aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.18/src/math/big
diff options
context:
space:
mode:
authorDaniil Cherednik <dan.cherednik@gmail.com>2022-11-24 13:14:34 +0300
committerDaniil Cherednik <dan.cherednik@gmail.com>2022-11-24 14:46:00 +0300
commit87f7fceed34bcafb8aaff351dd493a35c916986f (patch)
tree26809ec8f550aba8eb019e59adc3d48e51913eb2 /contrib/go/_std_1.18/src/math/big
parent11bc4015b8010ae201bf3eb33db7dba425aca35e (diff)
downloadydb-87f7fceed34bcafb8aaff351dd493a35c916986f.tar.gz
Ydb stable 22-4-4322.4.43
x-stable-origin-commit: 8d49d46cc834835bf3e50870516acd7376a63bcf
Diffstat (limited to 'contrib/go/_std_1.18/src/math/big')
-rw-r--r--contrib/go/_std_1.18/src/math/big/accuracy_string.go17
-rw-r--r--contrib/go/_std_1.18/src/math/big/arith.go277
-rw-r--r--contrib/go/_std_1.18/src/math/big/arith_amd64.go12
-rw-r--r--contrib/go/_std_1.18/src/math/big/arith_amd64.s526
-rw-r--r--contrib/go/_std_1.18/src/math/big/arith_decl.go19
-rw-r--r--contrib/go/_std_1.18/src/math/big/decimal.go270
-rw-r--r--contrib/go/_std_1.18/src/math/big/doc.go99
-rw-r--r--contrib/go/_std_1.18/src/math/big/float.go1732
-rw-r--r--contrib/go/_std_1.18/src/math/big/floatconv.go304
-rw-r--r--contrib/go/_std_1.18/src/math/big/floatmarsh.go120
-rw-r--r--contrib/go/_std_1.18/src/math/big/ftoa.go536
-rw-r--r--contrib/go/_std_1.18/src/math/big/int.go1218
-rw-r--r--contrib/go/_std_1.18/src/math/big/intconv.go257
-rw-r--r--contrib/go/_std_1.18/src/math/big/intmarsh.go80
-rw-r--r--contrib/go/_std_1.18/src/math/big/nat.go1244
-rw-r--r--contrib/go/_std_1.18/src/math/big/natconv.go512
-rw-r--r--contrib/go/_std_1.18/src/math/big/natdiv.go884
-rw-r--r--contrib/go/_std_1.18/src/math/big/prime.go320
-rw-r--r--contrib/go/_std_1.18/src/math/big/rat.go544
-rw-r--r--contrib/go/_std_1.18/src/math/big/ratconv.go380
-rw-r--r--contrib/go/_std_1.18/src/math/big/ratmarsh.go75
-rw-r--r--contrib/go/_std_1.18/src/math/big/roundingmode_string.go16
-rw-r--r--contrib/go/_std_1.18/src/math/big/sqrt.go128
23 files changed, 9570 insertions, 0 deletions
diff --git a/contrib/go/_std_1.18/src/math/big/accuracy_string.go b/contrib/go/_std_1.18/src/math/big/accuracy_string.go
new file mode 100644
index 0000000000..1501ace00d
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/accuracy_string.go
@@ -0,0 +1,17 @@
+// Code generated by "stringer -type=Accuracy"; DO NOT EDIT.
+
+package big
+
+import "strconv"
+
+const _Accuracy_name = "BelowExactAbove"
+
+var _Accuracy_index = [...]uint8{0, 5, 10, 15}
+
+func (i Accuracy) String() string {
+ i -= -1
+ if i < 0 || i >= Accuracy(len(_Accuracy_index)-1) {
+ return "Accuracy(" + strconv.FormatInt(int64(i+-1), 10) + ")"
+ }
+ return _Accuracy_name[_Accuracy_index[i]:_Accuracy_index[i+1]]
+}
diff --git a/contrib/go/_std_1.18/src/math/big/arith.go b/contrib/go/_std_1.18/src/math/big/arith.go
new file mode 100644
index 0000000000..8f55c195d4
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/arith.go
@@ -0,0 +1,277 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file provides Go implementations of elementary multi-precision
+// arithmetic operations on word vectors. These have the suffix _g.
+// These are needed for platforms without assembly implementations of these routines.
+// This file also contains elementary operations that can be implemented
+// sufficiently efficiently in Go.
+
+package big
+
+import "math/bits"
+
+// A Word represents a single digit of a multi-precision unsigned integer.
+type Word uint
+
+const (
+ _S = _W / 8 // word size in bytes
+
+ _W = bits.UintSize // word size in bits
+ _B = 1 << _W // digit base
+ _M = _B - 1 // digit mask
+)
+
+// Many of the loops in this file are of the form
+// for i := 0; i < len(z) && i < len(x) && i < len(y); i++
+// i < len(z) is the real condition.
+// However, checking i < len(x) && i < len(y) as well is faster than
+// having the compiler do a bounds check in the body of the loop;
+// remarkably it is even faster than hoisting the bounds check
+// out of the loop, by doing something like
+// _, _ = x[len(z)-1], y[len(z)-1]
+// There are other ways to hoist the bounds check out of the loop,
+// but the compiler's BCE isn't powerful enough for them (yet?).
+// See the discussion in CL 164966.
+
+// ----------------------------------------------------------------------------
+// Elementary operations on words
+//
+// These operations are used by the vector operations below.
+
+// z1<<_W + z0 = x*y
+func mulWW_g(x, y Word) (z1, z0 Word) {
+ hi, lo := bits.Mul(uint(x), uint(y))
+ return Word(hi), Word(lo)
+}
+
+// z1<<_W + z0 = x*y + c
+func mulAddWWW_g(x, y, c Word) (z1, z0 Word) {
+ hi, lo := bits.Mul(uint(x), uint(y))
+ var cc uint
+ lo, cc = bits.Add(lo, uint(c), 0)
+ return Word(hi + cc), Word(lo)
+}
+
+// nlz returns the number of leading zeros in x.
+// Wraps bits.LeadingZeros call for convenience.
+func nlz(x Word) uint {
+ return uint(bits.LeadingZeros(uint(x)))
+}
+
+// The resulting carry c is either 0 or 1.
+func addVV_g(z, x, y []Word) (c Word) {
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x) && i < len(y); i++ {
+ zi, cc := bits.Add(uint(x[i]), uint(y[i]), uint(c))
+ z[i] = Word(zi)
+ c = Word(cc)
+ }
+ return
+}
+
+// The resulting carry c is either 0 or 1.
+func subVV_g(z, x, y []Word) (c Word) {
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x) && i < len(y); i++ {
+ zi, cc := bits.Sub(uint(x[i]), uint(y[i]), uint(c))
+ z[i] = Word(zi)
+ c = Word(cc)
+ }
+ return
+}
+
+// The resulting carry c is either 0 or 1.
+func addVW_g(z, x []Word, y Word) (c Word) {
+ c = y
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x); i++ {
+ zi, cc := bits.Add(uint(x[i]), uint(c), 0)
+ z[i] = Word(zi)
+ c = Word(cc)
+ }
+ return
+}
+
+// addVWlarge is addVW, but intended for large z.
+// The only difference is that we check on every iteration
+// whether we are done with carries,
+// and if so, switch to a much faster copy instead.
+// This is only a good idea for large z,
+// because the overhead of the check and the function call
+// outweigh the benefits when z is small.
+func addVWlarge(z, x []Word, y Word) (c Word) {
+ c = y
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x); i++ {
+ if c == 0 {
+ copy(z[i:], x[i:])
+ return
+ }
+ zi, cc := bits.Add(uint(x[i]), uint(c), 0)
+ z[i] = Word(zi)
+ c = Word(cc)
+ }
+ return
+}
+
+func subVW_g(z, x []Word, y Word) (c Word) {
+ c = y
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x); i++ {
+ zi, cc := bits.Sub(uint(x[i]), uint(c), 0)
+ z[i] = Word(zi)
+ c = Word(cc)
+ }
+ return
+}
+
+// subVWlarge is to subVW as addVWlarge is to addVW.
+func subVWlarge(z, x []Word, y Word) (c Word) {
+ c = y
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x); i++ {
+ if c == 0 {
+ copy(z[i:], x[i:])
+ return
+ }
+ zi, cc := bits.Sub(uint(x[i]), uint(c), 0)
+ z[i] = Word(zi)
+ c = Word(cc)
+ }
+ return
+}
+
+func shlVU_g(z, x []Word, s uint) (c Word) {
+ if s == 0 {
+ copy(z, x)
+ return
+ }
+ if len(z) == 0 {
+ return
+ }
+ s &= _W - 1 // hint to the compiler that shifts by s don't need guard code
+ ŝ := _W - s
+ ŝ &= _W - 1 // ditto
+ c = x[len(z)-1] >> ŝ
+ for i := len(z) - 1; i > 0; i-- {
+ z[i] = x[i]<<s | x[i-1]>>ŝ
+ }
+ z[0] = x[0] << s
+ return
+}
+
+func shrVU_g(z, x []Word, s uint) (c Word) {
+ if s == 0 {
+ copy(z, x)
+ return
+ }
+ if len(z) == 0 {
+ return
+ }
+ if len(x) != len(z) {
+ // This is an invariant guaranteed by the caller.
+ panic("len(x) != len(z)")
+ }
+ s &= _W - 1 // hint to the compiler that shifts by s don't need guard code
+ ŝ := _W - s
+ ŝ &= _W - 1 // ditto
+ c = x[0] << ŝ
+ for i := 1; i < len(z); i++ {
+ z[i-1] = x[i-1]>>s | x[i]<<ŝ
+ }
+ z[len(z)-1] = x[len(z)-1] >> s
+ return
+}
+
+func mulAddVWW_g(z, x []Word, y, r Word) (c Word) {
+ c = r
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x); i++ {
+ c, z[i] = mulAddWWW_g(x[i], y, c)
+ }
+ return
+}
+
+func addMulVVW_g(z, x []Word, y Word) (c Word) {
+ // The comment near the top of this file discusses this for loop condition.
+ for i := 0; i < len(z) && i < len(x); i++ {
+ z1, z0 := mulAddWWW_g(x[i], y, z[i])
+ lo, cc := bits.Add(uint(z0), uint(c), 0)
+ c, z[i] = Word(cc), Word(lo)
+ c += z1
+ }
+ return
+}
+
+// q = ( x1 << _W + x0 - r)/y. m = floor(( _B^2 - 1 ) / d - _B). Requiring x1<y.
+// An approximate reciprocal with a reference to "Improved Division by Invariant Integers
+// (IEEE Transactions on Computers, 11 Jun. 2010)"
+func divWW(x1, x0, y, m Word) (q, r Word) {
+ s := nlz(y)
+ if s != 0 {
+ x1 = x1<<s | x0>>(_W-s)
+ x0 <<= s
+ y <<= s
+ }
+ d := uint(y)
+ // We know that
+ // m = ⎣(B^2-1)/d⎦-B
+ // ⎣(B^2-1)/d⎦ = m+B
+ // (B^2-1)/d = m+B+delta1 0 <= delta1 <= (d-1)/d
+ // B^2/d = m+B+delta2 0 <= delta2 <= 1
+ // The quotient we're trying to compute is
+ // quotient = ⎣(x1*B+x0)/d⎦
+ // = ⎣(x1*B*(B^2/d)+x0*(B^2/d))/B^2⎦
+ // = ⎣(x1*B*(m+B+delta2)+x0*(m+B+delta2))/B^2⎦
+ // = ⎣(x1*m+x1*B+x0)/B + x0*m/B^2 + delta2*(x1*B+x0)/B^2⎦
+ // The latter two terms of this three-term sum are between 0 and 1.
+ // So we can compute just the first term, and we will be low by at most 2.
+ t1, t0 := bits.Mul(uint(m), uint(x1))
+ _, c := bits.Add(t0, uint(x0), 0)
+ t1, _ = bits.Add(t1, uint(x1), c)
+ // The quotient is either t1, t1+1, or t1+2.
+ // We'll try t1 and adjust if needed.
+ qq := t1
+ // compute remainder r=x-d*q.
+ dq1, dq0 := bits.Mul(d, qq)
+ r0, b := bits.Sub(uint(x0), dq0, 0)
+ r1, _ := bits.Sub(uint(x1), dq1, b)
+ // The remainder we just computed is bounded above by B+d:
+ // r = x1*B + x0 - d*q.
+ // = x1*B + x0 - d*⎣(x1*m+x1*B+x0)/B⎦
+ // = x1*B + x0 - d*((x1*m+x1*B+x0)/B-alpha) 0 <= alpha < 1
+ // = x1*B + x0 - x1*d/B*m - x1*d - x0*d/B + d*alpha
+ // = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦ - x1*d - x0*d/B + d*alpha
+ // = x1*B + x0 - x1*d/B*⎣(B^2-1)/d-B⎦ - x1*d - x0*d/B + d*alpha
+ // = x1*B + x0 - x1*d/B*((B^2-1)/d-B-beta) - x1*d - x0*d/B + d*alpha 0 <= beta < 1
+ // = x1*B + x0 - x1*B + x1/B + x1*d + x1*d/B*beta - x1*d - x0*d/B + d*alpha
+ // = x0 + x1/B + x1*d/B*beta - x0*d/B + d*alpha
+ // = x0*(1-d/B) + x1*(1+d*beta)/B + d*alpha
+ // < B*(1-d/B) + d*B/B + d because x0<B (and 1-d/B>0), x1<d, 1+d*beta<=B, alpha<1
+ // = B - d + d + d
+ // = B+d
+ // So r1 can only be 0 or 1. If r1 is 1, then we know q was too small.
+ // Add 1 to q and subtract d from r. That guarantees that r is <B, so
+ // we no longer need to keep track of r1.
+ if r1 != 0 {
+ qq++
+ r0 -= d
+ }
+ // If the remainder is still too large, increment q one more time.
+ if r0 >= d {
+ qq++
+ r0 -= d
+ }
+ return Word(qq), Word(r0 >> s)
+}
+
+// reciprocalWord return the reciprocal of the divisor. rec = floor(( _B^2 - 1 ) / u - _B). u = d1 << nlz(d1).
+func reciprocalWord(d1 Word) Word {
+ u := uint(d1 << nlz(d1))
+ x1 := ^u
+ x0 := uint(_M)
+ rec, _ := bits.Div(x1, x0, u) // (_B^2-1)/U-_B = (_B*(_M-C)+_M)/U
+ return Word(rec)
+}
diff --git a/contrib/go/_std_1.18/src/math/big/arith_amd64.go b/contrib/go/_std_1.18/src/math/big/arith_amd64.go
new file mode 100644
index 0000000000..89108fe149
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/arith_amd64.go
@@ -0,0 +1,12 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go
+// +build !math_big_pure_go
+
+package big
+
+import "internal/cpu"
+
+var support_adx = cpu.X86.HasADX && cpu.X86.HasBMI2
diff --git a/contrib/go/_std_1.18/src/math/big/arith_amd64.s b/contrib/go/_std_1.18/src/math/big/arith_amd64.s
new file mode 100644
index 0000000000..5c72a27d8d
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/arith_amd64.s
@@ -0,0 +1,526 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go
+// +build !math_big_pure_go
+
+#include "textflag.h"
+
+// This file provides fast assembly versions for the elementary
+// arithmetic operations on vectors implemented in arith.go.
+
+// func mulWW(x, y Word) (z1, z0 Word)
+TEXT ·mulWW(SB),NOSPLIT,$0
+ MOVQ x+0(FP), AX
+ MULQ y+8(FP)
+ MOVQ DX, z1+16(FP)
+ MOVQ AX, z0+24(FP)
+ RET
+
+
+
+// The carry bit is saved with SBBQ Rx, Rx: if the carry was set, Rx is -1, otherwise it is 0.
+// It is restored with ADDQ Rx, Rx: if Rx was -1 the carry is set, otherwise it is cleared.
+// This is faster than using rotate instructions.
+
+// func addVV(z, x, y []Word) (c Word)
+TEXT ·addVV(SB),NOSPLIT,$0
+ MOVQ z_len+8(FP), DI
+ MOVQ x+24(FP), R8
+ MOVQ y+48(FP), R9
+ MOVQ z+0(FP), R10
+
+ MOVQ $0, CX // c = 0
+ MOVQ $0, SI // i = 0
+
+ // s/JL/JMP/ below to disable the unrolled loop
+ SUBQ $4, DI // n -= 4
+ JL V1 // if n < 0 goto V1
+
+U1: // n >= 0
+ // regular loop body unrolled 4x
+ ADDQ CX, CX // restore CF
+ MOVQ 0(R8)(SI*8), R11
+ MOVQ 8(R8)(SI*8), R12
+ MOVQ 16(R8)(SI*8), R13
+ MOVQ 24(R8)(SI*8), R14
+ ADCQ 0(R9)(SI*8), R11
+ ADCQ 8(R9)(SI*8), R12
+ ADCQ 16(R9)(SI*8), R13
+ ADCQ 24(R9)(SI*8), R14
+ MOVQ R11, 0(R10)(SI*8)
+ MOVQ R12, 8(R10)(SI*8)
+ MOVQ R13, 16(R10)(SI*8)
+ MOVQ R14, 24(R10)(SI*8)
+ SBBQ CX, CX // save CF
+
+ ADDQ $4, SI // i += 4
+ SUBQ $4, DI // n -= 4
+ JGE U1 // if n >= 0 goto U1
+
+V1: ADDQ $4, DI // n += 4
+ JLE E1 // if n <= 0 goto E1
+
+L1: // n > 0
+ ADDQ CX, CX // restore CF
+ MOVQ 0(R8)(SI*8), R11
+ ADCQ 0(R9)(SI*8), R11
+ MOVQ R11, 0(R10)(SI*8)
+ SBBQ CX, CX // save CF
+
+ ADDQ $1, SI // i++
+ SUBQ $1, DI // n--
+ JG L1 // if n > 0 goto L1
+
+E1: NEGQ CX
+ MOVQ CX, c+72(FP) // return c
+ RET
+
+
+// func subVV(z, x, y []Word) (c Word)
+// (same as addVV except for SBBQ instead of ADCQ and label names)
+TEXT ·subVV(SB),NOSPLIT,$0
+ MOVQ z_len+8(FP), DI
+ MOVQ x+24(FP), R8
+ MOVQ y+48(FP), R9
+ MOVQ z+0(FP), R10
+
+ MOVQ $0, CX // c = 0
+ MOVQ $0, SI // i = 0
+
+ // s/JL/JMP/ below to disable the unrolled loop
+ SUBQ $4, DI // n -= 4
+ JL V2 // if n < 0 goto V2
+
+U2: // n >= 0
+ // regular loop body unrolled 4x
+ ADDQ CX, CX // restore CF
+ MOVQ 0(R8)(SI*8), R11
+ MOVQ 8(R8)(SI*8), R12
+ MOVQ 16(R8)(SI*8), R13
+ MOVQ 24(R8)(SI*8), R14
+ SBBQ 0(R9)(SI*8), R11
+ SBBQ 8(R9)(SI*8), R12
+ SBBQ 16(R9)(SI*8), R13
+ SBBQ 24(R9)(SI*8), R14
+ MOVQ R11, 0(R10)(SI*8)
+ MOVQ R12, 8(R10)(SI*8)
+ MOVQ R13, 16(R10)(SI*8)
+ MOVQ R14, 24(R10)(SI*8)
+ SBBQ CX, CX // save CF
+
+ ADDQ $4, SI // i += 4
+ SUBQ $4, DI // n -= 4
+ JGE U2 // if n >= 0 goto U2
+
+V2: ADDQ $4, DI // n += 4
+ JLE E2 // if n <= 0 goto E2
+
+L2: // n > 0
+ ADDQ CX, CX // restore CF
+ MOVQ 0(R8)(SI*8), R11
+ SBBQ 0(R9)(SI*8), R11
+ MOVQ R11, 0(R10)(SI*8)
+ SBBQ CX, CX // save CF
+
+ ADDQ $1, SI // i++
+ SUBQ $1, DI // n--
+ JG L2 // if n > 0 goto L2
+
+E2: NEGQ CX
+ MOVQ CX, c+72(FP) // return c
+ RET
+
+
+// func addVW(z, x []Word, y Word) (c Word)
+TEXT ·addVW(SB),NOSPLIT,$0
+ MOVQ z_len+8(FP), DI
+ CMPQ DI, $32
+ JG large
+ MOVQ x+24(FP), R8
+ MOVQ y+48(FP), CX // c = y
+ MOVQ z+0(FP), R10
+
+ MOVQ $0, SI // i = 0
+
+ // s/JL/JMP/ below to disable the unrolled loop
+ SUBQ $4, DI // n -= 4
+ JL V3 // if n < 4 goto V3
+
+U3: // n >= 0
+ // regular loop body unrolled 4x
+ MOVQ 0(R8)(SI*8), R11
+ MOVQ 8(R8)(SI*8), R12
+ MOVQ 16(R8)(SI*8), R13
+ MOVQ 24(R8)(SI*8), R14
+ ADDQ CX, R11
+ ADCQ $0, R12
+ ADCQ $0, R13
+ ADCQ $0, R14
+ SBBQ CX, CX // save CF
+ NEGQ CX
+ MOVQ R11, 0(R10)(SI*8)
+ MOVQ R12, 8(R10)(SI*8)
+ MOVQ R13, 16(R10)(SI*8)
+ MOVQ R14, 24(R10)(SI*8)
+
+ ADDQ $4, SI // i += 4
+ SUBQ $4, DI // n -= 4
+ JGE U3 // if n >= 0 goto U3
+
+V3: ADDQ $4, DI // n += 4
+ JLE E3 // if n <= 0 goto E3
+
+L3: // n > 0
+ ADDQ 0(R8)(SI*8), CX
+ MOVQ CX, 0(R10)(SI*8)
+ SBBQ CX, CX // save CF
+ NEGQ CX
+
+ ADDQ $1, SI // i++
+ SUBQ $1, DI // n--
+ JG L3 // if n > 0 goto L3
+
+E3: MOVQ CX, c+56(FP) // return c
+ RET
+large:
+ JMP ·addVWlarge(SB)
+
+
+// func subVW(z, x []Word, y Word) (c Word)
+// (same as addVW except for SUBQ/SBBQ instead of ADDQ/ADCQ and label names)
+TEXT ·subVW(SB),NOSPLIT,$0
+ MOVQ z_len+8(FP), DI
+ CMPQ DI, $32
+ JG large
+ MOVQ x+24(FP), R8
+ MOVQ y+48(FP), CX // c = y
+ MOVQ z+0(FP), R10
+
+ MOVQ $0, SI // i = 0
+
+ // s/JL/JMP/ below to disable the unrolled loop
+ SUBQ $4, DI // n -= 4
+ JL V4 // if n < 4 goto V4
+
+U4: // n >= 0
+ // regular loop body unrolled 4x
+ MOVQ 0(R8)(SI*8), R11
+ MOVQ 8(R8)(SI*8), R12
+ MOVQ 16(R8)(SI*8), R13
+ MOVQ 24(R8)(SI*8), R14
+ SUBQ CX, R11
+ SBBQ $0, R12
+ SBBQ $0, R13
+ SBBQ $0, R14
+ SBBQ CX, CX // save CF
+ NEGQ CX
+ MOVQ R11, 0(R10)(SI*8)
+ MOVQ R12, 8(R10)(SI*8)
+ MOVQ R13, 16(R10)(SI*8)
+ MOVQ R14, 24(R10)(SI*8)
+
+ ADDQ $4, SI // i += 4
+ SUBQ $4, DI // n -= 4
+ JGE U4 // if n >= 0 goto U4
+
+V4: ADDQ $4, DI // n += 4
+ JLE E4 // if n <= 0 goto E4
+
+L4: // n > 0
+ MOVQ 0(R8)(SI*8), R11
+ SUBQ CX, R11
+ MOVQ R11, 0(R10)(SI*8)
+ SBBQ CX, CX // save CF
+ NEGQ CX
+
+ ADDQ $1, SI // i++
+ SUBQ $1, DI // n--
+ JG L4 // if n > 0 goto L4
+
+E4: MOVQ CX, c+56(FP) // return c
+ RET
+large:
+ JMP ·subVWlarge(SB)
+
+
+// func shlVU(z, x []Word, s uint) (c Word)
+TEXT ·shlVU(SB),NOSPLIT,$0
+ MOVQ z_len+8(FP), BX // i = z
+ SUBQ $1, BX // i--
+ JL X8b // i < 0 (n <= 0)
+
+ // n > 0
+ MOVQ z+0(FP), R10
+ MOVQ x+24(FP), R8
+ MOVQ s+48(FP), CX
+ MOVQ (R8)(BX*8), AX // w1 = x[n-1]
+ MOVQ $0, DX
+ SHLQ CX, AX, DX // w1>>ŝ
+ MOVQ DX, c+56(FP)
+
+ CMPQ BX, $0
+ JLE X8a // i <= 0
+
+ // i > 0
+L8: MOVQ AX, DX // w = w1
+ MOVQ -8(R8)(BX*8), AX // w1 = x[i-1]
+ SHLQ CX, AX, DX // w<<s | w1>>ŝ
+ MOVQ DX, (R10)(BX*8) // z[i] = w<<s | w1>>ŝ
+ SUBQ $1, BX // i--
+ JG L8 // i > 0
+
+ // i <= 0
+X8a: SHLQ CX, AX // w1<<s
+ MOVQ AX, (R10) // z[0] = w1<<s
+ RET
+
+X8b: MOVQ $0, c+56(FP)
+ RET
+
+
+// func shrVU(z, x []Word, s uint) (c Word)
+TEXT ·shrVU(SB),NOSPLIT,$0
+ MOVQ z_len+8(FP), R11
+ SUBQ $1, R11 // n--
+ JL X9b // n < 0 (n <= 0)
+
+ // n > 0
+ MOVQ z+0(FP), R10
+ MOVQ x+24(FP), R8
+ MOVQ s+48(FP), CX
+ MOVQ (R8), AX // w1 = x[0]
+ MOVQ $0, DX
+ SHRQ CX, AX, DX // w1<<ŝ
+ MOVQ DX, c+56(FP)
+
+ MOVQ $0, BX // i = 0
+ JMP E9
+
+ // i < n-1
+L9: MOVQ AX, DX // w = w1
+ MOVQ 8(R8)(BX*8), AX // w1 = x[i+1]
+ SHRQ CX, AX, DX // w>>s | w1<<ŝ
+ MOVQ DX, (R10)(BX*8) // z[i] = w>>s | w1<<ŝ
+ ADDQ $1, BX // i++
+
+E9: CMPQ BX, R11
+ JL L9 // i < n-1
+
+ // i >= n-1
+X9a: SHRQ CX, AX // w1>>s
+ MOVQ AX, (R10)(R11*8) // z[n-1] = w1>>s
+ RET
+
+X9b: MOVQ $0, c+56(FP)
+ RET
+
+
+// func mulAddVWW(z, x []Word, y, r Word) (c Word)
+TEXT ·mulAddVWW(SB),NOSPLIT,$0
+ MOVQ z+0(FP), R10
+ MOVQ x+24(FP), R8
+ MOVQ y+48(FP), R9
+ MOVQ r+56(FP), CX // c = r
+ MOVQ z_len+8(FP), R11
+ MOVQ $0, BX // i = 0
+
+ CMPQ R11, $4
+ JL E5
+
+U5: // i+4 <= n
+ // regular loop body unrolled 4x
+ MOVQ (0*8)(R8)(BX*8), AX
+ MULQ R9
+ ADDQ CX, AX
+ ADCQ $0, DX
+ MOVQ AX, (0*8)(R10)(BX*8)
+ MOVQ DX, CX
+ MOVQ (1*8)(R8)(BX*8), AX
+ MULQ R9
+ ADDQ CX, AX
+ ADCQ $0, DX
+ MOVQ AX, (1*8)(R10)(BX*8)
+ MOVQ DX, CX
+ MOVQ (2*8)(R8)(BX*8), AX
+ MULQ R9
+ ADDQ CX, AX
+ ADCQ $0, DX
+ MOVQ AX, (2*8)(R10)(BX*8)
+ MOVQ DX, CX
+ MOVQ (3*8)(R8)(BX*8), AX
+ MULQ R9
+ ADDQ CX, AX
+ ADCQ $0, DX
+ MOVQ AX, (3*8)(R10)(BX*8)
+ MOVQ DX, CX
+ ADDQ $4, BX // i += 4
+
+ LEAQ 4(BX), DX
+ CMPQ DX, R11
+ JLE U5
+ JMP E5
+
+L5: MOVQ (R8)(BX*8), AX
+ MULQ R9
+ ADDQ CX, AX
+ ADCQ $0, DX
+ MOVQ AX, (R10)(BX*8)
+ MOVQ DX, CX
+ ADDQ $1, BX // i++
+
+E5: CMPQ BX, R11 // i < n
+ JL L5
+
+ MOVQ CX, c+64(FP)
+ RET
+
+
+// func addMulVVW(z, x []Word, y Word) (c Word)
+TEXT ·addMulVVW(SB),NOSPLIT,$0
+ CMPB ·support_adx(SB), $1
+ JEQ adx
+ MOVQ z+0(FP), R10
+ MOVQ x+24(FP), R8
+ MOVQ y+48(FP), R9
+ MOVQ z_len+8(FP), R11
+ MOVQ $0, BX // i = 0
+ MOVQ $0, CX // c = 0
+ MOVQ R11, R12
+ ANDQ $-2, R12
+ CMPQ R11, $2
+ JAE A6
+ JMP E6
+
+A6:
+ MOVQ (R8)(BX*8), AX
+ MULQ R9
+ ADDQ (R10)(BX*8), AX
+ ADCQ $0, DX
+ ADDQ CX, AX
+ ADCQ $0, DX
+ MOVQ DX, CX
+ MOVQ AX, (R10)(BX*8)
+
+ MOVQ (8)(R8)(BX*8), AX
+ MULQ R9
+ ADDQ (8)(R10)(BX*8), AX
+ ADCQ $0, DX
+ ADDQ CX, AX
+ ADCQ $0, DX
+ MOVQ DX, CX
+ MOVQ AX, (8)(R10)(BX*8)
+
+ ADDQ $2, BX
+ CMPQ BX, R12
+ JL A6
+ JMP E6
+
+L6: MOVQ (R8)(BX*8), AX
+ MULQ R9
+ ADDQ CX, AX
+ ADCQ $0, DX
+ ADDQ AX, (R10)(BX*8)
+ ADCQ $0, DX
+ MOVQ DX, CX
+ ADDQ $1, BX // i++
+
+E6: CMPQ BX, R11 // i < n
+ JL L6
+
+ MOVQ CX, c+56(FP)
+ RET
+
+adx:
+ MOVQ z_len+8(FP), R11
+ MOVQ z+0(FP), R10
+ MOVQ x+24(FP), R8
+ MOVQ y+48(FP), DX
+ MOVQ $0, BX // i = 0
+ MOVQ $0, CX // carry
+ CMPQ R11, $8
+ JAE adx_loop_header
+ CMPQ BX, R11
+ JL adx_short
+ MOVQ CX, c+56(FP)
+ RET
+
+adx_loop_header:
+ MOVQ R11, R13
+ ANDQ $-8, R13
+adx_loop:
+ XORQ R9, R9 // unset flags
+ MULXQ (R8), SI, DI
+ ADCXQ CX,SI
+ ADOXQ (R10), SI
+ MOVQ SI,(R10)
+
+ MULXQ 8(R8), AX, CX
+ ADCXQ DI, AX
+ ADOXQ 8(R10), AX
+ MOVQ AX, 8(R10)
+
+ MULXQ 16(R8), SI, DI
+ ADCXQ CX, SI
+ ADOXQ 16(R10), SI
+ MOVQ SI, 16(R10)
+
+ MULXQ 24(R8), AX, CX
+ ADCXQ DI, AX
+ ADOXQ 24(R10), AX
+ MOVQ AX, 24(R10)
+
+ MULXQ 32(R8), SI, DI
+ ADCXQ CX, SI
+ ADOXQ 32(R10), SI
+ MOVQ SI, 32(R10)
+
+ MULXQ 40(R8), AX, CX
+ ADCXQ DI, AX
+ ADOXQ 40(R10), AX
+ MOVQ AX, 40(R10)
+
+ MULXQ 48(R8), SI, DI
+ ADCXQ CX, SI
+ ADOXQ 48(R10), SI
+ MOVQ SI, 48(R10)
+
+ MULXQ 56(R8), AX, CX
+ ADCXQ DI, AX
+ ADOXQ 56(R10), AX
+ MOVQ AX, 56(R10)
+
+ ADCXQ R9, CX
+ ADOXQ R9, CX
+
+ ADDQ $64, R8
+ ADDQ $64, R10
+ ADDQ $8, BX
+
+ CMPQ BX, R13
+ JL adx_loop
+ MOVQ z+0(FP), R10
+ MOVQ x+24(FP), R8
+ CMPQ BX, R11
+ JL adx_short
+ MOVQ CX, c+56(FP)
+ RET
+
+adx_short:
+ MULXQ (R8)(BX*8), SI, DI
+ ADDQ CX, SI
+ ADCQ $0, DI
+ ADDQ SI, (R10)(BX*8)
+ ADCQ $0, DI
+ MOVQ DI, CX
+ ADDQ $1, BX // i++
+
+ CMPQ BX, R11
+ JL adx_short
+
+ MOVQ CX, c+56(FP)
+ RET
+
+
+
diff --git a/contrib/go/_std_1.18/src/math/big/arith_decl.go b/contrib/go/_std_1.18/src/math/big/arith_decl.go
new file mode 100644
index 0000000000..eea3d6b325
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/arith_decl.go
@@ -0,0 +1,19 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+//go:build !math_big_pure_go
+// +build !math_big_pure_go
+
+package big
+
+// implemented in arith_$GOARCH.s
+func mulWW(x, y Word) (z1, z0 Word)
+func addVV(z, x, y []Word) (c Word)
+func subVV(z, x, y []Word) (c Word)
+func addVW(z, x []Word, y Word) (c Word)
+func subVW(z, x []Word, y Word) (c Word)
+func shlVU(z, x []Word, s uint) (c Word)
+func shrVU(z, x []Word, s uint) (c Word)
+func mulAddVWW(z, x []Word, y, r Word) (c Word)
+func addMulVVW(z, x []Word, y Word) (c Word)
diff --git a/contrib/go/_std_1.18/src/math/big/decimal.go b/contrib/go/_std_1.18/src/math/big/decimal.go
new file mode 100644
index 0000000000..716f03bfa4
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/decimal.go
@@ -0,0 +1,270 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements multi-precision decimal numbers.
+// The implementation is for float to decimal conversion only;
+// not general purpose use.
+// The only operations are precise conversion from binary to
+// decimal and rounding.
+//
+// The key observation and some code (shr) is borrowed from
+// strconv/decimal.go: conversion of binary fractional values can be done
+// precisely in multi-precision decimal because 2 divides 10 (required for
+// >> of mantissa); but conversion of decimal floating-point values cannot
+// be done precisely in binary representation.
+//
+// In contrast to strconv/decimal.go, only right shift is implemented in
+// decimal format - left shift can be done precisely in binary format.
+
+package big
+
+// A decimal represents an unsigned floating-point number in decimal representation.
+// The value of a non-zero decimal d is d.mant * 10**d.exp with 0.1 <= d.mant < 1,
+// with the most-significant mantissa digit at index 0. For the zero decimal, the
+// mantissa length and exponent are 0.
+// The zero value for decimal represents a ready-to-use 0.0.
+type decimal struct {
+ mant []byte // mantissa ASCII digits, big-endian
+ exp int // exponent
+}
+
+// at returns the i'th mantissa digit, starting with the most significant digit at 0.
+func (d *decimal) at(i int) byte {
+ if 0 <= i && i < len(d.mant) {
+ return d.mant[i]
+ }
+ return '0'
+}
+
+// Maximum shift amount that can be done in one pass without overflow.
+// A Word has _W bits and (1<<maxShift - 1)*10 + 9 must fit into Word.
+const maxShift = _W - 4
+
+// TODO(gri) Since we know the desired decimal precision when converting
+// a floating-point number, we may be able to limit the number of decimal
+// digits that need to be computed by init by providing an additional
+// precision argument and keeping track of when a number was truncated early
+// (equivalent of "sticky bit" in binary rounding).
+
+// TODO(gri) Along the same lines, enforce some limit to shift magnitudes
+// to avoid "infinitely" long running conversions (until we run out of space).
+
+// Init initializes x to the decimal representation of m << shift (for
+// shift >= 0), or m >> -shift (for shift < 0).
+func (x *decimal) init(m nat, shift int) {
+ // special case 0
+ if len(m) == 0 {
+ x.mant = x.mant[:0]
+ x.exp = 0
+ return
+ }
+
+ // Optimization: If we need to shift right, first remove any trailing
+ // zero bits from m to reduce shift amount that needs to be done in
+ // decimal format (since that is likely slower).
+ if shift < 0 {
+ ntz := m.trailingZeroBits()
+ s := uint(-shift)
+ if s >= ntz {
+ s = ntz // shift at most ntz bits
+ }
+ m = nat(nil).shr(m, s)
+ shift += int(s)
+ }
+
+ // Do any shift left in binary representation.
+ if shift > 0 {
+ m = nat(nil).shl(m, uint(shift))
+ shift = 0
+ }
+
+ // Convert mantissa into decimal representation.
+ s := m.utoa(10)
+ n := len(s)
+ x.exp = n
+ // Trim trailing zeros; instead the exponent is tracking
+ // the decimal point independent of the number of digits.
+ for n > 0 && s[n-1] == '0' {
+ n--
+ }
+ x.mant = append(x.mant[:0], s[:n]...)
+
+ // Do any (remaining) shift right in decimal representation.
+ if shift < 0 {
+ for shift < -maxShift {
+ shr(x, maxShift)
+ shift += maxShift
+ }
+ shr(x, uint(-shift))
+ }
+}
+
+// shr implements x >> s, for s <= maxShift.
+func shr(x *decimal, s uint) {
+ // Division by 1<<s using shift-and-subtract algorithm.
+
+ // pick up enough leading digits to cover first shift
+ r := 0 // read index
+ var n Word
+ for n>>s == 0 && r < len(x.mant) {
+ ch := Word(x.mant[r])
+ r++
+ n = n*10 + ch - '0'
+ }
+ if n == 0 {
+ // x == 0; shouldn't get here, but handle anyway
+ x.mant = x.mant[:0]
+ return
+ }
+ for n>>s == 0 {
+ r++
+ n *= 10
+ }
+ x.exp += 1 - r
+
+ // read a digit, write a digit
+ w := 0 // write index
+ mask := Word(1)<<s - 1
+ for r < len(x.mant) {
+ ch := Word(x.mant[r])
+ r++
+ d := n >> s
+ n &= mask // n -= d << s
+ x.mant[w] = byte(d + '0')
+ w++
+ n = n*10 + ch - '0'
+ }
+
+ // write extra digits that still fit
+ for n > 0 && w < len(x.mant) {
+ d := n >> s
+ n &= mask
+ x.mant[w] = byte(d + '0')
+ w++
+ n = n * 10
+ }
+ x.mant = x.mant[:w] // the number may be shorter (e.g. 1024 >> 10)
+
+ // append additional digits that didn't fit
+ for n > 0 {
+ d := n >> s
+ n &= mask
+ x.mant = append(x.mant, byte(d+'0'))
+ n = n * 10
+ }
+
+ trim(x)
+}
+
+func (x *decimal) String() string {
+ if len(x.mant) == 0 {
+ return "0"
+ }
+
+ var buf []byte
+ switch {
+ case x.exp <= 0:
+ // 0.00ddd
+ buf = make([]byte, 0, 2+(-x.exp)+len(x.mant))
+ buf = append(buf, "0."...)
+ buf = appendZeros(buf, -x.exp)
+ buf = append(buf, x.mant...)
+
+ case /* 0 < */ x.exp < len(x.mant):
+ // dd.ddd
+ buf = make([]byte, 0, 1+len(x.mant))
+ buf = append(buf, x.mant[:x.exp]...)
+ buf = append(buf, '.')
+ buf = append(buf, x.mant[x.exp:]...)
+
+ default: // len(x.mant) <= x.exp
+ // ddd00
+ buf = make([]byte, 0, x.exp)
+ buf = append(buf, x.mant...)
+ buf = appendZeros(buf, x.exp-len(x.mant))
+ }
+
+ return string(buf)
+}
+
+// appendZeros appends n 0 digits to buf and returns buf.
+func appendZeros(buf []byte, n int) []byte {
+ for ; n > 0; n-- {
+ buf = append(buf, '0')
+ }
+ return buf
+}
+
+// shouldRoundUp reports if x should be rounded up
+// if shortened to n digits. n must be a valid index
+// for x.mant.
+func shouldRoundUp(x *decimal, n int) bool {
+ if x.mant[n] == '5' && n+1 == len(x.mant) {
+ // exactly halfway - round to even
+ return n > 0 && (x.mant[n-1]-'0')&1 != 0
+ }
+ // not halfway - digit tells all (x.mant has no trailing zeros)
+ return x.mant[n] >= '5'
+}
+
+// round sets x to (at most) n mantissa digits by rounding it
+// to the nearest even value with n (or fever) mantissa digits.
+// If n < 0, x remains unchanged.
+func (x *decimal) round(n int) {
+ if n < 0 || n >= len(x.mant) {
+ return // nothing to do
+ }
+
+ if shouldRoundUp(x, n) {
+ x.roundUp(n)
+ } else {
+ x.roundDown(n)
+ }
+}
+
+func (x *decimal) roundUp(n int) {
+ if n < 0 || n >= len(x.mant) {
+ return // nothing to do
+ }
+ // 0 <= n < len(x.mant)
+
+ // find first digit < '9'
+ for n > 0 && x.mant[n-1] >= '9' {
+ n--
+ }
+
+ if n == 0 {
+ // all digits are '9's => round up to '1' and update exponent
+ x.mant[0] = '1' // ok since len(x.mant) > n
+ x.mant = x.mant[:1]
+ x.exp++
+ return
+ }
+
+ // n > 0 && x.mant[n-1] < '9'
+ x.mant[n-1]++
+ x.mant = x.mant[:n]
+ // x already trimmed
+}
+
+func (x *decimal) roundDown(n int) {
+ if n < 0 || n >= len(x.mant) {
+ return // nothing to do
+ }
+ x.mant = x.mant[:n]
+ trim(x)
+}
+
+// trim cuts off any trailing zeros from x's mantissa;
+// they are meaningless for the value of x.
+func trim(x *decimal) {
+ i := len(x.mant)
+ for i > 0 && x.mant[i-1] == '0' {
+ i--
+ }
+ x.mant = x.mant[:i]
+ if i == 0 {
+ x.exp = 0
+ }
+}
diff --git a/contrib/go/_std_1.18/src/math/big/doc.go b/contrib/go/_std_1.18/src/math/big/doc.go
new file mode 100644
index 0000000000..65ed019b74
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/doc.go
@@ -0,0 +1,99 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+/*
+Package big implements arbitrary-precision arithmetic (big numbers).
+The following numeric types are supported:
+
+ Int signed integers
+ Rat rational numbers
+ Float floating-point numbers
+
+The zero value for an Int, Rat, or Float correspond to 0. Thus, new
+values can be declared in the usual ways and denote 0 without further
+initialization:
+
+ var x Int // &x is an *Int of value 0
+ var r = &Rat{} // r is a *Rat of value 0
+ y := new(Float) // y is a *Float of value 0
+
+Alternatively, new values can be allocated and initialized with factory
+functions of the form:
+
+ func NewT(v V) *T
+
+For instance, NewInt(x) returns an *Int set to the value of the int64
+argument x, NewRat(a, b) returns a *Rat set to the fraction a/b where
+a and b are int64 values, and NewFloat(f) returns a *Float initialized
+to the float64 argument f. More flexibility is provided with explicit
+setters, for instance:
+
+ var z1 Int
+ z1.SetUint64(123) // z1 := 123
+ z2 := new(Rat).SetFloat64(1.25) // z2 := 5/4
+ z3 := new(Float).SetInt(z1) // z3 := 123.0
+
+Setters, numeric operations and predicates are represented as methods of
+the form:
+
+ func (z *T) SetV(v V) *T // z = v
+ func (z *T) Unary(x *T) *T // z = unary x
+ func (z *T) Binary(x, y *T) *T // z = x binary y
+ func (x *T) Pred() P // p = pred(x)
+
+with T one of Int, Rat, or Float. For unary and binary operations, the
+result is the receiver (usually named z in that case; see below); if it
+is one of the operands x or y it may be safely overwritten (and its memory
+reused).
+
+Arithmetic expressions are typically written as a sequence of individual
+method calls, with each call corresponding to an operation. The receiver
+denotes the result and the method arguments are the operation's operands.
+For instance, given three *Int values a, b and c, the invocation
+
+ c.Add(a, b)
+
+computes the sum a + b and stores the result in c, overwriting whatever
+value was held in c before. Unless specified otherwise, operations permit
+aliasing of parameters, so it is perfectly ok to write
+
+ sum.Add(sum, x)
+
+to accumulate values x in a sum.
+
+(By always passing in a result value via the receiver, memory use can be
+much better controlled. Instead of having to allocate new memory for each
+result, an operation can reuse the space allocated for the result value,
+and overwrite that value with the new result in the process.)
+
+Notational convention: Incoming method parameters (including the receiver)
+are named consistently in the API to clarify their use. Incoming operands
+are usually named x, y, a, b, and so on, but never z. A parameter specifying
+the result is named z (typically the receiver).
+
+For instance, the arguments for (*Int).Add are named x and y, and because
+the receiver specifies the result destination, it is called z:
+
+ func (z *Int) Add(x, y *Int) *Int
+
+Methods of this form typically return the incoming receiver as well, to
+enable simple call chaining.
+
+Methods which don't require a result value to be passed in (for instance,
+Int.Sign), simply return the result. In this case, the receiver is typically
+the first operand, named x:
+
+ func (x *Int) Sign() int
+
+Various methods support conversions between strings and corresponding
+numeric values, and vice versa: *Int, *Rat, and *Float values implement
+the Stringer interface for a (default) string representation of the value,
+but also provide SetString methods to initialize a value from a string in
+a variety of supported formats (see the respective SetString documentation).
+
+Finally, *Int, *Rat, and *Float satisfy the fmt package's Scanner interface
+for scanning and (except for *Rat) the Formatter interface for formatted
+printing.
+*/
+package big
diff --git a/contrib/go/_std_1.18/src/math/big/float.go b/contrib/go/_std_1.18/src/math/big/float.go
new file mode 100644
index 0000000000..a8c91a6e54
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/float.go
@@ -0,0 +1,1732 @@
+// Copyright 2014 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements multi-precision floating-point numbers.
+// Like in the GNU MPFR library (https://www.mpfr.org/), operands
+// can be of mixed precision. Unlike MPFR, the rounding mode is
+// not specified with each operation, but with each operand. The
+// rounding mode of the result operand determines the rounding
+// mode of an operation. This is a from-scratch implementation.
+
+package big
+
+import (
+ "fmt"
+ "math"
+ "math/bits"
+)
+
+const debugFloat = false // enable for debugging
+
+// A nonzero finite Float represents a multi-precision floating point number
+//
+// sign × mantissa × 2**exponent
+//
+// with 0.5 <= mantissa < 1.0, and MinExp <= exponent <= MaxExp.
+// A Float may also be zero (+0, -0) or infinite (+Inf, -Inf).
+// All Floats are ordered, and the ordering of two Floats x and y
+// is defined by x.Cmp(y).
+//
+// Each Float value also has a precision, rounding mode, and accuracy.
+// The precision is the maximum number of mantissa bits available to
+// represent the value. The rounding mode specifies how a result should
+// be rounded to fit into the mantissa bits, and accuracy describes the
+// rounding error with respect to the exact result.
+//
+// Unless specified otherwise, all operations (including setters) that
+// specify a *Float variable for the result (usually via the receiver
+// with the exception of MantExp), round the numeric result according
+// to the precision and rounding mode of the result variable.
+//
+// If the provided result precision is 0 (see below), it is set to the
+// precision of the argument with the largest precision value before any
+// rounding takes place, and the rounding mode remains unchanged. Thus,
+// uninitialized Floats provided as result arguments will have their
+// precision set to a reasonable value determined by the operands, and
+// their mode is the zero value for RoundingMode (ToNearestEven).
+//
+// By setting the desired precision to 24 or 53 and using matching rounding
+// mode (typically ToNearestEven), Float operations produce the same results
+// as the corresponding float32 or float64 IEEE-754 arithmetic for operands
+// that correspond to normal (i.e., not denormal) float32 or float64 numbers.
+// Exponent underflow and overflow lead to a 0 or an Infinity for different
+// values than IEEE-754 because Float exponents have a much larger range.
+//
+// The zero (uninitialized) value for a Float is ready to use and represents
+// the number +0.0 exactly, with precision 0 and rounding mode ToNearestEven.
+//
+// Operations always take pointer arguments (*Float) rather
+// than Float values, and each unique Float value requires
+// its own unique *Float pointer. To "copy" a Float value,
+// an existing (or newly allocated) Float must be set to
+// a new value using the Float.Set method; shallow copies
+// of Floats are not supported and may lead to errors.
+type Float struct {
+ prec uint32
+ mode RoundingMode
+ acc Accuracy
+ form form
+ neg bool
+ mant nat
+ exp int32
+}
+
+// An ErrNaN panic is raised by a Float operation that would lead to
+// a NaN under IEEE-754 rules. An ErrNaN implements the error interface.
+type ErrNaN struct {
+ msg string
+}
+
+func (err ErrNaN) Error() string {
+ return err.msg
+}
+
+// NewFloat allocates and returns a new Float set to x,
+// with precision 53 and rounding mode ToNearestEven.
+// NewFloat panics with ErrNaN if x is a NaN.
+func NewFloat(x float64) *Float {
+ if math.IsNaN(x) {
+ panic(ErrNaN{"NewFloat(NaN)"})
+ }
+ return new(Float).SetFloat64(x)
+}
+
+// Exponent and precision limits.
+const (
+ MaxExp = math.MaxInt32 // largest supported exponent
+ MinExp = math.MinInt32 // smallest supported exponent
+ MaxPrec = math.MaxUint32 // largest (theoretically) supported precision; likely memory-limited
+)
+
+// Internal representation: The mantissa bits x.mant of a nonzero finite
+// Float x are stored in a nat slice long enough to hold up to x.prec bits;
+// the slice may (but doesn't have to) be shorter if the mantissa contains
+// trailing 0 bits. x.mant is normalized if the msb of x.mant == 1 (i.e.,
+// the msb is shifted all the way "to the left"). Thus, if the mantissa has
+// trailing 0 bits or x.prec is not a multiple of the Word size _W,
+// x.mant[0] has trailing zero bits. The msb of the mantissa corresponds
+// to the value 0.5; the exponent x.exp shifts the binary point as needed.
+//
+// A zero or non-finite Float x ignores x.mant and x.exp.
+//
+// x form neg mant exp
+// ----------------------------------------------------------
+// ±0 zero sign - -
+// 0 < |x| < +Inf finite sign mantissa exponent
+// ±Inf inf sign - -
+
+// A form value describes the internal representation.
+type form byte
+
+// The form value order is relevant - do not change!
+const (
+ zero form = iota
+ finite
+ inf
+)
+
+// RoundingMode determines how a Float value is rounded to the
+// desired precision. Rounding may change the Float value; the
+// rounding error is described by the Float's Accuracy.
+type RoundingMode byte
+
+// These constants define supported rounding modes.
+const (
+ ToNearestEven RoundingMode = iota // == IEEE 754-2008 roundTiesToEven
+ ToNearestAway // == IEEE 754-2008 roundTiesToAway
+ ToZero // == IEEE 754-2008 roundTowardZero
+ AwayFromZero // no IEEE 754-2008 equivalent
+ ToNegativeInf // == IEEE 754-2008 roundTowardNegative
+ ToPositiveInf // == IEEE 754-2008 roundTowardPositive
+)
+
+//go:generate stringer -type=RoundingMode
+
+// Accuracy describes the rounding error produced by the most recent
+// operation that generated a Float value, relative to the exact value.
+type Accuracy int8
+
+// Constants describing the Accuracy of a Float.
+const (
+ Below Accuracy = -1
+ Exact Accuracy = 0
+ Above Accuracy = +1
+)
+
+//go:generate stringer -type=Accuracy
+
+// SetPrec sets z's precision to prec and returns the (possibly) rounded
+// value of z. Rounding occurs according to z's rounding mode if the mantissa
+// cannot be represented in prec bits without loss of precision.
+// SetPrec(0) maps all finite values to ±0; infinite values remain unchanged.
+// If prec > MaxPrec, it is set to MaxPrec.
+func (z *Float) SetPrec(prec uint) *Float {
+ z.acc = Exact // optimistically assume no rounding is needed
+
+ // special case
+ if prec == 0 {
+ z.prec = 0
+ if z.form == finite {
+ // truncate z to 0
+ z.acc = makeAcc(z.neg)
+ z.form = zero
+ }
+ return z
+ }
+
+ // general case
+ if prec > MaxPrec {
+ prec = MaxPrec
+ }
+ old := z.prec
+ z.prec = uint32(prec)
+ if z.prec < old {
+ z.round(0)
+ }
+ return z
+}
+
+func makeAcc(above bool) Accuracy {
+ if above {
+ return Above
+ }
+ return Below
+}
+
+// SetMode sets z's rounding mode to mode and returns an exact z.
+// z remains unchanged otherwise.
+// z.SetMode(z.Mode()) is a cheap way to set z's accuracy to Exact.
+func (z *Float) SetMode(mode RoundingMode) *Float {
+ z.mode = mode
+ z.acc = Exact
+ return z
+}
+
+// Prec returns the mantissa precision of x in bits.
+// The result may be 0 for |x| == 0 and |x| == Inf.
+func (x *Float) Prec() uint {
+ return uint(x.prec)
+}
+
+// MinPrec returns the minimum precision required to represent x exactly
+// (i.e., the smallest prec before x.SetPrec(prec) would start rounding x).
+// The result is 0 for |x| == 0 and |x| == Inf.
+func (x *Float) MinPrec() uint {
+ if x.form != finite {
+ return 0
+ }
+ return uint(len(x.mant))*_W - x.mant.trailingZeroBits()
+}
+
+// Mode returns the rounding mode of x.
+func (x *Float) Mode() RoundingMode {
+ return x.mode
+}
+
+// Acc returns the accuracy of x produced by the most recent
+// operation, unless explicitly documented otherwise by that
+// operation.
+func (x *Float) Acc() Accuracy {
+ return x.acc
+}
+
+// Sign returns:
+//
+// -1 if x < 0
+// 0 if x is ±0
+// +1 if x > 0
+//
+func (x *Float) Sign() int {
+ if debugFloat {
+ x.validate()
+ }
+ if x.form == zero {
+ return 0
+ }
+ if x.neg {
+ return -1
+ }
+ return 1
+}
+
+// MantExp breaks x into its mantissa and exponent components
+// and returns the exponent. If a non-nil mant argument is
+// provided its value is set to the mantissa of x, with the
+// same precision and rounding mode as x. The components
+// satisfy x == mant × 2**exp, with 0.5 <= |mant| < 1.0.
+// Calling MantExp with a nil argument is an efficient way to
+// get the exponent of the receiver.
+//
+// Special cases are:
+//
+// ( ±0).MantExp(mant) = 0, with mant set to ±0
+// (±Inf).MantExp(mant) = 0, with mant set to ±Inf
+//
+// x and mant may be the same in which case x is set to its
+// mantissa value.
+func (x *Float) MantExp(mant *Float) (exp int) {
+ if debugFloat {
+ x.validate()
+ }
+ if x.form == finite {
+ exp = int(x.exp)
+ }
+ if mant != nil {
+ mant.Copy(x)
+ if mant.form == finite {
+ mant.exp = 0
+ }
+ }
+ return
+}
+
+func (z *Float) setExpAndRound(exp int64, sbit uint) {
+ if exp < MinExp {
+ // underflow
+ z.acc = makeAcc(z.neg)
+ z.form = zero
+ return
+ }
+
+ if exp > MaxExp {
+ // overflow
+ z.acc = makeAcc(!z.neg)
+ z.form = inf
+ return
+ }
+
+ z.form = finite
+ z.exp = int32(exp)
+ z.round(sbit)
+}
+
+// SetMantExp sets z to mant × 2**exp and returns z.
+// The result z has the same precision and rounding mode
+// as mant. SetMantExp is an inverse of MantExp but does
+// not require 0.5 <= |mant| < 1.0. Specifically, for a
+// given x of type *Float, SetMantExp relates to MantExp
+// as follows:
+//
+// mant := new(Float)
+// new(Float).SetMantExp(mant, x.MantExp(mant)).Cmp(x) == 0
+//
+// Special cases are:
+//
+// z.SetMantExp( ±0, exp) = ±0
+// z.SetMantExp(±Inf, exp) = ±Inf
+//
+// z and mant may be the same in which case z's exponent
+// is set to exp.
+func (z *Float) SetMantExp(mant *Float, exp int) *Float {
+ if debugFloat {
+ z.validate()
+ mant.validate()
+ }
+ z.Copy(mant)
+
+ if z.form == finite {
+ // 0 < |mant| < +Inf
+ z.setExpAndRound(int64(z.exp)+int64(exp), 0)
+ }
+ return z
+}
+
+// Signbit reports whether x is negative or negative zero.
+func (x *Float) Signbit() bool {
+ return x.neg
+}
+
+// IsInf reports whether x is +Inf or -Inf.
+func (x *Float) IsInf() bool {
+ return x.form == inf
+}
+
+// IsInt reports whether x is an integer.
+// ±Inf values are not integers.
+func (x *Float) IsInt() bool {
+ if debugFloat {
+ x.validate()
+ }
+ // special cases
+ if x.form != finite {
+ return x.form == zero
+ }
+ // x.form == finite
+ if x.exp <= 0 {
+ return false
+ }
+ // x.exp > 0
+ return x.prec <= uint32(x.exp) || x.MinPrec() <= uint(x.exp) // not enough bits for fractional mantissa
+}
+
+// debugging support
+func (x *Float) validate() {
+ if !debugFloat {
+ // avoid performance bugs
+ panic("validate called but debugFloat is not set")
+ }
+ if x.form != finite {
+ return
+ }
+ m := len(x.mant)
+ if m == 0 {
+ panic("nonzero finite number with empty mantissa")
+ }
+ const msb = 1 << (_W - 1)
+ if x.mant[m-1]&msb == 0 {
+ panic(fmt.Sprintf("msb not set in last word %#x of %s", x.mant[m-1], x.Text('p', 0)))
+ }
+ if x.prec == 0 {
+ panic("zero precision finite number")
+ }
+}
+
+// round rounds z according to z.mode to z.prec bits and sets z.acc accordingly.
+// sbit must be 0 or 1 and summarizes any "sticky bit" information one might
+// have before calling round. z's mantissa must be normalized (with the msb set)
+// or empty.
+//
+// CAUTION: The rounding modes ToNegativeInf, ToPositiveInf are affected by the
+// sign of z. For correct rounding, the sign of z must be set correctly before
+// calling round.
+func (z *Float) round(sbit uint) {
+ if debugFloat {
+ z.validate()
+ }
+
+ z.acc = Exact
+ if z.form != finite {
+ // ±0 or ±Inf => nothing left to do
+ return
+ }
+ // z.form == finite && len(z.mant) > 0
+ // m > 0 implies z.prec > 0 (checked by validate)
+
+ m := uint32(len(z.mant)) // present mantissa length in words
+ bits := m * _W // present mantissa bits; bits > 0
+ if bits <= z.prec {
+ // mantissa fits => nothing to do
+ return
+ }
+ // bits > z.prec
+
+ // Rounding is based on two bits: the rounding bit (rbit) and the
+ // sticky bit (sbit). The rbit is the bit immediately before the
+ // z.prec leading mantissa bits (the "0.5"). The sbit is set if any
+ // of the bits before the rbit are set (the "0.25", "0.125", etc.):
+ //
+ // rbit sbit => "fractional part"
+ //
+ // 0 0 == 0
+ // 0 1 > 0 , < 0.5
+ // 1 0 == 0.5
+ // 1 1 > 0.5, < 1.0
+
+ // bits > z.prec: mantissa too large => round
+ r := uint(bits - z.prec - 1) // rounding bit position; r >= 0
+ rbit := z.mant.bit(r) & 1 // rounding bit; be safe and ensure it's a single bit
+ // The sticky bit is only needed for rounding ToNearestEven
+ // or when the rounding bit is zero. Avoid computation otherwise.
+ if sbit == 0 && (rbit == 0 || z.mode == ToNearestEven) {
+ sbit = z.mant.sticky(r)
+ }
+ sbit &= 1 // be safe and ensure it's a single bit
+
+ // cut off extra words
+ n := (z.prec + (_W - 1)) / _W // mantissa length in words for desired precision
+ if m > n {
+ copy(z.mant, z.mant[m-n:]) // move n last words to front
+ z.mant = z.mant[:n]
+ }
+
+ // determine number of trailing zero bits (ntz) and compute lsb mask of mantissa's least-significant word
+ ntz := n*_W - z.prec // 0 <= ntz < _W
+ lsb := Word(1) << ntz
+
+ // round if result is inexact
+ if rbit|sbit != 0 {
+ // Make rounding decision: The result mantissa is truncated ("rounded down")
+ // by default. Decide if we need to increment, or "round up", the (unsigned)
+ // mantissa.
+ inc := false
+ switch z.mode {
+ case ToNegativeInf:
+ inc = z.neg
+ case ToZero:
+ // nothing to do
+ case ToNearestEven:
+ inc = rbit != 0 && (sbit != 0 || z.mant[0]&lsb != 0)
+ case ToNearestAway:
+ inc = rbit != 0
+ case AwayFromZero:
+ inc = true
+ case ToPositiveInf:
+ inc = !z.neg
+ default:
+ panic("unreachable")
+ }
+
+ // A positive result (!z.neg) is Above the exact result if we increment,
+ // and it's Below if we truncate (Exact results require no rounding).
+ // For a negative result (z.neg) it is exactly the opposite.
+ z.acc = makeAcc(inc != z.neg)
+
+ if inc {
+ // add 1 to mantissa
+ if addVW(z.mant, z.mant, lsb) != 0 {
+ // mantissa overflow => adjust exponent
+ if z.exp >= MaxExp {
+ // exponent overflow
+ z.form = inf
+ return
+ }
+ z.exp++
+ // adjust mantissa: divide by 2 to compensate for exponent adjustment
+ shrVU(z.mant, z.mant, 1)
+ // set msb == carry == 1 from the mantissa overflow above
+ const msb = 1 << (_W - 1)
+ z.mant[n-1] |= msb
+ }
+ }
+ }
+
+ // zero out trailing bits in least-significant word
+ z.mant[0] &^= lsb - 1
+
+ if debugFloat {
+ z.validate()
+ }
+}
+
+func (z *Float) setBits64(neg bool, x uint64) *Float {
+ if z.prec == 0 {
+ z.prec = 64
+ }
+ z.acc = Exact
+ z.neg = neg
+ if x == 0 {
+ z.form = zero
+ return z
+ }
+ // x != 0
+ z.form = finite
+ s := bits.LeadingZeros64(x)
+ z.mant = z.mant.setUint64(x << uint(s))
+ z.exp = int32(64 - s) // always fits
+ if z.prec < 64 {
+ z.round(0)
+ }
+ return z
+}
+
+// SetUint64 sets z to the (possibly rounded) value of x and returns z.
+// If z's precision is 0, it is changed to 64 (and rounding will have
+// no effect).
+func (z *Float) SetUint64(x uint64) *Float {
+ return z.setBits64(false, x)
+}
+
+// SetInt64 sets z to the (possibly rounded) value of x and returns z.
+// If z's precision is 0, it is changed to 64 (and rounding will have
+// no effect).
+func (z *Float) SetInt64(x int64) *Float {
+ u := x
+ if u < 0 {
+ u = -u
+ }
+ // We cannot simply call z.SetUint64(uint64(u)) and change
+ // the sign afterwards because the sign affects rounding.
+ return z.setBits64(x < 0, uint64(u))
+}
+
+// SetFloat64 sets z to the (possibly rounded) value of x and returns z.
+// If z's precision is 0, it is changed to 53 (and rounding will have
+// no effect). SetFloat64 panics with ErrNaN if x is a NaN.
+func (z *Float) SetFloat64(x float64) *Float {
+ if z.prec == 0 {
+ z.prec = 53
+ }
+ if math.IsNaN(x) {
+ panic(ErrNaN{"Float.SetFloat64(NaN)"})
+ }
+ z.acc = Exact
+ z.neg = math.Signbit(x) // handle -0, -Inf correctly
+ if x == 0 {
+ z.form = zero
+ return z
+ }
+ if math.IsInf(x, 0) {
+ z.form = inf
+ return z
+ }
+ // normalized x != 0
+ z.form = finite
+ fmant, exp := math.Frexp(x) // get normalized mantissa
+ z.mant = z.mant.setUint64(1<<63 | math.Float64bits(fmant)<<11)
+ z.exp = int32(exp) // always fits
+ if z.prec < 53 {
+ z.round(0)
+ }
+ return z
+}
+
+// fnorm normalizes mantissa m by shifting it to the left
+// such that the msb of the most-significant word (msw) is 1.
+// It returns the shift amount. It assumes that len(m) != 0.
+func fnorm(m nat) int64 {
+ if debugFloat && (len(m) == 0 || m[len(m)-1] == 0) {
+ panic("msw of mantissa is 0")
+ }
+ s := nlz(m[len(m)-1])
+ if s > 0 {
+ c := shlVU(m, m, s)
+ if debugFloat && c != 0 {
+ panic("nlz or shlVU incorrect")
+ }
+ }
+ return int64(s)
+}
+
+// SetInt sets z to the (possibly rounded) value of x and returns z.
+// If z's precision is 0, it is changed to the larger of x.BitLen()
+// or 64 (and rounding will have no effect).
+func (z *Float) SetInt(x *Int) *Float {
+ // TODO(gri) can be more efficient if z.prec > 0
+ // but small compared to the size of x, or if there
+ // are many trailing 0's.
+ bits := uint32(x.BitLen())
+ if z.prec == 0 {
+ z.prec = umax32(bits, 64)
+ }
+ z.acc = Exact
+ z.neg = x.neg
+ if len(x.abs) == 0 {
+ z.form = zero
+ return z
+ }
+ // x != 0
+ z.mant = z.mant.set(x.abs)
+ fnorm(z.mant)
+ z.setExpAndRound(int64(bits), 0)
+ return z
+}
+
+// SetRat sets z to the (possibly rounded) value of x and returns z.
+// If z's precision is 0, it is changed to the largest of a.BitLen(),
+// b.BitLen(), or 64; with x = a/b.
+func (z *Float) SetRat(x *Rat) *Float {
+ if x.IsInt() {
+ return z.SetInt(x.Num())
+ }
+ var a, b Float
+ a.SetInt(x.Num())
+ b.SetInt(x.Denom())
+ if z.prec == 0 {
+ z.prec = umax32(a.prec, b.prec)
+ }
+ return z.Quo(&a, &b)
+}
+
+// SetInf sets z to the infinite Float -Inf if signbit is
+// set, or +Inf if signbit is not set, and returns z. The
+// precision of z is unchanged and the result is always
+// Exact.
+func (z *Float) SetInf(signbit bool) *Float {
+ z.acc = Exact
+ z.form = inf
+ z.neg = signbit
+ return z
+}
+
+// Set sets z to the (possibly rounded) value of x and returns z.
+// If z's precision is 0, it is changed to the precision of x
+// before setting z (and rounding will have no effect).
+// Rounding is performed according to z's precision and rounding
+// mode; and z's accuracy reports the result error relative to the
+// exact (not rounded) result.
+func (z *Float) Set(x *Float) *Float {
+ if debugFloat {
+ x.validate()
+ }
+ z.acc = Exact
+ if z != x {
+ z.form = x.form
+ z.neg = x.neg
+ if x.form == finite {
+ z.exp = x.exp
+ z.mant = z.mant.set(x.mant)
+ }
+ if z.prec == 0 {
+ z.prec = x.prec
+ } else if z.prec < x.prec {
+ z.round(0)
+ }
+ }
+ return z
+}
+
+// Copy sets z to x, with the same precision, rounding mode, and
+// accuracy as x, and returns z. x is not changed even if z and
+// x are the same.
+func (z *Float) Copy(x *Float) *Float {
+ if debugFloat {
+ x.validate()
+ }
+ if z != x {
+ z.prec = x.prec
+ z.mode = x.mode
+ z.acc = x.acc
+ z.form = x.form
+ z.neg = x.neg
+ if z.form == finite {
+ z.mant = z.mant.set(x.mant)
+ z.exp = x.exp
+ }
+ }
+ return z
+}
+
+// msb32 returns the 32 most significant bits of x.
+func msb32(x nat) uint32 {
+ i := len(x) - 1
+ if i < 0 {
+ return 0
+ }
+ if debugFloat && x[i]&(1<<(_W-1)) == 0 {
+ panic("x not normalized")
+ }
+ switch _W {
+ case 32:
+ return uint32(x[i])
+ case 64:
+ return uint32(x[i] >> 32)
+ }
+ panic("unreachable")
+}
+
+// msb64 returns the 64 most significant bits of x.
+func msb64(x nat) uint64 {
+ i := len(x) - 1
+ if i < 0 {
+ return 0
+ }
+ if debugFloat && x[i]&(1<<(_W-1)) == 0 {
+ panic("x not normalized")
+ }
+ switch _W {
+ case 32:
+ v := uint64(x[i]) << 32
+ if i > 0 {
+ v |= uint64(x[i-1])
+ }
+ return v
+ case 64:
+ return uint64(x[i])
+ }
+ panic("unreachable")
+}
+
+// Uint64 returns the unsigned integer resulting from truncating x
+// towards zero. If 0 <= x <= math.MaxUint64, the result is Exact
+// if x is an integer and Below otherwise.
+// The result is (0, Above) for x < 0, and (math.MaxUint64, Below)
+// for x > math.MaxUint64.
+func (x *Float) Uint64() (uint64, Accuracy) {
+ if debugFloat {
+ x.validate()
+ }
+
+ switch x.form {
+ case finite:
+ if x.neg {
+ return 0, Above
+ }
+ // 0 < x < +Inf
+ if x.exp <= 0 {
+ // 0 < x < 1
+ return 0, Below
+ }
+ // 1 <= x < Inf
+ if x.exp <= 64 {
+ // u = trunc(x) fits into a uint64
+ u := msb64(x.mant) >> (64 - uint32(x.exp))
+ if x.MinPrec() <= 64 {
+ return u, Exact
+ }
+ return u, Below // x truncated
+ }
+ // x too large
+ return math.MaxUint64, Below
+
+ case zero:
+ return 0, Exact
+
+ case inf:
+ if x.neg {
+ return 0, Above
+ }
+ return math.MaxUint64, Below
+ }
+
+ panic("unreachable")
+}
+
+// Int64 returns the integer resulting from truncating x towards zero.
+// If math.MinInt64 <= x <= math.MaxInt64, the result is Exact if x is
+// an integer, and Above (x < 0) or Below (x > 0) otherwise.
+// The result is (math.MinInt64, Above) for x < math.MinInt64,
+// and (math.MaxInt64, Below) for x > math.MaxInt64.
+func (x *Float) Int64() (int64, Accuracy) {
+ if debugFloat {
+ x.validate()
+ }
+
+ switch x.form {
+ case finite:
+ // 0 < |x| < +Inf
+ acc := makeAcc(x.neg)
+ if x.exp <= 0 {
+ // 0 < |x| < 1
+ return 0, acc
+ }
+ // x.exp > 0
+
+ // 1 <= |x| < +Inf
+ if x.exp <= 63 {
+ // i = trunc(x) fits into an int64 (excluding math.MinInt64)
+ i := int64(msb64(x.mant) >> (64 - uint32(x.exp)))
+ if x.neg {
+ i = -i
+ }
+ if x.MinPrec() <= uint(x.exp) {
+ return i, Exact
+ }
+ return i, acc // x truncated
+ }
+ if x.neg {
+ // check for special case x == math.MinInt64 (i.e., x == -(0.5 << 64))
+ if x.exp == 64 && x.MinPrec() == 1 {
+ acc = Exact
+ }
+ return math.MinInt64, acc
+ }
+ // x too large
+ return math.MaxInt64, Below
+
+ case zero:
+ return 0, Exact
+
+ case inf:
+ if x.neg {
+ return math.MinInt64, Above
+ }
+ return math.MaxInt64, Below
+ }
+
+ panic("unreachable")
+}
+
+// Float32 returns the float32 value nearest to x. If x is too small to be
+// represented by a float32 (|x| < math.SmallestNonzeroFloat32), the result
+// is (0, Below) or (-0, Above), respectively, depending on the sign of x.
+// If x is too large to be represented by a float32 (|x| > math.MaxFloat32),
+// the result is (+Inf, Above) or (-Inf, Below), depending on the sign of x.
+func (x *Float) Float32() (float32, Accuracy) {
+ if debugFloat {
+ x.validate()
+ }
+
+ switch x.form {
+ case finite:
+ // 0 < |x| < +Inf
+
+ const (
+ fbits = 32 // float size
+ mbits = 23 // mantissa size (excluding implicit msb)
+ ebits = fbits - mbits - 1 // 8 exponent size
+ bias = 1<<(ebits-1) - 1 // 127 exponent bias
+ dmin = 1 - bias - mbits // -149 smallest unbiased exponent (denormal)
+ emin = 1 - bias // -126 smallest unbiased exponent (normal)
+ emax = bias // 127 largest unbiased exponent (normal)
+ )
+
+ // Float mantissa m is 0.5 <= m < 1.0; compute exponent e for float32 mantissa.
+ e := x.exp - 1 // exponent for normal mantissa m with 1.0 <= m < 2.0
+
+ // Compute precision p for float32 mantissa.
+ // If the exponent is too small, we have a denormal number before
+ // rounding and fewer than p mantissa bits of precision available
+ // (the exponent remains fixed but the mantissa gets shifted right).
+ p := mbits + 1 // precision of normal float
+ if e < emin {
+ // recompute precision
+ p = mbits + 1 - emin + int(e)
+ // If p == 0, the mantissa of x is shifted so much to the right
+ // that its msb falls immediately to the right of the float32
+ // mantissa space. In other words, if the smallest denormal is
+ // considered "1.0", for p == 0, the mantissa value m is >= 0.5.
+ // If m > 0.5, it is rounded up to 1.0; i.e., the smallest denormal.
+ // If m == 0.5, it is rounded down to even, i.e., 0.0.
+ // If p < 0, the mantissa value m is <= "0.25" which is never rounded up.
+ if p < 0 /* m <= 0.25 */ || p == 0 && x.mant.sticky(uint(len(x.mant))*_W-1) == 0 /* m == 0.5 */ {
+ // underflow to ±0
+ if x.neg {
+ var z float32
+ return -z, Above
+ }
+ return 0.0, Below
+ }
+ // otherwise, round up
+ // We handle p == 0 explicitly because it's easy and because
+ // Float.round doesn't support rounding to 0 bits of precision.
+ if p == 0 {
+ if x.neg {
+ return -math.SmallestNonzeroFloat32, Below
+ }
+ return math.SmallestNonzeroFloat32, Above
+ }
+ }
+ // p > 0
+
+ // round
+ var r Float
+ r.prec = uint32(p)
+ r.Set(x)
+ e = r.exp - 1
+
+ // Rounding may have caused r to overflow to ±Inf
+ // (rounding never causes underflows to 0).
+ // If the exponent is too large, also overflow to ±Inf.
+ if r.form == inf || e > emax {
+ // overflow
+ if x.neg {
+ return float32(math.Inf(-1)), Below
+ }
+ return float32(math.Inf(+1)), Above
+ }
+ // e <= emax
+
+ // Determine sign, biased exponent, and mantissa.
+ var sign, bexp, mant uint32
+ if x.neg {
+ sign = 1 << (fbits - 1)
+ }
+
+ // Rounding may have caused a denormal number to
+ // become normal. Check again.
+ if e < emin {
+ // denormal number: recompute precision
+ // Since rounding may have at best increased precision
+ // and we have eliminated p <= 0 early, we know p > 0.
+ // bexp == 0 for denormals
+ p = mbits + 1 - emin + int(e)
+ mant = msb32(r.mant) >> uint(fbits-p)
+ } else {
+ // normal number: emin <= e <= emax
+ bexp = uint32(e+bias) << mbits
+ mant = msb32(r.mant) >> ebits & (1<<mbits - 1) // cut off msb (implicit 1 bit)
+ }
+
+ return math.Float32frombits(sign | bexp | mant), r.acc
+
+ case zero:
+ if x.neg {
+ var z float32
+ return -z, Exact
+ }
+ return 0.0, Exact
+
+ case inf:
+ if x.neg {
+ return float32(math.Inf(-1)), Exact
+ }
+ return float32(math.Inf(+1)), Exact
+ }
+
+ panic("unreachable")
+}
+
+// Float64 returns the float64 value nearest to x. If x is too small to be
+// represented by a float64 (|x| < math.SmallestNonzeroFloat64), the result
+// is (0, Below) or (-0, Above), respectively, depending on the sign of x.
+// If x is too large to be represented by a float64 (|x| > math.MaxFloat64),
+// the result is (+Inf, Above) or (-Inf, Below), depending on the sign of x.
+func (x *Float) Float64() (float64, Accuracy) {
+ if debugFloat {
+ x.validate()
+ }
+
+ switch x.form {
+ case finite:
+ // 0 < |x| < +Inf
+
+ const (
+ fbits = 64 // float size
+ mbits = 52 // mantissa size (excluding implicit msb)
+ ebits = fbits - mbits - 1 // 11 exponent size
+ bias = 1<<(ebits-1) - 1 // 1023 exponent bias
+ dmin = 1 - bias - mbits // -1074 smallest unbiased exponent (denormal)
+ emin = 1 - bias // -1022 smallest unbiased exponent (normal)
+ emax = bias // 1023 largest unbiased exponent (normal)
+ )
+
+ // Float mantissa m is 0.5 <= m < 1.0; compute exponent e for float64 mantissa.
+ e := x.exp - 1 // exponent for normal mantissa m with 1.0 <= m < 2.0
+
+ // Compute precision p for float64 mantissa.
+ // If the exponent is too small, we have a denormal number before
+ // rounding and fewer than p mantissa bits of precision available
+ // (the exponent remains fixed but the mantissa gets shifted right).
+ p := mbits + 1 // precision of normal float
+ if e < emin {
+ // recompute precision
+ p = mbits + 1 - emin + int(e)
+ // If p == 0, the mantissa of x is shifted so much to the right
+ // that its msb falls immediately to the right of the float64
+ // mantissa space. In other words, if the smallest denormal is
+ // considered "1.0", for p == 0, the mantissa value m is >= 0.5.
+ // If m > 0.5, it is rounded up to 1.0; i.e., the smallest denormal.
+ // If m == 0.5, it is rounded down to even, i.e., 0.0.
+ // If p < 0, the mantissa value m is <= "0.25" which is never rounded up.
+ if p < 0 /* m <= 0.25 */ || p == 0 && x.mant.sticky(uint(len(x.mant))*_W-1) == 0 /* m == 0.5 */ {
+ // underflow to ±0
+ if x.neg {
+ var z float64
+ return -z, Above
+ }
+ return 0.0, Below
+ }
+ // otherwise, round up
+ // We handle p == 0 explicitly because it's easy and because
+ // Float.round doesn't support rounding to 0 bits of precision.
+ if p == 0 {
+ if x.neg {
+ return -math.SmallestNonzeroFloat64, Below
+ }
+ return math.SmallestNonzeroFloat64, Above
+ }
+ }
+ // p > 0
+
+ // round
+ var r Float
+ r.prec = uint32(p)
+ r.Set(x)
+ e = r.exp - 1
+
+ // Rounding may have caused r to overflow to ±Inf
+ // (rounding never causes underflows to 0).
+ // If the exponent is too large, also overflow to ±Inf.
+ if r.form == inf || e > emax {
+ // overflow
+ if x.neg {
+ return math.Inf(-1), Below
+ }
+ return math.Inf(+1), Above
+ }
+ // e <= emax
+
+ // Determine sign, biased exponent, and mantissa.
+ var sign, bexp, mant uint64
+ if x.neg {
+ sign = 1 << (fbits - 1)
+ }
+
+ // Rounding may have caused a denormal number to
+ // become normal. Check again.
+ if e < emin {
+ // denormal number: recompute precision
+ // Since rounding may have at best increased precision
+ // and we have eliminated p <= 0 early, we know p > 0.
+ // bexp == 0 for denormals
+ p = mbits + 1 - emin + int(e)
+ mant = msb64(r.mant) >> uint(fbits-p)
+ } else {
+ // normal number: emin <= e <= emax
+ bexp = uint64(e+bias) << mbits
+ mant = msb64(r.mant) >> ebits & (1<<mbits - 1) // cut off msb (implicit 1 bit)
+ }
+
+ return math.Float64frombits(sign | bexp | mant), r.acc
+
+ case zero:
+ if x.neg {
+ var z float64
+ return -z, Exact
+ }
+ return 0.0, Exact
+
+ case inf:
+ if x.neg {
+ return math.Inf(-1), Exact
+ }
+ return math.Inf(+1), Exact
+ }
+
+ panic("unreachable")
+}
+
+// Int returns the result of truncating x towards zero;
+// or nil if x is an infinity.
+// The result is Exact if x.IsInt(); otherwise it is Below
+// for x > 0, and Above for x < 0.
+// If a non-nil *Int argument z is provided, Int stores
+// the result in z instead of allocating a new Int.
+func (x *Float) Int(z *Int) (*Int, Accuracy) {
+ if debugFloat {
+ x.validate()
+ }
+
+ if z == nil && x.form <= finite {
+ z = new(Int)
+ }
+
+ switch x.form {
+ case finite:
+ // 0 < |x| < +Inf
+ acc := makeAcc(x.neg)
+ if x.exp <= 0 {
+ // 0 < |x| < 1
+ return z.SetInt64(0), acc
+ }
+ // x.exp > 0
+
+ // 1 <= |x| < +Inf
+ // determine minimum required precision for x
+ allBits := uint(len(x.mant)) * _W
+ exp := uint(x.exp)
+ if x.MinPrec() <= exp {
+ acc = Exact
+ }
+ // shift mantissa as needed
+ if z == nil {
+ z = new(Int)
+ }
+ z.neg = x.neg
+ switch {
+ case exp > allBits:
+ z.abs = z.abs.shl(x.mant, exp-allBits)
+ default:
+ z.abs = z.abs.set(x.mant)
+ case exp < allBits:
+ z.abs = z.abs.shr(x.mant, allBits-exp)
+ }
+ return z, acc
+
+ case zero:
+ return z.SetInt64(0), Exact
+
+ case inf:
+ return nil, makeAcc(x.neg)
+ }
+
+ panic("unreachable")
+}
+
+// Rat returns the rational number corresponding to x;
+// or nil if x is an infinity.
+// The result is Exact if x is not an Inf.
+// If a non-nil *Rat argument z is provided, Rat stores
+// the result in z instead of allocating a new Rat.
+func (x *Float) Rat(z *Rat) (*Rat, Accuracy) {
+ if debugFloat {
+ x.validate()
+ }
+
+ if z == nil && x.form <= finite {
+ z = new(Rat)
+ }
+
+ switch x.form {
+ case finite:
+ // 0 < |x| < +Inf
+ allBits := int32(len(x.mant)) * _W
+ // build up numerator and denominator
+ z.a.neg = x.neg
+ switch {
+ case x.exp > allBits:
+ z.a.abs = z.a.abs.shl(x.mant, uint(x.exp-allBits))
+ z.b.abs = z.b.abs[:0] // == 1 (see Rat)
+ // z already in normal form
+ default:
+ z.a.abs = z.a.abs.set(x.mant)
+ z.b.abs = z.b.abs[:0] // == 1 (see Rat)
+ // z already in normal form
+ case x.exp < allBits:
+ z.a.abs = z.a.abs.set(x.mant)
+ t := z.b.abs.setUint64(1)
+ z.b.abs = t.shl(t, uint(allBits-x.exp))
+ z.norm()
+ }
+ return z, Exact
+
+ case zero:
+ return z.SetInt64(0), Exact
+
+ case inf:
+ return nil, makeAcc(x.neg)
+ }
+
+ panic("unreachable")
+}
+
+// Abs sets z to the (possibly rounded) value |x| (the absolute value of x)
+// and returns z.
+func (z *Float) Abs(x *Float) *Float {
+ z.Set(x)
+ z.neg = false
+ return z
+}
+
+// Neg sets z to the (possibly rounded) value of x with its sign negated,
+// and returns z.
+func (z *Float) Neg(x *Float) *Float {
+ z.Set(x)
+ z.neg = !z.neg
+ return z
+}
+
+func validateBinaryOperands(x, y *Float) {
+ if !debugFloat {
+ // avoid performance bugs
+ panic("validateBinaryOperands called but debugFloat is not set")
+ }
+ if len(x.mant) == 0 {
+ panic("empty mantissa for x")
+ }
+ if len(y.mant) == 0 {
+ panic("empty mantissa for y")
+ }
+}
+
+// z = x + y, ignoring signs of x and y for the addition
+// but using the sign of z for rounding the result.
+// x and y must have a non-empty mantissa and valid exponent.
+func (z *Float) uadd(x, y *Float) {
+ // Note: This implementation requires 2 shifts most of the
+ // time. It is also inefficient if exponents or precisions
+ // differ by wide margins. The following article describes
+ // an efficient (but much more complicated) implementation
+ // compatible with the internal representation used here:
+ //
+ // Vincent Lefèvre: "The Generic Multiple-Precision Floating-
+ // Point Addition With Exact Rounding (as in the MPFR Library)"
+ // http://www.vinc17.net/research/papers/rnc6.pdf
+
+ if debugFloat {
+ validateBinaryOperands(x, y)
+ }
+
+ // compute exponents ex, ey for mantissa with "binary point"
+ // on the right (mantissa.0) - use int64 to avoid overflow
+ ex := int64(x.exp) - int64(len(x.mant))*_W
+ ey := int64(y.exp) - int64(len(y.mant))*_W
+
+ al := alias(z.mant, x.mant) || alias(z.mant, y.mant)
+
+ // TODO(gri) having a combined add-and-shift primitive
+ // could make this code significantly faster
+ switch {
+ case ex < ey:
+ if al {
+ t := nat(nil).shl(y.mant, uint(ey-ex))
+ z.mant = z.mant.add(x.mant, t)
+ } else {
+ z.mant = z.mant.shl(y.mant, uint(ey-ex))
+ z.mant = z.mant.add(x.mant, z.mant)
+ }
+ default:
+ // ex == ey, no shift needed
+ z.mant = z.mant.add(x.mant, y.mant)
+ case ex > ey:
+ if al {
+ t := nat(nil).shl(x.mant, uint(ex-ey))
+ z.mant = z.mant.add(t, y.mant)
+ } else {
+ z.mant = z.mant.shl(x.mant, uint(ex-ey))
+ z.mant = z.mant.add(z.mant, y.mant)
+ }
+ ex = ey
+ }
+ // len(z.mant) > 0
+
+ z.setExpAndRound(ex+int64(len(z.mant))*_W-fnorm(z.mant), 0)
+}
+
+// z = x - y for |x| > |y|, ignoring signs of x and y for the subtraction
+// but using the sign of z for rounding the result.
+// x and y must have a non-empty mantissa and valid exponent.
+func (z *Float) usub(x, y *Float) {
+ // This code is symmetric to uadd.
+ // We have not factored the common code out because
+ // eventually uadd (and usub) should be optimized
+ // by special-casing, and the code will diverge.
+
+ if debugFloat {
+ validateBinaryOperands(x, y)
+ }
+
+ ex := int64(x.exp) - int64(len(x.mant))*_W
+ ey := int64(y.exp) - int64(len(y.mant))*_W
+
+ al := alias(z.mant, x.mant) || alias(z.mant, y.mant)
+
+ switch {
+ case ex < ey:
+ if al {
+ t := nat(nil).shl(y.mant, uint(ey-ex))
+ z.mant = t.sub(x.mant, t)
+ } else {
+ z.mant = z.mant.shl(y.mant, uint(ey-ex))
+ z.mant = z.mant.sub(x.mant, z.mant)
+ }
+ default:
+ // ex == ey, no shift needed
+ z.mant = z.mant.sub(x.mant, y.mant)
+ case ex > ey:
+ if al {
+ t := nat(nil).shl(x.mant, uint(ex-ey))
+ z.mant = t.sub(t, y.mant)
+ } else {
+ z.mant = z.mant.shl(x.mant, uint(ex-ey))
+ z.mant = z.mant.sub(z.mant, y.mant)
+ }
+ ex = ey
+ }
+
+ // operands may have canceled each other out
+ if len(z.mant) == 0 {
+ z.acc = Exact
+ z.form = zero
+ z.neg = false
+ return
+ }
+ // len(z.mant) > 0
+
+ z.setExpAndRound(ex+int64(len(z.mant))*_W-fnorm(z.mant), 0)
+}
+
+// z = x * y, ignoring signs of x and y for the multiplication
+// but using the sign of z for rounding the result.
+// x and y must have a non-empty mantissa and valid exponent.
+func (z *Float) umul(x, y *Float) {
+ if debugFloat {
+ validateBinaryOperands(x, y)
+ }
+
+ // Note: This is doing too much work if the precision
+ // of z is less than the sum of the precisions of x
+ // and y which is often the case (e.g., if all floats
+ // have the same precision).
+ // TODO(gri) Optimize this for the common case.
+
+ e := int64(x.exp) + int64(y.exp)
+ if x == y {
+ z.mant = z.mant.sqr(x.mant)
+ } else {
+ z.mant = z.mant.mul(x.mant, y.mant)
+ }
+ z.setExpAndRound(e-fnorm(z.mant), 0)
+}
+
+// z = x / y, ignoring signs of x and y for the division
+// but using the sign of z for rounding the result.
+// x and y must have a non-empty mantissa and valid exponent.
+func (z *Float) uquo(x, y *Float) {
+ if debugFloat {
+ validateBinaryOperands(x, y)
+ }
+
+ // mantissa length in words for desired result precision + 1
+ // (at least one extra bit so we get the rounding bit after
+ // the division)
+ n := int(z.prec/_W) + 1
+
+ // compute adjusted x.mant such that we get enough result precision
+ xadj := x.mant
+ if d := n - len(x.mant) + len(y.mant); d > 0 {
+ // d extra words needed => add d "0 digits" to x
+ xadj = make(nat, len(x.mant)+d)
+ copy(xadj[d:], x.mant)
+ }
+ // TODO(gri): If we have too many digits (d < 0), we should be able
+ // to shorten x for faster division. But we must be extra careful
+ // with rounding in that case.
+
+ // Compute d before division since there may be aliasing of x.mant
+ // (via xadj) or y.mant with z.mant.
+ d := len(xadj) - len(y.mant)
+
+ // divide
+ var r nat
+ z.mant, r = z.mant.div(nil, xadj, y.mant)
+ e := int64(x.exp) - int64(y.exp) - int64(d-len(z.mant))*_W
+
+ // The result is long enough to include (at least) the rounding bit.
+ // If there's a non-zero remainder, the corresponding fractional part
+ // (if it were computed), would have a non-zero sticky bit (if it were
+ // zero, it couldn't have a non-zero remainder).
+ var sbit uint
+ if len(r) > 0 {
+ sbit = 1
+ }
+
+ z.setExpAndRound(e-fnorm(z.mant), sbit)
+}
+
+// ucmp returns -1, 0, or +1, depending on whether
+// |x| < |y|, |x| == |y|, or |x| > |y|.
+// x and y must have a non-empty mantissa and valid exponent.
+func (x *Float) ucmp(y *Float) int {
+ if debugFloat {
+ validateBinaryOperands(x, y)
+ }
+
+ switch {
+ case x.exp < y.exp:
+ return -1
+ case x.exp > y.exp:
+ return +1
+ }
+ // x.exp == y.exp
+
+ // compare mantissas
+ i := len(x.mant)
+ j := len(y.mant)
+ for i > 0 || j > 0 {
+ var xm, ym Word
+ if i > 0 {
+ i--
+ xm = x.mant[i]
+ }
+ if j > 0 {
+ j--
+ ym = y.mant[j]
+ }
+ switch {
+ case xm < ym:
+ return -1
+ case xm > ym:
+ return +1
+ }
+ }
+
+ return 0
+}
+
+// Handling of sign bit as defined by IEEE 754-2008, section 6.3:
+//
+// When neither the inputs nor result are NaN, the sign of a product or
+// quotient is the exclusive OR of the operands’ signs; the sign of a sum,
+// or of a difference x−y regarded as a sum x+(−y), differs from at most
+// one of the addends’ signs; and the sign of the result of conversions,
+// the quantize operation, the roundToIntegral operations, and the
+// roundToIntegralExact (see 5.3.1) is the sign of the first or only operand.
+// These rules shall apply even when operands or results are zero or infinite.
+//
+// When the sum of two operands with opposite signs (or the difference of
+// two operands with like signs) is exactly zero, the sign of that sum (or
+// difference) shall be +0 in all rounding-direction attributes except
+// roundTowardNegative; under that attribute, the sign of an exact zero
+// sum (or difference) shall be −0. However, x+x = x−(−x) retains the same
+// sign as x even when x is zero.
+//
+// See also: https://play.golang.org/p/RtH3UCt5IH
+
+// Add sets z to the rounded sum x+y and returns z. If z's precision is 0,
+// it is changed to the larger of x's or y's precision before the operation.
+// Rounding is performed according to z's precision and rounding mode; and
+// z's accuracy reports the result error relative to the exact (not rounded)
+// result. Add panics with ErrNaN if x and y are infinities with opposite
+// signs. The value of z is undefined in that case.
+func (z *Float) Add(x, y *Float) *Float {
+ if debugFloat {
+ x.validate()
+ y.validate()
+ }
+
+ if z.prec == 0 {
+ z.prec = umax32(x.prec, y.prec)
+ }
+
+ if x.form == finite && y.form == finite {
+ // x + y (common case)
+
+ // Below we set z.neg = x.neg, and when z aliases y this will
+ // change the y operand's sign. This is fine, because if an
+ // operand aliases the receiver it'll be overwritten, but we still
+ // want the original x.neg and y.neg values when we evaluate
+ // x.neg != y.neg, so we need to save y.neg before setting z.neg.
+ yneg := y.neg
+
+ z.neg = x.neg
+ if x.neg == yneg {
+ // x + y == x + y
+ // (-x) + (-y) == -(x + y)
+ z.uadd(x, y)
+ } else {
+ // x + (-y) == x - y == -(y - x)
+ // (-x) + y == y - x == -(x - y)
+ if x.ucmp(y) > 0 {
+ z.usub(x, y)
+ } else {
+ z.neg = !z.neg
+ z.usub(y, x)
+ }
+ }
+ if z.form == zero && z.mode == ToNegativeInf && z.acc == Exact {
+ z.neg = true
+ }
+ return z
+ }
+
+ if x.form == inf && y.form == inf && x.neg != y.neg {
+ // +Inf + -Inf
+ // -Inf + +Inf
+ // value of z is undefined but make sure it's valid
+ z.acc = Exact
+ z.form = zero
+ z.neg = false
+ panic(ErrNaN{"addition of infinities with opposite signs"})
+ }
+
+ if x.form == zero && y.form == zero {
+ // ±0 + ±0
+ z.acc = Exact
+ z.form = zero
+ z.neg = x.neg && y.neg // -0 + -0 == -0
+ return z
+ }
+
+ if x.form == inf || y.form == zero {
+ // ±Inf + y
+ // x + ±0
+ return z.Set(x)
+ }
+
+ // ±0 + y
+ // x + ±Inf
+ return z.Set(y)
+}
+
+// Sub sets z to the rounded difference x-y and returns z.
+// Precision, rounding, and accuracy reporting are as for Add.
+// Sub panics with ErrNaN if x and y are infinities with equal
+// signs. The value of z is undefined in that case.
+func (z *Float) Sub(x, y *Float) *Float {
+ if debugFloat {
+ x.validate()
+ y.validate()
+ }
+
+ if z.prec == 0 {
+ z.prec = umax32(x.prec, y.prec)
+ }
+
+ if x.form == finite && y.form == finite {
+ // x - y (common case)
+ yneg := y.neg
+ z.neg = x.neg
+ if x.neg != yneg {
+ // x - (-y) == x + y
+ // (-x) - y == -(x + y)
+ z.uadd(x, y)
+ } else {
+ // x - y == x - y == -(y - x)
+ // (-x) - (-y) == y - x == -(x - y)
+ if x.ucmp(y) > 0 {
+ z.usub(x, y)
+ } else {
+ z.neg = !z.neg
+ z.usub(y, x)
+ }
+ }
+ if z.form == zero && z.mode == ToNegativeInf && z.acc == Exact {
+ z.neg = true
+ }
+ return z
+ }
+
+ if x.form == inf && y.form == inf && x.neg == y.neg {
+ // +Inf - +Inf
+ // -Inf - -Inf
+ // value of z is undefined but make sure it's valid
+ z.acc = Exact
+ z.form = zero
+ z.neg = false
+ panic(ErrNaN{"subtraction of infinities with equal signs"})
+ }
+
+ if x.form == zero && y.form == zero {
+ // ±0 - ±0
+ z.acc = Exact
+ z.form = zero
+ z.neg = x.neg && !y.neg // -0 - +0 == -0
+ return z
+ }
+
+ if x.form == inf || y.form == zero {
+ // ±Inf - y
+ // x - ±0
+ return z.Set(x)
+ }
+
+ // ±0 - y
+ // x - ±Inf
+ return z.Neg(y)
+}
+
+// Mul sets z to the rounded product x*y and returns z.
+// Precision, rounding, and accuracy reporting are as for Add.
+// Mul panics with ErrNaN if one operand is zero and the other
+// operand an infinity. The value of z is undefined in that case.
+func (z *Float) Mul(x, y *Float) *Float {
+ if debugFloat {
+ x.validate()
+ y.validate()
+ }
+
+ if z.prec == 0 {
+ z.prec = umax32(x.prec, y.prec)
+ }
+
+ z.neg = x.neg != y.neg
+
+ if x.form == finite && y.form == finite {
+ // x * y (common case)
+ z.umul(x, y)
+ return z
+ }
+
+ z.acc = Exact
+ if x.form == zero && y.form == inf || x.form == inf && y.form == zero {
+ // ±0 * ±Inf
+ // ±Inf * ±0
+ // value of z is undefined but make sure it's valid
+ z.form = zero
+ z.neg = false
+ panic(ErrNaN{"multiplication of zero with infinity"})
+ }
+
+ if x.form == inf || y.form == inf {
+ // ±Inf * y
+ // x * ±Inf
+ z.form = inf
+ return z
+ }
+
+ // ±0 * y
+ // x * ±0
+ z.form = zero
+ return z
+}
+
+// Quo sets z to the rounded quotient x/y and returns z.
+// Precision, rounding, and accuracy reporting are as for Add.
+// Quo panics with ErrNaN if both operands are zero or infinities.
+// The value of z is undefined in that case.
+func (z *Float) Quo(x, y *Float) *Float {
+ if debugFloat {
+ x.validate()
+ y.validate()
+ }
+
+ if z.prec == 0 {
+ z.prec = umax32(x.prec, y.prec)
+ }
+
+ z.neg = x.neg != y.neg
+
+ if x.form == finite && y.form == finite {
+ // x / y (common case)
+ z.uquo(x, y)
+ return z
+ }
+
+ z.acc = Exact
+ if x.form == zero && y.form == zero || x.form == inf && y.form == inf {
+ // ±0 / ±0
+ // ±Inf / ±Inf
+ // value of z is undefined but make sure it's valid
+ z.form = zero
+ z.neg = false
+ panic(ErrNaN{"division of zero by zero or infinity by infinity"})
+ }
+
+ if x.form == zero || y.form == inf {
+ // ±0 / y
+ // x / ±Inf
+ z.form = zero
+ return z
+ }
+
+ // x / ±0
+ // ±Inf / y
+ z.form = inf
+ return z
+}
+
+// Cmp compares x and y and returns:
+//
+// -1 if x < y
+// 0 if x == y (incl. -0 == 0, -Inf == -Inf, and +Inf == +Inf)
+// +1 if x > y
+//
+func (x *Float) Cmp(y *Float) int {
+ if debugFloat {
+ x.validate()
+ y.validate()
+ }
+
+ mx := x.ord()
+ my := y.ord()
+ switch {
+ case mx < my:
+ return -1
+ case mx > my:
+ return +1
+ }
+ // mx == my
+
+ // only if |mx| == 1 we have to compare the mantissae
+ switch mx {
+ case -1:
+ return y.ucmp(x)
+ case +1:
+ return x.ucmp(y)
+ }
+
+ return 0
+}
+
+// ord classifies x and returns:
+//
+// -2 if -Inf == x
+// -1 if -Inf < x < 0
+// 0 if x == 0 (signed or unsigned)
+// +1 if 0 < x < +Inf
+// +2 if x == +Inf
+//
+func (x *Float) ord() int {
+ var m int
+ switch x.form {
+ case finite:
+ m = 1
+ case zero:
+ return 0
+ case inf:
+ m = 2
+ }
+ if x.neg {
+ m = -m
+ }
+ return m
+}
+
+func umax32(x, y uint32) uint32 {
+ if x > y {
+ return x
+ }
+ return y
+}
diff --git a/contrib/go/_std_1.18/src/math/big/floatconv.go b/contrib/go/_std_1.18/src/math/big/floatconv.go
new file mode 100644
index 0000000000..57b7df3936
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/floatconv.go
@@ -0,0 +1,304 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements string-to-Float conversion functions.
+
+package big
+
+import (
+ "fmt"
+ "io"
+ "strings"
+)
+
+var floatZero Float
+
+// SetString sets z to the value of s and returns z and a boolean indicating
+// success. s must be a floating-point number of the same format as accepted
+// by Parse, with base argument 0. The entire string (not just a prefix) must
+// be valid for success. If the operation failed, the value of z is undefined
+// but the returned value is nil.
+func (z *Float) SetString(s string) (*Float, bool) {
+ if f, _, err := z.Parse(s, 0); err == nil {
+ return f, true
+ }
+ return nil, false
+}
+
+// scan is like Parse but reads the longest possible prefix representing a valid
+// floating point number from an io.ByteScanner rather than a string. It serves
+// as the implementation of Parse. It does not recognize ±Inf and does not expect
+// EOF at the end.
+func (z *Float) scan(r io.ByteScanner, base int) (f *Float, b int, err error) {
+ prec := z.prec
+ if prec == 0 {
+ prec = 64
+ }
+
+ // A reasonable value in case of an error.
+ z.form = zero
+
+ // sign
+ z.neg, err = scanSign(r)
+ if err != nil {
+ return
+ }
+
+ // mantissa
+ var fcount int // fractional digit count; valid if <= 0
+ z.mant, b, fcount, err = z.mant.scan(r, base, true)
+ if err != nil {
+ return
+ }
+
+ // exponent
+ var exp int64
+ var ebase int
+ exp, ebase, err = scanExponent(r, true, base == 0)
+ if err != nil {
+ return
+ }
+
+ // special-case 0
+ if len(z.mant) == 0 {
+ z.prec = prec
+ z.acc = Exact
+ z.form = zero
+ f = z
+ return
+ }
+ // len(z.mant) > 0
+
+ // The mantissa may have a radix point (fcount <= 0) and there
+ // may be a nonzero exponent exp. The radix point amounts to a
+ // division by b**(-fcount). An exponent means multiplication by
+ // ebase**exp. Finally, mantissa normalization (shift left) requires
+ // a correcting multiplication by 2**(-shiftcount). Multiplications
+ // are commutative, so we can apply them in any order as long as there
+ // is no loss of precision. We only have powers of 2 and 10, and
+ // we split powers of 10 into the product of the same powers of
+ // 2 and 5. This reduces the size of the multiplication factor
+ // needed for base-10 exponents.
+
+ // normalize mantissa and determine initial exponent contributions
+ exp2 := int64(len(z.mant))*_W - fnorm(z.mant)
+ exp5 := int64(0)
+
+ // determine binary or decimal exponent contribution of radix point
+ if fcount < 0 {
+ // The mantissa has a radix point ddd.dddd; and
+ // -fcount is the number of digits to the right
+ // of '.'. Adjust relevant exponent accordingly.
+ d := int64(fcount)
+ switch b {
+ case 10:
+ exp5 = d
+ fallthrough // 10**e == 5**e * 2**e
+ case 2:
+ exp2 += d
+ case 8:
+ exp2 += d * 3 // octal digits are 3 bits each
+ case 16:
+ exp2 += d * 4 // hexadecimal digits are 4 bits each
+ default:
+ panic("unexpected mantissa base")
+ }
+ // fcount consumed - not needed anymore
+ }
+
+ // take actual exponent into account
+ switch ebase {
+ case 10:
+ exp5 += exp
+ fallthrough // see fallthrough above
+ case 2:
+ exp2 += exp
+ default:
+ panic("unexpected exponent base")
+ }
+ // exp consumed - not needed anymore
+
+ // apply 2**exp2
+ if MinExp <= exp2 && exp2 <= MaxExp {
+ z.prec = prec
+ z.form = finite
+ z.exp = int32(exp2)
+ f = z
+ } else {
+ err = fmt.Errorf("exponent overflow")
+ return
+ }
+
+ if exp5 == 0 {
+ // no decimal exponent contribution
+ z.round(0)
+ return
+ }
+ // exp5 != 0
+
+ // apply 5**exp5
+ p := new(Float).SetPrec(z.Prec() + 64) // use more bits for p -- TODO(gri) what is the right number?
+ if exp5 < 0 {
+ z.Quo(z, p.pow5(uint64(-exp5)))
+ } else {
+ z.Mul(z, p.pow5(uint64(exp5)))
+ }
+
+ return
+}
+
+// These powers of 5 fit into a uint64.
+//
+// for p, q := uint64(0), uint64(1); p < q; p, q = q, q*5 {
+// fmt.Println(q)
+// }
+//
+var pow5tab = [...]uint64{
+ 1,
+ 5,
+ 25,
+ 125,
+ 625,
+ 3125,
+ 15625,
+ 78125,
+ 390625,
+ 1953125,
+ 9765625,
+ 48828125,
+ 244140625,
+ 1220703125,
+ 6103515625,
+ 30517578125,
+ 152587890625,
+ 762939453125,
+ 3814697265625,
+ 19073486328125,
+ 95367431640625,
+ 476837158203125,
+ 2384185791015625,
+ 11920928955078125,
+ 59604644775390625,
+ 298023223876953125,
+ 1490116119384765625,
+ 7450580596923828125,
+}
+
+// pow5 sets z to 5**n and returns z.
+// n must not be negative.
+func (z *Float) pow5(n uint64) *Float {
+ const m = uint64(len(pow5tab) - 1)
+ if n <= m {
+ return z.SetUint64(pow5tab[n])
+ }
+ // n > m
+
+ z.SetUint64(pow5tab[m])
+ n -= m
+
+ // use more bits for f than for z
+ // TODO(gri) what is the right number?
+ f := new(Float).SetPrec(z.Prec() + 64).SetUint64(5)
+
+ for n > 0 {
+ if n&1 != 0 {
+ z.Mul(z, f)
+ }
+ f.Mul(f, f)
+ n >>= 1
+ }
+
+ return z
+}
+
+// Parse parses s which must contain a text representation of a floating-
+// point number with a mantissa in the given conversion base (the exponent
+// is always a decimal number), or a string representing an infinite value.
+//
+// For base 0, an underscore character ``_'' may appear between a base
+// prefix and an adjacent digit, and between successive digits; such
+// underscores do not change the value of the number, or the returned
+// digit count. Incorrect placement of underscores is reported as an
+// error if there are no other errors. If base != 0, underscores are
+// not recognized and thus terminate scanning like any other character
+// that is not a valid radix point or digit.
+//
+// It sets z to the (possibly rounded) value of the corresponding floating-
+// point value, and returns z, the actual base b, and an error err, if any.
+// The entire string (not just a prefix) must be consumed for success.
+// If z's precision is 0, it is changed to 64 before rounding takes effect.
+// The number must be of the form:
+//
+// number = [ sign ] ( float | "inf" | "Inf" ) .
+// sign = "+" | "-" .
+// float = ( mantissa | prefix pmantissa ) [ exponent ] .
+// prefix = "0" [ "b" | "B" | "o" | "O" | "x" | "X" ] .
+// mantissa = digits "." [ digits ] | digits | "." digits .
+// pmantissa = [ "_" ] digits "." [ digits ] | [ "_" ] digits | "." digits .
+// exponent = ( "e" | "E" | "p" | "P" ) [ sign ] digits .
+// digits = digit { [ "_" ] digit } .
+// digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
+//
+// The base argument must be 0, 2, 8, 10, or 16. Providing an invalid base
+// argument will lead to a run-time panic.
+//
+// For base 0, the number prefix determines the actual base: A prefix of
+// ``0b'' or ``0B'' selects base 2, ``0o'' or ``0O'' selects base 8, and
+// ``0x'' or ``0X'' selects base 16. Otherwise, the actual base is 10 and
+// no prefix is accepted. The octal prefix "0" is not supported (a leading
+// "0" is simply considered a "0").
+//
+// A "p" or "P" exponent indicates a base 2 (rather then base 10) exponent;
+// for instance, "0x1.fffffffffffffp1023" (using base 0) represents the
+// maximum float64 value. For hexadecimal mantissae, the exponent character
+// must be one of 'p' or 'P', if present (an "e" or "E" exponent indicator
+// cannot be distinguished from a mantissa digit).
+//
+// The returned *Float f is nil and the value of z is valid but not
+// defined if an error is reported.
+//
+func (z *Float) Parse(s string, base int) (f *Float, b int, err error) {
+ // scan doesn't handle ±Inf
+ if len(s) == 3 && (s == "Inf" || s == "inf") {
+ f = z.SetInf(false)
+ return
+ }
+ if len(s) == 4 && (s[0] == '+' || s[0] == '-') && (s[1:] == "Inf" || s[1:] == "inf") {
+ f = z.SetInf(s[0] == '-')
+ return
+ }
+
+ r := strings.NewReader(s)
+ if f, b, err = z.scan(r, base); err != nil {
+ return
+ }
+
+ // entire string must have been consumed
+ if ch, err2 := r.ReadByte(); err2 == nil {
+ err = fmt.Errorf("expected end of string, found %q", ch)
+ } else if err2 != io.EOF {
+ err = err2
+ }
+
+ return
+}
+
+// ParseFloat is like f.Parse(s, base) with f set to the given precision
+// and rounding mode.
+func ParseFloat(s string, base int, prec uint, mode RoundingMode) (f *Float, b int, err error) {
+ return new(Float).SetPrec(prec).SetMode(mode).Parse(s, base)
+}
+
+var _ fmt.Scanner = (*Float)(nil) // *Float must implement fmt.Scanner
+
+// Scan is a support routine for fmt.Scanner; it sets z to the value of
+// the scanned number. It accepts formats whose verbs are supported by
+// fmt.Scan for floating point values, which are:
+// 'b' (binary), 'e', 'E', 'f', 'F', 'g' and 'G'.
+// Scan doesn't handle ±Inf.
+func (z *Float) Scan(s fmt.ScanState, ch rune) error {
+ s.SkipSpace()
+ _, _, err := z.scan(byteReader{s}, 0)
+ return err
+}
diff --git a/contrib/go/_std_1.18/src/math/big/floatmarsh.go b/contrib/go/_std_1.18/src/math/big/floatmarsh.go
new file mode 100644
index 0000000000..d1c1dab069
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/floatmarsh.go
@@ -0,0 +1,120 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements encoding/decoding of Floats.
+
+package big
+
+import (
+ "encoding/binary"
+ "fmt"
+)
+
+// Gob codec version. Permits backward-compatible changes to the encoding.
+const floatGobVersion byte = 1
+
+// GobEncode implements the gob.GobEncoder interface.
+// The Float value and all its attributes (precision,
+// rounding mode, accuracy) are marshaled.
+func (x *Float) GobEncode() ([]byte, error) {
+ if x == nil {
+ return nil, nil
+ }
+
+ // determine max. space (bytes) required for encoding
+ sz := 1 + 1 + 4 // version + mode|acc|form|neg (3+2+2+1bit) + prec
+ n := 0 // number of mantissa words
+ if x.form == finite {
+ // add space for mantissa and exponent
+ n = int((x.prec + (_W - 1)) / _W) // required mantissa length in words for given precision
+ // actual mantissa slice could be shorter (trailing 0's) or longer (unused bits):
+ // - if shorter, only encode the words present
+ // - if longer, cut off unused words when encoding in bytes
+ // (in practice, this should never happen since rounding
+ // takes care of it, but be safe and do it always)
+ if len(x.mant) < n {
+ n = len(x.mant)
+ }
+ // len(x.mant) >= n
+ sz += 4 + n*_S // exp + mant
+ }
+ buf := make([]byte, sz)
+
+ buf[0] = floatGobVersion
+ b := byte(x.mode&7)<<5 | byte((x.acc+1)&3)<<3 | byte(x.form&3)<<1
+ if x.neg {
+ b |= 1
+ }
+ buf[1] = b
+ binary.BigEndian.PutUint32(buf[2:], x.prec)
+
+ if x.form == finite {
+ binary.BigEndian.PutUint32(buf[6:], uint32(x.exp))
+ x.mant[len(x.mant)-n:].bytes(buf[10:]) // cut off unused trailing words
+ }
+
+ return buf, nil
+}
+
+// GobDecode implements the gob.GobDecoder interface.
+// The result is rounded per the precision and rounding mode of
+// z unless z's precision is 0, in which case z is set exactly
+// to the decoded value.
+func (z *Float) GobDecode(buf []byte) error {
+ if len(buf) == 0 {
+ // Other side sent a nil or default value.
+ *z = Float{}
+ return nil
+ }
+
+ if buf[0] != floatGobVersion {
+ return fmt.Errorf("Float.GobDecode: encoding version %d not supported", buf[0])
+ }
+
+ oldPrec := z.prec
+ oldMode := z.mode
+
+ b := buf[1]
+ z.mode = RoundingMode((b >> 5) & 7)
+ z.acc = Accuracy((b>>3)&3) - 1
+ z.form = form((b >> 1) & 3)
+ z.neg = b&1 != 0
+ z.prec = binary.BigEndian.Uint32(buf[2:])
+
+ if z.form == finite {
+ z.exp = int32(binary.BigEndian.Uint32(buf[6:]))
+ z.mant = z.mant.setBytes(buf[10:])
+ }
+
+ if oldPrec != 0 {
+ z.mode = oldMode
+ z.SetPrec(uint(oldPrec))
+ }
+
+ return nil
+}
+
+// MarshalText implements the encoding.TextMarshaler interface.
+// Only the Float value is marshaled (in full precision), other
+// attributes such as precision or accuracy are ignored.
+func (x *Float) MarshalText() (text []byte, err error) {
+ if x == nil {
+ return []byte("<nil>"), nil
+ }
+ var buf []byte
+ return x.Append(buf, 'g', -1), nil
+}
+
+// UnmarshalText implements the encoding.TextUnmarshaler interface.
+// The result is rounded per the precision and rounding mode of z.
+// If z's precision is 0, it is changed to 64 before rounding takes
+// effect.
+func (z *Float) UnmarshalText(text []byte) error {
+ // TODO(gri): get rid of the []byte/string conversion
+ _, _, err := z.Parse(string(text), 0)
+ if err != nil {
+ err = fmt.Errorf("math/big: cannot unmarshal %q into a *big.Float (%v)", text, err)
+ }
+ return err
+}
diff --git a/contrib/go/_std_1.18/src/math/big/ftoa.go b/contrib/go/_std_1.18/src/math/big/ftoa.go
new file mode 100644
index 0000000000..5506e6e425
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/ftoa.go
@@ -0,0 +1,536 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements Float-to-string conversion functions.
+// It is closely following the corresponding implementation
+// in strconv/ftoa.go, but modified and simplified for Float.
+
+package big
+
+import (
+ "bytes"
+ "fmt"
+ "strconv"
+)
+
+// Text converts the floating-point number x to a string according
+// to the given format and precision prec. The format is one of:
+//
+// 'e' -d.dddde±dd, decimal exponent, at least two (possibly 0) exponent digits
+// 'E' -d.ddddE±dd, decimal exponent, at least two (possibly 0) exponent digits
+// 'f' -ddddd.dddd, no exponent
+// 'g' like 'e' for large exponents, like 'f' otherwise
+// 'G' like 'E' for large exponents, like 'f' otherwise
+// 'x' -0xd.dddddp±dd, hexadecimal mantissa, decimal power of two exponent
+// 'p' -0x.dddp±dd, hexadecimal mantissa, decimal power of two exponent (non-standard)
+// 'b' -ddddddp±dd, decimal mantissa, decimal power of two exponent (non-standard)
+//
+// For the power-of-two exponent formats, the mantissa is printed in normalized form:
+//
+// 'x' hexadecimal mantissa in [1, 2), or 0
+// 'p' hexadecimal mantissa in [½, 1), or 0
+// 'b' decimal integer mantissa using x.Prec() bits, or 0
+//
+// Note that the 'x' form is the one used by most other languages and libraries.
+//
+// If format is a different character, Text returns a "%" followed by the
+// unrecognized format character.
+//
+// The precision prec controls the number of digits (excluding the exponent)
+// printed by the 'e', 'E', 'f', 'g', 'G', and 'x' formats.
+// For 'e', 'E', 'f', and 'x', it is the number of digits after the decimal point.
+// For 'g' and 'G' it is the total number of digits. A negative precision selects
+// the smallest number of decimal digits necessary to identify the value x uniquely
+// using x.Prec() mantissa bits.
+// The prec value is ignored for the 'b' and 'p' formats.
+func (x *Float) Text(format byte, prec int) string {
+ cap := 10 // TODO(gri) determine a good/better value here
+ if prec > 0 {
+ cap += prec
+ }
+ return string(x.Append(make([]byte, 0, cap), format, prec))
+}
+
+// String formats x like x.Text('g', 10).
+// (String must be called explicitly, Float.Format does not support %s verb.)
+func (x *Float) String() string {
+ return x.Text('g', 10)
+}
+
+// Append appends to buf the string form of the floating-point number x,
+// as generated by x.Text, and returns the extended buffer.
+func (x *Float) Append(buf []byte, fmt byte, prec int) []byte {
+ // sign
+ if x.neg {
+ buf = append(buf, '-')
+ }
+
+ // Inf
+ if x.form == inf {
+ if !x.neg {
+ buf = append(buf, '+')
+ }
+ return append(buf, "Inf"...)
+ }
+
+ // pick off easy formats
+ switch fmt {
+ case 'b':
+ return x.fmtB(buf)
+ case 'p':
+ return x.fmtP(buf)
+ case 'x':
+ return x.fmtX(buf, prec)
+ }
+
+ // Algorithm:
+ // 1) convert Float to multiprecision decimal
+ // 2) round to desired precision
+ // 3) read digits out and format
+
+ // 1) convert Float to multiprecision decimal
+ var d decimal // == 0.0
+ if x.form == finite {
+ // x != 0
+ d.init(x.mant, int(x.exp)-x.mant.bitLen())
+ }
+
+ // 2) round to desired precision
+ shortest := false
+ if prec < 0 {
+ shortest = true
+ roundShortest(&d, x)
+ // Precision for shortest representation mode.
+ switch fmt {
+ case 'e', 'E':
+ prec = len(d.mant) - 1
+ case 'f':
+ prec = max(len(d.mant)-d.exp, 0)
+ case 'g', 'G':
+ prec = len(d.mant)
+ }
+ } else {
+ // round appropriately
+ switch fmt {
+ case 'e', 'E':
+ // one digit before and number of digits after decimal point
+ d.round(1 + prec)
+ case 'f':
+ // number of digits before and after decimal point
+ d.round(d.exp + prec)
+ case 'g', 'G':
+ if prec == 0 {
+ prec = 1
+ }
+ d.round(prec)
+ }
+ }
+
+ // 3) read digits out and format
+ switch fmt {
+ case 'e', 'E':
+ return fmtE(buf, fmt, prec, d)
+ case 'f':
+ return fmtF(buf, prec, d)
+ case 'g', 'G':
+ // trim trailing fractional zeros in %e format
+ eprec := prec
+ if eprec > len(d.mant) && len(d.mant) >= d.exp {
+ eprec = len(d.mant)
+ }
+ // %e is used if the exponent from the conversion
+ // is less than -4 or greater than or equal to the precision.
+ // If precision was the shortest possible, use eprec = 6 for
+ // this decision.
+ if shortest {
+ eprec = 6
+ }
+ exp := d.exp - 1
+ if exp < -4 || exp >= eprec {
+ if prec > len(d.mant) {
+ prec = len(d.mant)
+ }
+ return fmtE(buf, fmt+'e'-'g', prec-1, d)
+ }
+ if prec > d.exp {
+ prec = len(d.mant)
+ }
+ return fmtF(buf, max(prec-d.exp, 0), d)
+ }
+
+ // unknown format
+ if x.neg {
+ buf = buf[:len(buf)-1] // sign was added prematurely - remove it again
+ }
+ return append(buf, '%', fmt)
+}
+
+func roundShortest(d *decimal, x *Float) {
+ // if the mantissa is zero, the number is zero - stop now
+ if len(d.mant) == 0 {
+ return
+ }
+
+ // Approach: All numbers in the interval [x - 1/2ulp, x + 1/2ulp]
+ // (possibly exclusive) round to x for the given precision of x.
+ // Compute the lower and upper bound in decimal form and find the
+ // shortest decimal number d such that lower <= d <= upper.
+
+ // TODO(gri) strconv/ftoa.do describes a shortcut in some cases.
+ // See if we can use it (in adjusted form) here as well.
+
+ // 1) Compute normalized mantissa mant and exponent exp for x such
+ // that the lsb of mant corresponds to 1/2 ulp for the precision of
+ // x (i.e., for mant we want x.prec + 1 bits).
+ mant := nat(nil).set(x.mant)
+ exp := int(x.exp) - mant.bitLen()
+ s := mant.bitLen() - int(x.prec+1)
+ switch {
+ case s < 0:
+ mant = mant.shl(mant, uint(-s))
+ case s > 0:
+ mant = mant.shr(mant, uint(+s))
+ }
+ exp += s
+ // x = mant * 2**exp with lsb(mant) == 1/2 ulp of x.prec
+
+ // 2) Compute lower bound by subtracting 1/2 ulp.
+ var lower decimal
+ var tmp nat
+ lower.init(tmp.sub(mant, natOne), exp)
+
+ // 3) Compute upper bound by adding 1/2 ulp.
+ var upper decimal
+ upper.init(tmp.add(mant, natOne), exp)
+
+ // The upper and lower bounds are possible outputs only if
+ // the original mantissa is even, so that ToNearestEven rounding
+ // would round to the original mantissa and not the neighbors.
+ inclusive := mant[0]&2 == 0 // test bit 1 since original mantissa was shifted by 1
+
+ // Now we can figure out the minimum number of digits required.
+ // Walk along until d has distinguished itself from upper and lower.
+ for i, m := range d.mant {
+ l := lower.at(i)
+ u := upper.at(i)
+
+ // Okay to round down (truncate) if lower has a different digit
+ // or if lower is inclusive and is exactly the result of rounding
+ // down (i.e., and we have reached the final digit of lower).
+ okdown := l != m || inclusive && i+1 == len(lower.mant)
+
+ // Okay to round up if upper has a different digit and either upper
+ // is inclusive or upper is bigger than the result of rounding up.
+ okup := m != u && (inclusive || m+1 < u || i+1 < len(upper.mant))
+
+ // If it's okay to do either, then round to the nearest one.
+ // If it's okay to do only one, do it.
+ switch {
+ case okdown && okup:
+ d.round(i + 1)
+ return
+ case okdown:
+ d.roundDown(i + 1)
+ return
+ case okup:
+ d.roundUp(i + 1)
+ return
+ }
+ }
+}
+
+// %e: d.ddddde±dd
+func fmtE(buf []byte, fmt byte, prec int, d decimal) []byte {
+ // first digit
+ ch := byte('0')
+ if len(d.mant) > 0 {
+ ch = d.mant[0]
+ }
+ buf = append(buf, ch)
+
+ // .moredigits
+ if prec > 0 {
+ buf = append(buf, '.')
+ i := 1
+ m := min(len(d.mant), prec+1)
+ if i < m {
+ buf = append(buf, d.mant[i:m]...)
+ i = m
+ }
+ for ; i <= prec; i++ {
+ buf = append(buf, '0')
+ }
+ }
+
+ // e±
+ buf = append(buf, fmt)
+ var exp int64
+ if len(d.mant) > 0 {
+ exp = int64(d.exp) - 1 // -1 because first digit was printed before '.'
+ }
+ if exp < 0 {
+ ch = '-'
+ exp = -exp
+ } else {
+ ch = '+'
+ }
+ buf = append(buf, ch)
+
+ // dd...d
+ if exp < 10 {
+ buf = append(buf, '0') // at least 2 exponent digits
+ }
+ return strconv.AppendInt(buf, exp, 10)
+}
+
+// %f: ddddddd.ddddd
+func fmtF(buf []byte, prec int, d decimal) []byte {
+ // integer, padded with zeros as needed
+ if d.exp > 0 {
+ m := min(len(d.mant), d.exp)
+ buf = append(buf, d.mant[:m]...)
+ for ; m < d.exp; m++ {
+ buf = append(buf, '0')
+ }
+ } else {
+ buf = append(buf, '0')
+ }
+
+ // fraction
+ if prec > 0 {
+ buf = append(buf, '.')
+ for i := 0; i < prec; i++ {
+ buf = append(buf, d.at(d.exp+i))
+ }
+ }
+
+ return buf
+}
+
+// fmtB appends the string of x in the format mantissa "p" exponent
+// with a decimal mantissa and a binary exponent, or 0" if x is zero,
+// and returns the extended buffer.
+// The mantissa is normalized such that is uses x.Prec() bits in binary
+// representation.
+// The sign of x is ignored, and x must not be an Inf.
+// (The caller handles Inf before invoking fmtB.)
+func (x *Float) fmtB(buf []byte) []byte {
+ if x.form == zero {
+ return append(buf, '0')
+ }
+
+ if debugFloat && x.form != finite {
+ panic("non-finite float")
+ }
+ // x != 0
+
+ // adjust mantissa to use exactly x.prec bits
+ m := x.mant
+ switch w := uint32(len(x.mant)) * _W; {
+ case w < x.prec:
+ m = nat(nil).shl(m, uint(x.prec-w))
+ case w > x.prec:
+ m = nat(nil).shr(m, uint(w-x.prec))
+ }
+
+ buf = append(buf, m.utoa(10)...)
+ buf = append(buf, 'p')
+ e := int64(x.exp) - int64(x.prec)
+ if e >= 0 {
+ buf = append(buf, '+')
+ }
+ return strconv.AppendInt(buf, e, 10)
+}
+
+// fmtX appends the string of x in the format "0x1." mantissa "p" exponent
+// with a hexadecimal mantissa and a binary exponent, or "0x0p0" if x is zero,
+// and returns the extended buffer.
+// A non-zero mantissa is normalized such that 1.0 <= mantissa < 2.0.
+// The sign of x is ignored, and x must not be an Inf.
+// (The caller handles Inf before invoking fmtX.)
+func (x *Float) fmtX(buf []byte, prec int) []byte {
+ if x.form == zero {
+ buf = append(buf, "0x0"...)
+ if prec > 0 {
+ buf = append(buf, '.')
+ for i := 0; i < prec; i++ {
+ buf = append(buf, '0')
+ }
+ }
+ buf = append(buf, "p+00"...)
+ return buf
+ }
+
+ if debugFloat && x.form != finite {
+ panic("non-finite float")
+ }
+
+ // round mantissa to n bits
+ var n uint
+ if prec < 0 {
+ n = 1 + (x.MinPrec()-1+3)/4*4 // round MinPrec up to 1 mod 4
+ } else {
+ n = 1 + 4*uint(prec)
+ }
+ // n%4 == 1
+ x = new(Float).SetPrec(n).SetMode(x.mode).Set(x)
+
+ // adjust mantissa to use exactly n bits
+ m := x.mant
+ switch w := uint(len(x.mant)) * _W; {
+ case w < n:
+ m = nat(nil).shl(m, n-w)
+ case w > n:
+ m = nat(nil).shr(m, w-n)
+ }
+ exp64 := int64(x.exp) - 1 // avoid wrap-around
+
+ hm := m.utoa(16)
+ if debugFloat && hm[0] != '1' {
+ panic("incorrect mantissa: " + string(hm))
+ }
+ buf = append(buf, "0x1"...)
+ if len(hm) > 1 {
+ buf = append(buf, '.')
+ buf = append(buf, hm[1:]...)
+ }
+
+ buf = append(buf, 'p')
+ if exp64 >= 0 {
+ buf = append(buf, '+')
+ } else {
+ exp64 = -exp64
+ buf = append(buf, '-')
+ }
+ // Force at least two exponent digits, to match fmt.
+ if exp64 < 10 {
+ buf = append(buf, '0')
+ }
+ return strconv.AppendInt(buf, exp64, 10)
+}
+
+// fmtP appends the string of x in the format "0x." mantissa "p" exponent
+// with a hexadecimal mantissa and a binary exponent, or "0" if x is zero,
+// and returns the extended buffer.
+// The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0.
+// The sign of x is ignored, and x must not be an Inf.
+// (The caller handles Inf before invoking fmtP.)
+func (x *Float) fmtP(buf []byte) []byte {
+ if x.form == zero {
+ return append(buf, '0')
+ }
+
+ if debugFloat && x.form != finite {
+ panic("non-finite float")
+ }
+ // x != 0
+
+ // remove trailing 0 words early
+ // (no need to convert to hex 0's and trim later)
+ m := x.mant
+ i := 0
+ for i < len(m) && m[i] == 0 {
+ i++
+ }
+ m = m[i:]
+
+ buf = append(buf, "0x."...)
+ buf = append(buf, bytes.TrimRight(m.utoa(16), "0")...)
+ buf = append(buf, 'p')
+ if x.exp >= 0 {
+ buf = append(buf, '+')
+ }
+ return strconv.AppendInt(buf, int64(x.exp), 10)
+}
+
+func min(x, y int) int {
+ if x < y {
+ return x
+ }
+ return y
+}
+
+var _ fmt.Formatter = &floatZero // *Float must implement fmt.Formatter
+
+// Format implements fmt.Formatter. It accepts all the regular
+// formats for floating-point numbers ('b', 'e', 'E', 'f', 'F',
+// 'g', 'G', 'x') as well as 'p' and 'v'. See (*Float).Text for the
+// interpretation of 'p'. The 'v' format is handled like 'g'.
+// Format also supports specification of the minimum precision
+// in digits, the output field width, as well as the format flags
+// '+' and ' ' for sign control, '0' for space or zero padding,
+// and '-' for left or right justification. See the fmt package
+// for details.
+func (x *Float) Format(s fmt.State, format rune) {
+ prec, hasPrec := s.Precision()
+ if !hasPrec {
+ prec = 6 // default precision for 'e', 'f'
+ }
+
+ switch format {
+ case 'e', 'E', 'f', 'b', 'p', 'x':
+ // nothing to do
+ case 'F':
+ // (*Float).Text doesn't support 'F'; handle like 'f'
+ format = 'f'
+ case 'v':
+ // handle like 'g'
+ format = 'g'
+ fallthrough
+ case 'g', 'G':
+ if !hasPrec {
+ prec = -1 // default precision for 'g', 'G'
+ }
+ default:
+ fmt.Fprintf(s, "%%!%c(*big.Float=%s)", format, x.String())
+ return
+ }
+ var buf []byte
+ buf = x.Append(buf, byte(format), prec)
+ if len(buf) == 0 {
+ buf = []byte("?") // should never happen, but don't crash
+ }
+ // len(buf) > 0
+
+ var sign string
+ switch {
+ case buf[0] == '-':
+ sign = "-"
+ buf = buf[1:]
+ case buf[0] == '+':
+ // +Inf
+ sign = "+"
+ if s.Flag(' ') {
+ sign = " "
+ }
+ buf = buf[1:]
+ case s.Flag('+'):
+ sign = "+"
+ case s.Flag(' '):
+ sign = " "
+ }
+
+ var padding int
+ if width, hasWidth := s.Width(); hasWidth && width > len(sign)+len(buf) {
+ padding = width - len(sign) - len(buf)
+ }
+
+ switch {
+ case s.Flag('0') && !x.IsInf():
+ // 0-padding on left
+ writeMultiple(s, sign, 1)
+ writeMultiple(s, "0", padding)
+ s.Write(buf)
+ case s.Flag('-'):
+ // padding on right
+ writeMultiple(s, sign, 1)
+ s.Write(buf)
+ writeMultiple(s, " ", padding)
+ default:
+ // padding on left
+ writeMultiple(s, " ", padding)
+ writeMultiple(s, sign, 1)
+ s.Write(buf)
+ }
+}
diff --git a/contrib/go/_std_1.18/src/math/big/int.go b/contrib/go/_std_1.18/src/math/big/int.go
new file mode 100644
index 0000000000..7647346486
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/int.go
@@ -0,0 +1,1218 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements signed multi-precision integers.
+
+package big
+
+import (
+ "fmt"
+ "io"
+ "math/rand"
+ "strings"
+)
+
+// An Int represents a signed multi-precision integer.
+// The zero value for an Int represents the value 0.
+//
+// Operations always take pointer arguments (*Int) rather
+// than Int values, and each unique Int value requires
+// its own unique *Int pointer. To "copy" an Int value,
+// an existing (or newly allocated) Int must be set to
+// a new value using the Int.Set method; shallow copies
+// of Ints are not supported and may lead to errors.
+type Int struct {
+ neg bool // sign
+ abs nat // absolute value of the integer
+}
+
+var intOne = &Int{false, natOne}
+
+// Sign returns:
+//
+// -1 if x < 0
+// 0 if x == 0
+// +1 if x > 0
+//
+func (x *Int) Sign() int {
+ if len(x.abs) == 0 {
+ return 0
+ }
+ if x.neg {
+ return -1
+ }
+ return 1
+}
+
+// SetInt64 sets z to x and returns z.
+func (z *Int) SetInt64(x int64) *Int {
+ neg := false
+ if x < 0 {
+ neg = true
+ x = -x
+ }
+ z.abs = z.abs.setUint64(uint64(x))
+ z.neg = neg
+ return z
+}
+
+// SetUint64 sets z to x and returns z.
+func (z *Int) SetUint64(x uint64) *Int {
+ z.abs = z.abs.setUint64(x)
+ z.neg = false
+ return z
+}
+
+// NewInt allocates and returns a new Int set to x.
+func NewInt(x int64) *Int {
+ return new(Int).SetInt64(x)
+}
+
+// Set sets z to x and returns z.
+func (z *Int) Set(x *Int) *Int {
+ if z != x {
+ z.abs = z.abs.set(x.abs)
+ z.neg = x.neg
+ }
+ return z
+}
+
+// Bits provides raw (unchecked but fast) access to x by returning its
+// absolute value as a little-endian Word slice. The result and x share
+// the same underlying array.
+// Bits is intended to support implementation of missing low-level Int
+// functionality outside this package; it should be avoided otherwise.
+func (x *Int) Bits() []Word {
+ return x.abs
+}
+
+// SetBits provides raw (unchecked but fast) access to z by setting its
+// value to abs, interpreted as a little-endian Word slice, and returning
+// z. The result and abs share the same underlying array.
+// SetBits is intended to support implementation of missing low-level Int
+// functionality outside this package; it should be avoided otherwise.
+func (z *Int) SetBits(abs []Word) *Int {
+ z.abs = nat(abs).norm()
+ z.neg = false
+ return z
+}
+
+// Abs sets z to |x| (the absolute value of x) and returns z.
+func (z *Int) Abs(x *Int) *Int {
+ z.Set(x)
+ z.neg = false
+ return z
+}
+
+// Neg sets z to -x and returns z.
+func (z *Int) Neg(x *Int) *Int {
+ z.Set(x)
+ z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
+ return z
+}
+
+// Add sets z to the sum x+y and returns z.
+func (z *Int) Add(x, y *Int) *Int {
+ neg := x.neg
+ if x.neg == y.neg {
+ // x + y == x + y
+ // (-x) + (-y) == -(x + y)
+ z.abs = z.abs.add(x.abs, y.abs)
+ } else {
+ // x + (-y) == x - y == -(y - x)
+ // (-x) + y == y - x == -(x - y)
+ if x.abs.cmp(y.abs) >= 0 {
+ z.abs = z.abs.sub(x.abs, y.abs)
+ } else {
+ neg = !neg
+ z.abs = z.abs.sub(y.abs, x.abs)
+ }
+ }
+ z.neg = len(z.abs) > 0 && neg // 0 has no sign
+ return z
+}
+
+// Sub sets z to the difference x-y and returns z.
+func (z *Int) Sub(x, y *Int) *Int {
+ neg := x.neg
+ if x.neg != y.neg {
+ // x - (-y) == x + y
+ // (-x) - y == -(x + y)
+ z.abs = z.abs.add(x.abs, y.abs)
+ } else {
+ // x - y == x - y == -(y - x)
+ // (-x) - (-y) == y - x == -(x - y)
+ if x.abs.cmp(y.abs) >= 0 {
+ z.abs = z.abs.sub(x.abs, y.abs)
+ } else {
+ neg = !neg
+ z.abs = z.abs.sub(y.abs, x.abs)
+ }
+ }
+ z.neg = len(z.abs) > 0 && neg // 0 has no sign
+ return z
+}
+
+// Mul sets z to the product x*y and returns z.
+func (z *Int) Mul(x, y *Int) *Int {
+ // x * y == x * y
+ // x * (-y) == -(x * y)
+ // (-x) * y == -(x * y)
+ // (-x) * (-y) == x * y
+ if x == y {
+ z.abs = z.abs.sqr(x.abs)
+ z.neg = false
+ return z
+ }
+ z.abs = z.abs.mul(x.abs, y.abs)
+ z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
+ return z
+}
+
+// MulRange sets z to the product of all integers
+// in the range [a, b] inclusively and returns z.
+// If a > b (empty range), the result is 1.
+func (z *Int) MulRange(a, b int64) *Int {
+ switch {
+ case a > b:
+ return z.SetInt64(1) // empty range
+ case a <= 0 && b >= 0:
+ return z.SetInt64(0) // range includes 0
+ }
+ // a <= b && (b < 0 || a > 0)
+
+ neg := false
+ if a < 0 {
+ neg = (b-a)&1 == 0
+ a, b = -b, -a
+ }
+
+ z.abs = z.abs.mulRange(uint64(a), uint64(b))
+ z.neg = neg
+ return z
+}
+
+// Binomial sets z to the binomial coefficient of (n, k) and returns z.
+func (z *Int) Binomial(n, k int64) *Int {
+ // reduce the number of multiplications by reducing k
+ if n/2 < k && k <= n {
+ k = n - k // Binomial(n, k) == Binomial(n, n-k)
+ }
+ var a, b Int
+ a.MulRange(n-k+1, n)
+ b.MulRange(1, k)
+ return z.Quo(&a, &b)
+}
+
+// Quo sets z to the quotient x/y for y != 0 and returns z.
+// If y == 0, a division-by-zero run-time panic occurs.
+// Quo implements truncated division (like Go); see QuoRem for more details.
+func (z *Int) Quo(x, y *Int) *Int {
+ z.abs, _ = z.abs.div(nil, x.abs, y.abs)
+ z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
+ return z
+}
+
+// Rem sets z to the remainder x%y for y != 0 and returns z.
+// If y == 0, a division-by-zero run-time panic occurs.
+// Rem implements truncated modulus (like Go); see QuoRem for more details.
+func (z *Int) Rem(x, y *Int) *Int {
+ _, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
+ z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
+ return z
+}
+
+// QuoRem sets z to the quotient x/y and r to the remainder x%y
+// and returns the pair (z, r) for y != 0.
+// If y == 0, a division-by-zero run-time panic occurs.
+//
+// QuoRem implements T-division and modulus (like Go):
+//
+// q = x/y with the result truncated to zero
+// r = x - y*q
+//
+// (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
+// See DivMod for Euclidean division and modulus (unlike Go).
+//
+func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
+ z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
+ z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
+ return z, r
+}
+
+// Div sets z to the quotient x/y for y != 0 and returns z.
+// If y == 0, a division-by-zero run-time panic occurs.
+// Div implements Euclidean division (unlike Go); see DivMod for more details.
+func (z *Int) Div(x, y *Int) *Int {
+ y_neg := y.neg // z may be an alias for y
+ var r Int
+ z.QuoRem(x, y, &r)
+ if r.neg {
+ if y_neg {
+ z.Add(z, intOne)
+ } else {
+ z.Sub(z, intOne)
+ }
+ }
+ return z
+}
+
+// Mod sets z to the modulus x%y for y != 0 and returns z.
+// If y == 0, a division-by-zero run-time panic occurs.
+// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
+func (z *Int) Mod(x, y *Int) *Int {
+ y0 := y // save y
+ if z == y || alias(z.abs, y.abs) {
+ y0 = new(Int).Set(y)
+ }
+ var q Int
+ q.QuoRem(x, y, z)
+ if z.neg {
+ if y0.neg {
+ z.Sub(z, y0)
+ } else {
+ z.Add(z, y0)
+ }
+ }
+ return z
+}
+
+// DivMod sets z to the quotient x div y and m to the modulus x mod y
+// and returns the pair (z, m) for y != 0.
+// If y == 0, a division-by-zero run-time panic occurs.
+//
+// DivMod implements Euclidean division and modulus (unlike Go):
+//
+// q = x div y such that
+// m = x - y*q with 0 <= m < |y|
+//
+// (See Raymond T. Boute, ``The Euclidean definition of the functions
+// div and mod''. ACM Transactions on Programming Languages and
+// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
+// ACM press.)
+// See QuoRem for T-division and modulus (like Go).
+//
+func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
+ y0 := y // save y
+ if z == y || alias(z.abs, y.abs) {
+ y0 = new(Int).Set(y)
+ }
+ z.QuoRem(x, y, m)
+ if m.neg {
+ if y0.neg {
+ z.Add(z, intOne)
+ m.Sub(m, y0)
+ } else {
+ z.Sub(z, intOne)
+ m.Add(m, y0)
+ }
+ }
+ return z, m
+}
+
+// Cmp compares x and y and returns:
+//
+// -1 if x < y
+// 0 if x == y
+// +1 if x > y
+//
+func (x *Int) Cmp(y *Int) (r int) {
+ // x cmp y == x cmp y
+ // x cmp (-y) == x
+ // (-x) cmp y == y
+ // (-x) cmp (-y) == -(x cmp y)
+ switch {
+ case x == y:
+ // nothing to do
+ case x.neg == y.neg:
+ r = x.abs.cmp(y.abs)
+ if x.neg {
+ r = -r
+ }
+ case x.neg:
+ r = -1
+ default:
+ r = 1
+ }
+ return
+}
+
+// CmpAbs compares the absolute values of x and y and returns:
+//
+// -1 if |x| < |y|
+// 0 if |x| == |y|
+// +1 if |x| > |y|
+//
+func (x *Int) CmpAbs(y *Int) int {
+ return x.abs.cmp(y.abs)
+}
+
+// low32 returns the least significant 32 bits of x.
+func low32(x nat) uint32 {
+ if len(x) == 0 {
+ return 0
+ }
+ return uint32(x[0])
+}
+
+// low64 returns the least significant 64 bits of x.
+func low64(x nat) uint64 {
+ if len(x) == 0 {
+ return 0
+ }
+ v := uint64(x[0])
+ if _W == 32 && len(x) > 1 {
+ return uint64(x[1])<<32 | v
+ }
+ return v
+}
+
+// Int64 returns the int64 representation of x.
+// If x cannot be represented in an int64, the result is undefined.
+func (x *Int) Int64() int64 {
+ v := int64(low64(x.abs))
+ if x.neg {
+ v = -v
+ }
+ return v
+}
+
+// Uint64 returns the uint64 representation of x.
+// If x cannot be represented in a uint64, the result is undefined.
+func (x *Int) Uint64() uint64 {
+ return low64(x.abs)
+}
+
+// IsInt64 reports whether x can be represented as an int64.
+func (x *Int) IsInt64() bool {
+ if len(x.abs) <= 64/_W {
+ w := int64(low64(x.abs))
+ return w >= 0 || x.neg && w == -w
+ }
+ return false
+}
+
+// IsUint64 reports whether x can be represented as a uint64.
+func (x *Int) IsUint64() bool {
+ return !x.neg && len(x.abs) <= 64/_W
+}
+
+// SetString sets z to the value of s, interpreted in the given base,
+// and returns z and a boolean indicating success. The entire string
+// (not just a prefix) must be valid for success. If SetString fails,
+// the value of z is undefined but the returned value is nil.
+//
+// The base argument must be 0 or a value between 2 and MaxBase.
+// For base 0, the number prefix determines the actual base: A prefix of
+// ``0b'' or ``0B'' selects base 2, ``0'', ``0o'' or ``0O'' selects base 8,
+// and ``0x'' or ``0X'' selects base 16. Otherwise, the selected base is 10
+// and no prefix is accepted.
+//
+// For bases <= 36, lower and upper case letters are considered the same:
+// The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
+// For bases > 36, the upper case letters 'A' to 'Z' represent the digit
+// values 36 to 61.
+//
+// For base 0, an underscore character ``_'' may appear between a base
+// prefix and an adjacent digit, and between successive digits; such
+// underscores do not change the value of the number.
+// Incorrect placement of underscores is reported as an error if there
+// are no other errors. If base != 0, underscores are not recognized
+// and act like any other character that is not a valid digit.
+//
+func (z *Int) SetString(s string, base int) (*Int, bool) {
+ return z.setFromScanner(strings.NewReader(s), base)
+}
+
+// setFromScanner implements SetString given an io.ByteScanner.
+// For documentation see comments of SetString.
+func (z *Int) setFromScanner(r io.ByteScanner, base int) (*Int, bool) {
+ if _, _, err := z.scan(r, base); err != nil {
+ return nil, false
+ }
+ // entire content must have been consumed
+ if _, err := r.ReadByte(); err != io.EOF {
+ return nil, false
+ }
+ return z, true // err == io.EOF => scan consumed all content of r
+}
+
+// SetBytes interprets buf as the bytes of a big-endian unsigned
+// integer, sets z to that value, and returns z.
+func (z *Int) SetBytes(buf []byte) *Int {
+ z.abs = z.abs.setBytes(buf)
+ z.neg = false
+ return z
+}
+
+// Bytes returns the absolute value of x as a big-endian byte slice.
+//
+// To use a fixed length slice, or a preallocated one, use FillBytes.
+func (x *Int) Bytes() []byte {
+ buf := make([]byte, len(x.abs)*_S)
+ return buf[x.abs.bytes(buf):]
+}
+
+// FillBytes sets buf to the absolute value of x, storing it as a zero-extended
+// big-endian byte slice, and returns buf.
+//
+// If the absolute value of x doesn't fit in buf, FillBytes will panic.
+func (x *Int) FillBytes(buf []byte) []byte {
+ // Clear whole buffer. (This gets optimized into a memclr.)
+ for i := range buf {
+ buf[i] = 0
+ }
+ x.abs.bytes(buf)
+ return buf
+}
+
+// BitLen returns the length of the absolute value of x in bits.
+// The bit length of 0 is 0.
+func (x *Int) BitLen() int {
+ return x.abs.bitLen()
+}
+
+// TrailingZeroBits returns the number of consecutive least significant zero
+// bits of |x|.
+func (x *Int) TrailingZeroBits() uint {
+ return x.abs.trailingZeroBits()
+}
+
+// Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
+// If m == nil or m == 0, z = x**y unless y <= 0 then z = 1. If m != 0, y < 0,
+// and x and m are not relatively prime, z is unchanged and nil is returned.
+//
+// Modular exponentiation of inputs of a particular size is not a
+// cryptographically constant-time operation.
+func (z *Int) Exp(x, y, m *Int) *Int {
+ // See Knuth, volume 2, section 4.6.3.
+ xWords := x.abs
+ if y.neg {
+ if m == nil || len(m.abs) == 0 {
+ return z.SetInt64(1)
+ }
+ // for y < 0: x**y mod m == (x**(-1))**|y| mod m
+ inverse := new(Int).ModInverse(x, m)
+ if inverse == nil {
+ return nil
+ }
+ xWords = inverse.abs
+ }
+ yWords := y.abs
+
+ var mWords nat
+ if m != nil {
+ mWords = m.abs // m.abs may be nil for m == 0
+ }
+
+ z.abs = z.abs.expNN(xWords, yWords, mWords)
+ z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign
+ if z.neg && len(mWords) > 0 {
+ // make modulus result positive
+ z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m|
+ z.neg = false
+ }
+
+ return z
+}
+
+// GCD sets z to the greatest common divisor of a and b and returns z.
+// If x or y are not nil, GCD sets their value such that z = a*x + b*y.
+//
+// a and b may be positive, zero or negative. (Before Go 1.14 both had
+// to be > 0.) Regardless of the signs of a and b, z is always >= 0.
+//
+// If a == b == 0, GCD sets z = x = y = 0.
+//
+// If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
+//
+// If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
+func (z *Int) GCD(x, y, a, b *Int) *Int {
+ if len(a.abs) == 0 || len(b.abs) == 0 {
+ lenA, lenB, negA, negB := len(a.abs), len(b.abs), a.neg, b.neg
+ if lenA == 0 {
+ z.Set(b)
+ } else {
+ z.Set(a)
+ }
+ z.neg = false
+ if x != nil {
+ if lenA == 0 {
+ x.SetUint64(0)
+ } else {
+ x.SetUint64(1)
+ x.neg = negA
+ }
+ }
+ if y != nil {
+ if lenB == 0 {
+ y.SetUint64(0)
+ } else {
+ y.SetUint64(1)
+ y.neg = negB
+ }
+ }
+ return z
+ }
+
+ return z.lehmerGCD(x, y, a, b)
+}
+
+// lehmerSimulate attempts to simulate several Euclidean update steps
+// using the leading digits of A and B. It returns u0, u1, v0, v1
+// such that A and B can be updated as:
+// A = u0*A + v0*B
+// B = u1*A + v1*B
+// Requirements: A >= B and len(B.abs) >= 2
+// Since we are calculating with full words to avoid overflow,
+// we use 'even' to track the sign of the cosequences.
+// For even iterations: u0, v1 >= 0 && u1, v0 <= 0
+// For odd iterations: u0, v1 <= 0 && u1, v0 >= 0
+func lehmerSimulate(A, B *Int) (u0, u1, v0, v1 Word, even bool) {
+ // initialize the digits
+ var a1, a2, u2, v2 Word
+
+ m := len(B.abs) // m >= 2
+ n := len(A.abs) // n >= m >= 2
+
+ // extract the top Word of bits from A and B
+ h := nlz(A.abs[n-1])
+ a1 = A.abs[n-1]<<h | A.abs[n-2]>>(_W-h)
+ // B may have implicit zero words in the high bits if the lengths differ
+ switch {
+ case n == m:
+ a2 = B.abs[n-1]<<h | B.abs[n-2]>>(_W-h)
+ case n == m+1:
+ a2 = B.abs[n-2] >> (_W - h)
+ default:
+ a2 = 0
+ }
+
+ // Since we are calculating with full words to avoid overflow,
+ // we use 'even' to track the sign of the cosequences.
+ // For even iterations: u0, v1 >= 0 && u1, v0 <= 0
+ // For odd iterations: u0, v1 <= 0 && u1, v0 >= 0
+ // The first iteration starts with k=1 (odd).
+ even = false
+ // variables to track the cosequences
+ u0, u1, u2 = 0, 1, 0
+ v0, v1, v2 = 0, 0, 1
+
+ // Calculate the quotient and cosequences using Collins' stopping condition.
+ // Note that overflow of a Word is not possible when computing the remainder
+ // sequence and cosequences since the cosequence size is bounded by the input size.
+ // See section 4.2 of Jebelean for details.
+ for a2 >= v2 && a1-a2 >= v1+v2 {
+ q, r := a1/a2, a1%a2
+ a1, a2 = a2, r
+ u0, u1, u2 = u1, u2, u1+q*u2
+ v0, v1, v2 = v1, v2, v1+q*v2
+ even = !even
+ }
+ return
+}
+
+// lehmerUpdate updates the inputs A and B such that:
+// A = u0*A + v0*B
+// B = u1*A + v1*B
+// where the signs of u0, u1, v0, v1 are given by even
+// For even == true: u0, v1 >= 0 && u1, v0 <= 0
+// For even == false: u0, v1 <= 0 && u1, v0 >= 0
+// q, r, s, t are temporary variables to avoid allocations in the multiplication
+func lehmerUpdate(A, B, q, r, s, t *Int, u0, u1, v0, v1 Word, even bool) {
+
+ t.abs = t.abs.setWord(u0)
+ s.abs = s.abs.setWord(v0)
+ t.neg = !even
+ s.neg = even
+
+ t.Mul(A, t)
+ s.Mul(B, s)
+
+ r.abs = r.abs.setWord(u1)
+ q.abs = q.abs.setWord(v1)
+ r.neg = even
+ q.neg = !even
+
+ r.Mul(A, r)
+ q.Mul(B, q)
+
+ A.Add(t, s)
+ B.Add(r, q)
+}
+
+// euclidUpdate performs a single step of the Euclidean GCD algorithm
+// if extended is true, it also updates the cosequence Ua, Ub
+func euclidUpdate(A, B, Ua, Ub, q, r, s, t *Int, extended bool) {
+ q, r = q.QuoRem(A, B, r)
+
+ *A, *B, *r = *B, *r, *A
+
+ if extended {
+ // Ua, Ub = Ub, Ua - q*Ub
+ t.Set(Ub)
+ s.Mul(Ub, q)
+ Ub.Sub(Ua, s)
+ Ua.Set(t)
+ }
+}
+
+// lehmerGCD sets z to the greatest common divisor of a and b,
+// which both must be != 0, and returns z.
+// If x or y are not nil, their values are set such that z = a*x + b*y.
+// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L.
+// This implementation uses the improved condition by Collins requiring only one
+// quotient and avoiding the possibility of single Word overflow.
+// See Jebelean, "Improving the multiprecision Euclidean algorithm",
+// Design and Implementation of Symbolic Computation Systems, pp 45-58.
+// The cosequences are updated according to Algorithm 10.45 from
+// Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192.
+func (z *Int) lehmerGCD(x, y, a, b *Int) *Int {
+ var A, B, Ua, Ub *Int
+
+ A = new(Int).Abs(a)
+ B = new(Int).Abs(b)
+
+ extended := x != nil || y != nil
+
+ if extended {
+ // Ua (Ub) tracks how many times input a has been accumulated into A (B).
+ Ua = new(Int).SetInt64(1)
+ Ub = new(Int)
+ }
+
+ // temp variables for multiprecision update
+ q := new(Int)
+ r := new(Int)
+ s := new(Int)
+ t := new(Int)
+
+ // ensure A >= B
+ if A.abs.cmp(B.abs) < 0 {
+ A, B = B, A
+ Ub, Ua = Ua, Ub
+ }
+
+ // loop invariant A >= B
+ for len(B.abs) > 1 {
+ // Attempt to calculate in single-precision using leading words of A and B.
+ u0, u1, v0, v1, even := lehmerSimulate(A, B)
+
+ // multiprecision Step
+ if v0 != 0 {
+ // Simulate the effect of the single-precision steps using the cosequences.
+ // A = u0*A + v0*B
+ // B = u1*A + v1*B
+ lehmerUpdate(A, B, q, r, s, t, u0, u1, v0, v1, even)
+
+ if extended {
+ // Ua = u0*Ua + v0*Ub
+ // Ub = u1*Ua + v1*Ub
+ lehmerUpdate(Ua, Ub, q, r, s, t, u0, u1, v0, v1, even)
+ }
+
+ } else {
+ // Single-digit calculations failed to simulate any quotients.
+ // Do a standard Euclidean step.
+ euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
+ }
+ }
+
+ if len(B.abs) > 0 {
+ // extended Euclidean algorithm base case if B is a single Word
+ if len(A.abs) > 1 {
+ // A is longer than a single Word, so one update is needed.
+ euclidUpdate(A, B, Ua, Ub, q, r, s, t, extended)
+ }
+ if len(B.abs) > 0 {
+ // A and B are both a single Word.
+ aWord, bWord := A.abs[0], B.abs[0]
+ if extended {
+ var ua, ub, va, vb Word
+ ua, ub = 1, 0
+ va, vb = 0, 1
+ even := true
+ for bWord != 0 {
+ q, r := aWord/bWord, aWord%bWord
+ aWord, bWord = bWord, r
+ ua, ub = ub, ua+q*ub
+ va, vb = vb, va+q*vb
+ even = !even
+ }
+
+ t.abs = t.abs.setWord(ua)
+ s.abs = s.abs.setWord(va)
+ t.neg = !even
+ s.neg = even
+
+ t.Mul(Ua, t)
+ s.Mul(Ub, s)
+
+ Ua.Add(t, s)
+ } else {
+ for bWord != 0 {
+ aWord, bWord = bWord, aWord%bWord
+ }
+ }
+ A.abs[0] = aWord
+ }
+ }
+ negA := a.neg
+ if y != nil {
+ // avoid aliasing b needed in the division below
+ if y == b {
+ B.Set(b)
+ } else {
+ B = b
+ }
+ // y = (z - a*x)/b
+ y.Mul(a, Ua) // y can safely alias a
+ if negA {
+ y.neg = !y.neg
+ }
+ y.Sub(A, y)
+ y.Div(y, B)
+ }
+
+ if x != nil {
+ *x = *Ua
+ if negA {
+ x.neg = !x.neg
+ }
+ }
+
+ *z = *A
+
+ return z
+}
+
+// Rand sets z to a pseudo-random number in [0, n) and returns z.
+//
+// As this uses the math/rand package, it must not be used for
+// security-sensitive work. Use crypto/rand.Int instead.
+func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
+ z.neg = false
+ if n.neg || len(n.abs) == 0 {
+ z.abs = nil
+ return z
+ }
+ z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
+ return z
+}
+
+// ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ
+// and returns z. If g and n are not relatively prime, g has no multiplicative
+// inverse in the ring ℤ/nℤ. In this case, z is unchanged and the return value
+// is nil.
+func (z *Int) ModInverse(g, n *Int) *Int {
+ // GCD expects parameters a and b to be > 0.
+ if n.neg {
+ var n2 Int
+ n = n2.Neg(n)
+ }
+ if g.neg {
+ var g2 Int
+ g = g2.Mod(g, n)
+ }
+ var d, x Int
+ d.GCD(&x, nil, g, n)
+
+ // if and only if d==1, g and n are relatively prime
+ if d.Cmp(intOne) != 0 {
+ return nil
+ }
+
+ // x and y are such that g*x + n*y = 1, therefore x is the inverse element,
+ // but it may be negative, so convert to the range 0 <= z < |n|
+ if x.neg {
+ z.Add(&x, n)
+ } else {
+ z.Set(&x)
+ }
+ return z
+}
+
+// Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0.
+// The y argument must be an odd integer.
+func Jacobi(x, y *Int) int {
+ if len(y.abs) == 0 || y.abs[0]&1 == 0 {
+ panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y))
+ }
+
+ // We use the formulation described in chapter 2, section 2.4,
+ // "The Yacas Book of Algorithms":
+ // http://yacas.sourceforge.net/Algo.book.pdf
+
+ var a, b, c Int
+ a.Set(x)
+ b.Set(y)
+ j := 1
+
+ if b.neg {
+ if a.neg {
+ j = -1
+ }
+ b.neg = false
+ }
+
+ for {
+ if b.Cmp(intOne) == 0 {
+ return j
+ }
+ if len(a.abs) == 0 {
+ return 0
+ }
+ a.Mod(&a, &b)
+ if len(a.abs) == 0 {
+ return 0
+ }
+ // a > 0
+
+ // handle factors of 2 in 'a'
+ s := a.abs.trailingZeroBits()
+ if s&1 != 0 {
+ bmod8 := b.abs[0] & 7
+ if bmod8 == 3 || bmod8 == 5 {
+ j = -j
+ }
+ }
+ c.Rsh(&a, s) // a = 2^s*c
+
+ // swap numerator and denominator
+ if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 {
+ j = -j
+ }
+ a.Set(&b)
+ b.Set(&c)
+ }
+}
+
+// modSqrt3Mod4 uses the identity
+// (a^((p+1)/4))^2 mod p
+// == u^(p+1) mod p
+// == u^2 mod p
+// to calculate the square root of any quadratic residue mod p quickly for 3
+// mod 4 primes.
+func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int {
+ e := new(Int).Add(p, intOne) // e = p + 1
+ e.Rsh(e, 2) // e = (p + 1) / 4
+ z.Exp(x, e, p) // z = x^e mod p
+ return z
+}
+
+// modSqrt5Mod8 uses Atkin's observation that 2 is not a square mod p
+// alpha == (2*a)^((p-5)/8) mod p
+// beta == 2*a*alpha^2 mod p is a square root of -1
+// b == a*alpha*(beta-1) mod p is a square root of a
+// to calculate the square root of any quadratic residue mod p quickly for 5
+// mod 8 primes.
+func (z *Int) modSqrt5Mod8Prime(x, p *Int) *Int {
+ // p == 5 mod 8 implies p = e*8 + 5
+ // e is the quotient and 5 the remainder on division by 8
+ e := new(Int).Rsh(p, 3) // e = (p - 5) / 8
+ tx := new(Int).Lsh(x, 1) // tx = 2*x
+ alpha := new(Int).Exp(tx, e, p)
+ beta := new(Int).Mul(alpha, alpha)
+ beta.Mod(beta, p)
+ beta.Mul(beta, tx)
+ beta.Mod(beta, p)
+ beta.Sub(beta, intOne)
+ beta.Mul(beta, x)
+ beta.Mod(beta, p)
+ beta.Mul(beta, alpha)
+ z.Mod(beta, p)
+ return z
+}
+
+// modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square
+// root of a quadratic residue modulo any prime.
+func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int {
+ // Break p-1 into s*2^e such that s is odd.
+ var s Int
+ s.Sub(p, intOne)
+ e := s.abs.trailingZeroBits()
+ s.Rsh(&s, e)
+
+ // find some non-square n
+ var n Int
+ n.SetInt64(2)
+ for Jacobi(&n, p) != -1 {
+ n.Add(&n, intOne)
+ }
+
+ // Core of the Tonelli-Shanks algorithm. Follows the description in
+ // section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra
+ // Brown:
+ // https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
+ var y, b, g, t Int
+ y.Add(&s, intOne)
+ y.Rsh(&y, 1)
+ y.Exp(x, &y, p) // y = x^((s+1)/2)
+ b.Exp(x, &s, p) // b = x^s
+ g.Exp(&n, &s, p) // g = n^s
+ r := e
+ for {
+ // find the least m such that ord_p(b) = 2^m
+ var m uint
+ t.Set(&b)
+ for t.Cmp(intOne) != 0 {
+ t.Mul(&t, &t).Mod(&t, p)
+ m++
+ }
+
+ if m == 0 {
+ return z.Set(&y)
+ }
+
+ t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p)
+ // t = g^(2^(r-m-1)) mod p
+ g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p
+ y.Mul(&y, &t).Mod(&y, p)
+ b.Mul(&b, &g).Mod(&b, p)
+ r = m
+ }
+}
+
+// ModSqrt sets z to a square root of x mod p if such a square root exists, and
+// returns z. The modulus p must be an odd prime. If x is not a square mod p,
+// ModSqrt leaves z unchanged and returns nil. This function panics if p is
+// not an odd integer.
+func (z *Int) ModSqrt(x, p *Int) *Int {
+ switch Jacobi(x, p) {
+ case -1:
+ return nil // x is not a square mod p
+ case 0:
+ return z.SetInt64(0) // sqrt(0) mod p = 0
+ case 1:
+ break
+ }
+ if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p
+ x = new(Int).Mod(x, p)
+ }
+
+ switch {
+ case p.abs[0]%4 == 3:
+ // Check whether p is 3 mod 4, and if so, use the faster algorithm.
+ return z.modSqrt3Mod4Prime(x, p)
+ case p.abs[0]%8 == 5:
+ // Check whether p is 5 mod 8, use Atkin's algorithm.
+ return z.modSqrt5Mod8Prime(x, p)
+ default:
+ // Otherwise, use Tonelli-Shanks.
+ return z.modSqrtTonelliShanks(x, p)
+ }
+}
+
+// Lsh sets z = x << n and returns z.
+func (z *Int) Lsh(x *Int, n uint) *Int {
+ z.abs = z.abs.shl(x.abs, n)
+ z.neg = x.neg
+ return z
+}
+
+// Rsh sets z = x >> n and returns z.
+func (z *Int) Rsh(x *Int, n uint) *Int {
+ if x.neg {
+ // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
+ t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
+ t = t.shr(t, n)
+ z.abs = t.add(t, natOne)
+ z.neg = true // z cannot be zero if x is negative
+ return z
+ }
+
+ z.abs = z.abs.shr(x.abs, n)
+ z.neg = false
+ return z
+}
+
+// Bit returns the value of the i'th bit of x. That is, it
+// returns (x>>i)&1. The bit index i must be >= 0.
+func (x *Int) Bit(i int) uint {
+ if i == 0 {
+ // optimization for common case: odd/even test of x
+ if len(x.abs) > 0 {
+ return uint(x.abs[0] & 1) // bit 0 is same for -x
+ }
+ return 0
+ }
+ if i < 0 {
+ panic("negative bit index")
+ }
+ if x.neg {
+ t := nat(nil).sub(x.abs, natOne)
+ return t.bit(uint(i)) ^ 1
+ }
+
+ return x.abs.bit(uint(i))
+}
+
+// SetBit sets z to x, with x's i'th bit set to b (0 or 1).
+// That is, if b is 1 SetBit sets z = x | (1 << i);
+// if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
+// SetBit will panic.
+func (z *Int) SetBit(x *Int, i int, b uint) *Int {
+ if i < 0 {
+ panic("negative bit index")
+ }
+ if x.neg {
+ t := z.abs.sub(x.abs, natOne)
+ t = t.setBit(t, uint(i), b^1)
+ z.abs = t.add(t, natOne)
+ z.neg = len(z.abs) > 0
+ return z
+ }
+ z.abs = z.abs.setBit(x.abs, uint(i), b)
+ z.neg = false
+ return z
+}
+
+// And sets z = x & y and returns z.
+func (z *Int) And(x, y *Int) *Int {
+ if x.neg == y.neg {
+ if x.neg {
+ // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
+ z.neg = true // z cannot be zero if x and y are negative
+ return z
+ }
+
+ // x & y == x & y
+ z.abs = z.abs.and(x.abs, y.abs)
+ z.neg = false
+ return z
+ }
+
+ // x.neg != y.neg
+ if x.neg {
+ x, y = y, x // & is symmetric
+ }
+
+ // x & (-y) == x & ^(y-1) == x &^ (y-1)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.andNot(x.abs, y1)
+ z.neg = false
+ return z
+}
+
+// AndNot sets z = x &^ y and returns z.
+func (z *Int) AndNot(x, y *Int) *Int {
+ if x.neg == y.neg {
+ if x.neg {
+ // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.andNot(y1, x1)
+ z.neg = false
+ return z
+ }
+
+ // x &^ y == x &^ y
+ z.abs = z.abs.andNot(x.abs, y.abs)
+ z.neg = false
+ return z
+ }
+
+ if x.neg {
+ // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
+ z.neg = true // z cannot be zero if x is negative and y is positive
+ return z
+ }
+
+ // x &^ (-y) == x &^ ^(y-1) == x & (y-1)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.and(x.abs, y1)
+ z.neg = false
+ return z
+}
+
+// Or sets z = x | y and returns z.
+func (z *Int) Or(x, y *Int) *Int {
+ if x.neg == y.neg {
+ if x.neg {
+ // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
+ z.neg = true // z cannot be zero if x and y are negative
+ return z
+ }
+
+ // x | y == x | y
+ z.abs = z.abs.or(x.abs, y.abs)
+ z.neg = false
+ return z
+ }
+
+ // x.neg != y.neg
+ if x.neg {
+ x, y = y, x // | is symmetric
+ }
+
+ // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
+ z.neg = true // z cannot be zero if one of x or y is negative
+ return z
+}
+
+// Xor sets z = x ^ y and returns z.
+func (z *Int) Xor(x, y *Int) *Int {
+ if x.neg == y.neg {
+ if x.neg {
+ // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
+ x1 := nat(nil).sub(x.abs, natOne)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.xor(x1, y1)
+ z.neg = false
+ return z
+ }
+
+ // x ^ y == x ^ y
+ z.abs = z.abs.xor(x.abs, y.abs)
+ z.neg = false
+ return z
+ }
+
+ // x.neg != y.neg
+ if x.neg {
+ x, y = y, x // ^ is symmetric
+ }
+
+ // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
+ y1 := nat(nil).sub(y.abs, natOne)
+ z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
+ z.neg = true // z cannot be zero if only one of x or y is negative
+ return z
+}
+
+// Not sets z = ^x and returns z.
+func (z *Int) Not(x *Int) *Int {
+ if x.neg {
+ // ^(-x) == ^(^(x-1)) == x-1
+ z.abs = z.abs.sub(x.abs, natOne)
+ z.neg = false
+ return z
+ }
+
+ // ^x == -x-1 == -(x+1)
+ z.abs = z.abs.add(x.abs, natOne)
+ z.neg = true // z cannot be zero if x is positive
+ return z
+}
+
+// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
+// It panics if x is negative.
+func (z *Int) Sqrt(x *Int) *Int {
+ if x.neg {
+ panic("square root of negative number")
+ }
+ z.neg = false
+ z.abs = z.abs.sqrt(x.abs)
+ return z
+}
diff --git a/contrib/go/_std_1.18/src/math/big/intconv.go b/contrib/go/_std_1.18/src/math/big/intconv.go
new file mode 100644
index 0000000000..0567284105
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/intconv.go
@@ -0,0 +1,257 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements int-to-string conversion functions.
+
+package big
+
+import (
+ "errors"
+ "fmt"
+ "io"
+)
+
+// Text returns the string representation of x in the given base.
+// Base must be between 2 and 62, inclusive. The result uses the
+// lower-case letters 'a' to 'z' for digit values 10 to 35, and
+// the upper-case letters 'A' to 'Z' for digit values 36 to 61.
+// No prefix (such as "0x") is added to the string. If x is a nil
+// pointer it returns "<nil>".
+func (x *Int) Text(base int) string {
+ if x == nil {
+ return "<nil>"
+ }
+ return string(x.abs.itoa(x.neg, base))
+}
+
+// Append appends the string representation of x, as generated by
+// x.Text(base), to buf and returns the extended buffer.
+func (x *Int) Append(buf []byte, base int) []byte {
+ if x == nil {
+ return append(buf, "<nil>"...)
+ }
+ return append(buf, x.abs.itoa(x.neg, base)...)
+}
+
+// String returns the decimal representation of x as generated by
+// x.Text(10).
+func (x *Int) String() string {
+ return x.Text(10)
+}
+
+// write count copies of text to s
+func writeMultiple(s fmt.State, text string, count int) {
+ if len(text) > 0 {
+ b := []byte(text)
+ for ; count > 0; count-- {
+ s.Write(b)
+ }
+ }
+}
+
+var _ fmt.Formatter = intOne // *Int must implement fmt.Formatter
+
+// Format implements fmt.Formatter. It accepts the formats
+// 'b' (binary), 'o' (octal with 0 prefix), 'O' (octal with 0o prefix),
+// 'd' (decimal), 'x' (lowercase hexadecimal), and
+// 'X' (uppercase hexadecimal).
+// Also supported are the full suite of package fmt's format
+// flags for integral types, including '+' and ' ' for sign
+// control, '#' for leading zero in octal and for hexadecimal,
+// a leading "0x" or "0X" for "%#x" and "%#X" respectively,
+// specification of minimum digits precision, output field
+// width, space or zero padding, and '-' for left or right
+// justification.
+//
+func (x *Int) Format(s fmt.State, ch rune) {
+ // determine base
+ var base int
+ switch ch {
+ case 'b':
+ base = 2
+ case 'o', 'O':
+ base = 8
+ case 'd', 's', 'v':
+ base = 10
+ case 'x', 'X':
+ base = 16
+ default:
+ // unknown format
+ fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String())
+ return
+ }
+
+ if x == nil {
+ fmt.Fprint(s, "<nil>")
+ return
+ }
+
+ // determine sign character
+ sign := ""
+ switch {
+ case x.neg:
+ sign = "-"
+ case s.Flag('+'): // supersedes ' ' when both specified
+ sign = "+"
+ case s.Flag(' '):
+ sign = " "
+ }
+
+ // determine prefix characters for indicating output base
+ prefix := ""
+ if s.Flag('#') {
+ switch ch {
+ case 'b': // binary
+ prefix = "0b"
+ case 'o': // octal
+ prefix = "0"
+ case 'x': // hexadecimal
+ prefix = "0x"
+ case 'X':
+ prefix = "0X"
+ }
+ }
+ if ch == 'O' {
+ prefix = "0o"
+ }
+
+ digits := x.abs.utoa(base)
+ if ch == 'X' {
+ // faster than bytes.ToUpper
+ for i, d := range digits {
+ if 'a' <= d && d <= 'z' {
+ digits[i] = 'A' + (d - 'a')
+ }
+ }
+ }
+
+ // number of characters for the three classes of number padding
+ var left int // space characters to left of digits for right justification ("%8d")
+ var zeros int // zero characters (actually cs[0]) as left-most digits ("%.8d")
+ var right int // space characters to right of digits for left justification ("%-8d")
+
+ // determine number padding from precision: the least number of digits to output
+ precision, precisionSet := s.Precision()
+ if precisionSet {
+ switch {
+ case len(digits) < precision:
+ zeros = precision - len(digits) // count of zero padding
+ case len(digits) == 1 && digits[0] == '0' && precision == 0:
+ return // print nothing if zero value (x == 0) and zero precision ("." or ".0")
+ }
+ }
+
+ // determine field pad from width: the least number of characters to output
+ length := len(sign) + len(prefix) + zeros + len(digits)
+ if width, widthSet := s.Width(); widthSet && length < width { // pad as specified
+ switch d := width - length; {
+ case s.Flag('-'):
+ // pad on the right with spaces; supersedes '0' when both specified
+ right = d
+ case s.Flag('0') && !precisionSet:
+ // pad with zeros unless precision also specified
+ zeros = d
+ default:
+ // pad on the left with spaces
+ left = d
+ }
+ }
+
+ // print number as [left pad][sign][prefix][zero pad][digits][right pad]
+ writeMultiple(s, " ", left)
+ writeMultiple(s, sign, 1)
+ writeMultiple(s, prefix, 1)
+ writeMultiple(s, "0", zeros)
+ s.Write(digits)
+ writeMultiple(s, " ", right)
+}
+
+// scan sets z to the integer value corresponding to the longest possible prefix
+// read from r representing a signed integer number in a given conversion base.
+// It returns z, the actual conversion base used, and an error, if any. In the
+// error case, the value of z is undefined but the returned value is nil. The
+// syntax follows the syntax of integer literals in Go.
+//
+// The base argument must be 0 or a value from 2 through MaxBase. If the base
+// is 0, the string prefix determines the actual conversion base. A prefix of
+// ``0b'' or ``0B'' selects base 2; a ``0'', ``0o'', or ``0O'' prefix selects
+// base 8, and a ``0x'' or ``0X'' prefix selects base 16. Otherwise the selected
+// base is 10.
+//
+func (z *Int) scan(r io.ByteScanner, base int) (*Int, int, error) {
+ // determine sign
+ neg, err := scanSign(r)
+ if err != nil {
+ return nil, 0, err
+ }
+
+ // determine mantissa
+ z.abs, base, _, err = z.abs.scan(r, base, false)
+ if err != nil {
+ return nil, base, err
+ }
+ z.neg = len(z.abs) > 0 && neg // 0 has no sign
+
+ return z, base, nil
+}
+
+func scanSign(r io.ByteScanner) (neg bool, err error) {
+ var ch byte
+ if ch, err = r.ReadByte(); err != nil {
+ return false, err
+ }
+ switch ch {
+ case '-':
+ neg = true
+ case '+':
+ // nothing to do
+ default:
+ r.UnreadByte()
+ }
+ return
+}
+
+// byteReader is a local wrapper around fmt.ScanState;
+// it implements the ByteReader interface.
+type byteReader struct {
+ fmt.ScanState
+}
+
+func (r byteReader) ReadByte() (byte, error) {
+ ch, size, err := r.ReadRune()
+ if size != 1 && err == nil {
+ err = fmt.Errorf("invalid rune %#U", ch)
+ }
+ return byte(ch), err
+}
+
+func (r byteReader) UnreadByte() error {
+ return r.UnreadRune()
+}
+
+var _ fmt.Scanner = intOne // *Int must implement fmt.Scanner
+
+// Scan is a support routine for fmt.Scanner; it sets z to the value of
+// the scanned number. It accepts the formats 'b' (binary), 'o' (octal),
+// 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
+func (z *Int) Scan(s fmt.ScanState, ch rune) error {
+ s.SkipSpace() // skip leading space characters
+ base := 0
+ switch ch {
+ case 'b':
+ base = 2
+ case 'o':
+ base = 8
+ case 'd':
+ base = 10
+ case 'x', 'X':
+ base = 16
+ case 's', 'v':
+ // let scan determine the base
+ default:
+ return errors.New("Int.Scan: invalid verb")
+ }
+ _, _, err := z.scan(byteReader{s}, base)
+ return err
+}
diff --git a/contrib/go/_std_1.18/src/math/big/intmarsh.go b/contrib/go/_std_1.18/src/math/big/intmarsh.go
new file mode 100644
index 0000000000..c1422e2710
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/intmarsh.go
@@ -0,0 +1,80 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements encoding/decoding of Ints.
+
+package big
+
+import (
+ "bytes"
+ "fmt"
+)
+
+// Gob codec version. Permits backward-compatible changes to the encoding.
+const intGobVersion byte = 1
+
+// GobEncode implements the gob.GobEncoder interface.
+func (x *Int) GobEncode() ([]byte, error) {
+ if x == nil {
+ return nil, nil
+ }
+ buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign bit
+ i := x.abs.bytes(buf) - 1 // i >= 0
+ b := intGobVersion << 1 // make space for sign bit
+ if x.neg {
+ b |= 1
+ }
+ buf[i] = b
+ return buf[i:], nil
+}
+
+// GobDecode implements the gob.GobDecoder interface.
+func (z *Int) GobDecode(buf []byte) error {
+ if len(buf) == 0 {
+ // Other side sent a nil or default value.
+ *z = Int{}
+ return nil
+ }
+ b := buf[0]
+ if b>>1 != intGobVersion {
+ return fmt.Errorf("Int.GobDecode: encoding version %d not supported", b>>1)
+ }
+ z.neg = b&1 != 0
+ z.abs = z.abs.setBytes(buf[1:])
+ return nil
+}
+
+// MarshalText implements the encoding.TextMarshaler interface.
+func (x *Int) MarshalText() (text []byte, err error) {
+ if x == nil {
+ return []byte("<nil>"), nil
+ }
+ return x.abs.itoa(x.neg, 10), nil
+}
+
+// UnmarshalText implements the encoding.TextUnmarshaler interface.
+func (z *Int) UnmarshalText(text []byte) error {
+ if _, ok := z.setFromScanner(bytes.NewReader(text), 0); !ok {
+ return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Int", text)
+ }
+ return nil
+}
+
+// The JSON marshalers are only here for API backward compatibility
+// (programs that explicitly look for these two methods). JSON works
+// fine with the TextMarshaler only.
+
+// MarshalJSON implements the json.Marshaler interface.
+func (x *Int) MarshalJSON() ([]byte, error) {
+ return x.MarshalText()
+}
+
+// UnmarshalJSON implements the json.Unmarshaler interface.
+func (z *Int) UnmarshalJSON(text []byte) error {
+ // Ignore null, like in the main JSON package.
+ if string(text) == "null" {
+ return nil
+ }
+ return z.UnmarshalText(text)
+}
diff --git a/contrib/go/_std_1.18/src/math/big/nat.go b/contrib/go/_std_1.18/src/math/big/nat.go
new file mode 100644
index 0000000000..140c619c8c
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/nat.go
@@ -0,0 +1,1244 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements unsigned multi-precision integers (natural
+// numbers). They are the building blocks for the implementation
+// of signed integers, rationals, and floating-point numbers.
+//
+// Caution: This implementation relies on the function "alias"
+// which assumes that (nat) slice capacities are never
+// changed (no 3-operand slice expressions). If that
+// changes, alias needs to be updated for correctness.
+
+package big
+
+import (
+ "encoding/binary"
+ "math/bits"
+ "math/rand"
+ "sync"
+)
+
+// An unsigned integer x of the form
+//
+// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
+//
+// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
+// with the digits x[i] as the slice elements.
+//
+// A number is normalized if the slice contains no leading 0 digits.
+// During arithmetic operations, denormalized values may occur but are
+// always normalized before returning the final result. The normalized
+// representation of 0 is the empty or nil slice (length = 0).
+//
+type nat []Word
+
+var (
+ natOne = nat{1}
+ natTwo = nat{2}
+ natFive = nat{5}
+ natTen = nat{10}
+)
+
+func (z nat) clear() {
+ for i := range z {
+ z[i] = 0
+ }
+}
+
+func (z nat) norm() nat {
+ i := len(z)
+ for i > 0 && z[i-1] == 0 {
+ i--
+ }
+ return z[0:i]
+}
+
+func (z nat) make(n int) nat {
+ if n <= cap(z) {
+ return z[:n] // reuse z
+ }
+ if n == 1 {
+ // Most nats start small and stay that way; don't over-allocate.
+ return make(nat, 1)
+ }
+ // Choosing a good value for e has significant performance impact
+ // because it increases the chance that a value can be reused.
+ const e = 4 // extra capacity
+ return make(nat, n, n+e)
+}
+
+func (z nat) setWord(x Word) nat {
+ if x == 0 {
+ return z[:0]
+ }
+ z = z.make(1)
+ z[0] = x
+ return z
+}
+
+func (z nat) setUint64(x uint64) nat {
+ // single-word value
+ if w := Word(x); uint64(w) == x {
+ return z.setWord(w)
+ }
+ // 2-word value
+ z = z.make(2)
+ z[1] = Word(x >> 32)
+ z[0] = Word(x)
+ return z
+}
+
+func (z nat) set(x nat) nat {
+ z = z.make(len(x))
+ copy(z, x)
+ return z
+}
+
+func (z nat) add(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+
+ switch {
+ case m < n:
+ return z.add(y, x)
+ case m == 0:
+ // n == 0 because m >= n; result is 0
+ return z[:0]
+ case n == 0:
+ // result is x
+ return z.set(x)
+ }
+ // m > 0
+
+ z = z.make(m + 1)
+ c := addVV(z[0:n], x, y)
+ if m > n {
+ c = addVW(z[n:m], x[n:], c)
+ }
+ z[m] = c
+
+ return z.norm()
+}
+
+func (z nat) sub(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+
+ switch {
+ case m < n:
+ panic("underflow")
+ case m == 0:
+ // n == 0 because m >= n; result is 0
+ return z[:0]
+ case n == 0:
+ // result is x
+ return z.set(x)
+ }
+ // m > 0
+
+ z = z.make(m)
+ c := subVV(z[0:n], x, y)
+ if m > n {
+ c = subVW(z[n:], x[n:], c)
+ }
+ if c != 0 {
+ panic("underflow")
+ }
+
+ return z.norm()
+}
+
+func (x nat) cmp(y nat) (r int) {
+ m := len(x)
+ n := len(y)
+ if m != n || m == 0 {
+ switch {
+ case m < n:
+ r = -1
+ case m > n:
+ r = 1
+ }
+ return
+ }
+
+ i := m - 1
+ for i > 0 && x[i] == y[i] {
+ i--
+ }
+
+ switch {
+ case x[i] < y[i]:
+ r = -1
+ case x[i] > y[i]:
+ r = 1
+ }
+ return
+}
+
+func (z nat) mulAddWW(x nat, y, r Word) nat {
+ m := len(x)
+ if m == 0 || y == 0 {
+ return z.setWord(r) // result is r
+ }
+ // m > 0
+
+ z = z.make(m + 1)
+ z[m] = mulAddVWW(z[0:m], x, y, r)
+
+ return z.norm()
+}
+
+// basicMul multiplies x and y and leaves the result in z.
+// The (non-normalized) result is placed in z[0 : len(x) + len(y)].
+func basicMul(z, x, y nat) {
+ z[0 : len(x)+len(y)].clear() // initialize z
+ for i, d := range y {
+ if d != 0 {
+ z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
+ }
+ }
+}
+
+// montgomery computes z mod m = x*y*2**(-n*_W) mod m,
+// assuming k = -1/m mod 2**_W.
+// z is used for storing the result which is returned;
+// z must not alias x, y or m.
+// See Gueron, "Efficient Software Implementations of Modular Exponentiation".
+// https://eprint.iacr.org/2011/239.pdf
+// In the terminology of that paper, this is an "Almost Montgomery Multiplication":
+// x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result
+// z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m.
+func (z nat) montgomery(x, y, m nat, k Word, n int) nat {
+ // This code assumes x, y, m are all the same length, n.
+ // (required by addMulVVW and the for loop).
+ // It also assumes that x, y are already reduced mod m,
+ // or else the result will not be properly reduced.
+ if len(x) != n || len(y) != n || len(m) != n {
+ panic("math/big: mismatched montgomery number lengths")
+ }
+ z = z.make(n * 2)
+ z.clear()
+ var c Word
+ for i := 0; i < n; i++ {
+ d := y[i]
+ c2 := addMulVVW(z[i:n+i], x, d)
+ t := z[i] * k
+ c3 := addMulVVW(z[i:n+i], m, t)
+ cx := c + c2
+ cy := cx + c3
+ z[n+i] = cy
+ if cx < c2 || cy < c3 {
+ c = 1
+ } else {
+ c = 0
+ }
+ }
+ if c != 0 {
+ subVV(z[:n], z[n:], m)
+ } else {
+ copy(z[:n], z[n:])
+ }
+ return z[:n]
+}
+
+// Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks.
+// Factored out for readability - do not use outside karatsuba.
+func karatsubaAdd(z, x nat, n int) {
+ if c := addVV(z[0:n], z, x); c != 0 {
+ addVW(z[n:n+n>>1], z[n:], c)
+ }
+}
+
+// Like karatsubaAdd, but does subtract.
+func karatsubaSub(z, x nat, n int) {
+ if c := subVV(z[0:n], z, x); c != 0 {
+ subVW(z[n:n+n>>1], z[n:], c)
+ }
+}
+
+// Operands that are shorter than karatsubaThreshold are multiplied using
+// "grade school" multiplication; for longer operands the Karatsuba algorithm
+// is used.
+var karatsubaThreshold = 40 // computed by calibrate_test.go
+
+// karatsuba multiplies x and y and leaves the result in z.
+// Both x and y must have the same length n and n must be a
+// power of 2. The result vector z must have len(z) >= 6*n.
+// The (non-normalized) result is placed in z[0 : 2*n].
+func karatsuba(z, x, y nat) {
+ n := len(y)
+
+ // Switch to basic multiplication if numbers are odd or small.
+ // (n is always even if karatsubaThreshold is even, but be
+ // conservative)
+ if n&1 != 0 || n < karatsubaThreshold || n < 2 {
+ basicMul(z, x, y)
+ return
+ }
+ // n&1 == 0 && n >= karatsubaThreshold && n >= 2
+
+ // Karatsuba multiplication is based on the observation that
+ // for two numbers x and y with:
+ //
+ // x = x1*b + x0
+ // y = y1*b + y0
+ //
+ // the product x*y can be obtained with 3 products z2, z1, z0
+ // instead of 4:
+ //
+ // x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0
+ // = z2*b*b + z1*b + z0
+ //
+ // with:
+ //
+ // xd = x1 - x0
+ // yd = y0 - y1
+ //
+ // z1 = xd*yd + z2 + z0
+ // = (x1-x0)*(y0 - y1) + z2 + z0
+ // = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0
+ // = x1*y0 - z2 - z0 + x0*y1 + z2 + z0
+ // = x1*y0 + x0*y1
+
+ // split x, y into "digits"
+ n2 := n >> 1 // n2 >= 1
+ x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0
+ y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0
+
+ // z is used for the result and temporary storage:
+ //
+ // 6*n 5*n 4*n 3*n 2*n 1*n 0*n
+ // z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ]
+ //
+ // For each recursive call of karatsuba, an unused slice of
+ // z is passed in that has (at least) half the length of the
+ // caller's z.
+
+ // compute z0 and z2 with the result "in place" in z
+ karatsuba(z, x0, y0) // z0 = x0*y0
+ karatsuba(z[n:], x1, y1) // z2 = x1*y1
+
+ // compute xd (or the negative value if underflow occurs)
+ s := 1 // sign of product xd*yd
+ xd := z[2*n : 2*n+n2]
+ if subVV(xd, x1, x0) != 0 { // x1-x0
+ s = -s
+ subVV(xd, x0, x1) // x0-x1
+ }
+
+ // compute yd (or the negative value if underflow occurs)
+ yd := z[2*n+n2 : 3*n]
+ if subVV(yd, y0, y1) != 0 { // y0-y1
+ s = -s
+ subVV(yd, y1, y0) // y1-y0
+ }
+
+ // p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0
+ // p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0
+ p := z[n*3:]
+ karatsuba(p, xd, yd)
+
+ // save original z2:z0
+ // (ok to use upper half of z since we're done recursing)
+ r := z[n*4:]
+ copy(r, z[:n*2])
+
+ // add up all partial products
+ //
+ // 2*n n 0
+ // z = [ z2 | z0 ]
+ // + [ z0 ]
+ // + [ z2 ]
+ // + [ p ]
+ //
+ karatsubaAdd(z[n2:], r, n)
+ karatsubaAdd(z[n2:], r[n:], n)
+ if s > 0 {
+ karatsubaAdd(z[n2:], p, n)
+ } else {
+ karatsubaSub(z[n2:], p, n)
+ }
+}
+
+// alias reports whether x and y share the same base array.
+// Note: alias assumes that the capacity of underlying arrays
+// is never changed for nat values; i.e. that there are
+// no 3-operand slice expressions in this code (or worse,
+// reflect-based operations to the same effect).
+func alias(x, y nat) bool {
+ return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]
+}
+
+// addAt implements z += x<<(_W*i); z must be long enough.
+// (we don't use nat.add because we need z to stay the same
+// slice, and we don't need to normalize z after each addition)
+func addAt(z, x nat, i int) {
+ if n := len(x); n > 0 {
+ if c := addVV(z[i:i+n], z[i:], x); c != 0 {
+ j := i + n
+ if j < len(z) {
+ addVW(z[j:], z[j:], c)
+ }
+ }
+ }
+}
+
+func max(x, y int) int {
+ if x > y {
+ return x
+ }
+ return y
+}
+
+// karatsubaLen computes an approximation to the maximum k <= n such that
+// k = p<<i for a number p <= threshold and an i >= 0. Thus, the
+// result is the largest number that can be divided repeatedly by 2 before
+// becoming about the value of threshold.
+func karatsubaLen(n, threshold int) int {
+ i := uint(0)
+ for n > threshold {
+ n >>= 1
+ i++
+ }
+ return n << i
+}
+
+func (z nat) mul(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+
+ switch {
+ case m < n:
+ return z.mul(y, x)
+ case m == 0 || n == 0:
+ return z[:0]
+ case n == 1:
+ return z.mulAddWW(x, y[0], 0)
+ }
+ // m >= n > 1
+
+ // determine if z can be reused
+ if alias(z, x) || alias(z, y) {
+ z = nil // z is an alias for x or y - cannot reuse
+ }
+
+ // use basic multiplication if the numbers are small
+ if n < karatsubaThreshold {
+ z = z.make(m + n)
+ basicMul(z, x, y)
+ return z.norm()
+ }
+ // m >= n && n >= karatsubaThreshold && n >= 2
+
+ // determine Karatsuba length k such that
+ //
+ // x = xh*b + x0 (0 <= x0 < b)
+ // y = yh*b + y0 (0 <= y0 < b)
+ // b = 1<<(_W*k) ("base" of digits xi, yi)
+ //
+ k := karatsubaLen(n, karatsubaThreshold)
+ // k <= n
+
+ // multiply x0 and y0 via Karatsuba
+ x0 := x[0:k] // x0 is not normalized
+ y0 := y[0:k] // y0 is not normalized
+ z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y
+ karatsuba(z, x0, y0)
+ z = z[0 : m+n] // z has final length but may be incomplete
+ z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m)
+
+ // If xh != 0 or yh != 0, add the missing terms to z. For
+ //
+ // xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b)
+ // yh = y1*b (0 <= y1 < b)
+ //
+ // the missing terms are
+ //
+ // x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0
+ //
+ // since all the yi for i > 1 are 0 by choice of k: If any of them
+ // were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would
+ // be a larger valid threshold contradicting the assumption about k.
+ //
+ if k < n || m != n {
+ tp := getNat(3 * k)
+ t := *tp
+
+ // add x0*y1*b
+ x0 := x0.norm()
+ y1 := y[k:] // y1 is normalized because y is
+ t = t.mul(x0, y1) // update t so we don't lose t's underlying array
+ addAt(z, t, k)
+
+ // add xi*y0<<i, xi*y1*b<<(i+k)
+ y0 := y0.norm()
+ for i := k; i < len(x); i += k {
+ xi := x[i:]
+ if len(xi) > k {
+ xi = xi[:k]
+ }
+ xi = xi.norm()
+ t = t.mul(xi, y0)
+ addAt(z, t, i)
+ t = t.mul(xi, y1)
+ addAt(z, t, i+k)
+ }
+
+ putNat(tp)
+ }
+
+ return z.norm()
+}
+
+// basicSqr sets z = x*x and is asymptotically faster than basicMul
+// by about a factor of 2, but slower for small arguments due to overhead.
+// Requirements: len(x) > 0, len(z) == 2*len(x)
+// The (non-normalized) result is placed in z.
+func basicSqr(z, x nat) {
+ n := len(x)
+ tp := getNat(2 * n)
+ t := *tp // temporary variable to hold the products
+ t.clear()
+ z[1], z[0] = mulWW(x[0], x[0]) // the initial square
+ for i := 1; i < n; i++ {
+ d := x[i]
+ // z collects the squares x[i] * x[i]
+ z[2*i+1], z[2*i] = mulWW(d, d)
+ // t collects the products x[i] * x[j] where j < i
+ t[2*i] = addMulVVW(t[i:2*i], x[0:i], d)
+ }
+ t[2*n-1] = shlVU(t[1:2*n-1], t[1:2*n-1], 1) // double the j < i products
+ addVV(z, z, t) // combine the result
+ putNat(tp)
+}
+
+// karatsubaSqr squares x and leaves the result in z.
+// len(x) must be a power of 2 and len(z) >= 6*len(x).
+// The (non-normalized) result is placed in z[0 : 2*len(x)].
+//
+// The algorithm and the layout of z are the same as for karatsuba.
+func karatsubaSqr(z, x nat) {
+ n := len(x)
+
+ if n&1 != 0 || n < karatsubaSqrThreshold || n < 2 {
+ basicSqr(z[:2*n], x)
+ return
+ }
+
+ n2 := n >> 1
+ x1, x0 := x[n2:], x[0:n2]
+
+ karatsubaSqr(z, x0)
+ karatsubaSqr(z[n:], x1)
+
+ // s = sign(xd*yd) == -1 for xd != 0; s == 1 for xd == 0
+ xd := z[2*n : 2*n+n2]
+ if subVV(xd, x1, x0) != 0 {
+ subVV(xd, x0, x1)
+ }
+
+ p := z[n*3:]
+ karatsubaSqr(p, xd)
+
+ r := z[n*4:]
+ copy(r, z[:n*2])
+
+ karatsubaAdd(z[n2:], r, n)
+ karatsubaAdd(z[n2:], r[n:], n)
+ karatsubaSub(z[n2:], p, n) // s == -1 for p != 0; s == 1 for p == 0
+}
+
+// Operands that are shorter than basicSqrThreshold are squared using
+// "grade school" multiplication; for operands longer than karatsubaSqrThreshold
+// we use the Karatsuba algorithm optimized for x == y.
+var basicSqrThreshold = 20 // computed by calibrate_test.go
+var karatsubaSqrThreshold = 260 // computed by calibrate_test.go
+
+// z = x*x
+func (z nat) sqr(x nat) nat {
+ n := len(x)
+ switch {
+ case n == 0:
+ return z[:0]
+ case n == 1:
+ d := x[0]
+ z = z.make(2)
+ z[1], z[0] = mulWW(d, d)
+ return z.norm()
+ }
+
+ if alias(z, x) {
+ z = nil // z is an alias for x - cannot reuse
+ }
+
+ if n < basicSqrThreshold {
+ z = z.make(2 * n)
+ basicMul(z, x, x)
+ return z.norm()
+ }
+ if n < karatsubaSqrThreshold {
+ z = z.make(2 * n)
+ basicSqr(z, x)
+ return z.norm()
+ }
+
+ // Use Karatsuba multiplication optimized for x == y.
+ // The algorithm and layout of z are the same as for mul.
+
+ // z = (x1*b + x0)^2 = x1^2*b^2 + 2*x1*x0*b + x0^2
+
+ k := karatsubaLen(n, karatsubaSqrThreshold)
+
+ x0 := x[0:k]
+ z = z.make(max(6*k, 2*n))
+ karatsubaSqr(z, x0) // z = x0^2
+ z = z[0 : 2*n]
+ z[2*k:].clear()
+
+ if k < n {
+ tp := getNat(2 * k)
+ t := *tp
+ x0 := x0.norm()
+ x1 := x[k:]
+ t = t.mul(x0, x1)
+ addAt(z, t, k)
+ addAt(z, t, k) // z = 2*x1*x0*b + x0^2
+ t = t.sqr(x1)
+ addAt(z, t, 2*k) // z = x1^2*b^2 + 2*x1*x0*b + x0^2
+ putNat(tp)
+ }
+
+ return z.norm()
+}
+
+// mulRange computes the product of all the unsigned integers in the
+// range [a, b] inclusively. If a > b (empty range), the result is 1.
+func (z nat) mulRange(a, b uint64) nat {
+ switch {
+ case a == 0:
+ // cut long ranges short (optimization)
+ return z.setUint64(0)
+ case a > b:
+ return z.setUint64(1)
+ case a == b:
+ return z.setUint64(a)
+ case a+1 == b:
+ return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b))
+ }
+ m := (a + b) / 2
+ return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b))
+}
+
+// getNat returns a *nat of len n. The contents may not be zero.
+// The pool holds *nat to avoid allocation when converting to interface{}.
+func getNat(n int) *nat {
+ var z *nat
+ if v := natPool.Get(); v != nil {
+ z = v.(*nat)
+ }
+ if z == nil {
+ z = new(nat)
+ }
+ *z = z.make(n)
+ return z
+}
+
+func putNat(x *nat) {
+ natPool.Put(x)
+}
+
+var natPool sync.Pool
+
+// Length of x in bits. x must be normalized.
+func (x nat) bitLen() int {
+ if i := len(x) - 1; i >= 0 {
+ return i*_W + bits.Len(uint(x[i]))
+ }
+ return 0
+}
+
+// trailingZeroBits returns the number of consecutive least significant zero
+// bits of x.
+func (x nat) trailingZeroBits() uint {
+ if len(x) == 0 {
+ return 0
+ }
+ var i uint
+ for x[i] == 0 {
+ i++
+ }
+ // x[i] != 0
+ return i*_W + uint(bits.TrailingZeros(uint(x[i])))
+}
+
+func same(x, y nat) bool {
+ return len(x) == len(y) && len(x) > 0 && &x[0] == &y[0]
+}
+
+// z = x << s
+func (z nat) shl(x nat, s uint) nat {
+ if s == 0 {
+ if same(z, x) {
+ return z
+ }
+ if !alias(z, x) {
+ return z.set(x)
+ }
+ }
+
+ m := len(x)
+ if m == 0 {
+ return z[:0]
+ }
+ // m > 0
+
+ n := m + int(s/_W)
+ z = z.make(n + 1)
+ z[n] = shlVU(z[n-m:n], x, s%_W)
+ z[0 : n-m].clear()
+
+ return z.norm()
+}
+
+// z = x >> s
+func (z nat) shr(x nat, s uint) nat {
+ if s == 0 {
+ if same(z, x) {
+ return z
+ }
+ if !alias(z, x) {
+ return z.set(x)
+ }
+ }
+
+ m := len(x)
+ n := m - int(s/_W)
+ if n <= 0 {
+ return z[:0]
+ }
+ // n > 0
+
+ z = z.make(n)
+ shrVU(z, x[m-n:], s%_W)
+
+ return z.norm()
+}
+
+func (z nat) setBit(x nat, i uint, b uint) nat {
+ j := int(i / _W)
+ m := Word(1) << (i % _W)
+ n := len(x)
+ switch b {
+ case 0:
+ z = z.make(n)
+ copy(z, x)
+ if j >= n {
+ // no need to grow
+ return z
+ }
+ z[j] &^= m
+ return z.norm()
+ case 1:
+ if j >= n {
+ z = z.make(j + 1)
+ z[n:].clear()
+ } else {
+ z = z.make(n)
+ }
+ copy(z, x)
+ z[j] |= m
+ // no need to normalize
+ return z
+ }
+ panic("set bit is not 0 or 1")
+}
+
+// bit returns the value of the i'th bit, with lsb == bit 0.
+func (x nat) bit(i uint) uint {
+ j := i / _W
+ if j >= uint(len(x)) {
+ return 0
+ }
+ // 0 <= j < len(x)
+ return uint(x[j] >> (i % _W) & 1)
+}
+
+// sticky returns 1 if there's a 1 bit within the
+// i least significant bits, otherwise it returns 0.
+func (x nat) sticky(i uint) uint {
+ j := i / _W
+ if j >= uint(len(x)) {
+ if len(x) == 0 {
+ return 0
+ }
+ return 1
+ }
+ // 0 <= j < len(x)
+ for _, x := range x[:j] {
+ if x != 0 {
+ return 1
+ }
+ }
+ if x[j]<<(_W-i%_W) != 0 {
+ return 1
+ }
+ return 0
+}
+
+func (z nat) and(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+ if m > n {
+ m = n
+ }
+ // m <= n
+
+ z = z.make(m)
+ for i := 0; i < m; i++ {
+ z[i] = x[i] & y[i]
+ }
+
+ return z.norm()
+}
+
+func (z nat) andNot(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+ if n > m {
+ n = m
+ }
+ // m >= n
+
+ z = z.make(m)
+ for i := 0; i < n; i++ {
+ z[i] = x[i] &^ y[i]
+ }
+ copy(z[n:m], x[n:m])
+
+ return z.norm()
+}
+
+func (z nat) or(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+ s := x
+ if m < n {
+ n, m = m, n
+ s = y
+ }
+ // m >= n
+
+ z = z.make(m)
+ for i := 0; i < n; i++ {
+ z[i] = x[i] | y[i]
+ }
+ copy(z[n:m], s[n:m])
+
+ return z.norm()
+}
+
+func (z nat) xor(x, y nat) nat {
+ m := len(x)
+ n := len(y)
+ s := x
+ if m < n {
+ n, m = m, n
+ s = y
+ }
+ // m >= n
+
+ z = z.make(m)
+ for i := 0; i < n; i++ {
+ z[i] = x[i] ^ y[i]
+ }
+ copy(z[n:m], s[n:m])
+
+ return z.norm()
+}
+
+// random creates a random integer in [0..limit), using the space in z if
+// possible. n is the bit length of limit.
+func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
+ if alias(z, limit) {
+ z = nil // z is an alias for limit - cannot reuse
+ }
+ z = z.make(len(limit))
+
+ bitLengthOfMSW := uint(n % _W)
+ if bitLengthOfMSW == 0 {
+ bitLengthOfMSW = _W
+ }
+ mask := Word((1 << bitLengthOfMSW) - 1)
+
+ for {
+ switch _W {
+ case 32:
+ for i := range z {
+ z[i] = Word(rand.Uint32())
+ }
+ case 64:
+ for i := range z {
+ z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
+ }
+ default:
+ panic("unknown word size")
+ }
+ z[len(limit)-1] &= mask
+ if z.cmp(limit) < 0 {
+ break
+ }
+ }
+
+ return z.norm()
+}
+
+// If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m;
+// otherwise it sets z to x**y. The result is the value of z.
+func (z nat) expNN(x, y, m nat) nat {
+ if alias(z, x) || alias(z, y) {
+ // We cannot allow in-place modification of x or y.
+ z = nil
+ }
+
+ // x**y mod 1 == 0
+ if len(m) == 1 && m[0] == 1 {
+ return z.setWord(0)
+ }
+ // m == 0 || m > 1
+
+ // x**0 == 1
+ if len(y) == 0 {
+ return z.setWord(1)
+ }
+ // y > 0
+
+ // x**1 mod m == x mod m
+ if len(y) == 1 && y[0] == 1 && len(m) != 0 {
+ _, z = nat(nil).div(z, x, m)
+ return z
+ }
+ // y > 1
+
+ if len(m) != 0 {
+ // We likely end up being as long as the modulus.
+ z = z.make(len(m))
+ }
+ z = z.set(x)
+
+ // If the base is non-trivial and the exponent is large, we use
+ // 4-bit, windowed exponentiation. This involves precomputing 14 values
+ // (x^2...x^15) but then reduces the number of multiply-reduces by a
+ // third. Even for a 32-bit exponent, this reduces the number of
+ // operations. Uses Montgomery method for odd moduli.
+ if x.cmp(natOne) > 0 && len(y) > 1 && len(m) > 0 {
+ if m[0]&1 == 1 {
+ return z.expNNMontgomery(x, y, m)
+ }
+ return z.expNNWindowed(x, y, m)
+ }
+
+ v := y[len(y)-1] // v > 0 because y is normalized and y > 0
+ shift := nlz(v) + 1
+ v <<= shift
+ var q nat
+
+ const mask = 1 << (_W - 1)
+
+ // We walk through the bits of the exponent one by one. Each time we
+ // see a bit, we square, thus doubling the power. If the bit is a one,
+ // we also multiply by x, thus adding one to the power.
+
+ w := _W - int(shift)
+ // zz and r are used to avoid allocating in mul and div as
+ // otherwise the arguments would alias.
+ var zz, r nat
+ for j := 0; j < w; j++ {
+ zz = zz.sqr(z)
+ zz, z = z, zz
+
+ if v&mask != 0 {
+ zz = zz.mul(z, x)
+ zz, z = z, zz
+ }
+
+ if len(m) != 0 {
+ zz, r = zz.div(r, z, m)
+ zz, r, q, z = q, z, zz, r
+ }
+
+ v <<= 1
+ }
+
+ for i := len(y) - 2; i >= 0; i-- {
+ v = y[i]
+
+ for j := 0; j < _W; j++ {
+ zz = zz.sqr(z)
+ zz, z = z, zz
+
+ if v&mask != 0 {
+ zz = zz.mul(z, x)
+ zz, z = z, zz
+ }
+
+ if len(m) != 0 {
+ zz, r = zz.div(r, z, m)
+ zz, r, q, z = q, z, zz, r
+ }
+
+ v <<= 1
+ }
+ }
+
+ return z.norm()
+}
+
+// expNNWindowed calculates x**y mod m using a fixed, 4-bit window.
+func (z nat) expNNWindowed(x, y, m nat) nat {
+ // zz and r are used to avoid allocating in mul and div as otherwise
+ // the arguments would alias.
+ var zz, r nat
+
+ const n = 4
+ // powers[i] contains x^i.
+ var powers [1 << n]nat
+ powers[0] = natOne
+ powers[1] = x
+ for i := 2; i < 1<<n; i += 2 {
+ p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1]
+ *p = p.sqr(*p2)
+ zz, r = zz.div(r, *p, m)
+ *p, r = r, *p
+ *p1 = p1.mul(*p, x)
+ zz, r = zz.div(r, *p1, m)
+ *p1, r = r, *p1
+ }
+
+ z = z.setWord(1)
+
+ for i := len(y) - 1; i >= 0; i-- {
+ yi := y[i]
+ for j := 0; j < _W; j += n {
+ if i != len(y)-1 || j != 0 {
+ // Unrolled loop for significant performance
+ // gain. Use go test -bench=".*" in crypto/rsa
+ // to check performance before making changes.
+ zz = zz.sqr(z)
+ zz, z = z, zz
+ zz, r = zz.div(r, z, m)
+ z, r = r, z
+
+ zz = zz.sqr(z)
+ zz, z = z, zz
+ zz, r = zz.div(r, z, m)
+ z, r = r, z
+
+ zz = zz.sqr(z)
+ zz, z = z, zz
+ zz, r = zz.div(r, z, m)
+ z, r = r, z
+
+ zz = zz.sqr(z)
+ zz, z = z, zz
+ zz, r = zz.div(r, z, m)
+ z, r = r, z
+ }
+
+ zz = zz.mul(z, powers[yi>>(_W-n)])
+ zz, z = z, zz
+ zz, r = zz.div(r, z, m)
+ z, r = r, z
+
+ yi <<= n
+ }
+ }
+
+ return z.norm()
+}
+
+// expNNMontgomery calculates x**y mod m using a fixed, 4-bit window.
+// Uses Montgomery representation.
+func (z nat) expNNMontgomery(x, y, m nat) nat {
+ numWords := len(m)
+
+ // We want the lengths of x and m to be equal.
+ // It is OK if x >= m as long as len(x) == len(m).
+ if len(x) > numWords {
+ _, x = nat(nil).div(nil, x, m)
+ // Note: now len(x) <= numWords, not guaranteed ==.
+ }
+ if len(x) < numWords {
+ rr := make(nat, numWords)
+ copy(rr, x)
+ x = rr
+ }
+
+ // Ideally the precomputations would be performed outside, and reused
+ // k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On Newton–Raphson
+ // Iteration for Multiplicative Inverses Modulo Prime Powers".
+ k0 := 2 - m[0]
+ t := m[0] - 1
+ for i := 1; i < _W; i <<= 1 {
+ t *= t
+ k0 *= (t + 1)
+ }
+ k0 = -k0
+
+ // RR = 2**(2*_W*len(m)) mod m
+ RR := nat(nil).setWord(1)
+ zz := nat(nil).shl(RR, uint(2*numWords*_W))
+ _, RR = nat(nil).div(RR, zz, m)
+ if len(RR) < numWords {
+ zz = zz.make(numWords)
+ copy(zz, RR)
+ RR = zz
+ }
+ // one = 1, with equal length to that of m
+ one := make(nat, numWords)
+ one[0] = 1
+
+ const n = 4
+ // powers[i] contains x^i
+ var powers [1 << n]nat
+ powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
+ powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
+ for i := 2; i < 1<<n; i++ {
+ powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
+ }
+
+ // initialize z = 1 (Montgomery 1)
+ z = z.make(numWords)
+ copy(z, powers[0])
+
+ zz = zz.make(numWords)
+
+ // same windowed exponent, but with Montgomery multiplications
+ for i := len(y) - 1; i >= 0; i-- {
+ yi := y[i]
+ for j := 0; j < _W; j += n {
+ if i != len(y)-1 || j != 0 {
+ zz = zz.montgomery(z, z, m, k0, numWords)
+ z = z.montgomery(zz, zz, m, k0, numWords)
+ zz = zz.montgomery(z, z, m, k0, numWords)
+ z = z.montgomery(zz, zz, m, k0, numWords)
+ }
+ zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords)
+ z, zz = zz, z
+ yi <<= n
+ }
+ }
+ // convert to regular number
+ zz = zz.montgomery(z, one, m, k0, numWords)
+
+ // One last reduction, just in case.
+ // See golang.org/issue/13907.
+ if zz.cmp(m) >= 0 {
+ // Common case is m has high bit set; in that case,
+ // since zz is the same length as m, there can be just
+ // one multiple of m to remove. Just subtract.
+ // We think that the subtract should be sufficient in general,
+ // so do that unconditionally, but double-check,
+ // in case our beliefs are wrong.
+ // The div is not expected to be reached.
+ zz = zz.sub(zz, m)
+ if zz.cmp(m) >= 0 {
+ _, zz = nat(nil).div(nil, zz, m)
+ }
+ }
+
+ return zz.norm()
+}
+
+// bytes writes the value of z into buf using big-endian encoding.
+// The value of z is encoded in the slice buf[i:]. If the value of z
+// cannot be represented in buf, bytes panics. The number i of unused
+// bytes at the beginning of buf is returned as result.
+func (z nat) bytes(buf []byte) (i int) {
+ i = len(buf)
+ for _, d := range z {
+ for j := 0; j < _S; j++ {
+ i--
+ if i >= 0 {
+ buf[i] = byte(d)
+ } else if byte(d) != 0 {
+ panic("math/big: buffer too small to fit value")
+ }
+ d >>= 8
+ }
+ }
+
+ if i < 0 {
+ i = 0
+ }
+ for i < len(buf) && buf[i] == 0 {
+ i++
+ }
+
+ return
+}
+
+// bigEndianWord returns the contents of buf interpreted as a big-endian encoded Word value.
+func bigEndianWord(buf []byte) Word {
+ if _W == 64 {
+ return Word(binary.BigEndian.Uint64(buf))
+ }
+ return Word(binary.BigEndian.Uint32(buf))
+}
+
+// setBytes interprets buf as the bytes of a big-endian unsigned
+// integer, sets z to that value, and returns z.
+func (z nat) setBytes(buf []byte) nat {
+ z = z.make((len(buf) + _S - 1) / _S)
+
+ i := len(buf)
+ for k := 0; i >= _S; k++ {
+ z[k] = bigEndianWord(buf[i-_S : i])
+ i -= _S
+ }
+ if i > 0 {
+ var d Word
+ for s := uint(0); i > 0; s += 8 {
+ d |= Word(buf[i-1]) << s
+ i--
+ }
+ z[len(z)-1] = d
+ }
+
+ return z.norm()
+}
+
+// sqrt sets z = ⌊√x⌋
+func (z nat) sqrt(x nat) nat {
+ if x.cmp(natOne) <= 0 {
+ return z.set(x)
+ }
+ if alias(z, x) {
+ z = nil
+ }
+
+ // Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller.
+ // See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt).
+ // https://members.loria.fr/PZimmermann/mca/pub226.html
+ // If x is one less than a perfect square, the sequence oscillates between the correct z and z+1;
+ // otherwise it converges to the correct z and stays there.
+ var z1, z2 nat
+ z1 = z
+ z1 = z1.setUint64(1)
+ z1 = z1.shl(z1, uint(x.bitLen()+1)/2) // must be ≥ √x
+ for n := 0; ; n++ {
+ z2, _ = z2.div(nil, x, z1)
+ z2 = z2.add(z2, z1)
+ z2 = z2.shr(z2, 1)
+ if z2.cmp(z1) >= 0 {
+ // z1 is answer.
+ // Figure out whether z1 or z2 is currently aliased to z by looking at loop count.
+ if n&1 == 0 {
+ return z1
+ }
+ return z.set(z1)
+ }
+ z1, z2 = z2, z1
+ }
+}
diff --git a/contrib/go/_std_1.18/src/math/big/natconv.go b/contrib/go/_std_1.18/src/math/big/natconv.go
new file mode 100644
index 0000000000..42d1cccf6f
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/natconv.go
@@ -0,0 +1,512 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements nat-to-string conversion functions.
+
+package big
+
+import (
+ "errors"
+ "fmt"
+ "io"
+ "math"
+ "math/bits"
+ "sync"
+)
+
+const digits = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
+
+// Note: MaxBase = len(digits), but it must remain an untyped rune constant
+// for API compatibility.
+
+// MaxBase is the largest number base accepted for string conversions.
+const MaxBase = 10 + ('z' - 'a' + 1) + ('Z' - 'A' + 1)
+const maxBaseSmall = 10 + ('z' - 'a' + 1)
+
+// maxPow returns (b**n, n) such that b**n is the largest power b**n <= _M.
+// For instance maxPow(10) == (1e19, 19) for 19 decimal digits in a 64bit Word.
+// In other words, at most n digits in base b fit into a Word.
+// TODO(gri) replace this with a table, generated at build time.
+func maxPow(b Word) (p Word, n int) {
+ p, n = b, 1 // assuming b <= _M
+ for max := _M / b; p <= max; {
+ // p == b**n && p <= max
+ p *= b
+ n++
+ }
+ // p == b**n && p <= _M
+ return
+}
+
+// pow returns x**n for n > 0, and 1 otherwise.
+func pow(x Word, n int) (p Word) {
+ // n == sum of bi * 2**i, for 0 <= i < imax, and bi is 0 or 1
+ // thus x**n == product of x**(2**i) for all i where bi == 1
+ // (Russian Peasant Method for exponentiation)
+ p = 1
+ for n > 0 {
+ if n&1 != 0 {
+ p *= x
+ }
+ x *= x
+ n >>= 1
+ }
+ return
+}
+
+// scan errors
+var (
+ errNoDigits = errors.New("number has no digits")
+ errInvalSep = errors.New("'_' must separate successive digits")
+)
+
+// scan scans the number corresponding to the longest possible prefix
+// from r representing an unsigned number in a given conversion base.
+// scan returns the corresponding natural number res, the actual base b,
+// a digit count, and a read or syntax error err, if any.
+//
+// For base 0, an underscore character ``_'' may appear between a base
+// prefix and an adjacent digit, and between successive digits; such
+// underscores do not change the value of the number, or the returned
+// digit count. Incorrect placement of underscores is reported as an
+// error if there are no other errors. If base != 0, underscores are
+// not recognized and thus terminate scanning like any other character
+// that is not a valid radix point or digit.
+//
+// number = mantissa | prefix pmantissa .
+// prefix = "0" [ "b" | "B" | "o" | "O" | "x" | "X" ] .
+// mantissa = digits "." [ digits ] | digits | "." digits .
+// pmantissa = [ "_" ] digits "." [ digits ] | [ "_" ] digits | "." digits .
+// digits = digit { [ "_" ] digit } .
+// digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
+//
+// Unless fracOk is set, the base argument must be 0 or a value between
+// 2 and MaxBase. If fracOk is set, the base argument must be one of
+// 0, 2, 8, 10, or 16. Providing an invalid base argument leads to a run-
+// time panic.
+//
+// For base 0, the number prefix determines the actual base: A prefix of
+// ``0b'' or ``0B'' selects base 2, ``0o'' or ``0O'' selects base 8, and
+// ``0x'' or ``0X'' selects base 16. If fracOk is false, a ``0'' prefix
+// (immediately followed by digits) selects base 8 as well. Otherwise,
+// the selected base is 10 and no prefix is accepted.
+//
+// If fracOk is set, a period followed by a fractional part is permitted.
+// The result value is computed as if there were no period present; and
+// the count value is used to determine the fractional part.
+//
+// For bases <= 36, lower and upper case letters are considered the same:
+// The letters 'a' to 'z' and 'A' to 'Z' represent digit values 10 to 35.
+// For bases > 36, the upper case letters 'A' to 'Z' represent the digit
+// values 36 to 61.
+//
+// A result digit count > 0 corresponds to the number of (non-prefix) digits
+// parsed. A digit count <= 0 indicates the presence of a period (if fracOk
+// is set, only), and -count is the number of fractional digits found.
+// In this case, the actual value of the scanned number is res * b**count.
+//
+func (z nat) scan(r io.ByteScanner, base int, fracOk bool) (res nat, b, count int, err error) {
+ // reject invalid bases
+ baseOk := base == 0 ||
+ !fracOk && 2 <= base && base <= MaxBase ||
+ fracOk && (base == 2 || base == 8 || base == 10 || base == 16)
+ if !baseOk {
+ panic(fmt.Sprintf("invalid number base %d", base))
+ }
+
+ // prev encodes the previously seen char: it is one
+ // of '_', '0' (a digit), or '.' (anything else). A
+ // valid separator '_' may only occur after a digit
+ // and if base == 0.
+ prev := '.'
+ invalSep := false
+
+ // one char look-ahead
+ ch, err := r.ReadByte()
+
+ // determine actual base
+ b, prefix := base, 0
+ if base == 0 {
+ // actual base is 10 unless there's a base prefix
+ b = 10
+ if err == nil && ch == '0' {
+ prev = '0'
+ count = 1
+ ch, err = r.ReadByte()
+ if err == nil {
+ // possibly one of 0b, 0B, 0o, 0O, 0x, 0X
+ switch ch {
+ case 'b', 'B':
+ b, prefix = 2, 'b'
+ case 'o', 'O':
+ b, prefix = 8, 'o'
+ case 'x', 'X':
+ b, prefix = 16, 'x'
+ default:
+ if !fracOk {
+ b, prefix = 8, '0'
+ }
+ }
+ if prefix != 0 {
+ count = 0 // prefix is not counted
+ if prefix != '0' {
+ ch, err = r.ReadByte()
+ }
+ }
+ }
+ }
+ }
+
+ // convert string
+ // Algorithm: Collect digits in groups of at most n digits in di
+ // and then use mulAddWW for every such group to add them to the
+ // result.
+ z = z[:0]
+ b1 := Word(b)
+ bn, n := maxPow(b1) // at most n digits in base b1 fit into Word
+ di := Word(0) // 0 <= di < b1**i < bn
+ i := 0 // 0 <= i < n
+ dp := -1 // position of decimal point
+ for err == nil {
+ if ch == '.' && fracOk {
+ fracOk = false
+ if prev == '_' {
+ invalSep = true
+ }
+ prev = '.'
+ dp = count
+ } else if ch == '_' && base == 0 {
+ if prev != '0' {
+ invalSep = true
+ }
+ prev = '_'
+ } else {
+ // convert rune into digit value d1
+ var d1 Word
+ switch {
+ case '0' <= ch && ch <= '9':
+ d1 = Word(ch - '0')
+ case 'a' <= ch && ch <= 'z':
+ d1 = Word(ch - 'a' + 10)
+ case 'A' <= ch && ch <= 'Z':
+ if b <= maxBaseSmall {
+ d1 = Word(ch - 'A' + 10)
+ } else {
+ d1 = Word(ch - 'A' + maxBaseSmall)
+ }
+ default:
+ d1 = MaxBase + 1
+ }
+ if d1 >= b1 {
+ r.UnreadByte() // ch does not belong to number anymore
+ break
+ }
+ prev = '0'
+ count++
+
+ // collect d1 in di
+ di = di*b1 + d1
+ i++
+
+ // if di is "full", add it to the result
+ if i == n {
+ z = z.mulAddWW(z, bn, di)
+ di = 0
+ i = 0
+ }
+ }
+
+ ch, err = r.ReadByte()
+ }
+
+ if err == io.EOF {
+ err = nil
+ }
+
+ // other errors take precedence over invalid separators
+ if err == nil && (invalSep || prev == '_') {
+ err = errInvalSep
+ }
+
+ if count == 0 {
+ // no digits found
+ if prefix == '0' {
+ // there was only the octal prefix 0 (possibly followed by separators and digits > 7);
+ // interpret as decimal 0
+ return z[:0], 10, 1, err
+ }
+ err = errNoDigits // fall through; result will be 0
+ }
+
+ // add remaining digits to result
+ if i > 0 {
+ z = z.mulAddWW(z, pow(b1, i), di)
+ }
+ res = z.norm()
+
+ // adjust count for fraction, if any
+ if dp >= 0 {
+ // 0 <= dp <= count
+ count = dp - count
+ }
+
+ return
+}
+
+// utoa converts x to an ASCII representation in the given base;
+// base must be between 2 and MaxBase, inclusive.
+func (x nat) utoa(base int) []byte {
+ return x.itoa(false, base)
+}
+
+// itoa is like utoa but it prepends a '-' if neg && x != 0.
+func (x nat) itoa(neg bool, base int) []byte {
+ if base < 2 || base > MaxBase {
+ panic("invalid base")
+ }
+
+ // x == 0
+ if len(x) == 0 {
+ return []byte("0")
+ }
+ // len(x) > 0
+
+ // allocate buffer for conversion
+ i := int(float64(x.bitLen())/math.Log2(float64(base))) + 1 // off by 1 at most
+ if neg {
+ i++
+ }
+ s := make([]byte, i)
+
+ // convert power of two and non power of two bases separately
+ if b := Word(base); b == b&-b {
+ // shift is base b digit size in bits
+ shift := uint(bits.TrailingZeros(uint(b))) // shift > 0 because b >= 2
+ mask := Word(1<<shift - 1)
+ w := x[0] // current word
+ nbits := uint(_W) // number of unprocessed bits in w
+
+ // convert less-significant words (include leading zeros)
+ for k := 1; k < len(x); k++ {
+ // convert full digits
+ for nbits >= shift {
+ i--
+ s[i] = digits[w&mask]
+ w >>= shift
+ nbits -= shift
+ }
+
+ // convert any partial leading digit and advance to next word
+ if nbits == 0 {
+ // no partial digit remaining, just advance
+ w = x[k]
+ nbits = _W
+ } else {
+ // partial digit in current word w (== x[k-1]) and next word x[k]
+ w |= x[k] << nbits
+ i--
+ s[i] = digits[w&mask]
+
+ // advance
+ w = x[k] >> (shift - nbits)
+ nbits = _W - (shift - nbits)
+ }
+ }
+
+ // convert digits of most-significant word w (omit leading zeros)
+ for w != 0 {
+ i--
+ s[i] = digits[w&mask]
+ w >>= shift
+ }
+
+ } else {
+ bb, ndigits := maxPow(b)
+
+ // construct table of successive squares of bb*leafSize to use in subdivisions
+ // result (table != nil) <=> (len(x) > leafSize > 0)
+ table := divisors(len(x), b, ndigits, bb)
+
+ // preserve x, create local copy for use by convertWords
+ q := nat(nil).set(x)
+
+ // convert q to string s in base b
+ q.convertWords(s, b, ndigits, bb, table)
+
+ // strip leading zeros
+ // (x != 0; thus s must contain at least one non-zero digit
+ // and the loop will terminate)
+ i = 0
+ for s[i] == '0' {
+ i++
+ }
+ }
+
+ if neg {
+ i--
+ s[i] = '-'
+ }
+
+ return s[i:]
+}
+
+// Convert words of q to base b digits in s. If q is large, it is recursively "split in half"
+// by nat/nat division using tabulated divisors. Otherwise, it is converted iteratively using
+// repeated nat/Word division.
+//
+// The iterative method processes n Words by n divW() calls, each of which visits every Word in the
+// incrementally shortened q for a total of n + (n-1) + (n-2) ... + 2 + 1, or n(n+1)/2 divW()'s.
+// Recursive conversion divides q by its approximate square root, yielding two parts, each half
+// the size of q. Using the iterative method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s
+// plus the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and
+// is made better by splitting the subblocks recursively. Best is to split blocks until one more
+// split would take longer (because of the nat/nat div()) than the twice as many divW()'s of the
+// iterative approach. This threshold is represented by leafSize. Benchmarking of leafSize in the
+// range 2..64 shows that values of 8 and 16 work well, with a 4x speedup at medium lengths and
+// ~30x for 20000 digits. Use nat_test.go's BenchmarkLeafSize tests to optimize leafSize for
+// specific hardware.
+//
+func (q nat) convertWords(s []byte, b Word, ndigits int, bb Word, table []divisor) {
+ // split larger blocks recursively
+ if table != nil {
+ // len(q) > leafSize > 0
+ var r nat
+ index := len(table) - 1
+ for len(q) > leafSize {
+ // find divisor close to sqrt(q) if possible, but in any case < q
+ maxLength := q.bitLen() // ~= log2 q, or at of least largest possible q of this bit length
+ minLength := maxLength >> 1 // ~= log2 sqrt(q)
+ for index > 0 && table[index-1].nbits > minLength {
+ index-- // desired
+ }
+ if table[index].nbits >= maxLength && table[index].bbb.cmp(q) >= 0 {
+ index--
+ if index < 0 {
+ panic("internal inconsistency")
+ }
+ }
+
+ // split q into the two digit number (q'*bbb + r) to form independent subblocks
+ q, r = q.div(r, q, table[index].bbb)
+
+ // convert subblocks and collect results in s[:h] and s[h:]
+ h := len(s) - table[index].ndigits
+ r.convertWords(s[h:], b, ndigits, bb, table[0:index])
+ s = s[:h] // == q.convertWords(s, b, ndigits, bb, table[0:index+1])
+ }
+ }
+
+ // having split any large blocks now process the remaining (small) block iteratively
+ i := len(s)
+ var r Word
+ if b == 10 {
+ // hard-coding for 10 here speeds this up by 1.25x (allows for / and % by constants)
+ for len(q) > 0 {
+ // extract least significant, base bb "digit"
+ q, r = q.divW(q, bb)
+ for j := 0; j < ndigits && i > 0; j++ {
+ i--
+ // avoid % computation since r%10 == r - int(r/10)*10;
+ // this appears to be faster for BenchmarkString10000Base10
+ // and smaller strings (but a bit slower for larger ones)
+ t := r / 10
+ s[i] = '0' + byte(r-t*10)
+ r = t
+ }
+ }
+ } else {
+ for len(q) > 0 {
+ // extract least significant, base bb "digit"
+ q, r = q.divW(q, bb)
+ for j := 0; j < ndigits && i > 0; j++ {
+ i--
+ s[i] = digits[r%b]
+ r /= b
+ }
+ }
+ }
+
+ // prepend high-order zeros
+ for i > 0 { // while need more leading zeros
+ i--
+ s[i] = '0'
+ }
+}
+
+// Split blocks greater than leafSize Words (or set to 0 to disable recursive conversion)
+// Benchmark and configure leafSize using: go test -bench="Leaf"
+// 8 and 16 effective on 3.0 GHz Xeon "Clovertown" CPU (128 byte cache lines)
+// 8 and 16 effective on 2.66 GHz Core 2 Duo "Penryn" CPU
+var leafSize int = 8 // number of Word-size binary values treat as a monolithic block
+
+type divisor struct {
+ bbb nat // divisor
+ nbits int // bit length of divisor (discounting leading zeros) ~= log2(bbb)
+ ndigits int // digit length of divisor in terms of output base digits
+}
+
+var cacheBase10 struct {
+ sync.Mutex
+ table [64]divisor // cached divisors for base 10
+}
+
+// expWW computes x**y
+func (z nat) expWW(x, y Word) nat {
+ return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil)
+}
+
+// construct table of powers of bb*leafSize to use in subdivisions
+func divisors(m int, b Word, ndigits int, bb Word) []divisor {
+ // only compute table when recursive conversion is enabled and x is large
+ if leafSize == 0 || m <= leafSize {
+ return nil
+ }
+
+ // determine k where (bb**leafSize)**(2**k) >= sqrt(x)
+ k := 1
+ for words := leafSize; words < m>>1 && k < len(cacheBase10.table); words <<= 1 {
+ k++
+ }
+
+ // reuse and extend existing table of divisors or create new table as appropriate
+ var table []divisor // for b == 10, table overlaps with cacheBase10.table
+ if b == 10 {
+ cacheBase10.Lock()
+ table = cacheBase10.table[0:k] // reuse old table for this conversion
+ } else {
+ table = make([]divisor, k) // create new table for this conversion
+ }
+
+ // extend table
+ if table[k-1].ndigits == 0 {
+ // add new entries as needed
+ var larger nat
+ for i := 0; i < k; i++ {
+ if table[i].ndigits == 0 {
+ if i == 0 {
+ table[0].bbb = nat(nil).expWW(bb, Word(leafSize))
+ table[0].ndigits = ndigits * leafSize
+ } else {
+ table[i].bbb = nat(nil).sqr(table[i-1].bbb)
+ table[i].ndigits = 2 * table[i-1].ndigits
+ }
+
+ // optimization: exploit aggregated extra bits in macro blocks
+ larger = nat(nil).set(table[i].bbb)
+ for mulAddVWW(larger, larger, b, 0) == 0 {
+ table[i].bbb = table[i].bbb.set(larger)
+ table[i].ndigits++
+ }
+
+ table[i].nbits = table[i].bbb.bitLen()
+ }
+ }
+ }
+
+ if b == 10 {
+ cacheBase10.Unlock()
+ }
+
+ return table
+}
diff --git a/contrib/go/_std_1.18/src/math/big/natdiv.go b/contrib/go/_std_1.18/src/math/big/natdiv.go
new file mode 100644
index 0000000000..882bb6d3ba
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/natdiv.go
@@ -0,0 +1,884 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+/*
+
+Multi-precision division. Here be dragons.
+
+Given u and v, where u is n+m digits, and v is n digits (with no leading zeros),
+the goal is to return quo, rem such that u = quo*v + rem, where 0 ≤ rem < v.
+That is, quo = ⌊u/v⌋ where ⌊x⌋ denotes the floor (truncation to integer) of x,
+and rem = u - quo·v.
+
+
+Long Division
+
+Division in a computer proceeds the same as long division in elementary school,
+but computers are not as good as schoolchildren at following vague directions,
+so we have to be much more precise about the actual steps and what can happen.
+
+We work from most to least significant digit of the quotient, doing:
+
+ • Guess a digit q, the number of v to subtract from the current
+ section of u to zero out the topmost digit.
+ • Check the guess by multiplying q·v and comparing it against
+ the current section of u, adjusting the guess as needed.
+ • Subtract q·v from the current section of u.
+ • Add q to the corresponding section of the result quo.
+
+When all digits have been processed, the final remainder is left in u
+and returned as rem.
+
+For example, here is a sketch of dividing 5 digits by 3 digits (n=3, m=2).
+
+ q₂ q₁ q₀
+ _________________
+ v₂ v₁ v₀ ) u₄ u₃ u₂ u₁ u₀
+ ↓ ↓ ↓ | |
+ [u₄ u₃ u₂]| |
+ - [ q₂·v ]| |
+ ----------- ↓ |
+ [ rem | u₁]|
+ - [ q₁·v ]|
+ ----------- ↓
+ [ rem | u₀]
+ - [ q₀·v ]
+ ------------
+ [ rem ]
+
+Instead of creating new storage for the remainders and copying digits from u
+as indicated by the arrows, we use u's storage directly as both the source
+and destination of the subtractions, so that the remainders overwrite
+successive overlapping sections of u as the division proceeds, using a slice
+of u to identify the current section. This avoids all the copying as well as
+shifting of remainders.
+
+Division of u with n+m digits by v with n digits (in base B) can in general
+produce at most m+1 digits, because:
+
+ • u < B^(n+m) [B^(n+m) has n+m+1 digits]
+ • v ≥ B^(n-1) [B^(n-1) is the smallest n-digit number]
+ • u/v < B^(n+m) / B^(n-1) [divide bounds for u, v]
+ • u/v < B^(m+1) [simplify]
+
+The first step is special: it takes the top n digits of u and divides them by
+the n digits of v, producing the first quotient digit and an n-digit remainder.
+In the example, q₂ = ⌊u₄u₃u₂ / v⌋.
+
+The first step divides n digits by n digits to ensure that it produces only a
+single digit.
+
+Each subsequent step appends the next digit from u to the remainder and divides
+those n+1 digits by the n digits of v, producing another quotient digit and a
+new n-digit remainder.
+
+Subsequent steps divide n+1 digits by n digits, an operation that in general
+might produce two digits. However, as used in the algorithm, that division is
+guaranteed to produce only a single digit. The dividend is of the form
+rem·B + d, where rem is a remainder from the previous step and d is a single
+digit, so:
+
+ • rem ≤ v - 1 [rem is a remainder from dividing by v]
+ • rem·B ≤ v·B - B [multiply by B]
+ • d ≤ B - 1 [d is a single digit]
+ • rem·B + d ≤ v·B - 1 [add]
+ • rem·B + d < v·B [change ≤ to <]
+ • (rem·B + d)/v < B [divide by v]
+
+
+Guess and Check
+
+At each step we need to divide n+1 digits by n digits, but this is for the
+implementation of division by n digits, so we can't just invoke a division
+routine: we _are_ the division routine. Instead, we guess at the answer and
+then check it using multiplication. If the guess is wrong, we correct it.
+
+How can this guessing possibly be efficient? It turns out that the following
+statement (let's call it the Good Guess Guarantee) is true.
+
+If
+
+ • q = ⌊u/v⌋ where u is n+1 digits and v is n digits,
+ • q < B, and
+ • the topmost digit of v = vₙ₋₁ ≥ B/2,
+
+then q̂ = ⌊uₙuₙ₋₁ / vₙ₋₁⌋ satisfies q ≤ q̂ ≤ q+2. (Proof below.)
+
+That is, if we know the answer has only a single digit and we guess an answer
+by ignoring the bottom n-1 digits of u and v, using a 2-by-1-digit division,
+then that guess is at least as large as the correct answer. It is also not
+too much larger: it is off by at most two from the correct answer.
+
+Note that in the first step of the overall division, which is an n-by-n-digit
+division, the 2-by-1 guess uses an implicit uₙ = 0.
+
+Note that using a 2-by-1-digit division here does not mean calling ourselves
+recursively. Instead, we use an efficient direct hardware implementation of
+that operation.
+
+Note that because q is u/v rounded down, q·v must not exceed u: u ≥ q·v.
+If a guess q̂ is too big, it will not satisfy this test. Viewed a different way,
+the remainder r̂ for a given q̂ is u - q̂·v, which must be positive. If it is
+negative, then the guess q̂ is too big.
+
+This gives us a way to compute q. First compute q̂ with 2-by-1-digit division.
+Then, while u < q̂·v, decrement q̂; this loop executes at most twice, because
+q̂ ≤ q+2.
+
+
+Scaling Inputs
+
+The Good Guess Guarantee requires that the top digit of v (vₙ₋₁) be at least B/2.
+For example in base 10, ⌊172/19⌋ = 9, but ⌊18/1⌋ = 18: the guess is wildly off
+because the first digit 1 is smaller than B/2 = 5.
+
+We can ensure that v has a large top digit by multiplying both u and v by the
+right amount. Continuing the example, if we multiply both 172 and 19 by 3, we
+now have ⌊516/57⌋, the leading digit of v is now ≥ 5, and sure enough
+⌊51/5⌋ = 10 is much closer to the correct answer 9. It would be easier here
+to multiply by 4, because that can be done with a shift. Specifically, we can
+always count the number of leading zeros i in the first digit of v and then
+shift both u and v left by i bits.
+
+Having scaled u and v, the value ⌊u/v⌋ is unchanged, but the remainder will
+be scaled: 172 mod 19 is 1, but 516 mod 57 is 3. We have to divide the remainder
+by the scaling factor (shifting right i bits) when we finish.
+
+Note that these shifts happen before and after the entire division algorithm,
+not at each step in the per-digit iteration.
+
+Note the effect of scaling inputs on the size of the possible quotient.
+In the scaled u/v, u can gain a digit from scaling; v never does, because we
+pick the scaling factor to make v's top digit larger but without overflowing.
+If u and v have n+m and n digits after scaling, then:
+
+ • u < B^(n+m) [B^(n+m) has n+m+1 digits]
+ • v ≥ B^n / 2 [vₙ₋₁ ≥ B/2, so vₙ₋₁·B^(n-1) ≥ B^n/2]
+ • u/v < B^(n+m) / (B^n / 2) [divide bounds for u, v]
+ • u/v < 2 B^m [simplify]
+
+The quotient can still have m+1 significant digits, but if so the top digit
+must be a 1. This provides a different way to handle the first digit of the
+result: compare the top n digits of u against v and fill in either a 0 or a 1.
+
+
+Refining Guesses
+
+Before we check whether u < q̂·v, we can adjust our guess to change it from
+q̂ = ⌊uₙuₙ₋₁ / vₙ₋₁⌋ into the refined guess ⌊uₙuₙ₋₁uₙ₋₂ / vₙ₋₁vₙ₋₂⌋.
+Although not mentioned above, the Good Guess Guarantee also promises that this
+3-by-2-digit division guess is more precise and at most one away from the real
+answer q. The improvement from the 2-by-1 to the 3-by-2 guess can also be done
+without n-digit math.
+
+If we have a guess q̂ = ⌊uₙuₙ₋₁ / vₙ₋₁⌋ and we want to see if it also equal to
+⌊uₙuₙ₋₁uₙ₋₂ / vₙ₋₁vₙ₋₂⌋, we can use the same check we would for the full division:
+if uₙuₙ₋₁uₙ₋₂ < q̂·vₙ₋₁vₙ₋₂, then the guess is too large and should be reduced.
+
+Checking uₙuₙ₋₁uₙ₋₂ < q̂·vₙ₋₁vₙ₋₂ is the same as uₙuₙ₋₁uₙ₋₂ - q̂·vₙ₋₁vₙ₋₂ < 0,
+and
+
+ uₙuₙ₋₁uₙ₋₂ - q̂·vₙ₋₁vₙ₋₂ = (uₙuₙ₋₁·B + uₙ₋₂) - q̂·(vₙ₋₁·B + vₙ₋₂)
+ [splitting off the bottom digit]
+ = (uₙuₙ₋₁ - q̂·vₙ₋₁)·B + uₙ₋₂ - q̂·vₙ₋₂
+ [regrouping]
+
+The expression (uₙuₙ₋₁ - q̂·vₙ₋₁) is the remainder of uₙuₙ₋₁ / vₙ₋₁.
+If the initial guess returns both q̂ and its remainder r̂, then checking
+whether uₙuₙ₋₁uₙ₋₂ < q̂·vₙ₋₁vₙ₋₂ is the same as checking r̂·B + uₙ₋₂ < q̂·vₙ₋₂.
+
+If we find that r̂·B + uₙ₋₂ < q̂·vₙ₋₂, then we can adjust the guess by
+decrementing q̂ and adding vₙ₋₁ to r̂. We repeat until r̂·B + uₙ₋₂ ≥ q̂·vₙ₋₂.
+(As before, this fixup is only needed at most twice.)
+
+Now that q̂ = ⌊uₙuₙ₋₁uₙ₋₂ / vₙ₋₁vₙ₋₂⌋, as mentioned above it is at most one
+away from the correct q, and we've avoided doing any n-digit math.
+(If we need the new remainder, it can be computed as r̂·B + uₙ₋₂ - q̂·vₙ₋₂.)
+
+The final check u < q̂·v and the possible fixup must be done at full precision.
+For random inputs, a fixup at this step is exceedingly rare: the 3-by-2 guess
+is not often wrong at all. But still we must do the check. Note that since the
+3-by-2 guess is off by at most 1, it can be convenient to perform the final
+u < q̂·v as part of the computation of the remainder r = u - q̂·v. If the
+subtraction underflows, decremeting q̂ and adding one v back to r is enough to
+arrive at the final q, r.
+
+That's the entirety of long division: scale the inputs, and then loop over
+each output position, guessing, checking, and correcting the next output digit.
+
+For a 2n-digit number divided by an n-digit number (the worst size-n case for
+division complexity), this algorithm uses n+1 iterations, each of which must do
+at least the 1-by-n-digit multiplication q̂·v. That's O(n) iterations of
+O(n) time each, so O(n²) time overall.
+
+
+Recursive Division
+
+For very large inputs, it is possible to improve on the O(n²) algorithm.
+Let's call a group of n/2 real digits a (very) “wide digit”. We can run the
+standard long division algorithm explained above over the wide digits instead of
+the actual digits. This will result in many fewer steps, but the math involved in
+each step is more work.
+
+Where basic long division uses a 2-by-1-digit division to guess the initial q̂,
+the new algorithm must use a 2-by-1-wide-digit division, which is of course
+really an n-by-n/2-digit division. That's OK: if we implement n-digit division
+in terms of n/2-digit division, the recursion will terminate when the divisor
+becomes small enough to handle with standard long division or even with the
+2-by-1 hardware instruction.
+
+For example, here is a sketch of dividing 10 digits by 4, proceeding with
+wide digits corresponding to two regular digits. The first step, still special,
+must leave off a (regular) digit, dividing 5 by 4 and producing a 4-digit
+remainder less than v. The middle steps divide 6 digits by 4, guaranteed to
+produce two output digits each (one wide digit) with 4-digit remainders.
+The final step must use what it has: the 4-digit remainder plus one more,
+5 digits to divide by 4.
+
+ q₆ q₅ q₄ q₃ q₂ q₁ q₀
+ _______________________________
+ v₃ v₂ v₁ v₀ ) u₉ u₈ u₇ u₆ u₅ u₄ u₃ u₂ u₁ u₀
+ ↓ ↓ ↓ ↓ ↓ | | | | |
+ [u₉ u₈ u₇ u₆ u₅]| | | | |
+ - [ q₆q₅·v ]| | | | |
+ ----------------- ↓ ↓ | | |
+ [ rem |u₄ u₃]| | |
+ - [ q₄q₃·v ]| | |
+ -------------------- ↓ ↓ |
+ [ rem |u₂ u₁]|
+ - [ q₂q₁·v ]|
+ -------------------- ↓
+ [ rem |u₀]
+ - [ q₀·v ]
+ ------------------
+ [ rem ]
+
+An alternative would be to look ahead to how well n/2 divides into n+m and
+adjust the first step to use fewer digits as needed, making the first step
+more special to make the last step not special at all. For example, using the
+same input, we could choose to use only 4 digits in the first step, leaving
+a full wide digit for the last step:
+
+ q₆ q₅ q₄ q₃ q₂ q₁ q₀
+ _______________________________
+ v₃ v₂ v₁ v₀ ) u₉ u₈ u₇ u₆ u₅ u₄ u₃ u₂ u₁ u₀
+ ↓ ↓ ↓ ↓ | | | | | |
+ [u₉ u₈ u₇ u₆]| | | | | |
+ - [ q₆·v ]| | | | | |
+ -------------- ↓ ↓ | | | |
+ [ rem |u₅ u₄]| | | |
+ - [ q₅q₄·v ]| | | |
+ -------------------- ↓ ↓ | |
+ [ rem |u₃ u₂]| |
+ - [ q₃q₂·v ]| |
+ -------------------- ↓ ↓
+ [ rem |u₁ u₀]
+ - [ q₁q₀·v ]
+ ---------------------
+ [ rem ]
+
+Today, the code in divRecursiveStep works like the first example. Perhaps in
+the future we will make it work like the alternative, to avoid a special case
+in the final iteration.
+
+Either way, each step is a 3-by-2-wide-digit division approximated first by
+a 2-by-1-wide-digit division, just as we did for regular digits in long division.
+Because the actual answer we want is a 3-by-2-wide-digit division, instead of
+multiplying q̂·v directly during the fixup, we can use the quick refinement
+from long division (an n/2-by-n/2 multiply) to correct q to its actual value
+and also compute the remainder (as mentioned above), and then stop after that,
+never doing a full n-by-n multiply.
+
+Instead of using an n-by-n/2-digit division to produce n/2 digits, we can add
+(not discard) one more real digit, doing an (n+1)-by-(n/2+1)-digit division that
+produces n/2+1 digits. That single extra digit tightens the Good Guess Guarantee
+to q ≤ q̂ ≤ q+1 and lets us drop long division's special treatment of the first
+digit. These benefits are discussed more after the Good Guess Guarantee proof
+below.
+
+
+How Fast is Recursive Division?
+
+For a 2n-by-n-digit division, this algorithm runs a 4-by-2 long division over
+wide digits, producing two wide digits plus a possible leading regular digit 1,
+which can be handled without a recursive call. That is, the algorithm uses two
+full iterations, each using an n-by-n/2-digit division and an n/2-by-n/2-digit
+multiplication, along with a few n-digit additions and subtractions. The standard
+n-by-n-digit multiplication algorithm requires O(n²) time, making the overall
+algorithm require time T(n) where
+
+ T(n) = 2T(n/2) + O(n) + O(n²)
+
+which, by the Bentley-Haken-Saxe theorem, ends up reducing to T(n) = O(n²).
+This is not an improvement over regular long division.
+
+When the number of digits n becomes large enough, Karatsuba's algorithm for
+multiplication can be used instead, which takes O(n^log₂3) = O(n^1.6) time.
+(Karatsuba multiplication is implemented in func karatsuba in nat.go.)
+That makes the overall recursive division algorithm take O(n^1.6) time as well,
+which is an improvement, but again only for large enough numbers.
+
+It is not critical to make sure that every recursion does only two recursive
+calls. While in general the number of recursive calls can change the time
+analysis, in this case doing three calls does not change the analysis:
+
+ T(n) = 3T(n/2) + O(n) + O(n^log₂3)
+
+ends up being T(n) = O(n^log₂3). Because the Karatsuba multiplication taking
+time O(n^log₂3) is itself doing 3 half-sized recursions, doing three for the
+division does not hurt the asymptotic performance. Of course, it is likely
+still faster in practice to do two.
+
+
+Proof of the Good Guess Guarantee
+
+Given numbers x, y, let us break them into the quotients and remainders when
+divided by some scaling factor S, with the added constraints that the quotient
+x/y and the high part of y are both less than some limit T, and that the high
+part of y is at least half as big as T.
+
+ x₁ = ⌊x/S⌋ y₁ = ⌊y/S⌋
+ x₀ = x mod S y₀ = y mod S
+
+ x = x₁·S + x₀ 0 ≤ x₀ < S x/y < T
+ y = y₁·S + y₀ 0 ≤ y₀ < S T/2 ≤ y₁ < T
+
+And consider the two truncated quotients:
+
+ q = ⌊x/y⌋
+ q̂ = ⌊x₁/y₁⌋
+
+We will prove that q ≤ q̂ ≤ q+2.
+
+The guarantee makes no real demands on the scaling factor S: it is simply the
+magnitude of the digits cut from both x and y to produce x₁ and y₁.
+The guarantee makes only limited demands on T: it must be large enough to hold
+the quotient x/y, and y₁ must have roughly the same size.
+
+To apply to the earlier discussion of 2-by-1 guesses in long division,
+we would choose:
+
+ S = Bⁿ⁻¹
+ T = B
+ x = u
+ x₁ = uₙuₙ₋₁
+ x₀ = uₙ₋₂...u₀
+ y = v
+ y₁ = vₙ₋₁
+ y₀ = vₙ₋₂...u₀
+
+These simpler variables avoid repeating those longer expressions in the proof.
+
+Note also that, by definition, truncating division ⌊x/y⌋ satisfies
+
+ x/y - 1 < ⌊x/y⌋ ≤ x/y.
+
+This fact will be used a few times in the proofs.
+
+Proof that q ≤ q̂:
+
+ q̂·y₁ = ⌊x₁/y₁⌋·y₁ [by definition, q̂ = ⌊x₁/y₁⌋]
+ > (x₁/y₁ - 1)·y₁ [x₁/y₁ - 1 < ⌊x₁/y₁⌋]
+ = x₁ - y₁ [distribute y₁]
+
+ So q̂·y₁ > x₁ - y₁.
+ Since q̂·y₁ is an integer, q̂·y₁ ≥ x₁ - y₁ + 1.
+
+ q̂ - q = q̂ - ⌊x/y⌋ [by definition, q = ⌊x/y⌋]
+ ≥ q̂ - x/y [⌊x/y⌋ < x/y]
+ = (1/y)·(q̂·y - x) [factor out 1/y]
+ ≥ (1/y)·(q̂·y₁·S - x) [y = y₁·S + y₀ ≥ y₁·S]
+ ≥ (1/y)·((x₁ - y₁ + 1)·S - x) [above: q̂·y₁ ≥ x₁ - y₁ + 1]
+ = (1/y)·(x₁·S - y₁·S + S - x) [distribute S]
+ = (1/y)·(S - x₀ - y₁·S) [-x = -x₁·S - x₀]
+ > -y₁·S / y [x₀ < S, so S - x₀ < 0; drop it]
+ ≥ -1 [y₁·S ≤ y]
+
+ So q̂ - q > -1.
+ Since q̂ - q is an integer, q̂ - q ≥ 0, or equivalently q ≤ q̂.
+
+Proof that q̂ ≤ q+2:
+
+ x₁/y₁ - x/y = x₁·S/y₁·S - x/y [multiply left term by S/S]
+ ≤ x/y₁·S - x/y [x₁S ≤ x]
+ = (x/y)·(y/y₁·S - 1) [factor out x/y]
+ = (x/y)·((y - y₁·S)/y₁·S) [move -1 into y/y₁·S fraction]
+ = (x/y)·(y₀/y₁·S) [y - y₁·S = y₀]
+ = (x/y)·(1/y₁)·(y₀/S) [factor out 1/y₁]
+ < (x/y)·(1/y₁) [y₀ < S, so y₀/S < 1]
+ ≤ (x/y)·(2/T) [y₁ ≥ T/2, so 1/y₁ ≤ 2/T]
+ < T·(2/T) [x/y < T]
+ = 2 [T·(2/T) = 2]
+
+ So x₁/y₁ - x/y < 2.
+
+ q̂ - q = ⌊x₁/y₁⌋ - q [by definition, q̂ = ⌊x₁/y₁⌋]
+ = ⌊x₁/y₁⌋ - ⌊x/y⌋ [by definition, q = ⌊x/y⌋]
+ ≤ x₁/y₁ - ⌊x/y⌋ [⌊x₁/y₁⌋ ≤ x₁/y₁]
+ < x₁/y₁ - (x/y - 1) [⌊x/y⌋ > x/y - 1]
+ = (x₁/y₁ - x/y) + 1 [regrouping]
+ < 2 + 1 [above: x₁/y₁ - x/y < 2]
+ = 3
+
+ So q̂ - q < 3.
+ Since q̂ - q is an integer, q̂ - q ≤ 2.
+
+Note that when x/y < T/2, the bounds tighten to x₁/y₁ - x/y < 1 and therefore
+q̂ - q ≤ 1.
+
+Note also that in the general case 2n-by-n division where we don't know that
+x/y < T, we do know that x/y < 2T, yielding the bound q̂ - q ≤ 4. So we could
+remove the special case first step of long division as long as we allow the
+first fixup loop to run up to four times. (Using a simple comparison to decide
+whether the first digit is 0 or 1 is still more efficient, though.)
+
+Finally, note that when dividing three leading base-B digits by two (scaled),
+we have T = B² and x/y < B = T/B, a much tighter bound than x/y < T.
+This in turn yields the much tighter bound x₁/y₁ - x/y < 2/B. This means that
+⌊x₁/y₁⌋ and ⌊x/y⌋ can only differ when x/y is less than 2/B greater than an
+integer. For random x and y, the chance of this is 2/B, or, for large B,
+approximately zero. This means that after we produce the 3-by-2 guess in the
+long division algorithm, the fixup loop essentially never runs.
+
+In the recursive algorithm, the extra digit in (2·⌊n/2⌋+1)-by-(⌊n/2⌋+1)-digit
+division has exactly the same effect: the probability of needing a fixup is the
+same 2/B. Even better, we can allow the general case x/y < 2T and the fixup
+probability only grows to 4/B, still essentially zero.
+
+
+References
+
+There are no great references for implementing long division; thus this comment.
+Here are some notes about what to expect from the obvious references.
+
+Knuth Volume 2 (Seminumerical Algorithms) section 4.3.1 is the usual canonical
+reference for long division, but that entire series is highly compressed, never
+repeating a necessary fact and leaving important insights to the exercises.
+For example, no rationale whatsoever is given for the calculation that extends
+q̂ from a 2-by-1 to a 3-by-2 guess, nor why it reduces the error bound.
+The proof that the calculation even has the desired effect is left to exercises.
+The solutions to those exercises provided at the back of the book are entirely
+calculations, still with no explanation as to what is going on or how you would
+arrive at the idea of doing those exact calculations. Nowhere is it mentioned
+that this test extends the 2-by-1 guess into a 3-by-2 guess. The proof of the
+Good Guess Guarantee is only for the 2-by-1 guess and argues by contradiction,
+making it difficult to understand how modifications like adding another digit
+or adjusting the quotient range affects the overall bound.
+
+All that said, Knuth remains the canonical reference. It is dense but packed
+full of information and references, and the proofs are simpler than many other
+presentations. The proofs above are reworkings of Knuth's to remove the
+arguments by contradiction and add explanations or steps that Knuth omitted.
+But beware of errors in older printings. Take the published errata with you.
+
+Brinch Hansen's “Multiple-length Division Revisited: a Tour of the Minefield”
+starts with a blunt critique of Knuth's presentation (among others) and then
+presents a more detailed and easier to follow treatment of long division,
+including an implementation in Pascal. But the algorithm and implementation
+work entirely in terms of 3-by-2 division, which is much less useful on modern
+hardware than an algorithm using 2-by-1 division. The proofs are a bit too
+focused on digit counting and seem needlessly complex, especially compared to
+the ones given above.
+
+Burnikel and Ziegler's “Fast Recursive Division” introduced the key insight of
+implementing division by an n-digit divisor using recursive calls to division
+by an n/2-digit divisor, relying on Karatsuba multiplication to yield a
+sub-quadratic run time. However, the presentation decisions are made almost
+entirely for the purpose of simplifying the run-time analysis, rather than
+simplifying the presentation. Instead of a single algorithm that loops over
+quotient digits, the paper presents two mutually-recursive algorithms, for
+2n-by-n and 3n-by-2n. The paper also does not present any general (n+m)-by-n
+algorithm.
+
+The proofs in the paper are remarkably complex, especially considering that
+the algorithm is at its core just long division on wide digits, so that the
+usual long division proofs apply essentially unaltered.
+*/
+
+package big
+
+import "math/bits"
+
+// div returns q, r such that q = ⌊u/v⌋ and r = u%v = u - q·v.
+// It uses z and z2 as the storage for q and r.
+func (z nat) div(z2, u, v nat) (q, r nat) {
+ if len(v) == 0 {
+ panic("division by zero")
+ }
+
+ if u.cmp(v) < 0 {
+ q = z[:0]
+ r = z2.set(u)
+ return
+ }
+
+ if len(v) == 1 {
+ // Short division: long optimized for a single-word divisor.
+ // In that case, the 2-by-1 guess is all we need at each step.
+ var r2 Word
+ q, r2 = z.divW(u, v[0])
+ r = z2.setWord(r2)
+ return
+ }
+
+ q, r = z.divLarge(z2, u, v)
+ return
+}
+
+// divW returns q, r such that q = ⌊x/y⌋ and r = x%y = x - q·y.
+// It uses z as the storage for q.
+// Note that y is a single digit (Word), not a big number.
+func (z nat) divW(x nat, y Word) (q nat, r Word) {
+ m := len(x)
+ switch {
+ case y == 0:
+ panic("division by zero")
+ case y == 1:
+ q = z.set(x) // result is x
+ return
+ case m == 0:
+ q = z[:0] // result is 0
+ return
+ }
+ // m > 0
+ z = z.make(m)
+ r = divWVW(z, 0, x, y)
+ q = z.norm()
+ return
+}
+
+// modW returns x % d.
+func (x nat) modW(d Word) (r Word) {
+ // TODO(agl): we don't actually need to store the q value.
+ var q nat
+ q = q.make(len(x))
+ return divWVW(q, 0, x, d)
+}
+
+// divWVW overwrites z with ⌊x/y⌋, returning the remainder r.
+// The caller must ensure that len(z) = len(x).
+func divWVW(z []Word, xn Word, x []Word, y Word) (r Word) {
+ r = xn
+ if len(x) == 1 {
+ qq, rr := bits.Div(uint(r), uint(x[0]), uint(y))
+ z[0] = Word(qq)
+ return Word(rr)
+ }
+ rec := reciprocalWord(y)
+ for i := len(z) - 1; i >= 0; i-- {
+ z[i], r = divWW(r, x[i], y, rec)
+ }
+ return r
+}
+
+// div returns q, r such that q = ⌊uIn/vIn⌋ and r = uIn%vIn = uIn - q·vIn.
+// It uses z and u as the storage for q and r.
+// The caller must ensure that len(vIn) ≥ 2 (use divW otherwise)
+// and that len(uIn) ≥ len(vIn) (the answer is 0, uIn otherwise).
+func (z nat) divLarge(u, uIn, vIn nat) (q, r nat) {
+ n := len(vIn)
+ m := len(uIn) - n
+
+ // Scale the inputs so vIn's top bit is 1 (see “Scaling Inputs” above).
+ // vIn is treated as a read-only input (it may be in use by another
+ // goroutine), so we must make a copy.
+ // uIn is copied to u.
+ shift := nlz(vIn[n-1])
+ vp := getNat(n)
+ v := *vp
+ shlVU(v, vIn, shift)
+ u = u.make(len(uIn) + 1)
+ u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift)
+
+ // The caller should not pass aliased z and u, since those are
+ // the two different outputs, but correct just in case.
+ if alias(z, u) {
+ z = nil
+ }
+ q = z.make(m + 1)
+
+ // Use basic or recursive long division depending on size.
+ if n < divRecursiveThreshold {
+ q.divBasic(u, v)
+ } else {
+ q.divRecursive(u, v)
+ }
+ putNat(vp)
+
+ q = q.norm()
+
+ // Undo scaling of remainder.
+ shrVU(u, u, shift)
+ r = u.norm()
+
+ return q, r
+}
+
+// divBasic implements long division as described above.
+// It overwrites q with ⌊u/v⌋ and overwrites u with the remainder r.
+// q must be large enough to hold ⌊u/v⌋.
+func (q nat) divBasic(u, v nat) {
+ n := len(v)
+ m := len(u) - n
+
+ qhatvp := getNat(n + 1)
+ qhatv := *qhatvp
+
+ // Set up for divWW below, precomputing reciprocal argument.
+ vn1 := v[n-1]
+ rec := reciprocalWord(vn1)
+
+ // Compute each digit of quotient.
+ for j := m; j >= 0; j-- {
+ // Compute the 2-by-1 guess q̂.
+ // The first iteration must invent a leading 0 for u.
+ qhat := Word(_M)
+ var ujn Word
+ if j+n < len(u) {
+ ujn = u[j+n]
+ }
+
+ // ujn ≤ vn1, or else q̂ would be more than one digit.
+ // For ujn == vn1, we set q̂ to the max digit M above.
+ // Otherwise, we compute the 2-by-1 guess.
+ if ujn != vn1 {
+ var rhat Word
+ qhat, rhat = divWW(ujn, u[j+n-1], vn1, rec)
+
+ // Refine q̂ to a 3-by-2 guess. See “Refining Guesses” above.
+ vn2 := v[n-2]
+ x1, x2 := mulWW(qhat, vn2)
+ ujn2 := u[j+n-2]
+ for greaterThan(x1, x2, rhat, ujn2) { // x1x2 > r̂ u[j+n-2]
+ qhat--
+ prevRhat := rhat
+ rhat += vn1
+ // If r̂ overflows, then
+ // r̂ u[j+n-2]v[n-1] is now definitely > x1 x2.
+ if rhat < prevRhat {
+ break
+ }
+ // TODO(rsc): No need for a full mulWW.
+ // x2 += vn2; if x2 overflows, x1++
+ x1, x2 = mulWW(qhat, vn2)
+ }
+ }
+
+ // Compute q̂·v.
+ qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0)
+ qhl := len(qhatv)
+ if j+qhl > len(u) && qhatv[n] == 0 {
+ qhl--
+ }
+
+ // Subtract q̂·v from the current section of u.
+ // If it underflows, q̂·v > u, which we fix up
+ // by decrementing q̂ and adding v back.
+ c := subVV(u[j:j+qhl], u[j:], qhatv)
+ if c != 0 {
+ c := addVV(u[j:j+n], u[j:], v)
+ // If n == qhl, the carry from subVV and the carry from addVV
+ // cancel out and don't affect u[j+n].
+ if n < qhl {
+ u[j+n] += c
+ }
+ qhat--
+ }
+
+ // Save quotient digit.
+ // Caller may know the top digit is zero and not leave room for it.
+ if j == m && m == len(q) && qhat == 0 {
+ continue
+ }
+ q[j] = qhat
+ }
+
+ putNat(qhatvp)
+}
+
+// greaterThan reports whether the two digit numbers x1 x2 > y1 y2.
+// TODO(rsc): In contradiction to most of this file, x1 is the high
+// digit and x2 is the low digit. This should be fixed.
+func greaterThan(x1, x2, y1, y2 Word) bool {
+ return x1 > y1 || x1 == y1 && x2 > y2
+}
+
+// divRecursiveThreshold is the number of divisor digits
+// at which point divRecursive is faster than divBasic.
+const divRecursiveThreshold = 100
+
+// divRecursive implements recursive division as described above.
+// It overwrites z with ⌊u/v⌋ and overwrites u with the remainder r.
+// z must be large enough to hold ⌊u/v⌋.
+// This function is just for allocating and freeing temporaries
+// around divRecursiveStep, the real implementation.
+func (z nat) divRecursive(u, v nat) {
+ // Recursion depth is (much) less than 2 log₂(len(v)).
+ // Allocate a slice of temporaries to be reused across recursion,
+ // plus one extra temporary not live across the recursion.
+ recDepth := 2 * bits.Len(uint(len(v)))
+ tmp := getNat(3 * len(v))
+ temps := make([]*nat, recDepth)
+
+ z.clear()
+ z.divRecursiveStep(u, v, 0, tmp, temps)
+
+ // Free temporaries.
+ for _, n := range temps {
+ if n != nil {
+ putNat(n)
+ }
+ }
+ putNat(tmp)
+}
+
+// divRecursiveStep is the actual implementation of recursive division.
+// It adds ⌊u/v⌋ to z and overwrites u with the remainder r.
+// z must be large enough to hold ⌊u/v⌋.
+// It uses temps[depth] (allocating if needed) as a temporary live across
+// the recursive call. It also uses tmp, but not live across the recursion.
+func (z nat) divRecursiveStep(u, v nat, depth int, tmp *nat, temps []*nat) {
+ // u is a subsection of the original and may have leading zeros.
+ // TODO(rsc): The v = v.norm() is useless and should be removed.
+ // We know (and require) that v's top digit is ≥ B/2.
+ u = u.norm()
+ v = v.norm()
+ if len(u) == 0 {
+ z.clear()
+ return
+ }
+
+ // Fall back to basic division if the problem is now small enough.
+ n := len(v)
+ if n < divRecursiveThreshold {
+ z.divBasic(u, v)
+ return
+ }
+
+ // Nothing to do if u is shorter than v (implies u < v).
+ m := len(u) - n
+ if m < 0 {
+ return
+ }
+
+ // We consider B digits in a row as a single wide digit.
+ // (See “Recursive Division” above.)
+ //
+ // TODO(rsc): rename B to Wide, to avoid confusion with _B,
+ // which is something entirely different.
+ // TODO(rsc): Look into whether using ⌈n/2⌉ is better than ⌊n/2⌋.
+ B := n / 2
+
+ // Allocate a nat for qhat below.
+ if temps[depth] == nil {
+ temps[depth] = getNat(n) // TODO(rsc): Can be just B+1.
+ } else {
+ *temps[depth] = temps[depth].make(B + 1)
+ }
+
+ // Compute each wide digit of the quotient.
+ //
+ // TODO(rsc): Change the loop to be
+ // for j := (m+B-1)/B*B; j > 0; j -= B {
+ // which will make the final step a regular step, letting us
+ // delete what amounts to an extra copy of the loop body below.
+ j := m
+ for j > B {
+ // Divide u[j-B:j+n] (3 wide digits) by v (2 wide digits).
+ // First make the 2-by-1-wide-digit guess using a recursive call.
+ // Then extend the guess to the full 3-by-2 (see “Refining Guesses”).
+ //
+ // For the 2-by-1-wide-digit guess, instead of doing 2B-by-B-digit,
+ // we use a (2B+1)-by-(B+1) digit, which handles the possibility that
+ // the result has an extra leading 1 digit as well as guaranteeing
+ // that the computed q̂ will be off by at most 1 instead of 2.
+
+ // s is the number of digits to drop from the 3B- and 2B-digit chunks.
+ // We drop B-1 to be left with 2B+1 and B+1.
+ s := (B - 1)
+
+ // uu is the up-to-3B-digit section of u we are working on.
+ uu := u[j-B:]
+
+ // Compute the 2-by-1 guess q̂, leaving r̂ in uu[s:B+n].
+ qhat := *temps[depth]
+ qhat.clear()
+ qhat.divRecursiveStep(uu[s:B+n], v[s:], depth+1, tmp, temps)
+ qhat = qhat.norm()
+
+ // Extend to a 3-by-2 quotient and remainder.
+ // Because divRecursiveStep overwrote the top part of uu with
+ // the remainder r̂, the full uu already contains the equivalent
+ // of r̂·B + uₙ₋₂ from the “Refining Guesses” discussion.
+ // Subtracting q̂·vₙ₋₂ from it will compute the full-length remainder.
+ // If that subtraction underflows, q̂·v > u, which we fix up
+ // by decrementing q̂ and adding v back, same as in long division.
+
+ // TODO(rsc): Instead of subtract and fix-up, this code is computing
+ // q̂·vₙ₋₂ and decrementing q̂ until that product is ≤ u.
+ // But we can do the subtraction directly, as in the comment above
+ // and in long division, because we know that q̂ is wrong by at most one.
+ qhatv := tmp.make(3 * n)
+ qhatv.clear()
+ qhatv = qhatv.mul(qhat, v[:s])
+ for i := 0; i < 2; i++ {
+ e := qhatv.cmp(uu.norm())
+ if e <= 0 {
+ break
+ }
+ subVW(qhat, qhat, 1)
+ c := subVV(qhatv[:s], qhatv[:s], v[:s])
+ if len(qhatv) > s {
+ subVW(qhatv[s:], qhatv[s:], c)
+ }
+ addAt(uu[s:], v[s:], 0)
+ }
+ if qhatv.cmp(uu.norm()) > 0 {
+ panic("impossible")
+ }
+ c := subVV(uu[:len(qhatv)], uu[:len(qhatv)], qhatv)
+ if c > 0 {
+ subVW(uu[len(qhatv):], uu[len(qhatv):], c)
+ }
+ addAt(z, qhat, j-B)
+ j -= B
+ }
+
+ // TODO(rsc): Rewrite loop as described above and delete all this code.
+
+ // Now u < (v<<B), compute lower bits in the same way.
+ // Choose shift = B-1 again.
+ s := B - 1
+ qhat := *temps[depth]
+ qhat.clear()
+ qhat.divRecursiveStep(u[s:].norm(), v[s:], depth+1, tmp, temps)
+ qhat = qhat.norm()
+ qhatv := tmp.make(3 * n)
+ qhatv.clear()
+ qhatv = qhatv.mul(qhat, v[:s])
+ // Set the correct remainder as before.
+ for i := 0; i < 2; i++ {
+ if e := qhatv.cmp(u.norm()); e > 0 {
+ subVW(qhat, qhat, 1)
+ c := subVV(qhatv[:s], qhatv[:s], v[:s])
+ if len(qhatv) > s {
+ subVW(qhatv[s:], qhatv[s:], c)
+ }
+ addAt(u[s:], v[s:], 0)
+ }
+ }
+ if qhatv.cmp(u.norm()) > 0 {
+ panic("impossible")
+ }
+ c := subVV(u[0:len(qhatv)], u[0:len(qhatv)], qhatv)
+ if c > 0 {
+ c = subVW(u[len(qhatv):], u[len(qhatv):], c)
+ }
+ if c > 0 {
+ panic("impossible")
+ }
+
+ // Done!
+ addAt(z, qhat.norm(), 0)
+}
diff --git a/contrib/go/_std_1.18/src/math/big/prime.go b/contrib/go/_std_1.18/src/math/big/prime.go
new file mode 100644
index 0000000000..d9a5f1ec96
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/prime.go
@@ -0,0 +1,320 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import "math/rand"
+
+// ProbablyPrime reports whether x is probably prime,
+// applying the Miller-Rabin test with n pseudorandomly chosen bases
+// as well as a Baillie-PSW test.
+//
+// If x is prime, ProbablyPrime returns true.
+// If x is chosen randomly and not prime, ProbablyPrime probably returns false.
+// The probability of returning true for a randomly chosen non-prime is at most ¼ⁿ.
+//
+// ProbablyPrime is 100% accurate for inputs less than 2⁶⁴.
+// See Menezes et al., Handbook of Applied Cryptography, 1997, pp. 145-149,
+// and FIPS 186-4 Appendix F for further discussion of the error probabilities.
+//
+// ProbablyPrime is not suitable for judging primes that an adversary may
+// have crafted to fool the test.
+//
+// As of Go 1.8, ProbablyPrime(0) is allowed and applies only a Baillie-PSW test.
+// Before Go 1.8, ProbablyPrime applied only the Miller-Rabin tests, and ProbablyPrime(0) panicked.
+func (x *Int) ProbablyPrime(n int) bool {
+ // Note regarding the doc comment above:
+ // It would be more precise to say that the Baillie-PSW test uses the
+ // extra strong Lucas test as its Lucas test, but since no one knows
+ // how to tell any of the Lucas tests apart inside a Baillie-PSW test
+ // (they all work equally well empirically), that detail need not be
+ // documented or implicitly guaranteed.
+ // The comment does avoid saying "the" Baillie-PSW test
+ // because of this general ambiguity.
+
+ if n < 0 {
+ panic("negative n for ProbablyPrime")
+ }
+ if x.neg || len(x.abs) == 0 {
+ return false
+ }
+
+ // primeBitMask records the primes < 64.
+ const primeBitMask uint64 = 1<<2 | 1<<3 | 1<<5 | 1<<7 |
+ 1<<11 | 1<<13 | 1<<17 | 1<<19 | 1<<23 | 1<<29 | 1<<31 |
+ 1<<37 | 1<<41 | 1<<43 | 1<<47 | 1<<53 | 1<<59 | 1<<61
+
+ w := x.abs[0]
+ if len(x.abs) == 1 && w < 64 {
+ return primeBitMask&(1<<w) != 0
+ }
+
+ if w&1 == 0 {
+ return false // x is even
+ }
+
+ const primesA = 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 37
+ const primesB = 29 * 31 * 41 * 43 * 47 * 53
+
+ var rA, rB uint32
+ switch _W {
+ case 32:
+ rA = uint32(x.abs.modW(primesA))
+ rB = uint32(x.abs.modW(primesB))
+ case 64:
+ r := x.abs.modW((primesA * primesB) & _M)
+ rA = uint32(r % primesA)
+ rB = uint32(r % primesB)
+ default:
+ panic("math/big: invalid word size")
+ }
+
+ if rA%3 == 0 || rA%5 == 0 || rA%7 == 0 || rA%11 == 0 || rA%13 == 0 || rA%17 == 0 || rA%19 == 0 || rA%23 == 0 || rA%37 == 0 ||
+ rB%29 == 0 || rB%31 == 0 || rB%41 == 0 || rB%43 == 0 || rB%47 == 0 || rB%53 == 0 {
+ return false
+ }
+
+ return x.abs.probablyPrimeMillerRabin(n+1, true) && x.abs.probablyPrimeLucas()
+}
+
+// probablyPrimeMillerRabin reports whether n passes reps rounds of the
+// Miller-Rabin primality test, using pseudo-randomly chosen bases.
+// If force2 is true, one of the rounds is forced to use base 2.
+// See Handbook of Applied Cryptography, p. 139, Algorithm 4.24.
+// The number n is known to be non-zero.
+func (n nat) probablyPrimeMillerRabin(reps int, force2 bool) bool {
+ nm1 := nat(nil).sub(n, natOne)
+ // determine q, k such that nm1 = q << k
+ k := nm1.trailingZeroBits()
+ q := nat(nil).shr(nm1, k)
+
+ nm3 := nat(nil).sub(nm1, natTwo)
+ rand := rand.New(rand.NewSource(int64(n[0])))
+
+ var x, y, quotient nat
+ nm3Len := nm3.bitLen()
+
+NextRandom:
+ for i := 0; i < reps; i++ {
+ if i == reps-1 && force2 {
+ x = x.set(natTwo)
+ } else {
+ x = x.random(rand, nm3, nm3Len)
+ x = x.add(x, natTwo)
+ }
+ y = y.expNN(x, q, n)
+ if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {
+ continue
+ }
+ for j := uint(1); j < k; j++ {
+ y = y.sqr(y)
+ quotient, y = quotient.div(y, y, n)
+ if y.cmp(nm1) == 0 {
+ continue NextRandom
+ }
+ if y.cmp(natOne) == 0 {
+ return false
+ }
+ }
+ return false
+ }
+
+ return true
+}
+
+// probablyPrimeLucas reports whether n passes the "almost extra strong" Lucas probable prime test,
+// using Baillie-OEIS parameter selection. This corresponds to "AESLPSP" on Jacobsen's tables (link below).
+// The combination of this test and a Miller-Rabin/Fermat test with base 2 gives a Baillie-PSW test.
+//
+// References:
+//
+// Baillie and Wagstaff, "Lucas Pseudoprimes", Mathematics of Computation 35(152),
+// October 1980, pp. 1391-1417, especially page 1401.
+// https://www.ams.org/journals/mcom/1980-35-152/S0025-5718-1980-0583518-6/S0025-5718-1980-0583518-6.pdf
+//
+// Grantham, "Frobenius Pseudoprimes", Mathematics of Computation 70(234),
+// March 2000, pp. 873-891.
+// https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01197-2/S0025-5718-00-01197-2.pdf
+//
+// Baillie, "Extra strong Lucas pseudoprimes", OEIS A217719, https://oeis.org/A217719.
+//
+// Jacobsen, "Pseudoprime Statistics, Tables, and Data", http://ntheory.org/pseudoprimes.html.
+//
+// Nicely, "The Baillie-PSW Primality Test", http://www.trnicely.net/misc/bpsw.html.
+// (Note that Nicely's definition of the "extra strong" test gives the wrong Jacobi condition,
+// as pointed out by Jacobsen.)
+//
+// Crandall and Pomerance, Prime Numbers: A Computational Perspective, 2nd ed.
+// Springer, 2005.
+func (n nat) probablyPrimeLucas() bool {
+ // Discard 0, 1.
+ if len(n) == 0 || n.cmp(natOne) == 0 {
+ return false
+ }
+ // Two is the only even prime.
+ // Already checked by caller, but here to allow testing in isolation.
+ if n[0]&1 == 0 {
+ return n.cmp(natTwo) == 0
+ }
+
+ // Baillie-OEIS "method C" for choosing D, P, Q,
+ // as in https://oeis.org/A217719/a217719.txt:
+ // try increasing P ≥ 3 such that D = P² - 4 (so Q = 1)
+ // until Jacobi(D, n) = -1.
+ // The search is expected to succeed for non-square n after just a few trials.
+ // After more than expected failures, check whether n is square
+ // (which would cause Jacobi(D, n) = 1 for all D not dividing n).
+ p := Word(3)
+ d := nat{1}
+ t1 := nat(nil) // temp
+ intD := &Int{abs: d}
+ intN := &Int{abs: n}
+ for ; ; p++ {
+ if p > 10000 {
+ // This is widely believed to be impossible.
+ // If we get a report, we'll want the exact number n.
+ panic("math/big: internal error: cannot find (D/n) = -1 for " + intN.String())
+ }
+ d[0] = p*p - 4
+ j := Jacobi(intD, intN)
+ if j == -1 {
+ break
+ }
+ if j == 0 {
+ // d = p²-4 = (p-2)(p+2).
+ // If (d/n) == 0 then d shares a prime factor with n.
+ // Since the loop proceeds in increasing p and starts with p-2==1,
+ // the shared prime factor must be p+2.
+ // If p+2 == n, then n is prime; otherwise p+2 is a proper factor of n.
+ return len(n) == 1 && n[0] == p+2
+ }
+ if p == 40 {
+ // We'll never find (d/n) = -1 if n is a square.
+ // If n is a non-square we expect to find a d in just a few attempts on average.
+ // After 40 attempts, take a moment to check if n is indeed a square.
+ t1 = t1.sqrt(n)
+ t1 = t1.sqr(t1)
+ if t1.cmp(n) == 0 {
+ return false
+ }
+ }
+ }
+
+ // Grantham definition of "extra strong Lucas pseudoprime", after Thm 2.3 on p. 876
+ // (D, P, Q above have become Δ, b, 1):
+ //
+ // Let U_n = U_n(b, 1), V_n = V_n(b, 1), and Δ = b²-4.
+ // An extra strong Lucas pseudoprime to base b is a composite n = 2^r s + Jacobi(Δ, n),
+ // where s is odd and gcd(n, 2*Δ) = 1, such that either (i) U_s ≡ 0 mod n and V_s ≡ ±2 mod n,
+ // or (ii) V_{2^t s} ≡ 0 mod n for some 0 ≤ t < r-1.
+ //
+ // We know gcd(n, Δ) = 1 or else we'd have found Jacobi(d, n) == 0 above.
+ // We know gcd(n, 2) = 1 because n is odd.
+ //
+ // Arrange s = (n - Jacobi(Δ, n)) / 2^r = (n+1) / 2^r.
+ s := nat(nil).add(n, natOne)
+ r := int(s.trailingZeroBits())
+ s = s.shr(s, uint(r))
+ nm2 := nat(nil).sub(n, natTwo) // n-2
+
+ // We apply the "almost extra strong" test, which checks the above conditions
+ // except for U_s ≡ 0 mod n, which allows us to avoid computing any U_k values.
+ // Jacobsen points out that maybe we should just do the full extra strong test:
+ // "It is also possible to recover U_n using Crandall and Pomerance equation 3.13:
+ // U_n = D^-1 (2V_{n+1} - PV_n) allowing us to run the full extra-strong test
+ // at the cost of a single modular inversion. This computation is easy and fast in GMP,
+ // so we can get the full extra-strong test at essentially the same performance as the
+ // almost extra strong test."
+
+ // Compute Lucas sequence V_s(b, 1), where:
+ //
+ // V(0) = 2
+ // V(1) = P
+ // V(k) = P V(k-1) - Q V(k-2).
+ //
+ // (Remember that due to method C above, P = b, Q = 1.)
+ //
+ // In general V(k) = α^k + β^k, where α and β are roots of x² - Px + Q.
+ // Crandall and Pomerance (p.147) observe that for 0 ≤ j ≤ k,
+ //
+ // V(j+k) = V(j)V(k) - V(k-j).
+ //
+ // So in particular, to quickly double the subscript:
+ //
+ // V(2k) = V(k)² - 2
+ // V(2k+1) = V(k) V(k+1) - P
+ //
+ // We can therefore start with k=0 and build up to k=s in log₂(s) steps.
+ natP := nat(nil).setWord(p)
+ vk := nat(nil).setWord(2)
+ vk1 := nat(nil).setWord(p)
+ t2 := nat(nil) // temp
+ for i := int(s.bitLen()); i >= 0; i-- {
+ if s.bit(uint(i)) != 0 {
+ // k' = 2k+1
+ // V(k') = V(2k+1) = V(k) V(k+1) - P.
+ t1 = t1.mul(vk, vk1)
+ t1 = t1.add(t1, n)
+ t1 = t1.sub(t1, natP)
+ t2, vk = t2.div(vk, t1, n)
+ // V(k'+1) = V(2k+2) = V(k+1)² - 2.
+ t1 = t1.sqr(vk1)
+ t1 = t1.add(t1, nm2)
+ t2, vk1 = t2.div(vk1, t1, n)
+ } else {
+ // k' = 2k
+ // V(k'+1) = V(2k+1) = V(k) V(k+1) - P.
+ t1 = t1.mul(vk, vk1)
+ t1 = t1.add(t1, n)
+ t1 = t1.sub(t1, natP)
+ t2, vk1 = t2.div(vk1, t1, n)
+ // V(k') = V(2k) = V(k)² - 2
+ t1 = t1.sqr(vk)
+ t1 = t1.add(t1, nm2)
+ t2, vk = t2.div(vk, t1, n)
+ }
+ }
+
+ // Now k=s, so vk = V(s). Check V(s) ≡ ±2 (mod n).
+ if vk.cmp(natTwo) == 0 || vk.cmp(nm2) == 0 {
+ // Check U(s) ≡ 0.
+ // As suggested by Jacobsen, apply Crandall and Pomerance equation 3.13:
+ //
+ // U(k) = D⁻¹ (2 V(k+1) - P V(k))
+ //
+ // Since we are checking for U(k) == 0 it suffices to check 2 V(k+1) == P V(k) mod n,
+ // or P V(k) - 2 V(k+1) == 0 mod n.
+ t1 := t1.mul(vk, natP)
+ t2 := t2.shl(vk1, 1)
+ if t1.cmp(t2) < 0 {
+ t1, t2 = t2, t1
+ }
+ t1 = t1.sub(t1, t2)
+ t3 := vk1 // steal vk1, no longer needed below
+ vk1 = nil
+ _ = vk1
+ t2, t3 = t2.div(t3, t1, n)
+ if len(t3) == 0 {
+ return true
+ }
+ }
+
+ // Check V(2^t s) ≡ 0 mod n for some 0 ≤ t < r-1.
+ for t := 0; t < r-1; t++ {
+ if len(vk) == 0 { // vk == 0
+ return true
+ }
+ // Optimization: V(k) = 2 is a fixed point for V(k') = V(k)² - 2,
+ // so if V(k) = 2, we can stop: we will never find a future V(k) == 0.
+ if len(vk) == 1 && vk[0] == 2 { // vk == 2
+ return false
+ }
+ // k' = 2k
+ // V(k') = V(2k) = V(k)² - 2
+ t1 = t1.sqr(vk)
+ t1 = t1.sub(t1, natTwo)
+ t2, vk = t2.div(vk, t1, n)
+ }
+ return false
+}
diff --git a/contrib/go/_std_1.18/src/math/big/rat.go b/contrib/go/_std_1.18/src/math/big/rat.go
new file mode 100644
index 0000000000..731a979ff7
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/rat.go
@@ -0,0 +1,544 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements multi-precision rational numbers.
+
+package big
+
+import (
+ "fmt"
+ "math"
+)
+
+// A Rat represents a quotient a/b of arbitrary precision.
+// The zero value for a Rat represents the value 0.
+//
+// Operations always take pointer arguments (*Rat) rather
+// than Rat values, and each unique Rat value requires
+// its own unique *Rat pointer. To "copy" a Rat value,
+// an existing (or newly allocated) Rat must be set to
+// a new value using the Rat.Set method; shallow copies
+// of Rats are not supported and may lead to errors.
+type Rat struct {
+ // To make zero values for Rat work w/o initialization,
+ // a zero value of b (len(b) == 0) acts like b == 1. At
+ // the earliest opportunity (when an assignment to the Rat
+ // is made), such uninitialized denominators are set to 1.
+ // a.neg determines the sign of the Rat, b.neg is ignored.
+ a, b Int
+}
+
+// NewRat creates a new Rat with numerator a and denominator b.
+func NewRat(a, b int64) *Rat {
+ return new(Rat).SetFrac64(a, b)
+}
+
+// SetFloat64 sets z to exactly f and returns z.
+// If f is not finite, SetFloat returns nil.
+func (z *Rat) SetFloat64(f float64) *Rat {
+ const expMask = 1<<11 - 1
+ bits := math.Float64bits(f)
+ mantissa := bits & (1<<52 - 1)
+ exp := int((bits >> 52) & expMask)
+ switch exp {
+ case expMask: // non-finite
+ return nil
+ case 0: // denormal
+ exp -= 1022
+ default: // normal
+ mantissa |= 1 << 52
+ exp -= 1023
+ }
+
+ shift := 52 - exp
+
+ // Optimization (?): partially pre-normalise.
+ for mantissa&1 == 0 && shift > 0 {
+ mantissa >>= 1
+ shift--
+ }
+
+ z.a.SetUint64(mantissa)
+ z.a.neg = f < 0
+ z.b.Set(intOne)
+ if shift > 0 {
+ z.b.Lsh(&z.b, uint(shift))
+ } else {
+ z.a.Lsh(&z.a, uint(-shift))
+ }
+ return z.norm()
+}
+
+// quotToFloat32 returns the non-negative float32 value
+// nearest to the quotient a/b, using round-to-even in
+// halfway cases. It does not mutate its arguments.
+// Preconditions: b is non-zero; a and b have no common factors.
+func quotToFloat32(a, b nat) (f float32, exact bool) {
+ const (
+ // float size in bits
+ Fsize = 32
+
+ // mantissa
+ Msize = 23
+ Msize1 = Msize + 1 // incl. implicit 1
+ Msize2 = Msize1 + 1
+
+ // exponent
+ Esize = Fsize - Msize1
+ Ebias = 1<<(Esize-1) - 1
+ Emin = 1 - Ebias
+ Emax = Ebias
+ )
+
+ // TODO(adonovan): specialize common degenerate cases: 1.0, integers.
+ alen := a.bitLen()
+ if alen == 0 {
+ return 0, true
+ }
+ blen := b.bitLen()
+ if blen == 0 {
+ panic("division by zero")
+ }
+
+ // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
+ // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
+ // This is 2 or 3 more than the float32 mantissa field width of Msize:
+ // - the optional extra bit is shifted away in step 3 below.
+ // - the high-order 1 is omitted in "normal" representation;
+ // - the low-order 1 will be used during rounding then discarded.
+ exp := alen - blen
+ var a2, b2 nat
+ a2 = a2.set(a)
+ b2 = b2.set(b)
+ if shift := Msize2 - exp; shift > 0 {
+ a2 = a2.shl(a2, uint(shift))
+ } else if shift < 0 {
+ b2 = b2.shl(b2, uint(-shift))
+ }
+
+ // 2. Compute quotient and remainder (q, r). NB: due to the
+ // extra shift, the low-order bit of q is logically the
+ // high-order bit of r.
+ var q nat
+ q, r := q.div(a2, a2, b2) // (recycle a2)
+ mantissa := low32(q)
+ haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half
+
+ // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
+ // (in effect---we accomplish this incrementally).
+ if mantissa>>Msize2 == 1 {
+ if mantissa&1 == 1 {
+ haveRem = true
+ }
+ mantissa >>= 1
+ exp++
+ }
+ if mantissa>>Msize1 != 1 {
+ panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
+ }
+
+ // 4. Rounding.
+ if Emin-Msize <= exp && exp <= Emin {
+ // Denormal case; lose 'shift' bits of precision.
+ shift := uint(Emin - (exp - 1)) // [1..Esize1)
+ lostbits := mantissa & (1<<shift - 1)
+ haveRem = haveRem || lostbits != 0
+ mantissa >>= shift
+ exp = 2 - Ebias // == exp + shift
+ }
+ // Round q using round-half-to-even.
+ exact = !haveRem
+ if mantissa&1 != 0 {
+ exact = false
+ if haveRem || mantissa&2 != 0 {
+ if mantissa++; mantissa >= 1<<Msize2 {
+ // Complete rollover 11...1 => 100...0, so shift is safe
+ mantissa >>= 1
+ exp++
+ }
+ }
+ }
+ mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1.
+
+ f = float32(math.Ldexp(float64(mantissa), exp-Msize1))
+ if math.IsInf(float64(f), 0) {
+ exact = false
+ }
+ return
+}
+
+// quotToFloat64 returns the non-negative float64 value
+// nearest to the quotient a/b, using round-to-even in
+// halfway cases. It does not mutate its arguments.
+// Preconditions: b is non-zero; a and b have no common factors.
+func quotToFloat64(a, b nat) (f float64, exact bool) {
+ const (
+ // float size in bits
+ Fsize = 64
+
+ // mantissa
+ Msize = 52
+ Msize1 = Msize + 1 // incl. implicit 1
+ Msize2 = Msize1 + 1
+
+ // exponent
+ Esize = Fsize - Msize1
+ Ebias = 1<<(Esize-1) - 1
+ Emin = 1 - Ebias
+ Emax = Ebias
+ )
+
+ // TODO(adonovan): specialize common degenerate cases: 1.0, integers.
+ alen := a.bitLen()
+ if alen == 0 {
+ return 0, true
+ }
+ blen := b.bitLen()
+ if blen == 0 {
+ panic("division by zero")
+ }
+
+ // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1)
+ // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B).
+ // This is 2 or 3 more than the float64 mantissa field width of Msize:
+ // - the optional extra bit is shifted away in step 3 below.
+ // - the high-order 1 is omitted in "normal" representation;
+ // - the low-order 1 will be used during rounding then discarded.
+ exp := alen - blen
+ var a2, b2 nat
+ a2 = a2.set(a)
+ b2 = b2.set(b)
+ if shift := Msize2 - exp; shift > 0 {
+ a2 = a2.shl(a2, uint(shift))
+ } else if shift < 0 {
+ b2 = b2.shl(b2, uint(-shift))
+ }
+
+ // 2. Compute quotient and remainder (q, r). NB: due to the
+ // extra shift, the low-order bit of q is logically the
+ // high-order bit of r.
+ var q nat
+ q, r := q.div(a2, a2, b2) // (recycle a2)
+ mantissa := low64(q)
+ haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half
+
+ // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1
+ // (in effect---we accomplish this incrementally).
+ if mantissa>>Msize2 == 1 {
+ if mantissa&1 == 1 {
+ haveRem = true
+ }
+ mantissa >>= 1
+ exp++
+ }
+ if mantissa>>Msize1 != 1 {
+ panic(fmt.Sprintf("expected exactly %d bits of result", Msize2))
+ }
+
+ // 4. Rounding.
+ if Emin-Msize <= exp && exp <= Emin {
+ // Denormal case; lose 'shift' bits of precision.
+ shift := uint(Emin - (exp - 1)) // [1..Esize1)
+ lostbits := mantissa & (1<<shift - 1)
+ haveRem = haveRem || lostbits != 0
+ mantissa >>= shift
+ exp = 2 - Ebias // == exp + shift
+ }
+ // Round q using round-half-to-even.
+ exact = !haveRem
+ if mantissa&1 != 0 {
+ exact = false
+ if haveRem || mantissa&2 != 0 {
+ if mantissa++; mantissa >= 1<<Msize2 {
+ // Complete rollover 11...1 => 100...0, so shift is safe
+ mantissa >>= 1
+ exp++
+ }
+ }
+ }
+ mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1.
+
+ f = math.Ldexp(float64(mantissa), exp-Msize1)
+ if math.IsInf(f, 0) {
+ exact = false
+ }
+ return
+}
+
+// Float32 returns the nearest float32 value for x and a bool indicating
+// whether f represents x exactly. If the magnitude of x is too large to
+// be represented by a float32, f is an infinity and exact is false.
+// The sign of f always matches the sign of x, even if f == 0.
+func (x *Rat) Float32() (f float32, exact bool) {
+ b := x.b.abs
+ if len(b) == 0 {
+ b = natOne
+ }
+ f, exact = quotToFloat32(x.a.abs, b)
+ if x.a.neg {
+ f = -f
+ }
+ return
+}
+
+// Float64 returns the nearest float64 value for x and a bool indicating
+// whether f represents x exactly. If the magnitude of x is too large to
+// be represented by a float64, f is an infinity and exact is false.
+// The sign of f always matches the sign of x, even if f == 0.
+func (x *Rat) Float64() (f float64, exact bool) {
+ b := x.b.abs
+ if len(b) == 0 {
+ b = natOne
+ }
+ f, exact = quotToFloat64(x.a.abs, b)
+ if x.a.neg {
+ f = -f
+ }
+ return
+}
+
+// SetFrac sets z to a/b and returns z.
+// If b == 0, SetFrac panics.
+func (z *Rat) SetFrac(a, b *Int) *Rat {
+ z.a.neg = a.neg != b.neg
+ babs := b.abs
+ if len(babs) == 0 {
+ panic("division by zero")
+ }
+ if &z.a == b || alias(z.a.abs, babs) {
+ babs = nat(nil).set(babs) // make a copy
+ }
+ z.a.abs = z.a.abs.set(a.abs)
+ z.b.abs = z.b.abs.set(babs)
+ return z.norm()
+}
+
+// SetFrac64 sets z to a/b and returns z.
+// If b == 0, SetFrac64 panics.
+func (z *Rat) SetFrac64(a, b int64) *Rat {
+ if b == 0 {
+ panic("division by zero")
+ }
+ z.a.SetInt64(a)
+ if b < 0 {
+ b = -b
+ z.a.neg = !z.a.neg
+ }
+ z.b.abs = z.b.abs.setUint64(uint64(b))
+ return z.norm()
+}
+
+// SetInt sets z to x (by making a copy of x) and returns z.
+func (z *Rat) SetInt(x *Int) *Rat {
+ z.a.Set(x)
+ z.b.abs = z.b.abs.setWord(1)
+ return z
+}
+
+// SetInt64 sets z to x and returns z.
+func (z *Rat) SetInt64(x int64) *Rat {
+ z.a.SetInt64(x)
+ z.b.abs = z.b.abs.setWord(1)
+ return z
+}
+
+// SetUint64 sets z to x and returns z.
+func (z *Rat) SetUint64(x uint64) *Rat {
+ z.a.SetUint64(x)
+ z.b.abs = z.b.abs.setWord(1)
+ return z
+}
+
+// Set sets z to x (by making a copy of x) and returns z.
+func (z *Rat) Set(x *Rat) *Rat {
+ if z != x {
+ z.a.Set(&x.a)
+ z.b.Set(&x.b)
+ }
+ if len(z.b.abs) == 0 {
+ z.b.abs = z.b.abs.setWord(1)
+ }
+ return z
+}
+
+// Abs sets z to |x| (the absolute value of x) and returns z.
+func (z *Rat) Abs(x *Rat) *Rat {
+ z.Set(x)
+ z.a.neg = false
+ return z
+}
+
+// Neg sets z to -x and returns z.
+func (z *Rat) Neg(x *Rat) *Rat {
+ z.Set(x)
+ z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign
+ return z
+}
+
+// Inv sets z to 1/x and returns z.
+// If x == 0, Inv panics.
+func (z *Rat) Inv(x *Rat) *Rat {
+ if len(x.a.abs) == 0 {
+ panic("division by zero")
+ }
+ z.Set(x)
+ z.a.abs, z.b.abs = z.b.abs, z.a.abs
+ return z
+}
+
+// Sign returns:
+//
+// -1 if x < 0
+// 0 if x == 0
+// +1 if x > 0
+//
+func (x *Rat) Sign() int {
+ return x.a.Sign()
+}
+
+// IsInt reports whether the denominator of x is 1.
+func (x *Rat) IsInt() bool {
+ return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0
+}
+
+// Num returns the numerator of x; it may be <= 0.
+// The result is a reference to x's numerator; it
+// may change if a new value is assigned to x, and vice versa.
+// The sign of the numerator corresponds to the sign of x.
+func (x *Rat) Num() *Int {
+ return &x.a
+}
+
+// Denom returns the denominator of x; it is always > 0.
+// The result is a reference to x's denominator, unless
+// x is an uninitialized (zero value) Rat, in which case
+// the result is a new Int of value 1. (To initialize x,
+// any operation that sets x will do, including x.Set(x).)
+// If the result is a reference to x's denominator it
+// may change if a new value is assigned to x, and vice versa.
+func (x *Rat) Denom() *Int {
+ // Note that x.b.neg is guaranteed false.
+ if len(x.b.abs) == 0 {
+ // Note: If this proves problematic, we could
+ // panic instead and require the Rat to
+ // be explicitly initialized.
+ return &Int{abs: nat{1}}
+ }
+ return &x.b
+}
+
+func (z *Rat) norm() *Rat {
+ switch {
+ case len(z.a.abs) == 0:
+ // z == 0; normalize sign and denominator
+ z.a.neg = false
+ fallthrough
+ case len(z.b.abs) == 0:
+ // z is integer; normalize denominator
+ z.b.abs = z.b.abs.setWord(1)
+ default:
+ // z is fraction; normalize numerator and denominator
+ neg := z.a.neg
+ z.a.neg = false
+ z.b.neg = false
+ if f := NewInt(0).lehmerGCD(nil, nil, &z.a, &z.b); f.Cmp(intOne) != 0 {
+ z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs)
+ z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs)
+ }
+ z.a.neg = neg
+ }
+ return z
+}
+
+// mulDenom sets z to the denominator product x*y (by taking into
+// account that 0 values for x or y must be interpreted as 1) and
+// returns z.
+func mulDenom(z, x, y nat) nat {
+ switch {
+ case len(x) == 0 && len(y) == 0:
+ return z.setWord(1)
+ case len(x) == 0:
+ return z.set(y)
+ case len(y) == 0:
+ return z.set(x)
+ }
+ return z.mul(x, y)
+}
+
+// scaleDenom sets z to the product x*f.
+// If f == 0 (zero value of denominator), z is set to (a copy of) x.
+func (z *Int) scaleDenom(x *Int, f nat) {
+ if len(f) == 0 {
+ z.Set(x)
+ return
+ }
+ z.abs = z.abs.mul(x.abs, f)
+ z.neg = x.neg
+}
+
+// Cmp compares x and y and returns:
+//
+// -1 if x < y
+// 0 if x == y
+// +1 if x > y
+//
+func (x *Rat) Cmp(y *Rat) int {
+ var a, b Int
+ a.scaleDenom(&x.a, y.b.abs)
+ b.scaleDenom(&y.a, x.b.abs)
+ return a.Cmp(&b)
+}
+
+// Add sets z to the sum x+y and returns z.
+func (z *Rat) Add(x, y *Rat) *Rat {
+ var a1, a2 Int
+ a1.scaleDenom(&x.a, y.b.abs)
+ a2.scaleDenom(&y.a, x.b.abs)
+ z.a.Add(&a1, &a2)
+ z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
+ return z.norm()
+}
+
+// Sub sets z to the difference x-y and returns z.
+func (z *Rat) Sub(x, y *Rat) *Rat {
+ var a1, a2 Int
+ a1.scaleDenom(&x.a, y.b.abs)
+ a2.scaleDenom(&y.a, x.b.abs)
+ z.a.Sub(&a1, &a2)
+ z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
+ return z.norm()
+}
+
+// Mul sets z to the product x*y and returns z.
+func (z *Rat) Mul(x, y *Rat) *Rat {
+ if x == y {
+ // a squared Rat is positive and can't be reduced (no need to call norm())
+ z.a.neg = false
+ z.a.abs = z.a.abs.sqr(x.a.abs)
+ if len(x.b.abs) == 0 {
+ z.b.abs = z.b.abs.setWord(1)
+ } else {
+ z.b.abs = z.b.abs.sqr(x.b.abs)
+ }
+ return z
+ }
+ z.a.Mul(&x.a, &y.a)
+ z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
+ return z.norm()
+}
+
+// Quo sets z to the quotient x/y and returns z.
+// If y == 0, Quo panics.
+func (z *Rat) Quo(x, y *Rat) *Rat {
+ if len(y.a.abs) == 0 {
+ panic("division by zero")
+ }
+ var a, b Int
+ a.scaleDenom(&x.a, y.b.abs)
+ b.scaleDenom(&y.a, x.b.abs)
+ z.a.abs = a.abs
+ z.b.abs = b.abs
+ z.a.neg = a.neg != b.neg
+ return z.norm()
+}
diff --git a/contrib/go/_std_1.18/src/math/big/ratconv.go b/contrib/go/_std_1.18/src/math/big/ratconv.go
new file mode 100644
index 0000000000..90053a9c81
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/ratconv.go
@@ -0,0 +1,380 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements rat-to-string conversion functions.
+
+package big
+
+import (
+ "errors"
+ "fmt"
+ "io"
+ "strconv"
+ "strings"
+)
+
+func ratTok(ch rune) bool {
+ return strings.ContainsRune("+-/0123456789.eE", ch)
+}
+
+var ratZero Rat
+var _ fmt.Scanner = &ratZero // *Rat must implement fmt.Scanner
+
+// Scan is a support routine for fmt.Scanner. It accepts the formats
+// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent.
+func (z *Rat) Scan(s fmt.ScanState, ch rune) error {
+ tok, err := s.Token(true, ratTok)
+ if err != nil {
+ return err
+ }
+ if !strings.ContainsRune("efgEFGv", ch) {
+ return errors.New("Rat.Scan: invalid verb")
+ }
+ if _, ok := z.SetString(string(tok)); !ok {
+ return errors.New("Rat.Scan: invalid syntax")
+ }
+ return nil
+}
+
+// SetString sets z to the value of s and returns z and a boolean indicating
+// success. s can be given as a (possibly signed) fraction "a/b", or as a
+// floating-point number optionally followed by an exponent.
+// If a fraction is provided, both the dividend and the divisor may be a
+// decimal integer or independently use a prefix of ``0b'', ``0'' or ``0o'',
+// or ``0x'' (or their upper-case variants) to denote a binary, octal, or
+// hexadecimal integer, respectively. The divisor may not be signed.
+// If a floating-point number is provided, it may be in decimal form or
+// use any of the same prefixes as above but for ``0'' to denote a non-decimal
+// mantissa. A leading ``0'' is considered a decimal leading 0; it does not
+// indicate octal representation in this case.
+// An optional base-10 ``e'' or base-2 ``p'' (or their upper-case variants)
+// exponent may be provided as well, except for hexadecimal floats which
+// only accept an (optional) ``p'' exponent (because an ``e'' or ``E'' cannot
+// be distinguished from a mantissa digit). If the exponent's absolute value
+// is too large, the operation may fail.
+// The entire string, not just a prefix, must be valid for success. If the
+// operation failed, the value of z is undefined but the returned value is nil.
+func (z *Rat) SetString(s string) (*Rat, bool) {
+ if len(s) == 0 {
+ return nil, false
+ }
+ // len(s) > 0
+
+ // parse fraction a/b, if any
+ if sep := strings.Index(s, "/"); sep >= 0 {
+ if _, ok := z.a.SetString(s[:sep], 0); !ok {
+ return nil, false
+ }
+ r := strings.NewReader(s[sep+1:])
+ var err error
+ if z.b.abs, _, _, err = z.b.abs.scan(r, 0, false); err != nil {
+ return nil, false
+ }
+ // entire string must have been consumed
+ if _, err = r.ReadByte(); err != io.EOF {
+ return nil, false
+ }
+ if len(z.b.abs) == 0 {
+ return nil, false
+ }
+ return z.norm(), true
+ }
+
+ // parse floating-point number
+ r := strings.NewReader(s)
+
+ // sign
+ neg, err := scanSign(r)
+ if err != nil {
+ return nil, false
+ }
+
+ // mantissa
+ var base int
+ var fcount int // fractional digit count; valid if <= 0
+ z.a.abs, base, fcount, err = z.a.abs.scan(r, 0, true)
+ if err != nil {
+ return nil, false
+ }
+
+ // exponent
+ var exp int64
+ var ebase int
+ exp, ebase, err = scanExponent(r, true, true)
+ if err != nil {
+ return nil, false
+ }
+
+ // there should be no unread characters left
+ if _, err = r.ReadByte(); err != io.EOF {
+ return nil, false
+ }
+
+ // special-case 0 (see also issue #16176)
+ if len(z.a.abs) == 0 {
+ return z, true
+ }
+ // len(z.a.abs) > 0
+
+ // The mantissa may have a radix point (fcount <= 0) and there
+ // may be a nonzero exponent exp. The radix point amounts to a
+ // division by base**(-fcount), which equals a multiplication by
+ // base**fcount. An exponent means multiplication by ebase**exp.
+ // Multiplications are commutative, so we can apply them in any
+ // order. We only have powers of 2 and 10, and we split powers
+ // of 10 into the product of the same powers of 2 and 5. This
+ // may reduce the size of shift/multiplication factors or
+ // divisors required to create the final fraction, depending
+ // on the actual floating-point value.
+
+ // determine binary or decimal exponent contribution of radix point
+ var exp2, exp5 int64
+ if fcount < 0 {
+ // The mantissa has a radix point ddd.dddd; and
+ // -fcount is the number of digits to the right
+ // of '.'. Adjust relevant exponent accordingly.
+ d := int64(fcount)
+ switch base {
+ case 10:
+ exp5 = d
+ fallthrough // 10**e == 5**e * 2**e
+ case 2:
+ exp2 = d
+ case 8:
+ exp2 = d * 3 // octal digits are 3 bits each
+ case 16:
+ exp2 = d * 4 // hexadecimal digits are 4 bits each
+ default:
+ panic("unexpected mantissa base")
+ }
+ // fcount consumed - not needed anymore
+ }
+
+ // take actual exponent into account
+ switch ebase {
+ case 10:
+ exp5 += exp
+ fallthrough // see fallthrough above
+ case 2:
+ exp2 += exp
+ default:
+ panic("unexpected exponent base")
+ }
+ // exp consumed - not needed anymore
+
+ // apply exp5 contributions
+ // (start with exp5 so the numbers to multiply are smaller)
+ if exp5 != 0 {
+ n := exp5
+ if n < 0 {
+ n = -n
+ if n < 0 {
+ // This can occur if -n overflows. -(-1 << 63) would become
+ // -1 << 63, which is still negative.
+ return nil, false
+ }
+ }
+ if n > 1e6 {
+ return nil, false // avoid excessively large exponents
+ }
+ pow5 := z.b.abs.expNN(natFive, nat(nil).setWord(Word(n)), nil) // use underlying array of z.b.abs
+ if exp5 > 0 {
+ z.a.abs = z.a.abs.mul(z.a.abs, pow5)
+ z.b.abs = z.b.abs.setWord(1)
+ } else {
+ z.b.abs = pow5
+ }
+ } else {
+ z.b.abs = z.b.abs.setWord(1)
+ }
+
+ // apply exp2 contributions
+ if exp2 < -1e7 || exp2 > 1e7 {
+ return nil, false // avoid excessively large exponents
+ }
+ if exp2 > 0 {
+ z.a.abs = z.a.abs.shl(z.a.abs, uint(exp2))
+ } else if exp2 < 0 {
+ z.b.abs = z.b.abs.shl(z.b.abs, uint(-exp2))
+ }
+
+ z.a.neg = neg && len(z.a.abs) > 0 // 0 has no sign
+
+ return z.norm(), true
+}
+
+// scanExponent scans the longest possible prefix of r representing a base 10
+// (``e'', ``E'') or a base 2 (``p'', ``P'') exponent, if any. It returns the
+// exponent, the exponent base (10 or 2), or a read or syntax error, if any.
+//
+// If sepOk is set, an underscore character ``_'' may appear between successive
+// exponent digits; such underscores do not change the value of the exponent.
+// Incorrect placement of underscores is reported as an error if there are no
+// other errors. If sepOk is not set, underscores are not recognized and thus
+// terminate scanning like any other character that is not a valid digit.
+//
+// exponent = ( "e" | "E" | "p" | "P" ) [ sign ] digits .
+// sign = "+" | "-" .
+// digits = digit { [ '_' ] digit } .
+// digit = "0" ... "9" .
+//
+// A base 2 exponent is only permitted if base2ok is set.
+func scanExponent(r io.ByteScanner, base2ok, sepOk bool) (exp int64, base int, err error) {
+ // one char look-ahead
+ ch, err := r.ReadByte()
+ if err != nil {
+ if err == io.EOF {
+ err = nil
+ }
+ return 0, 10, err
+ }
+
+ // exponent char
+ switch ch {
+ case 'e', 'E':
+ base = 10
+ case 'p', 'P':
+ if base2ok {
+ base = 2
+ break // ok
+ }
+ fallthrough // binary exponent not permitted
+ default:
+ r.UnreadByte() // ch does not belong to exponent anymore
+ return 0, 10, nil
+ }
+
+ // sign
+ var digits []byte
+ ch, err = r.ReadByte()
+ if err == nil && (ch == '+' || ch == '-') {
+ if ch == '-' {
+ digits = append(digits, '-')
+ }
+ ch, err = r.ReadByte()
+ }
+
+ // prev encodes the previously seen char: it is one
+ // of '_', '0' (a digit), or '.' (anything else). A
+ // valid separator '_' may only occur after a digit.
+ prev := '.'
+ invalSep := false
+
+ // exponent value
+ hasDigits := false
+ for err == nil {
+ if '0' <= ch && ch <= '9' {
+ digits = append(digits, ch)
+ prev = '0'
+ hasDigits = true
+ } else if ch == '_' && sepOk {
+ if prev != '0' {
+ invalSep = true
+ }
+ prev = '_'
+ } else {
+ r.UnreadByte() // ch does not belong to number anymore
+ break
+ }
+ ch, err = r.ReadByte()
+ }
+
+ if err == io.EOF {
+ err = nil
+ }
+ if err == nil && !hasDigits {
+ err = errNoDigits
+ }
+ if err == nil {
+ exp, err = strconv.ParseInt(string(digits), 10, 64)
+ }
+ // other errors take precedence over invalid separators
+ if err == nil && (invalSep || prev == '_') {
+ err = errInvalSep
+ }
+
+ return
+}
+
+// String returns a string representation of x in the form "a/b" (even if b == 1).
+func (x *Rat) String() string {
+ return string(x.marshal())
+}
+
+// marshal implements String returning a slice of bytes
+func (x *Rat) marshal() []byte {
+ var buf []byte
+ buf = x.a.Append(buf, 10)
+ buf = append(buf, '/')
+ if len(x.b.abs) != 0 {
+ buf = x.b.Append(buf, 10)
+ } else {
+ buf = append(buf, '1')
+ }
+ return buf
+}
+
+// RatString returns a string representation of x in the form "a/b" if b != 1,
+// and in the form "a" if b == 1.
+func (x *Rat) RatString() string {
+ if x.IsInt() {
+ return x.a.String()
+ }
+ return x.String()
+}
+
+// FloatString returns a string representation of x in decimal form with prec
+// digits of precision after the radix point. The last digit is rounded to
+// nearest, with halves rounded away from zero.
+func (x *Rat) FloatString(prec int) string {
+ var buf []byte
+
+ if x.IsInt() {
+ buf = x.a.Append(buf, 10)
+ if prec > 0 {
+ buf = append(buf, '.')
+ for i := prec; i > 0; i-- {
+ buf = append(buf, '0')
+ }
+ }
+ return string(buf)
+ }
+ // x.b.abs != 0
+
+ q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)
+
+ p := natOne
+ if prec > 0 {
+ p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil)
+ }
+
+ r = r.mul(r, p)
+ r, r2 := r.div(nat(nil), r, x.b.abs)
+
+ // see if we need to round up
+ r2 = r2.add(r2, r2)
+ if x.b.abs.cmp(r2) <= 0 {
+ r = r.add(r, natOne)
+ if r.cmp(p) >= 0 {
+ q = nat(nil).add(q, natOne)
+ r = nat(nil).sub(r, p)
+ }
+ }
+
+ if x.a.neg {
+ buf = append(buf, '-')
+ }
+ buf = append(buf, q.utoa(10)...) // itoa ignores sign if q == 0
+
+ if prec > 0 {
+ buf = append(buf, '.')
+ rs := r.utoa(10)
+ for i := prec - len(rs); i > 0; i-- {
+ buf = append(buf, '0')
+ }
+ buf = append(buf, rs...)
+ }
+
+ return string(buf)
+}
diff --git a/contrib/go/_std_1.18/src/math/big/ratmarsh.go b/contrib/go/_std_1.18/src/math/big/ratmarsh.go
new file mode 100644
index 0000000000..fbc7b6002d
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/ratmarsh.go
@@ -0,0 +1,75 @@
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// This file implements encoding/decoding of Rats.
+
+package big
+
+import (
+ "encoding/binary"
+ "errors"
+ "fmt"
+)
+
+// Gob codec version. Permits backward-compatible changes to the encoding.
+const ratGobVersion byte = 1
+
+// GobEncode implements the gob.GobEncoder interface.
+func (x *Rat) GobEncode() ([]byte, error) {
+ if x == nil {
+ return nil, nil
+ }
+ buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
+ i := x.b.abs.bytes(buf)
+ j := x.a.abs.bytes(buf[:i])
+ n := i - j
+ if int(uint32(n)) != n {
+ // this should never happen
+ return nil, errors.New("Rat.GobEncode: numerator too large")
+ }
+ binary.BigEndian.PutUint32(buf[j-4:j], uint32(n))
+ j -= 1 + 4
+ b := ratGobVersion << 1 // make space for sign bit
+ if x.a.neg {
+ b |= 1
+ }
+ buf[j] = b
+ return buf[j:], nil
+}
+
+// GobDecode implements the gob.GobDecoder interface.
+func (z *Rat) GobDecode(buf []byte) error {
+ if len(buf) == 0 {
+ // Other side sent a nil or default value.
+ *z = Rat{}
+ return nil
+ }
+ b := buf[0]
+ if b>>1 != ratGobVersion {
+ return fmt.Errorf("Rat.GobDecode: encoding version %d not supported", b>>1)
+ }
+ const j = 1 + 4
+ i := j + binary.BigEndian.Uint32(buf[j-4:j])
+ z.a.neg = b&1 != 0
+ z.a.abs = z.a.abs.setBytes(buf[j:i])
+ z.b.abs = z.b.abs.setBytes(buf[i:])
+ return nil
+}
+
+// MarshalText implements the encoding.TextMarshaler interface.
+func (x *Rat) MarshalText() (text []byte, err error) {
+ if x.IsInt() {
+ return x.a.MarshalText()
+ }
+ return x.marshal(), nil
+}
+
+// UnmarshalText implements the encoding.TextUnmarshaler interface.
+func (z *Rat) UnmarshalText(text []byte) error {
+ // TODO(gri): get rid of the []byte/string conversion
+ if _, ok := z.SetString(string(text)); !ok {
+ return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Rat", text)
+ }
+ return nil
+}
diff --git a/contrib/go/_std_1.18/src/math/big/roundingmode_string.go b/contrib/go/_std_1.18/src/math/big/roundingmode_string.go
new file mode 100644
index 0000000000..c7629eb98b
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/roundingmode_string.go
@@ -0,0 +1,16 @@
+// Code generated by "stringer -type=RoundingMode"; DO NOT EDIT.
+
+package big
+
+import "strconv"
+
+const _RoundingMode_name = "ToNearestEvenToNearestAwayToZeroAwayFromZeroToNegativeInfToPositiveInf"
+
+var _RoundingMode_index = [...]uint8{0, 13, 26, 32, 44, 57, 70}
+
+func (i RoundingMode) String() string {
+ if i >= RoundingMode(len(_RoundingMode_index)-1) {
+ return "RoundingMode(" + strconv.FormatInt(int64(i), 10) + ")"
+ }
+ return _RoundingMode_name[_RoundingMode_index[i]:_RoundingMode_index[i+1]]
+}
diff --git a/contrib/go/_std_1.18/src/math/big/sqrt.go b/contrib/go/_std_1.18/src/math/big/sqrt.go
new file mode 100644
index 0000000000..0d50164557
--- /dev/null
+++ b/contrib/go/_std_1.18/src/math/big/sqrt.go
@@ -0,0 +1,128 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package big
+
+import (
+ "math"
+ "sync"
+)
+
+var threeOnce struct {
+ sync.Once
+ v *Float
+}
+
+func three() *Float {
+ threeOnce.Do(func() {
+ threeOnce.v = NewFloat(3.0)
+ })
+ return threeOnce.v
+}
+
+// Sqrt sets z to the rounded square root of x, and returns it.
+//
+// If z's precision is 0, it is changed to x's precision before the
+// operation. Rounding is performed according to z's precision and
+// rounding mode, but z's accuracy is not computed. Specifically, the
+// result of z.Acc() is undefined.
+//
+// The function panics if z < 0. The value of z is undefined in that
+// case.
+func (z *Float) Sqrt(x *Float) *Float {
+ if debugFloat {
+ x.validate()
+ }
+
+ if z.prec == 0 {
+ z.prec = x.prec
+ }
+
+ if x.Sign() == -1 {
+ // following IEEE754-2008 (section 7.2)
+ panic(ErrNaN{"square root of negative operand"})
+ }
+
+ // handle ±0 and +∞
+ if x.form != finite {
+ z.acc = Exact
+ z.form = x.form
+ z.neg = x.neg // IEEE754-2008 requires √±0 = ±0
+ return z
+ }
+
+ // MantExp sets the argument's precision to the receiver's, and
+ // when z.prec > x.prec this will lower z.prec. Restore it after
+ // the MantExp call.
+ prec := z.prec
+ b := x.MantExp(z)
+ z.prec = prec
+
+ // Compute √(z·2**b) as
+ // √( z)·2**(½b) if b is even
+ // √(2z)·2**(⌊½b⌋) if b > 0 is odd
+ // √(½z)·2**(⌈½b⌉) if b < 0 is odd
+ switch b % 2 {
+ case 0:
+ // nothing to do
+ case 1:
+ z.exp++
+ case -1:
+ z.exp--
+ }
+ // 0.25 <= z < 2.0
+
+ // Solving 1/x² - z = 0 avoids Quo calls and is faster, especially
+ // for high precisions.
+ z.sqrtInverse(z)
+
+ // re-attach halved exponent
+ return z.SetMantExp(z, b/2)
+}
+
+// Compute √x (to z.prec precision) by solving
+// 1/t² - x = 0
+// for t (using Newton's method), and then inverting.
+func (z *Float) sqrtInverse(x *Float) {
+ // let
+ // f(t) = 1/t² - x
+ // then
+ // g(t) = f(t)/f'(t) = -½t(1 - xt²)
+ // and the next guess is given by
+ // t2 = t - g(t) = ½t(3 - xt²)
+ u := newFloat(z.prec)
+ v := newFloat(z.prec)
+ three := three()
+ ng := func(t *Float) *Float {
+ u.prec = t.prec
+ v.prec = t.prec
+ u.Mul(t, t) // u = t²
+ u.Mul(x, u) // = xt²
+ v.Sub(three, u) // v = 3 - xt²
+ u.Mul(t, v) // u = t(3 - xt²)
+ u.exp-- // = ½t(3 - xt²)
+ return t.Set(u)
+ }
+
+ xf, _ := x.Float64()
+ sqi := newFloat(z.prec)
+ sqi.SetFloat64(1 / math.Sqrt(xf))
+ for prec := z.prec + 32; sqi.prec < prec; {
+ sqi.prec *= 2
+ sqi = ng(sqi)
+ }
+ // sqi = 1/√x
+
+ // x/√x = √x
+ z.Mul(x, sqi)
+}
+
+// newFloat returns a new *Float with space for twice the given
+// precision.
+func newFloat(prec2 uint32) *Float {
+ z := new(Float)
+ // nat.make ensures the slice length is > 0
+ z.mant = z.mant.make(int(prec2/_W) * 2)
+ return z
+}