aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/go/_std_1.18/src/crypto/rsa
diff options
context:
space:
mode:
authorDaniil Cherednik <dan.cherednik@gmail.com>2022-11-24 13:14:34 +0300
committerDaniil Cherednik <dan.cherednik@gmail.com>2022-11-24 14:46:00 +0300
commit87f7fceed34bcafb8aaff351dd493a35c916986f (patch)
tree26809ec8f550aba8eb019e59adc3d48e51913eb2 /contrib/go/_std_1.18/src/crypto/rsa
parent11bc4015b8010ae201bf3eb33db7dba425aca35e (diff)
downloadydb-87f7fceed34bcafb8aaff351dd493a35c916986f.tar.gz
Ydb stable 22-4-4322.4.43
x-stable-origin-commit: 8d49d46cc834835bf3e50870516acd7376a63bcf
Diffstat (limited to 'contrib/go/_std_1.18/src/crypto/rsa')
-rw-r--r--contrib/go/_std_1.18/src/crypto/rsa/pkcs1v15.go323
-rw-r--r--contrib/go/_std_1.18/src/crypto/rsa/pss.go303
-rw-r--r--contrib/go/_std_1.18/src/crypto/rsa/rsa.go659
3 files changed, 1285 insertions, 0 deletions
diff --git a/contrib/go/_std_1.18/src/crypto/rsa/pkcs1v15.go b/contrib/go/_std_1.18/src/crypto/rsa/pkcs1v15.go
new file mode 100644
index 0000000000..0cbd6d0045
--- /dev/null
+++ b/contrib/go/_std_1.18/src/crypto/rsa/pkcs1v15.go
@@ -0,0 +1,323 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package rsa
+
+import (
+ "crypto"
+ "crypto/subtle"
+ "errors"
+ "io"
+ "math/big"
+
+ "crypto/internal/randutil"
+)
+
+// This file implements encryption and decryption using PKCS #1 v1.5 padding.
+
+// PKCS1v15DecrypterOpts is for passing options to PKCS #1 v1.5 decryption using
+// the crypto.Decrypter interface.
+type PKCS1v15DecryptOptions struct {
+ // SessionKeyLen is the length of the session key that is being
+ // decrypted. If not zero, then a padding error during decryption will
+ // cause a random plaintext of this length to be returned rather than
+ // an error. These alternatives happen in constant time.
+ SessionKeyLen int
+}
+
+// EncryptPKCS1v15 encrypts the given message with RSA and the padding
+// scheme from PKCS #1 v1.5. The message must be no longer than the
+// length of the public modulus minus 11 bytes.
+//
+// The rand parameter is used as a source of entropy to ensure that
+// encrypting the same message twice doesn't result in the same
+// ciphertext.
+//
+// WARNING: use of this function to encrypt plaintexts other than
+// session keys is dangerous. Use RSA OAEP in new protocols.
+func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) ([]byte, error) {
+ randutil.MaybeReadByte(rand)
+
+ if err := checkPub(pub); err != nil {
+ return nil, err
+ }
+ k := pub.Size()
+ if len(msg) > k-11 {
+ return nil, ErrMessageTooLong
+ }
+
+ // EM = 0x00 || 0x02 || PS || 0x00 || M
+ em := make([]byte, k)
+ em[1] = 2
+ ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):]
+ err := nonZeroRandomBytes(ps, rand)
+ if err != nil {
+ return nil, err
+ }
+ em[len(em)-len(msg)-1] = 0
+ copy(mm, msg)
+
+ m := new(big.Int).SetBytes(em)
+ c := encrypt(new(big.Int), pub, m)
+
+ return c.FillBytes(em), nil
+}
+
+// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS #1 v1.5.
+// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
+//
+// Note that whether this function returns an error or not discloses secret
+// information. If an attacker can cause this function to run repeatedly and
+// learn whether each instance returned an error then they can decrypt and
+// forge signatures as if they had the private key. See
+// DecryptPKCS1v15SessionKey for a way of solving this problem.
+func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) ([]byte, error) {
+ if err := checkPub(&priv.PublicKey); err != nil {
+ return nil, err
+ }
+ valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext)
+ if err != nil {
+ return nil, err
+ }
+ if valid == 0 {
+ return nil, ErrDecryption
+ }
+ return out[index:], nil
+}
+
+// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS #1 v1.5.
+// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
+// It returns an error if the ciphertext is the wrong length or if the
+// ciphertext is greater than the public modulus. Otherwise, no error is
+// returned. If the padding is valid, the resulting plaintext message is copied
+// into key. Otherwise, key is unchanged. These alternatives occur in constant
+// time. It is intended that the user of this function generate a random
+// session key beforehand and continue the protocol with the resulting value.
+// This will remove any possibility that an attacker can learn any information
+// about the plaintext.
+// See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA
+// Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology
+// (Crypto '98).
+//
+// Note that if the session key is too small then it may be possible for an
+// attacker to brute-force it. If they can do that then they can learn whether
+// a random value was used (because it'll be different for the same ciphertext)
+// and thus whether the padding was correct. This defeats the point of this
+// function. Using at least a 16-byte key will protect against this attack.
+func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) error {
+ if err := checkPub(&priv.PublicKey); err != nil {
+ return err
+ }
+ k := priv.Size()
+ if k-(len(key)+3+8) < 0 {
+ return ErrDecryption
+ }
+
+ valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext)
+ if err != nil {
+ return err
+ }
+
+ if len(em) != k {
+ // This should be impossible because decryptPKCS1v15 always
+ // returns the full slice.
+ return ErrDecryption
+ }
+
+ valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key)))
+ subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):])
+ return nil
+}
+
+// decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if
+// rand is not nil. It returns one or zero in valid that indicates whether the
+// plaintext was correctly structured. In either case, the plaintext is
+// returned in em so that it may be read independently of whether it was valid
+// in order to maintain constant memory access patterns. If the plaintext was
+// valid then index contains the index of the original message in em.
+func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
+ k := priv.Size()
+ if k < 11 {
+ err = ErrDecryption
+ return
+ }
+
+ c := new(big.Int).SetBytes(ciphertext)
+ m, err := decrypt(rand, priv, c)
+ if err != nil {
+ return
+ }
+
+ em = m.FillBytes(make([]byte, k))
+ firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
+ secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
+
+ // The remainder of the plaintext must be a string of non-zero random
+ // octets, followed by a 0, followed by the message.
+ // lookingForIndex: 1 iff we are still looking for the zero.
+ // index: the offset of the first zero byte.
+ lookingForIndex := 1
+
+ for i := 2; i < len(em); i++ {
+ equals0 := subtle.ConstantTimeByteEq(em[i], 0)
+ index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
+ lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
+ }
+
+ // The PS padding must be at least 8 bytes long, and it starts two
+ // bytes into em.
+ validPS := subtle.ConstantTimeLessOrEq(2+8, index)
+
+ valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS
+ index = subtle.ConstantTimeSelect(valid, index+1, 0)
+ return valid, em, index, nil
+}
+
+// nonZeroRandomBytes fills the given slice with non-zero random octets.
+func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
+ _, err = io.ReadFull(rand, s)
+ if err != nil {
+ return
+ }
+
+ for i := 0; i < len(s); i++ {
+ for s[i] == 0 {
+ _, err = io.ReadFull(rand, s[i:i+1])
+ if err != nil {
+ return
+ }
+ // In tests, the PRNG may return all zeros so we do
+ // this to break the loop.
+ s[i] ^= 0x42
+ }
+ }
+
+ return
+}
+
+// These are ASN1 DER structures:
+// DigestInfo ::= SEQUENCE {
+// digestAlgorithm AlgorithmIdentifier,
+// digest OCTET STRING
+// }
+// For performance, we don't use the generic ASN1 encoder. Rather, we
+// precompute a prefix of the digest value that makes a valid ASN1 DER string
+// with the correct contents.
+var hashPrefixes = map[crypto.Hash][]byte{
+ crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
+ crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14},
+ crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
+ crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
+ crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
+ crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
+ crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix.
+ crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14},
+}
+
+// SignPKCS1v15 calculates the signature of hashed using
+// RSASSA-PKCS1-V1_5-SIGN from RSA PKCS #1 v1.5. Note that hashed must
+// be the result of hashing the input message using the given hash
+// function. If hash is zero, hashed is signed directly. This isn't
+// advisable except for interoperability.
+//
+// If rand is not nil then RSA blinding will be used to avoid timing
+// side-channel attacks.
+//
+// This function is deterministic. Thus, if the set of possible
+// messages is small, an attacker may be able to build a map from
+// messages to signatures and identify the signed messages. As ever,
+// signatures provide authenticity, not confidentiality.
+func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) {
+ hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
+ if err != nil {
+ return nil, err
+ }
+
+ tLen := len(prefix) + hashLen
+ k := priv.Size()
+ if k < tLen+11 {
+ return nil, ErrMessageTooLong
+ }
+
+ // EM = 0x00 || 0x01 || PS || 0x00 || T
+ em := make([]byte, k)
+ em[1] = 1
+ for i := 2; i < k-tLen-1; i++ {
+ em[i] = 0xff
+ }
+ copy(em[k-tLen:k-hashLen], prefix)
+ copy(em[k-hashLen:k], hashed)
+
+ m := new(big.Int).SetBytes(em)
+ c, err := decryptAndCheck(rand, priv, m)
+ if err != nil {
+ return nil, err
+ }
+
+ return c.FillBytes(em), nil
+}
+
+// VerifyPKCS1v15 verifies an RSA PKCS #1 v1.5 signature.
+// hashed is the result of hashing the input message using the given hash
+// function and sig is the signature. A valid signature is indicated by
+// returning a nil error. If hash is zero then hashed is used directly. This
+// isn't advisable except for interoperability.
+func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error {
+ hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
+ if err != nil {
+ return err
+ }
+
+ tLen := len(prefix) + hashLen
+ k := pub.Size()
+ if k < tLen+11 {
+ return ErrVerification
+ }
+
+ // RFC 8017 Section 8.2.2: If the length of the signature S is not k
+ // octets (where k is the length in octets of the RSA modulus n), output
+ // "invalid signature" and stop.
+ if k != len(sig) {
+ return ErrVerification
+ }
+
+ c := new(big.Int).SetBytes(sig)
+ m := encrypt(new(big.Int), pub, c)
+ em := m.FillBytes(make([]byte, k))
+ // EM = 0x00 || 0x01 || PS || 0x00 || T
+
+ ok := subtle.ConstantTimeByteEq(em[0], 0)
+ ok &= subtle.ConstantTimeByteEq(em[1], 1)
+ ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed)
+ ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix)
+ ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0)
+
+ for i := 2; i < k-tLen-1; i++ {
+ ok &= subtle.ConstantTimeByteEq(em[i], 0xff)
+ }
+
+ if ok != 1 {
+ return ErrVerification
+ }
+
+ return nil
+}
+
+func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) {
+ // Special case: crypto.Hash(0) is used to indicate that the data is
+ // signed directly.
+ if hash == 0 {
+ return inLen, nil, nil
+ }
+
+ hashLen = hash.Size()
+ if inLen != hashLen {
+ return 0, nil, errors.New("crypto/rsa: input must be hashed message")
+ }
+ prefix, ok := hashPrefixes[hash]
+ if !ok {
+ return 0, nil, errors.New("crypto/rsa: unsupported hash function")
+ }
+ return
+}
diff --git a/contrib/go/_std_1.18/src/crypto/rsa/pss.go b/contrib/go/_std_1.18/src/crypto/rsa/pss.go
new file mode 100644
index 0000000000..814522de81
--- /dev/null
+++ b/contrib/go/_std_1.18/src/crypto/rsa/pss.go
@@ -0,0 +1,303 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package rsa
+
+// This file implements the RSASSA-PSS signature scheme according to RFC 8017.
+
+import (
+ "bytes"
+ "crypto"
+ "errors"
+ "hash"
+ "io"
+ "math/big"
+)
+
+// Per RFC 8017, Section 9.1
+//
+// EM = MGF1 xor DB || H( 8*0x00 || mHash || salt ) || 0xbc
+//
+// where
+//
+// DB = PS || 0x01 || salt
+//
+// and PS can be empty so
+//
+// emLen = dbLen + hLen + 1 = psLen + sLen + hLen + 2
+//
+
+func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byte, error) {
+ // See RFC 8017, Section 9.1.1.
+
+ hLen := hash.Size()
+ sLen := len(salt)
+ emLen := (emBits + 7) / 8
+
+ // 1. If the length of M is greater than the input limitation for the
+ // hash function (2^61 - 1 octets for SHA-1), output "message too
+ // long" and stop.
+ //
+ // 2. Let mHash = Hash(M), an octet string of length hLen.
+
+ if len(mHash) != hLen {
+ return nil, errors.New("crypto/rsa: input must be hashed with given hash")
+ }
+
+ // 3. If emLen < hLen + sLen + 2, output "encoding error" and stop.
+
+ if emLen < hLen+sLen+2 {
+ return nil, errors.New("crypto/rsa: key size too small for PSS signature")
+ }
+
+ em := make([]byte, emLen)
+ psLen := emLen - sLen - hLen - 2
+ db := em[:psLen+1+sLen]
+ h := em[psLen+1+sLen : emLen-1]
+
+ // 4. Generate a random octet string salt of length sLen; if sLen = 0,
+ // then salt is the empty string.
+ //
+ // 5. Let
+ // M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt;
+ //
+ // M' is an octet string of length 8 + hLen + sLen with eight
+ // initial zero octets.
+ //
+ // 6. Let H = Hash(M'), an octet string of length hLen.
+
+ var prefix [8]byte
+
+ hash.Write(prefix[:])
+ hash.Write(mHash)
+ hash.Write(salt)
+
+ h = hash.Sum(h[:0])
+ hash.Reset()
+
+ // 7. Generate an octet string PS consisting of emLen - sLen - hLen - 2
+ // zero octets. The length of PS may be 0.
+ //
+ // 8. Let DB = PS || 0x01 || salt; DB is an octet string of length
+ // emLen - hLen - 1.
+
+ db[psLen] = 0x01
+ copy(db[psLen+1:], salt)
+
+ // 9. Let dbMask = MGF(H, emLen - hLen - 1).
+ //
+ // 10. Let maskedDB = DB \xor dbMask.
+
+ mgf1XOR(db, hash, h)
+
+ // 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in
+ // maskedDB to zero.
+
+ db[0] &= 0xff >> (8*emLen - emBits)
+
+ // 12. Let EM = maskedDB || H || 0xbc.
+ em[emLen-1] = 0xbc
+
+ // 13. Output EM.
+ return em, nil
+}
+
+func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error {
+ // See RFC 8017, Section 9.1.2.
+
+ hLen := hash.Size()
+ if sLen == PSSSaltLengthEqualsHash {
+ sLen = hLen
+ }
+ emLen := (emBits + 7) / 8
+ if emLen != len(em) {
+ return errors.New("rsa: internal error: inconsistent length")
+ }
+
+ // 1. If the length of M is greater than the input limitation for the
+ // hash function (2^61 - 1 octets for SHA-1), output "inconsistent"
+ // and stop.
+ //
+ // 2. Let mHash = Hash(M), an octet string of length hLen.
+ if hLen != len(mHash) {
+ return ErrVerification
+ }
+
+ // 3. If emLen < hLen + sLen + 2, output "inconsistent" and stop.
+ if emLen < hLen+sLen+2 {
+ return ErrVerification
+ }
+
+ // 4. If the rightmost octet of EM does not have hexadecimal value
+ // 0xbc, output "inconsistent" and stop.
+ if em[emLen-1] != 0xbc {
+ return ErrVerification
+ }
+
+ // 5. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and
+ // let H be the next hLen octets.
+ db := em[:emLen-hLen-1]
+ h := em[emLen-hLen-1 : emLen-1]
+
+ // 6. If the leftmost 8 * emLen - emBits bits of the leftmost octet in
+ // maskedDB are not all equal to zero, output "inconsistent" and
+ // stop.
+ var bitMask byte = 0xff >> (8*emLen - emBits)
+ if em[0] & ^bitMask != 0 {
+ return ErrVerification
+ }
+
+ // 7. Let dbMask = MGF(H, emLen - hLen - 1).
+ //
+ // 8. Let DB = maskedDB \xor dbMask.
+ mgf1XOR(db, hash, h)
+
+ // 9. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in DB
+ // to zero.
+ db[0] &= bitMask
+
+ // If we don't know the salt length, look for the 0x01 delimiter.
+ if sLen == PSSSaltLengthAuto {
+ psLen := bytes.IndexByte(db, 0x01)
+ if psLen < 0 {
+ return ErrVerification
+ }
+ sLen = len(db) - psLen - 1
+ }
+
+ // 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero
+ // or if the octet at position emLen - hLen - sLen - 1 (the leftmost
+ // position is "position 1") does not have hexadecimal value 0x01,
+ // output "inconsistent" and stop.
+ psLen := emLen - hLen - sLen - 2
+ for _, e := range db[:psLen] {
+ if e != 0x00 {
+ return ErrVerification
+ }
+ }
+ if db[psLen] != 0x01 {
+ return ErrVerification
+ }
+
+ // 11. Let salt be the last sLen octets of DB.
+ salt := db[len(db)-sLen:]
+
+ // 12. Let
+ // M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ;
+ // M' is an octet string of length 8 + hLen + sLen with eight
+ // initial zero octets.
+ //
+ // 13. Let H' = Hash(M'), an octet string of length hLen.
+ var prefix [8]byte
+ hash.Write(prefix[:])
+ hash.Write(mHash)
+ hash.Write(salt)
+
+ h0 := hash.Sum(nil)
+
+ // 14. If H = H', output "consistent." Otherwise, output "inconsistent."
+ if !bytes.Equal(h0, h) { // TODO: constant time?
+ return ErrVerification
+ }
+ return nil
+}
+
+// signPSSWithSalt calculates the signature of hashed using PSS with specified salt.
+// Note that hashed must be the result of hashing the input message using the
+// given hash function. salt is a random sequence of bytes whose length will be
+// later used to verify the signature.
+func signPSSWithSalt(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) ([]byte, error) {
+ emBits := priv.N.BitLen() - 1
+ em, err := emsaPSSEncode(hashed, emBits, salt, hash.New())
+ if err != nil {
+ return nil, err
+ }
+ m := new(big.Int).SetBytes(em)
+ c, err := decryptAndCheck(rand, priv, m)
+ if err != nil {
+ return nil, err
+ }
+ s := make([]byte, priv.Size())
+ return c.FillBytes(s), nil
+}
+
+const (
+ // PSSSaltLengthAuto causes the salt in a PSS signature to be as large
+ // as possible when signing, and to be auto-detected when verifying.
+ PSSSaltLengthAuto = 0
+ // PSSSaltLengthEqualsHash causes the salt length to equal the length
+ // of the hash used in the signature.
+ PSSSaltLengthEqualsHash = -1
+)
+
+// PSSOptions contains options for creating and verifying PSS signatures.
+type PSSOptions struct {
+ // SaltLength controls the length of the salt used in the PSS
+ // signature. It can either be a number of bytes, or one of the special
+ // PSSSaltLength constants.
+ SaltLength int
+
+ // Hash is the hash function used to generate the message digest. If not
+ // zero, it overrides the hash function passed to SignPSS. It's required
+ // when using PrivateKey.Sign.
+ Hash crypto.Hash
+}
+
+// HashFunc returns opts.Hash so that PSSOptions implements crypto.SignerOpts.
+func (opts *PSSOptions) HashFunc() crypto.Hash {
+ return opts.Hash
+}
+
+func (opts *PSSOptions) saltLength() int {
+ if opts == nil {
+ return PSSSaltLengthAuto
+ }
+ return opts.SaltLength
+}
+
+// SignPSS calculates the signature of digest using PSS.
+//
+// digest must be the result of hashing the input message using the given hash
+// function. The opts argument may be nil, in which case sensible defaults are
+// used. If opts.Hash is set, it overrides hash.
+func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, digest []byte, opts *PSSOptions) ([]byte, error) {
+ if opts != nil && opts.Hash != 0 {
+ hash = opts.Hash
+ }
+
+ saltLength := opts.saltLength()
+ switch saltLength {
+ case PSSSaltLengthAuto:
+ saltLength = (priv.N.BitLen()-1+7)/8 - 2 - hash.Size()
+ case PSSSaltLengthEqualsHash:
+ saltLength = hash.Size()
+ }
+
+ salt := make([]byte, saltLength)
+ if _, err := io.ReadFull(rand, salt); err != nil {
+ return nil, err
+ }
+ return signPSSWithSalt(rand, priv, hash, digest, salt)
+}
+
+// VerifyPSS verifies a PSS signature.
+//
+// A valid signature is indicated by returning a nil error. digest must be the
+// result of hashing the input message using the given hash function. The opts
+// argument may be nil, in which case sensible defaults are used. opts.Hash is
+// ignored.
+func VerifyPSS(pub *PublicKey, hash crypto.Hash, digest []byte, sig []byte, opts *PSSOptions) error {
+ if len(sig) != pub.Size() {
+ return ErrVerification
+ }
+ s := new(big.Int).SetBytes(sig)
+ m := encrypt(new(big.Int), pub, s)
+ emBits := pub.N.BitLen() - 1
+ emLen := (emBits + 7) / 8
+ if m.BitLen() > emLen*8 {
+ return ErrVerification
+ }
+ em := m.FillBytes(make([]byte, emLen))
+ return emsaPSSVerify(digest, em, emBits, opts.saltLength(), hash.New())
+}
diff --git a/contrib/go/_std_1.18/src/crypto/rsa/rsa.go b/contrib/go/_std_1.18/src/crypto/rsa/rsa.go
new file mode 100644
index 0000000000..6fd59b3940
--- /dev/null
+++ b/contrib/go/_std_1.18/src/crypto/rsa/rsa.go
@@ -0,0 +1,659 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package rsa implements RSA encryption as specified in PKCS #1 and RFC 8017.
+//
+// RSA is a single, fundamental operation that is used in this package to
+// implement either public-key encryption or public-key signatures.
+//
+// The original specification for encryption and signatures with RSA is PKCS #1
+// and the terms "RSA encryption" and "RSA signatures" by default refer to
+// PKCS #1 version 1.5. However, that specification has flaws and new designs
+// should use version 2, usually called by just OAEP and PSS, where
+// possible.
+//
+// Two sets of interfaces are included in this package. When a more abstract
+// interface isn't necessary, there are functions for encrypting/decrypting
+// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract
+// over the public key primitive, the PrivateKey type implements the
+// Decrypter and Signer interfaces from the crypto package.
+//
+// The RSA operations in this package are not implemented using constant-time algorithms.
+package rsa
+
+import (
+ "crypto"
+ "crypto/rand"
+ "crypto/subtle"
+ "errors"
+ "hash"
+ "io"
+ "math"
+ "math/big"
+
+ "crypto/internal/randutil"
+)
+
+var bigZero = big.NewInt(0)
+var bigOne = big.NewInt(1)
+
+// A PublicKey represents the public part of an RSA key.
+type PublicKey struct {
+ N *big.Int // modulus
+ E int // public exponent
+}
+
+// Any methods implemented on PublicKey might need to also be implemented on
+// PrivateKey, as the latter embeds the former and will expose its methods.
+
+// Size returns the modulus size in bytes. Raw signatures and ciphertexts
+// for or by this public key will have the same size.
+func (pub *PublicKey) Size() int {
+ return (pub.N.BitLen() + 7) / 8
+}
+
+// Equal reports whether pub and x have the same value.
+func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
+ xx, ok := x.(*PublicKey)
+ if !ok {
+ return false
+ }
+ return pub.N.Cmp(xx.N) == 0 && pub.E == xx.E
+}
+
+// OAEPOptions is an interface for passing options to OAEP decryption using the
+// crypto.Decrypter interface.
+type OAEPOptions struct {
+ // Hash is the hash function that will be used when generating the mask.
+ Hash crypto.Hash
+ // Label is an arbitrary byte string that must be equal to the value
+ // used when encrypting.
+ Label []byte
+}
+
+var (
+ errPublicModulus = errors.New("crypto/rsa: missing public modulus")
+ errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
+ errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
+)
+
+// checkPub sanity checks the public key before we use it.
+// We require pub.E to fit into a 32-bit integer so that we
+// do not have different behavior depending on whether
+// int is 32 or 64 bits. See also
+// https://www.imperialviolet.org/2012/03/16/rsae.html.
+func checkPub(pub *PublicKey) error {
+ if pub.N == nil {
+ return errPublicModulus
+ }
+ if pub.E < 2 {
+ return errPublicExponentSmall
+ }
+ if pub.E > 1<<31-1 {
+ return errPublicExponentLarge
+ }
+ return nil
+}
+
+// A PrivateKey represents an RSA key
+type PrivateKey struct {
+ PublicKey // public part.
+ D *big.Int // private exponent
+ Primes []*big.Int // prime factors of N, has >= 2 elements.
+
+ // Precomputed contains precomputed values that speed up private
+ // operations, if available.
+ Precomputed PrecomputedValues
+}
+
+// Public returns the public key corresponding to priv.
+func (priv *PrivateKey) Public() crypto.PublicKey {
+ return &priv.PublicKey
+}
+
+// Equal reports whether priv and x have equivalent values. It ignores
+// Precomputed values.
+func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
+ xx, ok := x.(*PrivateKey)
+ if !ok {
+ return false
+ }
+ if !priv.PublicKey.Equal(&xx.PublicKey) || priv.D.Cmp(xx.D) != 0 {
+ return false
+ }
+ if len(priv.Primes) != len(xx.Primes) {
+ return false
+ }
+ for i := range priv.Primes {
+ if priv.Primes[i].Cmp(xx.Primes[i]) != 0 {
+ return false
+ }
+ }
+ return true
+}
+
+// Sign signs digest with priv, reading randomness from rand. If opts is a
+// *PSSOptions then the PSS algorithm will be used, otherwise PKCS #1 v1.5 will
+// be used. digest must be the result of hashing the input message using
+// opts.HashFunc().
+//
+// This method implements crypto.Signer, which is an interface to support keys
+// where the private part is kept in, for example, a hardware module. Common
+// uses should use the Sign* functions in this package directly.
+func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
+ if pssOpts, ok := opts.(*PSSOptions); ok {
+ return SignPSS(rand, priv, pssOpts.Hash, digest, pssOpts)
+ }
+
+ return SignPKCS1v15(rand, priv, opts.HashFunc(), digest)
+}
+
+// Decrypt decrypts ciphertext with priv. If opts is nil or of type
+// *PKCS1v15DecryptOptions then PKCS #1 v1.5 decryption is performed. Otherwise
+// opts must have type *OAEPOptions and OAEP decryption is done.
+func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
+ if opts == nil {
+ return DecryptPKCS1v15(rand, priv, ciphertext)
+ }
+
+ switch opts := opts.(type) {
+ case *OAEPOptions:
+ return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label)
+
+ case *PKCS1v15DecryptOptions:
+ if l := opts.SessionKeyLen; l > 0 {
+ plaintext = make([]byte, l)
+ if _, err := io.ReadFull(rand, plaintext); err != nil {
+ return nil, err
+ }
+ if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
+ return nil, err
+ }
+ return plaintext, nil
+ } else {
+ return DecryptPKCS1v15(rand, priv, ciphertext)
+ }
+
+ default:
+ return nil, errors.New("crypto/rsa: invalid options for Decrypt")
+ }
+}
+
+type PrecomputedValues struct {
+ Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
+ Qinv *big.Int // Q^-1 mod P
+
+ // CRTValues is used for the 3rd and subsequent primes. Due to a
+ // historical accident, the CRT for the first two primes is handled
+ // differently in PKCS #1 and interoperability is sufficiently
+ // important that we mirror this.
+ CRTValues []CRTValue
+}
+
+// CRTValue contains the precomputed Chinese remainder theorem values.
+type CRTValue struct {
+ Exp *big.Int // D mod (prime-1).
+ Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
+ R *big.Int // product of primes prior to this (inc p and q).
+}
+
+// Validate performs basic sanity checks on the key.
+// It returns nil if the key is valid, or else an error describing a problem.
+func (priv *PrivateKey) Validate() error {
+ if err := checkPub(&priv.PublicKey); err != nil {
+ return err
+ }
+
+ // Check that Πprimes == n.
+ modulus := new(big.Int).Set(bigOne)
+ for _, prime := range priv.Primes {
+ // Any primes ≤ 1 will cause divide-by-zero panics later.
+ if prime.Cmp(bigOne) <= 0 {
+ return errors.New("crypto/rsa: invalid prime value")
+ }
+ modulus.Mul(modulus, prime)
+ }
+ if modulus.Cmp(priv.N) != 0 {
+ return errors.New("crypto/rsa: invalid modulus")
+ }
+
+ // Check that de ≡ 1 mod p-1, for each prime.
+ // This implies that e is coprime to each p-1 as e has a multiplicative
+ // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
+ // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
+ // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
+ congruence := new(big.Int)
+ de := new(big.Int).SetInt64(int64(priv.E))
+ de.Mul(de, priv.D)
+ for _, prime := range priv.Primes {
+ pminus1 := new(big.Int).Sub(prime, bigOne)
+ congruence.Mod(de, pminus1)
+ if congruence.Cmp(bigOne) != 0 {
+ return errors.New("crypto/rsa: invalid exponents")
+ }
+ }
+ return nil
+}
+
+// GenerateKey generates an RSA keypair of the given bit size using the
+// random source random (for example, crypto/rand.Reader).
+func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) {
+ return GenerateMultiPrimeKey(random, 2, bits)
+}
+
+// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
+// size and the given random source, as suggested in [1]. Although the public
+// keys are compatible (actually, indistinguishable) from the 2-prime case,
+// the private keys are not. Thus it may not be possible to export multi-prime
+// private keys in certain formats or to subsequently import them into other
+// code.
+//
+// Table 1 in [2] suggests maximum numbers of primes for a given size.
+//
+// [1] US patent 4405829 (1972, expired)
+// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
+func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) {
+ randutil.MaybeReadByte(random)
+
+ priv := new(PrivateKey)
+ priv.E = 65537
+
+ if nprimes < 2 {
+ return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
+ }
+
+ if bits < 64 {
+ primeLimit := float64(uint64(1) << uint(bits/nprimes))
+ // pi approximates the number of primes less than primeLimit
+ pi := primeLimit / (math.Log(primeLimit) - 1)
+ // Generated primes start with 11 (in binary) so we can only
+ // use a quarter of them.
+ pi /= 4
+ // Use a factor of two to ensure that key generation terminates
+ // in a reasonable amount of time.
+ pi /= 2
+ if pi <= float64(nprimes) {
+ return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key")
+ }
+ }
+
+ primes := make([]*big.Int, nprimes)
+
+NextSetOfPrimes:
+ for {
+ todo := bits
+ // crypto/rand should set the top two bits in each prime.
+ // Thus each prime has the form
+ // p_i = 2^bitlen(p_i) × 0.11... (in base 2).
+ // And the product is:
+ // P = 2^todo × α
+ // where α is the product of nprimes numbers of the form 0.11...
+ //
+ // If α < 1/2 (which can happen for nprimes > 2), we need to
+ // shift todo to compensate for lost bits: the mean value of 0.11...
+ // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
+ // will give good results.
+ if nprimes >= 7 {
+ todo += (nprimes - 2) / 5
+ }
+ for i := 0; i < nprimes; i++ {
+ var err error
+ primes[i], err = rand.Prime(random, todo/(nprimes-i))
+ if err != nil {
+ return nil, err
+ }
+ todo -= primes[i].BitLen()
+ }
+
+ // Make sure that primes is pairwise unequal.
+ for i, prime := range primes {
+ for j := 0; j < i; j++ {
+ if prime.Cmp(primes[j]) == 0 {
+ continue NextSetOfPrimes
+ }
+ }
+ }
+
+ n := new(big.Int).Set(bigOne)
+ totient := new(big.Int).Set(bigOne)
+ pminus1 := new(big.Int)
+ for _, prime := range primes {
+ n.Mul(n, prime)
+ pminus1.Sub(prime, bigOne)
+ totient.Mul(totient, pminus1)
+ }
+ if n.BitLen() != bits {
+ // This should never happen for nprimes == 2 because
+ // crypto/rand should set the top two bits in each prime.
+ // For nprimes > 2 we hope it does not happen often.
+ continue NextSetOfPrimes
+ }
+
+ priv.D = new(big.Int)
+ e := big.NewInt(int64(priv.E))
+ ok := priv.D.ModInverse(e, totient)
+
+ if ok != nil {
+ priv.Primes = primes
+ priv.N = n
+ break
+ }
+ }
+
+ priv.Precompute()
+ return priv, nil
+}
+
+// incCounter increments a four byte, big-endian counter.
+func incCounter(c *[4]byte) {
+ if c[3]++; c[3] != 0 {
+ return
+ }
+ if c[2]++; c[2] != 0 {
+ return
+ }
+ if c[1]++; c[1] != 0 {
+ return
+ }
+ c[0]++
+}
+
+// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
+// specified in PKCS #1 v2.1.
+func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
+ var counter [4]byte
+ var digest []byte
+
+ done := 0
+ for done < len(out) {
+ hash.Write(seed)
+ hash.Write(counter[0:4])
+ digest = hash.Sum(digest[:0])
+ hash.Reset()
+
+ for i := 0; i < len(digest) && done < len(out); i++ {
+ out[done] ^= digest[i]
+ done++
+ }
+ incCounter(&counter)
+ }
+}
+
+// ErrMessageTooLong is returned when attempting to encrypt a message which is
+// too large for the size of the public key.
+var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
+
+func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
+ e := big.NewInt(int64(pub.E))
+ c.Exp(m, e, pub.N)
+ return c
+}
+
+// EncryptOAEP encrypts the given message with RSA-OAEP.
+//
+// OAEP is parameterised by a hash function that is used as a random oracle.
+// Encryption and decryption of a given message must use the same hash function
+// and sha256.New() is a reasonable choice.
+//
+// The random parameter is used as a source of entropy to ensure that
+// encrypting the same message twice doesn't result in the same ciphertext.
+//
+// The label parameter may contain arbitrary data that will not be encrypted,
+// but which gives important context to the message. For example, if a given
+// public key is used to encrypt two types of messages then distinct label
+// values could be used to ensure that a ciphertext for one purpose cannot be
+// used for another by an attacker. If not required it can be empty.
+//
+// The message must be no longer than the length of the public modulus minus
+// twice the hash length, minus a further 2.
+func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) {
+ if err := checkPub(pub); err != nil {
+ return nil, err
+ }
+ hash.Reset()
+ k := pub.Size()
+ if len(msg) > k-2*hash.Size()-2 {
+ return nil, ErrMessageTooLong
+ }
+
+ hash.Write(label)
+ lHash := hash.Sum(nil)
+ hash.Reset()
+
+ em := make([]byte, k)
+ seed := em[1 : 1+hash.Size()]
+ db := em[1+hash.Size():]
+
+ copy(db[0:hash.Size()], lHash)
+ db[len(db)-len(msg)-1] = 1
+ copy(db[len(db)-len(msg):], msg)
+
+ _, err := io.ReadFull(random, seed)
+ if err != nil {
+ return nil, err
+ }
+
+ mgf1XOR(db, hash, seed)
+ mgf1XOR(seed, hash, db)
+
+ m := new(big.Int)
+ m.SetBytes(em)
+ c := encrypt(new(big.Int), pub, m)
+
+ out := make([]byte, k)
+ return c.FillBytes(out), nil
+}
+
+// ErrDecryption represents a failure to decrypt a message.
+// It is deliberately vague to avoid adaptive attacks.
+var ErrDecryption = errors.New("crypto/rsa: decryption error")
+
+// ErrVerification represents a failure to verify a signature.
+// It is deliberately vague to avoid adaptive attacks.
+var ErrVerification = errors.New("crypto/rsa: verification error")
+
+// Precompute performs some calculations that speed up private key operations
+// in the future.
+func (priv *PrivateKey) Precompute() {
+ if priv.Precomputed.Dp != nil {
+ return
+ }
+
+ priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
+ priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
+
+ priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
+ priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
+
+ priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
+
+ r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
+ priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
+ for i := 2; i < len(priv.Primes); i++ {
+ prime := priv.Primes[i]
+ values := &priv.Precomputed.CRTValues[i-2]
+
+ values.Exp = new(big.Int).Sub(prime, bigOne)
+ values.Exp.Mod(priv.D, values.Exp)
+
+ values.R = new(big.Int).Set(r)
+ values.Coeff = new(big.Int).ModInverse(r, prime)
+
+ r.Mul(r, prime)
+ }
+}
+
+// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
+// random source is given, RSA blinding is used.
+func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
+ // TODO(agl): can we get away with reusing blinds?
+ if c.Cmp(priv.N) > 0 {
+ err = ErrDecryption
+ return
+ }
+ if priv.N.Sign() == 0 {
+ return nil, ErrDecryption
+ }
+
+ var ir *big.Int
+ if random != nil {
+ randutil.MaybeReadByte(random)
+
+ // Blinding enabled. Blinding involves multiplying c by r^e.
+ // Then the decryption operation performs (m^e * r^e)^d mod n
+ // which equals mr mod n. The factor of r can then be removed
+ // by multiplying by the multiplicative inverse of r.
+
+ var r *big.Int
+ ir = new(big.Int)
+ for {
+ r, err = rand.Int(random, priv.N)
+ if err != nil {
+ return
+ }
+ if r.Cmp(bigZero) == 0 {
+ r = bigOne
+ }
+ ok := ir.ModInverse(r, priv.N)
+ if ok != nil {
+ break
+ }
+ }
+ bigE := big.NewInt(int64(priv.E))
+ rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0
+ cCopy := new(big.Int).Set(c)
+ cCopy.Mul(cCopy, rpowe)
+ cCopy.Mod(cCopy, priv.N)
+ c = cCopy
+ }
+
+ if priv.Precomputed.Dp == nil {
+ m = new(big.Int).Exp(c, priv.D, priv.N)
+ } else {
+ // We have the precalculated values needed for the CRT.
+ m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
+ m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
+ m.Sub(m, m2)
+ if m.Sign() < 0 {
+ m.Add(m, priv.Primes[0])
+ }
+ m.Mul(m, priv.Precomputed.Qinv)
+ m.Mod(m, priv.Primes[0])
+ m.Mul(m, priv.Primes[1])
+ m.Add(m, m2)
+
+ for i, values := range priv.Precomputed.CRTValues {
+ prime := priv.Primes[2+i]
+ m2.Exp(c, values.Exp, prime)
+ m2.Sub(m2, m)
+ m2.Mul(m2, values.Coeff)
+ m2.Mod(m2, prime)
+ if m2.Sign() < 0 {
+ m2.Add(m2, prime)
+ }
+ m2.Mul(m2, values.R)
+ m.Add(m, m2)
+ }
+ }
+
+ if ir != nil {
+ // Unblind.
+ m.Mul(m, ir)
+ m.Mod(m, priv.N)
+ }
+
+ return
+}
+
+func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
+ m, err = decrypt(random, priv, c)
+ if err != nil {
+ return nil, err
+ }
+
+ // In order to defend against errors in the CRT computation, m^e is
+ // calculated, which should match the original ciphertext.
+ check := encrypt(new(big.Int), &priv.PublicKey, m)
+ if c.Cmp(check) != 0 {
+ return nil, errors.New("rsa: internal error")
+ }
+ return m, nil
+}
+
+// DecryptOAEP decrypts ciphertext using RSA-OAEP.
+//
+// OAEP is parameterised by a hash function that is used as a random oracle.
+// Encryption and decryption of a given message must use the same hash function
+// and sha256.New() is a reasonable choice.
+//
+// The random parameter, if not nil, is used to blind the private-key operation
+// and avoid timing side-channel attacks. Blinding is purely internal to this
+// function – the random data need not match that used when encrypting.
+//
+// The label parameter must match the value given when encrypting. See
+// EncryptOAEP for details.
+func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) {
+ if err := checkPub(&priv.PublicKey); err != nil {
+ return nil, err
+ }
+ k := priv.Size()
+ if len(ciphertext) > k ||
+ k < hash.Size()*2+2 {
+ return nil, ErrDecryption
+ }
+
+ c := new(big.Int).SetBytes(ciphertext)
+
+ m, err := decrypt(random, priv, c)
+ if err != nil {
+ return nil, err
+ }
+
+ hash.Write(label)
+ lHash := hash.Sum(nil)
+ hash.Reset()
+
+ // We probably leak the number of leading zeros.
+ // It's not clear that we can do anything about this.
+ em := m.FillBytes(make([]byte, k))
+
+ firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
+
+ seed := em[1 : hash.Size()+1]
+ db := em[hash.Size()+1:]
+
+ mgf1XOR(seed, hash, db)
+ mgf1XOR(db, hash, seed)
+
+ lHash2 := db[0:hash.Size()]
+
+ // We have to validate the plaintext in constant time in order to avoid
+ // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
+ // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
+ // v2.0. In J. Kilian, editor, Advances in Cryptology.
+ lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
+
+ // The remainder of the plaintext must be zero or more 0x00, followed
+ // by 0x01, followed by the message.
+ // lookingForIndex: 1 iff we are still looking for the 0x01
+ // index: the offset of the first 0x01 byte
+ // invalid: 1 iff we saw a non-zero byte before the 0x01.
+ var lookingForIndex, index, invalid int
+ lookingForIndex = 1
+ rest := db[hash.Size():]
+
+ for i := 0; i < len(rest); i++ {
+ equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
+ equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
+ index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
+ lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
+ invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
+ }
+
+ if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
+ return nil, ErrDecryption
+ }
+
+ return rest[index+1:], nil
+}