typedslicecopy copies a slice of elemType values from src to dst, +// returning the number of elements copied. +//go:noescape +func typedslicecopy(elemType *rtype, dst, src unsafeheader.Slice) int + +//go:noescape +func typehash(t *rtype, p unsafe.Pointer, h uintptr) uintptr + +func verifyNotInHeapPtr(p uintptr) bool + +// Dummy annotation marking that the value x escapes, +// for use in cases where the reflect code is so clever that +// the compiler cannot follow. +func escapes(x any) { + if dummy.b { + dummy.x = x + } +} + +var dummy struct { + b bool + x any +} |