diff options
author | trivias <trivias@yandex-team.ru> | 2022-02-10 16:46:12 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:46:12 +0300 |
commit | 9bf2fa2b060c9881d3135c2208c624a1dd546ecc (patch) | |
tree | 1a2c5ffcf89eb53ecd79dbc9bc0a195c27404d0c | |
parent | 11ab7328455192b9cdb4bbb79f8615bf356182ca (diff) | |
download | ydb-9bf2fa2b060c9881d3135c2208c624a1dd546ecc.tar.gz |
Restoring authorship annotation for <trivias@yandex-team.ru>. Commit 2 of 2.
35 files changed, 9568 insertions, 9568 deletions
diff --git a/build/conf/project_specific/maps/mapkit.conf b/build/conf/project_specific/maps/mapkit.conf index d0ffea8033..d64b41f72a 100644 --- a/build/conf/project_specific/maps/mapkit.conf +++ b/build/conf/project_specific/maps/mapkit.conf @@ -163,7 +163,7 @@ macro MAPS_GARDEN_COLLECT_MODULE_TRAITS(VAR, DIR) { # mapsmobi build configuration -MAPSMOBI_FAKEID=${FAKEID}_r8609790 +MAPSMOBI_FAKEID=${FAKEID}_r8609790 MAPSMOBI_BUILD= YANDEX_EXPORT= YRT_EXPORT= diff --git a/build/external_resources/mapsmobi_ios_pods/ya.make b/build/external_resources/mapsmobi_ios_pods/ya.make index d0739067fa..a733c6beb4 100644 --- a/build/external_resources/mapsmobi_ios_pods/ya.make +++ b/build/external_resources/mapsmobi_ios_pods/ya.make @@ -1,12 +1,12 @@ -RESOURCES_LIBRARY() - -OWNER(g:mapkit) - -IF (OS_IOS) +RESOURCES_LIBRARY() + +OWNER(g:mapkit) + +IF (OS_IOS) DECLARE_EXTERNAL_RESOURCE(MAPSMOBI_IOS_PODS sbr:2586181384) - CFLAGS(GLOBAL "-I$MAPSMOBI_IOS_PODS_RESOURCE_GLOBAL/Pods/Headers/Public") -ELSE() - MESSAGE(FATAL_ERROR Unsupported platform) -ENDIF() - -END() + CFLAGS(GLOBAL "-I$MAPSMOBI_IOS_PODS_RESOURCE_GLOBAL/Pods/Headers/Public") +ELSE() + MESSAGE(FATAL_ERROR Unsupported platform) +ENDIF() + +END() diff --git a/build/platform/macos_sdk/ya.make b/build/platform/macos_sdk/ya.make index b2e20f20c8..6fb8dc54c0 100644 --- a/build/platform/macos_sdk/ya.make +++ b/build/platform/macos_sdk/ya.make @@ -10,11 +10,11 @@ IF (USE_STL_SYSTEM) SET(__XCODE_TOOLCHAIN_VERSION ${CPP_XCODE_TOOLCHAIN_VERSION}) INCLUDE(${ARCADIA_ROOT}/build/platform/xcode/ya.make.inc) CFLAGS( - GLOBAL -F$MACOS_SDK_RESOURCE_GLOBAL/System/Library/Frameworks + GLOBAL -F$MACOS_SDK_RESOURCE_GLOBAL/System/Library/Frameworks + ) + LDFLAGS( + -F$MACOS_SDK_RESOURCE_GLOBAL/System/Library/Frameworks ) - LDFLAGS( - -F$MACOS_SDK_RESOURCE_GLOBAL/System/Library/Frameworks - ) ENDIF() END() diff --git a/build/platform/mapkit/ya.make b/build/platform/mapkit/ya.make index 36c6947482..513dff5bcf 100644 --- a/build/platform/mapkit/ya.make +++ b/build/platform/mapkit/ya.make @@ -5,12 +5,12 @@ OWNER(somov) NO_PLATFORM() IF (OS_ANDROID) - IF (MAPS_MOBILE_EXPORT_CPP_API) + IF (MAPS_MOBILE_EXPORT_CPP_API) # Sandbox Resource ID duplicates # arcadia/sandbox/projects/maps/mobile/MapsMobileMakeArtifacts/__init__.py DECLARE_EXTERNAL_RESOURCE(MAPKIT_ANDROID_LIBCXX_HEADERS sbr:2527848662) - CFLAGS(GLOBAL -nostdinc++ GLOBAL -cxx-isystem GLOBAL $MAPKIT_ANDROID_LIBCXX_HEADERS_RESOURCE_GLOBAL) - ENDIF() + CFLAGS(GLOBAL -nostdinc++ GLOBAL -cxx-isystem GLOBAL $MAPKIT_ANDROID_LIBCXX_HEADERS_RESOURCE_GLOBAL) + ENDIF() DECLARE_EXTERNAL_RESOURCE(MAPKIT_ANDROID_LIBCXX_LIBRARIES sbr:2527853263) diff --git a/build/platform/opengl/ya.make b/build/platform/opengl/ya.make index 2c88b9d7a9..94f0431d18 100644 --- a/build/platform/opengl/ya.make +++ b/build/platform/opengl/ya.make @@ -1,27 +1,27 @@ -RESOURCES_LIBRARY() - -OWNER(g:contrib heretic) - -IF (NOT OPENGL_REQUIRED) - MESSAGE(FATAL_ERROR "No OpenGL Toolkit for your build") -ELSE() - IF (OS_LINUX) +RESOURCES_LIBRARY() + +OWNER(g:contrib heretic) + +IF (NOT OPENGL_REQUIRED) + MESSAGE(FATAL_ERROR "No OpenGL Toolkit for your build") +ELSE() + IF (OS_LINUX) IF (OPENGL_VERSION == "18.0.5") - DECLARE_EXTERNAL_RESOURCE(OPENGL sbr:1271121094) - SET(OS_SUFFIX "x86_64-linux-gnu") - ELSE() - ENABLE(OPENGL_NOT_FOUND) - ENDIF() - ELSE() - ENABLE(OPENGL_NOT_FOUND) - ENDIF() - - IF (OPENGL_NOT_FOUND) - MESSAGE(FATAL_ERROR "No OpenGL Toolkit for the selected platform") - ELSE() - CFLAGS(GLOBAL "-I$OPENGL_RESOURCE_GLOBAL/usr/include") - LDFLAGS("-L$OPENGL_RESOURCE_GLOBAL/usr/lib/$OS_SUFFIX") - ENDIF() -ENDIF() - -END() + DECLARE_EXTERNAL_RESOURCE(OPENGL sbr:1271121094) + SET(OS_SUFFIX "x86_64-linux-gnu") + ELSE() + ENABLE(OPENGL_NOT_FOUND) + ENDIF() + ELSE() + ENABLE(OPENGL_NOT_FOUND) + ENDIF() + + IF (OPENGL_NOT_FOUND) + MESSAGE(FATAL_ERROR "No OpenGL Toolkit for the selected platform") + ELSE() + CFLAGS(GLOBAL "-I$OPENGL_RESOURCE_GLOBAL/usr/include") + LDFLAGS("-L$OPENGL_RESOURCE_GLOBAL/usr/lib/$OS_SUFFIX") + ENDIF() +ENDIF() + +END() diff --git a/build/rules/contrib_restricted.policy b/build/rules/contrib_restricted.policy index 52fe330179..a83ead1904 100644 --- a/build/rules/contrib_restricted.policy +++ b/build/rules/contrib_restricted.policy @@ -170,7 +170,7 @@ ALLOW library/python/testing/gtest/test/gtest -> contrib/restricted/googletest # TODO remove this lines after they will switch to library/cpp/testing/gtest ALLOW mail -> contrib/restricted/googletest ALLOW maps/mobile/libs -> contrib/restricted/googletest -ALLOW maps/mobile/bundle -> contrib/restricted/googletest +ALLOW maps/mobile/bundle -> contrib/restricted/googletest ALLOW mds -> contrib/restricted/googletest # A mere proxy to allow using gmock in libraries without being bound to specific test framework # See IGNIETFERRO-1827 for details. diff --git a/build/scripts/gen_aar_gradle_script.py b/build/scripts/gen_aar_gradle_script.py index f05cc84fa9..4594e67278 100644 --- a/build/scripts/gen_aar_gradle_script.py +++ b/build/scripts/gen_aar_gradle_script.py @@ -45,10 +45,10 @@ ext.androidArs = [ {aars} ] -ext.compileOnlyAndroidArs = [ - {compile_only_aars} -] - +ext.compileOnlyAndroidArs = [ + {compile_only_aars} +] + def minVersion = 21 def compileVersion = 30 def targetVersion = 30 @@ -139,8 +139,8 @@ android {{ compile(bundle) {{ transitive = true }} - for (bundle in compileOnlyAndroidArs) - compileOnly(bundle) + for (bundle in compileOnlyAndroidArs) + compileOnly(bundle) }} android.libraryVariants.all {{ variant -> @@ -307,7 +307,7 @@ def gen_build_script(args): return AAR_TEMPLATE.format( aars=wrap(args.aars), - compile_only_aars=wrap(args.compile_only_aars), + compile_only_aars=wrap(args.compile_only_aars), aidl_dirs=wrap(args.aidl_dirs), assets_dirs=wrap(args.assets_dirs), bundles=wrap(bundles), @@ -327,7 +327,7 @@ def gen_build_script(args): if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--aars', nargs='*', default=[]) - parser.add_argument('--compile-only-aars', nargs='*', default=[]) + parser.add_argument('--compile-only-aars', nargs='*', default=[]) parser.add_argument('--aidl-dirs', nargs='*', default=[]) parser.add_argument('--assets-dirs', nargs='*', default=[]) parser.add_argument('--bundle-name', nargs='?', default='default-bundle-name') diff --git a/build/ymake.core.conf b/build/ymake.core.conf index 251ec79977..081833998b 100644 --- a/build/ymake.core.conf +++ b/build/ymake.core.conf @@ -8961,7 +8961,7 @@ otherwise { # tag:frontend-specific ### @usage: COLLECT_FRONTEND_FILES(Varname, Dir) -### +### ### Recursively collect files with typical frontend extensions from Dir and save the result into variable Varname macro COLLECT_FRONTEND_FILES(Varname, Dir) { _GLOB($Varname $Dir/**/*.(css|ejs|jpg|js|jsx|png|styl|svg|ts|tsx|json|html)) diff --git a/contrib/libs/cxxsupp/system_stl/ya.make b/contrib/libs/cxxsupp/system_stl/ya.make index b032d2fa04..75317898ac 100644 --- a/contrib/libs/cxxsupp/system_stl/ya.make +++ b/contrib/libs/cxxsupp/system_stl/ya.make @@ -29,11 +29,11 @@ ELSE() # libatomic.a is needed in order to make atomic operations work LDFLAGS(-l:libatomic.a) - IF (STATIC_STL) + IF (STATIC_STL) LDFLAGS(-l:libstdc++.a) - ELSE() + ELSE() LDFLAGS(-lstdc++) - ENDIF() + ENDIF() ENDIF() END() diff --git a/contrib/libs/flatbuffers/include/flatbuffers/flatbuffers_iter.h b/contrib/libs/flatbuffers/include/flatbuffers/flatbuffers_iter.h index 9753506483..a770983dca 100644 --- a/contrib/libs/flatbuffers/include/flatbuffers/flatbuffers_iter.h +++ b/contrib/libs/flatbuffers/include/flatbuffers/flatbuffers_iter.h @@ -1,640 +1,640 @@ -/* - * Copyright 2014 Google Inc. All rights reserved. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef FLATBUFFERS_ITER_H_ -#define FLATBUFFERS_ITER_H_ - -#include "flatbuffers.h" -#include <optional> - -/// @file -namespace yandex { -namespace maps { -namespace flatbuffers_iter { - -#define FLATBUFFERS_FILE_IDENTIFIER_LENGTH 4 - -using flatbuffers::uoffset_t; -using flatbuffers::soffset_t; -using flatbuffers::voffset_t; -using flatbuffers::EndianScalar; - -// Wrapper for uoffset_t to allow safe template specialization. -template<typename T> struct Offset { - uoffset_t o; - Offset() : o(0) {} - Offset(uoffset_t _o) : o(_o) {} - Offset<void> Union() const { return Offset<void>(o); } -}; - -template<typename Iter> -inline bool hasContiguous(const Iter& spot, uoffset_t length) -{ - return spot.hasContiguous(length); -} - +/* + * Copyright 2014 Google Inc. All rights reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef FLATBUFFERS_ITER_H_ +#define FLATBUFFERS_ITER_H_ + +#include "flatbuffers.h" +#include <optional> + +/// @file +namespace yandex { +namespace maps { +namespace flatbuffers_iter { + +#define FLATBUFFERS_FILE_IDENTIFIER_LENGTH 4 + +using flatbuffers::uoffset_t; +using flatbuffers::soffset_t; +using flatbuffers::voffset_t; +using flatbuffers::EndianScalar; + +// Wrapper for uoffset_t to allow safe template specialization. +template<typename T> struct Offset { + uoffset_t o; + Offset() : o(0) {} + Offset(uoffset_t _o) : o(_o) {} + Offset<void> Union() const { return Offset<void>(o); } +}; + +template<typename Iter> +inline bool hasContiguous(const Iter& spot, uoffset_t length) +{ + return spot.hasContiguous(length); +} + inline bool hasContiguous(const uint8_t* /* spot */, uoffset_t /* length */) -{ - return true; -} - -template <typename Iter> -inline const uint8_t* getRawPointer(const Iter& spot) -{ - return spot.rawPointer(); -} - -inline const uint8_t* getRawPointer(const uint8_t* spot) -{ - return spot; -} - -template<typename T, typename Iter> -typename std::enable_if<sizeof(T) == 1, T>::type extractValue(const Iter& spot) -{ - typename std::remove_cv<T>::type ret; - std::memcpy(&ret, getRawPointer(spot), 1); - return ret; -} - -template<typename T, typename Iter> -typename std::enable_if<sizeof(T) != 1, T>::type extractValue(const Iter& spot) -{ - if (hasContiguous(spot, sizeof(T))) { - typename std::remove_cv<T>::type ret; - std::memcpy(&ret, getRawPointer(spot), sizeof(T)); - return ret; - } - Iter itr = spot; - alignas(T) uint8_t buf[sizeof(T)]; - for (std::size_t i = 0; i < sizeof(T); ++i) { - buf[i] = *itr; - ++itr; - } - return *reinterpret_cast<T*>(buf); -} - -template<typename T, typename Iter> T ReadScalar(Iter p) { - return EndianScalar(extractValue<T>(p)); -} - -// When we read serialized data from memory, in the case of most scalars, -// we want to just read T, but in the case of Offset, we want to actually -// perform the indirection and return a pointer. -// The template specialization below does just that. -// It is wrapped in a struct since function templates can't overload on the -// return type like this. -// The typedef is for the convenience of callers of this function -// (avoiding the need for a trailing return decltype) -template<typename T> struct IndirectHelper { - typedef T return_type; - typedef T mutable_return_type; - static const size_t element_stride = sizeof(T); - template<typename Iter> - static return_type Read(const Iter& p, uoffset_t i) { - return i ? EndianScalar(extractValue<return_type>(p+sizeof(return_type)*i)) : EndianScalar(extractValue<return_type>(p)); - } -}; -template<typename T> struct IndirectHelper<Offset<T>> { - typedef std::optional<T> return_type; - typedef std::optional<T> mutable_return_type; - static const size_t element_stride = sizeof(uoffset_t); - template<typename Iter> - static return_type Read(Iter p, uoffset_t i) { - p += i * sizeof(uoffset_t); - return return_type(T(p + ReadScalar<uoffset_t>(p))); - } -}; -template<typename T> struct IndirectHelper<const T *> { -}; - - -// An STL compatible iterator implementation for Vector below, effectively -// calling Get() for every element. -template<typename T, typename IT, typename Iter> -struct VectorIterator - : public std::iterator<std::random_access_iterator_tag, IT, uoffset_t> { - - typedef std::iterator<std::random_access_iterator_tag, IT, uoffset_t> super_type; - -public: - VectorIterator(const Iter& data, uoffset_t i) : - data_(data + IndirectHelper<T>::element_stride * i) {} - VectorIterator(const VectorIterator &other) : data_(other.data_) {} - #ifndef FLATBUFFERS_CPP98_STL - VectorIterator(VectorIterator &&other) : data_(std::move(other.data_)) {} - #endif - - VectorIterator &operator=(const VectorIterator &other) { - data_ = other.data_; - return *this; - } - - VectorIterator &operator=(VectorIterator &&other) { - data_ = other.data_; - return *this; - } - - bool operator==(const VectorIterator &other) const { - return data_ == other.data_; - } - - bool operator!=(const VectorIterator &other) const { - return data_ != other.data_; - } - - ptrdiff_t operator-(const VectorIterator &other) const { - return (data_ - other.data_) / IndirectHelper<T>::element_stride; - } - - typename super_type::value_type operator *() const { - return IndirectHelper<T>::Read(data_, 0); - } - - typename super_type::value_type operator->() const { - return IndirectHelper<T>::Read(data_, 0); - } - - VectorIterator &operator++() { - data_ += IndirectHelper<T>::element_stride; - return *this; - } - - VectorIterator operator++(int) { - VectorIterator temp(data_, 0); - data_ += IndirectHelper<T>::element_stride; - return temp; - } - - VectorIterator operator+(const uoffset_t &offset) { - return VectorIterator(data_ + offset * IndirectHelper<T>::element_stride, 0); - } - - VectorIterator& operator+=(const uoffset_t &offset) { - data_ += offset * IndirectHelper<T>::element_stride; - return *this; - } - - VectorIterator &operator--() { - data_ -= IndirectHelper<T>::element_stride; - return *this; - } - - VectorIterator operator--(int) { - VectorIterator temp(data_, 0); - data_ -= IndirectHelper<T>::element_stride; - return temp; - } - - VectorIterator operator-(const uoffset_t &offset) { - return VectorIterator(data_ - offset * IndirectHelper<T>::element_stride, 0); - } - - VectorIterator& operator-=(const uoffset_t &offset) { - data_ -= offset * IndirectHelper<T>::element_stride; - return *this; - } - -private: - Iter data_; -}; - -// This is used as a helper type for accessing vectors. -// Vector::data() assumes the vector elements start after the length field. -template<typename T, typename Iter> class Vector { -public: - typedef VectorIterator<T, typename IndirectHelper<T>::mutable_return_type, Iter> - iterator; - typedef VectorIterator<T, typename IndirectHelper<T>::return_type, Iter> - const_iterator; - - Vector(Iter data): - data_(data) - {} - - uoffset_t size() const { return EndianScalar(extractValue<uoffset_t>(data_)); } - - // Deprecated: use size(). Here for backwards compatibility. - uoffset_t Length() const { return size(); } - - typedef typename IndirectHelper<T>::return_type return_type; - typedef typename IndirectHelper<T>::mutable_return_type mutable_return_type; - - return_type Get(uoffset_t i) const { - assert(i < size()); - return IndirectHelper<T>::Read(Data(), i); - } - - return_type operator[](uoffset_t i) const { return Get(i); } - - // If this is a Vector of enums, T will be its storage type, not the enum - // type. This function makes it convenient to retrieve value with enum - // type E. - template<typename E> E GetEnum(uoffset_t i) const { - return static_cast<E>(Get(i)); - } - - const Iter GetStructFromOffset(size_t o) const { - return Data() + o; - } - - iterator begin() { return iterator(Data(), 0); } - const_iterator begin() const { return const_iterator(Data(), 0); } - - iterator end() { return iterator(Data(), size()); } - const_iterator end() const { return const_iterator(Data(), size()); } - - // The raw data in little endian format. Use with care. - const Iter Data() const { - return data_ + sizeof(uoffset_t); - } - - Iter Data() { - return data_ + sizeof(uoffset_t); - } - - template<typename K> return_type LookupByKey(K key) const { - auto search_result = std::lower_bound(begin(), end(), key, KeyCompare<K>); - - if (search_result == end() || (*search_result)->KeyCompareWithValue(key) != 0) { - return std::nullopt; // Key not found. - } - - return *search_result; - } - - operator Iter() const - { - return data_; - } - -protected: - Iter data_; - -private: - template<typename K> static int KeyCompare(const return_type& ap, const K& bp) { - return ap->KeyCompareWithValue(bp) < 0; - } -}; - -// Represent a vector much like the template above, but in this case we -// don't know what the element types are (used with reflection.h). -template <typename Iter> -class VectorOfAny { -public: - VectorOfAny(Iter data): - data_(data) - {} - - uoffset_t size() const { return EndianScalar(extractValue<uoffset_t>(data_)); } - - const Iter Data() const { - return data_; - } - Iter Data() { - return data_; - } -protected: - - Iter data_; -}; - -// Convenient helper function to get the length of any vector, regardless -// of wether it is null or not (the field is not set). -template<typename T, typename Iter> static inline size_t VectorLength(const std::optional<Vector<T, Iter>> &v) { - return v ? v->Length() : 0; -} - -template <typename Iter> struct String : public Vector<char, Iter> { - using Vector<char,Iter>::Vector; - using Vector<char,Iter>::data_; - - std::string str() const { - if (hasContiguous(data_, sizeof(uoffset_t) + this->Length())) - return std::string(reinterpret_cast<const char*>(getRawPointer(data_)) + sizeof(uoffset_t), this->Length()); - return std::string(this->begin(), this->begin() + this->Length()); } - - bool operator <(const String &o) const { - return str() < o.str(); - } -}; - -// Converts a Field ID to a virtual table offset. -inline voffset_t FieldIndexToOffset(voffset_t field_id) { - // Should correspond to what EndTable() below builds up. - const int fixed_fields = 2; // Vtable size and Object Size. - return static_cast<voffset_t>((field_id + fixed_fields) * sizeof(voffset_t)); -} - -/// @endcond - -/// @cond FLATBUFFERS_INTERNAL -template<typename T, typename Iter> std::optional<T> GetMutableRoot(Iter begin) { - flatbuffers::EndianCheck(); - return T(begin + EndianScalar(extractValue<uoffset_t>(begin))); -} - -template<typename T, typename Iter> std::optional<T> GetRoot(Iter begin) { - return GetMutableRoot<T, Iter>(begin); -} - -template<typename T, typename Iter> std::optional<T> GetSizePrefixedRoot(Iter buf) { - return GetRoot<T, Iter>(buf + sizeof(uoffset_t)); -} - -// Helper to see if the identifier in a buffer has the expected value. - -template <typename Iter> inline bool BufferHasIdentifier(const Iter& buf, const char *identifier) { - return std::equal( - identifier, - identifier + std::min(std::strlen(identifier) + 1, static_cast<std::size_t>(FLATBUFFERS_FILE_IDENTIFIER_LENGTH)), - buf + sizeof(uoffset_t)); -} - -// Helper class to verify the integrity of a FlatBuffer -template <typename Iter> -class Verifier FLATBUFFERS_FINAL_CLASS { - public: - Verifier(const Iter& buf, size_t buf_len, size_t _max_depth = 64, - size_t _max_tables = 1000000) - : buf_(buf), end_(buf + buf_len), depth_(0), max_depth_(_max_depth), - num_tables_(0), max_tables_(_max_tables) - #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE - , upper_bound_(buf) - #endif - {} - - // Central location where any verification failures register. - bool Check(bool ok) const { - #ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE - assert(ok); - #endif - #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE - if (!ok) - upper_bound_ = buf_; - #endif - return ok; - } - - // Verify any range within the buffer. - bool Verify(const Iter& elem, size_t elem_len) const { - #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE - auto upper_bound = elem + elem_len; - if (upper_bound_ < upper_bound) - upper_bound_ = upper_bound; - #endif - return Check(elem_len <= (size_t) (end_ - buf_) && - elem >= buf_ && - elem <= end_ - elem_len); - } - - // Verify a range indicated by sizeof(T). - template<typename T> bool Verify(const Iter& elem) const { - return Verify(elem, sizeof(T)); - } - - template<typename T> bool VerifyTable(const std::optional<T>& table) { - return !table || table->Verify(*this); - } - - template<typename T> bool Verify(const std::optional<Vector<T, Iter>>& vec) const { - Iter end; - return !vec || - VerifyVector(static_cast<Iter>(*vec), sizeof(T), - &end); - } - - template<typename T> bool Verify(const std::optional<Vector<const T, Iter>>& vec) const { - return Verify(*reinterpret_cast<const std::optional<Vector<T, Iter>> *>(&vec)); - } - - bool Verify(const std::optional<String<Iter>>& str) const { - Iter end; - return !str || - (VerifyVector(static_cast<Iter>(*str), 1, &end) && - Verify(end, 1) && // Must have terminator - Check(*end == '\0')); // Terminating byte must be 0. - } - - // Common code between vectors and strings. - bool VerifyVector(const Iter& vec, size_t elem_size, - Iter *end) const { - // Check we can read the size field. - if (!Verify<uoffset_t>(vec)) return false; - // Check the whole array. If this is a string, the byte past the array - // must be 0. - auto size = ReadScalar<uoffset_t>(vec); - auto max_elems = FLATBUFFERS_MAX_BUFFER_SIZE / elem_size; - if (!Check(size < max_elems)) - return false; // Protect against byte_size overflowing. - auto byte_size = sizeof(size) + elem_size * size; - *end = vec + byte_size; - return Verify(vec, byte_size); - } - - // Special case for string contents, after the above has been called. - bool VerifyVectorOfStrings(const std::optional<Vector<Offset<String<Iter>>, Iter>>& vec) const { - if (vec) { - for (uoffset_t i = 0; i < vec->size(); i++) { - if (!Verify(vec->Get(i))) return false; - } - } - return true; - } - - // Special case for table contents, after the above has been called. - template<typename T> bool VerifyVectorOfTables(const std::optional<Vector<Offset<T>, Iter>>& vec) { - if (vec) { - for (uoffset_t i = 0; i < vec->size(); i++) { - if (!vec->Get(i)->Verify(*this)) return false; - } - } - return true; - } - - template<typename T> bool VerifyBufferFromStart(const char *identifier, - const Iter& start) { - if (identifier && - (static_cast<std::size_t>(end_ - start) < 2 * sizeof(flatbuffers_iter::uoffset_t) || - !BufferHasIdentifier(start, identifier))) { - return false; - } - - // Call T::Verify, which must be in the generated code for this type. - return Verify<uoffset_t>(start) && - T(start + ReadScalar<uoffset_t>(start)). - Verify(*this) - #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE - && GetComputedSize() - #endif - ; - } - - // Verify this whole buffer, starting with root type T. - template<typename T> bool VerifyBuffer(const char *identifier) { - return VerifyBufferFromStart<T>(identifier, buf_); - } - - template<typename T> bool VerifySizePrefixedBuffer(const char *identifier) { - return Verify<uoffset_t>(buf_) && - ReadScalar<uoffset_t>(buf_) == end_ - buf_ - sizeof(uoffset_t) && - VerifyBufferFromStart<T>(identifier, buf_ + sizeof(uoffset_t)); - } - - // Called at the start of a table to increase counters measuring data - // structure depth and amount, and possibly bails out with false if - // limits set by the constructor have been hit. Needs to be balanced - // with EndTable(). - bool VerifyComplexity() { - depth_++; - num_tables_++; - return Check(depth_ <= max_depth_ && num_tables_ <= max_tables_); - } - - // Called at the end of a table to pop the depth count. - bool EndTable() { - depth_--; - return true; - } - - #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE - // Returns the message size in bytes - size_t GetComputedSize() const { - uintptr_t size = upper_bound_ - buf_; - // Align the size to uoffset_t - size = (size - 1 + sizeof(uoffset_t)) & ~(sizeof(uoffset_t) - 1); - return (buf_ + size > end_) ? 0 : size; - } - #endif - - private: - const Iter buf_; - const Iter end_; - size_t depth_; - size_t max_depth_; - size_t num_tables_; - size_t max_tables_; -#ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE - mutable const Iter upper_bound_; -#endif -}; - -// "structs" are flat structures that do not have an offset table, thus -// always have all members present and do not support forwards/backwards -// compatible extensions. -template <typename Iter> -class Struct FLATBUFFERS_FINAL_CLASS { - public: - template<typename T> T GetField(uoffset_t o) const { - return ReadScalar<T>(data_ + o); - } - - template<typename T> T GetStruct(uoffset_t o) const { - return T(data_ + o); - } - - private: - Iter data_; -}; - -// "tables" use an offset table (possibly shared) that allows fields to be -// omitted and added at will, but uses an extra indirection to read. -template<typename Iter> -class Table { - public: - Table(Iter data): data_(data) {} - - const Iter GetVTable() const { - return data_ - ReadScalar<soffset_t>(data_); - } - - // This gets the field offset for any of the functions below it, or 0 - // if the field was not present. - voffset_t GetOptionalFieldOffset(voffset_t field) const { - // The vtable offset is always at the start. - auto vtable = GetVTable(); - // The first element is the size of the vtable (fields + type id + itself). - auto vtsize = ReadScalar<voffset_t>(vtable); - // If the field we're accessing is outside the vtable, we're reading older - // data, so it's the same as if the offset was 0 (not present). - return field < vtsize ? ReadScalar<voffset_t>(vtable + field) : 0; - } - - template<typename T> T GetField(voffset_t field, T defaultval) const { - auto field_offset = GetOptionalFieldOffset(field); - return field_offset ? ReadScalar<T>(data_ + field_offset) : defaultval; - } - - template<typename P> std::optional<P> GetPointer(voffset_t field) { - auto field_offset = GetOptionalFieldOffset(field); - auto p = data_ + field_offset; - return field_offset ? std::optional<P>(P(p + ReadScalar<uoffset_t>(p))) : std::nullopt; - } - - template<typename P> std::optional<P> GetPointer(voffset_t field) const { - return const_cast<Table *>(this)->template GetPointer<P>(field); - } - - template<typename P> P GetStruct(voffset_t field) const { - auto field_offset = GetOptionalFieldOffset(field); - auto p = data_ + field_offset; - return extractValue<P>(p); - } - - bool CheckField(voffset_t field) const { - return GetOptionalFieldOffset(field) != 0; - } - - // Verify the vtable of this table. - // Call this once per table, followed by VerifyField once per field. - bool VerifyTableStart(Verifier<Iter> &verifier) const { - // Check the vtable offset. - if (!verifier.template Verify<soffset_t>(data_)) return false; - auto vtable = GetVTable(); - // Check the vtable size field, then check vtable fits in its entirety. - return verifier.VerifyComplexity() && - verifier.template Verify<voffset_t>(vtable) && - (ReadScalar<voffset_t>(vtable) & (sizeof(voffset_t) - 1)) == 0 && - verifier.Verify(vtable, ReadScalar<voffset_t>(vtable)); - } - - // Verify a particular field. - template<typename T> bool VerifyField(const Verifier<Iter> &verifier, - voffset_t field) const { - // Calling GetOptionalFieldOffset should be safe now thanks to - // VerifyTable(). - auto field_offset = GetOptionalFieldOffset(field); - // Check the actual field. - return !field_offset || verifier.template Verify<T>(data_ + field_offset); - } - - // VerifyField for required fields. - template<typename T> bool VerifyFieldRequired(const Verifier<Iter> &verifier, - voffset_t field) const { - auto field_offset = GetOptionalFieldOffset(field); - return verifier.Check(field_offset != 0) && - verifier.template Verify<T>(data_ + field_offset); - } - - private: - Iter data_; -}; -/// @endcond -} // namespace flatbuffers_iter -} // namespace maps -} // namespace yandex - -#endif // FLATBUFFERS_H_ +{ + return true; +} + +template <typename Iter> +inline const uint8_t* getRawPointer(const Iter& spot) +{ + return spot.rawPointer(); +} + +inline const uint8_t* getRawPointer(const uint8_t* spot) +{ + return spot; +} + +template<typename T, typename Iter> +typename std::enable_if<sizeof(T) == 1, T>::type extractValue(const Iter& spot) +{ + typename std::remove_cv<T>::type ret; + std::memcpy(&ret, getRawPointer(spot), 1); + return ret; +} + +template<typename T, typename Iter> +typename std::enable_if<sizeof(T) != 1, T>::type extractValue(const Iter& spot) +{ + if (hasContiguous(spot, sizeof(T))) { + typename std::remove_cv<T>::type ret; + std::memcpy(&ret, getRawPointer(spot), sizeof(T)); + return ret; + } + Iter itr = spot; + alignas(T) uint8_t buf[sizeof(T)]; + for (std::size_t i = 0; i < sizeof(T); ++i) { + buf[i] = *itr; + ++itr; + } + return *reinterpret_cast<T*>(buf); +} + +template<typename T, typename Iter> T ReadScalar(Iter p) { + return EndianScalar(extractValue<T>(p)); +} + +// When we read serialized data from memory, in the case of most scalars, +// we want to just read T, but in the case of Offset, we want to actually +// perform the indirection and return a pointer. +// The template specialization below does just that. +// It is wrapped in a struct since function templates can't overload on the +// return type like this. +// The typedef is for the convenience of callers of this function +// (avoiding the need for a trailing return decltype) +template<typename T> struct IndirectHelper { + typedef T return_type; + typedef T mutable_return_type; + static const size_t element_stride = sizeof(T); + template<typename Iter> + static return_type Read(const Iter& p, uoffset_t i) { + return i ? EndianScalar(extractValue<return_type>(p+sizeof(return_type)*i)) : EndianScalar(extractValue<return_type>(p)); + } +}; +template<typename T> struct IndirectHelper<Offset<T>> { + typedef std::optional<T> return_type; + typedef std::optional<T> mutable_return_type; + static const size_t element_stride = sizeof(uoffset_t); + template<typename Iter> + static return_type Read(Iter p, uoffset_t i) { + p += i * sizeof(uoffset_t); + return return_type(T(p + ReadScalar<uoffset_t>(p))); + } +}; +template<typename T> struct IndirectHelper<const T *> { +}; + + +// An STL compatible iterator implementation for Vector below, effectively +// calling Get() for every element. +template<typename T, typename IT, typename Iter> +struct VectorIterator + : public std::iterator<std::random_access_iterator_tag, IT, uoffset_t> { + + typedef std::iterator<std::random_access_iterator_tag, IT, uoffset_t> super_type; + +public: + VectorIterator(const Iter& data, uoffset_t i) : + data_(data + IndirectHelper<T>::element_stride * i) {} + VectorIterator(const VectorIterator &other) : data_(other.data_) {} + #ifndef FLATBUFFERS_CPP98_STL + VectorIterator(VectorIterator &&other) : data_(std::move(other.data_)) {} + #endif + + VectorIterator &operator=(const VectorIterator &other) { + data_ = other.data_; + return *this; + } + + VectorIterator &operator=(VectorIterator &&other) { + data_ = other.data_; + return *this; + } + + bool operator==(const VectorIterator &other) const { + return data_ == other.data_; + } + + bool operator!=(const VectorIterator &other) const { + return data_ != other.data_; + } + + ptrdiff_t operator-(const VectorIterator &other) const { + return (data_ - other.data_) / IndirectHelper<T>::element_stride; + } + + typename super_type::value_type operator *() const { + return IndirectHelper<T>::Read(data_, 0); + } + + typename super_type::value_type operator->() const { + return IndirectHelper<T>::Read(data_, 0); + } + + VectorIterator &operator++() { + data_ += IndirectHelper<T>::element_stride; + return *this; + } + + VectorIterator operator++(int) { + VectorIterator temp(data_, 0); + data_ += IndirectHelper<T>::element_stride; + return temp; + } + + VectorIterator operator+(const uoffset_t &offset) { + return VectorIterator(data_ + offset * IndirectHelper<T>::element_stride, 0); + } + + VectorIterator& operator+=(const uoffset_t &offset) { + data_ += offset * IndirectHelper<T>::element_stride; + return *this; + } + + VectorIterator &operator--() { + data_ -= IndirectHelper<T>::element_stride; + return *this; + } + + VectorIterator operator--(int) { + VectorIterator temp(data_, 0); + data_ -= IndirectHelper<T>::element_stride; + return temp; + } + + VectorIterator operator-(const uoffset_t &offset) { + return VectorIterator(data_ - offset * IndirectHelper<T>::element_stride, 0); + } + + VectorIterator& operator-=(const uoffset_t &offset) { + data_ -= offset * IndirectHelper<T>::element_stride; + return *this; + } + +private: + Iter data_; +}; + +// This is used as a helper type for accessing vectors. +// Vector::data() assumes the vector elements start after the length field. +template<typename T, typename Iter> class Vector { +public: + typedef VectorIterator<T, typename IndirectHelper<T>::mutable_return_type, Iter> + iterator; + typedef VectorIterator<T, typename IndirectHelper<T>::return_type, Iter> + const_iterator; + + Vector(Iter data): + data_(data) + {} + + uoffset_t size() const { return EndianScalar(extractValue<uoffset_t>(data_)); } + + // Deprecated: use size(). Here for backwards compatibility. + uoffset_t Length() const { return size(); } + + typedef typename IndirectHelper<T>::return_type return_type; + typedef typename IndirectHelper<T>::mutable_return_type mutable_return_type; + + return_type Get(uoffset_t i) const { + assert(i < size()); + return IndirectHelper<T>::Read(Data(), i); + } + + return_type operator[](uoffset_t i) const { return Get(i); } + + // If this is a Vector of enums, T will be its storage type, not the enum + // type. This function makes it convenient to retrieve value with enum + // type E. + template<typename E> E GetEnum(uoffset_t i) const { + return static_cast<E>(Get(i)); + } + + const Iter GetStructFromOffset(size_t o) const { + return Data() + o; + } + + iterator begin() { return iterator(Data(), 0); } + const_iterator begin() const { return const_iterator(Data(), 0); } + + iterator end() { return iterator(Data(), size()); } + const_iterator end() const { return const_iterator(Data(), size()); } + + // The raw data in little endian format. Use with care. + const Iter Data() const { + return data_ + sizeof(uoffset_t); + } + + Iter Data() { + return data_ + sizeof(uoffset_t); + } + + template<typename K> return_type LookupByKey(K key) const { + auto search_result = std::lower_bound(begin(), end(), key, KeyCompare<K>); + + if (search_result == end() || (*search_result)->KeyCompareWithValue(key) != 0) { + return std::nullopt; // Key not found. + } + + return *search_result; + } + + operator Iter() const + { + return data_; + } + +protected: + Iter data_; + +private: + template<typename K> static int KeyCompare(const return_type& ap, const K& bp) { + return ap->KeyCompareWithValue(bp) < 0; + } +}; + +// Represent a vector much like the template above, but in this case we +// don't know what the element types are (used with reflection.h). +template <typename Iter> +class VectorOfAny { +public: + VectorOfAny(Iter data): + data_(data) + {} + + uoffset_t size() const { return EndianScalar(extractValue<uoffset_t>(data_)); } + + const Iter Data() const { + return data_; + } + Iter Data() { + return data_; + } +protected: + + Iter data_; +}; + +// Convenient helper function to get the length of any vector, regardless +// of wether it is null or not (the field is not set). +template<typename T, typename Iter> static inline size_t VectorLength(const std::optional<Vector<T, Iter>> &v) { + return v ? v->Length() : 0; +} + +template <typename Iter> struct String : public Vector<char, Iter> { + using Vector<char,Iter>::Vector; + using Vector<char,Iter>::data_; + + std::string str() const { + if (hasContiguous(data_, sizeof(uoffset_t) + this->Length())) + return std::string(reinterpret_cast<const char*>(getRawPointer(data_)) + sizeof(uoffset_t), this->Length()); + return std::string(this->begin(), this->begin() + this->Length()); } + + bool operator <(const String &o) const { + return str() < o.str(); + } +}; + +// Converts a Field ID to a virtual table offset. +inline voffset_t FieldIndexToOffset(voffset_t field_id) { + // Should correspond to what EndTable() below builds up. + const int fixed_fields = 2; // Vtable size and Object Size. + return static_cast<voffset_t>((field_id + fixed_fields) * sizeof(voffset_t)); +} + +/// @endcond + +/// @cond FLATBUFFERS_INTERNAL +template<typename T, typename Iter> std::optional<T> GetMutableRoot(Iter begin) { + flatbuffers::EndianCheck(); + return T(begin + EndianScalar(extractValue<uoffset_t>(begin))); +} + +template<typename T, typename Iter> std::optional<T> GetRoot(Iter begin) { + return GetMutableRoot<T, Iter>(begin); +} + +template<typename T, typename Iter> std::optional<T> GetSizePrefixedRoot(Iter buf) { + return GetRoot<T, Iter>(buf + sizeof(uoffset_t)); +} + +// Helper to see if the identifier in a buffer has the expected value. + +template <typename Iter> inline bool BufferHasIdentifier(const Iter& buf, const char *identifier) { + return std::equal( + identifier, + identifier + std::min(std::strlen(identifier) + 1, static_cast<std::size_t>(FLATBUFFERS_FILE_IDENTIFIER_LENGTH)), + buf + sizeof(uoffset_t)); +} + +// Helper class to verify the integrity of a FlatBuffer +template <typename Iter> +class Verifier FLATBUFFERS_FINAL_CLASS { + public: + Verifier(const Iter& buf, size_t buf_len, size_t _max_depth = 64, + size_t _max_tables = 1000000) + : buf_(buf), end_(buf + buf_len), depth_(0), max_depth_(_max_depth), + num_tables_(0), max_tables_(_max_tables) + #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE + , upper_bound_(buf) + #endif + {} + + // Central location where any verification failures register. + bool Check(bool ok) const { + #ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE + assert(ok); + #endif + #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE + if (!ok) + upper_bound_ = buf_; + #endif + return ok; + } + + // Verify any range within the buffer. + bool Verify(const Iter& elem, size_t elem_len) const { + #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE + auto upper_bound = elem + elem_len; + if (upper_bound_ < upper_bound) + upper_bound_ = upper_bound; + #endif + return Check(elem_len <= (size_t) (end_ - buf_) && + elem >= buf_ && + elem <= end_ - elem_len); + } + + // Verify a range indicated by sizeof(T). + template<typename T> bool Verify(const Iter& elem) const { + return Verify(elem, sizeof(T)); + } + + template<typename T> bool VerifyTable(const std::optional<T>& table) { + return !table || table->Verify(*this); + } + + template<typename T> bool Verify(const std::optional<Vector<T, Iter>>& vec) const { + Iter end; + return !vec || + VerifyVector(static_cast<Iter>(*vec), sizeof(T), + &end); + } + + template<typename T> bool Verify(const std::optional<Vector<const T, Iter>>& vec) const { + return Verify(*reinterpret_cast<const std::optional<Vector<T, Iter>> *>(&vec)); + } + + bool Verify(const std::optional<String<Iter>>& str) const { + Iter end; + return !str || + (VerifyVector(static_cast<Iter>(*str), 1, &end) && + Verify(end, 1) && // Must have terminator + Check(*end == '\0')); // Terminating byte must be 0. + } + + // Common code between vectors and strings. + bool VerifyVector(const Iter& vec, size_t elem_size, + Iter *end) const { + // Check we can read the size field. + if (!Verify<uoffset_t>(vec)) return false; + // Check the whole array. If this is a string, the byte past the array + // must be 0. + auto size = ReadScalar<uoffset_t>(vec); + auto max_elems = FLATBUFFERS_MAX_BUFFER_SIZE / elem_size; + if (!Check(size < max_elems)) + return false; // Protect against byte_size overflowing. + auto byte_size = sizeof(size) + elem_size * size; + *end = vec + byte_size; + return Verify(vec, byte_size); + } + + // Special case for string contents, after the above has been called. + bool VerifyVectorOfStrings(const std::optional<Vector<Offset<String<Iter>>, Iter>>& vec) const { + if (vec) { + for (uoffset_t i = 0; i < vec->size(); i++) { + if (!Verify(vec->Get(i))) return false; + } + } + return true; + } + + // Special case for table contents, after the above has been called. + template<typename T> bool VerifyVectorOfTables(const std::optional<Vector<Offset<T>, Iter>>& vec) { + if (vec) { + for (uoffset_t i = 0; i < vec->size(); i++) { + if (!vec->Get(i)->Verify(*this)) return false; + } + } + return true; + } + + template<typename T> bool VerifyBufferFromStart(const char *identifier, + const Iter& start) { + if (identifier && + (static_cast<std::size_t>(end_ - start) < 2 * sizeof(flatbuffers_iter::uoffset_t) || + !BufferHasIdentifier(start, identifier))) { + return false; + } + + // Call T::Verify, which must be in the generated code for this type. + return Verify<uoffset_t>(start) && + T(start + ReadScalar<uoffset_t>(start)). + Verify(*this) + #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE + && GetComputedSize() + #endif + ; + } + + // Verify this whole buffer, starting with root type T. + template<typename T> bool VerifyBuffer(const char *identifier) { + return VerifyBufferFromStart<T>(identifier, buf_); + } + + template<typename T> bool VerifySizePrefixedBuffer(const char *identifier) { + return Verify<uoffset_t>(buf_) && + ReadScalar<uoffset_t>(buf_) == end_ - buf_ - sizeof(uoffset_t) && + VerifyBufferFromStart<T>(identifier, buf_ + sizeof(uoffset_t)); + } + + // Called at the start of a table to increase counters measuring data + // structure depth and amount, and possibly bails out with false if + // limits set by the constructor have been hit. Needs to be balanced + // with EndTable(). + bool VerifyComplexity() { + depth_++; + num_tables_++; + return Check(depth_ <= max_depth_ && num_tables_ <= max_tables_); + } + + // Called at the end of a table to pop the depth count. + bool EndTable() { + depth_--; + return true; + } + + #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE + // Returns the message size in bytes + size_t GetComputedSize() const { + uintptr_t size = upper_bound_ - buf_; + // Align the size to uoffset_t + size = (size - 1 + sizeof(uoffset_t)) & ~(sizeof(uoffset_t) - 1); + return (buf_ + size > end_) ? 0 : size; + } + #endif + + private: + const Iter buf_; + const Iter end_; + size_t depth_; + size_t max_depth_; + size_t num_tables_; + size_t max_tables_; +#ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE + mutable const Iter upper_bound_; +#endif +}; + +// "structs" are flat structures that do not have an offset table, thus +// always have all members present and do not support forwards/backwards +// compatible extensions. +template <typename Iter> +class Struct FLATBUFFERS_FINAL_CLASS { + public: + template<typename T> T GetField(uoffset_t o) const { + return ReadScalar<T>(data_ + o); + } + + template<typename T> T GetStruct(uoffset_t o) const { + return T(data_ + o); + } + + private: + Iter data_; +}; + +// "tables" use an offset table (possibly shared) that allows fields to be +// omitted and added at will, but uses an extra indirection to read. +template<typename Iter> +class Table { + public: + Table(Iter data): data_(data) {} + + const Iter GetVTable() const { + return data_ - ReadScalar<soffset_t>(data_); + } + + // This gets the field offset for any of the functions below it, or 0 + // if the field was not present. + voffset_t GetOptionalFieldOffset(voffset_t field) const { + // The vtable offset is always at the start. + auto vtable = GetVTable(); + // The first element is the size of the vtable (fields + type id + itself). + auto vtsize = ReadScalar<voffset_t>(vtable); + // If the field we're accessing is outside the vtable, we're reading older + // data, so it's the same as if the offset was 0 (not present). + return field < vtsize ? ReadScalar<voffset_t>(vtable + field) : 0; + } + + template<typename T> T GetField(voffset_t field, T defaultval) const { + auto field_offset = GetOptionalFieldOffset(field); + return field_offset ? ReadScalar<T>(data_ + field_offset) : defaultval; + } + + template<typename P> std::optional<P> GetPointer(voffset_t field) { + auto field_offset = GetOptionalFieldOffset(field); + auto p = data_ + field_offset; + return field_offset ? std::optional<P>(P(p + ReadScalar<uoffset_t>(p))) : std::nullopt; + } + + template<typename P> std::optional<P> GetPointer(voffset_t field) const { + return const_cast<Table *>(this)->template GetPointer<P>(field); + } + + template<typename P> P GetStruct(voffset_t field) const { + auto field_offset = GetOptionalFieldOffset(field); + auto p = data_ + field_offset; + return extractValue<P>(p); + } + + bool CheckField(voffset_t field) const { + return GetOptionalFieldOffset(field) != 0; + } + + // Verify the vtable of this table. + // Call this once per table, followed by VerifyField once per field. + bool VerifyTableStart(Verifier<Iter> &verifier) const { + // Check the vtable offset. + if (!verifier.template Verify<soffset_t>(data_)) return false; + auto vtable = GetVTable(); + // Check the vtable size field, then check vtable fits in its entirety. + return verifier.VerifyComplexity() && + verifier.template Verify<voffset_t>(vtable) && + (ReadScalar<voffset_t>(vtable) & (sizeof(voffset_t) - 1)) == 0 && + verifier.Verify(vtable, ReadScalar<voffset_t>(vtable)); + } + + // Verify a particular field. + template<typename T> bool VerifyField(const Verifier<Iter> &verifier, + voffset_t field) const { + // Calling GetOptionalFieldOffset should be safe now thanks to + // VerifyTable(). + auto field_offset = GetOptionalFieldOffset(field); + // Check the actual field. + return !field_offset || verifier.template Verify<T>(data_ + field_offset); + } + + // VerifyField for required fields. + template<typename T> bool VerifyFieldRequired(const Verifier<Iter> &verifier, + voffset_t field) const { + auto field_offset = GetOptionalFieldOffset(field); + return verifier.Check(field_offset != 0) && + verifier.template Verify<T>(data_ + field_offset); + } + + private: + Iter data_; +}; +/// @endcond +} // namespace flatbuffers_iter +} // namespace maps +} // namespace yandex + +#endif // FLATBUFFERS_H_ diff --git a/contrib/libs/flatbuffers/include/flatbuffers/idl.h b/contrib/libs/flatbuffers/include/flatbuffers/idl.h index 6695bfab1e..a82ff8a694 100644 --- a/contrib/libs/flatbuffers/include/flatbuffers/idl.h +++ b/contrib/libs/flatbuffers/include/flatbuffers/idl.h @@ -1131,15 +1131,15 @@ extern std::string GenerateFBS(const Parser &parser, extern bool GenerateFBS(const Parser &parser, const std::string &path, const std::string &file_name); -// Generate a C++ header for reading with templated file iterator from -// the definitions in the Parser object. -// See idl_gen_cpp_yandex_maps_iter.cpp. -extern std::string GenerateCPPYandexMapsIter(const Parser &parser, - const std::string &include_guard_ident); -extern bool GenerateCPPYandexMapsIter(const Parser &parser, - const std::string &path, - const std::string &file_name); - +// Generate a C++ header for reading with templated file iterator from +// the definitions in the Parser object. +// See idl_gen_cpp_yandex_maps_iter.cpp. +extern std::string GenerateCPPYandexMapsIter(const Parser &parser, + const std::string &include_guard_ident); +extern bool GenerateCPPYandexMapsIter(const Parser &parser, + const std::string &path, + const std::string &file_name); + // Generate a make rule for the generated TypeScript code. // See idl_gen_ts.cpp. extern std::string TSMakeRule(const Parser &parser, const std::string &path, diff --git a/contrib/libs/zlib/ya.make b/contrib/libs/zlib/ya.make index ba085df337..ced6573475 100644 --- a/contrib/libs/zlib/ya.make +++ b/contrib/libs/zlib/ya.make @@ -23,7 +23,7 @@ ADDINCL( NO_COMPILER_WARNINGS() -NO_RUNTIME() +NO_RUNTIME() SRCS( adler32.c diff --git a/contrib/libs/zlib/zconf.h b/contrib/libs/zlib/zconf.h index c39dd79ab5..b73be42ba5 100644 --- a/contrib/libs/zlib/zconf.h +++ b/contrib/libs/zlib/zconf.h @@ -373,13 +373,13 @@ # endif #endif -#if !defined(WINDOWS) && !defined(WIN32) && !defined(__BEOS__) -# ifdef ZLIB_DLL -# define ZEXPORT __attribute__((visibility("default"))) -# define ZEXPORTVA __attribute__((visibility("default"))) -# endif -#endif - +#if !defined(WINDOWS) && !defined(WIN32) && !defined(__BEOS__) +# ifdef ZLIB_DLL +# define ZEXPORT __attribute__((visibility("default"))) +# define ZEXPORTVA __attribute__((visibility("default"))) +# endif +#endif + #ifndef ZEXTERN # define ZEXTERN extern #endif diff --git a/contrib/restricted/boost/boost/regex/v4/instances.hpp b/contrib/restricted/boost/boost/regex/v4/instances.hpp index cedeb1c179..d453ea5c66 100644 --- a/contrib/restricted/boost/boost/regex/v4/instances.hpp +++ b/contrib/restricted/boost/boost/regex/v4/instances.hpp @@ -34,7 +34,7 @@ namespace boost{ #endif #ifndef BOOST_REGEX_TRAITS_T -template struct BOOST_REGEX_DECL boost::regex_traits<BOOST_REGEX_CHAR_T>; +template struct BOOST_REGEX_DECL boost::regex_traits<BOOST_REGEX_CHAR_T>; # define BOOST_REGEX_TRAITS_T , boost::regex_traits<BOOST_REGEX_CHAR_T > #endif diff --git a/contrib/restricted/boost/boost_common.inc b/contrib/restricted/boost/boost_common.inc index d9bd983d8c..892bae5b39 100644 --- a/contrib/restricted/boost/boost_common.inc +++ b/contrib/restricted/boost/boost_common.inc @@ -17,24 +17,24 @@ ADDINCL( # XXX: fix selective checkout SRCDIR(${BOOST_ROOT}/boost) -IF (DYNAMIC_BOOST) - CFLAGS( - -DBOOST_ATOMIC_DYN_LINK=1 - -DBOOST_All_DYN_LINK=1 - -DBOOST_CHRONO_DYN_LINK=1 - -DBOOST_SYSTEM_DYN_LINK=1 - -DBOOST_TIMER_DYN_LINK=1 - ) -ELSE() - CFLAGS( - -DBOOST_ATOMIC_STATIC_LINK=1 - -DBOOST_All_STATIC_LINK=1 - -DBOOST_CHRONO_STATIC_LINK=1 - -DBOOST_SYSTEM_STATIC_LINK=1 - -DBOOST_TIMER_STATIC_LINK=1 - ) -ENDIF() - +IF (DYNAMIC_BOOST) + CFLAGS( + -DBOOST_ATOMIC_DYN_LINK=1 + -DBOOST_All_DYN_LINK=1 + -DBOOST_CHRONO_DYN_LINK=1 + -DBOOST_SYSTEM_DYN_LINK=1 + -DBOOST_TIMER_DYN_LINK=1 + ) +ELSE() + CFLAGS( + -DBOOST_ATOMIC_STATIC_LINK=1 + -DBOOST_All_STATIC_LINK=1 + -DBOOST_CHRONO_STATIC_LINK=1 + -DBOOST_SYSTEM_STATIC_LINK=1 + -DBOOST_TIMER_STATIC_LINK=1 + ) +ENDIF() + CFLAGS( -DBOOST_ALL_NO_LIB=1 -DBOOST_ATOMIC_SOURCE diff --git a/contrib/restricted/boost/libs/container/src/alloc_lib.c b/contrib/restricted/boost/libs/container/src/alloc_lib.c index e70dd5103d..077768b946 100644 --- a/contrib/restricted/boost/libs/container/src/alloc_lib.c +++ b/contrib/restricted/boost/libs/container/src/alloc_lib.c @@ -1,27 +1,27 @@ -////////////////////////////////////////////////////////////////////////////// -// -// (C) Copyright Ion Gaztanaga 2012-2013. Distributed under the Boost -// Software License, Version 1.0. (See accompanying file -// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -// -// See http://www.boost.org/libs/container for documentation. -// -////////////////////////////////////////////////////////////////////////////// - - -#define DLMALLOC_VERSION 286 - -#ifndef DLMALLOC_VERSION - #error "DLMALLOC_VERSION undefined" -#endif - -#ifdef __VXWORKS__ -// no sbrk() in VxWorks, configure dlmalloc to use only mmap() -#define HAVE_MORECORE 0 -#endif - -#if DLMALLOC_VERSION == 286 - #include "dlmalloc_ext_2_8_6.c" -#else - #error "Unsupported boost_cont_VERSION version" +////////////////////////////////////////////////////////////////////////////// +// +// (C) Copyright Ion Gaztanaga 2012-2013. Distributed under the Boost +// Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) +// +// See http://www.boost.org/libs/container for documentation. +// +////////////////////////////////////////////////////////////////////////////// + + +#define DLMALLOC_VERSION 286 + +#ifndef DLMALLOC_VERSION + #error "DLMALLOC_VERSION undefined" +#endif + +#ifdef __VXWORKS__ +// no sbrk() in VxWorks, configure dlmalloc to use only mmap() +#define HAVE_MORECORE 0 #endif + +#if DLMALLOC_VERSION == 286 + #include "dlmalloc_ext_2_8_6.c" +#else + #error "Unsupported boost_cont_VERSION version" +#endif diff --git a/contrib/restricted/boost/libs/container/src/dlmalloc.cpp b/contrib/restricted/boost/libs/container/src/dlmalloc.cpp index a8dfc15e99..6ab6de3a53 100644 --- a/contrib/restricted/boost/libs/container/src/dlmalloc.cpp +++ b/contrib/restricted/boost/libs/container/src/dlmalloc.cpp @@ -1,108 +1,108 @@ -////////////////////////////////////////////////////////////////////////////// -// -// (C) Copyright Ion Gaztanaga 2012-2013. Distributed under the Boost -// Software License, Version 1.0. (See accompanying file -// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -// -// See http://www.boost.org/libs/container for documentation. -// -////////////////////////////////////////////////////////////////////////////// - -#define BOOST_CONTAINER_SOURCE -#include <boost/container/detail/dlmalloc.hpp> - -namespace boost{ -namespace container{ - -BOOST_CONTAINER_DECL size_t dlmalloc_size(const void *p) -{ return boost_cont_size(p); } - -BOOST_CONTAINER_DECL void* dlmalloc_malloc(size_t bytes) -{ return boost_cont_malloc(bytes); } - -BOOST_CONTAINER_DECL void dlmalloc_free(void* mem) -{ return boost_cont_free(mem); } - -BOOST_CONTAINER_DECL void* dlmalloc_memalign(size_t bytes, size_t alignment) -{ return boost_cont_memalign(bytes, alignment); } - -BOOST_CONTAINER_DECL int dlmalloc_multialloc_nodes - (size_t n_elements, size_t elem_size, size_t contiguous_elements, boost_cont_memchain *pchain) -{ return boost_cont_multialloc_nodes(n_elements, elem_size, contiguous_elements, pchain); } - -BOOST_CONTAINER_DECL int dlmalloc_multialloc_arrays - (size_t n_elements, const size_t *sizes, size_t sizeof_element, size_t contiguous_elements, boost_cont_memchain *pchain) -{ return boost_cont_multialloc_arrays(n_elements, sizes, sizeof_element, contiguous_elements, pchain); } - -BOOST_CONTAINER_DECL void dlmalloc_multidealloc(boost_cont_memchain *pchain) -{ return boost_cont_multidealloc(pchain); } - -BOOST_CONTAINER_DECL size_t dlmalloc_footprint() -{ return boost_cont_footprint(); } - -BOOST_CONTAINER_DECL size_t dlmalloc_allocated_memory() -{ return boost_cont_allocated_memory(); } - -BOOST_CONTAINER_DECL size_t dlmalloc_chunksize(const void *p) -{ return boost_cont_chunksize(p); } - -BOOST_CONTAINER_DECL int dlmalloc_all_deallocated() -{ return boost_cont_all_deallocated(); } - -BOOST_CONTAINER_DECL boost_cont_malloc_stats_t dlmalloc_malloc_stats() -{ return boost_cont_malloc_stats(); } - -BOOST_CONTAINER_DECL size_t dlmalloc_in_use_memory() -{ return boost_cont_in_use_memory(); } - -BOOST_CONTAINER_DECL int dlmalloc_trim(size_t pad) -{ return boost_cont_trim(pad); } - -BOOST_CONTAINER_DECL int dlmalloc_mallopt(int parameter_number, int parameter_value) -{ return boost_cont_mallopt(parameter_number, parameter_value); } - -BOOST_CONTAINER_DECL int dlmalloc_grow - (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received) -{ return boost_cont_grow(oldmem, minbytes, maxbytes, received); } - -BOOST_CONTAINER_DECL int dlmalloc_shrink - (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received, int do_commit) -{ return boost_cont_shrink(oldmem, minbytes, maxbytes, received, do_commit); } - -BOOST_CONTAINER_DECL void* dlmalloc_alloc - (size_t minbytes, size_t preferred_bytes, size_t *received_bytes) -{ return boost_cont_alloc(minbytes, preferred_bytes, received_bytes); } - -BOOST_CONTAINER_DECL int dlmalloc_malloc_check() -{ return boost_cont_malloc_check(); } - -BOOST_CONTAINER_DECL boost_cont_command_ret_t dlmalloc_allocation_command - ( allocation_type command - , size_t sizeof_object - , size_t limit_objects - , size_t preferred_objects - , size_t *received_objects - , void *reuse_ptr - ) -{ return boost_cont_allocation_command(command, sizeof_object, limit_objects, preferred_objects, received_objects, reuse_ptr); } - -BOOST_CONTAINER_DECL void *dlmalloc_sync_create() -{ return boost_cont_sync_create(); } - -BOOST_CONTAINER_DECL void dlmalloc_sync_destroy(void *sync) -{ return boost_cont_sync_destroy(sync); } - -BOOST_CONTAINER_DECL bool dlmalloc_sync_lock(void *sync) -{ return boost_cont_sync_lock(sync) != 0; } - -BOOST_CONTAINER_DECL void dlmalloc_sync_unlock(void *sync) -{ return boost_cont_sync_unlock(sync); } - -BOOST_CONTAINER_DECL bool dlmalloc_global_sync_lock() -{ return boost_cont_global_sync_lock() != 0; } - -BOOST_CONTAINER_DECL void dlmalloc_global_sync_unlock() -{ return boost_cont_global_sync_unlock(); } - -} //namespace container{ -} //namespace boost{ +////////////////////////////////////////////////////////////////////////////// +// +// (C) Copyright Ion Gaztanaga 2012-2013. Distributed under the Boost +// Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) +// +// See http://www.boost.org/libs/container for documentation. +// +////////////////////////////////////////////////////////////////////////////// + +#define BOOST_CONTAINER_SOURCE +#include <boost/container/detail/dlmalloc.hpp> + +namespace boost{ +namespace container{ + +BOOST_CONTAINER_DECL size_t dlmalloc_size(const void *p) +{ return boost_cont_size(p); } + +BOOST_CONTAINER_DECL void* dlmalloc_malloc(size_t bytes) +{ return boost_cont_malloc(bytes); } + +BOOST_CONTAINER_DECL void dlmalloc_free(void* mem) +{ return boost_cont_free(mem); } + +BOOST_CONTAINER_DECL void* dlmalloc_memalign(size_t bytes, size_t alignment) +{ return boost_cont_memalign(bytes, alignment); } + +BOOST_CONTAINER_DECL int dlmalloc_multialloc_nodes + (size_t n_elements, size_t elem_size, size_t contiguous_elements, boost_cont_memchain *pchain) +{ return boost_cont_multialloc_nodes(n_elements, elem_size, contiguous_elements, pchain); } + +BOOST_CONTAINER_DECL int dlmalloc_multialloc_arrays + (size_t n_elements, const size_t *sizes, size_t sizeof_element, size_t contiguous_elements, boost_cont_memchain *pchain) +{ return boost_cont_multialloc_arrays(n_elements, sizes, sizeof_element, contiguous_elements, pchain); } + +BOOST_CONTAINER_DECL void dlmalloc_multidealloc(boost_cont_memchain *pchain) +{ return boost_cont_multidealloc(pchain); } + +BOOST_CONTAINER_DECL size_t dlmalloc_footprint() +{ return boost_cont_footprint(); } + +BOOST_CONTAINER_DECL size_t dlmalloc_allocated_memory() +{ return boost_cont_allocated_memory(); } + +BOOST_CONTAINER_DECL size_t dlmalloc_chunksize(const void *p) +{ return boost_cont_chunksize(p); } + +BOOST_CONTAINER_DECL int dlmalloc_all_deallocated() +{ return boost_cont_all_deallocated(); } + +BOOST_CONTAINER_DECL boost_cont_malloc_stats_t dlmalloc_malloc_stats() +{ return boost_cont_malloc_stats(); } + +BOOST_CONTAINER_DECL size_t dlmalloc_in_use_memory() +{ return boost_cont_in_use_memory(); } + +BOOST_CONTAINER_DECL int dlmalloc_trim(size_t pad) +{ return boost_cont_trim(pad); } + +BOOST_CONTAINER_DECL int dlmalloc_mallopt(int parameter_number, int parameter_value) +{ return boost_cont_mallopt(parameter_number, parameter_value); } + +BOOST_CONTAINER_DECL int dlmalloc_grow + (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received) +{ return boost_cont_grow(oldmem, minbytes, maxbytes, received); } + +BOOST_CONTAINER_DECL int dlmalloc_shrink + (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received, int do_commit) +{ return boost_cont_shrink(oldmem, minbytes, maxbytes, received, do_commit); } + +BOOST_CONTAINER_DECL void* dlmalloc_alloc + (size_t minbytes, size_t preferred_bytes, size_t *received_bytes) +{ return boost_cont_alloc(minbytes, preferred_bytes, received_bytes); } + +BOOST_CONTAINER_DECL int dlmalloc_malloc_check() +{ return boost_cont_malloc_check(); } + +BOOST_CONTAINER_DECL boost_cont_command_ret_t dlmalloc_allocation_command + ( allocation_type command + , size_t sizeof_object + , size_t limit_objects + , size_t preferred_objects + , size_t *received_objects + , void *reuse_ptr + ) +{ return boost_cont_allocation_command(command, sizeof_object, limit_objects, preferred_objects, received_objects, reuse_ptr); } + +BOOST_CONTAINER_DECL void *dlmalloc_sync_create() +{ return boost_cont_sync_create(); } + +BOOST_CONTAINER_DECL void dlmalloc_sync_destroy(void *sync) +{ return boost_cont_sync_destroy(sync); } + +BOOST_CONTAINER_DECL bool dlmalloc_sync_lock(void *sync) +{ return boost_cont_sync_lock(sync) != 0; } + +BOOST_CONTAINER_DECL void dlmalloc_sync_unlock(void *sync) +{ return boost_cont_sync_unlock(sync); } + +BOOST_CONTAINER_DECL bool dlmalloc_global_sync_lock() +{ return boost_cont_global_sync_lock() != 0; } + +BOOST_CONTAINER_DECL void dlmalloc_global_sync_unlock() +{ return boost_cont_global_sync_unlock(); } + +} //namespace container{ +} //namespace boost{ diff --git a/contrib/restricted/boost/libs/container/src/dlmalloc_2_8_6.c b/contrib/restricted/boost/libs/container/src/dlmalloc_2_8_6.c index 74bd11ec44..bb105b63fb 100644 --- a/contrib/restricted/boost/libs/container/src/dlmalloc_2_8_6.c +++ b/contrib/restricted/boost/libs/container/src/dlmalloc_2_8_6.c @@ -1,6280 +1,6280 @@ -/* - This is a version (aka dlmalloc) of malloc/free/realloc written by - Doug Lea and released to the public domain, as explained at - http://creativecommons.org/publicdomain/zero/1.0/ Send questions, - comments, complaints, performance data, etc to dl@cs.oswego.edu - -* Version 2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea - Note: There may be an updated version of this malloc obtainable at - ftp://gee.cs.oswego.edu/pub/misc/malloc.c - Check before installing! - -* Quickstart - - This library is all in one file to simplify the most common usage: - ftp it, compile it (-O3), and link it into another program. All of - the compile-time options default to reasonable values for use on - most platforms. You might later want to step through various - compile-time and dynamic tuning options. - - For convenience, an include file for code using this malloc is at: - ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.6.h - You don't really need this .h file unless you call functions not - defined in your system include files. The .h file contains only the - excerpts from this file needed for using this malloc on ANSI C/C++ - systems, so long as you haven't changed compile-time options about - naming and tuning parameters. If you do, then you can create your - own malloc.h that does include all settings by cutting at the point - indicated below. Note that you may already by default be using a C - library containing a malloc that is based on some version of this - malloc (for example in linux). You might still want to use the one - in this file to customize settings or to avoid overheads associated - with library versions. - -* Vital statistics: - - Supported pointer/size_t representation: 4 or 8 bytes - size_t MUST be an unsigned type of the same width as - pointers. (If you are using an ancient system that declares - size_t as a signed type, or need it to be a different width - than pointers, you can use a previous release of this malloc - (e.g. 2.7.2) supporting these.) - - Alignment: 8 bytes (minimum) - This suffices for nearly all current machines and C compilers. - However, you can define MALLOC_ALIGNMENT to be wider than this - if necessary (up to 128bytes), at the expense of using more space. - - Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes) - 8 or 16 bytes (if 8byte sizes) - Each malloced chunk has a hidden word of overhead holding size - and status information, and additional cross-check word - if FOOTERS is defined. - - Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead) - 8-byte ptrs: 32 bytes (including overhead) - - Even a request for zero bytes (i.e., malloc(0)) returns a - pointer to something of the minimum allocatable size. - The maximum overhead wastage (i.e., number of extra bytes - allocated than were requested in malloc) is less than or equal - to the minimum size, except for requests >= mmap_threshold that - are serviced via mmap(), where the worst case wastage is about - 32 bytes plus the remainder from a system page (the minimal - mmap unit); typically 4096 or 8192 bytes. - - Security: static-safe; optionally more or less - The "security" of malloc refers to the ability of malicious - code to accentuate the effects of errors (for example, freeing - space that is not currently malloc'ed or overwriting past the - ends of chunks) in code that calls malloc. This malloc - guarantees not to modify any memory locations below the base of - heap, i.e., static variables, even in the presence of usage - errors. The routines additionally detect most improper frees - and reallocs. All this holds as long as the static bookkeeping - for malloc itself is not corrupted by some other means. This - is only one aspect of security -- these checks do not, and - cannot, detect all possible programming errors. - - If FOOTERS is defined nonzero, then each allocated chunk - carries an additional check word to verify that it was malloced - from its space. These check words are the same within each - execution of a program using malloc, but differ across - executions, so externally crafted fake chunks cannot be - freed. This improves security by rejecting frees/reallocs that - could corrupt heap memory, in addition to the checks preventing - writes to statics that are always on. This may further improve - security at the expense of time and space overhead. (Note that - FOOTERS may also be worth using with MSPACES.) - - By default detected errors cause the program to abort (calling - "abort()"). You can override this to instead proceed past - errors by defining PROCEED_ON_ERROR. In this case, a bad free - has no effect, and a malloc that encounters a bad address - caused by user overwrites will ignore the bad address by - dropping pointers and indices to all known memory. This may - be appropriate for programs that should continue if at all - possible in the face of programming errors, although they may - run out of memory because dropped memory is never reclaimed. - - If you don't like either of these options, you can define - CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything - else. And if if you are sure that your program using malloc has - no errors or vulnerabilities, you can define INSECURE to 1, - which might (or might not) provide a small performance improvement. - - It is also possible to limit the maximum total allocatable - space, using malloc_set_footprint_limit. This is not - designed as a security feature in itself (calls to set limits - are not screened or privileged), but may be useful as one - aspect of a secure implementation. - - Thread-safety: NOT thread-safe unless USE_LOCKS defined non-zero - When USE_LOCKS is defined, each public call to malloc, free, - etc is surrounded with a lock. By default, this uses a plain - pthread mutex, win32 critical section, or a spin-lock if if - available for the platform and not disabled by setting - USE_SPIN_LOCKS=0. However, if USE_RECURSIVE_LOCKS is defined, - recursive versions are used instead (which are not required for - base functionality but may be needed in layered extensions). - Using a global lock is not especially fast, and can be a major - bottleneck. It is designed only to provide minimal protection - in concurrent environments, and to provide a basis for - extensions. If you are using malloc in a concurrent program, - consider instead using nedmalloc - (http://www.nedprod.com/programs/portable/nedmalloc/) or - ptmalloc (See http://www.malloc.de), which are derived from - versions of this malloc. - - System requirements: Any combination of MORECORE and/or MMAP/MUNMAP - This malloc can use unix sbrk or any emulation (invoked using - the CALL_MORECORE macro) and/or mmap/munmap or any emulation - (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system - memory. On most unix systems, it tends to work best if both - MORECORE and MMAP are enabled. On Win32, it uses emulations - based on VirtualAlloc. It also uses common C library functions - like memset. - - Compliance: I believe it is compliant with the Single Unix Specification - (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably - others as well. - -* Overview of algorithms - - This is not the fastest, most space-conserving, most portable, or - most tunable malloc ever written. However it is among the fastest - while also being among the most space-conserving, portable and - tunable. Consistent balance across these factors results in a good - general-purpose allocator for malloc-intensive programs. - - In most ways, this malloc is a best-fit allocator. Generally, it - chooses the best-fitting existing chunk for a request, with ties - broken in approximately least-recently-used order. (This strategy - normally maintains low fragmentation.) However, for requests less - than 256bytes, it deviates from best-fit when there is not an - exactly fitting available chunk by preferring to use space adjacent - to that used for the previous small request, as well as by breaking - ties in approximately most-recently-used order. (These enhance - locality of series of small allocations.) And for very large requests - (>= 256Kb by default), it relies on system memory mapping - facilities, if supported. (This helps avoid carrying around and - possibly fragmenting memory used only for large chunks.) - - All operations (except malloc_stats and mallinfo) have execution - times that are bounded by a constant factor of the number of bits in - a size_t, not counting any clearing in calloc or copying in realloc, - or actions surrounding MORECORE and MMAP that have times - proportional to the number of non-contiguous regions returned by - system allocation routines, which is often just 1. In real-time - applications, you can optionally suppress segment traversals using - NO_SEGMENT_TRAVERSAL, which assures bounded execution even when - system allocators return non-contiguous spaces, at the typical - expense of carrying around more memory and increased fragmentation. - - The implementation is not very modular and seriously overuses - macros. Perhaps someday all C compilers will do as good a job - inlining modular code as can now be done by brute-force expansion, - but now, enough of them seem not to. - - Some compilers issue a lot of warnings about code that is - dead/unreachable only on some platforms, and also about intentional - uses of negation on unsigned types. All known cases of each can be - ignored. - - For a longer but out of date high-level description, see - http://gee.cs.oswego.edu/dl/html/malloc.html - -* MSPACES - If MSPACES is defined, then in addition to malloc, free, etc., - this file also defines mspace_malloc, mspace_free, etc. These - are versions of malloc routines that take an "mspace" argument - obtained using create_mspace, to control all internal bookkeeping. - If ONLY_MSPACES is defined, only these versions are compiled. - So if you would like to use this allocator for only some allocations, - and your system malloc for others, you can compile with - ONLY_MSPACES and then do something like... - static mspace mymspace = create_mspace(0,0); // for example - #define mymalloc(bytes) mspace_malloc(mymspace, bytes) - - (Note: If you only need one instance of an mspace, you can instead - use "USE_DL_PREFIX" to relabel the global malloc.) - - You can similarly create thread-local allocators by storing - mspaces as thread-locals. For example: - static __thread mspace tlms = 0; - void* tlmalloc(size_t bytes) { - if (tlms == 0) tlms = create_mspace(0, 0); - return mspace_malloc(tlms, bytes); - } - void tlfree(void* mem) { mspace_free(tlms, mem); } - - Unless FOOTERS is defined, each mspace is completely independent. - You cannot allocate from one and free to another (although - conformance is only weakly checked, so usage errors are not always - caught). If FOOTERS is defined, then each chunk carries around a tag - indicating its originating mspace, and frees are directed to their - originating spaces. Normally, this requires use of locks. - - ------------------------- Compile-time options --------------------------- - -Be careful in setting #define values for numerical constants of type -size_t. On some systems, literal values are not automatically extended -to size_t precision unless they are explicitly casted. You can also -use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below. - -WIN32 default: defined if _WIN32 defined - Defining WIN32 sets up defaults for MS environment and compilers. - Otherwise defaults are for unix. Beware that there seem to be some - cases where this malloc might not be a pure drop-in replacement for - Win32 malloc: Random-looking failures from Win32 GDI API's (eg; - SetDIBits()) may be due to bugs in some video driver implementations - when pixel buffers are malloc()ed, and the region spans more than - one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb) - default granularity, pixel buffers may straddle virtual allocation - regions more often than when using the Microsoft allocator. You can - avoid this by using VirtualAlloc() and VirtualFree() for all pixel - buffers rather than using malloc(). If this is not possible, - recompile this malloc with a larger DEFAULT_GRANULARITY. Note: - in cases where MSC and gcc (cygwin) are known to differ on WIN32, - conditions use _MSC_VER to distinguish them. - -DLMALLOC_EXPORT default: extern - Defines how public APIs are declared. If you want to export via a - Windows DLL, you might define this as - #define DLMALLOC_EXPORT extern __declspec(dllexport) - If you want a POSIX ELF shared object, you might use - #define DLMALLOC_EXPORT extern __attribute__((visibility("default"))) - -MALLOC_ALIGNMENT default: (size_t)(2 * sizeof(void *)) - Controls the minimum alignment for malloc'ed chunks. It must be a - power of two and at least 8, even on machines for which smaller - alignments would suffice. It may be defined as larger than this - though. Note however that code and data structures are optimized for - the case of 8-byte alignment. - -MSPACES default: 0 (false) - If true, compile in support for independent allocation spaces. - This is only supported if HAVE_MMAP is true. - -ONLY_MSPACES default: 0 (false) - If true, only compile in mspace versions, not regular versions. - -USE_LOCKS default: 0 (false) - Causes each call to each public routine to be surrounded with - pthread or WIN32 mutex lock/unlock. (If set true, this can be - overridden on a per-mspace basis for mspace versions.) If set to a - non-zero value other than 1, locks are used, but their - implementation is left out, so lock functions must be supplied manually, - as described below. - -USE_SPIN_LOCKS default: 1 iff USE_LOCKS and spin locks available - If true, uses custom spin locks for locking. This is currently - supported only gcc >= 4.1, older gccs on x86 platforms, and recent - MS compilers. Otherwise, posix locks or win32 critical sections are - used. - -USE_RECURSIVE_LOCKS default: not defined - If defined nonzero, uses recursive (aka reentrant) locks, otherwise - uses plain mutexes. This is not required for malloc proper, but may - be needed for layered allocators such as nedmalloc. - -LOCK_AT_FORK default: not defined - If defined nonzero, performs pthread_atfork upon initialization - to initialize child lock while holding parent lock. The implementation - assumes that pthread locks (not custom locks) are being used. In other - cases, you may need to customize the implementation. - -FOOTERS default: 0 - If true, provide extra checking and dispatching by placing - information in the footers of allocated chunks. This adds - space and time overhead. - -INSECURE default: 0 - If true, omit checks for usage errors and heap space overwrites. - -USE_DL_PREFIX default: NOT defined - Causes compiler to prefix all public routines with the string 'dl'. - This can be useful when you only want to use this malloc in one part - of a program, using your regular system malloc elsewhere. - -MALLOC_INSPECT_ALL default: NOT defined - If defined, compiles malloc_inspect_all and mspace_inspect_all, that - perform traversal of all heap space. Unless access to these - functions is otherwise restricted, you probably do not want to - include them in secure implementations. - -ABORT default: defined as abort() - Defines how to abort on failed checks. On most systems, a failed - check cannot die with an "assert" or even print an informative - message, because the underlying print routines in turn call malloc, - which will fail again. Generally, the best policy is to simply call - abort(). It's not very useful to do more than this because many - errors due to overwriting will show up as address faults (null, odd - addresses etc) rather than malloc-triggered checks, so will also - abort. Also, most compilers know that abort() does not return, so - can better optimize code conditionally calling it. - -PROCEED_ON_ERROR default: defined as 0 (false) - Controls whether detected bad addresses cause them to bypassed - rather than aborting. If set, detected bad arguments to free and - realloc are ignored. And all bookkeeping information is zeroed out - upon a detected overwrite of freed heap space, thus losing the - ability to ever return it from malloc again, but enabling the - application to proceed. If PROCEED_ON_ERROR is defined, the - static variable malloc_corruption_error_count is compiled in - and can be examined to see if errors have occurred. This option - generates slower code than the default abort policy. - -DEBUG default: NOT defined - The DEBUG setting is mainly intended for people trying to modify - this code or diagnose problems when porting to new platforms. - However, it may also be able to better isolate user errors than just - using runtime checks. The assertions in the check routines spell - out in more detail the assumptions and invariants underlying the - algorithms. The checking is fairly extensive, and will slow down - execution noticeably. Calling malloc_stats or mallinfo with DEBUG - set will attempt to check every non-mmapped allocated and free chunk - in the course of computing the summaries. - -ABORT_ON_ASSERT_FAILURE default: defined as 1 (true) - Debugging assertion failures can be nearly impossible if your - version of the assert macro causes malloc to be called, which will - lead to a cascade of further failures, blowing the runtime stack. - ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), - which will usually make debugging easier. - -MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32 - The action to take before "return 0" when malloc fails to be able to - return memory because there is none available. - -HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES - True if this system supports sbrk or an emulation of it. - -MORECORE default: sbrk - The name of the sbrk-style system routine to call to obtain more - memory. See below for guidance on writing custom MORECORE - functions. The type of the argument to sbrk/MORECORE varies across - systems. It cannot be size_t, because it supports negative - arguments, so it is normally the signed type of the same width as - size_t (sometimes declared as "intptr_t"). It doesn't much matter - though. Internally, we only call it with arguments less than half - the max value of a size_t, which should work across all reasonable - possibilities, although sometimes generating compiler warnings. - -MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE - If true, take advantage of fact that consecutive calls to MORECORE - with positive arguments always return contiguous increasing - addresses. This is true of unix sbrk. It does not hurt too much to - set it true anyway, since malloc copes with non-contiguities. - Setting it false when definitely non-contiguous saves time - and possibly wasted space it would take to discover this though. - -MORECORE_CANNOT_TRIM default: NOT defined - True if MORECORE cannot release space back to the system when given - negative arguments. This is generally necessary only if you are - using a hand-crafted MORECORE function that cannot handle negative - arguments. - -NO_SEGMENT_TRAVERSAL default: 0 - If non-zero, suppresses traversals of memory segments - returned by either MORECORE or CALL_MMAP. This disables - merging of segments that are contiguous, and selectively - releasing them to the OS if unused, but bounds execution times. - -HAVE_MMAP default: 1 (true) - True if this system supports mmap or an emulation of it. If so, and - HAVE_MORECORE is not true, MMAP is used for all system - allocation. If set and HAVE_MORECORE is true as well, MMAP is - primarily used to directly allocate very large blocks. It is also - used as a backup strategy in cases where MORECORE fails to provide - space from system. Note: A single call to MUNMAP is assumed to be - able to unmap memory that may have be allocated using multiple calls - to MMAP, so long as they are adjacent. - -HAVE_MREMAP default: 1 on linux, else 0 - If true realloc() uses mremap() to re-allocate large blocks and - extend or shrink allocation spaces. - -MMAP_CLEARS default: 1 except on WINCE. - True if mmap clears memory so calloc doesn't need to. This is true - for standard unix mmap using /dev/zero and on WIN32 except for WINCE. - -USE_BUILTIN_FFS default: 0 (i.e., not used) - Causes malloc to use the builtin ffs() function to compute indices. - Some compilers may recognize and intrinsify ffs to be faster than the - supplied C version. Also, the case of x86 using gcc is special-cased - to an asm instruction, so is already as fast as it can be, and so - this setting has no effect. Similarly for Win32 under recent MS compilers. - (On most x86s, the asm version is only slightly faster than the C version.) - -malloc_getpagesize default: derive from system includes, or 4096. - The system page size. To the extent possible, this malloc manages - memory from the system in page-size units. This may be (and - usually is) a function rather than a constant. This is ignored - if WIN32, where page size is determined using getSystemInfo during - initialization. - -USE_DEV_RANDOM default: 0 (i.e., not used) - Causes malloc to use /dev/random to initialize secure magic seed for - stamping footers. Otherwise, the current time is used. - -NO_MALLINFO default: 0 - If defined, don't compile "mallinfo". This can be a simple way - of dealing with mismatches between system declarations and - those in this file. - -MALLINFO_FIELD_TYPE default: size_t - The type of the fields in the mallinfo struct. This was originally - defined as "int" in SVID etc, but is more usefully defined as - size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set - -NO_MALLOC_STATS default: 0 - If defined, don't compile "malloc_stats". This avoids calls to - fprintf and bringing in stdio dependencies you might not want. - -REALLOC_ZERO_BYTES_FREES default: not defined - This should be set if a call to realloc with zero bytes should - be the same as a call to free. Some people think it should. Otherwise, - since this malloc returns a unique pointer for malloc(0), so does - realloc(p, 0). - -LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H -LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H -LACKS_STDLIB_H LACKS_SCHED_H LACKS_TIME_H default: NOT defined unless on WIN32 - Define these if your system does not have these header files. - You might need to manually insert some of the declarations they provide. - -DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS, - system_info.dwAllocationGranularity in WIN32, - otherwise 64K. - Also settable using mallopt(M_GRANULARITY, x) - The unit for allocating and deallocating memory from the system. On - most systems with contiguous MORECORE, there is no reason to - make this more than a page. However, systems with MMAP tend to - either require or encourage larger granularities. You can increase - this value to prevent system allocation functions to be called so - often, especially if they are slow. The value must be at least one - page and must be a power of two. Setting to 0 causes initialization - to either page size or win32 region size. (Note: In previous - versions of malloc, the equivalent of this option was called - "TOP_PAD") - -DEFAULT_TRIM_THRESHOLD default: 2MB - Also settable using mallopt(M_TRIM_THRESHOLD, x) - The maximum amount of unused top-most memory to keep before - releasing via malloc_trim in free(). Automatic trimming is mainly - useful in long-lived programs using contiguous MORECORE. Because - trimming via sbrk can be slow on some systems, and can sometimes be - wasteful (in cases where programs immediately afterward allocate - more large chunks) the value should be high enough so that your - overall system performance would improve by releasing this much - memory. As a rough guide, you might set to a value close to the - average size of a process (program) running on your system. - Releasing this much memory would allow such a process to run in - memory. Generally, it is worth tuning trim thresholds when a - program undergoes phases where several large chunks are allocated - and released in ways that can reuse each other's storage, perhaps - mixed with phases where there are no such chunks at all. The trim - value must be greater than page size to have any useful effect. To - disable trimming completely, you can set to MAX_SIZE_T. Note that the trick - some people use of mallocing a huge space and then freeing it at - program startup, in an attempt to reserve system memory, doesn't - have the intended effect under automatic trimming, since that memory - will immediately be returned to the system. - -DEFAULT_MMAP_THRESHOLD default: 256K - Also settable using mallopt(M_MMAP_THRESHOLD, x) - The request size threshold for using MMAP to directly service a - request. Requests of at least this size that cannot be allocated - using already-existing space will be serviced via mmap. (If enough - normal freed space already exists it is used instead.) Using mmap - segregates relatively large chunks of memory so that they can be - individually obtained and released from the host system. A request - serviced through mmap is never reused by any other request (at least - not directly; the system may just so happen to remap successive - requests to the same locations). Segregating space in this way has - the benefits that: Mmapped space can always be individually released - back to the system, which helps keep the system level memory demands - of a long-lived program low. Also, mapped memory doesn't become - `locked' between other chunks, as can happen with normally allocated - chunks, which means that even trimming via malloc_trim would not - release them. However, it has the disadvantage that the space - cannot be reclaimed, consolidated, and then used to service later - requests, as happens with normal chunks. The advantages of mmap - nearly always outweigh disadvantages for "large" chunks, but the - value of "large" may vary across systems. The default is an - empirically derived value that works well in most systems. You can - disable mmap by setting to MAX_SIZE_T. - -MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP - The number of consolidated frees between checks to release - unused segments when freeing. When using non-contiguous segments, - especially with multiple mspaces, checking only for topmost space - doesn't always suffice to trigger trimming. To compensate for this, - free() will, with a period of MAX_RELEASE_CHECK_RATE (or the - current number of segments, if greater) try to release unused - segments to the OS when freeing chunks that result in - consolidation. The best value for this parameter is a compromise - between slowing down frees with relatively costly checks that - rarely trigger versus holding on to unused memory. To effectively - disable, set to MAX_SIZE_T. This may lead to a very slight speed - improvement at the expense of carrying around more memory. -*/ - -/* Version identifier to allow people to support multiple versions */ -#ifndef DLMALLOC_VERSION -#define DLMALLOC_VERSION 20806 -#endif /* DLMALLOC_VERSION */ - -#ifndef DLMALLOC_EXPORT -#define DLMALLOC_EXPORT extern -#endif - -#ifndef WIN32 -#ifdef _WIN32 -#define WIN32 1 -#endif /* _WIN32 */ -#ifdef _WIN32_WCE -#define LACKS_FCNTL_H -#define WIN32 1 -#endif /* _WIN32_WCE */ -#endif /* WIN32 */ -#ifdef WIN32 -#define WIN32_LEAN_AND_MEAN -#include <windows.h> -#include <tchar.h> -#define HAVE_MMAP 1 -#define HAVE_MORECORE 0 -#define LACKS_UNISTD_H -#define LACKS_SYS_PARAM_H -#define LACKS_SYS_MMAN_H -#define LACKS_STRING_H -#define LACKS_STRINGS_H -#define LACKS_SYS_TYPES_H -#define LACKS_ERRNO_H -#define LACKS_SCHED_H -#ifndef MALLOC_FAILURE_ACTION -#define MALLOC_FAILURE_ACTION -#endif /* MALLOC_FAILURE_ACTION */ -#ifndef MMAP_CLEARS -#ifdef _WIN32_WCE /* WINCE reportedly does not clear */ -#define MMAP_CLEARS 0 -#else -#define MMAP_CLEARS 1 -#endif /* _WIN32_WCE */ -#endif /*MMAP_CLEARS */ -#endif /* WIN32 */ - -#if defined(DARWIN) || defined(_DARWIN) -/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ -#ifndef HAVE_MORECORE -#define HAVE_MORECORE 0 -#define HAVE_MMAP 1 -/* OSX allocators provide 16 byte alignment */ -#ifndef MALLOC_ALIGNMENT -#define MALLOC_ALIGNMENT ((size_t)16U) -#endif -#endif /* HAVE_MORECORE */ -#endif /* DARWIN */ - -#ifndef LACKS_SYS_TYPES_H -#include <sys/types.h> /* For size_t */ -#endif /* LACKS_SYS_TYPES_H */ - -/* The maximum possible size_t value has all bits set */ -#define MAX_SIZE_T (~(size_t)0) - -#ifndef USE_LOCKS /* ensure true if spin or recursive locks set */ -#define USE_LOCKS ((defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \ - (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0)) -#endif /* USE_LOCKS */ - -#if USE_LOCKS /* Spin locks for gcc >= 4.1, older gcc on x86, MSC >= 1310 */ -#if ((defined(__GNUC__) && \ - ((__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) || \ - defined(__i386__) || defined(__x86_64__))) || \ - (defined(_MSC_VER) && _MSC_VER>=1310)) -#ifndef USE_SPIN_LOCKS -#define USE_SPIN_LOCKS 1 -#endif /* USE_SPIN_LOCKS */ -#elif USE_SPIN_LOCKS -#error "USE_SPIN_LOCKS defined without implementation" -#endif /* ... locks available... */ -#elif !defined(USE_SPIN_LOCKS) -#define USE_SPIN_LOCKS 0 -#endif /* USE_LOCKS */ - -#ifndef ONLY_MSPACES -#define ONLY_MSPACES 0 -#endif /* ONLY_MSPACES */ -#ifndef MSPACES -#if ONLY_MSPACES -#define MSPACES 1 -#else /* ONLY_MSPACES */ -#define MSPACES 0 -#endif /* ONLY_MSPACES */ -#endif /* MSPACES */ -#ifndef MALLOC_ALIGNMENT -#define MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *))) -#endif /* MALLOC_ALIGNMENT */ -#ifndef FOOTERS -#define FOOTERS 0 -#endif /* FOOTERS */ -#ifndef ABORT -#define ABORT abort() -#endif /* ABORT */ -#ifndef ABORT_ON_ASSERT_FAILURE -#define ABORT_ON_ASSERT_FAILURE 1 -#endif /* ABORT_ON_ASSERT_FAILURE */ -#ifndef PROCEED_ON_ERROR -#define PROCEED_ON_ERROR 0 -#endif /* PROCEED_ON_ERROR */ - -#ifndef INSECURE -#define INSECURE 0 -#endif /* INSECURE */ -#ifndef MALLOC_INSPECT_ALL -#define MALLOC_INSPECT_ALL 0 -#endif /* MALLOC_INSPECT_ALL */ -#ifndef HAVE_MMAP -#define HAVE_MMAP 1 -#endif /* HAVE_MMAP */ -#ifndef MMAP_CLEARS -#define MMAP_CLEARS 1 -#endif /* MMAP_CLEARS */ -#ifndef HAVE_MREMAP -#ifdef linux -#define HAVE_MREMAP 1 -#define _GNU_SOURCE /* Turns on mremap() definition */ -#else /* linux */ -#define HAVE_MREMAP 0 -#endif /* linux */ -#endif /* HAVE_MREMAP */ -#ifndef MALLOC_FAILURE_ACTION -#define MALLOC_FAILURE_ACTION errno = ENOMEM; -#endif /* MALLOC_FAILURE_ACTION */ -#ifndef HAVE_MORECORE -#if ONLY_MSPACES -#define HAVE_MORECORE 0 -#else /* ONLY_MSPACES */ -#define HAVE_MORECORE 1 -#endif /* ONLY_MSPACES */ -#endif /* HAVE_MORECORE */ -#if !HAVE_MORECORE -#define MORECORE_CONTIGUOUS 0 -#else /* !HAVE_MORECORE */ -#define MORECORE_DEFAULT sbrk -#ifndef MORECORE_CONTIGUOUS -#define MORECORE_CONTIGUOUS 1 -#endif /* MORECORE_CONTIGUOUS */ -#endif /* HAVE_MORECORE */ -#ifndef DEFAULT_GRANULARITY -#if (MORECORE_CONTIGUOUS || defined(WIN32)) -#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */ -#else /* MORECORE_CONTIGUOUS */ -#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) -#endif /* MORECORE_CONTIGUOUS */ -#endif /* DEFAULT_GRANULARITY */ -#ifndef DEFAULT_TRIM_THRESHOLD -#ifndef MORECORE_CANNOT_TRIM -#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) -#else /* MORECORE_CANNOT_TRIM */ -#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T -#endif /* MORECORE_CANNOT_TRIM */ -#endif /* DEFAULT_TRIM_THRESHOLD */ -#ifndef DEFAULT_MMAP_THRESHOLD -#if HAVE_MMAP -#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) -#else /* HAVE_MMAP */ -#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T -#endif /* HAVE_MMAP */ -#endif /* DEFAULT_MMAP_THRESHOLD */ -#ifndef MAX_RELEASE_CHECK_RATE -#if HAVE_MMAP -#define MAX_RELEASE_CHECK_RATE 4095 -#else -#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T -#endif /* HAVE_MMAP */ -#endif /* MAX_RELEASE_CHECK_RATE */ -#ifndef USE_BUILTIN_FFS -#define USE_BUILTIN_FFS 0 -#endif /* USE_BUILTIN_FFS */ -#ifndef USE_DEV_RANDOM -#define USE_DEV_RANDOM 0 -#endif /* USE_DEV_RANDOM */ -#ifndef NO_MALLINFO -#define NO_MALLINFO 0 -#endif /* NO_MALLINFO */ -#ifndef MALLINFO_FIELD_TYPE -#define MALLINFO_FIELD_TYPE size_t -#endif /* MALLINFO_FIELD_TYPE */ -#ifndef NO_MALLOC_STATS -#define NO_MALLOC_STATS 0 -#endif /* NO_MALLOC_STATS */ -#ifndef NO_SEGMENT_TRAVERSAL -#define NO_SEGMENT_TRAVERSAL 0 -#endif /* NO_SEGMENT_TRAVERSAL */ - -/* - mallopt tuning options. SVID/XPG defines four standard parameter - numbers for mallopt, normally defined in malloc.h. None of these - are used in this malloc, so setting them has no effect. But this - malloc does support the following options. -*/ - -#define M_TRIM_THRESHOLD (-1) -#define M_GRANULARITY (-2) -#define M_MMAP_THRESHOLD (-3) - -/* ------------------------ Mallinfo declarations ------------------------ */ - -#if !NO_MALLINFO -/* - This version of malloc supports the standard SVID/XPG mallinfo - routine that returns a struct containing usage properties and - statistics. It should work on any system that has a - /usr/include/malloc.h defining struct mallinfo. The main - declaration needed is the mallinfo struct that is returned (by-copy) - by mallinfo(). The malloinfo struct contains a bunch of fields that - are not even meaningful in this version of malloc. These fields are - are instead filled by mallinfo() with other numbers that might be of - interest. - - HAVE_USR_INCLUDE_MALLOC_H should be set if you have a - /usr/include/malloc.h file that includes a declaration of struct - mallinfo. If so, it is included; else a compliant version is - declared below. These must be precisely the same for mallinfo() to - work. The original SVID version of this struct, defined on most - systems with mallinfo, declares all fields as ints. But some others - define as unsigned long. If your system defines the fields using a - type of different width than listed here, you MUST #include your - system version and #define HAVE_USR_INCLUDE_MALLOC_H. -*/ - -/* #define HAVE_USR_INCLUDE_MALLOC_H */ - -#ifdef HAVE_USR_INCLUDE_MALLOC_H -#error #include "/usr/include/malloc.h" -#else /* HAVE_USR_INCLUDE_MALLOC_H */ -#ifndef STRUCT_MALLINFO_DECLARED -/* HP-UX (and others?) redefines mallinfo unless _STRUCT_MALLINFO is defined */ -#define _STRUCT_MALLINFO -#define STRUCT_MALLINFO_DECLARED 1 -struct mallinfo { - MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */ - MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */ - MALLINFO_FIELD_TYPE smblks; /* always 0 */ - MALLINFO_FIELD_TYPE hblks; /* always 0 */ - MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */ - MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */ - MALLINFO_FIELD_TYPE fsmblks; /* always 0 */ - MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ - MALLINFO_FIELD_TYPE fordblks; /* total free space */ - MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ -}; -#endif /* STRUCT_MALLINFO_DECLARED */ -#endif /* HAVE_USR_INCLUDE_MALLOC_H */ -#endif /* NO_MALLINFO */ - -/* - Try to persuade compilers to inline. The most critical functions for - inlining are defined as macros, so these aren't used for them. -*/ - -#ifndef FORCEINLINE - #if defined(__GNUC__) -#define FORCEINLINE __inline __attribute__ ((always_inline)) - #elif defined(_MSC_VER) - #define FORCEINLINE __forceinline - #endif -#endif -#ifndef NOINLINE - #if defined(__GNUC__) - #define NOINLINE __attribute__ ((noinline)) - #elif defined(_MSC_VER) - #define NOINLINE __declspec(noinline) - #else - #define NOINLINE - #endif -#endif - -#ifdef __cplusplus -extern "C" { -#ifndef FORCEINLINE - #define FORCEINLINE inline -#endif -#endif /* __cplusplus */ -#ifndef FORCEINLINE - #define FORCEINLINE -#endif - -#if !ONLY_MSPACES - -/* ------------------- Declarations of public routines ------------------- */ - -#ifndef USE_DL_PREFIX -#define dlcalloc calloc -#define dlfree free -#define dlmalloc malloc -#define dlmemalign memalign -#define dlposix_memalign posix_memalign -#define dlrealloc realloc -#define dlrealloc_in_place realloc_in_place -#define dlvalloc valloc -#define dlpvalloc pvalloc -#define dlmallinfo mallinfo -#define dlmallopt mallopt -#define dlmalloc_trim malloc_trim -#define dlmalloc_stats malloc_stats -#define dlmalloc_usable_size malloc_usable_size -#define dlmalloc_footprint malloc_footprint -#define dlmalloc_max_footprint malloc_max_footprint -#define dlmalloc_footprint_limit malloc_footprint_limit -#define dlmalloc_set_footprint_limit malloc_set_footprint_limit -#define dlmalloc_inspect_all malloc_inspect_all -#define dlindependent_calloc independent_calloc -#define dlindependent_comalloc independent_comalloc -#define dlbulk_free bulk_free -#endif /* USE_DL_PREFIX */ - -/* - malloc(size_t n) - Returns a pointer to a newly allocated chunk of at least n bytes, or - null if no space is available, in which case errno is set to ENOMEM - on ANSI C systems. - - If n is zero, malloc returns a minimum-sized chunk. (The minimum - size is 16 bytes on most 32bit systems, and 32 bytes on 64bit - systems.) Note that size_t is an unsigned type, so calls with - arguments that would be negative if signed are interpreted as - requests for huge amounts of space, which will often fail. The - maximum supported value of n differs across systems, but is in all - cases less than the maximum representable value of a size_t. -*/ -DLMALLOC_EXPORT void* dlmalloc(size_t); - -/* - free(void* p) - Releases the chunk of memory pointed to by p, that had been previously - allocated using malloc or a related routine such as realloc. - It has no effect if p is null. If p was not malloced or already - freed, free(p) will by default cause the current program to abort. -*/ -DLMALLOC_EXPORT void dlfree(void*); - -/* - calloc(size_t n_elements, size_t element_size); - Returns a pointer to n_elements * element_size bytes, with all locations - set to zero. -*/ -DLMALLOC_EXPORT void* dlcalloc(size_t, size_t); - -/* - realloc(void* p, size_t n) - Returns a pointer to a chunk of size n that contains the same data - as does chunk p up to the minimum of (n, p's size) bytes, or null - if no space is available. - - The returned pointer may or may not be the same as p. The algorithm - prefers extending p in most cases when possible, otherwise it - employs the equivalent of a malloc-copy-free sequence. - - If p is null, realloc is equivalent to malloc. - - If space is not available, realloc returns null, errno is set (if on - ANSI) and p is NOT freed. - - if n is for fewer bytes than already held by p, the newly unused - space is lopped off and freed if possible. realloc with a size - argument of zero (re)allocates a minimum-sized chunk. - - The old unix realloc convention of allowing the last-free'd chunk - to be used as an argument to realloc is not supported. -*/ -DLMALLOC_EXPORT void* dlrealloc(void*, size_t); - -/* - realloc_in_place(void* p, size_t n) - Resizes the space allocated for p to size n, only if this can be - done without moving p (i.e., only if there is adjacent space - available if n is greater than p's current allocated size, or n is - less than or equal to p's size). This may be used instead of plain - realloc if an alternative allocation strategy is needed upon failure - to expand space; for example, reallocation of a buffer that must be - memory-aligned or cleared. You can use realloc_in_place to trigger - these alternatives only when needed. - - Returns p if successful; otherwise null. -*/ -DLMALLOC_EXPORT void* dlrealloc_in_place(void*, size_t); - -/* - memalign(size_t alignment, size_t n); - Returns a pointer to a newly allocated chunk of n bytes, aligned - in accord with the alignment argument. - - The alignment argument should be a power of two. If the argument is - not a power of two, the nearest greater power is used. - 8-byte alignment is guaranteed by normal malloc calls, so don't - bother calling memalign with an argument of 8 or less. - - Overreliance on memalign is a sure way to fragment space. -*/ -DLMALLOC_EXPORT void* dlmemalign(size_t, size_t); - -/* - int posix_memalign(void** pp, size_t alignment, size_t n); - Allocates a chunk of n bytes, aligned in accord with the alignment - argument. Differs from memalign only in that it (1) assigns the - allocated memory to *pp rather than returning it, (2) fails and - returns EINVAL if the alignment is not a power of two (3) fails and - returns ENOMEM if memory cannot be allocated. -*/ -DLMALLOC_EXPORT int dlposix_memalign(void**, size_t, size_t); - -/* - valloc(size_t n); - Equivalent to memalign(pagesize, n), where pagesize is the page - size of the system. If the pagesize is unknown, 4096 is used. -*/ -DLMALLOC_EXPORT void* dlvalloc(size_t); - -/* - mallopt(int parameter_number, int parameter_value) - Sets tunable parameters The format is to provide a - (parameter-number, parameter-value) pair. mallopt then sets the - corresponding parameter to the argument value if it can (i.e., so - long as the value is meaningful), and returns 1 if successful else - 0. To workaround the fact that mallopt is specified to use int, - not size_t parameters, the value -1 is specially treated as the - maximum unsigned size_t value. - - SVID/XPG/ANSI defines four standard param numbers for mallopt, - normally defined in malloc.h. None of these are use in this malloc, - so setting them has no effect. But this malloc also supports other - options in mallopt. See below for details. Briefly, supported - parameters are as follows (listed defaults are for "typical" - configurations). - - Symbol param # default allowed param values - M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables) - M_GRANULARITY -2 page size any power of 2 >= page size - M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) -*/ -DLMALLOC_EXPORT int dlmallopt(int, int); - -/* - malloc_footprint(); - Returns the number of bytes obtained from the system. The total - number of bytes allocated by malloc, realloc etc., is less than this - value. Unlike mallinfo, this function returns only a precomputed - result, so can be called frequently to monitor memory consumption. - Even if locks are otherwise defined, this function does not use them, - so results might not be up to date. -*/ -DLMALLOC_EXPORT size_t dlmalloc_footprint(void); - -/* - malloc_max_footprint(); - Returns the maximum number of bytes obtained from the system. This - value will be greater than current footprint if deallocated space - has been reclaimed by the system. The peak number of bytes allocated - by malloc, realloc etc., is less than this value. Unlike mallinfo, - this function returns only a precomputed result, so can be called - frequently to monitor memory consumption. Even if locks are - otherwise defined, this function does not use them, so results might - not be up to date. -*/ -DLMALLOC_EXPORT size_t dlmalloc_max_footprint(void); - -/* - malloc_footprint_limit(); - Returns the number of bytes that the heap is allowed to obtain from - the system, returning the last value returned by - malloc_set_footprint_limit, or the maximum size_t value if - never set. The returned value reflects a permission. There is no - guarantee that this number of bytes can actually be obtained from - the system. -*/ -DLMALLOC_EXPORT size_t dlmalloc_footprint_limit(); - -/* - malloc_set_footprint_limit(); - Sets the maximum number of bytes to obtain from the system, causing - failure returns from malloc and related functions upon attempts to - exceed this value. The argument value may be subject to page - rounding to an enforceable limit; this actual value is returned. - Using an argument of the maximum possible size_t effectively - disables checks. If the argument is less than or equal to the - current malloc_footprint, then all future allocations that require - additional system memory will fail. However, invocation cannot - retroactively deallocate existing used memory. -*/ -DLMALLOC_EXPORT size_t dlmalloc_set_footprint_limit(size_t bytes); - -#if MALLOC_INSPECT_ALL -/* - malloc_inspect_all(void(*handler)(void *start, - void *end, - size_t used_bytes, - void* callback_arg), - void* arg); - Traverses the heap and calls the given handler for each managed - region, skipping all bytes that are (or may be) used for bookkeeping - purposes. Traversal does not include include chunks that have been - directly memory mapped. Each reported region begins at the start - address, and continues up to but not including the end address. The - first used_bytes of the region contain allocated data. If - used_bytes is zero, the region is unallocated. The handler is - invoked with the given callback argument. If locks are defined, they - are held during the entire traversal. It is a bad idea to invoke - other malloc functions from within the handler. - - For example, to count the number of in-use chunks with size greater - than 1000, you could write: - static int count = 0; - void count_chunks(void* start, void* end, size_t used, void* arg) { - if (used >= 1000) ++count; - } - then: - malloc_inspect_all(count_chunks, NULL); - - malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined. -*/ -DLMALLOC_EXPORT void dlmalloc_inspect_all(void(*handler)(void*, void *, size_t, void*), - void* arg); - -#endif /* MALLOC_INSPECT_ALL */ - -#if !NO_MALLINFO -/* - mallinfo() - Returns (by copy) a struct containing various summary statistics: - - arena: current total non-mmapped bytes allocated from system - ordblks: the number of free chunks - smblks: always zero. - hblks: current number of mmapped regions - hblkhd: total bytes held in mmapped regions - usmblks: the maximum total allocated space. This will be greater - than current total if trimming has occurred. - fsmblks: always zero - uordblks: current total allocated space (normal or mmapped) - fordblks: total free space - keepcost: the maximum number of bytes that could ideally be released - back to system via malloc_trim. ("ideally" means that - it ignores page restrictions etc.) - - Because these fields are ints, but internal bookkeeping may - be kept as longs, the reported values may wrap around zero and - thus be inaccurate. -*/ -DLMALLOC_EXPORT struct mallinfo dlmallinfo(void); -#endif /* NO_MALLINFO */ - -/* - independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); - - independent_calloc is similar to calloc, but instead of returning a - single cleared space, it returns an array of pointers to n_elements - independent elements that can hold contents of size elem_size, each - of which starts out cleared, and can be independently freed, - realloc'ed etc. The elements are guaranteed to be adjacently - allocated (this is not guaranteed to occur with multiple callocs or - mallocs), which may also improve cache locality in some - applications. - - The "chunks" argument is optional (i.e., may be null, which is - probably the most typical usage). If it is null, the returned array - is itself dynamically allocated and should also be freed when it is - no longer needed. Otherwise, the chunks array must be of at least - n_elements in length. It is filled in with the pointers to the - chunks. - - In either case, independent_calloc returns this pointer array, or - null if the allocation failed. If n_elements is zero and "chunks" - is null, it returns a chunk representing an array with zero elements - (which should be freed if not wanted). - - Each element must be freed when it is no longer needed. This can be - done all at once using bulk_free. - - independent_calloc simplifies and speeds up implementations of many - kinds of pools. It may also be useful when constructing large data - structures that initially have a fixed number of fixed-sized nodes, - but the number is not known at compile time, and some of the nodes - may later need to be freed. For example: - - struct Node { int item; struct Node* next; }; - - struct Node* build_list() { - struct Node** pool; - int n = read_number_of_nodes_needed(); - if (n <= 0) return 0; - pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); - if (pool == 0) die(); - // organize into a linked list... - struct Node* first = pool[0]; - for (i = 0; i < n-1; ++i) - pool[i]->next = pool[i+1]; - free(pool); // Can now free the array (or not, if it is needed later) - return first; - } -*/ -DLMALLOC_EXPORT void** dlindependent_calloc(size_t, size_t, void**); - -/* - independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); - - independent_comalloc allocates, all at once, a set of n_elements - chunks with sizes indicated in the "sizes" array. It returns - an array of pointers to these elements, each of which can be - independently freed, realloc'ed etc. The elements are guaranteed to - be adjacently allocated (this is not guaranteed to occur with - multiple callocs or mallocs), which may also improve cache locality - in some applications. - - The "chunks" argument is optional (i.e., may be null). If it is null - the returned array is itself dynamically allocated and should also - be freed when it is no longer needed. Otherwise, the chunks array - must be of at least n_elements in length. It is filled in with the - pointers to the chunks. - - In either case, independent_comalloc returns this pointer array, or - null if the allocation failed. If n_elements is zero and chunks is - null, it returns a chunk representing an array with zero elements - (which should be freed if not wanted). - - Each element must be freed when it is no longer needed. This can be - done all at once using bulk_free. - - independent_comallac differs from independent_calloc in that each - element may have a different size, and also that it does not - automatically clear elements. - - independent_comalloc can be used to speed up allocation in cases - where several structs or objects must always be allocated at the - same time. For example: - - struct Head { ... } - struct Foot { ... } - - void send_message(char* msg) { - int msglen = strlen(msg); - size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; - void* chunks[3]; - if (independent_comalloc(3, sizes, chunks) == 0) - die(); - struct Head* head = (struct Head*)(chunks[0]); - char* body = (char*)(chunks[1]); - struct Foot* foot = (struct Foot*)(chunks[2]); - // ... - } - - In general though, independent_comalloc is worth using only for - larger values of n_elements. For small values, you probably won't - detect enough difference from series of malloc calls to bother. - - Overuse of independent_comalloc can increase overall memory usage, - since it cannot reuse existing noncontiguous small chunks that - might be available for some of the elements. -*/ -DLMALLOC_EXPORT void** dlindependent_comalloc(size_t, size_t*, void**); - -/* - bulk_free(void* array[], size_t n_elements) - Frees and clears (sets to null) each non-null pointer in the given - array. This is likely to be faster than freeing them one-by-one. - If footers are used, pointers that have been allocated in different - mspaces are not freed or cleared, and the count of all such pointers - is returned. For large arrays of pointers with poor locality, it - may be worthwhile to sort this array before calling bulk_free. -*/ -DLMALLOC_EXPORT size_t dlbulk_free(void**, size_t n_elements); - -/* - pvalloc(size_t n); - Equivalent to valloc(minimum-page-that-holds(n)), that is, - round up n to nearest pagesize. - */ -DLMALLOC_EXPORT void* dlpvalloc(size_t); - -/* - malloc_trim(size_t pad); - - If possible, gives memory back to the system (via negative arguments - to sbrk) if there is unused memory at the `high' end of the malloc - pool or in unused MMAP segments. You can call this after freeing - large blocks of memory to potentially reduce the system-level memory - requirements of a program. However, it cannot guarantee to reduce - memory. Under some allocation patterns, some large free blocks of - memory will be locked between two used chunks, so they cannot be - given back to the system. - - The `pad' argument to malloc_trim represents the amount of free - trailing space to leave untrimmed. If this argument is zero, only - the minimum amount of memory to maintain internal data structures - will be left. Non-zero arguments can be supplied to maintain enough - trailing space to service future expected allocations without having - to re-obtain memory from the system. - - Malloc_trim returns 1 if it actually released any memory, else 0. -*/ -DLMALLOC_EXPORT int dlmalloc_trim(size_t); - -/* - malloc_stats(); - Prints on stderr the amount of space obtained from the system (both - via sbrk and mmap), the maximum amount (which may be more than - current if malloc_trim and/or munmap got called), and the current - number of bytes allocated via malloc (or realloc, etc) but not yet - freed. Note that this is the number of bytes allocated, not the - number requested. It will be larger than the number requested - because of alignment and bookkeeping overhead. Because it includes - alignment wastage as being in use, this figure may be greater than - zero even when no user-level chunks are allocated. - - The reported current and maximum system memory can be inaccurate if - a program makes other calls to system memory allocation functions - (normally sbrk) outside of malloc. - - malloc_stats prints only the most commonly interesting statistics. - More information can be obtained by calling mallinfo. -*/ -DLMALLOC_EXPORT void dlmalloc_stats(void); - -/* - malloc_usable_size(void* p); - - Returns the number of bytes you can actually use in - an allocated chunk, which may be more than you requested (although - often not) due to alignment and minimum size constraints. - You can use this many bytes without worrying about - overwriting other allocated objects. This is not a particularly great - programming practice. malloc_usable_size can be more useful in - debugging and assertions, for example: - - p = malloc(n); - assert(malloc_usable_size(p) >= 256); -*/ -size_t dlmalloc_usable_size(void*); - -#endif /* ONLY_MSPACES */ - -#if MSPACES - -/* - mspace is an opaque type representing an independent - region of space that supports mspace_malloc, etc. -*/ -typedef void* mspace; - -/* - create_mspace creates and returns a new independent space with the - given initial capacity, or, if 0, the default granularity size. It - returns null if there is no system memory available to create the - space. If argument locked is non-zero, the space uses a separate - lock to control access. The capacity of the space will grow - dynamically as needed to service mspace_malloc requests. You can - control the sizes of incremental increases of this space by - compiling with a different DEFAULT_GRANULARITY or dynamically - setting with mallopt(M_GRANULARITY, value). -*/ -DLMALLOC_EXPORT mspace create_mspace(size_t capacity, int locked); - -/* - destroy_mspace destroys the given space, and attempts to return all - of its memory back to the system, returning the total number of - bytes freed. After destruction, the results of access to all memory - used by the space become undefined. -*/ -DLMALLOC_EXPORT size_t destroy_mspace(mspace msp); - -/* - create_mspace_with_base uses the memory supplied as the initial base - of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this - space is used for bookkeeping, so the capacity must be at least this - large. (Otherwise 0 is returned.) When this initial space is - exhausted, additional memory will be obtained from the system. - Destroying this space will deallocate all additionally allocated - space (if possible) but not the initial base. -*/ -DLMALLOC_EXPORT mspace create_mspace_with_base(void* base, size_t capacity, int locked); - -/* - mspace_track_large_chunks controls whether requests for large chunks - are allocated in their own untracked mmapped regions, separate from - others in this mspace. By default large chunks are not tracked, - which reduces fragmentation. However, such chunks are not - necessarily released to the system upon destroy_mspace. Enabling - tracking by setting to true may increase fragmentation, but avoids - leakage when relying on destroy_mspace to release all memory - allocated using this space. The function returns the previous - setting. -*/ -DLMALLOC_EXPORT int mspace_track_large_chunks(mspace msp, int enable); - - -/* - mspace_malloc behaves as malloc, but operates within - the given space. -*/ -DLMALLOC_EXPORT void* mspace_malloc(mspace msp, size_t bytes); - -/* - mspace_free behaves as free, but operates within - the given space. - - If compiled with FOOTERS==1, mspace_free is not actually needed. - free may be called instead of mspace_free because freed chunks from - any space are handled by their originating spaces. -*/ -DLMALLOC_EXPORT void mspace_free(mspace msp, void* mem); - -/* - mspace_realloc behaves as realloc, but operates within - the given space. - - If compiled with FOOTERS==1, mspace_realloc is not actually - needed. realloc may be called instead of mspace_realloc because - realloced chunks from any space are handled by their originating - spaces. -*/ -DLMALLOC_EXPORT void* mspace_realloc(mspace msp, void* mem, size_t newsize); - -/* - mspace_calloc behaves as calloc, but operates within - the given space. -*/ -DLMALLOC_EXPORT void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); - -/* - mspace_memalign behaves as memalign, but operates within - the given space. -*/ -DLMALLOC_EXPORT void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); - -/* - mspace_independent_calloc behaves as independent_calloc, but - operates within the given space. -*/ -DLMALLOC_EXPORT void** mspace_independent_calloc(mspace msp, size_t n_elements, - size_t elem_size, void* chunks[]); - -/* - mspace_independent_comalloc behaves as independent_comalloc, but - operates within the given space. -*/ -DLMALLOC_EXPORT void** mspace_independent_comalloc(mspace msp, size_t n_elements, - size_t sizes[], void* chunks[]); - -/* - mspace_footprint() returns the number of bytes obtained from the - system for this space. -*/ -DLMALLOC_EXPORT size_t mspace_footprint(mspace msp); - -/* - mspace_max_footprint() returns the peak number of bytes obtained from the - system for this space. -*/ -DLMALLOC_EXPORT size_t mspace_max_footprint(mspace msp); - - -#if !NO_MALLINFO -/* - mspace_mallinfo behaves as mallinfo, but reports properties of - the given space. -*/ -DLMALLOC_EXPORT struct mallinfo mspace_mallinfo(mspace msp); -#endif /* NO_MALLINFO */ - -/* - malloc_usable_size(void* p) behaves the same as malloc_usable_size; -*/ -DLMALLOC_EXPORT size_t mspace_usable_size(const void* mem); - -/* - mspace_malloc_stats behaves as malloc_stats, but reports - properties of the given space. -*/ -DLMALLOC_EXPORT void mspace_malloc_stats(mspace msp); - -/* - mspace_trim behaves as malloc_trim, but - operates within the given space. -*/ -DLMALLOC_EXPORT int mspace_trim(mspace msp, size_t pad); - -/* - An alias for mallopt. -*/ -DLMALLOC_EXPORT int mspace_mallopt(int, int); - -#endif /* MSPACES */ - -#ifdef __cplusplus -} /* end of extern "C" */ -#endif /* __cplusplus */ - -/* - ======================================================================== - To make a fully customizable malloc.h header file, cut everything - above this line, put into file malloc.h, edit to suit, and #include it - on the next line, as well as in programs that use this malloc. - ======================================================================== -*/ - -/* #include "malloc.h" */ - -/*------------------------------ internal #includes ---------------------- */ - -#ifdef _MSC_VER -#pragma warning( disable : 4146 ) /* no "unsigned" warnings */ -#endif /* _MSC_VER */ -#if !NO_MALLOC_STATS -#include <stdio.h> /* for printing in malloc_stats */ -#endif /* NO_MALLOC_STATS */ -#ifndef LACKS_ERRNO_H -#include <errno.h> /* for MALLOC_FAILURE_ACTION */ -#endif /* LACKS_ERRNO_H */ -#ifdef DEBUG -#if ABORT_ON_ASSERT_FAILURE -#undef assert -#define assert(x) if(!(x)) ABORT -#else /* ABORT_ON_ASSERT_FAILURE */ -#include <assert.h> -#endif /* ABORT_ON_ASSERT_FAILURE */ -#else /* DEBUG */ -#ifndef assert -#define assert(x) -#endif -#define DEBUG 0 -#endif /* DEBUG */ -#if !defined(WIN32) && !defined(LACKS_TIME_H) -#include <time.h> /* for magic initialization */ -#endif /* WIN32 */ -#ifndef LACKS_STDLIB_H -#include <stdlib.h> /* for abort() */ -#endif /* LACKS_STDLIB_H */ -#ifndef LACKS_STRING_H -#include <string.h> /* for memset etc */ -#endif /* LACKS_STRING_H */ -#if USE_BUILTIN_FFS -#ifndef LACKS_STRINGS_H -#include <strings.h> /* for ffs */ -#endif /* LACKS_STRINGS_H */ -#endif /* USE_BUILTIN_FFS */ -#if HAVE_MMAP -#ifndef LACKS_SYS_MMAN_H -/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */ -#if (defined(linux) && !defined(__USE_GNU)) -#define __USE_GNU 1 -#include <sys/mman.h> /* for mmap */ -#undef __USE_GNU -#else -#include <sys/mman.h> /* for mmap */ -#endif /* linux */ -#endif /* LACKS_SYS_MMAN_H */ -#ifndef LACKS_FCNTL_H -#include <fcntl.h> -#endif /* LACKS_FCNTL_H */ -#endif /* HAVE_MMAP */ -#ifndef LACKS_UNISTD_H -#include <unistd.h> /* for sbrk, sysconf */ -#else /* LACKS_UNISTD_H */ -#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) -extern void* sbrk(ptrdiff_t); -#endif /* FreeBSD etc */ -#endif /* LACKS_UNISTD_H */ - -/* Declarations for locking */ -#if USE_LOCKS -#ifndef WIN32 -#if defined (__SVR4) && defined (__sun) /* solaris */ -#include <thread.h> -#elif !defined(LACKS_SCHED_H) -#include <sched.h> -#endif /* solaris or LACKS_SCHED_H */ -#if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS -#include <pthread.h> -#endif /* USE_RECURSIVE_LOCKS ... */ -#elif defined(_MSC_VER) -#ifndef _M_AMD64 -/* These are already defined on AMD64 builds */ -#ifdef __cplusplus -extern "C" { -#endif /* __cplusplus */ -LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp); -LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value); -#ifdef __cplusplus -} -#endif /* __cplusplus */ -#endif /* _M_AMD64 */ -#pragma intrinsic (_InterlockedCompareExchange) -#pragma intrinsic (_InterlockedExchange) -#define interlockedcompareexchange _InterlockedCompareExchange -#define interlockedexchange _InterlockedExchange -#elif defined(WIN32) && defined(__GNUC__) -#define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b) -#define interlockedexchange __sync_lock_test_and_set -#endif /* Win32 */ -#else /* USE_LOCKS */ -#endif /* USE_LOCKS */ - -#ifndef LOCK_AT_FORK -#define LOCK_AT_FORK 0 -#endif - -/* Declarations for bit scanning on win32 */ -#if defined(_MSC_VER) && _MSC_VER>=1300 -#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */ -#ifdef __cplusplus -extern "C" { -#endif /* __cplusplus */ -unsigned char _BitScanForward(unsigned long *index, unsigned long mask); -unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); -#ifdef __cplusplus -} -#endif /* __cplusplus */ - -#define BitScanForward _BitScanForward -#define BitScanReverse _BitScanReverse -#pragma intrinsic(_BitScanForward) -#pragma intrinsic(_BitScanReverse) -#endif /* BitScanForward */ -#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */ - -#ifndef WIN32 -#ifndef malloc_getpagesize -# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ -# ifndef _SC_PAGE_SIZE -# define _SC_PAGE_SIZE _SC_PAGESIZE -# endif -# endif -# ifdef _SC_PAGE_SIZE -# define malloc_getpagesize sysconf(_SC_PAGE_SIZE) -# else -# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) - extern size_t getpagesize(); -# define malloc_getpagesize getpagesize() -# else -# ifdef WIN32 /* use supplied emulation of getpagesize */ -# define malloc_getpagesize getpagesize() -# else -# ifndef LACKS_SYS_PARAM_H -# include <sys/param.h> -# endif -# ifdef EXEC_PAGESIZE -# define malloc_getpagesize EXEC_PAGESIZE -# else -# ifdef NBPG -# ifndef CLSIZE -# define malloc_getpagesize NBPG -# else -# define malloc_getpagesize (NBPG * CLSIZE) -# endif -# else -# ifdef NBPC -# define malloc_getpagesize NBPC -# else -# ifdef PAGESIZE -# define malloc_getpagesize PAGESIZE -# else /* just guess */ -# define malloc_getpagesize ((size_t)4096U) -# endif -# endif -# endif -# endif -# endif -# endif -# endif -#endif -#endif - -/* ------------------- size_t and alignment properties -------------------- */ - -/* The byte and bit size of a size_t */ -#define SIZE_T_SIZE (sizeof(size_t)) -#define SIZE_T_BITSIZE (sizeof(size_t) << 3) - -/* Some constants coerced to size_t */ -/* Annoying but necessary to avoid errors on some platforms */ -#define SIZE_T_ZERO ((size_t)0) -#define SIZE_T_ONE ((size_t)1) -#define SIZE_T_TWO ((size_t)2) -#define SIZE_T_FOUR ((size_t)4) -#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) -#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) -#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) -#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) - -/* The bit mask value corresponding to MALLOC_ALIGNMENT */ -#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) - -/* True if address a has acceptable alignment */ -#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) - -/* the number of bytes to offset an address to align it */ -#define align_offset(A)\ - ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ - ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) - -/* -------------------------- MMAP preliminaries ------------------------- */ - -/* - If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and - checks to fail so compiler optimizer can delete code rather than - using so many "#if"s. -*/ - - -/* MORECORE and MMAP must return MFAIL on failure */ -#define MFAIL ((void*)(MAX_SIZE_T)) -#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ - -#if HAVE_MMAP - -#ifndef WIN32 -#define MUNMAP_DEFAULT(a, s) munmap((a), (s)) -#define MMAP_PROT (PROT_READ|PROT_WRITE) -#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) -#define MAP_ANONYMOUS MAP_ANON -#endif /* MAP_ANON */ -#ifdef MAP_ANONYMOUS -#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS) -#define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) -#else /* MAP_ANONYMOUS */ -/* - Nearly all versions of mmap support MAP_ANONYMOUS, so the following - is unlikely to be needed, but is supplied just in case. -*/ -#define MMAP_FLAGS (MAP_PRIVATE) -static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ -#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \ - (dev_zero_fd = open("/dev/zero", O_RDWR), \ - mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ - mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) -#endif /* MAP_ANONYMOUS */ - -#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s) - -#else /* WIN32 */ - -/* Win32 MMAP via VirtualAlloc */ -static FORCEINLINE void* win32mmap(size_t size) { - void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); - return (ptr != 0)? ptr: MFAIL; -} - -/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ -static FORCEINLINE void* win32direct_mmap(size_t size) { - void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, - PAGE_READWRITE); - return (ptr != 0)? ptr: MFAIL; -} - -/* This function supports releasing coalesed segments */ -static FORCEINLINE int win32munmap(void* ptr, size_t size) { - MEMORY_BASIC_INFORMATION minfo; - char* cptr = (char*)ptr; - while (size) { - if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) - return -1; - if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || - minfo.State != MEM_COMMIT || minfo.RegionSize > size) - return -1; - if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) - return -1; - cptr += minfo.RegionSize; - size -= minfo.RegionSize; - } - return 0; -} - -#define MMAP_DEFAULT(s) win32mmap(s) -#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s)) -#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s) -#endif /* WIN32 */ -#endif /* HAVE_MMAP */ - -#if HAVE_MREMAP -#ifndef WIN32 -#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) -#endif /* WIN32 */ -#endif /* HAVE_MREMAP */ - -/** - * Define CALL_MORECORE - */ -#if HAVE_MORECORE - #ifdef MORECORE - #define CALL_MORECORE(S) MORECORE(S) - #else /* MORECORE */ - #define CALL_MORECORE(S) MORECORE_DEFAULT(S) - #endif /* MORECORE */ -#else /* HAVE_MORECORE */ - #define CALL_MORECORE(S) MFAIL -#endif /* HAVE_MORECORE */ - -/** - * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP - */ -#if HAVE_MMAP - #define USE_MMAP_BIT (SIZE_T_ONE) - - #ifdef MMAP - #define CALL_MMAP(s) MMAP(s) - #else /* MMAP */ - #define CALL_MMAP(s) MMAP_DEFAULT(s) - #endif /* MMAP */ - #ifdef MUNMAP - #define CALL_MUNMAP(a, s) MUNMAP((a), (s)) - #else /* MUNMAP */ - #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s)) - #endif /* MUNMAP */ - #ifdef DIRECT_MMAP - #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) - #else /* DIRECT_MMAP */ - #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s) - #endif /* DIRECT_MMAP */ -#else /* HAVE_MMAP */ - #define USE_MMAP_BIT (SIZE_T_ZERO) - - #define MMAP(s) MFAIL - #define MUNMAP(a, s) (-1) - #define DIRECT_MMAP(s) MFAIL - #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) - #define CALL_MMAP(s) MMAP(s) - #define CALL_MUNMAP(a, s) MUNMAP((a), (s)) -#endif /* HAVE_MMAP */ - -/** - * Define CALL_MREMAP - */ -#if HAVE_MMAP && HAVE_MREMAP - #ifdef MREMAP - #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv)) - #else /* MREMAP */ - #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv)) - #endif /* MREMAP */ -#else /* HAVE_MMAP && HAVE_MREMAP */ - #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL -#endif /* HAVE_MMAP && HAVE_MREMAP */ - -/* mstate bit set if continguous morecore disabled or failed */ -#define USE_NONCONTIGUOUS_BIT (4U) - -/* segment bit set in create_mspace_with_base */ -#define EXTERN_BIT (8U) - - -/* --------------------------- Lock preliminaries ------------------------ */ - -/* - When locks are defined, there is one global lock, plus - one per-mspace lock. - - The global lock_ensures that mparams.magic and other unique - mparams values are initialized only once. It also protects - sequences of calls to MORECORE. In many cases sys_alloc requires - two calls, that should not be interleaved with calls by other - threads. This does not protect against direct calls to MORECORE - by other threads not using this lock, so there is still code to - cope the best we can on interference. - - Per-mspace locks surround calls to malloc, free, etc. - By default, locks are simple non-reentrant mutexes. - - Because lock-protected regions generally have bounded times, it is - OK to use the supplied simple spinlocks. Spinlocks are likely to - improve performance for lightly contended applications, but worsen - performance under heavy contention. - - If USE_LOCKS is > 1, the definitions of lock routines here are - bypassed, in which case you will need to define the type MLOCK_T, - and at least INITIAL_LOCK, DESTROY_LOCK, ACQUIRE_LOCK, RELEASE_LOCK - and TRY_LOCK. You must also declare a - static MLOCK_T malloc_global_mutex = { initialization values };. - -*/ - -#if !USE_LOCKS -#define USE_LOCK_BIT (0U) -#define INITIAL_LOCK(l) (0) -#define DESTROY_LOCK(l) (0) -#define ACQUIRE_MALLOC_GLOBAL_LOCK() -#define RELEASE_MALLOC_GLOBAL_LOCK() - -#else -#if USE_LOCKS > 1 -/* ----------------------- User-defined locks ------------------------ */ -/* Define your own lock implementation here */ -/* #define INITIAL_LOCK(lk) ... */ -/* #define DESTROY_LOCK(lk) ... */ -/* #define ACQUIRE_LOCK(lk) ... */ -/* #define RELEASE_LOCK(lk) ... */ -/* #define TRY_LOCK(lk) ... */ -/* static MLOCK_T malloc_global_mutex = ... */ - -#elif USE_SPIN_LOCKS - -/* First, define CAS_LOCK and CLEAR_LOCK on ints */ -/* Note CAS_LOCK defined to return 0 on success */ - -#if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) -#define CAS_LOCK(sl) __sync_lock_test_and_set(sl, 1) -#define CLEAR_LOCK(sl) __sync_lock_release(sl) - -#elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))) -/* Custom spin locks for older gcc on x86 */ -static FORCEINLINE int x86_cas_lock(int *sl) { - int ret; - int val = 1; - int cmp = 0; - __asm__ __volatile__ ("lock; cmpxchgl %1, %2" - : "=a" (ret) - : "r" (val), "m" (*(sl)), "0"(cmp) - : "memory", "cc"); - return ret; -} - -static FORCEINLINE void x86_clear_lock(int* sl) { - assert(*sl != 0); - int prev = 0; - int ret; - __asm__ __volatile__ ("lock; xchgl %0, %1" - : "=r" (ret) - : "m" (*(sl)), "0"(prev) - : "memory"); -} - -#define CAS_LOCK(sl) x86_cas_lock(sl) -#define CLEAR_LOCK(sl) x86_clear_lock(sl) - -#else /* Win32 MSC */ -#define CAS_LOCK(sl) interlockedexchange(sl, (LONG)1) -#define CLEAR_LOCK(sl) interlockedexchange (sl, (LONG)0) - -#endif /* ... gcc spins locks ... */ - -/* How to yield for a spin lock */ -#define SPINS_PER_YIELD 63 -#if defined(_MSC_VER) -#define SLEEP_EX_DURATION 50 /* delay for yield/sleep */ -#define SPIN_LOCK_YIELD SleepEx(SLEEP_EX_DURATION, FALSE) -#elif defined (__SVR4) && defined (__sun) /* solaris */ -#define SPIN_LOCK_YIELD thr_yield(); -#elif !defined(LACKS_SCHED_H) -#define SPIN_LOCK_YIELD sched_yield(); -#else -#define SPIN_LOCK_YIELD -#endif /* ... yield ... */ - -#if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0 -/* Plain spin locks use single word (embedded in malloc_states) */ -static int spin_acquire_lock(int *sl) { - int spins = 0; - while (*(volatile int *)sl != 0 || CAS_LOCK(sl)) { - if ((++spins & SPINS_PER_YIELD) == 0) { - SPIN_LOCK_YIELD; - } - } - return 0; -} - -#define MLOCK_T int -#define TRY_LOCK(sl) !CAS_LOCK(sl) -#define RELEASE_LOCK(sl) CLEAR_LOCK(sl) -#define ACQUIRE_LOCK(sl) (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0) -#define INITIAL_LOCK(sl) (*sl = 0) -#define DESTROY_LOCK(sl) (0) -static MLOCK_T malloc_global_mutex = 0; - -#else /* USE_RECURSIVE_LOCKS */ -/* types for lock owners */ -#ifdef WIN32 -#define THREAD_ID_T DWORD -#define CURRENT_THREAD GetCurrentThreadId() -#define EQ_OWNER(X,Y) ((X) == (Y)) -#else -/* - Note: the following assume that pthread_t is a type that can be - initialized to (casted) zero. If this is not the case, you will need to - somehow redefine these or not use spin locks. -*/ -#define THREAD_ID_T pthread_t -#define CURRENT_THREAD pthread_self() -#define EQ_OWNER(X,Y) pthread_equal(X, Y) -#endif - -struct malloc_recursive_lock { - int sl; - unsigned int c; - THREAD_ID_T threadid; -}; - -#define MLOCK_T struct malloc_recursive_lock -static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T)0}; - -static FORCEINLINE void recursive_release_lock(MLOCK_T *lk) { - assert(lk->sl != 0); - if (--lk->c == 0) { - CLEAR_LOCK(&lk->sl); - } -} - -static FORCEINLINE int recursive_acquire_lock(MLOCK_T *lk) { - THREAD_ID_T mythreadid = CURRENT_THREAD; - int spins = 0; - for (;;) { - if (*((volatile int *)(&lk->sl)) == 0) { - if (!CAS_LOCK(&lk->sl)) { - lk->threadid = mythreadid; - lk->c = 1; - return 0; - } - } - else if (EQ_OWNER(lk->threadid, mythreadid)) { - ++lk->c; - return 0; - } - if ((++spins & SPINS_PER_YIELD) == 0) { - SPIN_LOCK_YIELD; - } - } -} - -static FORCEINLINE int recursive_try_lock(MLOCK_T *lk) { - THREAD_ID_T mythreadid = CURRENT_THREAD; - if (*((volatile int *)(&lk->sl)) == 0) { - if (!CAS_LOCK(&lk->sl)) { - lk->threadid = mythreadid; - lk->c = 1; - return 1; - } - } - else if (EQ_OWNER(lk->threadid, mythreadid)) { - ++lk->c; - return 1; - } - return 0; -} - -#define RELEASE_LOCK(lk) recursive_release_lock(lk) -#define TRY_LOCK(lk) recursive_try_lock(lk) -#define ACQUIRE_LOCK(lk) recursive_acquire_lock(lk) -#define INITIAL_LOCK(lk) ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0) -#define DESTROY_LOCK(lk) (0) -#endif /* USE_RECURSIVE_LOCKS */ - -#elif defined(WIN32) /* Win32 critical sections */ -#define MLOCK_T CRITICAL_SECTION -#define ACQUIRE_LOCK(lk) (EnterCriticalSection(lk), 0) -#define RELEASE_LOCK(lk) LeaveCriticalSection(lk) -#define TRY_LOCK(lk) TryEnterCriticalSection(lk) -#define INITIAL_LOCK(lk) (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000)) -#define DESTROY_LOCK(lk) (DeleteCriticalSection(lk), 0) -#define NEED_GLOBAL_LOCK_INIT - -static MLOCK_T malloc_global_mutex; -static volatile LONG malloc_global_mutex_status; - -/* Use spin loop to initialize global lock */ -static void init_malloc_global_mutex() { - for (;;) { - long stat = malloc_global_mutex_status; - if (stat > 0) - return; - /* transition to < 0 while initializing, then to > 0) */ - if (stat == 0 && - interlockedcompareexchange(&malloc_global_mutex_status, (LONG)-1, (LONG)0) == 0) { - InitializeCriticalSection(&malloc_global_mutex); - interlockedexchange(&malloc_global_mutex_status, (LONG)1); - return; - } - SleepEx(0, FALSE); - } -} - -#else /* pthreads-based locks */ -#define MLOCK_T pthread_mutex_t -#define ACQUIRE_LOCK(lk) pthread_mutex_lock(lk) -#define RELEASE_LOCK(lk) pthread_mutex_unlock(lk) -#define TRY_LOCK(lk) (!pthread_mutex_trylock(lk)) -#define INITIAL_LOCK(lk) pthread_init_lock(lk) -#define DESTROY_LOCK(lk) pthread_mutex_destroy(lk) - -#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE) -/* Cope with old-style linux recursive lock initialization by adding */ -/* skipped internal declaration from pthread.h */ -extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr, - int __kind)); -#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP -#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y) -#endif /* USE_RECURSIVE_LOCKS ... */ - -static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER; - -static int pthread_init_lock (MLOCK_T *lk) { - pthread_mutexattr_t attr; - if (pthread_mutexattr_init(&attr)) return 1; -#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 - if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1; -#endif - if (pthread_mutex_init(lk, &attr)) return 1; - if (pthread_mutexattr_destroy(&attr)) return 1; - return 0; -} - -#endif /* ... lock types ... */ - -/* Common code for all lock types */ -#define USE_LOCK_BIT (2U) - -#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK -#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex); -#endif - -#ifndef RELEASE_MALLOC_GLOBAL_LOCK -#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex); -#endif - -#endif /* USE_LOCKS */ - -/* ----------------------- Chunk representations ------------------------ */ - -/* - (The following includes lightly edited explanations by Colin Plumb.) - - The malloc_chunk declaration below is misleading (but accurate and - necessary). It declares a "view" into memory allowing access to - necessary fields at known offsets from a given base. - - Chunks of memory are maintained using a `boundary tag' method as - originally described by Knuth. (See the paper by Paul Wilson - ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such - techniques.) Sizes of free chunks are stored both in the front of - each chunk and at the end. This makes consolidating fragmented - chunks into bigger chunks fast. The head fields also hold bits - representing whether chunks are free or in use. - - Here are some pictures to make it clearer. They are "exploded" to - show that the state of a chunk can be thought of as extending from - the high 31 bits of the head field of its header through the - prev_foot and PINUSE_BIT bit of the following chunk header. - - A chunk that's in use looks like: - - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Size of previous chunk (if P = 0) | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| - | Size of this chunk 1| +-+ - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | | - +- -+ - | | - +- -+ - | : - +- size - sizeof(size_t) available payload bytes -+ - : | - chunk-> +- -+ - | | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| - | Size of next chunk (may or may not be in use) | +-+ - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - - And if it's free, it looks like this: - - chunk-> +- -+ - | User payload (must be in use, or we would have merged!) | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| - | Size of this chunk 0| +-+ - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Next pointer | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Prev pointer | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | : - +- size - sizeof(struct chunk) unused bytes -+ - : | - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Size of this chunk | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| - | Size of next chunk (must be in use, or we would have merged)| +-+ - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | : - +- User payload -+ - : | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - |0| - +-+ - Note that since we always merge adjacent free chunks, the chunks - adjacent to a free chunk must be in use. - - Given a pointer to a chunk (which can be derived trivially from the - payload pointer) we can, in O(1) time, find out whether the adjacent - chunks are free, and if so, unlink them from the lists that they - are on and merge them with the current chunk. - - Chunks always begin on even word boundaries, so the mem portion - (which is returned to the user) is also on an even word boundary, and - thus at least double-word aligned. - - The P (PINUSE_BIT) bit, stored in the unused low-order bit of the - chunk size (which is always a multiple of two words), is an in-use - bit for the *previous* chunk. If that bit is *clear*, then the - word before the current chunk size contains the previous chunk - size, and can be used to find the front of the previous chunk. - The very first chunk allocated always has this bit set, preventing - access to non-existent (or non-owned) memory. If pinuse is set for - any given chunk, then you CANNOT determine the size of the - previous chunk, and might even get a memory addressing fault when - trying to do so. - - The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of - the chunk size redundantly records whether the current chunk is - inuse (unless the chunk is mmapped). This redundancy enables usage - checks within free and realloc, and reduces indirection when freeing - and consolidating chunks. - - Each freshly allocated chunk must have both cinuse and pinuse set. - That is, each allocated chunk borders either a previously allocated - and still in-use chunk, or the base of its memory arena. This is - ensured by making all allocations from the `lowest' part of any - found chunk. Further, no free chunk physically borders another one, - so each free chunk is known to be preceded and followed by either - inuse chunks or the ends of memory. - - Note that the `foot' of the current chunk is actually represented - as the prev_foot of the NEXT chunk. This makes it easier to - deal with alignments etc but can be very confusing when trying - to extend or adapt this code. - - The exceptions to all this are - - 1. The special chunk `top' is the top-most available chunk (i.e., - the one bordering the end of available memory). It is treated - specially. Top is never included in any bin, is used only if - no other chunk is available, and is released back to the - system if it is very large (see M_TRIM_THRESHOLD). In effect, - the top chunk is treated as larger (and thus less well - fitting) than any other available chunk. The top chunk - doesn't update its trailing size field since there is no next - contiguous chunk that would have to index off it. However, - space is still allocated for it (TOP_FOOT_SIZE) to enable - separation or merging when space is extended. - - 3. Chunks allocated via mmap, have both cinuse and pinuse bits - cleared in their head fields. Because they are allocated - one-by-one, each must carry its own prev_foot field, which is - also used to hold the offset this chunk has within its mmapped - region, which is needed to preserve alignment. Each mmapped - chunk is trailed by the first two fields of a fake next-chunk - for sake of usage checks. - -*/ - -struct malloc_chunk { - size_t prev_foot; /* Size of previous chunk (if free). */ - size_t head; /* Size and inuse bits. */ - struct malloc_chunk* fd; /* double links -- used only if free. */ - struct malloc_chunk* bk; -}; - -typedef struct malloc_chunk mchunk; -typedef struct malloc_chunk* mchunkptr; -typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ -typedef unsigned int bindex_t; /* Described below */ -typedef unsigned int binmap_t; /* Described below */ -typedef unsigned int flag_t; /* The type of various bit flag sets */ - -/* ------------------- Chunks sizes and alignments ----------------------- */ - -#define MCHUNK_SIZE (sizeof(mchunk)) - -#if FOOTERS -#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) -#else /* FOOTERS */ -#define CHUNK_OVERHEAD (SIZE_T_SIZE) -#endif /* FOOTERS */ - -/* MMapped chunks need a second word of overhead ... */ -#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) -/* ... and additional padding for fake next-chunk at foot */ -#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) - -/* The smallest size we can malloc is an aligned minimal chunk */ -#define MIN_CHUNK_SIZE\ - ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) - -/* conversion from malloc headers to user pointers, and back */ -#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) -#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) -/* chunk associated with aligned address A */ -#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) - -/* Bounds on request (not chunk) sizes. */ -#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) -#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) - -/* pad request bytes into a usable size */ -#define pad_request(req) \ - (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) - -/* pad request, checking for minimum (but not maximum) */ -#define request2size(req) \ - (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) - - -/* ------------------ Operations on head and foot fields ----------------- */ - -/* - The head field of a chunk is or'ed with PINUSE_BIT when previous - adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in - use, unless mmapped, in which case both bits are cleared. - - FLAG4_BIT is not used by this malloc, but might be useful in extensions. -*/ - -#define PINUSE_BIT (SIZE_T_ONE) -#define CINUSE_BIT (SIZE_T_TWO) -#define FLAG4_BIT (SIZE_T_FOUR) -#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) -#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT) - -/* Head value for fenceposts */ -#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) - -/* extraction of fields from head words */ -#define cinuse(p) ((p)->head & CINUSE_BIT) -#define pinuse(p) ((p)->head & PINUSE_BIT) -#define flag4inuse(p) ((p)->head & FLAG4_BIT) -#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT) -#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0) - -#define chunksize(p) ((p)->head & ~(FLAG_BITS)) - -#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) -#define set_flag4(p) ((p)->head |= FLAG4_BIT) -#define clear_flag4(p) ((p)->head &= ~FLAG4_BIT) - -/* Treat space at ptr +/- offset as a chunk */ -#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) -#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) - -/* Ptr to next or previous physical malloc_chunk. */ -#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS))) -#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) - -/* extract next chunk's pinuse bit */ -#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) - -/* Get/set size at footer */ -#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot) -#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) - -/* Set size, pinuse bit, and foot */ -#define set_size_and_pinuse_of_free_chunk(p, s)\ - ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) - -/* Set size, pinuse bit, foot, and clear next pinuse */ -#define set_free_with_pinuse(p, s, n)\ - (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) - -/* Get the internal overhead associated with chunk p */ -#define overhead_for(p)\ - (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) - -/* Return true if malloced space is not necessarily cleared */ -#if MMAP_CLEARS -#define calloc_must_clear(p) (!is_mmapped(p)) -#else /* MMAP_CLEARS */ -#define calloc_must_clear(p) (1) -#endif /* MMAP_CLEARS */ - -/* ---------------------- Overlaid data structures ----------------------- */ - -/* - When chunks are not in use, they are treated as nodes of either - lists or trees. - - "Small" chunks are stored in circular doubly-linked lists, and look - like this: - - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Size of previous chunk | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - `head:' | Size of chunk, in bytes |P| - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Forward pointer to next chunk in list | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Back pointer to previous chunk in list | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Unused space (may be 0 bytes long) . - . . - . | -nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - `foot:' | Size of chunk, in bytes | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - - Larger chunks are kept in a form of bitwise digital trees (aka - tries) keyed on chunksizes. Because malloc_tree_chunks are only for - free chunks greater than 256 bytes, their size doesn't impose any - constraints on user chunk sizes. Each node looks like: - - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Size of previous chunk | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - `head:' | Size of chunk, in bytes |P| - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Forward pointer to next chunk of same size | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Back pointer to previous chunk of same size | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Pointer to left child (child[0]) | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Pointer to right child (child[1]) | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Pointer to parent | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | bin index of this chunk | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Unused space . - . | -nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - `foot:' | Size of chunk, in bytes | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - - Each tree holding treenodes is a tree of unique chunk sizes. Chunks - of the same size are arranged in a circularly-linked list, with only - the oldest chunk (the next to be used, in our FIFO ordering) - actually in the tree. (Tree members are distinguished by a non-null - parent pointer.) If a chunk with the same size an an existing node - is inserted, it is linked off the existing node using pointers that - work in the same way as fd/bk pointers of small chunks. - - Each tree contains a power of 2 sized range of chunk sizes (the - smallest is 0x100 <= x < 0x180), which is is divided in half at each - tree level, with the chunks in the smaller half of the range (0x100 - <= x < 0x140 for the top nose) in the left subtree and the larger - half (0x140 <= x < 0x180) in the right subtree. This is, of course, - done by inspecting individual bits. - - Using these rules, each node's left subtree contains all smaller - sizes than its right subtree. However, the node at the root of each - subtree has no particular ordering relationship to either. (The - dividing line between the subtree sizes is based on trie relation.) - If we remove the last chunk of a given size from the interior of the - tree, we need to replace it with a leaf node. The tree ordering - rules permit a node to be replaced by any leaf below it. - - The smallest chunk in a tree (a common operation in a best-fit - allocator) can be found by walking a path to the leftmost leaf in - the tree. Unlike a usual binary tree, where we follow left child - pointers until we reach a null, here we follow the right child - pointer any time the left one is null, until we reach a leaf with - both child pointers null. The smallest chunk in the tree will be - somewhere along that path. - - The worst case number of steps to add, find, or remove a node is - bounded by the number of bits differentiating chunks within - bins. Under current bin calculations, this ranges from 6 up to 21 - (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case - is of course much better. -*/ - -struct malloc_tree_chunk { - /* The first four fields must be compatible with malloc_chunk */ - size_t prev_foot; - size_t head; - struct malloc_tree_chunk* fd; - struct malloc_tree_chunk* bk; - - struct malloc_tree_chunk* child[2]; - struct malloc_tree_chunk* parent; - bindex_t index; -}; - -typedef struct malloc_tree_chunk tchunk; -typedef struct malloc_tree_chunk* tchunkptr; -typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ - -/* A little helper macro for trees */ -#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) - -/* ----------------------------- Segments -------------------------------- */ - -/* - Each malloc space may include non-contiguous segments, held in a - list headed by an embedded malloc_segment record representing the - top-most space. Segments also include flags holding properties of - the space. Large chunks that are directly allocated by mmap are not - included in this list. They are instead independently created and - destroyed without otherwise keeping track of them. - - Segment management mainly comes into play for spaces allocated by - MMAP. Any call to MMAP might or might not return memory that is - adjacent to an existing segment. MORECORE normally contiguously - extends the current space, so this space is almost always adjacent, - which is simpler and faster to deal with. (This is why MORECORE is - used preferentially to MMAP when both are available -- see - sys_alloc.) When allocating using MMAP, we don't use any of the - hinting mechanisms (inconsistently) supported in various - implementations of unix mmap, or distinguish reserving from - committing memory. Instead, we just ask for space, and exploit - contiguity when we get it. It is probably possible to do - better than this on some systems, but no general scheme seems - to be significantly better. - - Management entails a simpler variant of the consolidation scheme - used for chunks to reduce fragmentation -- new adjacent memory is - normally prepended or appended to an existing segment. However, - there are limitations compared to chunk consolidation that mostly - reflect the fact that segment processing is relatively infrequent - (occurring only when getting memory from system) and that we - don't expect to have huge numbers of segments: - - * Segments are not indexed, so traversal requires linear scans. (It - would be possible to index these, but is not worth the extra - overhead and complexity for most programs on most platforms.) - * New segments are only appended to old ones when holding top-most - memory; if they cannot be prepended to others, they are held in - different segments. - - Except for the top-most segment of an mstate, each segment record - is kept at the tail of its segment. Segments are added by pushing - segment records onto the list headed by &mstate.seg for the - containing mstate. - - Segment flags control allocation/merge/deallocation policies: - * If EXTERN_BIT set, then we did not allocate this segment, - and so should not try to deallocate or merge with others. - (This currently holds only for the initial segment passed - into create_mspace_with_base.) - * If USE_MMAP_BIT set, the segment may be merged with - other surrounding mmapped segments and trimmed/de-allocated - using munmap. - * If neither bit is set, then the segment was obtained using - MORECORE so can be merged with surrounding MORECORE'd segments - and deallocated/trimmed using MORECORE with negative arguments. -*/ - -struct malloc_segment { - char* base; /* base address */ - size_t size; /* allocated size */ - struct malloc_segment* next; /* ptr to next segment */ - flag_t sflags; /* mmap and extern flag */ -}; - -#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT) -#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT) - -typedef struct malloc_segment msegment; -typedef struct malloc_segment* msegmentptr; - -/* ---------------------------- malloc_state ----------------------------- */ - -/* - A malloc_state holds all of the bookkeeping for a space. - The main fields are: - - Top - The topmost chunk of the currently active segment. Its size is - cached in topsize. The actual size of topmost space is - topsize+TOP_FOOT_SIZE, which includes space reserved for adding - fenceposts and segment records if necessary when getting more - space from the system. The size at which to autotrim top is - cached from mparams in trim_check, except that it is disabled if - an autotrim fails. - - Designated victim (dv) - This is the preferred chunk for servicing small requests that - don't have exact fits. It is normally the chunk split off most - recently to service another small request. Its size is cached in - dvsize. The link fields of this chunk are not maintained since it - is not kept in a bin. - - SmallBins - An array of bin headers for free chunks. These bins hold chunks - with sizes less than MIN_LARGE_SIZE bytes. Each bin contains - chunks of all the same size, spaced 8 bytes apart. To simplify - use in double-linked lists, each bin header acts as a malloc_chunk - pointing to the real first node, if it exists (else pointing to - itself). This avoids special-casing for headers. But to avoid - waste, we allocate only the fd/bk pointers of bins, and then use - repositioning tricks to treat these as the fields of a chunk. - - TreeBins - Treebins are pointers to the roots of trees holding a range of - sizes. There are 2 equally spaced treebins for each power of two - from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything - larger. - - Bin maps - There is one bit map for small bins ("smallmap") and one for - treebins ("treemap). Each bin sets its bit when non-empty, and - clears the bit when empty. Bit operations are then used to avoid - bin-by-bin searching -- nearly all "search" is done without ever - looking at bins that won't be selected. The bit maps - conservatively use 32 bits per map word, even if on 64bit system. - For a good description of some of the bit-based techniques used - here, see Henry S. Warren Jr's book "Hacker's Delight" (and - supplement at http://hackersdelight.org/). Many of these are - intended to reduce the branchiness of paths through malloc etc, as - well as to reduce the number of memory locations read or written. - - Segments - A list of segments headed by an embedded malloc_segment record - representing the initial space. - - Address check support - The least_addr field is the least address ever obtained from - MORECORE or MMAP. Attempted frees and reallocs of any address less - than this are trapped (unless INSECURE is defined). - - Magic tag - A cross-check field that should always hold same value as mparams.magic. - - Max allowed footprint - The maximum allowed bytes to allocate from system (zero means no limit) - - Flags - Bits recording whether to use MMAP, locks, or contiguous MORECORE - - Statistics - Each space keeps track of current and maximum system memory - obtained via MORECORE or MMAP. - - Trim support - Fields holding the amount of unused topmost memory that should trigger - trimming, and a counter to force periodic scanning to release unused - non-topmost segments. - - Locking - If USE_LOCKS is defined, the "mutex" lock is acquired and released - around every public call using this mspace. - - Extension support - A void* pointer and a size_t field that can be used to help implement - extensions to this malloc. -*/ - -/* Bin types, widths and sizes */ -#define NSMALLBINS (32U) -#define NTREEBINS (32U) -#define SMALLBIN_SHIFT (3U) -#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) -#define TREEBIN_SHIFT (8U) -#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) -#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) -#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) - -struct malloc_state { - binmap_t smallmap; - binmap_t treemap; - size_t dvsize; - size_t topsize; - char* least_addr; - mchunkptr dv; - mchunkptr top; - size_t trim_check; - size_t release_checks; - size_t magic; - mchunkptr smallbins[(NSMALLBINS+1)*2]; - tbinptr treebins[NTREEBINS]; - size_t footprint; - size_t max_footprint; - size_t footprint_limit; /* zero means no limit */ - flag_t mflags; -#if USE_LOCKS - MLOCK_T mutex; /* locate lock among fields that rarely change */ -#endif /* USE_LOCKS */ - msegment seg; - void* extp; /* Unused but available for extensions */ - size_t exts; -}; - -typedef struct malloc_state* mstate; - -/* ------------- Global malloc_state and malloc_params ------------------- */ - -/* - malloc_params holds global properties, including those that can be - dynamically set using mallopt. There is a single instance, mparams, - initialized in init_mparams. Note that the non-zeroness of "magic" - also serves as an initialization flag. -*/ - -struct malloc_params { - size_t magic; - size_t page_size; - size_t granularity; - size_t mmap_threshold; - size_t trim_threshold; - flag_t default_mflags; -}; - -static struct malloc_params mparams; - -/* Ensure mparams initialized */ -#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams()) - -#if !ONLY_MSPACES - -/* The global malloc_state used for all non-"mspace" calls */ -static struct malloc_state _gm_; -#define gm (&_gm_) -#define is_global(M) ((M) == &_gm_) - -#endif /* !ONLY_MSPACES */ - -#define is_initialized(M) ((M)->top != 0) - -/* -------------------------- system alloc setup ------------------------- */ - -/* Operations on mflags */ - -#define use_lock(M) ((M)->mflags & USE_LOCK_BIT) -#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) -#if USE_LOCKS -#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) -#else -#define disable_lock(M) -#endif - -#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) -#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) -#if HAVE_MMAP -#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) -#else -#define disable_mmap(M) -#endif - -#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) -#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) - -#define set_lock(M,L)\ - ((M)->mflags = (L)?\ - ((M)->mflags | USE_LOCK_BIT) :\ - ((M)->mflags & ~USE_LOCK_BIT)) - -/* page-align a size */ -#define page_align(S)\ - (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE)) - -/* granularity-align a size */ -#define granularity_align(S)\ - (((S) + (mparams.granularity - SIZE_T_ONE))\ - & ~(mparams.granularity - SIZE_T_ONE)) - - -/* For mmap, use granularity alignment on windows, else page-align */ -#ifdef WIN32 -#define mmap_align(S) granularity_align(S) -#else -#define mmap_align(S) page_align(S) -#endif - -/* For sys_alloc, enough padding to ensure can malloc request on success */ -#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT) - -#define is_page_aligned(S)\ - (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) -#define is_granularity_aligned(S)\ - (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) - -/* True if segment S holds address A */ -#define segment_holds(S, A)\ - ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) - -/* Return segment holding given address */ -static msegmentptr segment_holding(mstate m, char* addr) { - msegmentptr sp = &m->seg; - for (;;) { - if (addr >= sp->base && addr < sp->base + sp->size) - return sp; - if ((sp = sp->next) == 0) - return 0; - } -} - -/* Return true if segment contains a segment link */ -static int has_segment_link(mstate m, msegmentptr ss) { - msegmentptr sp = &m->seg; - for (;;) { - if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) - return 1; - if ((sp = sp->next) == 0) - return 0; - } -} - -#ifndef MORECORE_CANNOT_TRIM -#define should_trim(M,s) ((s) > (M)->trim_check) -#else /* MORECORE_CANNOT_TRIM */ -#define should_trim(M,s) (0) -#endif /* MORECORE_CANNOT_TRIM */ - -/* - TOP_FOOT_SIZE is padding at the end of a segment, including space - that may be needed to place segment records and fenceposts when new - noncontiguous segments are added. -*/ -#define TOP_FOOT_SIZE\ - (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) - - -/* ------------------------------- Hooks -------------------------------- */ - -/* - PREACTION should be defined to return 0 on success, and nonzero on - failure. If you are not using locking, you can redefine these to do - anything you like. -*/ - -#if USE_LOCKS -#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) -#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } -#else /* USE_LOCKS */ - -#ifndef PREACTION -#define PREACTION(M) (0) -#endif /* PREACTION */ - -#ifndef POSTACTION -#define POSTACTION(M) -#endif /* POSTACTION */ - -#endif /* USE_LOCKS */ - -/* - CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. - USAGE_ERROR_ACTION is triggered on detected bad frees and - reallocs. The argument p is an address that might have triggered the - fault. It is ignored by the two predefined actions, but might be - useful in custom actions that try to help diagnose errors. -*/ - -#if PROCEED_ON_ERROR - -/* A count of the number of corruption errors causing resets */ -int malloc_corruption_error_count; - -/* default corruption action */ -static void reset_on_error(mstate m); - -#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m) -#define USAGE_ERROR_ACTION(m, p) - -#else /* PROCEED_ON_ERROR */ - -#ifndef CORRUPTION_ERROR_ACTION -#define CORRUPTION_ERROR_ACTION(m) ABORT -#endif /* CORRUPTION_ERROR_ACTION */ - -#ifndef USAGE_ERROR_ACTION -#define USAGE_ERROR_ACTION(m,p) ABORT -#endif /* USAGE_ERROR_ACTION */ - -#endif /* PROCEED_ON_ERROR */ - - -/* -------------------------- Debugging setup ---------------------------- */ - -#if ! DEBUG - -#define check_free_chunk(M,P) -#define check_inuse_chunk(M,P) -#define check_malloced_chunk(M,P,N) -#define check_mmapped_chunk(M,P) -#define check_malloc_state(M) -#define check_top_chunk(M,P) - -#else /* DEBUG */ -#define check_free_chunk(M,P) do_check_free_chunk(M,P) -#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P) -#define check_top_chunk(M,P) do_check_top_chunk(M,P) -#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) -#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P) -#define check_malloc_state(M) do_check_malloc_state(M) - -static void do_check_any_chunk(mstate m, mchunkptr p); -static void do_check_top_chunk(mstate m, mchunkptr p); -static void do_check_mmapped_chunk(mstate m, mchunkptr p); -static void do_check_inuse_chunk(mstate m, mchunkptr p); -static void do_check_free_chunk(mstate m, mchunkptr p); -static void do_check_malloced_chunk(mstate m, void* mem, size_t s); -static void do_check_tree(mstate m, tchunkptr t); -static void do_check_treebin(mstate m, bindex_t i); -static void do_check_smallbin(mstate m, bindex_t i); -static void do_check_malloc_state(mstate m); -static int bin_find(mstate m, mchunkptr x); -static size_t traverse_and_check(mstate m); -#endif /* DEBUG */ - -/* ---------------------------- Indexing Bins ---------------------------- */ - -#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) -#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT) -#define small_index2size(i) ((i) << SMALLBIN_SHIFT) -#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) - -/* addressing by index. See above about smallbin repositioning */ -#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) -#define treebin_at(M,i) (&((M)->treebins[i])) - -/* assign tree index for size S to variable I. Use x86 asm if possible */ -#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) -#define compute_tree_index(S, I)\ -{\ - unsigned int X = S >> TREEBIN_SHIFT;\ - if (X == 0)\ - I = 0;\ - else if (X > 0xFFFF)\ - I = NTREEBINS-1;\ - else {\ - unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \ - I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ - }\ -} - -#elif defined (__INTEL_COMPILER) -#define compute_tree_index(S, I)\ -{\ - size_t X = S >> TREEBIN_SHIFT;\ - if (X == 0)\ - I = 0;\ - else if (X > 0xFFFF)\ - I = NTREEBINS-1;\ - else {\ - unsigned int K = _bit_scan_reverse (X); \ - I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ - }\ -} - -#elif defined(_MSC_VER) && _MSC_VER>=1300 -#define compute_tree_index(S, I)\ -{\ - size_t X = S >> TREEBIN_SHIFT;\ - if (X == 0)\ - I = 0;\ - else if (X > 0xFFFF)\ - I = NTREEBINS-1;\ - else {\ - unsigned int K;\ - _BitScanReverse((DWORD *) &K, (DWORD) X);\ - I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ - }\ -} - -#else /* GNUC */ -#define compute_tree_index(S, I)\ -{\ - size_t X = S >> TREEBIN_SHIFT;\ - if (X == 0)\ - I = 0;\ - else if (X > 0xFFFF)\ - I = NTREEBINS-1;\ - else {\ - unsigned int Y = (unsigned int)X;\ - unsigned int N = ((Y - 0x100) >> 16) & 8;\ - unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ - N += K;\ - N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ - K = 14 - N + ((Y <<= K) >> 15);\ - I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ - }\ -} -#endif /* GNUC */ - -/* Bit representing maximum resolved size in a treebin at i */ -#define bit_for_tree_index(i) \ - (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) - -/* Shift placing maximum resolved bit in a treebin at i as sign bit */ -#define leftshift_for_tree_index(i) \ - ((i == NTREEBINS-1)? 0 : \ - ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) - -/* The size of the smallest chunk held in bin with index i */ -#define minsize_for_tree_index(i) \ - ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ - (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) - - -/* ------------------------ Operations on bin maps ----------------------- */ - -/* bit corresponding to given index */ -#define idx2bit(i) ((binmap_t)(1) << (i)) - -/* Mark/Clear bits with given index */ -#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) -#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) -#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) - -#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) -#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) -#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) - -/* isolate the least set bit of a bitmap */ -#define least_bit(x) ((x) & -(x)) - -/* mask with all bits to left of least bit of x on */ -#define left_bits(x) ((x<<1) | -(x<<1)) - -/* mask with all bits to left of or equal to least bit of x on */ -#define same_or_left_bits(x) ((x) | -(x)) - -/* index corresponding to given bit. Use x86 asm if possible */ - -#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) -#define compute_bit2idx(X, I)\ -{\ - unsigned int J;\ - J = __builtin_ctz(X); \ - I = (bindex_t)J;\ -} - -#elif defined (__INTEL_COMPILER) -#define compute_bit2idx(X, I)\ -{\ - unsigned int J;\ - J = _bit_scan_forward (X); \ - I = (bindex_t)J;\ -} - -#elif defined(_MSC_VER) && _MSC_VER>=1300 -#define compute_bit2idx(X, I)\ -{\ - unsigned int J;\ - _BitScanForward((DWORD *) &J, X);\ - I = (bindex_t)J;\ -} - -#elif USE_BUILTIN_FFS -#define compute_bit2idx(X, I) I = ffs(X)-1 - -#else -#define compute_bit2idx(X, I)\ -{\ - unsigned int Y = X - 1;\ - unsigned int K = Y >> (16-4) & 16;\ - unsigned int N = K; Y >>= K;\ - N += K = Y >> (8-3) & 8; Y >>= K;\ - N += K = Y >> (4-2) & 4; Y >>= K;\ - N += K = Y >> (2-1) & 2; Y >>= K;\ - N += K = Y >> (1-0) & 1; Y >>= K;\ - I = (bindex_t)(N + Y);\ -} -#endif /* GNUC */ - - -/* ----------------------- Runtime Check Support ------------------------- */ - -/* - For security, the main invariant is that malloc/free/etc never - writes to a static address other than malloc_state, unless static - malloc_state itself has been corrupted, which cannot occur via - malloc (because of these checks). In essence this means that we - believe all pointers, sizes, maps etc held in malloc_state, but - check all of those linked or offsetted from other embedded data - structures. These checks are interspersed with main code in a way - that tends to minimize their run-time cost. - - When FOOTERS is defined, in addition to range checking, we also - verify footer fields of inuse chunks, which can be used guarantee - that the mstate controlling malloc/free is intact. This is a - streamlined version of the approach described by William Robertson - et al in "Run-time Detection of Heap-based Overflows" LISA'03 - http://www.usenix.org/events/lisa03/tech/robertson.html The footer - of an inuse chunk holds the xor of its mstate and a random seed, - that is checked upon calls to free() and realloc(). This is - (probabalistically) unguessable from outside the program, but can be - computed by any code successfully malloc'ing any chunk, so does not - itself provide protection against code that has already broken - security through some other means. Unlike Robertson et al, we - always dynamically check addresses of all offset chunks (previous, - next, etc). This turns out to be cheaper than relying on hashes. -*/ - -#if !INSECURE -/* Check if address a is at least as high as any from MORECORE or MMAP */ -#define ok_address(M, a) ((char*)(a) >= (M)->least_addr) -/* Check if address of next chunk n is higher than base chunk p */ -#define ok_next(p, n) ((char*)(p) < (char*)(n)) -/* Check if p has inuse status */ -#define ok_inuse(p) is_inuse(p) -/* Check if p has its pinuse bit on */ -#define ok_pinuse(p) pinuse(p) - -#else /* !INSECURE */ -#define ok_address(M, a) (1) -#define ok_next(b, n) (1) -#define ok_inuse(p) (1) -#define ok_pinuse(p) (1) -#endif /* !INSECURE */ - -#if (FOOTERS && !INSECURE) -/* Check if (alleged) mstate m has expected magic field */ -#define ok_magic(M) ((M)->magic == mparams.magic) -#else /* (FOOTERS && !INSECURE) */ -#define ok_magic(M) (1) -#endif /* (FOOTERS && !INSECURE) */ - -/* In gcc, use __builtin_expect to minimize impact of checks */ -#if !INSECURE -#if defined(__GNUC__) && __GNUC__ >= 3 -#define RTCHECK(e) __builtin_expect(e, 1) -#else /* GNUC */ -#define RTCHECK(e) (e) -#endif /* GNUC */ -#else /* !INSECURE */ -#define RTCHECK(e) (1) -#endif /* !INSECURE */ - -/* macros to set up inuse chunks with or without footers */ - -#if !FOOTERS - -#define mark_inuse_foot(M,p,s) - -/* Macros for setting head/foot of non-mmapped chunks */ - -/* Set cinuse bit and pinuse bit of next chunk */ -#define set_inuse(M,p,s)\ - ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ - ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) - -/* Set cinuse and pinuse of this chunk and pinuse of next chunk */ -#define set_inuse_and_pinuse(M,p,s)\ - ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ - ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) - -/* Set size, cinuse and pinuse bit of this chunk */ -#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ - ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) - -#else /* FOOTERS */ - -/* Set foot of inuse chunk to be xor of mstate and seed */ -#define mark_inuse_foot(M,p,s)\ - (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) - -#define get_mstate_for(p)\ - ((mstate)(((mchunkptr)((char*)(p) +\ - (chunksize(p))))->prev_foot ^ mparams.magic)) - -#define set_inuse(M,p,s)\ - ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ - (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ - mark_inuse_foot(M,p,s)) - -#define set_inuse_and_pinuse(M,p,s)\ - ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ - (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ - mark_inuse_foot(M,p,s)) - -#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ - ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ - mark_inuse_foot(M, p, s)) - -#endif /* !FOOTERS */ - -/* ---------------------------- setting mparams -------------------------- */ - -#if LOCK_AT_FORK -static void pre_fork(void) { ACQUIRE_LOCK(&(gm)->mutex); } -static void post_fork_parent(void) { RELEASE_LOCK(&(gm)->mutex); } -static void post_fork_child(void) { INITIAL_LOCK(&(gm)->mutex); } -#endif /* LOCK_AT_FORK */ - -/* Initialize mparams */ -static int init_mparams(void) { -#ifdef NEED_GLOBAL_LOCK_INIT - if (malloc_global_mutex_status <= 0) - init_malloc_global_mutex(); -#endif - - ACQUIRE_MALLOC_GLOBAL_LOCK(); - if (mparams.magic == 0) { - size_t magic; - size_t psize; - size_t gsize; - -#ifndef WIN32 - psize = malloc_getpagesize; - gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize); -#else /* WIN32 */ - { - SYSTEM_INFO system_info; - GetSystemInfo(&system_info); - psize = system_info.dwPageSize; - gsize = ((DEFAULT_GRANULARITY != 0)? - DEFAULT_GRANULARITY : system_info.dwAllocationGranularity); - } -#endif /* WIN32 */ - - /* Sanity-check configuration: - size_t must be unsigned and as wide as pointer type. - ints must be at least 4 bytes. - alignment must be at least 8. - Alignment, min chunk size, and page size must all be powers of 2. - */ - if ((sizeof(size_t) != sizeof(char*)) || - (MAX_SIZE_T < MIN_CHUNK_SIZE) || - (sizeof(int) < 4) || - (MALLOC_ALIGNMENT < (size_t)8U) || - ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || - ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) || - ((gsize & (gsize-SIZE_T_ONE)) != 0) || - ((psize & (psize-SIZE_T_ONE)) != 0)) - ABORT; - mparams.granularity = gsize; - mparams.page_size = psize; - mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; - mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; -#if MORECORE_CONTIGUOUS - mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; -#else /* MORECORE_CONTIGUOUS */ - mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; -#endif /* MORECORE_CONTIGUOUS */ - -#if !ONLY_MSPACES - /* Set up lock for main malloc area */ - gm->mflags = mparams.default_mflags; - (void)INITIAL_LOCK(&gm->mutex); -#endif -#if LOCK_AT_FORK - pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child); -#endif - - { -#if USE_DEV_RANDOM - int fd; - unsigned char buf[sizeof(size_t)]; - /* Try to use /dev/urandom, else fall back on using time */ - if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && - read(fd, buf, sizeof(buf)) == sizeof(buf)) { - magic = *((size_t *) buf); - close(fd); - } - else -#endif /* USE_DEV_RANDOM */ -#ifdef WIN32 - magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U); -#elif defined(LACKS_TIME_H) - magic = (size_t)&magic ^ (size_t)0x55555555U; -#else - magic = (size_t)(time(0) ^ (size_t)0x55555555U); -#endif - magic |= (size_t)8U; /* ensure nonzero */ - magic &= ~(size_t)7U; /* improve chances of fault for bad values */ - /* Until memory modes commonly available, use volatile-write */ - (*(volatile size_t *)(&(mparams.magic))) = magic; - } - } - - RELEASE_MALLOC_GLOBAL_LOCK(); - return 1; -} - -/* support for mallopt */ -static int change_mparam(int param_number, int value) { - size_t val; - ensure_initialization(); - val = (value == -1)? MAX_SIZE_T : (size_t)value; - switch(param_number) { - case M_TRIM_THRESHOLD: - mparams.trim_threshold = val; - return 1; - case M_GRANULARITY: - if (val >= mparams.page_size && ((val & (val-1)) == 0)) { - mparams.granularity = val; - return 1; - } - else - return 0; - case M_MMAP_THRESHOLD: - mparams.mmap_threshold = val; - return 1; - default: - return 0; - } -} - -#if DEBUG -/* ------------------------- Debugging Support --------------------------- */ - -/* Check properties of any chunk, whether free, inuse, mmapped etc */ -static void do_check_any_chunk(mstate m, mchunkptr p) { - assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); - assert(ok_address(m, p)); -} - -/* Check properties of top chunk */ -static void do_check_top_chunk(mstate m, mchunkptr p) { - msegmentptr sp = segment_holding(m, (char*)p); - size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */ - assert(sp != 0); - assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); - assert(ok_address(m, p)); - assert(sz == m->topsize); - assert(sz > 0); - assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); - assert(pinuse(p)); - assert(!pinuse(chunk_plus_offset(p, sz))); -} - -/* Check properties of (inuse) mmapped chunks */ -static void do_check_mmapped_chunk(mstate m, mchunkptr p) { - size_t sz = chunksize(p); - size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD); - assert(is_mmapped(p)); - assert(use_mmap(m)); - assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); - assert(ok_address(m, p)); - assert(!is_small(sz)); - assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); - assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); - assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); -} - -/* Check properties of inuse chunks */ -static void do_check_inuse_chunk(mstate m, mchunkptr p) { - do_check_any_chunk(m, p); - assert(is_inuse(p)); - assert(next_pinuse(p)); - /* If not pinuse and not mmapped, previous chunk has OK offset */ - assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); - if (is_mmapped(p)) - do_check_mmapped_chunk(m, p); -} - -/* Check properties of free chunks */ -static void do_check_free_chunk(mstate m, mchunkptr p) { - size_t sz = chunksize(p); - mchunkptr next = chunk_plus_offset(p, sz); - do_check_any_chunk(m, p); - assert(!is_inuse(p)); - assert(!next_pinuse(p)); - assert (!is_mmapped(p)); - if (p != m->dv && p != m->top) { - if (sz >= MIN_CHUNK_SIZE) { - assert((sz & CHUNK_ALIGN_MASK) == 0); - assert(is_aligned(chunk2mem(p))); - assert(next->prev_foot == sz); - assert(pinuse(p)); - assert (next == m->top || is_inuse(next)); - assert(p->fd->bk == p); - assert(p->bk->fd == p); - } - else /* markers are always of size SIZE_T_SIZE */ - assert(sz == SIZE_T_SIZE); - } -} - -/* Check properties of malloced chunks at the point they are malloced */ -static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { - if (mem != 0) { - mchunkptr p = mem2chunk(mem); - size_t sz = p->head & ~INUSE_BITS; - do_check_inuse_chunk(m, p); - assert((sz & CHUNK_ALIGN_MASK) == 0); - assert(sz >= MIN_CHUNK_SIZE); - assert(sz >= s); - /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ - assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); - } -} - -/* Check a tree and its subtrees. */ -static void do_check_tree(mstate m, tchunkptr t) { - tchunkptr head = 0; - tchunkptr u = t; - bindex_t tindex = t->index; - size_t tsize = chunksize(t); - bindex_t idx; - compute_tree_index(tsize, idx); - assert(tindex == idx); - assert(tsize >= MIN_LARGE_SIZE); - assert(tsize >= minsize_for_tree_index(idx)); - assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); - - do { /* traverse through chain of same-sized nodes */ - do_check_any_chunk(m, ((mchunkptr)u)); - assert(u->index == tindex); - assert(chunksize(u) == tsize); - assert(!is_inuse(u)); - assert(!next_pinuse(u)); - assert(u->fd->bk == u); - assert(u->bk->fd == u); - if (u->parent == 0) { - assert(u->child[0] == 0); - assert(u->child[1] == 0); - } - else { - assert(head == 0); /* only one node on chain has parent */ - head = u; - assert(u->parent != u); - assert (u->parent->child[0] == u || - u->parent->child[1] == u || - *((tbinptr*)(u->parent)) == u); - if (u->child[0] != 0) { - assert(u->child[0]->parent == u); - assert(u->child[0] != u); - do_check_tree(m, u->child[0]); - } - if (u->child[1] != 0) { - assert(u->child[1]->parent == u); - assert(u->child[1] != u); - do_check_tree(m, u->child[1]); - } - if (u->child[0] != 0 && u->child[1] != 0) { - assert(chunksize(u->child[0]) < chunksize(u->child[1])); - } - } - u = u->fd; - } while (u != t); - assert(head != 0); -} - -/* Check all the chunks in a treebin. */ -static void do_check_treebin(mstate m, bindex_t i) { - tbinptr* tb = treebin_at(m, i); - tchunkptr t = *tb; - int empty = (m->treemap & (1U << i)) == 0; - if (t == 0) - assert(empty); - if (!empty) - do_check_tree(m, t); -} - -/* Check all the chunks in a smallbin. */ -static void do_check_smallbin(mstate m, bindex_t i) { - sbinptr b = smallbin_at(m, i); - mchunkptr p = b->bk; - unsigned int empty = (m->smallmap & (1U << i)) == 0; - if (p == b) - assert(empty); - if (!empty) { - for (; p != b; p = p->bk) { - size_t size = chunksize(p); - mchunkptr q; - /* each chunk claims to be free */ - do_check_free_chunk(m, p); - /* chunk belongs in bin */ - assert(small_index(size) == i); - assert(p->bk == b || chunksize(p->bk) == chunksize(p)); - /* chunk is followed by an inuse chunk */ - q = next_chunk(p); - if (q->head != FENCEPOST_HEAD) - do_check_inuse_chunk(m, q); - } - } -} - -/* Find x in a bin. Used in other check functions. */ -static int bin_find(mstate m, mchunkptr x) { - size_t size = chunksize(x); - if (is_small(size)) { - bindex_t sidx = small_index(size); - sbinptr b = smallbin_at(m, sidx); - if (smallmap_is_marked(m, sidx)) { - mchunkptr p = b; - do { - if (p == x) - return 1; - } while ((p = p->fd) != b); - } - } - else { - bindex_t tidx; - compute_tree_index(size, tidx); - if (treemap_is_marked(m, tidx)) { - tchunkptr t = *treebin_at(m, tidx); - size_t sizebits = size << leftshift_for_tree_index(tidx); - while (t != 0 && chunksize(t) != size) { - t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; - sizebits <<= 1; - } - if (t != 0) { - tchunkptr u = t; - do { - if (u == (tchunkptr)x) - return 1; - } while ((u = u->fd) != t); - } - } - } - return 0; -} - -/* Traverse each chunk and check it; return total */ -static size_t traverse_and_check(mstate m) { - size_t sum = 0; - if (is_initialized(m)) { - msegmentptr s = &m->seg; - sum += m->topsize + TOP_FOOT_SIZE; - while (s != 0) { - mchunkptr q = align_as_chunk(s->base); - mchunkptr lastq = 0; - assert(pinuse(q)); - while (segment_holds(s, q) && - q != m->top && q->head != FENCEPOST_HEAD) { - sum += chunksize(q); - if (is_inuse(q)) { - assert(!bin_find(m, q)); - do_check_inuse_chunk(m, q); - } - else { - assert(q == m->dv || bin_find(m, q)); - assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */ - do_check_free_chunk(m, q); - } - lastq = q; - q = next_chunk(q); - } - s = s->next; - } - } - return sum; -} - - -/* Check all properties of malloc_state. */ -static void do_check_malloc_state(mstate m) { - bindex_t i; - size_t total; - /* check bins */ - for (i = 0; i < NSMALLBINS; ++i) - do_check_smallbin(m, i); - for (i = 0; i < NTREEBINS; ++i) - do_check_treebin(m, i); - - if (m->dvsize != 0) { /* check dv chunk */ - do_check_any_chunk(m, m->dv); - assert(m->dvsize == chunksize(m->dv)); - assert(m->dvsize >= MIN_CHUNK_SIZE); - assert(bin_find(m, m->dv) == 0); - } - - if (m->top != 0) { /* check top chunk */ - do_check_top_chunk(m, m->top); - /*assert(m->topsize == chunksize(m->top)); redundant */ - assert(m->topsize > 0); - assert(bin_find(m, m->top) == 0); - } - - total = traverse_and_check(m); - assert(total <= m->footprint); - assert(m->footprint <= m->max_footprint); -} -#endif /* DEBUG */ - -/* ----------------------------- statistics ------------------------------ */ - -#if !NO_MALLINFO -static struct mallinfo internal_mallinfo(mstate m) { - struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; - ensure_initialization(); - if (!PREACTION(m)) { - check_malloc_state(m); - if (is_initialized(m)) { - size_t nfree = SIZE_T_ONE; /* top always free */ - size_t mfree = m->topsize + TOP_FOOT_SIZE; - size_t sum = mfree; - msegmentptr s = &m->seg; - while (s != 0) { - mchunkptr q = align_as_chunk(s->base); - while (segment_holds(s, q) && - q != m->top && q->head != FENCEPOST_HEAD) { - size_t sz = chunksize(q); - sum += sz; - if (!is_inuse(q)) { - mfree += sz; - ++nfree; - } - q = next_chunk(q); - } - s = s->next; - } - - nm.arena = sum; - nm.ordblks = nfree; - nm.hblkhd = m->footprint - sum; - nm.usmblks = m->max_footprint; - nm.uordblks = m->footprint - mfree; - nm.fordblks = mfree; - nm.keepcost = m->topsize; - } - - POSTACTION(m); - } - return nm; -} -#endif /* !NO_MALLINFO */ - -#if !NO_MALLOC_STATS -static void internal_malloc_stats(mstate m) { - ensure_initialization(); - if (!PREACTION(m)) { - size_t maxfp = 0; - size_t fp = 0; - size_t used = 0; - check_malloc_state(m); - if (is_initialized(m)) { - msegmentptr s = &m->seg; - maxfp = m->max_footprint; - fp = m->footprint; - used = fp - (m->topsize + TOP_FOOT_SIZE); - - while (s != 0) { - mchunkptr q = align_as_chunk(s->base); - while (segment_holds(s, q) && - q != m->top && q->head != FENCEPOST_HEAD) { - if (!is_inuse(q)) - used -= chunksize(q); - q = next_chunk(q); - } - s = s->next; - } - } - POSTACTION(m); /* drop lock */ - fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); - fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp)); - fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used)); - } -} -#endif /* NO_MALLOC_STATS */ - -/* ----------------------- Operations on smallbins ----------------------- */ - -/* - Various forms of linking and unlinking are defined as macros. Even - the ones for trees, which are very long but have very short typical - paths. This is ugly but reduces reliance on inlining support of - compilers. -*/ - -/* Link a free chunk into a smallbin */ -#define insert_small_chunk(M, P, S) {\ - bindex_t I = small_index(S);\ - mchunkptr B = smallbin_at(M, I);\ - mchunkptr F = B;\ - assert(S >= MIN_CHUNK_SIZE);\ - if (!smallmap_is_marked(M, I))\ - mark_smallmap(M, I);\ - else if (RTCHECK(ok_address(M, B->fd)))\ - F = B->fd;\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - B->fd = P;\ - F->bk = P;\ - P->fd = F;\ - P->bk = B;\ -} - -/* Unlink a chunk from a smallbin */ -#define unlink_small_chunk(M, P, S) {\ - mchunkptr F = P->fd;\ - mchunkptr B = P->bk;\ - bindex_t I = small_index(S);\ - assert(P != B);\ - assert(P != F);\ - assert(chunksize(P) == small_index2size(I));\ - if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \ - if (B == F) {\ - clear_smallmap(M, I);\ - }\ - else if (RTCHECK(B == smallbin_at(M,I) ||\ - (ok_address(M, B) && B->fd == P))) {\ - F->bk = B;\ - B->fd = F;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ -} - -/* Unlink the first chunk from a smallbin */ -#define unlink_first_small_chunk(M, B, P, I) {\ - mchunkptr F = P->fd;\ - assert(P != B);\ - assert(P != F);\ - assert(chunksize(P) == small_index2size(I));\ - if (B == F) {\ - clear_smallmap(M, I);\ - }\ - else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\ - F->bk = B;\ - B->fd = F;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ -} - -/* Replace dv node, binning the old one */ -/* Used only when dvsize known to be small */ -#define replace_dv(M, P, S) {\ - size_t DVS = M->dvsize;\ - assert(is_small(DVS));\ - if (DVS != 0) {\ - mchunkptr DV = M->dv;\ - insert_small_chunk(M, DV, DVS);\ - }\ - M->dvsize = S;\ - M->dv = P;\ -} - -/* ------------------------- Operations on trees ------------------------- */ - -/* Insert chunk into tree */ -#define insert_large_chunk(M, X, S) {\ - tbinptr* H;\ - bindex_t I;\ - compute_tree_index(S, I);\ - H = treebin_at(M, I);\ - X->index = I;\ - X->child[0] = X->child[1] = 0;\ - if (!treemap_is_marked(M, I)) {\ - mark_treemap(M, I);\ - *H = X;\ - X->parent = (tchunkptr)H;\ - X->fd = X->bk = X;\ - }\ - else {\ - tchunkptr T = *H;\ - size_t K = S << leftshift_for_tree_index(I);\ - for (;;) {\ - if (chunksize(T) != S) {\ - tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ - K <<= 1;\ - if (*C != 0)\ - T = *C;\ - else if (RTCHECK(ok_address(M, C))) {\ - *C = X;\ - X->parent = T;\ - X->fd = X->bk = X;\ - break;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - break;\ - }\ - }\ - else {\ - tchunkptr F = T->fd;\ - if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ - T->fd = F->bk = X;\ - X->fd = F;\ - X->bk = T;\ - X->parent = 0;\ - break;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - break;\ - }\ - }\ - }\ - }\ -} - -/* - Unlink steps: - - 1. If x is a chained node, unlink it from its same-sized fd/bk links - and choose its bk node as its replacement. - 2. If x was the last node of its size, but not a leaf node, it must - be replaced with a leaf node (not merely one with an open left or - right), to make sure that lefts and rights of descendents - correspond properly to bit masks. We use the rightmost descendent - of x. We could use any other leaf, but this is easy to locate and - tends to counteract removal of leftmosts elsewhere, and so keeps - paths shorter than minimally guaranteed. This doesn't loop much - because on average a node in a tree is near the bottom. - 3. If x is the base of a chain (i.e., has parent links) relink - x's parent and children to x's replacement (or null if none). -*/ - -#define unlink_large_chunk(M, X) {\ - tchunkptr XP = X->parent;\ - tchunkptr R;\ - if (X->bk != X) {\ - tchunkptr F = X->fd;\ - R = X->bk;\ - if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\ - F->bk = R;\ - R->fd = F;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - }\ - else {\ - tchunkptr* RP;\ - if (((R = *(RP = &(X->child[1]))) != 0) ||\ - ((R = *(RP = &(X->child[0]))) != 0)) {\ - tchunkptr* CP;\ - while ((*(CP = &(R->child[1])) != 0) ||\ - (*(CP = &(R->child[0])) != 0)) {\ - R = *(RP = CP);\ - }\ - if (RTCHECK(ok_address(M, RP)))\ - *RP = 0;\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - }\ - }\ - if (XP != 0) {\ - tbinptr* H = treebin_at(M, X->index);\ - if (X == *H) {\ - if ((*H = R) == 0) \ - clear_treemap(M, X->index);\ - }\ - else if (RTCHECK(ok_address(M, XP))) {\ - if (XP->child[0] == X) \ - XP->child[0] = R;\ - else \ - XP->child[1] = R;\ - }\ - else\ - CORRUPTION_ERROR_ACTION(M);\ - if (R != 0) {\ - if (RTCHECK(ok_address(M, R))) {\ - tchunkptr C0, C1;\ - R->parent = XP;\ - if ((C0 = X->child[0]) != 0) {\ - if (RTCHECK(ok_address(M, C0))) {\ - R->child[0] = C0;\ - C0->parent = R;\ - }\ - else\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - if ((C1 = X->child[1]) != 0) {\ - if (RTCHECK(ok_address(M, C1))) {\ - R->child[1] = C1;\ - C1->parent = R;\ - }\ - else\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - }\ - else\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - }\ -} - -/* Relays to large vs small bin operations */ - -#define insert_chunk(M, P, S)\ - if (is_small(S)) insert_small_chunk(M, P, S)\ - else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } - -#define unlink_chunk(M, P, S)\ - if (is_small(S)) unlink_small_chunk(M, P, S)\ - else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } - - -/* Relays to internal calls to malloc/free from realloc, memalign etc */ - -#if ONLY_MSPACES -#define internal_malloc(m, b) mspace_malloc(m, b) -#define internal_free(m, mem) mspace_free(m,mem); -#else /* ONLY_MSPACES */ -#if MSPACES -#define internal_malloc(m, b)\ - ((m == gm)? dlmalloc(b) : mspace_malloc(m, b)) -#define internal_free(m, mem)\ - if (m == gm) dlfree(mem); else mspace_free(m,mem); -#else /* MSPACES */ -#define internal_malloc(m, b) dlmalloc(b) -#define internal_free(m, mem) dlfree(mem) -#endif /* MSPACES */ -#endif /* ONLY_MSPACES */ - -/* ----------------------- Direct-mmapping chunks ----------------------- */ - -/* - Directly mmapped chunks are set up with an offset to the start of - the mmapped region stored in the prev_foot field of the chunk. This - allows reconstruction of the required argument to MUNMAP when freed, - and also allows adjustment of the returned chunk to meet alignment - requirements (especially in memalign). -*/ - -/* Malloc using mmap */ -static void* mmap_alloc(mstate m, size_t nb) { - size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); - if (m->footprint_limit != 0) { - size_t fp = m->footprint + mmsize; - if (fp <= m->footprint || fp > m->footprint_limit) - return 0; - } - if (mmsize > nb) { /* Check for wrap around 0 */ - char* mm = (char*)(CALL_DIRECT_MMAP(mmsize)); - if (mm != CMFAIL) { - size_t offset = align_offset(chunk2mem(mm)); - size_t psize = mmsize - offset - MMAP_FOOT_PAD; - mchunkptr p = (mchunkptr)(mm + offset); - p->prev_foot = offset; - p->head = psize; - mark_inuse_foot(m, p, psize); - chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; - chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; - - if (m->least_addr == 0 || mm < m->least_addr) - m->least_addr = mm; - if ((m->footprint += mmsize) > m->max_footprint) - m->max_footprint = m->footprint; - assert(is_aligned(chunk2mem(p))); - check_mmapped_chunk(m, p); - return chunk2mem(p); - } - } - return 0; -} - -/* Realloc using mmap */ -static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags) { - size_t oldsize = chunksize(oldp); - (void)flags; /* placate people compiling -Wunused */ - if (is_small(nb)) /* Can't shrink mmap regions below small size */ - return 0; - /* Keep old chunk if big enough but not too big */ - if (oldsize >= nb + SIZE_T_SIZE && - (oldsize - nb) <= (mparams.granularity << 1)) - return oldp; - else { - size_t offset = oldp->prev_foot; - size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; - size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); - char* cp = (char*)CALL_MREMAP((char*)oldp - offset, - oldmmsize, newmmsize, flags); - if (cp != CMFAIL) { - mchunkptr newp = (mchunkptr)(cp + offset); - size_t psize = newmmsize - offset - MMAP_FOOT_PAD; - newp->head = psize; - mark_inuse_foot(m, newp, psize); - chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; - chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; - - if (cp < m->least_addr) - m->least_addr = cp; - if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) - m->max_footprint = m->footprint; - check_mmapped_chunk(m, newp); - return newp; - } - } - return 0; -} - - -/* -------------------------- mspace management -------------------------- */ - -/* Initialize top chunk and its size */ -static void init_top(mstate m, mchunkptr p, size_t psize) { - /* Ensure alignment */ - size_t offset = align_offset(chunk2mem(p)); - p = (mchunkptr)((char*)p + offset); - psize -= offset; - - m->top = p; - m->topsize = psize; - p->head = psize | PINUSE_BIT; - /* set size of fake trailing chunk holding overhead space only once */ - chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; - m->trim_check = mparams.trim_threshold; /* reset on each update */ -} - -/* Initialize bins for a new mstate that is otherwise zeroed out */ -static void init_bins(mstate m) { - /* Establish circular links for smallbins */ - bindex_t i; - for (i = 0; i < NSMALLBINS; ++i) { - sbinptr bin = smallbin_at(m,i); - bin->fd = bin->bk = bin; - } -} - -#if PROCEED_ON_ERROR - -/* default corruption action */ -static void reset_on_error(mstate m) { - int i; - ++malloc_corruption_error_count; - /* Reinitialize fields to forget about all memory */ - m->smallmap = m->treemap = 0; - m->dvsize = m->topsize = 0; - m->seg.base = 0; - m->seg.size = 0; - m->seg.next = 0; - m->top = m->dv = 0; - for (i = 0; i < NTREEBINS; ++i) - *treebin_at(m, i) = 0; - init_bins(m); -} -#endif /* PROCEED_ON_ERROR */ - -/* Allocate chunk and prepend remainder with chunk in successor base. */ -static void* prepend_alloc(mstate m, char* newbase, char* oldbase, - size_t nb) { - mchunkptr p = align_as_chunk(newbase); - mchunkptr oldfirst = align_as_chunk(oldbase); - size_t psize = (char*)oldfirst - (char*)p; - mchunkptr q = chunk_plus_offset(p, nb); - size_t qsize = psize - nb; - set_size_and_pinuse_of_inuse_chunk(m, p, nb); - - assert((char*)oldfirst > (char*)q); - assert(pinuse(oldfirst)); - assert(qsize >= MIN_CHUNK_SIZE); - - /* consolidate remainder with first chunk of old base */ - if (oldfirst == m->top) { - size_t tsize = m->topsize += qsize; - m->top = q; - q->head = tsize | PINUSE_BIT; - check_top_chunk(m, q); - } - else if (oldfirst == m->dv) { - size_t dsize = m->dvsize += qsize; - m->dv = q; - set_size_and_pinuse_of_free_chunk(q, dsize); - } - else { - if (!is_inuse(oldfirst)) { - size_t nsize = chunksize(oldfirst); - unlink_chunk(m, oldfirst, nsize); - oldfirst = chunk_plus_offset(oldfirst, nsize); - qsize += nsize; - } - set_free_with_pinuse(q, qsize, oldfirst); - insert_chunk(m, q, qsize); - check_free_chunk(m, q); - } - - check_malloced_chunk(m, chunk2mem(p), nb); - return chunk2mem(p); -} - -/* Add a segment to hold a new noncontiguous region */ -static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { - /* Determine locations and sizes of segment, fenceposts, old top */ - char* old_top = (char*)m->top; - msegmentptr oldsp = segment_holding(m, old_top); - char* old_end = oldsp->base + oldsp->size; - size_t ssize = pad_request(sizeof(struct malloc_segment)); - char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); - size_t offset = align_offset(chunk2mem(rawsp)); - char* asp = rawsp + offset; - char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; - mchunkptr sp = (mchunkptr)csp; - msegmentptr ss = (msegmentptr)(chunk2mem(sp)); - mchunkptr tnext = chunk_plus_offset(sp, ssize); - mchunkptr p = tnext; - int nfences = 0; - - /* reset top to new space */ - init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); - - /* Set up segment record */ - assert(is_aligned(ss)); - set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); - *ss = m->seg; /* Push current record */ - m->seg.base = tbase; - m->seg.size = tsize; - m->seg.sflags = mmapped; - m->seg.next = ss; - - /* Insert trailing fenceposts */ - for (;;) { - mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); - p->head = FENCEPOST_HEAD; - ++nfences; - if ((char*)(&(nextp->head)) < old_end) - p = nextp; - else - break; - } - assert(nfences >= 2); - - /* Insert the rest of old top into a bin as an ordinary free chunk */ - if (csp != old_top) { - mchunkptr q = (mchunkptr)old_top; - size_t psize = csp - old_top; - mchunkptr tn = chunk_plus_offset(q, psize); - set_free_with_pinuse(q, psize, tn); - insert_chunk(m, q, psize); - } - - check_top_chunk(m, m->top); -} - -/* -------------------------- System allocation -------------------------- */ - -/* Get memory from system using MORECORE or MMAP */ -static void* sys_alloc(mstate m, size_t nb) { - char* tbase = CMFAIL; - size_t tsize = 0; - flag_t mmap_flag = 0; - size_t asize; /* allocation size */ - - ensure_initialization(); - - /* Directly map large chunks, but only if already initialized */ - if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) { - void* mem = mmap_alloc(m, nb); - if (mem != 0) - return mem; - } - - asize = granularity_align(nb + SYS_ALLOC_PADDING); - if (asize <= nb) - return 0; /* wraparound */ - if (m->footprint_limit != 0) { - size_t fp = m->footprint + asize; - if (fp <= m->footprint || fp > m->footprint_limit) - return 0; - } - - /* - Try getting memory in any of three ways (in most-preferred to - least-preferred order): - 1. A call to MORECORE that can normally contiguously extend memory. - (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or - or main space is mmapped or a previous contiguous call failed) - 2. A call to MMAP new space (disabled if not HAVE_MMAP). - Note that under the default settings, if MORECORE is unable to - fulfill a request, and HAVE_MMAP is true, then mmap is - used as a noncontiguous system allocator. This is a useful backup - strategy for systems with holes in address spaces -- in this case - sbrk cannot contiguously expand the heap, but mmap may be able to - find space. - 3. A call to MORECORE that cannot usually contiguously extend memory. - (disabled if not HAVE_MORECORE) - - In all cases, we need to request enough bytes from system to ensure - we can malloc nb bytes upon success, so pad with enough space for - top_foot, plus alignment-pad to make sure we don't lose bytes if - not on boundary, and round this up to a granularity unit. - */ - - if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { - char* br = CMFAIL; - size_t ssize = asize; /* sbrk call size */ - msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); - ACQUIRE_MALLOC_GLOBAL_LOCK(); - - if (ss == 0) { /* First time through or recovery */ - char* base = (char*)CALL_MORECORE(0); - if (base != CMFAIL) { - size_t fp; - /* Adjust to end on a page boundary */ - if (!is_page_aligned(base)) - ssize += (page_align((size_t)base) - (size_t)base); - fp = m->footprint + ssize; /* recheck limits */ - if (ssize > nb && ssize < HALF_MAX_SIZE_T && - (m->footprint_limit == 0 || - (fp > m->footprint && fp <= m->footprint_limit)) && - (br = (char*)(CALL_MORECORE(ssize))) == base) { - tbase = base; - tsize = ssize; - } - } - } - else { - /* Subtract out existing available top space from MORECORE request. */ - ssize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING); - /* Use mem here only if it did continuously extend old space */ - if (ssize < HALF_MAX_SIZE_T && - (br = (char*)(CALL_MORECORE(ssize))) == ss->base+ss->size) { - tbase = br; - tsize = ssize; - } - } - - if (tbase == CMFAIL) { /* Cope with partial failure */ - if (br != CMFAIL) { /* Try to use/extend the space we did get */ - if (ssize < HALF_MAX_SIZE_T && - ssize < nb + SYS_ALLOC_PADDING) { - size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - ssize); - if (esize < HALF_MAX_SIZE_T) { - char* end = (char*)CALL_MORECORE(esize); - if (end != CMFAIL) - ssize += esize; - else { /* Can't use; try to release */ - (void) CALL_MORECORE(-ssize); - br = CMFAIL; - } - } - } - } - if (br != CMFAIL) { /* Use the space we did get */ - tbase = br; - tsize = ssize; - } - else - disable_contiguous(m); /* Don't try contiguous path in the future */ - } - - RELEASE_MALLOC_GLOBAL_LOCK(); - } - - if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */ - char* mp = (char*)(CALL_MMAP(asize)); - if (mp != CMFAIL) { - tbase = mp; - tsize = asize; - mmap_flag = USE_MMAP_BIT; - } - } - - if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ - if (asize < HALF_MAX_SIZE_T) { - char* br = CMFAIL; - char* end = CMFAIL; - ACQUIRE_MALLOC_GLOBAL_LOCK(); - br = (char*)(CALL_MORECORE(asize)); - end = (char*)(CALL_MORECORE(0)); - RELEASE_MALLOC_GLOBAL_LOCK(); - if (br != CMFAIL && end != CMFAIL && br < end) { - size_t ssize = end - br; - if (ssize > nb + TOP_FOOT_SIZE) { - tbase = br; - tsize = ssize; - } - } - } - } - - if (tbase != CMFAIL) { - - if ((m->footprint += tsize) > m->max_footprint) - m->max_footprint = m->footprint; - - if (!is_initialized(m)) { /* first-time initialization */ - if (m->least_addr == 0 || tbase < m->least_addr) - m->least_addr = tbase; - m->seg.base = tbase; - m->seg.size = tsize; - m->seg.sflags = mmap_flag; - m->magic = mparams.magic; - m->release_checks = MAX_RELEASE_CHECK_RATE; - init_bins(m); -#if !ONLY_MSPACES - if (is_global(m)) - init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); - else -#endif - { - /* Offset top by embedded malloc_state */ - mchunkptr mn = next_chunk(mem2chunk(m)); - init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); - } - } - - else { - /* Try to merge with an existing segment */ - msegmentptr sp = &m->seg; - /* Only consider most recent segment if traversal suppressed */ - while (sp != 0 && tbase != sp->base + sp->size) - sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; - if (sp != 0 && - !is_extern_segment(sp) && - (sp->sflags & USE_MMAP_BIT) == mmap_flag && - segment_holds(sp, m->top)) { /* append */ - sp->size += tsize; - init_top(m, m->top, m->topsize + tsize); - } - else { - if (tbase < m->least_addr) - m->least_addr = tbase; - sp = &m->seg; - while (sp != 0 && sp->base != tbase + tsize) - sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; - if (sp != 0 && - !is_extern_segment(sp) && - (sp->sflags & USE_MMAP_BIT) == mmap_flag) { - char* oldbase = sp->base; - sp->base = tbase; - sp->size += tsize; - return prepend_alloc(m, tbase, oldbase, nb); - } - else - add_segment(m, tbase, tsize, mmap_flag); - } - } - - if (nb < m->topsize) { /* Allocate from new or extended top space */ - size_t rsize = m->topsize -= nb; - mchunkptr p = m->top; - mchunkptr r = m->top = chunk_plus_offset(p, nb); - r->head = rsize | PINUSE_BIT; - set_size_and_pinuse_of_inuse_chunk(m, p, nb); - check_top_chunk(m, m->top); - check_malloced_chunk(m, chunk2mem(p), nb); - return chunk2mem(p); - } - } - - MALLOC_FAILURE_ACTION; - return 0; -} - -/* ----------------------- system deallocation -------------------------- */ - -/* Unmap and unlink any mmapped segments that don't contain used chunks */ -static size_t release_unused_segments(mstate m) { - size_t released = 0; - int nsegs = 0; - msegmentptr pred = &m->seg; - msegmentptr sp = pred->next; - while (sp != 0) { - char* base = sp->base; - size_t size = sp->size; - msegmentptr next = sp->next; - ++nsegs; - if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { - mchunkptr p = align_as_chunk(base); - size_t psize = chunksize(p); - /* Can unmap if first chunk holds entire segment and not pinned */ - if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { - tchunkptr tp = (tchunkptr)p; - assert(segment_holds(sp, (char*)sp)); - if (p == m->dv) { - m->dv = 0; - m->dvsize = 0; - } - else { - unlink_large_chunk(m, tp); - } - if (CALL_MUNMAP(base, size) == 0) { - released += size; - m->footprint -= size; - /* unlink obsoleted record */ - sp = pred; - sp->next = next; - } - else { /* back out if cannot unmap */ - insert_large_chunk(m, tp, psize); - } - } - } - if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */ - break; - pred = sp; - sp = next; - } - /* Reset check counter */ - m->release_checks = (((size_t) nsegs > (size_t) MAX_RELEASE_CHECK_RATE)? - (size_t) nsegs : (size_t) MAX_RELEASE_CHECK_RATE); - return released; -} - -static int sys_trim(mstate m, size_t pad) { - size_t released = 0; - ensure_initialization(); - if (pad < MAX_REQUEST && is_initialized(m)) { - pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ - - if (m->topsize > pad) { - /* Shrink top space in granularity-size units, keeping at least one */ - size_t unit = mparams.granularity; - size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - - SIZE_T_ONE) * unit; - msegmentptr sp = segment_holding(m, (char*)m->top); - - if (!is_extern_segment(sp)) { - if (is_mmapped_segment(sp)) { - if (HAVE_MMAP && - sp->size >= extra && - !has_segment_link(m, sp)) { /* can't shrink if pinned */ - size_t newsize = sp->size - extra; - (void)newsize; /* placate people compiling -Wunused-variable */ - /* Prefer mremap, fall back to munmap */ - if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || - (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { - released = extra; - } - } - } - else if (HAVE_MORECORE) { - if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ - extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; - ACQUIRE_MALLOC_GLOBAL_LOCK(); - { - /* Make sure end of memory is where we last set it. */ - char* old_br = (char*)(CALL_MORECORE(0)); - if (old_br == sp->base + sp->size) { - char* rel_br = (char*)(CALL_MORECORE(-extra)); - char* new_br = (char*)(CALL_MORECORE(0)); - if (rel_br != CMFAIL && new_br < old_br) - released = old_br - new_br; - } - } - RELEASE_MALLOC_GLOBAL_LOCK(); - } - } - - if (released != 0) { - sp->size -= released; - m->footprint -= released; - init_top(m, m->top, m->topsize - released); - check_top_chunk(m, m->top); - } - } - - /* Unmap any unused mmapped segments */ - if (HAVE_MMAP) - released += release_unused_segments(m); - - /* On failure, disable autotrim to avoid repeated failed future calls */ - if (released == 0 && m->topsize > m->trim_check) - m->trim_check = MAX_SIZE_T; - } - - return (released != 0)? 1 : 0; -} - -/* Consolidate and bin a chunk. Differs from exported versions - of free mainly in that the chunk need not be marked as inuse. -*/ -static void dispose_chunk(mstate m, mchunkptr p, size_t psize) { - mchunkptr next = chunk_plus_offset(p, psize); - if (!pinuse(p)) { - mchunkptr prev; - size_t prevsize = p->prev_foot; - if (is_mmapped(p)) { - psize += prevsize + MMAP_FOOT_PAD; - if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) - m->footprint -= psize; - return; - } - prev = chunk_minus_offset(p, prevsize); - psize += prevsize; - p = prev; - if (RTCHECK(ok_address(m, prev))) { /* consolidate backward */ - if (p != m->dv) { - unlink_chunk(m, p, prevsize); - } - else if ((next->head & INUSE_BITS) == INUSE_BITS) { - m->dvsize = psize; - set_free_with_pinuse(p, psize, next); - return; - } - } - else { - CORRUPTION_ERROR_ACTION(m); - return; - } - } - if (RTCHECK(ok_address(m, next))) { - if (!cinuse(next)) { /* consolidate forward */ - if (next == m->top) { - size_t tsize = m->topsize += psize; - m->top = p; - p->head = tsize | PINUSE_BIT; - if (p == m->dv) { - m->dv = 0; - m->dvsize = 0; - } - return; - } - else if (next == m->dv) { - size_t dsize = m->dvsize += psize; - m->dv = p; - set_size_and_pinuse_of_free_chunk(p, dsize); - return; - } - else { - size_t nsize = chunksize(next); - psize += nsize; - unlink_chunk(m, next, nsize); - set_size_and_pinuse_of_free_chunk(p, psize); - if (p == m->dv) { - m->dvsize = psize; - return; - } - } - } - else { - set_free_with_pinuse(p, psize, next); - } - insert_chunk(m, p, psize); - } - else { - CORRUPTION_ERROR_ACTION(m); - } -} - -/* ---------------------------- malloc --------------------------- */ - -/* allocate a large request from the best fitting chunk in a treebin */ -static void* tmalloc_large(mstate m, size_t nb) { - tchunkptr v = 0; - size_t rsize = -nb; /* Unsigned negation */ - tchunkptr t; - bindex_t idx; - compute_tree_index(nb, idx); - if ((t = *treebin_at(m, idx)) != 0) { - /* Traverse tree for this bin looking for node with size == nb */ - size_t sizebits = nb << leftshift_for_tree_index(idx); - tchunkptr rst = 0; /* The deepest untaken right subtree */ - for (;;) { - tchunkptr rt; - size_t trem = chunksize(t) - nb; - if (trem < rsize) { - v = t; - if ((rsize = trem) == 0) - break; - } - rt = t->child[1]; - t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; - if (rt != 0 && rt != t) - rst = rt; - if (t == 0) { - t = rst; /* set t to least subtree holding sizes > nb */ - break; - } - sizebits <<= 1; - } - } - if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ - binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; - if (leftbits != 0) { - bindex_t i; - binmap_t leastbit = least_bit(leftbits); - compute_bit2idx(leastbit, i); - t = *treebin_at(m, i); - } - } - - while (t != 0) { /* find smallest of tree or subtree */ - size_t trem = chunksize(t) - nb; - if (trem < rsize) { - rsize = trem; - v = t; - } - t = leftmost_child(t); - } - - /* If dv is a better fit, return 0 so malloc will use it */ - if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { - if (RTCHECK(ok_address(m, v))) { /* split */ - mchunkptr r = chunk_plus_offset(v, nb); - assert(chunksize(v) == rsize + nb); - if (RTCHECK(ok_next(v, r))) { - unlink_large_chunk(m, v); - if (rsize < MIN_CHUNK_SIZE) - set_inuse_and_pinuse(m, v, (rsize + nb)); - else { - set_size_and_pinuse_of_inuse_chunk(m, v, nb); - set_size_and_pinuse_of_free_chunk(r, rsize); - insert_chunk(m, r, rsize); - } - return chunk2mem(v); - } - } - CORRUPTION_ERROR_ACTION(m); - } - return 0; -} - -/* allocate a small request from the best fitting chunk in a treebin */ -static void* tmalloc_small(mstate m, size_t nb) { - tchunkptr t, v; - size_t rsize; - bindex_t i; - binmap_t leastbit = least_bit(m->treemap); - compute_bit2idx(leastbit, i); - v = t = *treebin_at(m, i); - rsize = chunksize(t) - nb; - - while ((t = leftmost_child(t)) != 0) { - size_t trem = chunksize(t) - nb; - if (trem < rsize) { - rsize = trem; - v = t; - } - } - - if (RTCHECK(ok_address(m, v))) { - mchunkptr r = chunk_plus_offset(v, nb); - assert(chunksize(v) == rsize + nb); - if (RTCHECK(ok_next(v, r))) { - unlink_large_chunk(m, v); - if (rsize < MIN_CHUNK_SIZE) - set_inuse_and_pinuse(m, v, (rsize + nb)); - else { - set_size_and_pinuse_of_inuse_chunk(m, v, nb); - set_size_and_pinuse_of_free_chunk(r, rsize); - replace_dv(m, r, rsize); - } - return chunk2mem(v); - } - } - - CORRUPTION_ERROR_ACTION(m); - return 0; -} - -#if !ONLY_MSPACES - -void* dlmalloc(size_t bytes) { - /* - Basic algorithm: - If a small request (< 256 bytes minus per-chunk overhead): - 1. If one exists, use a remainderless chunk in associated smallbin. - (Remainderless means that there are too few excess bytes to - represent as a chunk.) - 2. If it is big enough, use the dv chunk, which is normally the - chunk adjacent to the one used for the most recent small request. - 3. If one exists, split the smallest available chunk in a bin, - saving remainder in dv. - 4. If it is big enough, use the top chunk. - 5. If available, get memory from system and use it - Otherwise, for a large request: - 1. Find the smallest available binned chunk that fits, and use it - if it is better fitting than dv chunk, splitting if necessary. - 2. If better fitting than any binned chunk, use the dv chunk. - 3. If it is big enough, use the top chunk. - 4. If request size >= mmap threshold, try to directly mmap this chunk. - 5. If available, get memory from system and use it - - The ugly goto's here ensure that postaction occurs along all paths. - */ - -#if USE_LOCKS - ensure_initialization(); /* initialize in sys_alloc if not using locks */ -#endif - - if (!PREACTION(gm)) { - void* mem; - size_t nb; - if (bytes <= MAX_SMALL_REQUEST) { - bindex_t idx; - binmap_t smallbits; - nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); - idx = small_index(nb); - smallbits = gm->smallmap >> idx; - - if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ - mchunkptr b, p; - idx += ~smallbits & 1; /* Uses next bin if idx empty */ - b = smallbin_at(gm, idx); - p = b->fd; - assert(chunksize(p) == small_index2size(idx)); - unlink_first_small_chunk(gm, b, p, idx); - set_inuse_and_pinuse(gm, p, small_index2size(idx)); - mem = chunk2mem(p); - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - - else if (nb > gm->dvsize) { - if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ - mchunkptr b, p, r; - size_t rsize; - bindex_t i; - binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); - binmap_t leastbit = least_bit(leftbits); - compute_bit2idx(leastbit, i); - b = smallbin_at(gm, i); - p = b->fd; - assert(chunksize(p) == small_index2size(i)); - unlink_first_small_chunk(gm, b, p, i); - rsize = small_index2size(i) - nb; - /* Fit here cannot be remainderless if 4byte sizes */ - if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) - set_inuse_and_pinuse(gm, p, small_index2size(i)); - else { - set_size_and_pinuse_of_inuse_chunk(gm, p, nb); - r = chunk_plus_offset(p, nb); - set_size_and_pinuse_of_free_chunk(r, rsize); - replace_dv(gm, r, rsize); - } - mem = chunk2mem(p); - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - - else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - } - } - else if (bytes >= MAX_REQUEST) - nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ - else { - nb = pad_request(bytes); - if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - } - - if (nb <= gm->dvsize) { - size_t rsize = gm->dvsize - nb; - mchunkptr p = gm->dv; - if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ - mchunkptr r = gm->dv = chunk_plus_offset(p, nb); - gm->dvsize = rsize; - set_size_and_pinuse_of_free_chunk(r, rsize); - set_size_and_pinuse_of_inuse_chunk(gm, p, nb); - } - else { /* exhaust dv */ - size_t dvs = gm->dvsize; - gm->dvsize = 0; - gm->dv = 0; - set_inuse_and_pinuse(gm, p, dvs); - } - mem = chunk2mem(p); - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - - else if (nb < gm->topsize) { /* Split top */ - size_t rsize = gm->topsize -= nb; - mchunkptr p = gm->top; - mchunkptr r = gm->top = chunk_plus_offset(p, nb); - r->head = rsize | PINUSE_BIT; - set_size_and_pinuse_of_inuse_chunk(gm, p, nb); - mem = chunk2mem(p); - check_top_chunk(gm, gm->top); - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - - mem = sys_alloc(gm, nb); - - postaction: - POSTACTION(gm); - return mem; - } - - return 0; -} - -/* ---------------------------- free --------------------------- */ - -void dlfree(void* mem) { - /* - Consolidate freed chunks with preceeding or succeeding bordering - free chunks, if they exist, and then place in a bin. Intermixed - with special cases for top, dv, mmapped chunks, and usage errors. - */ - - if (mem != 0) { - mchunkptr p = mem2chunk(mem); -#if FOOTERS - mstate fm = get_mstate_for(p); - if (!ok_magic(fm)) { - USAGE_ERROR_ACTION(fm, p); - return; - } -#else /* FOOTERS */ -#define fm gm -#endif /* FOOTERS */ - if (!PREACTION(fm)) { - check_inuse_chunk(fm, p); - if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { - size_t psize = chunksize(p); - mchunkptr next = chunk_plus_offset(p, psize); - if (!pinuse(p)) { - size_t prevsize = p->prev_foot; - if (is_mmapped(p)) { - psize += prevsize + MMAP_FOOT_PAD; - if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) - fm->footprint -= psize; - goto postaction; - } - else { - mchunkptr prev = chunk_minus_offset(p, prevsize); - psize += prevsize; - p = prev; - if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ - if (p != fm->dv) { - unlink_chunk(fm, p, prevsize); - } - else if ((next->head & INUSE_BITS) == INUSE_BITS) { - fm->dvsize = psize; - set_free_with_pinuse(p, psize, next); - goto postaction; - } - } - else - goto erroraction; - } - } - - if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { - if (!cinuse(next)) { /* consolidate forward */ - if (next == fm->top) { - size_t tsize = fm->topsize += psize; - fm->top = p; - p->head = tsize | PINUSE_BIT; - if (p == fm->dv) { - fm->dv = 0; - fm->dvsize = 0; - } - if (should_trim(fm, tsize)) - sys_trim(fm, 0); - goto postaction; - } - else if (next == fm->dv) { - size_t dsize = fm->dvsize += psize; - fm->dv = p; - set_size_and_pinuse_of_free_chunk(p, dsize); - goto postaction; - } - else { - size_t nsize = chunksize(next); - psize += nsize; - unlink_chunk(fm, next, nsize); - set_size_and_pinuse_of_free_chunk(p, psize); - if (p == fm->dv) { - fm->dvsize = psize; - goto postaction; - } - } - } - else - set_free_with_pinuse(p, psize, next); - - if (is_small(psize)) { - insert_small_chunk(fm, p, psize); - check_free_chunk(fm, p); - } - else { - tchunkptr tp = (tchunkptr)p; - insert_large_chunk(fm, tp, psize); - check_free_chunk(fm, p); - if (--fm->release_checks == 0) - release_unused_segments(fm); - } - goto postaction; - } - } - erroraction: - USAGE_ERROR_ACTION(fm, p); - postaction: - POSTACTION(fm); - } - } -#if !FOOTERS -#undef fm -#endif /* FOOTERS */ -} - -void* dlcalloc(size_t n_elements, size_t elem_size) { - void* mem; - size_t req = 0; - if (n_elements != 0) { - req = n_elements * elem_size; - if (((n_elements | elem_size) & ~(size_t)0xffff) && - (req / n_elements != elem_size)) - req = MAX_SIZE_T; /* force downstream failure on overflow */ - } - mem = dlmalloc(req); - if (mem != 0 && calloc_must_clear(mem2chunk(mem))) - memset(mem, 0, req); - return mem; -} - -#endif /* !ONLY_MSPACES */ - -/* ------------ Internal support for realloc, memalign, etc -------------- */ - -/* Try to realloc; only in-place unless can_move true */ -static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb, - int can_move) { - mchunkptr newp = 0; - size_t oldsize = chunksize(p); - mchunkptr next = chunk_plus_offset(p, oldsize); - if (RTCHECK(ok_address(m, p) && ok_inuse(p) && - ok_next(p, next) && ok_pinuse(next))) { - if (is_mmapped(p)) { - newp = mmap_resize(m, p, nb, can_move); - } - else if (oldsize >= nb) { /* already big enough */ - size_t rsize = oldsize - nb; - if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */ - mchunkptr r = chunk_plus_offset(p, nb); - set_inuse(m, p, nb); - set_inuse(m, r, rsize); - dispose_chunk(m, r, rsize); - } - newp = p; - } - else if (next == m->top) { /* extend into top */ - if (oldsize + m->topsize > nb) { - size_t newsize = oldsize + m->topsize; - size_t newtopsize = newsize - nb; - mchunkptr newtop = chunk_plus_offset(p, nb); - set_inuse(m, p, nb); - newtop->head = newtopsize |PINUSE_BIT; - m->top = newtop; - m->topsize = newtopsize; - newp = p; - } - } - else if (next == m->dv) { /* extend into dv */ - size_t dvs = m->dvsize; - if (oldsize + dvs >= nb) { - size_t dsize = oldsize + dvs - nb; - if (dsize >= MIN_CHUNK_SIZE) { - mchunkptr r = chunk_plus_offset(p, nb); - mchunkptr n = chunk_plus_offset(r, dsize); - set_inuse(m, p, nb); - set_size_and_pinuse_of_free_chunk(r, dsize); - clear_pinuse(n); - m->dvsize = dsize; - m->dv = r; - } - else { /* exhaust dv */ - size_t newsize = oldsize + dvs; - set_inuse(m, p, newsize); - m->dvsize = 0; - m->dv = 0; - } - newp = p; - } - } - else if (!cinuse(next)) { /* extend into next free chunk */ - size_t nextsize = chunksize(next); - if (oldsize + nextsize >= nb) { - size_t rsize = oldsize + nextsize - nb; - unlink_chunk(m, next, nextsize); - if (rsize < MIN_CHUNK_SIZE) { - size_t newsize = oldsize + nextsize; - set_inuse(m, p, newsize); - } - else { - mchunkptr r = chunk_plus_offset(p, nb); - set_inuse(m, p, nb); - set_inuse(m, r, rsize); - dispose_chunk(m, r, rsize); - } - newp = p; - } - } - } - else { - USAGE_ERROR_ACTION(m, chunk2mem(p)); - } - return newp; -} - -static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { - void* mem = 0; - if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ - alignment = MIN_CHUNK_SIZE; - if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ - size_t a = MALLOC_ALIGNMENT << 1; - while (a < alignment) a <<= 1; - alignment = a; - } - if (bytes >= MAX_REQUEST - alignment) { - if (m != 0) { /* Test isn't needed but avoids compiler warning */ - MALLOC_FAILURE_ACTION; - } - } - else { - size_t nb = request2size(bytes); - size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; - mem = internal_malloc(m, req); - if (mem != 0) { - mchunkptr p = mem2chunk(mem); - if (PREACTION(m)) - return 0; - if ((((size_t)(mem)) & (alignment - 1)) != 0) { /* misaligned */ - /* - Find an aligned spot inside chunk. Since we need to give - back leading space in a chunk of at least MIN_CHUNK_SIZE, if - the first calculation places us at a spot with less than - MIN_CHUNK_SIZE leader, we can move to the next aligned spot. - We've allocated enough total room so that this is always - possible. - */ - char* br = (char*)mem2chunk((size_t)(((size_t)((char*)mem + alignment - - SIZE_T_ONE)) & - -alignment)); - char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? - br : br+alignment; - mchunkptr newp = (mchunkptr)pos; - size_t leadsize = pos - (char*)(p); - size_t newsize = chunksize(p) - leadsize; - - if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ - newp->prev_foot = p->prev_foot + leadsize; - newp->head = newsize; - } - else { /* Otherwise, give back leader, use the rest */ - set_inuse(m, newp, newsize); - set_inuse(m, p, leadsize); - dispose_chunk(m, p, leadsize); - } - p = newp; - } - - /* Give back spare room at the end */ - if (!is_mmapped(p)) { - size_t size = chunksize(p); - if (size > nb + MIN_CHUNK_SIZE) { - size_t remainder_size = size - nb; - mchunkptr remainder = chunk_plus_offset(p, nb); - set_inuse(m, p, nb); - set_inuse(m, remainder, remainder_size); - dispose_chunk(m, remainder, remainder_size); - } - } - - mem = chunk2mem(p); - assert (chunksize(p) >= nb); - assert(((size_t)mem & (alignment - 1)) == 0); - check_inuse_chunk(m, p); - POSTACTION(m); - } - } - return mem; -} - -/* - Common support for independent_X routines, handling - all of the combinations that can result. - The opts arg has: - bit 0 set if all elements are same size (using sizes[0]) - bit 1 set if elements should be zeroed -*/ -static void** ialloc(mstate m, - size_t n_elements, - size_t* sizes, - int opts, - void* chunks[]) { - - size_t element_size; /* chunksize of each element, if all same */ - size_t contents_size; /* total size of elements */ - size_t array_size; /* request size of pointer array */ - void* mem; /* malloced aggregate space */ - mchunkptr p; /* corresponding chunk */ - size_t remainder_size; /* remaining bytes while splitting */ - void** marray; /* either "chunks" or malloced ptr array */ - mchunkptr array_chunk; /* chunk for malloced ptr array */ - flag_t was_enabled; /* to disable mmap */ - size_t size; - size_t i; - - ensure_initialization(); - /* compute array length, if needed */ - if (chunks != 0) { - if (n_elements == 0) - return chunks; /* nothing to do */ - marray = chunks; - array_size = 0; - } - else { - /* if empty req, must still return chunk representing empty array */ - if (n_elements == 0) - return (void**)internal_malloc(m, 0); - marray = 0; - array_size = request2size(n_elements * (sizeof(void*))); - } - - /* compute total element size */ - if (opts & 0x1) { /* all-same-size */ - element_size = request2size(*sizes); - contents_size = n_elements * element_size; - } - else { /* add up all the sizes */ - element_size = 0; - contents_size = 0; - for (i = 0; i != n_elements; ++i) - contents_size += request2size(sizes[i]); - } - - size = contents_size + array_size; - - /* - Allocate the aggregate chunk. First disable direct-mmapping so - malloc won't use it, since we would not be able to later - free/realloc space internal to a segregated mmap region. - */ - was_enabled = use_mmap(m); - disable_mmap(m); - mem = internal_malloc(m, size - CHUNK_OVERHEAD); - if (was_enabled) - enable_mmap(m); - if (mem == 0) - return 0; - - if (PREACTION(m)) return 0; - p = mem2chunk(mem); - remainder_size = chunksize(p); - - assert(!is_mmapped(p)); - - if (opts & 0x2) { /* optionally clear the elements */ - memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); - } - - /* If not provided, allocate the pointer array as final part of chunk */ - if (marray == 0) { - size_t array_chunk_size; - array_chunk = chunk_plus_offset(p, contents_size); - array_chunk_size = remainder_size - contents_size; - marray = (void**) (chunk2mem(array_chunk)); - set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); - remainder_size = contents_size; - } - - /* split out elements */ - for (i = 0; ; ++i) { - marray[i] = chunk2mem(p); - if (i != n_elements-1) { - if (element_size != 0) - size = element_size; - else - size = request2size(sizes[i]); - remainder_size -= size; - set_size_and_pinuse_of_inuse_chunk(m, p, size); - p = chunk_plus_offset(p, size); - } - else { /* the final element absorbs any overallocation slop */ - set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); - break; - } - } - -#if DEBUG - if (marray != chunks) { - /* final element must have exactly exhausted chunk */ - if (element_size != 0) { - assert(remainder_size == element_size); - } - else { - assert(remainder_size == request2size(sizes[i])); - } - check_inuse_chunk(m, mem2chunk(marray)); - } - for (i = 0; i != n_elements; ++i) - check_inuse_chunk(m, mem2chunk(marray[i])); - -#endif /* DEBUG */ - - POSTACTION(m); - return marray; -} - -/* Try to free all pointers in the given array. - Note: this could be made faster, by delaying consolidation, - at the price of disabling some user integrity checks, We - still optimize some consolidations by combining adjacent - chunks before freeing, which will occur often if allocated - with ialloc or the array is sorted. -*/ -static size_t internal_bulk_free(mstate m, void* array[], size_t nelem) { - size_t unfreed = 0; - if (!PREACTION(m)) { - void** a; - void** fence = &(array[nelem]); - for (a = array; a != fence; ++a) { - void* mem = *a; - if (mem != 0) { - mchunkptr p = mem2chunk(mem); - size_t psize = chunksize(p); -#if FOOTERS - if (get_mstate_for(p) != m) { - ++unfreed; - continue; - } -#endif - check_inuse_chunk(m, p); - *a = 0; - if (RTCHECK(ok_address(m, p) && ok_inuse(p))) { - void ** b = a + 1; /* try to merge with next chunk */ - mchunkptr next = next_chunk(p); - if (b != fence && *b == chunk2mem(next)) { - size_t newsize = chunksize(next) + psize; - set_inuse(m, p, newsize); - *b = chunk2mem(p); - } - else - dispose_chunk(m, p, psize); - } - else { - CORRUPTION_ERROR_ACTION(m); - break; - } - } - } - if (should_trim(m, m->topsize)) - sys_trim(m, 0); - POSTACTION(m); - } - return unfreed; -} - -/* Traversal */ -#if MALLOC_INSPECT_ALL -static void internal_inspect_all(mstate m, - void(*handler)(void *start, - void *end, - size_t used_bytes, - void* callback_arg), - void* arg) { - if (is_initialized(m)) { - mchunkptr top = m->top; - msegmentptr s; - for (s = &m->seg; s != 0; s = s->next) { - mchunkptr q = align_as_chunk(s->base); - while (segment_holds(s, q) && q->head != FENCEPOST_HEAD) { - mchunkptr next = next_chunk(q); - size_t sz = chunksize(q); - size_t used; - void* start; - if (is_inuse(q)) { - used = sz - CHUNK_OVERHEAD; /* must not be mmapped */ - start = chunk2mem(q); - } - else { - used = 0; - if (is_small(sz)) { /* offset by possible bookkeeping */ - start = (void*)((char*)q + sizeof(struct malloc_chunk)); - } - else { - start = (void*)((char*)q + sizeof(struct malloc_tree_chunk)); - } - } - if (start < (void*)next) /* skip if all space is bookkeeping */ - handler(start, next, used, arg); - if (q == top) - break; - q = next; - } - } - } -} -#endif /* MALLOC_INSPECT_ALL */ - -/* ------------------ Exported realloc, memalign, etc -------------------- */ - -#if !ONLY_MSPACES - -void* dlrealloc(void* oldmem, size_t bytes) { - void* mem = 0; - if (oldmem == 0) { - mem = dlmalloc(bytes); - } - else if (bytes >= MAX_REQUEST) { - MALLOC_FAILURE_ACTION; - } -#ifdef REALLOC_ZERO_BYTES_FREES - else if (bytes == 0) { - dlfree(oldmem); - } -#endif /* REALLOC_ZERO_BYTES_FREES */ - else { - size_t nb = request2size(bytes); - mchunkptr oldp = mem2chunk(oldmem); -#if ! FOOTERS - mstate m = gm; -#else /* FOOTERS */ - mstate m = get_mstate_for(oldp); - if (!ok_magic(m)) { - USAGE_ERROR_ACTION(m, oldmem); - return 0; - } -#endif /* FOOTERS */ - if (!PREACTION(m)) { - mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1); - POSTACTION(m); - if (newp != 0) { - check_inuse_chunk(m, newp); - mem = chunk2mem(newp); - } - else { - mem = internal_malloc(m, bytes); - if (mem != 0) { - size_t oc = chunksize(oldp) - overhead_for(oldp); - memcpy(mem, oldmem, (oc < bytes)? oc : bytes); - internal_free(m, oldmem); - } - } - } - } - return mem; -} - -void* dlrealloc_in_place(void* oldmem, size_t bytes) { - void* mem = 0; - if (oldmem != 0) { - if (bytes >= MAX_REQUEST) { - MALLOC_FAILURE_ACTION; - } - else { - size_t nb = request2size(bytes); - mchunkptr oldp = mem2chunk(oldmem); -#if ! FOOTERS - mstate m = gm; -#else /* FOOTERS */ - mstate m = get_mstate_for(oldp); - if (!ok_magic(m)) { - USAGE_ERROR_ACTION(m, oldmem); - return 0; - } -#endif /* FOOTERS */ - if (!PREACTION(m)) { - mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0); - POSTACTION(m); - if (newp == oldp) { - check_inuse_chunk(m, newp); - mem = oldmem; - } - } - } - } - return mem; -} - -void* dlmemalign(size_t alignment, size_t bytes) { - if (alignment <= MALLOC_ALIGNMENT) { - return dlmalloc(bytes); - } - return internal_memalign(gm, alignment, bytes); -} - -int dlposix_memalign(void** pp, size_t alignment, size_t bytes) { - void* mem = 0; - if (alignment == MALLOC_ALIGNMENT) - mem = dlmalloc(bytes); - else { - size_t d = alignment / sizeof(void*); - size_t r = alignment % sizeof(void*); - if (r != 0 || d == 0 || (d & (d-SIZE_T_ONE)) != 0) - return EINVAL; - else if (bytes <= MAX_REQUEST - alignment) { - if (alignment < MIN_CHUNK_SIZE) - alignment = MIN_CHUNK_SIZE; - mem = internal_memalign(gm, alignment, bytes); - } - } - if (mem == 0) - return ENOMEM; - else { - *pp = mem; - return 0; - } -} - -void* dlvalloc(size_t bytes) { - size_t pagesz; - ensure_initialization(); - pagesz = mparams.page_size; - return dlmemalign(pagesz, bytes); -} - -void* dlpvalloc(size_t bytes) { - size_t pagesz; - ensure_initialization(); - pagesz = mparams.page_size; - return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE)); -} - -void** dlindependent_calloc(size_t n_elements, size_t elem_size, - void* chunks[]) { - size_t sz = elem_size; /* serves as 1-element array */ - return ialloc(gm, n_elements, &sz, 3, chunks); -} - -void** dlindependent_comalloc(size_t n_elements, size_t sizes[], - void* chunks[]) { - return ialloc(gm, n_elements, sizes, 0, chunks); -} - -size_t dlbulk_free(void* array[], size_t nelem) { - return internal_bulk_free(gm, array, nelem); -} - -#if MALLOC_INSPECT_ALL -void dlmalloc_inspect_all(void(*handler)(void *start, - void *end, - size_t used_bytes, - void* callback_arg), - void* arg) { - ensure_initialization(); - if (!PREACTION(gm)) { - internal_inspect_all(gm, handler, arg); - POSTACTION(gm); - } -} -#endif /* MALLOC_INSPECT_ALL */ - -int dlmalloc_trim(size_t pad) { - int result = 0; - ensure_initialization(); - if (!PREACTION(gm)) { - result = sys_trim(gm, pad); - POSTACTION(gm); - } - return result; -} - -size_t dlmalloc_footprint(void) { - return gm->footprint; -} - -size_t dlmalloc_max_footprint(void) { - return gm->max_footprint; -} - -size_t dlmalloc_footprint_limit(void) { - size_t maf = gm->footprint_limit; - return maf == 0 ? MAX_SIZE_T : maf; -} - -size_t dlmalloc_set_footprint_limit(size_t bytes) { - size_t result; /* invert sense of 0 */ - if (bytes == 0) - result = granularity_align(1); /* Use minimal size */ - if (bytes == MAX_SIZE_T) - result = 0; /* disable */ - else - result = granularity_align(bytes); - return gm->footprint_limit = result; -} - -#if !NO_MALLINFO -struct mallinfo dlmallinfo(void) { - return internal_mallinfo(gm); -} -#endif /* NO_MALLINFO */ - -#if !NO_MALLOC_STATS -void dlmalloc_stats() { - internal_malloc_stats(gm); -} -#endif /* NO_MALLOC_STATS */ - -int dlmallopt(int param_number, int value) { - return change_mparam(param_number, value); -} - -size_t dlmalloc_usable_size(void* mem) { - if (mem != 0) { - mchunkptr p = mem2chunk(mem); - if (is_inuse(p)) - return chunksize(p) - overhead_for(p); - } - return 0; -} - -#endif /* !ONLY_MSPACES */ - -/* ----------------------------- user mspaces ---------------------------- */ - -#if MSPACES - -static mstate init_user_mstate(char* tbase, size_t tsize) { - size_t msize = pad_request(sizeof(struct malloc_state)); - mchunkptr mn; - mchunkptr msp = align_as_chunk(tbase); - mstate m = (mstate)(chunk2mem(msp)); - memset(m, 0, msize); - (void)INITIAL_LOCK(&m->mutex); - msp->head = (msize|INUSE_BITS); - m->seg.base = m->least_addr = tbase; - m->seg.size = m->footprint = m->max_footprint = tsize; - m->magic = mparams.magic; - m->release_checks = MAX_RELEASE_CHECK_RATE; - m->mflags = mparams.default_mflags; - m->extp = 0; - m->exts = 0; - disable_contiguous(m); - init_bins(m); - mn = next_chunk(mem2chunk(m)); - init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE); - check_top_chunk(m, m->top); - return m; -} - -mspace create_mspace(size_t capacity, int locked) { - mstate m = 0; - size_t msize; - ensure_initialization(); - msize = pad_request(sizeof(struct malloc_state)); - if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { - size_t rs = ((capacity == 0)? mparams.granularity : - (capacity + TOP_FOOT_SIZE + msize)); - size_t tsize = granularity_align(rs); - char* tbase = (char*)(CALL_MMAP(tsize)); - if (tbase != CMFAIL) { - m = init_user_mstate(tbase, tsize); - m->seg.sflags = USE_MMAP_BIT; - set_lock(m, locked); - } - } - return (mspace)m; -} - -mspace create_mspace_with_base(void* base, size_t capacity, int locked) { - mstate m = 0; - size_t msize; - ensure_initialization(); - msize = pad_request(sizeof(struct malloc_state)); - if (capacity > msize + TOP_FOOT_SIZE && - capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { - m = init_user_mstate((char*)base, capacity); - m->seg.sflags = EXTERN_BIT; - set_lock(m, locked); - } - return (mspace)m; -} - -int mspace_track_large_chunks(mspace msp, int enable) { - int ret = 0; - mstate ms = (mstate)msp; - if (!PREACTION(ms)) { - if (!use_mmap(ms)) { - ret = 1; - } - if (!enable) { - enable_mmap(ms); - } else { - disable_mmap(ms); - } - POSTACTION(ms); - } - return ret; -} - -size_t destroy_mspace(mspace msp) { - size_t freed = 0; - mstate ms = (mstate)msp; - if (ok_magic(ms)) { - msegmentptr sp = &ms->seg; - (void)DESTROY_LOCK(&ms->mutex); /* destroy before unmapped */ - while (sp != 0) { - char* base = sp->base; - size_t size = sp->size; - flag_t flag = sp->sflags; - (void)base; /* placate people compiling -Wunused-variable */ - sp = sp->next; - if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) && - CALL_MUNMAP(base, size) == 0) - freed += size; - } - } - else { - USAGE_ERROR_ACTION(ms,ms); - } - return freed; -} - -/* - mspace versions of routines are near-clones of the global - versions. This is not so nice but better than the alternatives. -*/ - -void* mspace_malloc(mspace msp, size_t bytes) { - mstate ms = (mstate)msp; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - if (!PREACTION(ms)) { - void* mem; - size_t nb; - if (bytes <= MAX_SMALL_REQUEST) { - bindex_t idx; - binmap_t smallbits; - nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); - idx = small_index(nb); - smallbits = ms->smallmap >> idx; - - if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ - mchunkptr b, p; - idx += ~smallbits & 1; /* Uses next bin if idx empty */ - b = smallbin_at(ms, idx); - p = b->fd; - assert(chunksize(p) == small_index2size(idx)); - unlink_first_small_chunk(ms, b, p, idx); - set_inuse_and_pinuse(ms, p, small_index2size(idx)); - mem = chunk2mem(p); - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - - else if (nb > ms->dvsize) { - if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ - mchunkptr b, p, r; - size_t rsize; - bindex_t i; - binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); - binmap_t leastbit = least_bit(leftbits); - compute_bit2idx(leastbit, i); - b = smallbin_at(ms, i); - p = b->fd; - assert(chunksize(p) == small_index2size(i)); - unlink_first_small_chunk(ms, b, p, i); - rsize = small_index2size(i) - nb; - /* Fit here cannot be remainderless if 4byte sizes */ - if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) - set_inuse_and_pinuse(ms, p, small_index2size(i)); - else { - set_size_and_pinuse_of_inuse_chunk(ms, p, nb); - r = chunk_plus_offset(p, nb); - set_size_and_pinuse_of_free_chunk(r, rsize); - replace_dv(ms, r, rsize); - } - mem = chunk2mem(p); - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - - else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - } - } - else if (bytes >= MAX_REQUEST) - nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ - else { - nb = pad_request(bytes); - if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - } - - if (nb <= ms->dvsize) { - size_t rsize = ms->dvsize - nb; - mchunkptr p = ms->dv; - if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ - mchunkptr r = ms->dv = chunk_plus_offset(p, nb); - ms->dvsize = rsize; - set_size_and_pinuse_of_free_chunk(r, rsize); - set_size_and_pinuse_of_inuse_chunk(ms, p, nb); - } - else { /* exhaust dv */ - size_t dvs = ms->dvsize; - ms->dvsize = 0; - ms->dv = 0; - set_inuse_and_pinuse(ms, p, dvs); - } - mem = chunk2mem(p); - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - - else if (nb < ms->topsize) { /* Split top */ - size_t rsize = ms->topsize -= nb; - mchunkptr p = ms->top; - mchunkptr r = ms->top = chunk_plus_offset(p, nb); - r->head = rsize | PINUSE_BIT; - set_size_and_pinuse_of_inuse_chunk(ms, p, nb); - mem = chunk2mem(p); - check_top_chunk(ms, ms->top); - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - - mem = sys_alloc(ms, nb); - - postaction: - POSTACTION(ms); - return mem; - } - - return 0; -} - -void mspace_free(mspace msp, void* mem) { - if (mem != 0) { - mchunkptr p = mem2chunk(mem); -#if FOOTERS - mstate fm = get_mstate_for(p); - (void)msp; /* placate people compiling -Wunused */ -#else /* FOOTERS */ - mstate fm = (mstate)msp; -#endif /* FOOTERS */ - if (!ok_magic(fm)) { - USAGE_ERROR_ACTION(fm, p); - return; - } - if (!PREACTION(fm)) { - check_inuse_chunk(fm, p); - if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { - size_t psize = chunksize(p); - mchunkptr next = chunk_plus_offset(p, psize); - if (!pinuse(p)) { - size_t prevsize = p->prev_foot; - if (is_mmapped(p)) { - psize += prevsize + MMAP_FOOT_PAD; - if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) - fm->footprint -= psize; - goto postaction; - } - else { - mchunkptr prev = chunk_minus_offset(p, prevsize); - psize += prevsize; - p = prev; - if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ - if (p != fm->dv) { - unlink_chunk(fm, p, prevsize); - } - else if ((next->head & INUSE_BITS) == INUSE_BITS) { - fm->dvsize = psize; - set_free_with_pinuse(p, psize, next); - goto postaction; - } - } - else - goto erroraction; - } - } - - if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { - if (!cinuse(next)) { /* consolidate forward */ - if (next == fm->top) { - size_t tsize = fm->topsize += psize; - fm->top = p; - p->head = tsize | PINUSE_BIT; - if (p == fm->dv) { - fm->dv = 0; - fm->dvsize = 0; - } - if (should_trim(fm, tsize)) - sys_trim(fm, 0); - goto postaction; - } - else if (next == fm->dv) { - size_t dsize = fm->dvsize += psize; - fm->dv = p; - set_size_and_pinuse_of_free_chunk(p, dsize); - goto postaction; - } - else { - size_t nsize = chunksize(next); - psize += nsize; - unlink_chunk(fm, next, nsize); - set_size_and_pinuse_of_free_chunk(p, psize); - if (p == fm->dv) { - fm->dvsize = psize; - goto postaction; - } - } - } - else - set_free_with_pinuse(p, psize, next); - - if (is_small(psize)) { - insert_small_chunk(fm, p, psize); - check_free_chunk(fm, p); - } - else { - tchunkptr tp = (tchunkptr)p; - insert_large_chunk(fm, tp, psize); - check_free_chunk(fm, p); - if (--fm->release_checks == 0) - release_unused_segments(fm); - } - goto postaction; - } - } - erroraction: - USAGE_ERROR_ACTION(fm, p); - postaction: - POSTACTION(fm); - } - } -} - -void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) { - void* mem; - size_t req = 0; - mstate ms = (mstate)msp; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - if (n_elements != 0) { - req = n_elements * elem_size; - if (((n_elements | elem_size) & ~(size_t)0xffff) && - (req / n_elements != elem_size)) - req = MAX_SIZE_T; /* force downstream failure on overflow */ - } - mem = internal_malloc(ms, req); - if (mem != 0 && calloc_must_clear(mem2chunk(mem))) - memset(mem, 0, req); - return mem; -} - -void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) { - void* mem = 0; - if (oldmem == 0) { - mem = mspace_malloc(msp, bytes); - } - else if (bytes >= MAX_REQUEST) { - MALLOC_FAILURE_ACTION; - } -#ifdef REALLOC_ZERO_BYTES_FREES - else if (bytes == 0) { - mspace_free(msp, oldmem); - } -#endif /* REALLOC_ZERO_BYTES_FREES */ - else { - size_t nb = request2size(bytes); - mchunkptr oldp = mem2chunk(oldmem); -#if ! FOOTERS - mstate m = (mstate)msp; -#else /* FOOTERS */ - mstate m = get_mstate_for(oldp); - if (!ok_magic(m)) { - USAGE_ERROR_ACTION(m, oldmem); - return 0; - } -#endif /* FOOTERS */ - if (!PREACTION(m)) { - mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1); - POSTACTION(m); - if (newp != 0) { - check_inuse_chunk(m, newp); - mem = chunk2mem(newp); - } - else { - mem = mspace_malloc(m, bytes); - if (mem != 0) { - size_t oc = chunksize(oldp) - overhead_for(oldp); - memcpy(mem, oldmem, (oc < bytes)? oc : bytes); - mspace_free(m, oldmem); - } - } - } - } - return mem; -} - -void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes) { - void* mem = 0; - if (oldmem != 0) { - if (bytes >= MAX_REQUEST) { - MALLOC_FAILURE_ACTION; - } - else { - size_t nb = request2size(bytes); - mchunkptr oldp = mem2chunk(oldmem); -#if ! FOOTERS - mstate m = (mstate)msp; -#else /* FOOTERS */ - mstate m = get_mstate_for(oldp); - (void)msp; /* placate people compiling -Wunused */ - if (!ok_magic(m)) { - USAGE_ERROR_ACTION(m, oldmem); - return 0; - } -#endif /* FOOTERS */ - if (!PREACTION(m)) { - mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0); - POSTACTION(m); - if (newp == oldp) { - check_inuse_chunk(m, newp); - mem = oldmem; - } - } - } - } - return mem; -} - -void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) { - mstate ms = (mstate)msp; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - if (alignment <= MALLOC_ALIGNMENT) - return mspace_malloc(msp, bytes); - return internal_memalign(ms, alignment, bytes); -} - -void** mspace_independent_calloc(mspace msp, size_t n_elements, - size_t elem_size, void* chunks[]) { - size_t sz = elem_size; /* serves as 1-element array */ - mstate ms = (mstate)msp; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - return ialloc(ms, n_elements, &sz, 3, chunks); -} - -void** mspace_independent_comalloc(mspace msp, size_t n_elements, - size_t sizes[], void* chunks[]) { - mstate ms = (mstate)msp; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - return ialloc(ms, n_elements, sizes, 0, chunks); -} - -size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem) { - return internal_bulk_free((mstate)msp, array, nelem); -} - -#if MALLOC_INSPECT_ALL -void mspace_inspect_all(mspace msp, - void(*handler)(void *start, - void *end, - size_t used_bytes, - void* callback_arg), - void* arg) { - mstate ms = (mstate)msp; - if (ok_magic(ms)) { - if (!PREACTION(ms)) { - internal_inspect_all(ms, handler, arg); - POSTACTION(ms); - } - } - else { - USAGE_ERROR_ACTION(ms,ms); - } -} -#endif /* MALLOC_INSPECT_ALL */ - -int mspace_trim(mspace msp, size_t pad) { - int result = 0; - mstate ms = (mstate)msp; - if (ok_magic(ms)) { - if (!PREACTION(ms)) { - result = sys_trim(ms, pad); - POSTACTION(ms); - } - } - else { - USAGE_ERROR_ACTION(ms,ms); - } - return result; -} - -#if !NO_MALLOC_STATS -void mspace_malloc_stats(mspace msp) { - mstate ms = (mstate)msp; - if (ok_magic(ms)) { - internal_malloc_stats(ms); - } - else { - USAGE_ERROR_ACTION(ms,ms); - } -} -#endif /* NO_MALLOC_STATS */ - -size_t mspace_footprint(mspace msp) { - size_t result = 0; - mstate ms = (mstate)msp; - if (ok_magic(ms)) { - result = ms->footprint; - } - else { - USAGE_ERROR_ACTION(ms,ms); - } - return result; -} - -size_t mspace_max_footprint(mspace msp) { - size_t result = 0; - mstate ms = (mstate)msp; - if (ok_magic(ms)) { - result = ms->max_footprint; - } - else { - USAGE_ERROR_ACTION(ms,ms); - } - return result; -} - -size_t mspace_footprint_limit(mspace msp) { - size_t result = 0; - mstate ms = (mstate)msp; - if (ok_magic(ms)) { - size_t maf = ms->footprint_limit; - result = (maf == 0) ? MAX_SIZE_T : maf; - } - else { - USAGE_ERROR_ACTION(ms,ms); - } - return result; -} - -size_t mspace_set_footprint_limit(mspace msp, size_t bytes) { - size_t result = 0; - mstate ms = (mstate)msp; - if (ok_magic(ms)) { - if (bytes == 0) - result = granularity_align(1); /* Use minimal size */ - if (bytes == MAX_SIZE_T) - result = 0; /* disable */ - else - result = granularity_align(bytes); - ms->footprint_limit = result; - } - else { - USAGE_ERROR_ACTION(ms,ms); - } - return result; -} - -#if !NO_MALLINFO -struct mallinfo mspace_mallinfo(mspace msp) { - mstate ms = (mstate)msp; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - } - return internal_mallinfo(ms); -} -#endif /* NO_MALLINFO */ - -size_t mspace_usable_size(const void* mem) { - if (mem != 0) { - mchunkptr p = mem2chunk(mem); - if (is_inuse(p)) - return chunksize(p) - overhead_for(p); - } - return 0; -} - -int mspace_mallopt(int param_number, int value) { - return change_mparam(param_number, value); -} - -#endif /* MSPACES */ - - -/* -------------------- Alternative MORECORE functions ------------------- */ - -/* - Guidelines for creating a custom version of MORECORE: - - * For best performance, MORECORE should allocate in multiples of pagesize. - * MORECORE may allocate more memory than requested. (Or even less, - but this will usually result in a malloc failure.) - * MORECORE must not allocate memory when given argument zero, but - instead return one past the end address of memory from previous - nonzero call. - * For best performance, consecutive calls to MORECORE with positive - arguments should return increasing addresses, indicating that - space has been contiguously extended. - * Even though consecutive calls to MORECORE need not return contiguous - addresses, it must be OK for malloc'ed chunks to span multiple - regions in those cases where they do happen to be contiguous. - * MORECORE need not handle negative arguments -- it may instead - just return MFAIL when given negative arguments. - Negative arguments are always multiples of pagesize. MORECORE - must not misinterpret negative args as large positive unsigned - args. You can suppress all such calls from even occurring by defining - MORECORE_CANNOT_TRIM, - - As an example alternative MORECORE, here is a custom allocator - kindly contributed for pre-OSX macOS. It uses virtually but not - necessarily physically contiguous non-paged memory (locked in, - present and won't get swapped out). You can use it by uncommenting - this section, adding some #includes, and setting up the appropriate - defines above: - - #define MORECORE osMoreCore - - There is also a shutdown routine that should somehow be called for - cleanup upon program exit. - - #define MAX_POOL_ENTRIES 100 - #define MINIMUM_MORECORE_SIZE (64 * 1024U) - static int next_os_pool; - void *our_os_pools[MAX_POOL_ENTRIES]; - - void *osMoreCore(int size) - { - void *ptr = 0; - static void *sbrk_top = 0; - - if (size > 0) - { - if (size < MINIMUM_MORECORE_SIZE) - size = MINIMUM_MORECORE_SIZE; - if (CurrentExecutionLevel() == kTaskLevel) - ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); - if (ptr == 0) - { - return (void *) MFAIL; - } - // save ptrs so they can be freed during cleanup - our_os_pools[next_os_pool] = ptr; - next_os_pool++; - ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); - sbrk_top = (char *) ptr + size; - return ptr; - } - else if (size < 0) - { - // we don't currently support shrink behavior - return (void *) MFAIL; - } - else - { - return sbrk_top; - } - } - - // cleanup any allocated memory pools - // called as last thing before shutting down driver - - void osCleanupMem(void) - { - void **ptr; - - for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) - if (*ptr) - { - PoolDeallocate(*ptr); - *ptr = 0; - } - } - -*/ - - -/* ----------------------------------------------------------------------- -History: - v2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea - * fix bad comparison in dlposix_memalign - * don't reuse adjusted asize in sys_alloc - * add LOCK_AT_FORK -- thanks to Kirill Artamonov for the suggestion - * reduce compiler warnings -- thanks to all who reported/suggested these - - v2.8.5 Sun May 22 10:26:02 2011 Doug Lea (dl at gee) - * Always perform unlink checks unless INSECURE - * Add posix_memalign. - * Improve realloc to expand in more cases; expose realloc_in_place. - Thanks to Peter Buhr for the suggestion. - * Add footprint_limit, inspect_all, bulk_free. Thanks - to Barry Hayes and others for the suggestions. - * Internal refactorings to avoid calls while holding locks - * Use non-reentrant locks by default. Thanks to Roland McGrath - for the suggestion. - * Small fixes to mspace_destroy, reset_on_error. - * Various configuration extensions/changes. Thanks - to all who contributed these. - - V2.8.4a Thu Apr 28 14:39:43 2011 (dl at gee.cs.oswego.edu) - * Update Creative Commons URL - - V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee) - * Use zeros instead of prev foot for is_mmapped - * Add mspace_track_large_chunks; thanks to Jean Brouwers - * Fix set_inuse in internal_realloc; thanks to Jean Brouwers - * Fix insufficient sys_alloc padding when using 16byte alignment - * Fix bad error check in mspace_footprint - * Adaptations for ptmalloc; thanks to Wolfram Gloger. - * Reentrant spin locks; thanks to Earl Chew and others - * Win32 improvements; thanks to Niall Douglas and Earl Chew - * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options - * Extension hook in malloc_state - * Various small adjustments to reduce warnings on some compilers - * Various configuration extensions/changes for more platforms. Thanks - to all who contributed these. - - V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee) - * Add max_footprint functions - * Ensure all appropriate literals are size_t - * Fix conditional compilation problem for some #define settings - * Avoid concatenating segments with the one provided - in create_mspace_with_base - * Rename some variables to avoid compiler shadowing warnings - * Use explicit lock initialization. - * Better handling of sbrk interference. - * Simplify and fix segment insertion, trimming and mspace_destroy - * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x - * Thanks especially to Dennis Flanagan for help on these. - - V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee) - * Fix memalign brace error. - - V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee) - * Fix improper #endif nesting in C++ - * Add explicit casts needed for C++ - - V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee) - * Use trees for large bins - * Support mspaces - * Use segments to unify sbrk-based and mmap-based system allocation, - removing need for emulation on most platforms without sbrk. - * Default safety checks - * Optional footer checks. Thanks to William Robertson for the idea. - * Internal code refactoring - * Incorporate suggestions and platform-specific changes. - Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, - Aaron Bachmann, Emery Berger, and others. - * Speed up non-fastbin processing enough to remove fastbins. - * Remove useless cfree() to avoid conflicts with other apps. - * Remove internal memcpy, memset. Compilers handle builtins better. - * Remove some options that no one ever used and rename others. - - V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee) - * Fix malloc_state bitmap array misdeclaration - - V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee) - * Allow tuning of FIRST_SORTED_BIN_SIZE - * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. - * Better detection and support for non-contiguousness of MORECORE. - Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger - * Bypass most of malloc if no frees. Thanks To Emery Berger. - * Fix freeing of old top non-contiguous chunk im sysmalloc. - * Raised default trim and map thresholds to 256K. - * Fix mmap-related #defines. Thanks to Lubos Lunak. - * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. - * Branch-free bin calculation - * Default trim and mmap thresholds now 256K. - - V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) - * Introduce independent_comalloc and independent_calloc. - Thanks to Michael Pachos for motivation and help. - * Make optional .h file available - * Allow > 2GB requests on 32bit systems. - * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>. - Thanks also to Andreas Mueller <a.mueller at paradatec.de>, - and Anonymous. - * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for - helping test this.) - * memalign: check alignment arg - * realloc: don't try to shift chunks backwards, since this - leads to more fragmentation in some programs and doesn't - seem to help in any others. - * Collect all cases in malloc requiring system memory into sysmalloc - * Use mmap as backup to sbrk - * Place all internal state in malloc_state - * Introduce fastbins (although similar to 2.5.1) - * Many minor tunings and cosmetic improvements - * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK - * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS - Thanks to Tony E. Bennett <tbennett@nvidia.com> and others. - * Include errno.h to support default failure action. - - V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) - * return null for negative arguments - * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com> - * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' - (e.g. WIN32 platforms) - * Cleanup header file inclusion for WIN32 platforms - * Cleanup code to avoid Microsoft Visual C++ compiler complaints - * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing - memory allocation routines - * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) - * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to - usage of 'assert' in non-WIN32 code - * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to - avoid infinite loop - * Always call 'fREe()' rather than 'free()' - - V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) - * Fixed ordering problem with boundary-stamping - - V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) - * Added pvalloc, as recommended by H.J. Liu - * Added 64bit pointer support mainly from Wolfram Gloger - * Added anonymously donated WIN32 sbrk emulation - * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen - * malloc_extend_top: fix mask error that caused wastage after - foreign sbrks - * Add linux mremap support code from HJ Liu - - V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) - * Integrated most documentation with the code. - * Add support for mmap, with help from - Wolfram Gloger (Gloger@lrz.uni-muenchen.de). - * Use last_remainder in more cases. - * Pack bins using idea from colin@nyx10.cs.du.edu - * Use ordered bins instead of best-fit threshhold - * Eliminate block-local decls to simplify tracing and debugging. - * Support another case of realloc via move into top - * Fix error occuring when initial sbrk_base not word-aligned. - * Rely on page size for units instead of SBRK_UNIT to - avoid surprises about sbrk alignment conventions. - * Add mallinfo, mallopt. Thanks to Raymond Nijssen - (raymond@es.ele.tue.nl) for the suggestion. - * Add `pad' argument to malloc_trim and top_pad mallopt parameter. - * More precautions for cases where other routines call sbrk, - courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). - * Added macros etc., allowing use in linux libc from - H.J. Lu (hjl@gnu.ai.mit.edu) - * Inverted this history list - - V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) - * Re-tuned and fixed to behave more nicely with V2.6.0 changes. - * Removed all preallocation code since under current scheme - the work required to undo bad preallocations exceeds - the work saved in good cases for most test programs. - * No longer use return list or unconsolidated bins since - no scheme using them consistently outperforms those that don't - given above changes. - * Use best fit for very large chunks to prevent some worst-cases. - * Added some support for debugging - - V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) - * Removed footers when chunks are in use. Thanks to - Paul Wilson (wilson@cs.texas.edu) for the suggestion. - - V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) - * Added malloc_trim, with help from Wolfram Gloger - (wmglo@Dent.MED.Uni-Muenchen.DE). - - V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) - - V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) - * realloc: try to expand in both directions - * malloc: swap order of clean-bin strategy; - * realloc: only conditionally expand backwards - * Try not to scavenge used bins - * Use bin counts as a guide to preallocation - * Occasionally bin return list chunks in first scan - * Add a few optimizations from colin@nyx10.cs.du.edu - - V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) - * faster bin computation & slightly different binning - * merged all consolidations to one part of malloc proper - (eliminating old malloc_find_space & malloc_clean_bin) - * Scan 2 returns chunks (not just 1) - * Propagate failure in realloc if malloc returns 0 - * Add stuff to allow compilation on non-ANSI compilers - from kpv@research.att.com - - V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) - * removed potential for odd address access in prev_chunk - * removed dependency on getpagesize.h - * misc cosmetics and a bit more internal documentation - * anticosmetics: mangled names in macros to evade debugger strangeness - * tested on sparc, hp-700, dec-mips, rs6000 - with gcc & native cc (hp, dec only) allowing - Detlefs & Zorn comparison study (in SIGPLAN Notices.) - - Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) - * Based loosely on libg++-1.2X malloc. (It retains some of the overall - structure of old version, but most details differ.) - -*/ +/* + This is a version (aka dlmalloc) of malloc/free/realloc written by + Doug Lea and released to the public domain, as explained at + http://creativecommons.org/publicdomain/zero/1.0/ Send questions, + comments, complaints, performance data, etc to dl@cs.oswego.edu + +* Version 2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea + Note: There may be an updated version of this malloc obtainable at + ftp://gee.cs.oswego.edu/pub/misc/malloc.c + Check before installing! + +* Quickstart + + This library is all in one file to simplify the most common usage: + ftp it, compile it (-O3), and link it into another program. All of + the compile-time options default to reasonable values for use on + most platforms. You might later want to step through various + compile-time and dynamic tuning options. + + For convenience, an include file for code using this malloc is at: + ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.6.h + You don't really need this .h file unless you call functions not + defined in your system include files. The .h file contains only the + excerpts from this file needed for using this malloc on ANSI C/C++ + systems, so long as you haven't changed compile-time options about + naming and tuning parameters. If you do, then you can create your + own malloc.h that does include all settings by cutting at the point + indicated below. Note that you may already by default be using a C + library containing a malloc that is based on some version of this + malloc (for example in linux). You might still want to use the one + in this file to customize settings or to avoid overheads associated + with library versions. + +* Vital statistics: + + Supported pointer/size_t representation: 4 or 8 bytes + size_t MUST be an unsigned type of the same width as + pointers. (If you are using an ancient system that declares + size_t as a signed type, or need it to be a different width + than pointers, you can use a previous release of this malloc + (e.g. 2.7.2) supporting these.) + + Alignment: 8 bytes (minimum) + This suffices for nearly all current machines and C compilers. + However, you can define MALLOC_ALIGNMENT to be wider than this + if necessary (up to 128bytes), at the expense of using more space. + + Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes) + 8 or 16 bytes (if 8byte sizes) + Each malloced chunk has a hidden word of overhead holding size + and status information, and additional cross-check word + if FOOTERS is defined. + + Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead) + 8-byte ptrs: 32 bytes (including overhead) + + Even a request for zero bytes (i.e., malloc(0)) returns a + pointer to something of the minimum allocatable size. + The maximum overhead wastage (i.e., number of extra bytes + allocated than were requested in malloc) is less than or equal + to the minimum size, except for requests >= mmap_threshold that + are serviced via mmap(), where the worst case wastage is about + 32 bytes plus the remainder from a system page (the minimal + mmap unit); typically 4096 or 8192 bytes. + + Security: static-safe; optionally more or less + The "security" of malloc refers to the ability of malicious + code to accentuate the effects of errors (for example, freeing + space that is not currently malloc'ed or overwriting past the + ends of chunks) in code that calls malloc. This malloc + guarantees not to modify any memory locations below the base of + heap, i.e., static variables, even in the presence of usage + errors. The routines additionally detect most improper frees + and reallocs. All this holds as long as the static bookkeeping + for malloc itself is not corrupted by some other means. This + is only one aspect of security -- these checks do not, and + cannot, detect all possible programming errors. + + If FOOTERS is defined nonzero, then each allocated chunk + carries an additional check word to verify that it was malloced + from its space. These check words are the same within each + execution of a program using malloc, but differ across + executions, so externally crafted fake chunks cannot be + freed. This improves security by rejecting frees/reallocs that + could corrupt heap memory, in addition to the checks preventing + writes to statics that are always on. This may further improve + security at the expense of time and space overhead. (Note that + FOOTERS may also be worth using with MSPACES.) + + By default detected errors cause the program to abort (calling + "abort()"). You can override this to instead proceed past + errors by defining PROCEED_ON_ERROR. In this case, a bad free + has no effect, and a malloc that encounters a bad address + caused by user overwrites will ignore the bad address by + dropping pointers and indices to all known memory. This may + be appropriate for programs that should continue if at all + possible in the face of programming errors, although they may + run out of memory because dropped memory is never reclaimed. + + If you don't like either of these options, you can define + CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything + else. And if if you are sure that your program using malloc has + no errors or vulnerabilities, you can define INSECURE to 1, + which might (or might not) provide a small performance improvement. + + It is also possible to limit the maximum total allocatable + space, using malloc_set_footprint_limit. This is not + designed as a security feature in itself (calls to set limits + are not screened or privileged), but may be useful as one + aspect of a secure implementation. + + Thread-safety: NOT thread-safe unless USE_LOCKS defined non-zero + When USE_LOCKS is defined, each public call to malloc, free, + etc is surrounded with a lock. By default, this uses a plain + pthread mutex, win32 critical section, or a spin-lock if if + available for the platform and not disabled by setting + USE_SPIN_LOCKS=0. However, if USE_RECURSIVE_LOCKS is defined, + recursive versions are used instead (which are not required for + base functionality but may be needed in layered extensions). + Using a global lock is not especially fast, and can be a major + bottleneck. It is designed only to provide minimal protection + in concurrent environments, and to provide a basis for + extensions. If you are using malloc in a concurrent program, + consider instead using nedmalloc + (http://www.nedprod.com/programs/portable/nedmalloc/) or + ptmalloc (See http://www.malloc.de), which are derived from + versions of this malloc. + + System requirements: Any combination of MORECORE and/or MMAP/MUNMAP + This malloc can use unix sbrk or any emulation (invoked using + the CALL_MORECORE macro) and/or mmap/munmap or any emulation + (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system + memory. On most unix systems, it tends to work best if both + MORECORE and MMAP are enabled. On Win32, it uses emulations + based on VirtualAlloc. It also uses common C library functions + like memset. + + Compliance: I believe it is compliant with the Single Unix Specification + (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably + others as well. + +* Overview of algorithms + + This is not the fastest, most space-conserving, most portable, or + most tunable malloc ever written. However it is among the fastest + while also being among the most space-conserving, portable and + tunable. Consistent balance across these factors results in a good + general-purpose allocator for malloc-intensive programs. + + In most ways, this malloc is a best-fit allocator. Generally, it + chooses the best-fitting existing chunk for a request, with ties + broken in approximately least-recently-used order. (This strategy + normally maintains low fragmentation.) However, for requests less + than 256bytes, it deviates from best-fit when there is not an + exactly fitting available chunk by preferring to use space adjacent + to that used for the previous small request, as well as by breaking + ties in approximately most-recently-used order. (These enhance + locality of series of small allocations.) And for very large requests + (>= 256Kb by default), it relies on system memory mapping + facilities, if supported. (This helps avoid carrying around and + possibly fragmenting memory used only for large chunks.) + + All operations (except malloc_stats and mallinfo) have execution + times that are bounded by a constant factor of the number of bits in + a size_t, not counting any clearing in calloc or copying in realloc, + or actions surrounding MORECORE and MMAP that have times + proportional to the number of non-contiguous regions returned by + system allocation routines, which is often just 1. In real-time + applications, you can optionally suppress segment traversals using + NO_SEGMENT_TRAVERSAL, which assures bounded execution even when + system allocators return non-contiguous spaces, at the typical + expense of carrying around more memory and increased fragmentation. + + The implementation is not very modular and seriously overuses + macros. Perhaps someday all C compilers will do as good a job + inlining modular code as can now be done by brute-force expansion, + but now, enough of them seem not to. + + Some compilers issue a lot of warnings about code that is + dead/unreachable only on some platforms, and also about intentional + uses of negation on unsigned types. All known cases of each can be + ignored. + + For a longer but out of date high-level description, see + http://gee.cs.oswego.edu/dl/html/malloc.html + +* MSPACES + If MSPACES is defined, then in addition to malloc, free, etc., + this file also defines mspace_malloc, mspace_free, etc. These + are versions of malloc routines that take an "mspace" argument + obtained using create_mspace, to control all internal bookkeeping. + If ONLY_MSPACES is defined, only these versions are compiled. + So if you would like to use this allocator for only some allocations, + and your system malloc for others, you can compile with + ONLY_MSPACES and then do something like... + static mspace mymspace = create_mspace(0,0); // for example + #define mymalloc(bytes) mspace_malloc(mymspace, bytes) + + (Note: If you only need one instance of an mspace, you can instead + use "USE_DL_PREFIX" to relabel the global malloc.) + + You can similarly create thread-local allocators by storing + mspaces as thread-locals. For example: + static __thread mspace tlms = 0; + void* tlmalloc(size_t bytes) { + if (tlms == 0) tlms = create_mspace(0, 0); + return mspace_malloc(tlms, bytes); + } + void tlfree(void* mem) { mspace_free(tlms, mem); } + + Unless FOOTERS is defined, each mspace is completely independent. + You cannot allocate from one and free to another (although + conformance is only weakly checked, so usage errors are not always + caught). If FOOTERS is defined, then each chunk carries around a tag + indicating its originating mspace, and frees are directed to their + originating spaces. Normally, this requires use of locks. + + ------------------------- Compile-time options --------------------------- + +Be careful in setting #define values for numerical constants of type +size_t. On some systems, literal values are not automatically extended +to size_t precision unless they are explicitly casted. You can also +use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below. + +WIN32 default: defined if _WIN32 defined + Defining WIN32 sets up defaults for MS environment and compilers. + Otherwise defaults are for unix. Beware that there seem to be some + cases where this malloc might not be a pure drop-in replacement for + Win32 malloc: Random-looking failures from Win32 GDI API's (eg; + SetDIBits()) may be due to bugs in some video driver implementations + when pixel buffers are malloc()ed, and the region spans more than + one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb) + default granularity, pixel buffers may straddle virtual allocation + regions more often than when using the Microsoft allocator. You can + avoid this by using VirtualAlloc() and VirtualFree() for all pixel + buffers rather than using malloc(). If this is not possible, + recompile this malloc with a larger DEFAULT_GRANULARITY. Note: + in cases where MSC and gcc (cygwin) are known to differ on WIN32, + conditions use _MSC_VER to distinguish them. + +DLMALLOC_EXPORT default: extern + Defines how public APIs are declared. If you want to export via a + Windows DLL, you might define this as + #define DLMALLOC_EXPORT extern __declspec(dllexport) + If you want a POSIX ELF shared object, you might use + #define DLMALLOC_EXPORT extern __attribute__((visibility("default"))) + +MALLOC_ALIGNMENT default: (size_t)(2 * sizeof(void *)) + Controls the minimum alignment for malloc'ed chunks. It must be a + power of two and at least 8, even on machines for which smaller + alignments would suffice. It may be defined as larger than this + though. Note however that code and data structures are optimized for + the case of 8-byte alignment. + +MSPACES default: 0 (false) + If true, compile in support for independent allocation spaces. + This is only supported if HAVE_MMAP is true. + +ONLY_MSPACES default: 0 (false) + If true, only compile in mspace versions, not regular versions. + +USE_LOCKS default: 0 (false) + Causes each call to each public routine to be surrounded with + pthread or WIN32 mutex lock/unlock. (If set true, this can be + overridden on a per-mspace basis for mspace versions.) If set to a + non-zero value other than 1, locks are used, but their + implementation is left out, so lock functions must be supplied manually, + as described below. + +USE_SPIN_LOCKS default: 1 iff USE_LOCKS and spin locks available + If true, uses custom spin locks for locking. This is currently + supported only gcc >= 4.1, older gccs on x86 platforms, and recent + MS compilers. Otherwise, posix locks or win32 critical sections are + used. + +USE_RECURSIVE_LOCKS default: not defined + If defined nonzero, uses recursive (aka reentrant) locks, otherwise + uses plain mutexes. This is not required for malloc proper, but may + be needed for layered allocators such as nedmalloc. + +LOCK_AT_FORK default: not defined + If defined nonzero, performs pthread_atfork upon initialization + to initialize child lock while holding parent lock. The implementation + assumes that pthread locks (not custom locks) are being used. In other + cases, you may need to customize the implementation. + +FOOTERS default: 0 + If true, provide extra checking and dispatching by placing + information in the footers of allocated chunks. This adds + space and time overhead. + +INSECURE default: 0 + If true, omit checks for usage errors and heap space overwrites. + +USE_DL_PREFIX default: NOT defined + Causes compiler to prefix all public routines with the string 'dl'. + This can be useful when you only want to use this malloc in one part + of a program, using your regular system malloc elsewhere. + +MALLOC_INSPECT_ALL default: NOT defined + If defined, compiles malloc_inspect_all and mspace_inspect_all, that + perform traversal of all heap space. Unless access to these + functions is otherwise restricted, you probably do not want to + include them in secure implementations. + +ABORT default: defined as abort() + Defines how to abort on failed checks. On most systems, a failed + check cannot die with an "assert" or even print an informative + message, because the underlying print routines in turn call malloc, + which will fail again. Generally, the best policy is to simply call + abort(). It's not very useful to do more than this because many + errors due to overwriting will show up as address faults (null, odd + addresses etc) rather than malloc-triggered checks, so will also + abort. Also, most compilers know that abort() does not return, so + can better optimize code conditionally calling it. + +PROCEED_ON_ERROR default: defined as 0 (false) + Controls whether detected bad addresses cause them to bypassed + rather than aborting. If set, detected bad arguments to free and + realloc are ignored. And all bookkeeping information is zeroed out + upon a detected overwrite of freed heap space, thus losing the + ability to ever return it from malloc again, but enabling the + application to proceed. If PROCEED_ON_ERROR is defined, the + static variable malloc_corruption_error_count is compiled in + and can be examined to see if errors have occurred. This option + generates slower code than the default abort policy. + +DEBUG default: NOT defined + The DEBUG setting is mainly intended for people trying to modify + this code or diagnose problems when porting to new platforms. + However, it may also be able to better isolate user errors than just + using runtime checks. The assertions in the check routines spell + out in more detail the assumptions and invariants underlying the + algorithms. The checking is fairly extensive, and will slow down + execution noticeably. Calling malloc_stats or mallinfo with DEBUG + set will attempt to check every non-mmapped allocated and free chunk + in the course of computing the summaries. + +ABORT_ON_ASSERT_FAILURE default: defined as 1 (true) + Debugging assertion failures can be nearly impossible if your + version of the assert macro causes malloc to be called, which will + lead to a cascade of further failures, blowing the runtime stack. + ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), + which will usually make debugging easier. + +MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32 + The action to take before "return 0" when malloc fails to be able to + return memory because there is none available. + +HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES + True if this system supports sbrk or an emulation of it. + +MORECORE default: sbrk + The name of the sbrk-style system routine to call to obtain more + memory. See below for guidance on writing custom MORECORE + functions. The type of the argument to sbrk/MORECORE varies across + systems. It cannot be size_t, because it supports negative + arguments, so it is normally the signed type of the same width as + size_t (sometimes declared as "intptr_t"). It doesn't much matter + though. Internally, we only call it with arguments less than half + the max value of a size_t, which should work across all reasonable + possibilities, although sometimes generating compiler warnings. + +MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE + If true, take advantage of fact that consecutive calls to MORECORE + with positive arguments always return contiguous increasing + addresses. This is true of unix sbrk. It does not hurt too much to + set it true anyway, since malloc copes with non-contiguities. + Setting it false when definitely non-contiguous saves time + and possibly wasted space it would take to discover this though. + +MORECORE_CANNOT_TRIM default: NOT defined + True if MORECORE cannot release space back to the system when given + negative arguments. This is generally necessary only if you are + using a hand-crafted MORECORE function that cannot handle negative + arguments. + +NO_SEGMENT_TRAVERSAL default: 0 + If non-zero, suppresses traversals of memory segments + returned by either MORECORE or CALL_MMAP. This disables + merging of segments that are contiguous, and selectively + releasing them to the OS if unused, but bounds execution times. + +HAVE_MMAP default: 1 (true) + True if this system supports mmap or an emulation of it. If so, and + HAVE_MORECORE is not true, MMAP is used for all system + allocation. If set and HAVE_MORECORE is true as well, MMAP is + primarily used to directly allocate very large blocks. It is also + used as a backup strategy in cases where MORECORE fails to provide + space from system. Note: A single call to MUNMAP is assumed to be + able to unmap memory that may have be allocated using multiple calls + to MMAP, so long as they are adjacent. + +HAVE_MREMAP default: 1 on linux, else 0 + If true realloc() uses mremap() to re-allocate large blocks and + extend or shrink allocation spaces. + +MMAP_CLEARS default: 1 except on WINCE. + True if mmap clears memory so calloc doesn't need to. This is true + for standard unix mmap using /dev/zero and on WIN32 except for WINCE. + +USE_BUILTIN_FFS default: 0 (i.e., not used) + Causes malloc to use the builtin ffs() function to compute indices. + Some compilers may recognize and intrinsify ffs to be faster than the + supplied C version. Also, the case of x86 using gcc is special-cased + to an asm instruction, so is already as fast as it can be, and so + this setting has no effect. Similarly for Win32 under recent MS compilers. + (On most x86s, the asm version is only slightly faster than the C version.) + +malloc_getpagesize default: derive from system includes, or 4096. + The system page size. To the extent possible, this malloc manages + memory from the system in page-size units. This may be (and + usually is) a function rather than a constant. This is ignored + if WIN32, where page size is determined using getSystemInfo during + initialization. + +USE_DEV_RANDOM default: 0 (i.e., not used) + Causes malloc to use /dev/random to initialize secure magic seed for + stamping footers. Otherwise, the current time is used. + +NO_MALLINFO default: 0 + If defined, don't compile "mallinfo". This can be a simple way + of dealing with mismatches between system declarations and + those in this file. + +MALLINFO_FIELD_TYPE default: size_t + The type of the fields in the mallinfo struct. This was originally + defined as "int" in SVID etc, but is more usefully defined as + size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set + +NO_MALLOC_STATS default: 0 + If defined, don't compile "malloc_stats". This avoids calls to + fprintf and bringing in stdio dependencies you might not want. + +REALLOC_ZERO_BYTES_FREES default: not defined + This should be set if a call to realloc with zero bytes should + be the same as a call to free. Some people think it should. Otherwise, + since this malloc returns a unique pointer for malloc(0), so does + realloc(p, 0). + +LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H +LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H +LACKS_STDLIB_H LACKS_SCHED_H LACKS_TIME_H default: NOT defined unless on WIN32 + Define these if your system does not have these header files. + You might need to manually insert some of the declarations they provide. + +DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS, + system_info.dwAllocationGranularity in WIN32, + otherwise 64K. + Also settable using mallopt(M_GRANULARITY, x) + The unit for allocating and deallocating memory from the system. On + most systems with contiguous MORECORE, there is no reason to + make this more than a page. However, systems with MMAP tend to + either require or encourage larger granularities. You can increase + this value to prevent system allocation functions to be called so + often, especially if they are slow. The value must be at least one + page and must be a power of two. Setting to 0 causes initialization + to either page size or win32 region size. (Note: In previous + versions of malloc, the equivalent of this option was called + "TOP_PAD") + +DEFAULT_TRIM_THRESHOLD default: 2MB + Also settable using mallopt(M_TRIM_THRESHOLD, x) + The maximum amount of unused top-most memory to keep before + releasing via malloc_trim in free(). Automatic trimming is mainly + useful in long-lived programs using contiguous MORECORE. Because + trimming via sbrk can be slow on some systems, and can sometimes be + wasteful (in cases where programs immediately afterward allocate + more large chunks) the value should be high enough so that your + overall system performance would improve by releasing this much + memory. As a rough guide, you might set to a value close to the + average size of a process (program) running on your system. + Releasing this much memory would allow such a process to run in + memory. Generally, it is worth tuning trim thresholds when a + program undergoes phases where several large chunks are allocated + and released in ways that can reuse each other's storage, perhaps + mixed with phases where there are no such chunks at all. The trim + value must be greater than page size to have any useful effect. To + disable trimming completely, you can set to MAX_SIZE_T. Note that the trick + some people use of mallocing a huge space and then freeing it at + program startup, in an attempt to reserve system memory, doesn't + have the intended effect under automatic trimming, since that memory + will immediately be returned to the system. + +DEFAULT_MMAP_THRESHOLD default: 256K + Also settable using mallopt(M_MMAP_THRESHOLD, x) + The request size threshold for using MMAP to directly service a + request. Requests of at least this size that cannot be allocated + using already-existing space will be serviced via mmap. (If enough + normal freed space already exists it is used instead.) Using mmap + segregates relatively large chunks of memory so that they can be + individually obtained and released from the host system. A request + serviced through mmap is never reused by any other request (at least + not directly; the system may just so happen to remap successive + requests to the same locations). Segregating space in this way has + the benefits that: Mmapped space can always be individually released + back to the system, which helps keep the system level memory demands + of a long-lived program low. Also, mapped memory doesn't become + `locked' between other chunks, as can happen with normally allocated + chunks, which means that even trimming via malloc_trim would not + release them. However, it has the disadvantage that the space + cannot be reclaimed, consolidated, and then used to service later + requests, as happens with normal chunks. The advantages of mmap + nearly always outweigh disadvantages for "large" chunks, but the + value of "large" may vary across systems. The default is an + empirically derived value that works well in most systems. You can + disable mmap by setting to MAX_SIZE_T. + +MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP + The number of consolidated frees between checks to release + unused segments when freeing. When using non-contiguous segments, + especially with multiple mspaces, checking only for topmost space + doesn't always suffice to trigger trimming. To compensate for this, + free() will, with a period of MAX_RELEASE_CHECK_RATE (or the + current number of segments, if greater) try to release unused + segments to the OS when freeing chunks that result in + consolidation. The best value for this parameter is a compromise + between slowing down frees with relatively costly checks that + rarely trigger versus holding on to unused memory. To effectively + disable, set to MAX_SIZE_T. This may lead to a very slight speed + improvement at the expense of carrying around more memory. +*/ + +/* Version identifier to allow people to support multiple versions */ +#ifndef DLMALLOC_VERSION +#define DLMALLOC_VERSION 20806 +#endif /* DLMALLOC_VERSION */ + +#ifndef DLMALLOC_EXPORT +#define DLMALLOC_EXPORT extern +#endif + +#ifndef WIN32 +#ifdef _WIN32 +#define WIN32 1 +#endif /* _WIN32 */ +#ifdef _WIN32_WCE +#define LACKS_FCNTL_H +#define WIN32 1 +#endif /* _WIN32_WCE */ +#endif /* WIN32 */ +#ifdef WIN32 +#define WIN32_LEAN_AND_MEAN +#include <windows.h> +#include <tchar.h> +#define HAVE_MMAP 1 +#define HAVE_MORECORE 0 +#define LACKS_UNISTD_H +#define LACKS_SYS_PARAM_H +#define LACKS_SYS_MMAN_H +#define LACKS_STRING_H +#define LACKS_STRINGS_H +#define LACKS_SYS_TYPES_H +#define LACKS_ERRNO_H +#define LACKS_SCHED_H +#ifndef MALLOC_FAILURE_ACTION +#define MALLOC_FAILURE_ACTION +#endif /* MALLOC_FAILURE_ACTION */ +#ifndef MMAP_CLEARS +#ifdef _WIN32_WCE /* WINCE reportedly does not clear */ +#define MMAP_CLEARS 0 +#else +#define MMAP_CLEARS 1 +#endif /* _WIN32_WCE */ +#endif /*MMAP_CLEARS */ +#endif /* WIN32 */ + +#if defined(DARWIN) || defined(_DARWIN) +/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ +#ifndef HAVE_MORECORE +#define HAVE_MORECORE 0 +#define HAVE_MMAP 1 +/* OSX allocators provide 16 byte alignment */ +#ifndef MALLOC_ALIGNMENT +#define MALLOC_ALIGNMENT ((size_t)16U) +#endif +#endif /* HAVE_MORECORE */ +#endif /* DARWIN */ + +#ifndef LACKS_SYS_TYPES_H +#include <sys/types.h> /* For size_t */ +#endif /* LACKS_SYS_TYPES_H */ + +/* The maximum possible size_t value has all bits set */ +#define MAX_SIZE_T (~(size_t)0) + +#ifndef USE_LOCKS /* ensure true if spin or recursive locks set */ +#define USE_LOCKS ((defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \ + (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0)) +#endif /* USE_LOCKS */ + +#if USE_LOCKS /* Spin locks for gcc >= 4.1, older gcc on x86, MSC >= 1310 */ +#if ((defined(__GNUC__) && \ + ((__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) || \ + defined(__i386__) || defined(__x86_64__))) || \ + (defined(_MSC_VER) && _MSC_VER>=1310)) +#ifndef USE_SPIN_LOCKS +#define USE_SPIN_LOCKS 1 +#endif /* USE_SPIN_LOCKS */ +#elif USE_SPIN_LOCKS +#error "USE_SPIN_LOCKS defined without implementation" +#endif /* ... locks available... */ +#elif !defined(USE_SPIN_LOCKS) +#define USE_SPIN_LOCKS 0 +#endif /* USE_LOCKS */ + +#ifndef ONLY_MSPACES +#define ONLY_MSPACES 0 +#endif /* ONLY_MSPACES */ +#ifndef MSPACES +#if ONLY_MSPACES +#define MSPACES 1 +#else /* ONLY_MSPACES */ +#define MSPACES 0 +#endif /* ONLY_MSPACES */ +#endif /* MSPACES */ +#ifndef MALLOC_ALIGNMENT +#define MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *))) +#endif /* MALLOC_ALIGNMENT */ +#ifndef FOOTERS +#define FOOTERS 0 +#endif /* FOOTERS */ +#ifndef ABORT +#define ABORT abort() +#endif /* ABORT */ +#ifndef ABORT_ON_ASSERT_FAILURE +#define ABORT_ON_ASSERT_FAILURE 1 +#endif /* ABORT_ON_ASSERT_FAILURE */ +#ifndef PROCEED_ON_ERROR +#define PROCEED_ON_ERROR 0 +#endif /* PROCEED_ON_ERROR */ + +#ifndef INSECURE +#define INSECURE 0 +#endif /* INSECURE */ +#ifndef MALLOC_INSPECT_ALL +#define MALLOC_INSPECT_ALL 0 +#endif /* MALLOC_INSPECT_ALL */ +#ifndef HAVE_MMAP +#define HAVE_MMAP 1 +#endif /* HAVE_MMAP */ +#ifndef MMAP_CLEARS +#define MMAP_CLEARS 1 +#endif /* MMAP_CLEARS */ +#ifndef HAVE_MREMAP +#ifdef linux +#define HAVE_MREMAP 1 +#define _GNU_SOURCE /* Turns on mremap() definition */ +#else /* linux */ +#define HAVE_MREMAP 0 +#endif /* linux */ +#endif /* HAVE_MREMAP */ +#ifndef MALLOC_FAILURE_ACTION +#define MALLOC_FAILURE_ACTION errno = ENOMEM; +#endif /* MALLOC_FAILURE_ACTION */ +#ifndef HAVE_MORECORE +#if ONLY_MSPACES +#define HAVE_MORECORE 0 +#else /* ONLY_MSPACES */ +#define HAVE_MORECORE 1 +#endif /* ONLY_MSPACES */ +#endif /* HAVE_MORECORE */ +#if !HAVE_MORECORE +#define MORECORE_CONTIGUOUS 0 +#else /* !HAVE_MORECORE */ +#define MORECORE_DEFAULT sbrk +#ifndef MORECORE_CONTIGUOUS +#define MORECORE_CONTIGUOUS 1 +#endif /* MORECORE_CONTIGUOUS */ +#endif /* HAVE_MORECORE */ +#ifndef DEFAULT_GRANULARITY +#if (MORECORE_CONTIGUOUS || defined(WIN32)) +#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */ +#else /* MORECORE_CONTIGUOUS */ +#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) +#endif /* MORECORE_CONTIGUOUS */ +#endif /* DEFAULT_GRANULARITY */ +#ifndef DEFAULT_TRIM_THRESHOLD +#ifndef MORECORE_CANNOT_TRIM +#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) +#else /* MORECORE_CANNOT_TRIM */ +#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T +#endif /* MORECORE_CANNOT_TRIM */ +#endif /* DEFAULT_TRIM_THRESHOLD */ +#ifndef DEFAULT_MMAP_THRESHOLD +#if HAVE_MMAP +#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) +#else /* HAVE_MMAP */ +#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T +#endif /* HAVE_MMAP */ +#endif /* DEFAULT_MMAP_THRESHOLD */ +#ifndef MAX_RELEASE_CHECK_RATE +#if HAVE_MMAP +#define MAX_RELEASE_CHECK_RATE 4095 +#else +#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T +#endif /* HAVE_MMAP */ +#endif /* MAX_RELEASE_CHECK_RATE */ +#ifndef USE_BUILTIN_FFS +#define USE_BUILTIN_FFS 0 +#endif /* USE_BUILTIN_FFS */ +#ifndef USE_DEV_RANDOM +#define USE_DEV_RANDOM 0 +#endif /* USE_DEV_RANDOM */ +#ifndef NO_MALLINFO +#define NO_MALLINFO 0 +#endif /* NO_MALLINFO */ +#ifndef MALLINFO_FIELD_TYPE +#define MALLINFO_FIELD_TYPE size_t +#endif /* MALLINFO_FIELD_TYPE */ +#ifndef NO_MALLOC_STATS +#define NO_MALLOC_STATS 0 +#endif /* NO_MALLOC_STATS */ +#ifndef NO_SEGMENT_TRAVERSAL +#define NO_SEGMENT_TRAVERSAL 0 +#endif /* NO_SEGMENT_TRAVERSAL */ + +/* + mallopt tuning options. SVID/XPG defines four standard parameter + numbers for mallopt, normally defined in malloc.h. None of these + are used in this malloc, so setting them has no effect. But this + malloc does support the following options. +*/ + +#define M_TRIM_THRESHOLD (-1) +#define M_GRANULARITY (-2) +#define M_MMAP_THRESHOLD (-3) + +/* ------------------------ Mallinfo declarations ------------------------ */ + +#if !NO_MALLINFO +/* + This version of malloc supports the standard SVID/XPG mallinfo + routine that returns a struct containing usage properties and + statistics. It should work on any system that has a + /usr/include/malloc.h defining struct mallinfo. The main + declaration needed is the mallinfo struct that is returned (by-copy) + by mallinfo(). The malloinfo struct contains a bunch of fields that + are not even meaningful in this version of malloc. These fields are + are instead filled by mallinfo() with other numbers that might be of + interest. + + HAVE_USR_INCLUDE_MALLOC_H should be set if you have a + /usr/include/malloc.h file that includes a declaration of struct + mallinfo. If so, it is included; else a compliant version is + declared below. These must be precisely the same for mallinfo() to + work. The original SVID version of this struct, defined on most + systems with mallinfo, declares all fields as ints. But some others + define as unsigned long. If your system defines the fields using a + type of different width than listed here, you MUST #include your + system version and #define HAVE_USR_INCLUDE_MALLOC_H. +*/ + +/* #define HAVE_USR_INCLUDE_MALLOC_H */ + +#ifdef HAVE_USR_INCLUDE_MALLOC_H +#error #include "/usr/include/malloc.h" +#else /* HAVE_USR_INCLUDE_MALLOC_H */ +#ifndef STRUCT_MALLINFO_DECLARED +/* HP-UX (and others?) redefines mallinfo unless _STRUCT_MALLINFO is defined */ +#define _STRUCT_MALLINFO +#define STRUCT_MALLINFO_DECLARED 1 +struct mallinfo { + MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */ + MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */ + MALLINFO_FIELD_TYPE smblks; /* always 0 */ + MALLINFO_FIELD_TYPE hblks; /* always 0 */ + MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */ + MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */ + MALLINFO_FIELD_TYPE fsmblks; /* always 0 */ + MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ + MALLINFO_FIELD_TYPE fordblks; /* total free space */ + MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ +}; +#endif /* STRUCT_MALLINFO_DECLARED */ +#endif /* HAVE_USR_INCLUDE_MALLOC_H */ +#endif /* NO_MALLINFO */ + +/* + Try to persuade compilers to inline. The most critical functions for + inlining are defined as macros, so these aren't used for them. +*/ + +#ifndef FORCEINLINE + #if defined(__GNUC__) +#define FORCEINLINE __inline __attribute__ ((always_inline)) + #elif defined(_MSC_VER) + #define FORCEINLINE __forceinline + #endif +#endif +#ifndef NOINLINE + #if defined(__GNUC__) + #define NOINLINE __attribute__ ((noinline)) + #elif defined(_MSC_VER) + #define NOINLINE __declspec(noinline) + #else + #define NOINLINE + #endif +#endif + +#ifdef __cplusplus +extern "C" { +#ifndef FORCEINLINE + #define FORCEINLINE inline +#endif +#endif /* __cplusplus */ +#ifndef FORCEINLINE + #define FORCEINLINE +#endif + +#if !ONLY_MSPACES + +/* ------------------- Declarations of public routines ------------------- */ + +#ifndef USE_DL_PREFIX +#define dlcalloc calloc +#define dlfree free +#define dlmalloc malloc +#define dlmemalign memalign +#define dlposix_memalign posix_memalign +#define dlrealloc realloc +#define dlrealloc_in_place realloc_in_place +#define dlvalloc valloc +#define dlpvalloc pvalloc +#define dlmallinfo mallinfo +#define dlmallopt mallopt +#define dlmalloc_trim malloc_trim +#define dlmalloc_stats malloc_stats +#define dlmalloc_usable_size malloc_usable_size +#define dlmalloc_footprint malloc_footprint +#define dlmalloc_max_footprint malloc_max_footprint +#define dlmalloc_footprint_limit malloc_footprint_limit +#define dlmalloc_set_footprint_limit malloc_set_footprint_limit +#define dlmalloc_inspect_all malloc_inspect_all +#define dlindependent_calloc independent_calloc +#define dlindependent_comalloc independent_comalloc +#define dlbulk_free bulk_free +#endif /* USE_DL_PREFIX */ + +/* + malloc(size_t n) + Returns a pointer to a newly allocated chunk of at least n bytes, or + null if no space is available, in which case errno is set to ENOMEM + on ANSI C systems. + + If n is zero, malloc returns a minimum-sized chunk. (The minimum + size is 16 bytes on most 32bit systems, and 32 bytes on 64bit + systems.) Note that size_t is an unsigned type, so calls with + arguments that would be negative if signed are interpreted as + requests for huge amounts of space, which will often fail. The + maximum supported value of n differs across systems, but is in all + cases less than the maximum representable value of a size_t. +*/ +DLMALLOC_EXPORT void* dlmalloc(size_t); + +/* + free(void* p) + Releases the chunk of memory pointed to by p, that had been previously + allocated using malloc or a related routine such as realloc. + It has no effect if p is null. If p was not malloced or already + freed, free(p) will by default cause the current program to abort. +*/ +DLMALLOC_EXPORT void dlfree(void*); + +/* + calloc(size_t n_elements, size_t element_size); + Returns a pointer to n_elements * element_size bytes, with all locations + set to zero. +*/ +DLMALLOC_EXPORT void* dlcalloc(size_t, size_t); + +/* + realloc(void* p, size_t n) + Returns a pointer to a chunk of size n that contains the same data + as does chunk p up to the minimum of (n, p's size) bytes, or null + if no space is available. + + The returned pointer may or may not be the same as p. The algorithm + prefers extending p in most cases when possible, otherwise it + employs the equivalent of a malloc-copy-free sequence. + + If p is null, realloc is equivalent to malloc. + + If space is not available, realloc returns null, errno is set (if on + ANSI) and p is NOT freed. + + if n is for fewer bytes than already held by p, the newly unused + space is lopped off and freed if possible. realloc with a size + argument of zero (re)allocates a minimum-sized chunk. + + The old unix realloc convention of allowing the last-free'd chunk + to be used as an argument to realloc is not supported. +*/ +DLMALLOC_EXPORT void* dlrealloc(void*, size_t); + +/* + realloc_in_place(void* p, size_t n) + Resizes the space allocated for p to size n, only if this can be + done without moving p (i.e., only if there is adjacent space + available if n is greater than p's current allocated size, or n is + less than or equal to p's size). This may be used instead of plain + realloc if an alternative allocation strategy is needed upon failure + to expand space; for example, reallocation of a buffer that must be + memory-aligned or cleared. You can use realloc_in_place to trigger + these alternatives only when needed. + + Returns p if successful; otherwise null. +*/ +DLMALLOC_EXPORT void* dlrealloc_in_place(void*, size_t); + +/* + memalign(size_t alignment, size_t n); + Returns a pointer to a newly allocated chunk of n bytes, aligned + in accord with the alignment argument. + + The alignment argument should be a power of two. If the argument is + not a power of two, the nearest greater power is used. + 8-byte alignment is guaranteed by normal malloc calls, so don't + bother calling memalign with an argument of 8 or less. + + Overreliance on memalign is a sure way to fragment space. +*/ +DLMALLOC_EXPORT void* dlmemalign(size_t, size_t); + +/* + int posix_memalign(void** pp, size_t alignment, size_t n); + Allocates a chunk of n bytes, aligned in accord with the alignment + argument. Differs from memalign only in that it (1) assigns the + allocated memory to *pp rather than returning it, (2) fails and + returns EINVAL if the alignment is not a power of two (3) fails and + returns ENOMEM if memory cannot be allocated. +*/ +DLMALLOC_EXPORT int dlposix_memalign(void**, size_t, size_t); + +/* + valloc(size_t n); + Equivalent to memalign(pagesize, n), where pagesize is the page + size of the system. If the pagesize is unknown, 4096 is used. +*/ +DLMALLOC_EXPORT void* dlvalloc(size_t); + +/* + mallopt(int parameter_number, int parameter_value) + Sets tunable parameters The format is to provide a + (parameter-number, parameter-value) pair. mallopt then sets the + corresponding parameter to the argument value if it can (i.e., so + long as the value is meaningful), and returns 1 if successful else + 0. To workaround the fact that mallopt is specified to use int, + not size_t parameters, the value -1 is specially treated as the + maximum unsigned size_t value. + + SVID/XPG/ANSI defines four standard param numbers for mallopt, + normally defined in malloc.h. None of these are use in this malloc, + so setting them has no effect. But this malloc also supports other + options in mallopt. See below for details. Briefly, supported + parameters are as follows (listed defaults are for "typical" + configurations). + + Symbol param # default allowed param values + M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables) + M_GRANULARITY -2 page size any power of 2 >= page size + M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) +*/ +DLMALLOC_EXPORT int dlmallopt(int, int); + +/* + malloc_footprint(); + Returns the number of bytes obtained from the system. The total + number of bytes allocated by malloc, realloc etc., is less than this + value. Unlike mallinfo, this function returns only a precomputed + result, so can be called frequently to monitor memory consumption. + Even if locks are otherwise defined, this function does not use them, + so results might not be up to date. +*/ +DLMALLOC_EXPORT size_t dlmalloc_footprint(void); + +/* + malloc_max_footprint(); + Returns the maximum number of bytes obtained from the system. This + value will be greater than current footprint if deallocated space + has been reclaimed by the system. The peak number of bytes allocated + by malloc, realloc etc., is less than this value. Unlike mallinfo, + this function returns only a precomputed result, so can be called + frequently to monitor memory consumption. Even if locks are + otherwise defined, this function does not use them, so results might + not be up to date. +*/ +DLMALLOC_EXPORT size_t dlmalloc_max_footprint(void); + +/* + malloc_footprint_limit(); + Returns the number of bytes that the heap is allowed to obtain from + the system, returning the last value returned by + malloc_set_footprint_limit, or the maximum size_t value if + never set. The returned value reflects a permission. There is no + guarantee that this number of bytes can actually be obtained from + the system. +*/ +DLMALLOC_EXPORT size_t dlmalloc_footprint_limit(); + +/* + malloc_set_footprint_limit(); + Sets the maximum number of bytes to obtain from the system, causing + failure returns from malloc and related functions upon attempts to + exceed this value. The argument value may be subject to page + rounding to an enforceable limit; this actual value is returned. + Using an argument of the maximum possible size_t effectively + disables checks. If the argument is less than or equal to the + current malloc_footprint, then all future allocations that require + additional system memory will fail. However, invocation cannot + retroactively deallocate existing used memory. +*/ +DLMALLOC_EXPORT size_t dlmalloc_set_footprint_limit(size_t bytes); + +#if MALLOC_INSPECT_ALL +/* + malloc_inspect_all(void(*handler)(void *start, + void *end, + size_t used_bytes, + void* callback_arg), + void* arg); + Traverses the heap and calls the given handler for each managed + region, skipping all bytes that are (or may be) used for bookkeeping + purposes. Traversal does not include include chunks that have been + directly memory mapped. Each reported region begins at the start + address, and continues up to but not including the end address. The + first used_bytes of the region contain allocated data. If + used_bytes is zero, the region is unallocated. The handler is + invoked with the given callback argument. If locks are defined, they + are held during the entire traversal. It is a bad idea to invoke + other malloc functions from within the handler. + + For example, to count the number of in-use chunks with size greater + than 1000, you could write: + static int count = 0; + void count_chunks(void* start, void* end, size_t used, void* arg) { + if (used >= 1000) ++count; + } + then: + malloc_inspect_all(count_chunks, NULL); + + malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined. +*/ +DLMALLOC_EXPORT void dlmalloc_inspect_all(void(*handler)(void*, void *, size_t, void*), + void* arg); + +#endif /* MALLOC_INSPECT_ALL */ + +#if !NO_MALLINFO +/* + mallinfo() + Returns (by copy) a struct containing various summary statistics: + + arena: current total non-mmapped bytes allocated from system + ordblks: the number of free chunks + smblks: always zero. + hblks: current number of mmapped regions + hblkhd: total bytes held in mmapped regions + usmblks: the maximum total allocated space. This will be greater + than current total if trimming has occurred. + fsmblks: always zero + uordblks: current total allocated space (normal or mmapped) + fordblks: total free space + keepcost: the maximum number of bytes that could ideally be released + back to system via malloc_trim. ("ideally" means that + it ignores page restrictions etc.) + + Because these fields are ints, but internal bookkeeping may + be kept as longs, the reported values may wrap around zero and + thus be inaccurate. +*/ +DLMALLOC_EXPORT struct mallinfo dlmallinfo(void); +#endif /* NO_MALLINFO */ + +/* + independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); + + independent_calloc is similar to calloc, but instead of returning a + single cleared space, it returns an array of pointers to n_elements + independent elements that can hold contents of size elem_size, each + of which starts out cleared, and can be independently freed, + realloc'ed etc. The elements are guaranteed to be adjacently + allocated (this is not guaranteed to occur with multiple callocs or + mallocs), which may also improve cache locality in some + applications. + + The "chunks" argument is optional (i.e., may be null, which is + probably the most typical usage). If it is null, the returned array + is itself dynamically allocated and should also be freed when it is + no longer needed. Otherwise, the chunks array must be of at least + n_elements in length. It is filled in with the pointers to the + chunks. + + In either case, independent_calloc returns this pointer array, or + null if the allocation failed. If n_elements is zero and "chunks" + is null, it returns a chunk representing an array with zero elements + (which should be freed if not wanted). + + Each element must be freed when it is no longer needed. This can be + done all at once using bulk_free. + + independent_calloc simplifies and speeds up implementations of many + kinds of pools. It may also be useful when constructing large data + structures that initially have a fixed number of fixed-sized nodes, + but the number is not known at compile time, and some of the nodes + may later need to be freed. For example: + + struct Node { int item; struct Node* next; }; + + struct Node* build_list() { + struct Node** pool; + int n = read_number_of_nodes_needed(); + if (n <= 0) return 0; + pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); + if (pool == 0) die(); + // organize into a linked list... + struct Node* first = pool[0]; + for (i = 0; i < n-1; ++i) + pool[i]->next = pool[i+1]; + free(pool); // Can now free the array (or not, if it is needed later) + return first; + } +*/ +DLMALLOC_EXPORT void** dlindependent_calloc(size_t, size_t, void**); + +/* + independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); + + independent_comalloc allocates, all at once, a set of n_elements + chunks with sizes indicated in the "sizes" array. It returns + an array of pointers to these elements, each of which can be + independently freed, realloc'ed etc. The elements are guaranteed to + be adjacently allocated (this is not guaranteed to occur with + multiple callocs or mallocs), which may also improve cache locality + in some applications. + + The "chunks" argument is optional (i.e., may be null). If it is null + the returned array is itself dynamically allocated and should also + be freed when it is no longer needed. Otherwise, the chunks array + must be of at least n_elements in length. It is filled in with the + pointers to the chunks. + + In either case, independent_comalloc returns this pointer array, or + null if the allocation failed. If n_elements is zero and chunks is + null, it returns a chunk representing an array with zero elements + (which should be freed if not wanted). + + Each element must be freed when it is no longer needed. This can be + done all at once using bulk_free. + + independent_comallac differs from independent_calloc in that each + element may have a different size, and also that it does not + automatically clear elements. + + independent_comalloc can be used to speed up allocation in cases + where several structs or objects must always be allocated at the + same time. For example: + + struct Head { ... } + struct Foot { ... } + + void send_message(char* msg) { + int msglen = strlen(msg); + size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; + void* chunks[3]; + if (independent_comalloc(3, sizes, chunks) == 0) + die(); + struct Head* head = (struct Head*)(chunks[0]); + char* body = (char*)(chunks[1]); + struct Foot* foot = (struct Foot*)(chunks[2]); + // ... + } + + In general though, independent_comalloc is worth using only for + larger values of n_elements. For small values, you probably won't + detect enough difference from series of malloc calls to bother. + + Overuse of independent_comalloc can increase overall memory usage, + since it cannot reuse existing noncontiguous small chunks that + might be available for some of the elements. +*/ +DLMALLOC_EXPORT void** dlindependent_comalloc(size_t, size_t*, void**); + +/* + bulk_free(void* array[], size_t n_elements) + Frees and clears (sets to null) each non-null pointer in the given + array. This is likely to be faster than freeing them one-by-one. + If footers are used, pointers that have been allocated in different + mspaces are not freed or cleared, and the count of all such pointers + is returned. For large arrays of pointers with poor locality, it + may be worthwhile to sort this array before calling bulk_free. +*/ +DLMALLOC_EXPORT size_t dlbulk_free(void**, size_t n_elements); + +/* + pvalloc(size_t n); + Equivalent to valloc(minimum-page-that-holds(n)), that is, + round up n to nearest pagesize. + */ +DLMALLOC_EXPORT void* dlpvalloc(size_t); + +/* + malloc_trim(size_t pad); + + If possible, gives memory back to the system (via negative arguments + to sbrk) if there is unused memory at the `high' end of the malloc + pool or in unused MMAP segments. You can call this after freeing + large blocks of memory to potentially reduce the system-level memory + requirements of a program. However, it cannot guarantee to reduce + memory. Under some allocation patterns, some large free blocks of + memory will be locked between two used chunks, so they cannot be + given back to the system. + + The `pad' argument to malloc_trim represents the amount of free + trailing space to leave untrimmed. If this argument is zero, only + the minimum amount of memory to maintain internal data structures + will be left. Non-zero arguments can be supplied to maintain enough + trailing space to service future expected allocations without having + to re-obtain memory from the system. + + Malloc_trim returns 1 if it actually released any memory, else 0. +*/ +DLMALLOC_EXPORT int dlmalloc_trim(size_t); + +/* + malloc_stats(); + Prints on stderr the amount of space obtained from the system (both + via sbrk and mmap), the maximum amount (which may be more than + current if malloc_trim and/or munmap got called), and the current + number of bytes allocated via malloc (or realloc, etc) but not yet + freed. Note that this is the number of bytes allocated, not the + number requested. It will be larger than the number requested + because of alignment and bookkeeping overhead. Because it includes + alignment wastage as being in use, this figure may be greater than + zero even when no user-level chunks are allocated. + + The reported current and maximum system memory can be inaccurate if + a program makes other calls to system memory allocation functions + (normally sbrk) outside of malloc. + + malloc_stats prints only the most commonly interesting statistics. + More information can be obtained by calling mallinfo. +*/ +DLMALLOC_EXPORT void dlmalloc_stats(void); + +/* + malloc_usable_size(void* p); + + Returns the number of bytes you can actually use in + an allocated chunk, which may be more than you requested (although + often not) due to alignment and minimum size constraints. + You can use this many bytes without worrying about + overwriting other allocated objects. This is not a particularly great + programming practice. malloc_usable_size can be more useful in + debugging and assertions, for example: + + p = malloc(n); + assert(malloc_usable_size(p) >= 256); +*/ +size_t dlmalloc_usable_size(void*); + +#endif /* ONLY_MSPACES */ + +#if MSPACES + +/* + mspace is an opaque type representing an independent + region of space that supports mspace_malloc, etc. +*/ +typedef void* mspace; + +/* + create_mspace creates and returns a new independent space with the + given initial capacity, or, if 0, the default granularity size. It + returns null if there is no system memory available to create the + space. If argument locked is non-zero, the space uses a separate + lock to control access. The capacity of the space will grow + dynamically as needed to service mspace_malloc requests. You can + control the sizes of incremental increases of this space by + compiling with a different DEFAULT_GRANULARITY or dynamically + setting with mallopt(M_GRANULARITY, value). +*/ +DLMALLOC_EXPORT mspace create_mspace(size_t capacity, int locked); + +/* + destroy_mspace destroys the given space, and attempts to return all + of its memory back to the system, returning the total number of + bytes freed. After destruction, the results of access to all memory + used by the space become undefined. +*/ +DLMALLOC_EXPORT size_t destroy_mspace(mspace msp); + +/* + create_mspace_with_base uses the memory supplied as the initial base + of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this + space is used for bookkeeping, so the capacity must be at least this + large. (Otherwise 0 is returned.) When this initial space is + exhausted, additional memory will be obtained from the system. + Destroying this space will deallocate all additionally allocated + space (if possible) but not the initial base. +*/ +DLMALLOC_EXPORT mspace create_mspace_with_base(void* base, size_t capacity, int locked); + +/* + mspace_track_large_chunks controls whether requests for large chunks + are allocated in their own untracked mmapped regions, separate from + others in this mspace. By default large chunks are not tracked, + which reduces fragmentation. However, such chunks are not + necessarily released to the system upon destroy_mspace. Enabling + tracking by setting to true may increase fragmentation, but avoids + leakage when relying on destroy_mspace to release all memory + allocated using this space. The function returns the previous + setting. +*/ +DLMALLOC_EXPORT int mspace_track_large_chunks(mspace msp, int enable); + + +/* + mspace_malloc behaves as malloc, but operates within + the given space. +*/ +DLMALLOC_EXPORT void* mspace_malloc(mspace msp, size_t bytes); + +/* + mspace_free behaves as free, but operates within + the given space. + + If compiled with FOOTERS==1, mspace_free is not actually needed. + free may be called instead of mspace_free because freed chunks from + any space are handled by their originating spaces. +*/ +DLMALLOC_EXPORT void mspace_free(mspace msp, void* mem); + +/* + mspace_realloc behaves as realloc, but operates within + the given space. + + If compiled with FOOTERS==1, mspace_realloc is not actually + needed. realloc may be called instead of mspace_realloc because + realloced chunks from any space are handled by their originating + spaces. +*/ +DLMALLOC_EXPORT void* mspace_realloc(mspace msp, void* mem, size_t newsize); + +/* + mspace_calloc behaves as calloc, but operates within + the given space. +*/ +DLMALLOC_EXPORT void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); + +/* + mspace_memalign behaves as memalign, but operates within + the given space. +*/ +DLMALLOC_EXPORT void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); + +/* + mspace_independent_calloc behaves as independent_calloc, but + operates within the given space. +*/ +DLMALLOC_EXPORT void** mspace_independent_calloc(mspace msp, size_t n_elements, + size_t elem_size, void* chunks[]); + +/* + mspace_independent_comalloc behaves as independent_comalloc, but + operates within the given space. +*/ +DLMALLOC_EXPORT void** mspace_independent_comalloc(mspace msp, size_t n_elements, + size_t sizes[], void* chunks[]); + +/* + mspace_footprint() returns the number of bytes obtained from the + system for this space. +*/ +DLMALLOC_EXPORT size_t mspace_footprint(mspace msp); + +/* + mspace_max_footprint() returns the peak number of bytes obtained from the + system for this space. +*/ +DLMALLOC_EXPORT size_t mspace_max_footprint(mspace msp); + + +#if !NO_MALLINFO +/* + mspace_mallinfo behaves as mallinfo, but reports properties of + the given space. +*/ +DLMALLOC_EXPORT struct mallinfo mspace_mallinfo(mspace msp); +#endif /* NO_MALLINFO */ + +/* + malloc_usable_size(void* p) behaves the same as malloc_usable_size; +*/ +DLMALLOC_EXPORT size_t mspace_usable_size(const void* mem); + +/* + mspace_malloc_stats behaves as malloc_stats, but reports + properties of the given space. +*/ +DLMALLOC_EXPORT void mspace_malloc_stats(mspace msp); + +/* + mspace_trim behaves as malloc_trim, but + operates within the given space. +*/ +DLMALLOC_EXPORT int mspace_trim(mspace msp, size_t pad); + +/* + An alias for mallopt. +*/ +DLMALLOC_EXPORT int mspace_mallopt(int, int); + +#endif /* MSPACES */ + +#ifdef __cplusplus +} /* end of extern "C" */ +#endif /* __cplusplus */ + +/* + ======================================================================== + To make a fully customizable malloc.h header file, cut everything + above this line, put into file malloc.h, edit to suit, and #include it + on the next line, as well as in programs that use this malloc. + ======================================================================== +*/ + +/* #include "malloc.h" */ + +/*------------------------------ internal #includes ---------------------- */ + +#ifdef _MSC_VER +#pragma warning( disable : 4146 ) /* no "unsigned" warnings */ +#endif /* _MSC_VER */ +#if !NO_MALLOC_STATS +#include <stdio.h> /* for printing in malloc_stats */ +#endif /* NO_MALLOC_STATS */ +#ifndef LACKS_ERRNO_H +#include <errno.h> /* for MALLOC_FAILURE_ACTION */ +#endif /* LACKS_ERRNO_H */ +#ifdef DEBUG +#if ABORT_ON_ASSERT_FAILURE +#undef assert +#define assert(x) if(!(x)) ABORT +#else /* ABORT_ON_ASSERT_FAILURE */ +#include <assert.h> +#endif /* ABORT_ON_ASSERT_FAILURE */ +#else /* DEBUG */ +#ifndef assert +#define assert(x) +#endif +#define DEBUG 0 +#endif /* DEBUG */ +#if !defined(WIN32) && !defined(LACKS_TIME_H) +#include <time.h> /* for magic initialization */ +#endif /* WIN32 */ +#ifndef LACKS_STDLIB_H +#include <stdlib.h> /* for abort() */ +#endif /* LACKS_STDLIB_H */ +#ifndef LACKS_STRING_H +#include <string.h> /* for memset etc */ +#endif /* LACKS_STRING_H */ +#if USE_BUILTIN_FFS +#ifndef LACKS_STRINGS_H +#include <strings.h> /* for ffs */ +#endif /* LACKS_STRINGS_H */ +#endif /* USE_BUILTIN_FFS */ +#if HAVE_MMAP +#ifndef LACKS_SYS_MMAN_H +/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */ +#if (defined(linux) && !defined(__USE_GNU)) +#define __USE_GNU 1 +#include <sys/mman.h> /* for mmap */ +#undef __USE_GNU +#else +#include <sys/mman.h> /* for mmap */ +#endif /* linux */ +#endif /* LACKS_SYS_MMAN_H */ +#ifndef LACKS_FCNTL_H +#include <fcntl.h> +#endif /* LACKS_FCNTL_H */ +#endif /* HAVE_MMAP */ +#ifndef LACKS_UNISTD_H +#include <unistd.h> /* for sbrk, sysconf */ +#else /* LACKS_UNISTD_H */ +#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) +extern void* sbrk(ptrdiff_t); +#endif /* FreeBSD etc */ +#endif /* LACKS_UNISTD_H */ + +/* Declarations for locking */ +#if USE_LOCKS +#ifndef WIN32 +#if defined (__SVR4) && defined (__sun) /* solaris */ +#include <thread.h> +#elif !defined(LACKS_SCHED_H) +#include <sched.h> +#endif /* solaris or LACKS_SCHED_H */ +#if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS +#include <pthread.h> +#endif /* USE_RECURSIVE_LOCKS ... */ +#elif defined(_MSC_VER) +#ifndef _M_AMD64 +/* These are already defined on AMD64 builds */ +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ +LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp); +LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value); +#ifdef __cplusplus +} +#endif /* __cplusplus */ +#endif /* _M_AMD64 */ +#pragma intrinsic (_InterlockedCompareExchange) +#pragma intrinsic (_InterlockedExchange) +#define interlockedcompareexchange _InterlockedCompareExchange +#define interlockedexchange _InterlockedExchange +#elif defined(WIN32) && defined(__GNUC__) +#define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b) +#define interlockedexchange __sync_lock_test_and_set +#endif /* Win32 */ +#else /* USE_LOCKS */ +#endif /* USE_LOCKS */ + +#ifndef LOCK_AT_FORK +#define LOCK_AT_FORK 0 +#endif + +/* Declarations for bit scanning on win32 */ +#if defined(_MSC_VER) && _MSC_VER>=1300 +#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */ +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ +unsigned char _BitScanForward(unsigned long *index, unsigned long mask); +unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); +#ifdef __cplusplus +} +#endif /* __cplusplus */ + +#define BitScanForward _BitScanForward +#define BitScanReverse _BitScanReverse +#pragma intrinsic(_BitScanForward) +#pragma intrinsic(_BitScanReverse) +#endif /* BitScanForward */ +#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */ + +#ifndef WIN32 +#ifndef malloc_getpagesize +# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ +# ifndef _SC_PAGE_SIZE +# define _SC_PAGE_SIZE _SC_PAGESIZE +# endif +# endif +# ifdef _SC_PAGE_SIZE +# define malloc_getpagesize sysconf(_SC_PAGE_SIZE) +# else +# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) + extern size_t getpagesize(); +# define malloc_getpagesize getpagesize() +# else +# ifdef WIN32 /* use supplied emulation of getpagesize */ +# define malloc_getpagesize getpagesize() +# else +# ifndef LACKS_SYS_PARAM_H +# include <sys/param.h> +# endif +# ifdef EXEC_PAGESIZE +# define malloc_getpagesize EXEC_PAGESIZE +# else +# ifdef NBPG +# ifndef CLSIZE +# define malloc_getpagesize NBPG +# else +# define malloc_getpagesize (NBPG * CLSIZE) +# endif +# else +# ifdef NBPC +# define malloc_getpagesize NBPC +# else +# ifdef PAGESIZE +# define malloc_getpagesize PAGESIZE +# else /* just guess */ +# define malloc_getpagesize ((size_t)4096U) +# endif +# endif +# endif +# endif +# endif +# endif +# endif +#endif +#endif + +/* ------------------- size_t and alignment properties -------------------- */ + +/* The byte and bit size of a size_t */ +#define SIZE_T_SIZE (sizeof(size_t)) +#define SIZE_T_BITSIZE (sizeof(size_t) << 3) + +/* Some constants coerced to size_t */ +/* Annoying but necessary to avoid errors on some platforms */ +#define SIZE_T_ZERO ((size_t)0) +#define SIZE_T_ONE ((size_t)1) +#define SIZE_T_TWO ((size_t)2) +#define SIZE_T_FOUR ((size_t)4) +#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) +#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) +#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) +#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) + +/* The bit mask value corresponding to MALLOC_ALIGNMENT */ +#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) + +/* True if address a has acceptable alignment */ +#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) + +/* the number of bytes to offset an address to align it */ +#define align_offset(A)\ + ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ + ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) + +/* -------------------------- MMAP preliminaries ------------------------- */ + +/* + If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and + checks to fail so compiler optimizer can delete code rather than + using so many "#if"s. +*/ + + +/* MORECORE and MMAP must return MFAIL on failure */ +#define MFAIL ((void*)(MAX_SIZE_T)) +#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ + +#if HAVE_MMAP + +#ifndef WIN32 +#define MUNMAP_DEFAULT(a, s) munmap((a), (s)) +#define MMAP_PROT (PROT_READ|PROT_WRITE) +#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) +#define MAP_ANONYMOUS MAP_ANON +#endif /* MAP_ANON */ +#ifdef MAP_ANONYMOUS +#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS) +#define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) +#else /* MAP_ANONYMOUS */ +/* + Nearly all versions of mmap support MAP_ANONYMOUS, so the following + is unlikely to be needed, but is supplied just in case. +*/ +#define MMAP_FLAGS (MAP_PRIVATE) +static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ +#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \ + (dev_zero_fd = open("/dev/zero", O_RDWR), \ + mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ + mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) +#endif /* MAP_ANONYMOUS */ + +#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s) + +#else /* WIN32 */ + +/* Win32 MMAP via VirtualAlloc */ +static FORCEINLINE void* win32mmap(size_t size) { + void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); + return (ptr != 0)? ptr: MFAIL; +} + +/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ +static FORCEINLINE void* win32direct_mmap(size_t size) { + void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, + PAGE_READWRITE); + return (ptr != 0)? ptr: MFAIL; +} + +/* This function supports releasing coalesed segments */ +static FORCEINLINE int win32munmap(void* ptr, size_t size) { + MEMORY_BASIC_INFORMATION minfo; + char* cptr = (char*)ptr; + while (size) { + if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) + return -1; + if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || + minfo.State != MEM_COMMIT || minfo.RegionSize > size) + return -1; + if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) + return -1; + cptr += minfo.RegionSize; + size -= minfo.RegionSize; + } + return 0; +} + +#define MMAP_DEFAULT(s) win32mmap(s) +#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s)) +#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s) +#endif /* WIN32 */ +#endif /* HAVE_MMAP */ + +#if HAVE_MREMAP +#ifndef WIN32 +#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) +#endif /* WIN32 */ +#endif /* HAVE_MREMAP */ + +/** + * Define CALL_MORECORE + */ +#if HAVE_MORECORE + #ifdef MORECORE + #define CALL_MORECORE(S) MORECORE(S) + #else /* MORECORE */ + #define CALL_MORECORE(S) MORECORE_DEFAULT(S) + #endif /* MORECORE */ +#else /* HAVE_MORECORE */ + #define CALL_MORECORE(S) MFAIL +#endif /* HAVE_MORECORE */ + +/** + * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP + */ +#if HAVE_MMAP + #define USE_MMAP_BIT (SIZE_T_ONE) + + #ifdef MMAP + #define CALL_MMAP(s) MMAP(s) + #else /* MMAP */ + #define CALL_MMAP(s) MMAP_DEFAULT(s) + #endif /* MMAP */ + #ifdef MUNMAP + #define CALL_MUNMAP(a, s) MUNMAP((a), (s)) + #else /* MUNMAP */ + #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s)) + #endif /* MUNMAP */ + #ifdef DIRECT_MMAP + #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) + #else /* DIRECT_MMAP */ + #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s) + #endif /* DIRECT_MMAP */ +#else /* HAVE_MMAP */ + #define USE_MMAP_BIT (SIZE_T_ZERO) + + #define MMAP(s) MFAIL + #define MUNMAP(a, s) (-1) + #define DIRECT_MMAP(s) MFAIL + #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) + #define CALL_MMAP(s) MMAP(s) + #define CALL_MUNMAP(a, s) MUNMAP((a), (s)) +#endif /* HAVE_MMAP */ + +/** + * Define CALL_MREMAP + */ +#if HAVE_MMAP && HAVE_MREMAP + #ifdef MREMAP + #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv)) + #else /* MREMAP */ + #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv)) + #endif /* MREMAP */ +#else /* HAVE_MMAP && HAVE_MREMAP */ + #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL +#endif /* HAVE_MMAP && HAVE_MREMAP */ + +/* mstate bit set if continguous morecore disabled or failed */ +#define USE_NONCONTIGUOUS_BIT (4U) + +/* segment bit set in create_mspace_with_base */ +#define EXTERN_BIT (8U) + + +/* --------------------------- Lock preliminaries ------------------------ */ + +/* + When locks are defined, there is one global lock, plus + one per-mspace lock. + + The global lock_ensures that mparams.magic and other unique + mparams values are initialized only once. It also protects + sequences of calls to MORECORE. In many cases sys_alloc requires + two calls, that should not be interleaved with calls by other + threads. This does not protect against direct calls to MORECORE + by other threads not using this lock, so there is still code to + cope the best we can on interference. + + Per-mspace locks surround calls to malloc, free, etc. + By default, locks are simple non-reentrant mutexes. + + Because lock-protected regions generally have bounded times, it is + OK to use the supplied simple spinlocks. Spinlocks are likely to + improve performance for lightly contended applications, but worsen + performance under heavy contention. + + If USE_LOCKS is > 1, the definitions of lock routines here are + bypassed, in which case you will need to define the type MLOCK_T, + and at least INITIAL_LOCK, DESTROY_LOCK, ACQUIRE_LOCK, RELEASE_LOCK + and TRY_LOCK. You must also declare a + static MLOCK_T malloc_global_mutex = { initialization values };. + +*/ + +#if !USE_LOCKS +#define USE_LOCK_BIT (0U) +#define INITIAL_LOCK(l) (0) +#define DESTROY_LOCK(l) (0) +#define ACQUIRE_MALLOC_GLOBAL_LOCK() +#define RELEASE_MALLOC_GLOBAL_LOCK() + +#else +#if USE_LOCKS > 1 +/* ----------------------- User-defined locks ------------------------ */ +/* Define your own lock implementation here */ +/* #define INITIAL_LOCK(lk) ... */ +/* #define DESTROY_LOCK(lk) ... */ +/* #define ACQUIRE_LOCK(lk) ... */ +/* #define RELEASE_LOCK(lk) ... */ +/* #define TRY_LOCK(lk) ... */ +/* static MLOCK_T malloc_global_mutex = ... */ + +#elif USE_SPIN_LOCKS + +/* First, define CAS_LOCK and CLEAR_LOCK on ints */ +/* Note CAS_LOCK defined to return 0 on success */ + +#if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) +#define CAS_LOCK(sl) __sync_lock_test_and_set(sl, 1) +#define CLEAR_LOCK(sl) __sync_lock_release(sl) + +#elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))) +/* Custom spin locks for older gcc on x86 */ +static FORCEINLINE int x86_cas_lock(int *sl) { + int ret; + int val = 1; + int cmp = 0; + __asm__ __volatile__ ("lock; cmpxchgl %1, %2" + : "=a" (ret) + : "r" (val), "m" (*(sl)), "0"(cmp) + : "memory", "cc"); + return ret; +} + +static FORCEINLINE void x86_clear_lock(int* sl) { + assert(*sl != 0); + int prev = 0; + int ret; + __asm__ __volatile__ ("lock; xchgl %0, %1" + : "=r" (ret) + : "m" (*(sl)), "0"(prev) + : "memory"); +} + +#define CAS_LOCK(sl) x86_cas_lock(sl) +#define CLEAR_LOCK(sl) x86_clear_lock(sl) + +#else /* Win32 MSC */ +#define CAS_LOCK(sl) interlockedexchange(sl, (LONG)1) +#define CLEAR_LOCK(sl) interlockedexchange (sl, (LONG)0) + +#endif /* ... gcc spins locks ... */ + +/* How to yield for a spin lock */ +#define SPINS_PER_YIELD 63 +#if defined(_MSC_VER) +#define SLEEP_EX_DURATION 50 /* delay for yield/sleep */ +#define SPIN_LOCK_YIELD SleepEx(SLEEP_EX_DURATION, FALSE) +#elif defined (__SVR4) && defined (__sun) /* solaris */ +#define SPIN_LOCK_YIELD thr_yield(); +#elif !defined(LACKS_SCHED_H) +#define SPIN_LOCK_YIELD sched_yield(); +#else +#define SPIN_LOCK_YIELD +#endif /* ... yield ... */ + +#if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0 +/* Plain spin locks use single word (embedded in malloc_states) */ +static int spin_acquire_lock(int *sl) { + int spins = 0; + while (*(volatile int *)sl != 0 || CAS_LOCK(sl)) { + if ((++spins & SPINS_PER_YIELD) == 0) { + SPIN_LOCK_YIELD; + } + } + return 0; +} + +#define MLOCK_T int +#define TRY_LOCK(sl) !CAS_LOCK(sl) +#define RELEASE_LOCK(sl) CLEAR_LOCK(sl) +#define ACQUIRE_LOCK(sl) (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0) +#define INITIAL_LOCK(sl) (*sl = 0) +#define DESTROY_LOCK(sl) (0) +static MLOCK_T malloc_global_mutex = 0; + +#else /* USE_RECURSIVE_LOCKS */ +/* types for lock owners */ +#ifdef WIN32 +#define THREAD_ID_T DWORD +#define CURRENT_THREAD GetCurrentThreadId() +#define EQ_OWNER(X,Y) ((X) == (Y)) +#else +/* + Note: the following assume that pthread_t is a type that can be + initialized to (casted) zero. If this is not the case, you will need to + somehow redefine these or not use spin locks. +*/ +#define THREAD_ID_T pthread_t +#define CURRENT_THREAD pthread_self() +#define EQ_OWNER(X,Y) pthread_equal(X, Y) +#endif + +struct malloc_recursive_lock { + int sl; + unsigned int c; + THREAD_ID_T threadid; +}; + +#define MLOCK_T struct malloc_recursive_lock +static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T)0}; + +static FORCEINLINE void recursive_release_lock(MLOCK_T *lk) { + assert(lk->sl != 0); + if (--lk->c == 0) { + CLEAR_LOCK(&lk->sl); + } +} + +static FORCEINLINE int recursive_acquire_lock(MLOCK_T *lk) { + THREAD_ID_T mythreadid = CURRENT_THREAD; + int spins = 0; + for (;;) { + if (*((volatile int *)(&lk->sl)) == 0) { + if (!CAS_LOCK(&lk->sl)) { + lk->threadid = mythreadid; + lk->c = 1; + return 0; + } + } + else if (EQ_OWNER(lk->threadid, mythreadid)) { + ++lk->c; + return 0; + } + if ((++spins & SPINS_PER_YIELD) == 0) { + SPIN_LOCK_YIELD; + } + } +} + +static FORCEINLINE int recursive_try_lock(MLOCK_T *lk) { + THREAD_ID_T mythreadid = CURRENT_THREAD; + if (*((volatile int *)(&lk->sl)) == 0) { + if (!CAS_LOCK(&lk->sl)) { + lk->threadid = mythreadid; + lk->c = 1; + return 1; + } + } + else if (EQ_OWNER(lk->threadid, mythreadid)) { + ++lk->c; + return 1; + } + return 0; +} + +#define RELEASE_LOCK(lk) recursive_release_lock(lk) +#define TRY_LOCK(lk) recursive_try_lock(lk) +#define ACQUIRE_LOCK(lk) recursive_acquire_lock(lk) +#define INITIAL_LOCK(lk) ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0) +#define DESTROY_LOCK(lk) (0) +#endif /* USE_RECURSIVE_LOCKS */ + +#elif defined(WIN32) /* Win32 critical sections */ +#define MLOCK_T CRITICAL_SECTION +#define ACQUIRE_LOCK(lk) (EnterCriticalSection(lk), 0) +#define RELEASE_LOCK(lk) LeaveCriticalSection(lk) +#define TRY_LOCK(lk) TryEnterCriticalSection(lk) +#define INITIAL_LOCK(lk) (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000)) +#define DESTROY_LOCK(lk) (DeleteCriticalSection(lk), 0) +#define NEED_GLOBAL_LOCK_INIT + +static MLOCK_T malloc_global_mutex; +static volatile LONG malloc_global_mutex_status; + +/* Use spin loop to initialize global lock */ +static void init_malloc_global_mutex() { + for (;;) { + long stat = malloc_global_mutex_status; + if (stat > 0) + return; + /* transition to < 0 while initializing, then to > 0) */ + if (stat == 0 && + interlockedcompareexchange(&malloc_global_mutex_status, (LONG)-1, (LONG)0) == 0) { + InitializeCriticalSection(&malloc_global_mutex); + interlockedexchange(&malloc_global_mutex_status, (LONG)1); + return; + } + SleepEx(0, FALSE); + } +} + +#else /* pthreads-based locks */ +#define MLOCK_T pthread_mutex_t +#define ACQUIRE_LOCK(lk) pthread_mutex_lock(lk) +#define RELEASE_LOCK(lk) pthread_mutex_unlock(lk) +#define TRY_LOCK(lk) (!pthread_mutex_trylock(lk)) +#define INITIAL_LOCK(lk) pthread_init_lock(lk) +#define DESTROY_LOCK(lk) pthread_mutex_destroy(lk) + +#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE) +/* Cope with old-style linux recursive lock initialization by adding */ +/* skipped internal declaration from pthread.h */ +extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr, + int __kind)); +#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP +#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y) +#endif /* USE_RECURSIVE_LOCKS ... */ + +static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER; + +static int pthread_init_lock (MLOCK_T *lk) { + pthread_mutexattr_t attr; + if (pthread_mutexattr_init(&attr)) return 1; +#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 + if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1; +#endif + if (pthread_mutex_init(lk, &attr)) return 1; + if (pthread_mutexattr_destroy(&attr)) return 1; + return 0; +} + +#endif /* ... lock types ... */ + +/* Common code for all lock types */ +#define USE_LOCK_BIT (2U) + +#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK +#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex); +#endif + +#ifndef RELEASE_MALLOC_GLOBAL_LOCK +#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex); +#endif + +#endif /* USE_LOCKS */ + +/* ----------------------- Chunk representations ------------------------ */ + +/* + (The following includes lightly edited explanations by Colin Plumb.) + + The malloc_chunk declaration below is misleading (but accurate and + necessary). It declares a "view" into memory allowing access to + necessary fields at known offsets from a given base. + + Chunks of memory are maintained using a `boundary tag' method as + originally described by Knuth. (See the paper by Paul Wilson + ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such + techniques.) Sizes of free chunks are stored both in the front of + each chunk and at the end. This makes consolidating fragmented + chunks into bigger chunks fast. The head fields also hold bits + representing whether chunks are free or in use. + + Here are some pictures to make it clearer. They are "exploded" to + show that the state of a chunk can be thought of as extending from + the high 31 bits of the head field of its header through the + prev_foot and PINUSE_BIT bit of the following chunk header. + + A chunk that's in use looks like: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk (if P = 0) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| + | Size of this chunk 1| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | | + +- -+ + | | + +- -+ + | : + +- size - sizeof(size_t) available payload bytes -+ + : | + chunk-> +- -+ + | | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| + | Size of next chunk (may or may not be in use) | +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + And if it's free, it looks like this: + + chunk-> +- -+ + | User payload (must be in use, or we would have merged!) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| + | Size of this chunk 0| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Next pointer | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Prev pointer | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | : + +- size - sizeof(struct chunk) unused bytes -+ + : | + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of this chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| + | Size of next chunk (must be in use, or we would have merged)| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | : + +- User payload -+ + : | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + |0| + +-+ + Note that since we always merge adjacent free chunks, the chunks + adjacent to a free chunk must be in use. + + Given a pointer to a chunk (which can be derived trivially from the + payload pointer) we can, in O(1) time, find out whether the adjacent + chunks are free, and if so, unlink them from the lists that they + are on and merge them with the current chunk. + + Chunks always begin on even word boundaries, so the mem portion + (which is returned to the user) is also on an even word boundary, and + thus at least double-word aligned. + + The P (PINUSE_BIT) bit, stored in the unused low-order bit of the + chunk size (which is always a multiple of two words), is an in-use + bit for the *previous* chunk. If that bit is *clear*, then the + word before the current chunk size contains the previous chunk + size, and can be used to find the front of the previous chunk. + The very first chunk allocated always has this bit set, preventing + access to non-existent (or non-owned) memory. If pinuse is set for + any given chunk, then you CANNOT determine the size of the + previous chunk, and might even get a memory addressing fault when + trying to do so. + + The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of + the chunk size redundantly records whether the current chunk is + inuse (unless the chunk is mmapped). This redundancy enables usage + checks within free and realloc, and reduces indirection when freeing + and consolidating chunks. + + Each freshly allocated chunk must have both cinuse and pinuse set. + That is, each allocated chunk borders either a previously allocated + and still in-use chunk, or the base of its memory arena. This is + ensured by making all allocations from the `lowest' part of any + found chunk. Further, no free chunk physically borders another one, + so each free chunk is known to be preceded and followed by either + inuse chunks or the ends of memory. + + Note that the `foot' of the current chunk is actually represented + as the prev_foot of the NEXT chunk. This makes it easier to + deal with alignments etc but can be very confusing when trying + to extend or adapt this code. + + The exceptions to all this are + + 1. The special chunk `top' is the top-most available chunk (i.e., + the one bordering the end of available memory). It is treated + specially. Top is never included in any bin, is used only if + no other chunk is available, and is released back to the + system if it is very large (see M_TRIM_THRESHOLD). In effect, + the top chunk is treated as larger (and thus less well + fitting) than any other available chunk. The top chunk + doesn't update its trailing size field since there is no next + contiguous chunk that would have to index off it. However, + space is still allocated for it (TOP_FOOT_SIZE) to enable + separation or merging when space is extended. + + 3. Chunks allocated via mmap, have both cinuse and pinuse bits + cleared in their head fields. Because they are allocated + one-by-one, each must carry its own prev_foot field, which is + also used to hold the offset this chunk has within its mmapped + region, which is needed to preserve alignment. Each mmapped + chunk is trailed by the first two fields of a fake next-chunk + for sake of usage checks. + +*/ + +struct malloc_chunk { + size_t prev_foot; /* Size of previous chunk (if free). */ + size_t head; /* Size and inuse bits. */ + struct malloc_chunk* fd; /* double links -- used only if free. */ + struct malloc_chunk* bk; +}; + +typedef struct malloc_chunk mchunk; +typedef struct malloc_chunk* mchunkptr; +typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ +typedef unsigned int bindex_t; /* Described below */ +typedef unsigned int binmap_t; /* Described below */ +typedef unsigned int flag_t; /* The type of various bit flag sets */ + +/* ------------------- Chunks sizes and alignments ----------------------- */ + +#define MCHUNK_SIZE (sizeof(mchunk)) + +#if FOOTERS +#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) +#else /* FOOTERS */ +#define CHUNK_OVERHEAD (SIZE_T_SIZE) +#endif /* FOOTERS */ + +/* MMapped chunks need a second word of overhead ... */ +#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) +/* ... and additional padding for fake next-chunk at foot */ +#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) + +/* The smallest size we can malloc is an aligned minimal chunk */ +#define MIN_CHUNK_SIZE\ + ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) + +/* conversion from malloc headers to user pointers, and back */ +#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) +#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) +/* chunk associated with aligned address A */ +#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) + +/* Bounds on request (not chunk) sizes. */ +#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) +#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) + +/* pad request bytes into a usable size */ +#define pad_request(req) \ + (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) + +/* pad request, checking for minimum (but not maximum) */ +#define request2size(req) \ + (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) + + +/* ------------------ Operations on head and foot fields ----------------- */ + +/* + The head field of a chunk is or'ed with PINUSE_BIT when previous + adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in + use, unless mmapped, in which case both bits are cleared. + + FLAG4_BIT is not used by this malloc, but might be useful in extensions. +*/ + +#define PINUSE_BIT (SIZE_T_ONE) +#define CINUSE_BIT (SIZE_T_TWO) +#define FLAG4_BIT (SIZE_T_FOUR) +#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) +#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT) + +/* Head value for fenceposts */ +#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) + +/* extraction of fields from head words */ +#define cinuse(p) ((p)->head & CINUSE_BIT) +#define pinuse(p) ((p)->head & PINUSE_BIT) +#define flag4inuse(p) ((p)->head & FLAG4_BIT) +#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT) +#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0) + +#define chunksize(p) ((p)->head & ~(FLAG_BITS)) + +#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) +#define set_flag4(p) ((p)->head |= FLAG4_BIT) +#define clear_flag4(p) ((p)->head &= ~FLAG4_BIT) + +/* Treat space at ptr +/- offset as a chunk */ +#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) +#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) + +/* Ptr to next or previous physical malloc_chunk. */ +#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS))) +#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) + +/* extract next chunk's pinuse bit */ +#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) + +/* Get/set size at footer */ +#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot) +#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) + +/* Set size, pinuse bit, and foot */ +#define set_size_and_pinuse_of_free_chunk(p, s)\ + ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) + +/* Set size, pinuse bit, foot, and clear next pinuse */ +#define set_free_with_pinuse(p, s, n)\ + (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) + +/* Get the internal overhead associated with chunk p */ +#define overhead_for(p)\ + (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) + +/* Return true if malloced space is not necessarily cleared */ +#if MMAP_CLEARS +#define calloc_must_clear(p) (!is_mmapped(p)) +#else /* MMAP_CLEARS */ +#define calloc_must_clear(p) (1) +#endif /* MMAP_CLEARS */ + +/* ---------------------- Overlaid data structures ----------------------- */ + +/* + When chunks are not in use, they are treated as nodes of either + lists or trees. + + "Small" chunks are stored in circular doubly-linked lists, and look + like this: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `head:' | Size of chunk, in bytes |P| + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Forward pointer to next chunk in list | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Back pointer to previous chunk in list | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Unused space (may be 0 bytes long) . + . . + . | +nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `foot:' | Size of chunk, in bytes | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Larger chunks are kept in a form of bitwise digital trees (aka + tries) keyed on chunksizes. Because malloc_tree_chunks are only for + free chunks greater than 256 bytes, their size doesn't impose any + constraints on user chunk sizes. Each node looks like: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `head:' | Size of chunk, in bytes |P| + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Forward pointer to next chunk of same size | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Back pointer to previous chunk of same size | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to left child (child[0]) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to right child (child[1]) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to parent | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | bin index of this chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Unused space . + . | +nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `foot:' | Size of chunk, in bytes | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Each tree holding treenodes is a tree of unique chunk sizes. Chunks + of the same size are arranged in a circularly-linked list, with only + the oldest chunk (the next to be used, in our FIFO ordering) + actually in the tree. (Tree members are distinguished by a non-null + parent pointer.) If a chunk with the same size an an existing node + is inserted, it is linked off the existing node using pointers that + work in the same way as fd/bk pointers of small chunks. + + Each tree contains a power of 2 sized range of chunk sizes (the + smallest is 0x100 <= x < 0x180), which is is divided in half at each + tree level, with the chunks in the smaller half of the range (0x100 + <= x < 0x140 for the top nose) in the left subtree and the larger + half (0x140 <= x < 0x180) in the right subtree. This is, of course, + done by inspecting individual bits. + + Using these rules, each node's left subtree contains all smaller + sizes than its right subtree. However, the node at the root of each + subtree has no particular ordering relationship to either. (The + dividing line between the subtree sizes is based on trie relation.) + If we remove the last chunk of a given size from the interior of the + tree, we need to replace it with a leaf node. The tree ordering + rules permit a node to be replaced by any leaf below it. + + The smallest chunk in a tree (a common operation in a best-fit + allocator) can be found by walking a path to the leftmost leaf in + the tree. Unlike a usual binary tree, where we follow left child + pointers until we reach a null, here we follow the right child + pointer any time the left one is null, until we reach a leaf with + both child pointers null. The smallest chunk in the tree will be + somewhere along that path. + + The worst case number of steps to add, find, or remove a node is + bounded by the number of bits differentiating chunks within + bins. Under current bin calculations, this ranges from 6 up to 21 + (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case + is of course much better. +*/ + +struct malloc_tree_chunk { + /* The first four fields must be compatible with malloc_chunk */ + size_t prev_foot; + size_t head; + struct malloc_tree_chunk* fd; + struct malloc_tree_chunk* bk; + + struct malloc_tree_chunk* child[2]; + struct malloc_tree_chunk* parent; + bindex_t index; +}; + +typedef struct malloc_tree_chunk tchunk; +typedef struct malloc_tree_chunk* tchunkptr; +typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ + +/* A little helper macro for trees */ +#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) + +/* ----------------------------- Segments -------------------------------- */ + +/* + Each malloc space may include non-contiguous segments, held in a + list headed by an embedded malloc_segment record representing the + top-most space. Segments also include flags holding properties of + the space. Large chunks that are directly allocated by mmap are not + included in this list. They are instead independently created and + destroyed without otherwise keeping track of them. + + Segment management mainly comes into play for spaces allocated by + MMAP. Any call to MMAP might or might not return memory that is + adjacent to an existing segment. MORECORE normally contiguously + extends the current space, so this space is almost always adjacent, + which is simpler and faster to deal with. (This is why MORECORE is + used preferentially to MMAP when both are available -- see + sys_alloc.) When allocating using MMAP, we don't use any of the + hinting mechanisms (inconsistently) supported in various + implementations of unix mmap, or distinguish reserving from + committing memory. Instead, we just ask for space, and exploit + contiguity when we get it. It is probably possible to do + better than this on some systems, but no general scheme seems + to be significantly better. + + Management entails a simpler variant of the consolidation scheme + used for chunks to reduce fragmentation -- new adjacent memory is + normally prepended or appended to an existing segment. However, + there are limitations compared to chunk consolidation that mostly + reflect the fact that segment processing is relatively infrequent + (occurring only when getting memory from system) and that we + don't expect to have huge numbers of segments: + + * Segments are not indexed, so traversal requires linear scans. (It + would be possible to index these, but is not worth the extra + overhead and complexity for most programs on most platforms.) + * New segments are only appended to old ones when holding top-most + memory; if they cannot be prepended to others, they are held in + different segments. + + Except for the top-most segment of an mstate, each segment record + is kept at the tail of its segment. Segments are added by pushing + segment records onto the list headed by &mstate.seg for the + containing mstate. + + Segment flags control allocation/merge/deallocation policies: + * If EXTERN_BIT set, then we did not allocate this segment, + and so should not try to deallocate or merge with others. + (This currently holds only for the initial segment passed + into create_mspace_with_base.) + * If USE_MMAP_BIT set, the segment may be merged with + other surrounding mmapped segments and trimmed/de-allocated + using munmap. + * If neither bit is set, then the segment was obtained using + MORECORE so can be merged with surrounding MORECORE'd segments + and deallocated/trimmed using MORECORE with negative arguments. +*/ + +struct malloc_segment { + char* base; /* base address */ + size_t size; /* allocated size */ + struct malloc_segment* next; /* ptr to next segment */ + flag_t sflags; /* mmap and extern flag */ +}; + +#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT) +#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT) + +typedef struct malloc_segment msegment; +typedef struct malloc_segment* msegmentptr; + +/* ---------------------------- malloc_state ----------------------------- */ + +/* + A malloc_state holds all of the bookkeeping for a space. + The main fields are: + + Top + The topmost chunk of the currently active segment. Its size is + cached in topsize. The actual size of topmost space is + topsize+TOP_FOOT_SIZE, which includes space reserved for adding + fenceposts and segment records if necessary when getting more + space from the system. The size at which to autotrim top is + cached from mparams in trim_check, except that it is disabled if + an autotrim fails. + + Designated victim (dv) + This is the preferred chunk for servicing small requests that + don't have exact fits. It is normally the chunk split off most + recently to service another small request. Its size is cached in + dvsize. The link fields of this chunk are not maintained since it + is not kept in a bin. + + SmallBins + An array of bin headers for free chunks. These bins hold chunks + with sizes less than MIN_LARGE_SIZE bytes. Each bin contains + chunks of all the same size, spaced 8 bytes apart. To simplify + use in double-linked lists, each bin header acts as a malloc_chunk + pointing to the real first node, if it exists (else pointing to + itself). This avoids special-casing for headers. But to avoid + waste, we allocate only the fd/bk pointers of bins, and then use + repositioning tricks to treat these as the fields of a chunk. + + TreeBins + Treebins are pointers to the roots of trees holding a range of + sizes. There are 2 equally spaced treebins for each power of two + from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything + larger. + + Bin maps + There is one bit map for small bins ("smallmap") and one for + treebins ("treemap). Each bin sets its bit when non-empty, and + clears the bit when empty. Bit operations are then used to avoid + bin-by-bin searching -- nearly all "search" is done without ever + looking at bins that won't be selected. The bit maps + conservatively use 32 bits per map word, even if on 64bit system. + For a good description of some of the bit-based techniques used + here, see Henry S. Warren Jr's book "Hacker's Delight" (and + supplement at http://hackersdelight.org/). Many of these are + intended to reduce the branchiness of paths through malloc etc, as + well as to reduce the number of memory locations read or written. + + Segments + A list of segments headed by an embedded malloc_segment record + representing the initial space. + + Address check support + The least_addr field is the least address ever obtained from + MORECORE or MMAP. Attempted frees and reallocs of any address less + than this are trapped (unless INSECURE is defined). + + Magic tag + A cross-check field that should always hold same value as mparams.magic. + + Max allowed footprint + The maximum allowed bytes to allocate from system (zero means no limit) + + Flags + Bits recording whether to use MMAP, locks, or contiguous MORECORE + + Statistics + Each space keeps track of current and maximum system memory + obtained via MORECORE or MMAP. + + Trim support + Fields holding the amount of unused topmost memory that should trigger + trimming, and a counter to force periodic scanning to release unused + non-topmost segments. + + Locking + If USE_LOCKS is defined, the "mutex" lock is acquired and released + around every public call using this mspace. + + Extension support + A void* pointer and a size_t field that can be used to help implement + extensions to this malloc. +*/ + +/* Bin types, widths and sizes */ +#define NSMALLBINS (32U) +#define NTREEBINS (32U) +#define SMALLBIN_SHIFT (3U) +#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) +#define TREEBIN_SHIFT (8U) +#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) +#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) +#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) + +struct malloc_state { + binmap_t smallmap; + binmap_t treemap; + size_t dvsize; + size_t topsize; + char* least_addr; + mchunkptr dv; + mchunkptr top; + size_t trim_check; + size_t release_checks; + size_t magic; + mchunkptr smallbins[(NSMALLBINS+1)*2]; + tbinptr treebins[NTREEBINS]; + size_t footprint; + size_t max_footprint; + size_t footprint_limit; /* zero means no limit */ + flag_t mflags; +#if USE_LOCKS + MLOCK_T mutex; /* locate lock among fields that rarely change */ +#endif /* USE_LOCKS */ + msegment seg; + void* extp; /* Unused but available for extensions */ + size_t exts; +}; + +typedef struct malloc_state* mstate; + +/* ------------- Global malloc_state and malloc_params ------------------- */ + +/* + malloc_params holds global properties, including those that can be + dynamically set using mallopt. There is a single instance, mparams, + initialized in init_mparams. Note that the non-zeroness of "magic" + also serves as an initialization flag. +*/ + +struct malloc_params { + size_t magic; + size_t page_size; + size_t granularity; + size_t mmap_threshold; + size_t trim_threshold; + flag_t default_mflags; +}; + +static struct malloc_params mparams; + +/* Ensure mparams initialized */ +#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams()) + +#if !ONLY_MSPACES + +/* The global malloc_state used for all non-"mspace" calls */ +static struct malloc_state _gm_; +#define gm (&_gm_) +#define is_global(M) ((M) == &_gm_) + +#endif /* !ONLY_MSPACES */ + +#define is_initialized(M) ((M)->top != 0) + +/* -------------------------- system alloc setup ------------------------- */ + +/* Operations on mflags */ + +#define use_lock(M) ((M)->mflags & USE_LOCK_BIT) +#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) +#if USE_LOCKS +#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) +#else +#define disable_lock(M) +#endif + +#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) +#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) +#if HAVE_MMAP +#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) +#else +#define disable_mmap(M) +#endif + +#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) +#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) + +#define set_lock(M,L)\ + ((M)->mflags = (L)?\ + ((M)->mflags | USE_LOCK_BIT) :\ + ((M)->mflags & ~USE_LOCK_BIT)) + +/* page-align a size */ +#define page_align(S)\ + (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE)) + +/* granularity-align a size */ +#define granularity_align(S)\ + (((S) + (mparams.granularity - SIZE_T_ONE))\ + & ~(mparams.granularity - SIZE_T_ONE)) + + +/* For mmap, use granularity alignment on windows, else page-align */ +#ifdef WIN32 +#define mmap_align(S) granularity_align(S) +#else +#define mmap_align(S) page_align(S) +#endif + +/* For sys_alloc, enough padding to ensure can malloc request on success */ +#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT) + +#define is_page_aligned(S)\ + (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) +#define is_granularity_aligned(S)\ + (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) + +/* True if segment S holds address A */ +#define segment_holds(S, A)\ + ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) + +/* Return segment holding given address */ +static msegmentptr segment_holding(mstate m, char* addr) { + msegmentptr sp = &m->seg; + for (;;) { + if (addr >= sp->base && addr < sp->base + sp->size) + return sp; + if ((sp = sp->next) == 0) + return 0; + } +} + +/* Return true if segment contains a segment link */ +static int has_segment_link(mstate m, msegmentptr ss) { + msegmentptr sp = &m->seg; + for (;;) { + if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) + return 1; + if ((sp = sp->next) == 0) + return 0; + } +} + +#ifndef MORECORE_CANNOT_TRIM +#define should_trim(M,s) ((s) > (M)->trim_check) +#else /* MORECORE_CANNOT_TRIM */ +#define should_trim(M,s) (0) +#endif /* MORECORE_CANNOT_TRIM */ + +/* + TOP_FOOT_SIZE is padding at the end of a segment, including space + that may be needed to place segment records and fenceposts when new + noncontiguous segments are added. +*/ +#define TOP_FOOT_SIZE\ + (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) + + +/* ------------------------------- Hooks -------------------------------- */ + +/* + PREACTION should be defined to return 0 on success, and nonzero on + failure. If you are not using locking, you can redefine these to do + anything you like. +*/ + +#if USE_LOCKS +#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) +#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } +#else /* USE_LOCKS */ + +#ifndef PREACTION +#define PREACTION(M) (0) +#endif /* PREACTION */ + +#ifndef POSTACTION +#define POSTACTION(M) +#endif /* POSTACTION */ + +#endif /* USE_LOCKS */ + +/* + CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. + USAGE_ERROR_ACTION is triggered on detected bad frees and + reallocs. The argument p is an address that might have triggered the + fault. It is ignored by the two predefined actions, but might be + useful in custom actions that try to help diagnose errors. +*/ + +#if PROCEED_ON_ERROR + +/* A count of the number of corruption errors causing resets */ +int malloc_corruption_error_count; + +/* default corruption action */ +static void reset_on_error(mstate m); + +#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m) +#define USAGE_ERROR_ACTION(m, p) + +#else /* PROCEED_ON_ERROR */ + +#ifndef CORRUPTION_ERROR_ACTION +#define CORRUPTION_ERROR_ACTION(m) ABORT +#endif /* CORRUPTION_ERROR_ACTION */ + +#ifndef USAGE_ERROR_ACTION +#define USAGE_ERROR_ACTION(m,p) ABORT +#endif /* USAGE_ERROR_ACTION */ + +#endif /* PROCEED_ON_ERROR */ + + +/* -------------------------- Debugging setup ---------------------------- */ + +#if ! DEBUG + +#define check_free_chunk(M,P) +#define check_inuse_chunk(M,P) +#define check_malloced_chunk(M,P,N) +#define check_mmapped_chunk(M,P) +#define check_malloc_state(M) +#define check_top_chunk(M,P) + +#else /* DEBUG */ +#define check_free_chunk(M,P) do_check_free_chunk(M,P) +#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P) +#define check_top_chunk(M,P) do_check_top_chunk(M,P) +#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) +#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P) +#define check_malloc_state(M) do_check_malloc_state(M) + +static void do_check_any_chunk(mstate m, mchunkptr p); +static void do_check_top_chunk(mstate m, mchunkptr p); +static void do_check_mmapped_chunk(mstate m, mchunkptr p); +static void do_check_inuse_chunk(mstate m, mchunkptr p); +static void do_check_free_chunk(mstate m, mchunkptr p); +static void do_check_malloced_chunk(mstate m, void* mem, size_t s); +static void do_check_tree(mstate m, tchunkptr t); +static void do_check_treebin(mstate m, bindex_t i); +static void do_check_smallbin(mstate m, bindex_t i); +static void do_check_malloc_state(mstate m); +static int bin_find(mstate m, mchunkptr x); +static size_t traverse_and_check(mstate m); +#endif /* DEBUG */ + +/* ---------------------------- Indexing Bins ---------------------------- */ + +#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) +#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT) +#define small_index2size(i) ((i) << SMALLBIN_SHIFT) +#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) + +/* addressing by index. See above about smallbin repositioning */ +#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) +#define treebin_at(M,i) (&((M)->treebins[i])) + +/* assign tree index for size S to variable I. Use x86 asm if possible */ +#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) +#define compute_tree_index(S, I)\ +{\ + unsigned int X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \ + I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ + }\ +} + +#elif defined (__INTEL_COMPILER) +#define compute_tree_index(S, I)\ +{\ + size_t X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int K = _bit_scan_reverse (X); \ + I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ + }\ +} + +#elif defined(_MSC_VER) && _MSC_VER>=1300 +#define compute_tree_index(S, I)\ +{\ + size_t X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int K;\ + _BitScanReverse((DWORD *) &K, (DWORD) X);\ + I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ + }\ +} + +#else /* GNUC */ +#define compute_tree_index(S, I)\ +{\ + size_t X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int Y = (unsigned int)X;\ + unsigned int N = ((Y - 0x100) >> 16) & 8;\ + unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ + N += K;\ + N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ + K = 14 - N + ((Y <<= K) >> 15);\ + I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ + }\ +} +#endif /* GNUC */ + +/* Bit representing maximum resolved size in a treebin at i */ +#define bit_for_tree_index(i) \ + (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) + +/* Shift placing maximum resolved bit in a treebin at i as sign bit */ +#define leftshift_for_tree_index(i) \ + ((i == NTREEBINS-1)? 0 : \ + ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) + +/* The size of the smallest chunk held in bin with index i */ +#define minsize_for_tree_index(i) \ + ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ + (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) + + +/* ------------------------ Operations on bin maps ----------------------- */ + +/* bit corresponding to given index */ +#define idx2bit(i) ((binmap_t)(1) << (i)) + +/* Mark/Clear bits with given index */ +#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) +#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) +#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) + +#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) +#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) +#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) + +/* isolate the least set bit of a bitmap */ +#define least_bit(x) ((x) & -(x)) + +/* mask with all bits to left of least bit of x on */ +#define left_bits(x) ((x<<1) | -(x<<1)) + +/* mask with all bits to left of or equal to least bit of x on */ +#define same_or_left_bits(x) ((x) | -(x)) + +/* index corresponding to given bit. Use x86 asm if possible */ + +#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) +#define compute_bit2idx(X, I)\ +{\ + unsigned int J;\ + J = __builtin_ctz(X); \ + I = (bindex_t)J;\ +} + +#elif defined (__INTEL_COMPILER) +#define compute_bit2idx(X, I)\ +{\ + unsigned int J;\ + J = _bit_scan_forward (X); \ + I = (bindex_t)J;\ +} + +#elif defined(_MSC_VER) && _MSC_VER>=1300 +#define compute_bit2idx(X, I)\ +{\ + unsigned int J;\ + _BitScanForward((DWORD *) &J, X);\ + I = (bindex_t)J;\ +} + +#elif USE_BUILTIN_FFS +#define compute_bit2idx(X, I) I = ffs(X)-1 + +#else +#define compute_bit2idx(X, I)\ +{\ + unsigned int Y = X - 1;\ + unsigned int K = Y >> (16-4) & 16;\ + unsigned int N = K; Y >>= K;\ + N += K = Y >> (8-3) & 8; Y >>= K;\ + N += K = Y >> (4-2) & 4; Y >>= K;\ + N += K = Y >> (2-1) & 2; Y >>= K;\ + N += K = Y >> (1-0) & 1; Y >>= K;\ + I = (bindex_t)(N + Y);\ +} +#endif /* GNUC */ + + +/* ----------------------- Runtime Check Support ------------------------- */ + +/* + For security, the main invariant is that malloc/free/etc never + writes to a static address other than malloc_state, unless static + malloc_state itself has been corrupted, which cannot occur via + malloc (because of these checks). In essence this means that we + believe all pointers, sizes, maps etc held in malloc_state, but + check all of those linked or offsetted from other embedded data + structures. These checks are interspersed with main code in a way + that tends to minimize their run-time cost. + + When FOOTERS is defined, in addition to range checking, we also + verify footer fields of inuse chunks, which can be used guarantee + that the mstate controlling malloc/free is intact. This is a + streamlined version of the approach described by William Robertson + et al in "Run-time Detection of Heap-based Overflows" LISA'03 + http://www.usenix.org/events/lisa03/tech/robertson.html The footer + of an inuse chunk holds the xor of its mstate and a random seed, + that is checked upon calls to free() and realloc(). This is + (probabalistically) unguessable from outside the program, but can be + computed by any code successfully malloc'ing any chunk, so does not + itself provide protection against code that has already broken + security through some other means. Unlike Robertson et al, we + always dynamically check addresses of all offset chunks (previous, + next, etc). This turns out to be cheaper than relying on hashes. +*/ + +#if !INSECURE +/* Check if address a is at least as high as any from MORECORE or MMAP */ +#define ok_address(M, a) ((char*)(a) >= (M)->least_addr) +/* Check if address of next chunk n is higher than base chunk p */ +#define ok_next(p, n) ((char*)(p) < (char*)(n)) +/* Check if p has inuse status */ +#define ok_inuse(p) is_inuse(p) +/* Check if p has its pinuse bit on */ +#define ok_pinuse(p) pinuse(p) + +#else /* !INSECURE */ +#define ok_address(M, a) (1) +#define ok_next(b, n) (1) +#define ok_inuse(p) (1) +#define ok_pinuse(p) (1) +#endif /* !INSECURE */ + +#if (FOOTERS && !INSECURE) +/* Check if (alleged) mstate m has expected magic field */ +#define ok_magic(M) ((M)->magic == mparams.magic) +#else /* (FOOTERS && !INSECURE) */ +#define ok_magic(M) (1) +#endif /* (FOOTERS && !INSECURE) */ + +/* In gcc, use __builtin_expect to minimize impact of checks */ +#if !INSECURE +#if defined(__GNUC__) && __GNUC__ >= 3 +#define RTCHECK(e) __builtin_expect(e, 1) +#else /* GNUC */ +#define RTCHECK(e) (e) +#endif /* GNUC */ +#else /* !INSECURE */ +#define RTCHECK(e) (1) +#endif /* !INSECURE */ + +/* macros to set up inuse chunks with or without footers */ + +#if !FOOTERS + +#define mark_inuse_foot(M,p,s) + +/* Macros for setting head/foot of non-mmapped chunks */ + +/* Set cinuse bit and pinuse bit of next chunk */ +#define set_inuse(M,p,s)\ + ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ + ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) + +/* Set cinuse and pinuse of this chunk and pinuse of next chunk */ +#define set_inuse_and_pinuse(M,p,s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) + +/* Set size, cinuse and pinuse bit of this chunk */ +#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) + +#else /* FOOTERS */ + +/* Set foot of inuse chunk to be xor of mstate and seed */ +#define mark_inuse_foot(M,p,s)\ + (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) + +#define get_mstate_for(p)\ + ((mstate)(((mchunkptr)((char*)(p) +\ + (chunksize(p))))->prev_foot ^ mparams.magic)) + +#define set_inuse(M,p,s)\ + ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ + (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ + mark_inuse_foot(M,p,s)) + +#define set_inuse_and_pinuse(M,p,s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ + mark_inuse_foot(M,p,s)) + +#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + mark_inuse_foot(M, p, s)) + +#endif /* !FOOTERS */ + +/* ---------------------------- setting mparams -------------------------- */ + +#if LOCK_AT_FORK +static void pre_fork(void) { ACQUIRE_LOCK(&(gm)->mutex); } +static void post_fork_parent(void) { RELEASE_LOCK(&(gm)->mutex); } +static void post_fork_child(void) { INITIAL_LOCK(&(gm)->mutex); } +#endif /* LOCK_AT_FORK */ + +/* Initialize mparams */ +static int init_mparams(void) { +#ifdef NEED_GLOBAL_LOCK_INIT + if (malloc_global_mutex_status <= 0) + init_malloc_global_mutex(); +#endif + + ACQUIRE_MALLOC_GLOBAL_LOCK(); + if (mparams.magic == 0) { + size_t magic; + size_t psize; + size_t gsize; + +#ifndef WIN32 + psize = malloc_getpagesize; + gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize); +#else /* WIN32 */ + { + SYSTEM_INFO system_info; + GetSystemInfo(&system_info); + psize = system_info.dwPageSize; + gsize = ((DEFAULT_GRANULARITY != 0)? + DEFAULT_GRANULARITY : system_info.dwAllocationGranularity); + } +#endif /* WIN32 */ + + /* Sanity-check configuration: + size_t must be unsigned and as wide as pointer type. + ints must be at least 4 bytes. + alignment must be at least 8. + Alignment, min chunk size, and page size must all be powers of 2. + */ + if ((sizeof(size_t) != sizeof(char*)) || + (MAX_SIZE_T < MIN_CHUNK_SIZE) || + (sizeof(int) < 4) || + (MALLOC_ALIGNMENT < (size_t)8U) || + ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || + ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) || + ((gsize & (gsize-SIZE_T_ONE)) != 0) || + ((psize & (psize-SIZE_T_ONE)) != 0)) + ABORT; + mparams.granularity = gsize; + mparams.page_size = psize; + mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; + mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; +#if MORECORE_CONTIGUOUS + mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; +#else /* MORECORE_CONTIGUOUS */ + mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; +#endif /* MORECORE_CONTIGUOUS */ + +#if !ONLY_MSPACES + /* Set up lock for main malloc area */ + gm->mflags = mparams.default_mflags; + (void)INITIAL_LOCK(&gm->mutex); +#endif +#if LOCK_AT_FORK + pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child); +#endif + + { +#if USE_DEV_RANDOM + int fd; + unsigned char buf[sizeof(size_t)]; + /* Try to use /dev/urandom, else fall back on using time */ + if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && + read(fd, buf, sizeof(buf)) == sizeof(buf)) { + magic = *((size_t *) buf); + close(fd); + } + else +#endif /* USE_DEV_RANDOM */ +#ifdef WIN32 + magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U); +#elif defined(LACKS_TIME_H) + magic = (size_t)&magic ^ (size_t)0x55555555U; +#else + magic = (size_t)(time(0) ^ (size_t)0x55555555U); +#endif + magic |= (size_t)8U; /* ensure nonzero */ + magic &= ~(size_t)7U; /* improve chances of fault for bad values */ + /* Until memory modes commonly available, use volatile-write */ + (*(volatile size_t *)(&(mparams.magic))) = magic; + } + } + + RELEASE_MALLOC_GLOBAL_LOCK(); + return 1; +} + +/* support for mallopt */ +static int change_mparam(int param_number, int value) { + size_t val; + ensure_initialization(); + val = (value == -1)? MAX_SIZE_T : (size_t)value; + switch(param_number) { + case M_TRIM_THRESHOLD: + mparams.trim_threshold = val; + return 1; + case M_GRANULARITY: + if (val >= mparams.page_size && ((val & (val-1)) == 0)) { + mparams.granularity = val; + return 1; + } + else + return 0; + case M_MMAP_THRESHOLD: + mparams.mmap_threshold = val; + return 1; + default: + return 0; + } +} + +#if DEBUG +/* ------------------------- Debugging Support --------------------------- */ + +/* Check properties of any chunk, whether free, inuse, mmapped etc */ +static void do_check_any_chunk(mstate m, mchunkptr p) { + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); +} + +/* Check properties of top chunk */ +static void do_check_top_chunk(mstate m, mchunkptr p) { + msegmentptr sp = segment_holding(m, (char*)p); + size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */ + assert(sp != 0); + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); + assert(sz == m->topsize); + assert(sz > 0); + assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); + assert(pinuse(p)); + assert(!pinuse(chunk_plus_offset(p, sz))); +} + +/* Check properties of (inuse) mmapped chunks */ +static void do_check_mmapped_chunk(mstate m, mchunkptr p) { + size_t sz = chunksize(p); + size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD); + assert(is_mmapped(p)); + assert(use_mmap(m)); + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); + assert(!is_small(sz)); + assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); + assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); + assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); +} + +/* Check properties of inuse chunks */ +static void do_check_inuse_chunk(mstate m, mchunkptr p) { + do_check_any_chunk(m, p); + assert(is_inuse(p)); + assert(next_pinuse(p)); + /* If not pinuse and not mmapped, previous chunk has OK offset */ + assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); + if (is_mmapped(p)) + do_check_mmapped_chunk(m, p); +} + +/* Check properties of free chunks */ +static void do_check_free_chunk(mstate m, mchunkptr p) { + size_t sz = chunksize(p); + mchunkptr next = chunk_plus_offset(p, sz); + do_check_any_chunk(m, p); + assert(!is_inuse(p)); + assert(!next_pinuse(p)); + assert (!is_mmapped(p)); + if (p != m->dv && p != m->top) { + if (sz >= MIN_CHUNK_SIZE) { + assert((sz & CHUNK_ALIGN_MASK) == 0); + assert(is_aligned(chunk2mem(p))); + assert(next->prev_foot == sz); + assert(pinuse(p)); + assert (next == m->top || is_inuse(next)); + assert(p->fd->bk == p); + assert(p->bk->fd == p); + } + else /* markers are always of size SIZE_T_SIZE */ + assert(sz == SIZE_T_SIZE); + } +} + +/* Check properties of malloced chunks at the point they are malloced */ +static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + size_t sz = p->head & ~INUSE_BITS; + do_check_inuse_chunk(m, p); + assert((sz & CHUNK_ALIGN_MASK) == 0); + assert(sz >= MIN_CHUNK_SIZE); + assert(sz >= s); + /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ + assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); + } +} + +/* Check a tree and its subtrees. */ +static void do_check_tree(mstate m, tchunkptr t) { + tchunkptr head = 0; + tchunkptr u = t; + bindex_t tindex = t->index; + size_t tsize = chunksize(t); + bindex_t idx; + compute_tree_index(tsize, idx); + assert(tindex == idx); + assert(tsize >= MIN_LARGE_SIZE); + assert(tsize >= minsize_for_tree_index(idx)); + assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); + + do { /* traverse through chain of same-sized nodes */ + do_check_any_chunk(m, ((mchunkptr)u)); + assert(u->index == tindex); + assert(chunksize(u) == tsize); + assert(!is_inuse(u)); + assert(!next_pinuse(u)); + assert(u->fd->bk == u); + assert(u->bk->fd == u); + if (u->parent == 0) { + assert(u->child[0] == 0); + assert(u->child[1] == 0); + } + else { + assert(head == 0); /* only one node on chain has parent */ + head = u; + assert(u->parent != u); + assert (u->parent->child[0] == u || + u->parent->child[1] == u || + *((tbinptr*)(u->parent)) == u); + if (u->child[0] != 0) { + assert(u->child[0]->parent == u); + assert(u->child[0] != u); + do_check_tree(m, u->child[0]); + } + if (u->child[1] != 0) { + assert(u->child[1]->parent == u); + assert(u->child[1] != u); + do_check_tree(m, u->child[1]); + } + if (u->child[0] != 0 && u->child[1] != 0) { + assert(chunksize(u->child[0]) < chunksize(u->child[1])); + } + } + u = u->fd; + } while (u != t); + assert(head != 0); +} + +/* Check all the chunks in a treebin. */ +static void do_check_treebin(mstate m, bindex_t i) { + tbinptr* tb = treebin_at(m, i); + tchunkptr t = *tb; + int empty = (m->treemap & (1U << i)) == 0; + if (t == 0) + assert(empty); + if (!empty) + do_check_tree(m, t); +} + +/* Check all the chunks in a smallbin. */ +static void do_check_smallbin(mstate m, bindex_t i) { + sbinptr b = smallbin_at(m, i); + mchunkptr p = b->bk; + unsigned int empty = (m->smallmap & (1U << i)) == 0; + if (p == b) + assert(empty); + if (!empty) { + for (; p != b; p = p->bk) { + size_t size = chunksize(p); + mchunkptr q; + /* each chunk claims to be free */ + do_check_free_chunk(m, p); + /* chunk belongs in bin */ + assert(small_index(size) == i); + assert(p->bk == b || chunksize(p->bk) == chunksize(p)); + /* chunk is followed by an inuse chunk */ + q = next_chunk(p); + if (q->head != FENCEPOST_HEAD) + do_check_inuse_chunk(m, q); + } + } +} + +/* Find x in a bin. Used in other check functions. */ +static int bin_find(mstate m, mchunkptr x) { + size_t size = chunksize(x); + if (is_small(size)) { + bindex_t sidx = small_index(size); + sbinptr b = smallbin_at(m, sidx); + if (smallmap_is_marked(m, sidx)) { + mchunkptr p = b; + do { + if (p == x) + return 1; + } while ((p = p->fd) != b); + } + } + else { + bindex_t tidx; + compute_tree_index(size, tidx); + if (treemap_is_marked(m, tidx)) { + tchunkptr t = *treebin_at(m, tidx); + size_t sizebits = size << leftshift_for_tree_index(tidx); + while (t != 0 && chunksize(t) != size) { + t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; + sizebits <<= 1; + } + if (t != 0) { + tchunkptr u = t; + do { + if (u == (tchunkptr)x) + return 1; + } while ((u = u->fd) != t); + } + } + } + return 0; +} + +/* Traverse each chunk and check it; return total */ +static size_t traverse_and_check(mstate m) { + size_t sum = 0; + if (is_initialized(m)) { + msegmentptr s = &m->seg; + sum += m->topsize + TOP_FOOT_SIZE; + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + mchunkptr lastq = 0; + assert(pinuse(q)); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + sum += chunksize(q); + if (is_inuse(q)) { + assert(!bin_find(m, q)); + do_check_inuse_chunk(m, q); + } + else { + assert(q == m->dv || bin_find(m, q)); + assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */ + do_check_free_chunk(m, q); + } + lastq = q; + q = next_chunk(q); + } + s = s->next; + } + } + return sum; +} + + +/* Check all properties of malloc_state. */ +static void do_check_malloc_state(mstate m) { + bindex_t i; + size_t total; + /* check bins */ + for (i = 0; i < NSMALLBINS; ++i) + do_check_smallbin(m, i); + for (i = 0; i < NTREEBINS; ++i) + do_check_treebin(m, i); + + if (m->dvsize != 0) { /* check dv chunk */ + do_check_any_chunk(m, m->dv); + assert(m->dvsize == chunksize(m->dv)); + assert(m->dvsize >= MIN_CHUNK_SIZE); + assert(bin_find(m, m->dv) == 0); + } + + if (m->top != 0) { /* check top chunk */ + do_check_top_chunk(m, m->top); + /*assert(m->topsize == chunksize(m->top)); redundant */ + assert(m->topsize > 0); + assert(bin_find(m, m->top) == 0); + } + + total = traverse_and_check(m); + assert(total <= m->footprint); + assert(m->footprint <= m->max_footprint); +} +#endif /* DEBUG */ + +/* ----------------------------- statistics ------------------------------ */ + +#if !NO_MALLINFO +static struct mallinfo internal_mallinfo(mstate m) { + struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + ensure_initialization(); + if (!PREACTION(m)) { + check_malloc_state(m); + if (is_initialized(m)) { + size_t nfree = SIZE_T_ONE; /* top always free */ + size_t mfree = m->topsize + TOP_FOOT_SIZE; + size_t sum = mfree; + msegmentptr s = &m->seg; + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + size_t sz = chunksize(q); + sum += sz; + if (!is_inuse(q)) { + mfree += sz; + ++nfree; + } + q = next_chunk(q); + } + s = s->next; + } + + nm.arena = sum; + nm.ordblks = nfree; + nm.hblkhd = m->footprint - sum; + nm.usmblks = m->max_footprint; + nm.uordblks = m->footprint - mfree; + nm.fordblks = mfree; + nm.keepcost = m->topsize; + } + + POSTACTION(m); + } + return nm; +} +#endif /* !NO_MALLINFO */ + +#if !NO_MALLOC_STATS +static void internal_malloc_stats(mstate m) { + ensure_initialization(); + if (!PREACTION(m)) { + size_t maxfp = 0; + size_t fp = 0; + size_t used = 0; + check_malloc_state(m); + if (is_initialized(m)) { + msegmentptr s = &m->seg; + maxfp = m->max_footprint; + fp = m->footprint; + used = fp - (m->topsize + TOP_FOOT_SIZE); + + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + if (!is_inuse(q)) + used -= chunksize(q); + q = next_chunk(q); + } + s = s->next; + } + } + POSTACTION(m); /* drop lock */ + fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); + fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp)); + fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used)); + } +} +#endif /* NO_MALLOC_STATS */ + +/* ----------------------- Operations on smallbins ----------------------- */ + +/* + Various forms of linking and unlinking are defined as macros. Even + the ones for trees, which are very long but have very short typical + paths. This is ugly but reduces reliance on inlining support of + compilers. +*/ + +/* Link a free chunk into a smallbin */ +#define insert_small_chunk(M, P, S) {\ + bindex_t I = small_index(S);\ + mchunkptr B = smallbin_at(M, I);\ + mchunkptr F = B;\ + assert(S >= MIN_CHUNK_SIZE);\ + if (!smallmap_is_marked(M, I))\ + mark_smallmap(M, I);\ + else if (RTCHECK(ok_address(M, B->fd)))\ + F = B->fd;\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + B->fd = P;\ + F->bk = P;\ + P->fd = F;\ + P->bk = B;\ +} + +/* Unlink a chunk from a smallbin */ +#define unlink_small_chunk(M, P, S) {\ + mchunkptr F = P->fd;\ + mchunkptr B = P->bk;\ + bindex_t I = small_index(S);\ + assert(P != B);\ + assert(P != F);\ + assert(chunksize(P) == small_index2size(I));\ + if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \ + if (B == F) {\ + clear_smallmap(M, I);\ + }\ + else if (RTCHECK(B == smallbin_at(M,I) ||\ + (ok_address(M, B) && B->fd == P))) {\ + F->bk = B;\ + B->fd = F;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ +} + +/* Unlink the first chunk from a smallbin */ +#define unlink_first_small_chunk(M, B, P, I) {\ + mchunkptr F = P->fd;\ + assert(P != B);\ + assert(P != F);\ + assert(chunksize(P) == small_index2size(I));\ + if (B == F) {\ + clear_smallmap(M, I);\ + }\ + else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\ + F->bk = B;\ + B->fd = F;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ +} + +/* Replace dv node, binning the old one */ +/* Used only when dvsize known to be small */ +#define replace_dv(M, P, S) {\ + size_t DVS = M->dvsize;\ + assert(is_small(DVS));\ + if (DVS != 0) {\ + mchunkptr DV = M->dv;\ + insert_small_chunk(M, DV, DVS);\ + }\ + M->dvsize = S;\ + M->dv = P;\ +} + +/* ------------------------- Operations on trees ------------------------- */ + +/* Insert chunk into tree */ +#define insert_large_chunk(M, X, S) {\ + tbinptr* H;\ + bindex_t I;\ + compute_tree_index(S, I);\ + H = treebin_at(M, I);\ + X->index = I;\ + X->child[0] = X->child[1] = 0;\ + if (!treemap_is_marked(M, I)) {\ + mark_treemap(M, I);\ + *H = X;\ + X->parent = (tchunkptr)H;\ + X->fd = X->bk = X;\ + }\ + else {\ + tchunkptr T = *H;\ + size_t K = S << leftshift_for_tree_index(I);\ + for (;;) {\ + if (chunksize(T) != S) {\ + tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ + K <<= 1;\ + if (*C != 0)\ + T = *C;\ + else if (RTCHECK(ok_address(M, C))) {\ + *C = X;\ + X->parent = T;\ + X->fd = X->bk = X;\ + break;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + break;\ + }\ + }\ + else {\ + tchunkptr F = T->fd;\ + if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ + T->fd = F->bk = X;\ + X->fd = F;\ + X->bk = T;\ + X->parent = 0;\ + break;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + break;\ + }\ + }\ + }\ + }\ +} + +/* + Unlink steps: + + 1. If x is a chained node, unlink it from its same-sized fd/bk links + and choose its bk node as its replacement. + 2. If x was the last node of its size, but not a leaf node, it must + be replaced with a leaf node (not merely one with an open left or + right), to make sure that lefts and rights of descendents + correspond properly to bit masks. We use the rightmost descendent + of x. We could use any other leaf, but this is easy to locate and + tends to counteract removal of leftmosts elsewhere, and so keeps + paths shorter than minimally guaranteed. This doesn't loop much + because on average a node in a tree is near the bottom. + 3. If x is the base of a chain (i.e., has parent links) relink + x's parent and children to x's replacement (or null if none). +*/ + +#define unlink_large_chunk(M, X) {\ + tchunkptr XP = X->parent;\ + tchunkptr R;\ + if (X->bk != X) {\ + tchunkptr F = X->fd;\ + R = X->bk;\ + if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\ + F->bk = R;\ + R->fd = F;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + else {\ + tchunkptr* RP;\ + if (((R = *(RP = &(X->child[1]))) != 0) ||\ + ((R = *(RP = &(X->child[0]))) != 0)) {\ + tchunkptr* CP;\ + while ((*(CP = &(R->child[1])) != 0) ||\ + (*(CP = &(R->child[0])) != 0)) {\ + R = *(RP = CP);\ + }\ + if (RTCHECK(ok_address(M, RP)))\ + *RP = 0;\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + }\ + if (XP != 0) {\ + tbinptr* H = treebin_at(M, X->index);\ + if (X == *H) {\ + if ((*H = R) == 0) \ + clear_treemap(M, X->index);\ + }\ + else if (RTCHECK(ok_address(M, XP))) {\ + if (XP->child[0] == X) \ + XP->child[0] = R;\ + else \ + XP->child[1] = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + if (R != 0) {\ + if (RTCHECK(ok_address(M, R))) {\ + tchunkptr C0, C1;\ + R->parent = XP;\ + if ((C0 = X->child[0]) != 0) {\ + if (RTCHECK(ok_address(M, C0))) {\ + R->child[0] = C0;\ + C0->parent = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + if ((C1 = X->child[1]) != 0) {\ + if (RTCHECK(ok_address(M, C1))) {\ + R->child[1] = C1;\ + C1->parent = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ +} + +/* Relays to large vs small bin operations */ + +#define insert_chunk(M, P, S)\ + if (is_small(S)) insert_small_chunk(M, P, S)\ + else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } + +#define unlink_chunk(M, P, S)\ + if (is_small(S)) unlink_small_chunk(M, P, S)\ + else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } + + +/* Relays to internal calls to malloc/free from realloc, memalign etc */ + +#if ONLY_MSPACES +#define internal_malloc(m, b) mspace_malloc(m, b) +#define internal_free(m, mem) mspace_free(m,mem); +#else /* ONLY_MSPACES */ +#if MSPACES +#define internal_malloc(m, b)\ + ((m == gm)? dlmalloc(b) : mspace_malloc(m, b)) +#define internal_free(m, mem)\ + if (m == gm) dlfree(mem); else mspace_free(m,mem); +#else /* MSPACES */ +#define internal_malloc(m, b) dlmalloc(b) +#define internal_free(m, mem) dlfree(mem) +#endif /* MSPACES */ +#endif /* ONLY_MSPACES */ + +/* ----------------------- Direct-mmapping chunks ----------------------- */ + +/* + Directly mmapped chunks are set up with an offset to the start of + the mmapped region stored in the prev_foot field of the chunk. This + allows reconstruction of the required argument to MUNMAP when freed, + and also allows adjustment of the returned chunk to meet alignment + requirements (especially in memalign). +*/ + +/* Malloc using mmap */ +static void* mmap_alloc(mstate m, size_t nb) { + size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + if (m->footprint_limit != 0) { + size_t fp = m->footprint + mmsize; + if (fp <= m->footprint || fp > m->footprint_limit) + return 0; + } + if (mmsize > nb) { /* Check for wrap around 0 */ + char* mm = (char*)(CALL_DIRECT_MMAP(mmsize)); + if (mm != CMFAIL) { + size_t offset = align_offset(chunk2mem(mm)); + size_t psize = mmsize - offset - MMAP_FOOT_PAD; + mchunkptr p = (mchunkptr)(mm + offset); + p->prev_foot = offset; + p->head = psize; + mark_inuse_foot(m, p, psize); + chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; + chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; + + if (m->least_addr == 0 || mm < m->least_addr) + m->least_addr = mm; + if ((m->footprint += mmsize) > m->max_footprint) + m->max_footprint = m->footprint; + assert(is_aligned(chunk2mem(p))); + check_mmapped_chunk(m, p); + return chunk2mem(p); + } + } + return 0; +} + +/* Realloc using mmap */ +static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags) { + size_t oldsize = chunksize(oldp); + (void)flags; /* placate people compiling -Wunused */ + if (is_small(nb)) /* Can't shrink mmap regions below small size */ + return 0; + /* Keep old chunk if big enough but not too big */ + if (oldsize >= nb + SIZE_T_SIZE && + (oldsize - nb) <= (mparams.granularity << 1)) + return oldp; + else { + size_t offset = oldp->prev_foot; + size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; + size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + char* cp = (char*)CALL_MREMAP((char*)oldp - offset, + oldmmsize, newmmsize, flags); + if (cp != CMFAIL) { + mchunkptr newp = (mchunkptr)(cp + offset); + size_t psize = newmmsize - offset - MMAP_FOOT_PAD; + newp->head = psize; + mark_inuse_foot(m, newp, psize); + chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; + chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; + + if (cp < m->least_addr) + m->least_addr = cp; + if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) + m->max_footprint = m->footprint; + check_mmapped_chunk(m, newp); + return newp; + } + } + return 0; +} + + +/* -------------------------- mspace management -------------------------- */ + +/* Initialize top chunk and its size */ +static void init_top(mstate m, mchunkptr p, size_t psize) { + /* Ensure alignment */ + size_t offset = align_offset(chunk2mem(p)); + p = (mchunkptr)((char*)p + offset); + psize -= offset; + + m->top = p; + m->topsize = psize; + p->head = psize | PINUSE_BIT; + /* set size of fake trailing chunk holding overhead space only once */ + chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; + m->trim_check = mparams.trim_threshold; /* reset on each update */ +} + +/* Initialize bins for a new mstate that is otherwise zeroed out */ +static void init_bins(mstate m) { + /* Establish circular links for smallbins */ + bindex_t i; + for (i = 0; i < NSMALLBINS; ++i) { + sbinptr bin = smallbin_at(m,i); + bin->fd = bin->bk = bin; + } +} + +#if PROCEED_ON_ERROR + +/* default corruption action */ +static void reset_on_error(mstate m) { + int i; + ++malloc_corruption_error_count; + /* Reinitialize fields to forget about all memory */ + m->smallmap = m->treemap = 0; + m->dvsize = m->topsize = 0; + m->seg.base = 0; + m->seg.size = 0; + m->seg.next = 0; + m->top = m->dv = 0; + for (i = 0; i < NTREEBINS; ++i) + *treebin_at(m, i) = 0; + init_bins(m); +} +#endif /* PROCEED_ON_ERROR */ + +/* Allocate chunk and prepend remainder with chunk in successor base. */ +static void* prepend_alloc(mstate m, char* newbase, char* oldbase, + size_t nb) { + mchunkptr p = align_as_chunk(newbase); + mchunkptr oldfirst = align_as_chunk(oldbase); + size_t psize = (char*)oldfirst - (char*)p; + mchunkptr q = chunk_plus_offset(p, nb); + size_t qsize = psize - nb; + set_size_and_pinuse_of_inuse_chunk(m, p, nb); + + assert((char*)oldfirst > (char*)q); + assert(pinuse(oldfirst)); + assert(qsize >= MIN_CHUNK_SIZE); + + /* consolidate remainder with first chunk of old base */ + if (oldfirst == m->top) { + size_t tsize = m->topsize += qsize; + m->top = q; + q->head = tsize | PINUSE_BIT; + check_top_chunk(m, q); + } + else if (oldfirst == m->dv) { + size_t dsize = m->dvsize += qsize; + m->dv = q; + set_size_and_pinuse_of_free_chunk(q, dsize); + } + else { + if (!is_inuse(oldfirst)) { + size_t nsize = chunksize(oldfirst); + unlink_chunk(m, oldfirst, nsize); + oldfirst = chunk_plus_offset(oldfirst, nsize); + qsize += nsize; + } + set_free_with_pinuse(q, qsize, oldfirst); + insert_chunk(m, q, qsize); + check_free_chunk(m, q); + } + + check_malloced_chunk(m, chunk2mem(p), nb); + return chunk2mem(p); +} + +/* Add a segment to hold a new noncontiguous region */ +static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { + /* Determine locations and sizes of segment, fenceposts, old top */ + char* old_top = (char*)m->top; + msegmentptr oldsp = segment_holding(m, old_top); + char* old_end = oldsp->base + oldsp->size; + size_t ssize = pad_request(sizeof(struct malloc_segment)); + char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + size_t offset = align_offset(chunk2mem(rawsp)); + char* asp = rawsp + offset; + char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; + mchunkptr sp = (mchunkptr)csp; + msegmentptr ss = (msegmentptr)(chunk2mem(sp)); + mchunkptr tnext = chunk_plus_offset(sp, ssize); + mchunkptr p = tnext; + int nfences = 0; + + /* reset top to new space */ + init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); + + /* Set up segment record */ + assert(is_aligned(ss)); + set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); + *ss = m->seg; /* Push current record */ + m->seg.base = tbase; + m->seg.size = tsize; + m->seg.sflags = mmapped; + m->seg.next = ss; + + /* Insert trailing fenceposts */ + for (;;) { + mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); + p->head = FENCEPOST_HEAD; + ++nfences; + if ((char*)(&(nextp->head)) < old_end) + p = nextp; + else + break; + } + assert(nfences >= 2); + + /* Insert the rest of old top into a bin as an ordinary free chunk */ + if (csp != old_top) { + mchunkptr q = (mchunkptr)old_top; + size_t psize = csp - old_top; + mchunkptr tn = chunk_plus_offset(q, psize); + set_free_with_pinuse(q, psize, tn); + insert_chunk(m, q, psize); + } + + check_top_chunk(m, m->top); +} + +/* -------------------------- System allocation -------------------------- */ + +/* Get memory from system using MORECORE or MMAP */ +static void* sys_alloc(mstate m, size_t nb) { + char* tbase = CMFAIL; + size_t tsize = 0; + flag_t mmap_flag = 0; + size_t asize; /* allocation size */ + + ensure_initialization(); + + /* Directly map large chunks, but only if already initialized */ + if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) { + void* mem = mmap_alloc(m, nb); + if (mem != 0) + return mem; + } + + asize = granularity_align(nb + SYS_ALLOC_PADDING); + if (asize <= nb) + return 0; /* wraparound */ + if (m->footprint_limit != 0) { + size_t fp = m->footprint + asize; + if (fp <= m->footprint || fp > m->footprint_limit) + return 0; + } + + /* + Try getting memory in any of three ways (in most-preferred to + least-preferred order): + 1. A call to MORECORE that can normally contiguously extend memory. + (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or + or main space is mmapped or a previous contiguous call failed) + 2. A call to MMAP new space (disabled if not HAVE_MMAP). + Note that under the default settings, if MORECORE is unable to + fulfill a request, and HAVE_MMAP is true, then mmap is + used as a noncontiguous system allocator. This is a useful backup + strategy for systems with holes in address spaces -- in this case + sbrk cannot contiguously expand the heap, but mmap may be able to + find space. + 3. A call to MORECORE that cannot usually contiguously extend memory. + (disabled if not HAVE_MORECORE) + + In all cases, we need to request enough bytes from system to ensure + we can malloc nb bytes upon success, so pad with enough space for + top_foot, plus alignment-pad to make sure we don't lose bytes if + not on boundary, and round this up to a granularity unit. + */ + + if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { + char* br = CMFAIL; + size_t ssize = asize; /* sbrk call size */ + msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); + ACQUIRE_MALLOC_GLOBAL_LOCK(); + + if (ss == 0) { /* First time through or recovery */ + char* base = (char*)CALL_MORECORE(0); + if (base != CMFAIL) { + size_t fp; + /* Adjust to end on a page boundary */ + if (!is_page_aligned(base)) + ssize += (page_align((size_t)base) - (size_t)base); + fp = m->footprint + ssize; /* recheck limits */ + if (ssize > nb && ssize < HALF_MAX_SIZE_T && + (m->footprint_limit == 0 || + (fp > m->footprint && fp <= m->footprint_limit)) && + (br = (char*)(CALL_MORECORE(ssize))) == base) { + tbase = base; + tsize = ssize; + } + } + } + else { + /* Subtract out existing available top space from MORECORE request. */ + ssize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING); + /* Use mem here only if it did continuously extend old space */ + if (ssize < HALF_MAX_SIZE_T && + (br = (char*)(CALL_MORECORE(ssize))) == ss->base+ss->size) { + tbase = br; + tsize = ssize; + } + } + + if (tbase == CMFAIL) { /* Cope with partial failure */ + if (br != CMFAIL) { /* Try to use/extend the space we did get */ + if (ssize < HALF_MAX_SIZE_T && + ssize < nb + SYS_ALLOC_PADDING) { + size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - ssize); + if (esize < HALF_MAX_SIZE_T) { + char* end = (char*)CALL_MORECORE(esize); + if (end != CMFAIL) + ssize += esize; + else { /* Can't use; try to release */ + (void) CALL_MORECORE(-ssize); + br = CMFAIL; + } + } + } + } + if (br != CMFAIL) { /* Use the space we did get */ + tbase = br; + tsize = ssize; + } + else + disable_contiguous(m); /* Don't try contiguous path in the future */ + } + + RELEASE_MALLOC_GLOBAL_LOCK(); + } + + if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */ + char* mp = (char*)(CALL_MMAP(asize)); + if (mp != CMFAIL) { + tbase = mp; + tsize = asize; + mmap_flag = USE_MMAP_BIT; + } + } + + if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ + if (asize < HALF_MAX_SIZE_T) { + char* br = CMFAIL; + char* end = CMFAIL; + ACQUIRE_MALLOC_GLOBAL_LOCK(); + br = (char*)(CALL_MORECORE(asize)); + end = (char*)(CALL_MORECORE(0)); + RELEASE_MALLOC_GLOBAL_LOCK(); + if (br != CMFAIL && end != CMFAIL && br < end) { + size_t ssize = end - br; + if (ssize > nb + TOP_FOOT_SIZE) { + tbase = br; + tsize = ssize; + } + } + } + } + + if (tbase != CMFAIL) { + + if ((m->footprint += tsize) > m->max_footprint) + m->max_footprint = m->footprint; + + if (!is_initialized(m)) { /* first-time initialization */ + if (m->least_addr == 0 || tbase < m->least_addr) + m->least_addr = tbase; + m->seg.base = tbase; + m->seg.size = tsize; + m->seg.sflags = mmap_flag; + m->magic = mparams.magic; + m->release_checks = MAX_RELEASE_CHECK_RATE; + init_bins(m); +#if !ONLY_MSPACES + if (is_global(m)) + init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); + else +#endif + { + /* Offset top by embedded malloc_state */ + mchunkptr mn = next_chunk(mem2chunk(m)); + init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); + } + } + + else { + /* Try to merge with an existing segment */ + msegmentptr sp = &m->seg; + /* Only consider most recent segment if traversal suppressed */ + while (sp != 0 && tbase != sp->base + sp->size) + sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; + if (sp != 0 && + !is_extern_segment(sp) && + (sp->sflags & USE_MMAP_BIT) == mmap_flag && + segment_holds(sp, m->top)) { /* append */ + sp->size += tsize; + init_top(m, m->top, m->topsize + tsize); + } + else { + if (tbase < m->least_addr) + m->least_addr = tbase; + sp = &m->seg; + while (sp != 0 && sp->base != tbase + tsize) + sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; + if (sp != 0 && + !is_extern_segment(sp) && + (sp->sflags & USE_MMAP_BIT) == mmap_flag) { + char* oldbase = sp->base; + sp->base = tbase; + sp->size += tsize; + return prepend_alloc(m, tbase, oldbase, nb); + } + else + add_segment(m, tbase, tsize, mmap_flag); + } + } + + if (nb < m->topsize) { /* Allocate from new or extended top space */ + size_t rsize = m->topsize -= nb; + mchunkptr p = m->top; + mchunkptr r = m->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(m, p, nb); + check_top_chunk(m, m->top); + check_malloced_chunk(m, chunk2mem(p), nb); + return chunk2mem(p); + } + } + + MALLOC_FAILURE_ACTION; + return 0; +} + +/* ----------------------- system deallocation -------------------------- */ + +/* Unmap and unlink any mmapped segments that don't contain used chunks */ +static size_t release_unused_segments(mstate m) { + size_t released = 0; + int nsegs = 0; + msegmentptr pred = &m->seg; + msegmentptr sp = pred->next; + while (sp != 0) { + char* base = sp->base; + size_t size = sp->size; + msegmentptr next = sp->next; + ++nsegs; + if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { + mchunkptr p = align_as_chunk(base); + size_t psize = chunksize(p); + /* Can unmap if first chunk holds entire segment and not pinned */ + if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { + tchunkptr tp = (tchunkptr)p; + assert(segment_holds(sp, (char*)sp)); + if (p == m->dv) { + m->dv = 0; + m->dvsize = 0; + } + else { + unlink_large_chunk(m, tp); + } + if (CALL_MUNMAP(base, size) == 0) { + released += size; + m->footprint -= size; + /* unlink obsoleted record */ + sp = pred; + sp->next = next; + } + else { /* back out if cannot unmap */ + insert_large_chunk(m, tp, psize); + } + } + } + if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */ + break; + pred = sp; + sp = next; + } + /* Reset check counter */ + m->release_checks = (((size_t) nsegs > (size_t) MAX_RELEASE_CHECK_RATE)? + (size_t) nsegs : (size_t) MAX_RELEASE_CHECK_RATE); + return released; +} + +static int sys_trim(mstate m, size_t pad) { + size_t released = 0; + ensure_initialization(); + if (pad < MAX_REQUEST && is_initialized(m)) { + pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ + + if (m->topsize > pad) { + /* Shrink top space in granularity-size units, keeping at least one */ + size_t unit = mparams.granularity; + size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - + SIZE_T_ONE) * unit; + msegmentptr sp = segment_holding(m, (char*)m->top); + + if (!is_extern_segment(sp)) { + if (is_mmapped_segment(sp)) { + if (HAVE_MMAP && + sp->size >= extra && + !has_segment_link(m, sp)) { /* can't shrink if pinned */ + size_t newsize = sp->size - extra; + (void)newsize; /* placate people compiling -Wunused-variable */ + /* Prefer mremap, fall back to munmap */ + if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || + (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { + released = extra; + } + } + } + else if (HAVE_MORECORE) { + if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ + extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; + ACQUIRE_MALLOC_GLOBAL_LOCK(); + { + /* Make sure end of memory is where we last set it. */ + char* old_br = (char*)(CALL_MORECORE(0)); + if (old_br == sp->base + sp->size) { + char* rel_br = (char*)(CALL_MORECORE(-extra)); + char* new_br = (char*)(CALL_MORECORE(0)); + if (rel_br != CMFAIL && new_br < old_br) + released = old_br - new_br; + } + } + RELEASE_MALLOC_GLOBAL_LOCK(); + } + } + + if (released != 0) { + sp->size -= released; + m->footprint -= released; + init_top(m, m->top, m->topsize - released); + check_top_chunk(m, m->top); + } + } + + /* Unmap any unused mmapped segments */ + if (HAVE_MMAP) + released += release_unused_segments(m); + + /* On failure, disable autotrim to avoid repeated failed future calls */ + if (released == 0 && m->topsize > m->trim_check) + m->trim_check = MAX_SIZE_T; + } + + return (released != 0)? 1 : 0; +} + +/* Consolidate and bin a chunk. Differs from exported versions + of free mainly in that the chunk need not be marked as inuse. +*/ +static void dispose_chunk(mstate m, mchunkptr p, size_t psize) { + mchunkptr next = chunk_plus_offset(p, psize); + if (!pinuse(p)) { + mchunkptr prev; + size_t prevsize = p->prev_foot; + if (is_mmapped(p)) { + psize += prevsize + MMAP_FOOT_PAD; + if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) + m->footprint -= psize; + return; + } + prev = chunk_minus_offset(p, prevsize); + psize += prevsize; + p = prev; + if (RTCHECK(ok_address(m, prev))) { /* consolidate backward */ + if (p != m->dv) { + unlink_chunk(m, p, prevsize); + } + else if ((next->head & INUSE_BITS) == INUSE_BITS) { + m->dvsize = psize; + set_free_with_pinuse(p, psize, next); + return; + } + } + else { + CORRUPTION_ERROR_ACTION(m); + return; + } + } + if (RTCHECK(ok_address(m, next))) { + if (!cinuse(next)) { /* consolidate forward */ + if (next == m->top) { + size_t tsize = m->topsize += psize; + m->top = p; + p->head = tsize | PINUSE_BIT; + if (p == m->dv) { + m->dv = 0; + m->dvsize = 0; + } + return; + } + else if (next == m->dv) { + size_t dsize = m->dvsize += psize; + m->dv = p; + set_size_and_pinuse_of_free_chunk(p, dsize); + return; + } + else { + size_t nsize = chunksize(next); + psize += nsize; + unlink_chunk(m, next, nsize); + set_size_and_pinuse_of_free_chunk(p, psize); + if (p == m->dv) { + m->dvsize = psize; + return; + } + } + } + else { + set_free_with_pinuse(p, psize, next); + } + insert_chunk(m, p, psize); + } + else { + CORRUPTION_ERROR_ACTION(m); + } +} + +/* ---------------------------- malloc --------------------------- */ + +/* allocate a large request from the best fitting chunk in a treebin */ +static void* tmalloc_large(mstate m, size_t nb) { + tchunkptr v = 0; + size_t rsize = -nb; /* Unsigned negation */ + tchunkptr t; + bindex_t idx; + compute_tree_index(nb, idx); + if ((t = *treebin_at(m, idx)) != 0) { + /* Traverse tree for this bin looking for node with size == nb */ + size_t sizebits = nb << leftshift_for_tree_index(idx); + tchunkptr rst = 0; /* The deepest untaken right subtree */ + for (;;) { + tchunkptr rt; + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + v = t; + if ((rsize = trem) == 0) + break; + } + rt = t->child[1]; + t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; + if (rt != 0 && rt != t) + rst = rt; + if (t == 0) { + t = rst; /* set t to least subtree holding sizes > nb */ + break; + } + sizebits <<= 1; + } + } + if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ + binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; + if (leftbits != 0) { + bindex_t i; + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + t = *treebin_at(m, i); + } + } + + while (t != 0) { /* find smallest of tree or subtree */ + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + rsize = trem; + v = t; + } + t = leftmost_child(t); + } + + /* If dv is a better fit, return 0 so malloc will use it */ + if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { + if (RTCHECK(ok_address(m, v))) { /* split */ + mchunkptr r = chunk_plus_offset(v, nb); + assert(chunksize(v) == rsize + nb); + if (RTCHECK(ok_next(v, r))) { + unlink_large_chunk(m, v); + if (rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(m, v, (rsize + nb)); + else { + set_size_and_pinuse_of_inuse_chunk(m, v, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + insert_chunk(m, r, rsize); + } + return chunk2mem(v); + } + } + CORRUPTION_ERROR_ACTION(m); + } + return 0; +} + +/* allocate a small request from the best fitting chunk in a treebin */ +static void* tmalloc_small(mstate m, size_t nb) { + tchunkptr t, v; + size_t rsize; + bindex_t i; + binmap_t leastbit = least_bit(m->treemap); + compute_bit2idx(leastbit, i); + v = t = *treebin_at(m, i); + rsize = chunksize(t) - nb; + + while ((t = leftmost_child(t)) != 0) { + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + rsize = trem; + v = t; + } + } + + if (RTCHECK(ok_address(m, v))) { + mchunkptr r = chunk_plus_offset(v, nb); + assert(chunksize(v) == rsize + nb); + if (RTCHECK(ok_next(v, r))) { + unlink_large_chunk(m, v); + if (rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(m, v, (rsize + nb)); + else { + set_size_and_pinuse_of_inuse_chunk(m, v, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(m, r, rsize); + } + return chunk2mem(v); + } + } + + CORRUPTION_ERROR_ACTION(m); + return 0; +} + +#if !ONLY_MSPACES + +void* dlmalloc(size_t bytes) { + /* + Basic algorithm: + If a small request (< 256 bytes minus per-chunk overhead): + 1. If one exists, use a remainderless chunk in associated smallbin. + (Remainderless means that there are too few excess bytes to + represent as a chunk.) + 2. If it is big enough, use the dv chunk, which is normally the + chunk adjacent to the one used for the most recent small request. + 3. If one exists, split the smallest available chunk in a bin, + saving remainder in dv. + 4. If it is big enough, use the top chunk. + 5. If available, get memory from system and use it + Otherwise, for a large request: + 1. Find the smallest available binned chunk that fits, and use it + if it is better fitting than dv chunk, splitting if necessary. + 2. If better fitting than any binned chunk, use the dv chunk. + 3. If it is big enough, use the top chunk. + 4. If request size >= mmap threshold, try to directly mmap this chunk. + 5. If available, get memory from system and use it + + The ugly goto's here ensure that postaction occurs along all paths. + */ + +#if USE_LOCKS + ensure_initialization(); /* initialize in sys_alloc if not using locks */ +#endif + + if (!PREACTION(gm)) { + void* mem; + size_t nb; + if (bytes <= MAX_SMALL_REQUEST) { + bindex_t idx; + binmap_t smallbits; + nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); + idx = small_index(nb); + smallbits = gm->smallmap >> idx; + + if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ + mchunkptr b, p; + idx += ~smallbits & 1; /* Uses next bin if idx empty */ + b = smallbin_at(gm, idx); + p = b->fd; + assert(chunksize(p) == small_index2size(idx)); + unlink_first_small_chunk(gm, b, p, idx); + set_inuse_and_pinuse(gm, p, small_index2size(idx)); + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (nb > gm->dvsize) { + if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ + mchunkptr b, p, r; + size_t rsize; + bindex_t i; + binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + b = smallbin_at(gm, i); + p = b->fd; + assert(chunksize(p) == small_index2size(i)); + unlink_first_small_chunk(gm, b, p, i); + rsize = small_index2size(i) - nb; + /* Fit here cannot be remainderless if 4byte sizes */ + if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(gm, p, small_index2size(i)); + else { + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + r = chunk_plus_offset(p, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(gm, r, rsize); + } + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + } + } + else if (bytes >= MAX_REQUEST) + nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ + else { + nb = pad_request(bytes); + if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + } + + if (nb <= gm->dvsize) { + size_t rsize = gm->dvsize - nb; + mchunkptr p = gm->dv; + if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ + mchunkptr r = gm->dv = chunk_plus_offset(p, nb); + gm->dvsize = rsize; + set_size_and_pinuse_of_free_chunk(r, rsize); + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + } + else { /* exhaust dv */ + size_t dvs = gm->dvsize; + gm->dvsize = 0; + gm->dv = 0; + set_inuse_and_pinuse(gm, p, dvs); + } + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (nb < gm->topsize) { /* Split top */ + size_t rsize = gm->topsize -= nb; + mchunkptr p = gm->top; + mchunkptr r = gm->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + mem = chunk2mem(p); + check_top_chunk(gm, gm->top); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + mem = sys_alloc(gm, nb); + + postaction: + POSTACTION(gm); + return mem; + } + + return 0; +} + +/* ---------------------------- free --------------------------- */ + +void dlfree(void* mem) { + /* + Consolidate freed chunks with preceeding or succeeding bordering + free chunks, if they exist, and then place in a bin. Intermixed + with special cases for top, dv, mmapped chunks, and usage errors. + */ + + if (mem != 0) { + mchunkptr p = mem2chunk(mem); +#if FOOTERS + mstate fm = get_mstate_for(p); + if (!ok_magic(fm)) { + USAGE_ERROR_ACTION(fm, p); + return; + } +#else /* FOOTERS */ +#define fm gm +#endif /* FOOTERS */ + if (!PREACTION(fm)) { + check_inuse_chunk(fm, p); + if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { + size_t psize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, psize); + if (!pinuse(p)) { + size_t prevsize = p->prev_foot; + if (is_mmapped(p)) { + psize += prevsize + MMAP_FOOT_PAD; + if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) + fm->footprint -= psize; + goto postaction; + } + else { + mchunkptr prev = chunk_minus_offset(p, prevsize); + psize += prevsize; + p = prev; + if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ + if (p != fm->dv) { + unlink_chunk(fm, p, prevsize); + } + else if ((next->head & INUSE_BITS) == INUSE_BITS) { + fm->dvsize = psize; + set_free_with_pinuse(p, psize, next); + goto postaction; + } + } + else + goto erroraction; + } + } + + if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { + if (!cinuse(next)) { /* consolidate forward */ + if (next == fm->top) { + size_t tsize = fm->topsize += psize; + fm->top = p; + p->head = tsize | PINUSE_BIT; + if (p == fm->dv) { + fm->dv = 0; + fm->dvsize = 0; + } + if (should_trim(fm, tsize)) + sys_trim(fm, 0); + goto postaction; + } + else if (next == fm->dv) { + size_t dsize = fm->dvsize += psize; + fm->dv = p; + set_size_and_pinuse_of_free_chunk(p, dsize); + goto postaction; + } + else { + size_t nsize = chunksize(next); + psize += nsize; + unlink_chunk(fm, next, nsize); + set_size_and_pinuse_of_free_chunk(p, psize); + if (p == fm->dv) { + fm->dvsize = psize; + goto postaction; + } + } + } + else + set_free_with_pinuse(p, psize, next); + + if (is_small(psize)) { + insert_small_chunk(fm, p, psize); + check_free_chunk(fm, p); + } + else { + tchunkptr tp = (tchunkptr)p; + insert_large_chunk(fm, tp, psize); + check_free_chunk(fm, p); + if (--fm->release_checks == 0) + release_unused_segments(fm); + } + goto postaction; + } + } + erroraction: + USAGE_ERROR_ACTION(fm, p); + postaction: + POSTACTION(fm); + } + } +#if !FOOTERS +#undef fm +#endif /* FOOTERS */ +} + +void* dlcalloc(size_t n_elements, size_t elem_size) { + void* mem; + size_t req = 0; + if (n_elements != 0) { + req = n_elements * elem_size; + if (((n_elements | elem_size) & ~(size_t)0xffff) && + (req / n_elements != elem_size)) + req = MAX_SIZE_T; /* force downstream failure on overflow */ + } + mem = dlmalloc(req); + if (mem != 0 && calloc_must_clear(mem2chunk(mem))) + memset(mem, 0, req); + return mem; +} + +#endif /* !ONLY_MSPACES */ + +/* ------------ Internal support for realloc, memalign, etc -------------- */ + +/* Try to realloc; only in-place unless can_move true */ +static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb, + int can_move) { + mchunkptr newp = 0; + size_t oldsize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, oldsize); + if (RTCHECK(ok_address(m, p) && ok_inuse(p) && + ok_next(p, next) && ok_pinuse(next))) { + if (is_mmapped(p)) { + newp = mmap_resize(m, p, nb, can_move); + } + else if (oldsize >= nb) { /* already big enough */ + size_t rsize = oldsize - nb; + if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */ + mchunkptr r = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + set_inuse(m, r, rsize); + dispose_chunk(m, r, rsize); + } + newp = p; + } + else if (next == m->top) { /* extend into top */ + if (oldsize + m->topsize > nb) { + size_t newsize = oldsize + m->topsize; + size_t newtopsize = newsize - nb; + mchunkptr newtop = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + newtop->head = newtopsize |PINUSE_BIT; + m->top = newtop; + m->topsize = newtopsize; + newp = p; + } + } + else if (next == m->dv) { /* extend into dv */ + size_t dvs = m->dvsize; + if (oldsize + dvs >= nb) { + size_t dsize = oldsize + dvs - nb; + if (dsize >= MIN_CHUNK_SIZE) { + mchunkptr r = chunk_plus_offset(p, nb); + mchunkptr n = chunk_plus_offset(r, dsize); + set_inuse(m, p, nb); + set_size_and_pinuse_of_free_chunk(r, dsize); + clear_pinuse(n); + m->dvsize = dsize; + m->dv = r; + } + else { /* exhaust dv */ + size_t newsize = oldsize + dvs; + set_inuse(m, p, newsize); + m->dvsize = 0; + m->dv = 0; + } + newp = p; + } + } + else if (!cinuse(next)) { /* extend into next free chunk */ + size_t nextsize = chunksize(next); + if (oldsize + nextsize >= nb) { + size_t rsize = oldsize + nextsize - nb; + unlink_chunk(m, next, nextsize); + if (rsize < MIN_CHUNK_SIZE) { + size_t newsize = oldsize + nextsize; + set_inuse(m, p, newsize); + } + else { + mchunkptr r = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + set_inuse(m, r, rsize); + dispose_chunk(m, r, rsize); + } + newp = p; + } + } + } + else { + USAGE_ERROR_ACTION(m, chunk2mem(p)); + } + return newp; +} + +static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { + void* mem = 0; + if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ + alignment = MIN_CHUNK_SIZE; + if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ + size_t a = MALLOC_ALIGNMENT << 1; + while (a < alignment) a <<= 1; + alignment = a; + } + if (bytes >= MAX_REQUEST - alignment) { + if (m != 0) { /* Test isn't needed but avoids compiler warning */ + MALLOC_FAILURE_ACTION; + } + } + else { + size_t nb = request2size(bytes); + size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; + mem = internal_malloc(m, req); + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + if (PREACTION(m)) + return 0; + if ((((size_t)(mem)) & (alignment - 1)) != 0) { /* misaligned */ + /* + Find an aligned spot inside chunk. Since we need to give + back leading space in a chunk of at least MIN_CHUNK_SIZE, if + the first calculation places us at a spot with less than + MIN_CHUNK_SIZE leader, we can move to the next aligned spot. + We've allocated enough total room so that this is always + possible. + */ + char* br = (char*)mem2chunk((size_t)(((size_t)((char*)mem + alignment - + SIZE_T_ONE)) & + -alignment)); + char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? + br : br+alignment; + mchunkptr newp = (mchunkptr)pos; + size_t leadsize = pos - (char*)(p); + size_t newsize = chunksize(p) - leadsize; + + if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ + newp->prev_foot = p->prev_foot + leadsize; + newp->head = newsize; + } + else { /* Otherwise, give back leader, use the rest */ + set_inuse(m, newp, newsize); + set_inuse(m, p, leadsize); + dispose_chunk(m, p, leadsize); + } + p = newp; + } + + /* Give back spare room at the end */ + if (!is_mmapped(p)) { + size_t size = chunksize(p); + if (size > nb + MIN_CHUNK_SIZE) { + size_t remainder_size = size - nb; + mchunkptr remainder = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + set_inuse(m, remainder, remainder_size); + dispose_chunk(m, remainder, remainder_size); + } + } + + mem = chunk2mem(p); + assert (chunksize(p) >= nb); + assert(((size_t)mem & (alignment - 1)) == 0); + check_inuse_chunk(m, p); + POSTACTION(m); + } + } + return mem; +} + +/* + Common support for independent_X routines, handling + all of the combinations that can result. + The opts arg has: + bit 0 set if all elements are same size (using sizes[0]) + bit 1 set if elements should be zeroed +*/ +static void** ialloc(mstate m, + size_t n_elements, + size_t* sizes, + int opts, + void* chunks[]) { + + size_t element_size; /* chunksize of each element, if all same */ + size_t contents_size; /* total size of elements */ + size_t array_size; /* request size of pointer array */ + void* mem; /* malloced aggregate space */ + mchunkptr p; /* corresponding chunk */ + size_t remainder_size; /* remaining bytes while splitting */ + void** marray; /* either "chunks" or malloced ptr array */ + mchunkptr array_chunk; /* chunk for malloced ptr array */ + flag_t was_enabled; /* to disable mmap */ + size_t size; + size_t i; + + ensure_initialization(); + /* compute array length, if needed */ + if (chunks != 0) { + if (n_elements == 0) + return chunks; /* nothing to do */ + marray = chunks; + array_size = 0; + } + else { + /* if empty req, must still return chunk representing empty array */ + if (n_elements == 0) + return (void**)internal_malloc(m, 0); + marray = 0; + array_size = request2size(n_elements * (sizeof(void*))); + } + + /* compute total element size */ + if (opts & 0x1) { /* all-same-size */ + element_size = request2size(*sizes); + contents_size = n_elements * element_size; + } + else { /* add up all the sizes */ + element_size = 0; + contents_size = 0; + for (i = 0; i != n_elements; ++i) + contents_size += request2size(sizes[i]); + } + + size = contents_size + array_size; + + /* + Allocate the aggregate chunk. First disable direct-mmapping so + malloc won't use it, since we would not be able to later + free/realloc space internal to a segregated mmap region. + */ + was_enabled = use_mmap(m); + disable_mmap(m); + mem = internal_malloc(m, size - CHUNK_OVERHEAD); + if (was_enabled) + enable_mmap(m); + if (mem == 0) + return 0; + + if (PREACTION(m)) return 0; + p = mem2chunk(mem); + remainder_size = chunksize(p); + + assert(!is_mmapped(p)); + + if (opts & 0x2) { /* optionally clear the elements */ + memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); + } + + /* If not provided, allocate the pointer array as final part of chunk */ + if (marray == 0) { + size_t array_chunk_size; + array_chunk = chunk_plus_offset(p, contents_size); + array_chunk_size = remainder_size - contents_size; + marray = (void**) (chunk2mem(array_chunk)); + set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); + remainder_size = contents_size; + } + + /* split out elements */ + for (i = 0; ; ++i) { + marray[i] = chunk2mem(p); + if (i != n_elements-1) { + if (element_size != 0) + size = element_size; + else + size = request2size(sizes[i]); + remainder_size -= size; + set_size_and_pinuse_of_inuse_chunk(m, p, size); + p = chunk_plus_offset(p, size); + } + else { /* the final element absorbs any overallocation slop */ + set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); + break; + } + } + +#if DEBUG + if (marray != chunks) { + /* final element must have exactly exhausted chunk */ + if (element_size != 0) { + assert(remainder_size == element_size); + } + else { + assert(remainder_size == request2size(sizes[i])); + } + check_inuse_chunk(m, mem2chunk(marray)); + } + for (i = 0; i != n_elements; ++i) + check_inuse_chunk(m, mem2chunk(marray[i])); + +#endif /* DEBUG */ + + POSTACTION(m); + return marray; +} + +/* Try to free all pointers in the given array. + Note: this could be made faster, by delaying consolidation, + at the price of disabling some user integrity checks, We + still optimize some consolidations by combining adjacent + chunks before freeing, which will occur often if allocated + with ialloc or the array is sorted. +*/ +static size_t internal_bulk_free(mstate m, void* array[], size_t nelem) { + size_t unfreed = 0; + if (!PREACTION(m)) { + void** a; + void** fence = &(array[nelem]); + for (a = array; a != fence; ++a) { + void* mem = *a; + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + size_t psize = chunksize(p); +#if FOOTERS + if (get_mstate_for(p) != m) { + ++unfreed; + continue; + } +#endif + check_inuse_chunk(m, p); + *a = 0; + if (RTCHECK(ok_address(m, p) && ok_inuse(p))) { + void ** b = a + 1; /* try to merge with next chunk */ + mchunkptr next = next_chunk(p); + if (b != fence && *b == chunk2mem(next)) { + size_t newsize = chunksize(next) + psize; + set_inuse(m, p, newsize); + *b = chunk2mem(p); + } + else + dispose_chunk(m, p, psize); + } + else { + CORRUPTION_ERROR_ACTION(m); + break; + } + } + } + if (should_trim(m, m->topsize)) + sys_trim(m, 0); + POSTACTION(m); + } + return unfreed; +} + +/* Traversal */ +#if MALLOC_INSPECT_ALL +static void internal_inspect_all(mstate m, + void(*handler)(void *start, + void *end, + size_t used_bytes, + void* callback_arg), + void* arg) { + if (is_initialized(m)) { + mchunkptr top = m->top; + msegmentptr s; + for (s = &m->seg; s != 0; s = s->next) { + mchunkptr q = align_as_chunk(s->base); + while (segment_holds(s, q) && q->head != FENCEPOST_HEAD) { + mchunkptr next = next_chunk(q); + size_t sz = chunksize(q); + size_t used; + void* start; + if (is_inuse(q)) { + used = sz - CHUNK_OVERHEAD; /* must not be mmapped */ + start = chunk2mem(q); + } + else { + used = 0; + if (is_small(sz)) { /* offset by possible bookkeeping */ + start = (void*)((char*)q + sizeof(struct malloc_chunk)); + } + else { + start = (void*)((char*)q + sizeof(struct malloc_tree_chunk)); + } + } + if (start < (void*)next) /* skip if all space is bookkeeping */ + handler(start, next, used, arg); + if (q == top) + break; + q = next; + } + } + } +} +#endif /* MALLOC_INSPECT_ALL */ + +/* ------------------ Exported realloc, memalign, etc -------------------- */ + +#if !ONLY_MSPACES + +void* dlrealloc(void* oldmem, size_t bytes) { + void* mem = 0; + if (oldmem == 0) { + mem = dlmalloc(bytes); + } + else if (bytes >= MAX_REQUEST) { + MALLOC_FAILURE_ACTION; + } +#ifdef REALLOC_ZERO_BYTES_FREES + else if (bytes == 0) { + dlfree(oldmem); + } +#endif /* REALLOC_ZERO_BYTES_FREES */ + else { + size_t nb = request2size(bytes); + mchunkptr oldp = mem2chunk(oldmem); +#if ! FOOTERS + mstate m = gm; +#else /* FOOTERS */ + mstate m = get_mstate_for(oldp); + if (!ok_magic(m)) { + USAGE_ERROR_ACTION(m, oldmem); + return 0; + } +#endif /* FOOTERS */ + if (!PREACTION(m)) { + mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1); + POSTACTION(m); + if (newp != 0) { + check_inuse_chunk(m, newp); + mem = chunk2mem(newp); + } + else { + mem = internal_malloc(m, bytes); + if (mem != 0) { + size_t oc = chunksize(oldp) - overhead_for(oldp); + memcpy(mem, oldmem, (oc < bytes)? oc : bytes); + internal_free(m, oldmem); + } + } + } + } + return mem; +} + +void* dlrealloc_in_place(void* oldmem, size_t bytes) { + void* mem = 0; + if (oldmem != 0) { + if (bytes >= MAX_REQUEST) { + MALLOC_FAILURE_ACTION; + } + else { + size_t nb = request2size(bytes); + mchunkptr oldp = mem2chunk(oldmem); +#if ! FOOTERS + mstate m = gm; +#else /* FOOTERS */ + mstate m = get_mstate_for(oldp); + if (!ok_magic(m)) { + USAGE_ERROR_ACTION(m, oldmem); + return 0; + } +#endif /* FOOTERS */ + if (!PREACTION(m)) { + mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0); + POSTACTION(m); + if (newp == oldp) { + check_inuse_chunk(m, newp); + mem = oldmem; + } + } + } + } + return mem; +} + +void* dlmemalign(size_t alignment, size_t bytes) { + if (alignment <= MALLOC_ALIGNMENT) { + return dlmalloc(bytes); + } + return internal_memalign(gm, alignment, bytes); +} + +int dlposix_memalign(void** pp, size_t alignment, size_t bytes) { + void* mem = 0; + if (alignment == MALLOC_ALIGNMENT) + mem = dlmalloc(bytes); + else { + size_t d = alignment / sizeof(void*); + size_t r = alignment % sizeof(void*); + if (r != 0 || d == 0 || (d & (d-SIZE_T_ONE)) != 0) + return EINVAL; + else if (bytes <= MAX_REQUEST - alignment) { + if (alignment < MIN_CHUNK_SIZE) + alignment = MIN_CHUNK_SIZE; + mem = internal_memalign(gm, alignment, bytes); + } + } + if (mem == 0) + return ENOMEM; + else { + *pp = mem; + return 0; + } +} + +void* dlvalloc(size_t bytes) { + size_t pagesz; + ensure_initialization(); + pagesz = mparams.page_size; + return dlmemalign(pagesz, bytes); +} + +void* dlpvalloc(size_t bytes) { + size_t pagesz; + ensure_initialization(); + pagesz = mparams.page_size; + return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE)); +} + +void** dlindependent_calloc(size_t n_elements, size_t elem_size, + void* chunks[]) { + size_t sz = elem_size; /* serves as 1-element array */ + return ialloc(gm, n_elements, &sz, 3, chunks); +} + +void** dlindependent_comalloc(size_t n_elements, size_t sizes[], + void* chunks[]) { + return ialloc(gm, n_elements, sizes, 0, chunks); +} + +size_t dlbulk_free(void* array[], size_t nelem) { + return internal_bulk_free(gm, array, nelem); +} + +#if MALLOC_INSPECT_ALL +void dlmalloc_inspect_all(void(*handler)(void *start, + void *end, + size_t used_bytes, + void* callback_arg), + void* arg) { + ensure_initialization(); + if (!PREACTION(gm)) { + internal_inspect_all(gm, handler, arg); + POSTACTION(gm); + } +} +#endif /* MALLOC_INSPECT_ALL */ + +int dlmalloc_trim(size_t pad) { + int result = 0; + ensure_initialization(); + if (!PREACTION(gm)) { + result = sys_trim(gm, pad); + POSTACTION(gm); + } + return result; +} + +size_t dlmalloc_footprint(void) { + return gm->footprint; +} + +size_t dlmalloc_max_footprint(void) { + return gm->max_footprint; +} + +size_t dlmalloc_footprint_limit(void) { + size_t maf = gm->footprint_limit; + return maf == 0 ? MAX_SIZE_T : maf; +} + +size_t dlmalloc_set_footprint_limit(size_t bytes) { + size_t result; /* invert sense of 0 */ + if (bytes == 0) + result = granularity_align(1); /* Use minimal size */ + if (bytes == MAX_SIZE_T) + result = 0; /* disable */ + else + result = granularity_align(bytes); + return gm->footprint_limit = result; +} + +#if !NO_MALLINFO +struct mallinfo dlmallinfo(void) { + return internal_mallinfo(gm); +} +#endif /* NO_MALLINFO */ + +#if !NO_MALLOC_STATS +void dlmalloc_stats() { + internal_malloc_stats(gm); +} +#endif /* NO_MALLOC_STATS */ + +int dlmallopt(int param_number, int value) { + return change_mparam(param_number, value); +} + +size_t dlmalloc_usable_size(void* mem) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + if (is_inuse(p)) + return chunksize(p) - overhead_for(p); + } + return 0; +} + +#endif /* !ONLY_MSPACES */ + +/* ----------------------------- user mspaces ---------------------------- */ + +#if MSPACES + +static mstate init_user_mstate(char* tbase, size_t tsize) { + size_t msize = pad_request(sizeof(struct malloc_state)); + mchunkptr mn; + mchunkptr msp = align_as_chunk(tbase); + mstate m = (mstate)(chunk2mem(msp)); + memset(m, 0, msize); + (void)INITIAL_LOCK(&m->mutex); + msp->head = (msize|INUSE_BITS); + m->seg.base = m->least_addr = tbase; + m->seg.size = m->footprint = m->max_footprint = tsize; + m->magic = mparams.magic; + m->release_checks = MAX_RELEASE_CHECK_RATE; + m->mflags = mparams.default_mflags; + m->extp = 0; + m->exts = 0; + disable_contiguous(m); + init_bins(m); + mn = next_chunk(mem2chunk(m)); + init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE); + check_top_chunk(m, m->top); + return m; +} + +mspace create_mspace(size_t capacity, int locked) { + mstate m = 0; + size_t msize; + ensure_initialization(); + msize = pad_request(sizeof(struct malloc_state)); + if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { + size_t rs = ((capacity == 0)? mparams.granularity : + (capacity + TOP_FOOT_SIZE + msize)); + size_t tsize = granularity_align(rs); + char* tbase = (char*)(CALL_MMAP(tsize)); + if (tbase != CMFAIL) { + m = init_user_mstate(tbase, tsize); + m->seg.sflags = USE_MMAP_BIT; + set_lock(m, locked); + } + } + return (mspace)m; +} + +mspace create_mspace_with_base(void* base, size_t capacity, int locked) { + mstate m = 0; + size_t msize; + ensure_initialization(); + msize = pad_request(sizeof(struct malloc_state)); + if (capacity > msize + TOP_FOOT_SIZE && + capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { + m = init_user_mstate((char*)base, capacity); + m->seg.sflags = EXTERN_BIT; + set_lock(m, locked); + } + return (mspace)m; +} + +int mspace_track_large_chunks(mspace msp, int enable) { + int ret = 0; + mstate ms = (mstate)msp; + if (!PREACTION(ms)) { + if (!use_mmap(ms)) { + ret = 1; + } + if (!enable) { + enable_mmap(ms); + } else { + disable_mmap(ms); + } + POSTACTION(ms); + } + return ret; +} + +size_t destroy_mspace(mspace msp) { + size_t freed = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + msegmentptr sp = &ms->seg; + (void)DESTROY_LOCK(&ms->mutex); /* destroy before unmapped */ + while (sp != 0) { + char* base = sp->base; + size_t size = sp->size; + flag_t flag = sp->sflags; + (void)base; /* placate people compiling -Wunused-variable */ + sp = sp->next; + if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) && + CALL_MUNMAP(base, size) == 0) + freed += size; + } + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return freed; +} + +/* + mspace versions of routines are near-clones of the global + versions. This is not so nice but better than the alternatives. +*/ + +void* mspace_malloc(mspace msp, size_t bytes) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + if (!PREACTION(ms)) { + void* mem; + size_t nb; + if (bytes <= MAX_SMALL_REQUEST) { + bindex_t idx; + binmap_t smallbits; + nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); + idx = small_index(nb); + smallbits = ms->smallmap >> idx; + + if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ + mchunkptr b, p; + idx += ~smallbits & 1; /* Uses next bin if idx empty */ + b = smallbin_at(ms, idx); + p = b->fd; + assert(chunksize(p) == small_index2size(idx)); + unlink_first_small_chunk(ms, b, p, idx); + set_inuse_and_pinuse(ms, p, small_index2size(idx)); + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (nb > ms->dvsize) { + if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ + mchunkptr b, p, r; + size_t rsize; + bindex_t i; + binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + b = smallbin_at(ms, i); + p = b->fd; + assert(chunksize(p) == small_index2size(i)); + unlink_first_small_chunk(ms, b, p, i); + rsize = small_index2size(i) - nb; + /* Fit here cannot be remainderless if 4byte sizes */ + if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(ms, p, small_index2size(i)); + else { + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + r = chunk_plus_offset(p, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(ms, r, rsize); + } + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + } + } + else if (bytes >= MAX_REQUEST) + nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ + else { + nb = pad_request(bytes); + if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + } + + if (nb <= ms->dvsize) { + size_t rsize = ms->dvsize - nb; + mchunkptr p = ms->dv; + if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ + mchunkptr r = ms->dv = chunk_plus_offset(p, nb); + ms->dvsize = rsize; + set_size_and_pinuse_of_free_chunk(r, rsize); + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + } + else { /* exhaust dv */ + size_t dvs = ms->dvsize; + ms->dvsize = 0; + ms->dv = 0; + set_inuse_and_pinuse(ms, p, dvs); + } + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (nb < ms->topsize) { /* Split top */ + size_t rsize = ms->topsize -= nb; + mchunkptr p = ms->top; + mchunkptr r = ms->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + mem = chunk2mem(p); + check_top_chunk(ms, ms->top); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + mem = sys_alloc(ms, nb); + + postaction: + POSTACTION(ms); + return mem; + } + + return 0; +} + +void mspace_free(mspace msp, void* mem) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); +#if FOOTERS + mstate fm = get_mstate_for(p); + (void)msp; /* placate people compiling -Wunused */ +#else /* FOOTERS */ + mstate fm = (mstate)msp; +#endif /* FOOTERS */ + if (!ok_magic(fm)) { + USAGE_ERROR_ACTION(fm, p); + return; + } + if (!PREACTION(fm)) { + check_inuse_chunk(fm, p); + if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { + size_t psize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, psize); + if (!pinuse(p)) { + size_t prevsize = p->prev_foot; + if (is_mmapped(p)) { + psize += prevsize + MMAP_FOOT_PAD; + if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) + fm->footprint -= psize; + goto postaction; + } + else { + mchunkptr prev = chunk_minus_offset(p, prevsize); + psize += prevsize; + p = prev; + if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ + if (p != fm->dv) { + unlink_chunk(fm, p, prevsize); + } + else if ((next->head & INUSE_BITS) == INUSE_BITS) { + fm->dvsize = psize; + set_free_with_pinuse(p, psize, next); + goto postaction; + } + } + else + goto erroraction; + } + } + + if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { + if (!cinuse(next)) { /* consolidate forward */ + if (next == fm->top) { + size_t tsize = fm->topsize += psize; + fm->top = p; + p->head = tsize | PINUSE_BIT; + if (p == fm->dv) { + fm->dv = 0; + fm->dvsize = 0; + } + if (should_trim(fm, tsize)) + sys_trim(fm, 0); + goto postaction; + } + else if (next == fm->dv) { + size_t dsize = fm->dvsize += psize; + fm->dv = p; + set_size_and_pinuse_of_free_chunk(p, dsize); + goto postaction; + } + else { + size_t nsize = chunksize(next); + psize += nsize; + unlink_chunk(fm, next, nsize); + set_size_and_pinuse_of_free_chunk(p, psize); + if (p == fm->dv) { + fm->dvsize = psize; + goto postaction; + } + } + } + else + set_free_with_pinuse(p, psize, next); + + if (is_small(psize)) { + insert_small_chunk(fm, p, psize); + check_free_chunk(fm, p); + } + else { + tchunkptr tp = (tchunkptr)p; + insert_large_chunk(fm, tp, psize); + check_free_chunk(fm, p); + if (--fm->release_checks == 0) + release_unused_segments(fm); + } + goto postaction; + } + } + erroraction: + USAGE_ERROR_ACTION(fm, p); + postaction: + POSTACTION(fm); + } + } +} + +void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) { + void* mem; + size_t req = 0; + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + if (n_elements != 0) { + req = n_elements * elem_size; + if (((n_elements | elem_size) & ~(size_t)0xffff) && + (req / n_elements != elem_size)) + req = MAX_SIZE_T; /* force downstream failure on overflow */ + } + mem = internal_malloc(ms, req); + if (mem != 0 && calloc_must_clear(mem2chunk(mem))) + memset(mem, 0, req); + return mem; +} + +void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) { + void* mem = 0; + if (oldmem == 0) { + mem = mspace_malloc(msp, bytes); + } + else if (bytes >= MAX_REQUEST) { + MALLOC_FAILURE_ACTION; + } +#ifdef REALLOC_ZERO_BYTES_FREES + else if (bytes == 0) { + mspace_free(msp, oldmem); + } +#endif /* REALLOC_ZERO_BYTES_FREES */ + else { + size_t nb = request2size(bytes); + mchunkptr oldp = mem2chunk(oldmem); +#if ! FOOTERS + mstate m = (mstate)msp; +#else /* FOOTERS */ + mstate m = get_mstate_for(oldp); + if (!ok_magic(m)) { + USAGE_ERROR_ACTION(m, oldmem); + return 0; + } +#endif /* FOOTERS */ + if (!PREACTION(m)) { + mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1); + POSTACTION(m); + if (newp != 0) { + check_inuse_chunk(m, newp); + mem = chunk2mem(newp); + } + else { + mem = mspace_malloc(m, bytes); + if (mem != 0) { + size_t oc = chunksize(oldp) - overhead_for(oldp); + memcpy(mem, oldmem, (oc < bytes)? oc : bytes); + mspace_free(m, oldmem); + } + } + } + } + return mem; +} + +void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes) { + void* mem = 0; + if (oldmem != 0) { + if (bytes >= MAX_REQUEST) { + MALLOC_FAILURE_ACTION; + } + else { + size_t nb = request2size(bytes); + mchunkptr oldp = mem2chunk(oldmem); +#if ! FOOTERS + mstate m = (mstate)msp; +#else /* FOOTERS */ + mstate m = get_mstate_for(oldp); + (void)msp; /* placate people compiling -Wunused */ + if (!ok_magic(m)) { + USAGE_ERROR_ACTION(m, oldmem); + return 0; + } +#endif /* FOOTERS */ + if (!PREACTION(m)) { + mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0); + POSTACTION(m); + if (newp == oldp) { + check_inuse_chunk(m, newp); + mem = oldmem; + } + } + } + } + return mem; +} + +void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + if (alignment <= MALLOC_ALIGNMENT) + return mspace_malloc(msp, bytes); + return internal_memalign(ms, alignment, bytes); +} + +void** mspace_independent_calloc(mspace msp, size_t n_elements, + size_t elem_size, void* chunks[]) { + size_t sz = elem_size; /* serves as 1-element array */ + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return ialloc(ms, n_elements, &sz, 3, chunks); +} + +void** mspace_independent_comalloc(mspace msp, size_t n_elements, + size_t sizes[], void* chunks[]) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return ialloc(ms, n_elements, sizes, 0, chunks); +} + +size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem) { + return internal_bulk_free((mstate)msp, array, nelem); +} + +#if MALLOC_INSPECT_ALL +void mspace_inspect_all(mspace msp, + void(*handler)(void *start, + void *end, + size_t used_bytes, + void* callback_arg), + void* arg) { + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + if (!PREACTION(ms)) { + internal_inspect_all(ms, handler, arg); + POSTACTION(ms); + } + } + else { + USAGE_ERROR_ACTION(ms,ms); + } +} +#endif /* MALLOC_INSPECT_ALL */ + +int mspace_trim(mspace msp, size_t pad) { + int result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + if (!PREACTION(ms)) { + result = sys_trim(ms, pad); + POSTACTION(ms); + } + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + +#if !NO_MALLOC_STATS +void mspace_malloc_stats(mspace msp) { + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + internal_malloc_stats(ms); + } + else { + USAGE_ERROR_ACTION(ms,ms); + } +} +#endif /* NO_MALLOC_STATS */ + +size_t mspace_footprint(mspace msp) { + size_t result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + result = ms->footprint; + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + +size_t mspace_max_footprint(mspace msp) { + size_t result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + result = ms->max_footprint; + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + +size_t mspace_footprint_limit(mspace msp) { + size_t result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + size_t maf = ms->footprint_limit; + result = (maf == 0) ? MAX_SIZE_T : maf; + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + +size_t mspace_set_footprint_limit(mspace msp, size_t bytes) { + size_t result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + if (bytes == 0) + result = granularity_align(1); /* Use minimal size */ + if (bytes == MAX_SIZE_T) + result = 0; /* disable */ + else + result = granularity_align(bytes); + ms->footprint_limit = result; + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + +#if !NO_MALLINFO +struct mallinfo mspace_mallinfo(mspace msp) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + } + return internal_mallinfo(ms); +} +#endif /* NO_MALLINFO */ + +size_t mspace_usable_size(const void* mem) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + if (is_inuse(p)) + return chunksize(p) - overhead_for(p); + } + return 0; +} + +int mspace_mallopt(int param_number, int value) { + return change_mparam(param_number, value); +} + +#endif /* MSPACES */ + + +/* -------------------- Alternative MORECORE functions ------------------- */ + +/* + Guidelines for creating a custom version of MORECORE: + + * For best performance, MORECORE should allocate in multiples of pagesize. + * MORECORE may allocate more memory than requested. (Or even less, + but this will usually result in a malloc failure.) + * MORECORE must not allocate memory when given argument zero, but + instead return one past the end address of memory from previous + nonzero call. + * For best performance, consecutive calls to MORECORE with positive + arguments should return increasing addresses, indicating that + space has been contiguously extended. + * Even though consecutive calls to MORECORE need not return contiguous + addresses, it must be OK for malloc'ed chunks to span multiple + regions in those cases where they do happen to be contiguous. + * MORECORE need not handle negative arguments -- it may instead + just return MFAIL when given negative arguments. + Negative arguments are always multiples of pagesize. MORECORE + must not misinterpret negative args as large positive unsigned + args. You can suppress all such calls from even occurring by defining + MORECORE_CANNOT_TRIM, + + As an example alternative MORECORE, here is a custom allocator + kindly contributed for pre-OSX macOS. It uses virtually but not + necessarily physically contiguous non-paged memory (locked in, + present and won't get swapped out). You can use it by uncommenting + this section, adding some #includes, and setting up the appropriate + defines above: + + #define MORECORE osMoreCore + + There is also a shutdown routine that should somehow be called for + cleanup upon program exit. + + #define MAX_POOL_ENTRIES 100 + #define MINIMUM_MORECORE_SIZE (64 * 1024U) + static int next_os_pool; + void *our_os_pools[MAX_POOL_ENTRIES]; + + void *osMoreCore(int size) + { + void *ptr = 0; + static void *sbrk_top = 0; + + if (size > 0) + { + if (size < MINIMUM_MORECORE_SIZE) + size = MINIMUM_MORECORE_SIZE; + if (CurrentExecutionLevel() == kTaskLevel) + ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); + if (ptr == 0) + { + return (void *) MFAIL; + } + // save ptrs so they can be freed during cleanup + our_os_pools[next_os_pool] = ptr; + next_os_pool++; + ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); + sbrk_top = (char *) ptr + size; + return ptr; + } + else if (size < 0) + { + // we don't currently support shrink behavior + return (void *) MFAIL; + } + else + { + return sbrk_top; + } + } + + // cleanup any allocated memory pools + // called as last thing before shutting down driver + + void osCleanupMem(void) + { + void **ptr; + + for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) + if (*ptr) + { + PoolDeallocate(*ptr); + *ptr = 0; + } + } + +*/ + + +/* ----------------------------------------------------------------------- +History: + v2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea + * fix bad comparison in dlposix_memalign + * don't reuse adjusted asize in sys_alloc + * add LOCK_AT_FORK -- thanks to Kirill Artamonov for the suggestion + * reduce compiler warnings -- thanks to all who reported/suggested these + + v2.8.5 Sun May 22 10:26:02 2011 Doug Lea (dl at gee) + * Always perform unlink checks unless INSECURE + * Add posix_memalign. + * Improve realloc to expand in more cases; expose realloc_in_place. + Thanks to Peter Buhr for the suggestion. + * Add footprint_limit, inspect_all, bulk_free. Thanks + to Barry Hayes and others for the suggestions. + * Internal refactorings to avoid calls while holding locks + * Use non-reentrant locks by default. Thanks to Roland McGrath + for the suggestion. + * Small fixes to mspace_destroy, reset_on_error. + * Various configuration extensions/changes. Thanks + to all who contributed these. + + V2.8.4a Thu Apr 28 14:39:43 2011 (dl at gee.cs.oswego.edu) + * Update Creative Commons URL + + V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee) + * Use zeros instead of prev foot for is_mmapped + * Add mspace_track_large_chunks; thanks to Jean Brouwers + * Fix set_inuse in internal_realloc; thanks to Jean Brouwers + * Fix insufficient sys_alloc padding when using 16byte alignment + * Fix bad error check in mspace_footprint + * Adaptations for ptmalloc; thanks to Wolfram Gloger. + * Reentrant spin locks; thanks to Earl Chew and others + * Win32 improvements; thanks to Niall Douglas and Earl Chew + * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options + * Extension hook in malloc_state + * Various small adjustments to reduce warnings on some compilers + * Various configuration extensions/changes for more platforms. Thanks + to all who contributed these. + + V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee) + * Add max_footprint functions + * Ensure all appropriate literals are size_t + * Fix conditional compilation problem for some #define settings + * Avoid concatenating segments with the one provided + in create_mspace_with_base + * Rename some variables to avoid compiler shadowing warnings + * Use explicit lock initialization. + * Better handling of sbrk interference. + * Simplify and fix segment insertion, trimming and mspace_destroy + * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x + * Thanks especially to Dennis Flanagan for help on these. + + V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee) + * Fix memalign brace error. + + V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee) + * Fix improper #endif nesting in C++ + * Add explicit casts needed for C++ + + V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee) + * Use trees for large bins + * Support mspaces + * Use segments to unify sbrk-based and mmap-based system allocation, + removing need for emulation on most platforms without sbrk. + * Default safety checks + * Optional footer checks. Thanks to William Robertson for the idea. + * Internal code refactoring + * Incorporate suggestions and platform-specific changes. + Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, + Aaron Bachmann, Emery Berger, and others. + * Speed up non-fastbin processing enough to remove fastbins. + * Remove useless cfree() to avoid conflicts with other apps. + * Remove internal memcpy, memset. Compilers handle builtins better. + * Remove some options that no one ever used and rename others. + + V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee) + * Fix malloc_state bitmap array misdeclaration + + V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee) + * Allow tuning of FIRST_SORTED_BIN_SIZE + * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. + * Better detection and support for non-contiguousness of MORECORE. + Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger + * Bypass most of malloc if no frees. Thanks To Emery Berger. + * Fix freeing of old top non-contiguous chunk im sysmalloc. + * Raised default trim and map thresholds to 256K. + * Fix mmap-related #defines. Thanks to Lubos Lunak. + * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. + * Branch-free bin calculation + * Default trim and mmap thresholds now 256K. + + V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) + * Introduce independent_comalloc and independent_calloc. + Thanks to Michael Pachos for motivation and help. + * Make optional .h file available + * Allow > 2GB requests on 32bit systems. + * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>. + Thanks also to Andreas Mueller <a.mueller at paradatec.de>, + and Anonymous. + * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for + helping test this.) + * memalign: check alignment arg + * realloc: don't try to shift chunks backwards, since this + leads to more fragmentation in some programs and doesn't + seem to help in any others. + * Collect all cases in malloc requiring system memory into sysmalloc + * Use mmap as backup to sbrk + * Place all internal state in malloc_state + * Introduce fastbins (although similar to 2.5.1) + * Many minor tunings and cosmetic improvements + * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK + * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS + Thanks to Tony E. Bennett <tbennett@nvidia.com> and others. + * Include errno.h to support default failure action. + + V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) + * return null for negative arguments + * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com> + * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' + (e.g. WIN32 platforms) + * Cleanup header file inclusion for WIN32 platforms + * Cleanup code to avoid Microsoft Visual C++ compiler complaints + * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing + memory allocation routines + * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) + * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to + usage of 'assert' in non-WIN32 code + * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to + avoid infinite loop + * Always call 'fREe()' rather than 'free()' + + V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) + * Fixed ordering problem with boundary-stamping + + V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) + * Added pvalloc, as recommended by H.J. Liu + * Added 64bit pointer support mainly from Wolfram Gloger + * Added anonymously donated WIN32 sbrk emulation + * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen + * malloc_extend_top: fix mask error that caused wastage after + foreign sbrks + * Add linux mremap support code from HJ Liu + + V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) + * Integrated most documentation with the code. + * Add support for mmap, with help from + Wolfram Gloger (Gloger@lrz.uni-muenchen.de). + * Use last_remainder in more cases. + * Pack bins using idea from colin@nyx10.cs.du.edu + * Use ordered bins instead of best-fit threshhold + * Eliminate block-local decls to simplify tracing and debugging. + * Support another case of realloc via move into top + * Fix error occuring when initial sbrk_base not word-aligned. + * Rely on page size for units instead of SBRK_UNIT to + avoid surprises about sbrk alignment conventions. + * Add mallinfo, mallopt. Thanks to Raymond Nijssen + (raymond@es.ele.tue.nl) for the suggestion. + * Add `pad' argument to malloc_trim and top_pad mallopt parameter. + * More precautions for cases where other routines call sbrk, + courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). + * Added macros etc., allowing use in linux libc from + H.J. Lu (hjl@gnu.ai.mit.edu) + * Inverted this history list + + V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) + * Re-tuned and fixed to behave more nicely with V2.6.0 changes. + * Removed all preallocation code since under current scheme + the work required to undo bad preallocations exceeds + the work saved in good cases for most test programs. + * No longer use return list or unconsolidated bins since + no scheme using them consistently outperforms those that don't + given above changes. + * Use best fit for very large chunks to prevent some worst-cases. + * Added some support for debugging + + V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) + * Removed footers when chunks are in use. Thanks to + Paul Wilson (wilson@cs.texas.edu) for the suggestion. + + V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) + * Added malloc_trim, with help from Wolfram Gloger + (wmglo@Dent.MED.Uni-Muenchen.DE). + + V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) + + V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) + * realloc: try to expand in both directions + * malloc: swap order of clean-bin strategy; + * realloc: only conditionally expand backwards + * Try not to scavenge used bins + * Use bin counts as a guide to preallocation + * Occasionally bin return list chunks in first scan + * Add a few optimizations from colin@nyx10.cs.du.edu + + V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) + * faster bin computation & slightly different binning + * merged all consolidations to one part of malloc proper + (eliminating old malloc_find_space & malloc_clean_bin) + * Scan 2 returns chunks (not just 1) + * Propagate failure in realloc if malloc returns 0 + * Add stuff to allow compilation on non-ANSI compilers + from kpv@research.att.com + + V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) + * removed potential for odd address access in prev_chunk + * removed dependency on getpagesize.h + * misc cosmetics and a bit more internal documentation + * anticosmetics: mangled names in macros to evade debugger strangeness + * tested on sparc, hp-700, dec-mips, rs6000 + with gcc & native cc (hp, dec only) allowing + Detlefs & Zorn comparison study (in SIGPLAN Notices.) + + Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) + * Based loosely on libg++-1.2X malloc. (It retains some of the overall + structure of old version, but most details differ.) + +*/ diff --git a/contrib/restricted/boost/libs/container/src/dlmalloc_ext_2_8_6.c b/contrib/restricted/boost/libs/container/src/dlmalloc_ext_2_8_6.c index 9f1bcb0180..3328d72975 100644 --- a/contrib/restricted/boost/libs/container/src/dlmalloc_ext_2_8_6.c +++ b/contrib/restricted/boost/libs/container/src/dlmalloc_ext_2_8_6.c @@ -1,1459 +1,1459 @@ -////////////////////////////////////////////////////////////////////////////// -// -// (C) Copyright Ion Gaztanaga 2007-2015. Distributed under the Boost -// Software License, Version 1.0. (See accompanying file -// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -// -// See http://www.boost.org/libs/container for documentation. -// -////////////////////////////////////////////////////////////////////////////// - -#include <boost/container/detail/alloc_lib.h> - -#include "errno.h" //dlmalloc bug EINVAL is used in posix_memalign without checking LACKS_ERRNO_H -#include "limits.h" //CHAR_BIT -#ifdef BOOST_CONTAINER_DLMALLOC_FOOTERS -#define FOOTERS 1 -#endif -#define USE_LOCKS 1 -#define MSPACES 1 -#define NO_MALLINFO 1 -#define NO_MALLOC_STATS 1 - - -#if !defined(NDEBUG) - #if !defined(DEBUG) - #define DEBUG 1 - #define DL_DEBUG_DEFINED - #endif -#endif - -#define USE_DL_PREFIX - -#ifdef __GNUC__ -#define FORCEINLINE inline -#endif -#include "dlmalloc_2_8_6.c" - -#ifdef _MSC_VER -#pragma warning (push) -#pragma warning (disable : 4127) -#pragma warning (disable : 4267) -#pragma warning (disable : 4127) -#pragma warning (disable : 4702) -#pragma warning (disable : 4390) /*empty controlled statement found; is this the intent?*/ -#pragma warning (disable : 4251 4231 4660) /*dll warnings*/ -#endif - -#define DL_SIZE_IMPL(p) (chunksize(mem2chunk(p)) - overhead_for(mem2chunk(p))) - -static size_t s_allocated_memory; - -/////////////////////////////////////////////////////////////// -/////////////////////////////////////////////////////////////// -/////////////////////////////////////////////////////////////// -// -// SLIGHTLY MODIFIED DLMALLOC FUNCTIONS -// -/////////////////////////////////////////////////////////////// -/////////////////////////////////////////////////////////////// -/////////////////////////////////////////////////////////////// - -//This function is equal to mspace_free -//replacing PREACTION with 0 and POSTACTION with nothing -static void mspace_free_lockless(mspace msp, void* mem) -{ - if (mem != 0) { - mchunkptr p = mem2chunk(mem); -#if FOOTERS - mstate fm = get_mstate_for(p); - msp = msp; /* placate people compiling -Wunused */ -#else /* FOOTERS */ - mstate fm = (mstate)msp; -#endif /* FOOTERS */ - if (!ok_magic(fm)) { - USAGE_ERROR_ACTION(fm, p); - return; - } - if (!0){//PREACTION(fm)) { - check_inuse_chunk(fm, p); - if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { - size_t psize = chunksize(p); - mchunkptr next = chunk_plus_offset(p, psize); - s_allocated_memory -= psize; - if (!pinuse(p)) { - size_t prevsize = p->prev_foot; - if (is_mmapped(p)) { - psize += prevsize + MMAP_FOOT_PAD; - if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) - fm->footprint -= psize; - goto postaction; - } - else { - mchunkptr prev = chunk_minus_offset(p, prevsize); - psize += prevsize; - p = prev; - if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ - if (p != fm->dv) { - unlink_chunk(fm, p, prevsize); - } - else if ((next->head & INUSE_BITS) == INUSE_BITS) { - fm->dvsize = psize; - set_free_with_pinuse(p, psize, next); - goto postaction; - } - } - else - goto erroraction; - } - } - - if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { - if (!cinuse(next)) { /* consolidate forward */ - if (next == fm->top) { - size_t tsize = fm->topsize += psize; - fm->top = p; - p->head = tsize | PINUSE_BIT; - if (p == fm->dv) { - fm->dv = 0; - fm->dvsize = 0; - } - if (should_trim(fm, tsize)) - sys_trim(fm, 0); - goto postaction; - } - else if (next == fm->dv) { - size_t dsize = fm->dvsize += psize; - fm->dv = p; - set_size_and_pinuse_of_free_chunk(p, dsize); - goto postaction; - } - else { - size_t nsize = chunksize(next); - psize += nsize; - unlink_chunk(fm, next, nsize); - set_size_and_pinuse_of_free_chunk(p, psize); - if (p == fm->dv) { - fm->dvsize = psize; - goto postaction; - } - } - } - else - set_free_with_pinuse(p, psize, next); - - if (is_small(psize)) { - insert_small_chunk(fm, p, psize); - check_free_chunk(fm, p); - } - else { - tchunkptr tp = (tchunkptr)p; - insert_large_chunk(fm, tp, psize); - check_free_chunk(fm, p); - if (--fm->release_checks == 0) - release_unused_segments(fm); - } - goto postaction; - } - } - erroraction: - USAGE_ERROR_ACTION(fm, p); - postaction: - ;//POSTACTION(fm); - } - } -} - -//This function is equal to mspace_malloc -//replacing PREACTION with 0 and POSTACTION with nothing -void* mspace_malloc_lockless(mspace msp, size_t bytes) -{ - mstate ms = (mstate)msp; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - if (!0){//PREACTION(ms)) { - void* mem; - size_t nb; - if (bytes <= MAX_SMALL_REQUEST) { - bindex_t idx; - binmap_t smallbits; - nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); - idx = small_index(nb); - smallbits = ms->smallmap >> idx; - - if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ - mchunkptr b, p; - idx += ~smallbits & 1; /* Uses next bin if idx empty */ - b = smallbin_at(ms, idx); - p = b->fd; - assert(chunksize(p) == small_index2size(idx)); - unlink_first_small_chunk(ms, b, p, idx); - set_inuse_and_pinuse(ms, p, small_index2size(idx)); - mem = chunk2mem(p); - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - - else if (nb > ms->dvsize) { - if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ - mchunkptr b, p, r; - size_t rsize; - bindex_t i; - binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); - binmap_t leastbit = least_bit(leftbits); - compute_bit2idx(leastbit, i); - b = smallbin_at(ms, i); - p = b->fd; - assert(chunksize(p) == small_index2size(i)); - unlink_first_small_chunk(ms, b, p, i); - rsize = small_index2size(i) - nb; - /* Fit here cannot be remainderless if 4byte sizes */ - if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) - set_inuse_and_pinuse(ms, p, small_index2size(i)); - else { - set_size_and_pinuse_of_inuse_chunk(ms, p, nb); - r = chunk_plus_offset(p, nb); - set_size_and_pinuse_of_free_chunk(r, rsize); - replace_dv(ms, r, rsize); - } - mem = chunk2mem(p); - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - - else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - } - } - else if (bytes >= MAX_REQUEST) - nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ - else { - nb = pad_request(bytes); - if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - } - - if (nb <= ms->dvsize) { - size_t rsize = ms->dvsize - nb; - mchunkptr p = ms->dv; - if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ - mchunkptr r = ms->dv = chunk_plus_offset(p, nb); - ms->dvsize = rsize; - set_size_and_pinuse_of_free_chunk(r, rsize); - set_size_and_pinuse_of_inuse_chunk(ms, p, nb); - } - else { /* exhaust dv */ - size_t dvs = ms->dvsize; - ms->dvsize = 0; - ms->dv = 0; - set_inuse_and_pinuse(ms, p, dvs); - } - mem = chunk2mem(p); - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - - else if (nb < ms->topsize) { /* Split top */ - size_t rsize = ms->topsize -= nb; - mchunkptr p = ms->top; - mchunkptr r = ms->top = chunk_plus_offset(p, nb); - r->head = rsize | PINUSE_BIT; - set_size_and_pinuse_of_inuse_chunk(ms, p, nb); - mem = chunk2mem(p); - check_top_chunk(ms, ms->top); - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - - mem = sys_alloc(ms, nb); - - postaction: - ;//POSTACTION(ms); - return mem; - } - - return 0; -} - -//This function is equal to try_realloc_chunk but handling -//minimum and desired bytes -static mchunkptr try_realloc_chunk_with_min(mstate m, mchunkptr p, size_t min_nb, size_t des_nb, int can_move) -{ - mchunkptr newp = 0; - size_t oldsize = chunksize(p); - mchunkptr next = chunk_plus_offset(p, oldsize); - if (RTCHECK(ok_address(m, p) && ok_inuse(p) && - ok_next(p, next) && ok_pinuse(next))) { - if (is_mmapped(p)) { - newp = mmap_resize(m, p, des_nb, can_move); - if(!newp) //mmap does not return how many bytes we could reallocate, so go the minimum - newp = mmap_resize(m, p, min_nb, can_move); - } - else if (oldsize >= min_nb) { /* already big enough */ - size_t nb = oldsize >= des_nb ? des_nb : oldsize; - size_t rsize = oldsize - nb; - if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */ - mchunkptr r = chunk_plus_offset(p, nb); - set_inuse(m, p, nb); - set_inuse(m, r, rsize); - dispose_chunk(m, r, rsize); - } - newp = p; - } - else if (next == m->top) { /* extend into top */ - if (oldsize + m->topsize > min_nb) { - size_t nb = (oldsize + m->topsize) > des_nb ? des_nb : (oldsize + m->topsize - MALLOC_ALIGNMENT); - size_t newsize = oldsize + m->topsize; - size_t newtopsize = newsize - nb; - mchunkptr newtop = chunk_plus_offset(p, nb); - set_inuse(m, p, nb); - newtop->head = newtopsize |PINUSE_BIT; - m->top = newtop; - m->topsize = newtopsize; - newp = p; - } - } - else if (next == m->dv) { /* extend into dv */ - size_t dvs = m->dvsize; - if (oldsize + dvs >= min_nb) { - size_t nb = (oldsize + dvs) >= des_nb ? des_nb : (oldsize + dvs); - size_t dsize = oldsize + dvs - nb; - if (dsize >= MIN_CHUNK_SIZE) { - mchunkptr r = chunk_plus_offset(p, nb); - mchunkptr n = chunk_plus_offset(r, dsize); - set_inuse(m, p, nb); - set_size_and_pinuse_of_free_chunk(r, dsize); - clear_pinuse(n); - m->dvsize = dsize; - m->dv = r; - } - else { /* exhaust dv */ - size_t newsize = oldsize + dvs; - set_inuse(m, p, newsize); - m->dvsize = 0; - m->dv = 0; - } - newp = p; - } - } - else if (!cinuse(next)) { /* extend into next free chunk */ - size_t nextsize = chunksize(next); - if (oldsize + nextsize >= min_nb) { - size_t nb = (oldsize + nextsize) >= des_nb ? des_nb : (oldsize + nextsize); - size_t rsize = oldsize + nextsize - nb; - unlink_chunk(m, next, nextsize); - if (rsize < MIN_CHUNK_SIZE) { - size_t newsize = oldsize + nextsize; - set_inuse(m, p, newsize); - } - else { - mchunkptr r = chunk_plus_offset(p, nb); - set_inuse(m, p, nb); - set_inuse(m, r, rsize); - dispose_chunk(m, r, rsize); - } - newp = p; - } - } - } - else { - USAGE_ERROR_ACTION(m, chunk2mem(p)); - } - return newp; -} - -#define BOOST_ALLOC_PLUS_MEMCHAIN_MEM_JUMP_NEXT(THISMEM, NEXTMEM) \ - *((void**)(THISMEM)) = *((void**)((NEXTMEM))) - -//This function is based on internal_bulk_free -//replacing iteration over array[] with boost_cont_memchain. -//Instead of returning the unallocated nodes, returns a chain of non-deallocated nodes. -//After forward merging, backwards merging is also tried -static void internal_multialloc_free(mstate m, boost_cont_memchain *pchain) -{ -#if FOOTERS - boost_cont_memchain ret_chain; - BOOST_CONTAINER_MEMCHAIN_INIT(&ret_chain); -#endif - if (!PREACTION(m)) { - boost_cont_memchain_it a_it = BOOST_CONTAINER_MEMCHAIN_BEGIN_IT(pchain); - while(!BOOST_CONTAINER_MEMCHAIN_IS_END_IT(pchain, a_it)) { /* Iterate though all memory holded by the chain */ - void* a_mem = BOOST_CONTAINER_MEMIT_ADDR(a_it); - mchunkptr a_p = mem2chunk(a_mem); - size_t psize = chunksize(a_p); -#if FOOTERS - if (get_mstate_for(a_p) != m) { - BOOST_CONTAINER_MEMIT_NEXT(a_it); - BOOST_CONTAINER_MEMCHAIN_PUSH_BACK(&ret_chain, a_mem); - continue; - } -#endif - check_inuse_chunk(m, a_p); - if (RTCHECK(ok_address(m, a_p) && ok_inuse(a_p))) { - while(1) { /* Internal loop to speed up forward and backward merging (avoids some redundant checks) */ - boost_cont_memchain_it b_it = a_it; - BOOST_CONTAINER_MEMIT_NEXT(b_it); - if(!BOOST_CONTAINER_MEMCHAIN_IS_END_IT(pchain, b_it)){ - void *b_mem = BOOST_CONTAINER_MEMIT_ADDR(b_it); - mchunkptr b_p = mem2chunk(b_mem); - if (b_p == next_chunk(a_p)) { /* b chunk is contiguous and next so b's size can be added to a */ - psize += chunksize(b_p); - set_inuse(m, a_p, psize); - BOOST_ALLOC_PLUS_MEMCHAIN_MEM_JUMP_NEXT(a_mem, b_mem); - continue; - } - if(RTCHECK(ok_address(m, b_p) && ok_inuse(b_p))){ - /* b chunk is contiguous and previous so a's size can be added to b */ - if(a_p == next_chunk(b_p)) { - psize += chunksize(b_p); - set_inuse(m, b_p, psize); - a_it = b_it; - a_p = b_p; - a_mem = b_mem; - continue; - } - } - } - /* Normal deallocation starts again in the outer loop */ - a_it = b_it; - s_allocated_memory -= psize; - dispose_chunk(m, a_p, psize); - break; - } - } - else { - CORRUPTION_ERROR_ACTION(m); - break; - } - } - if (should_trim(m, m->topsize)) - sys_trim(m, 0); - POSTACTION(m); - } -#if FOOTERS - { - boost_cont_memchain_it last_pchain = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain); - BOOST_CONTAINER_MEMCHAIN_INIT(pchain); - BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER - (pchain - , last_pchain - , BOOST_CONTAINER_MEMCHAIN_FIRSTMEM(&ret_chain) - , BOOST_CONTAINER_MEMCHAIN_LASTMEM(&ret_chain) - , BOOST_CONTAINER_MEMCHAIN_SIZE(&ret_chain) - ); - } -#endif -} - -/////////////////////////////////////////////////////////////// -/////////////////////////////////////////////////////////////// -/////////////////////////////////////////////////////////////// -// -// NEW FUNCTIONS BASED ON DLMALLOC INTERNALS -// -/////////////////////////////////////////////////////////////// -/////////////////////////////////////////////////////////////// -/////////////////////////////////////////////////////////////// - -#define GET_TRUNCATED_SIZE(ORIG_SIZE, ROUNDTO) ((ORIG_SIZE)/(ROUNDTO)*(ROUNDTO)) -#define GET_ROUNDED_SIZE(ORIG_SIZE, ROUNDTO) ((((ORIG_SIZE)-1)/(ROUNDTO)+1)*(ROUNDTO)) -#define GET_TRUNCATED_PO2_SIZE(ORIG_SIZE, ROUNDTO) ((ORIG_SIZE) & (~(ROUNDTO-1))) -#define GET_ROUNDED_PO2_SIZE(ORIG_SIZE, ROUNDTO) (((ORIG_SIZE - 1) & (~(ROUNDTO-1))) + ROUNDTO) - -/* Greatest common divisor and least common multiple - gcd is an algorithm that calculates the greatest common divisor of two - integers, using Euclid's algorithm. - - Pre: A > 0 && B > 0 - Recommended: A > B*/ -#define CALCULATE_GCD(A, B, OUT)\ -{\ - size_t a = A;\ - size_t b = B;\ - do\ - {\ - size_t tmp = b;\ - b = a % b;\ - a = tmp;\ - } while (b != 0);\ -\ - OUT = a;\ -} - -/* lcm is an algorithm that calculates the least common multiple of two - integers. - - Pre: A > 0 && B > 0 - Recommended: A > B*/ -#define CALCULATE_LCM(A, B, OUT)\ -{\ - CALCULATE_GCD(A, B, OUT);\ - OUT = (A / OUT)*B;\ -} - -static int calculate_lcm_and_needs_backwards_lcmed - (size_t backwards_multiple, size_t received_size, size_t size_to_achieve, - size_t *plcm, size_t *pneeds_backwards_lcmed) -{ - /* Now calculate lcm */ - size_t max = backwards_multiple; - size_t min = MALLOC_ALIGNMENT; - size_t needs_backwards; - size_t needs_backwards_lcmed; - size_t lcm; - size_t current_forward; - /*Swap if necessary*/ - if(max < min){ - size_t tmp = min; - min = max; - max = tmp; - } - /*Check if it's power of two*/ - if((backwards_multiple & (backwards_multiple-1)) == 0){ - if(0 != (size_to_achieve & ((backwards_multiple-1)))){ - USAGE_ERROR_ACTION(m, oldp); - return 0; - } - - lcm = max; - /*If we want to use minbytes data to get a buffer between maxbytes - and minbytes if maxbytes can't be achieved, calculate the - biggest of all possibilities*/ - current_forward = GET_TRUNCATED_PO2_SIZE(received_size, backwards_multiple); - needs_backwards = size_to_achieve - current_forward; - assert((needs_backwards % backwards_multiple) == 0); - needs_backwards_lcmed = GET_ROUNDED_PO2_SIZE(needs_backwards, lcm); - *plcm = lcm; - *pneeds_backwards_lcmed = needs_backwards_lcmed; - return 1; - } - /*Check if it's multiple of alignment*/ - else if((backwards_multiple & (MALLOC_ALIGNMENT - 1u)) == 0){ - lcm = backwards_multiple; - current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple); - //No need to round needs_backwards because backwards_multiple == lcm - needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward; - assert((needs_backwards_lcmed & (MALLOC_ALIGNMENT - 1u)) == 0); - *plcm = lcm; - *pneeds_backwards_lcmed = needs_backwards_lcmed; - return 1; - } - /*Check if it's multiple of the half of the alignmment*/ - else if((backwards_multiple & ((MALLOC_ALIGNMENT/2u) - 1u)) == 0){ - lcm = backwards_multiple*2u; - current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple); - needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward; - if(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))) - //while(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))) - needs_backwards_lcmed += backwards_multiple; - assert((needs_backwards_lcmed % lcm) == 0); - *plcm = lcm; - *pneeds_backwards_lcmed = needs_backwards_lcmed; - return 1; - } - /*Check if it's multiple of the quarter of the alignmment*/ - else if((backwards_multiple & ((MALLOC_ALIGNMENT/4u) - 1u)) == 0){ - size_t remainder; - lcm = backwards_multiple*4u; - current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple); - needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward; - //while(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))) - //needs_backwards_lcmed += backwards_multiple; - if(0 != (remainder = ((needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))>>(MALLOC_ALIGNMENT/8u)))){ - if(backwards_multiple & MALLOC_ALIGNMENT/2u){ - needs_backwards_lcmed += (remainder)*backwards_multiple; - } - else{ - needs_backwards_lcmed += (4-remainder)*backwards_multiple; - } - } - assert((needs_backwards_lcmed % lcm) == 0); - *plcm = lcm; - *pneeds_backwards_lcmed = needs_backwards_lcmed; - return 1; - } - else{ - CALCULATE_LCM(max, min, lcm); - /*If we want to use minbytes data to get a buffer between maxbytes - and minbytes if maxbytes can't be achieved, calculate the - biggest of all possibilities*/ - current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple); - needs_backwards = size_to_achieve - current_forward; - assert((needs_backwards % backwards_multiple) == 0); - needs_backwards_lcmed = GET_ROUNDED_SIZE(needs_backwards, lcm); - *plcm = lcm; - *pneeds_backwards_lcmed = needs_backwards_lcmed; - return 1; - } -} - -static void *internal_grow_both_sides - (mstate m - ,allocation_type command - ,void *oldmem - ,size_t minbytes - ,size_t maxbytes - ,size_t *received_size - ,size_t backwards_multiple - ,int only_preferred_backwards) -{ - mchunkptr oldp = mem2chunk(oldmem); - size_t oldsize = chunksize(oldp); - *received_size = oldsize - overhead_for(oldp); - if(minbytes <= *received_size) - return oldmem; - - if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp))) { - if(command & BOOST_CONTAINER_EXPAND_FWD){ - if(try_realloc_chunk_with_min(m, oldp, request2size(minbytes), request2size(maxbytes), 0)){ - check_inuse_chunk(m, oldp); - *received_size = DL_SIZE_IMPL(oldmem); - s_allocated_memory += chunksize(oldp) - oldsize; - return oldmem; - } - } - else{ - *received_size = DL_SIZE_IMPL(oldmem); - if(*received_size >= maxbytes) - return oldmem; - } -/* - Should we check this? - if(backwards_multiple && - (0 != (minbytes % backwards_multiple) && - 0 != (maxbytes % backwards_multiple)) ){ - USAGE_ERROR_ACTION(m, oldp); - return 0; - } -*/ - /* We reach here only if forward expansion fails */ - if(!(command & BOOST_CONTAINER_EXPAND_BWD) || pinuse(oldp)){ - return 0; - } - { - size_t prevsize = oldp->prev_foot; - if ((prevsize & USE_MMAP_BIT) != 0){ - /*Return failure the previous chunk was mmapped. - mremap does not allow expanding to a fixed address (MREMAP_MAYMOVE) without - copying (MREMAP_MAYMOVE must be also set).*/ - return 0; - } - else { - mchunkptr prev = chunk_minus_offset(oldp, prevsize); - size_t dsize = oldsize + prevsize; - size_t needs_backwards_lcmed; - size_t lcm; - - /* Let's calculate the number of extra bytes of data before the current - block's begin. The value is a multiple of backwards_multiple - and the alignment*/ - if(!calculate_lcm_and_needs_backwards_lcmed - ( backwards_multiple, *received_size - , only_preferred_backwards ? maxbytes : minbytes - , &lcm, &needs_backwards_lcmed) - || !RTCHECK(ok_address(m, prev))){ - USAGE_ERROR_ACTION(m, oldp); - return 0; - } - /* Check if previous block has enough size */ - else if(prevsize < needs_backwards_lcmed){ - /* preferred size? */ - return 0; - } - /* Now take all next space. This must succeed, as we've previously calculated the correct size */ - if(command & BOOST_CONTAINER_EXPAND_FWD){ - if(!try_realloc_chunk_with_min(m, oldp, request2size(*received_size), request2size(*received_size), 0)){ - assert(0); - } - check_inuse_chunk(m, oldp); - *received_size = DL_SIZE_IMPL(oldmem); - s_allocated_memory += chunksize(oldp) - oldsize; - oldsize = chunksize(oldp); - dsize = oldsize + prevsize; - } - /* We need a minimum size to split the previous one */ - if(prevsize >= (needs_backwards_lcmed + MIN_CHUNK_SIZE)){ - mchunkptr r = chunk_minus_offset(oldp, needs_backwards_lcmed); - size_t rsize = oldsize + needs_backwards_lcmed; - size_t newprevsize = dsize - rsize; - int prev_was_dv = prev == m->dv; - - assert(newprevsize >= MIN_CHUNK_SIZE); - - if (prev_was_dv) { - m->dvsize = newprevsize; - } - else{/* if ((next->head & INUSE_BITS) == INUSE_BITS) { */ - unlink_chunk(m, prev, prevsize); - insert_chunk(m, prev, newprevsize); - } - - set_size_and_pinuse_of_free_chunk(prev, newprevsize); - clear_pinuse(r); - set_inuse(m, r, rsize); - check_malloced_chunk(m, chunk2mem(r), rsize); - *received_size = chunksize(r) - overhead_for(r); - s_allocated_memory += chunksize(r) - oldsize; - return chunk2mem(r); - } - /* Check if there is no place to create a new block and - the whole new block is multiple of the backwards expansion multiple */ - else if(prevsize >= needs_backwards_lcmed && !(prevsize % lcm)) { - /* Just merge the whole previous block */ - /* prevsize is multiple of lcm (and backwards_multiple)*/ - *received_size += prevsize; - - if (prev != m->dv) { - unlink_chunk(m, prev, prevsize); - } - else{ - m->dvsize = 0; - m->dv = 0; - } - set_inuse(m, prev, dsize); - check_malloced_chunk(m, chunk2mem(prev), dsize); - s_allocated_memory += chunksize(prev) - oldsize; - return chunk2mem(prev); - } - else{ - /* Previous block was big enough but there is no room - to create an empty block and taking the whole block does - not fulfill alignment requirements */ - return 0; - } - } - } - } - else{ - USAGE_ERROR_ACTION(m, oldmem); - return 0; - } - return 0; -} - -/* This is similar to mmap_resize but: - * Only to shrink - * It takes min and max sizes - * Takes additional 'do_commit' argument to obtain the final - size before doing the real shrink operation. -*/ -static int internal_mmap_shrink_in_place(mstate m, mchunkptr oldp, size_t nbmin, size_t nbmax, size_t *received_size, int do_commit) -{ - size_t oldsize = chunksize(oldp); - *received_size = oldsize; - #if HAVE_MREMAP - if (is_small(nbmax)) /* Can't shrink mmap regions below small size */ - return 0; - { - size_t effective_min = nbmin > MIN_LARGE_SIZE ? nbmin : MIN_LARGE_SIZE; - /* Keep old chunk if big enough but not too big */ - if (oldsize >= effective_min + SIZE_T_SIZE && - (oldsize - effective_min) <= (mparams.granularity << 1)) - return 0; - /* Now calculate new sizes */ - { - size_t offset = oldp->prev_foot; - size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; - size_t newmmsize = mmap_align(effective_min + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); - *received_size = newmmsize; - if(!do_commit){ - const int flags = 0; /* placate people compiling -Wunused */ - char* cp = (char*)CALL_MREMAP((char*)oldp - offset, - oldmmsize, newmmsize, flags); - /*This must always succeed */ - if(!cp){ - USAGE_ERROR_ACTION(m, m); - return 0; - } - { - mchunkptr newp = (mchunkptr)(cp + offset); - size_t psize = newmmsize - offset - MMAP_FOOT_PAD; - newp->head = psize; - mark_inuse_foot(m, newp, psize); - chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; - chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; - - if (cp < m->least_addr) - m->least_addr = cp; - if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) - m->max_footprint = m->footprint; - check_mmapped_chunk(m, newp); - } - } - } - return 1; - } - #else //#if HAVE_MREMAP - (void)m; - (void)oldp; - (void)nbmin; - (void)nbmax; - (void)received_size; - (void)do_commit; - return 0; - #endif //#if HAVE_MREMAP -} - -static int internal_shrink(mstate m, void* oldmem, size_t minbytes, size_t maxbytes, size_t *received_size, int do_commit) -{ - *received_size = chunksize(mem2chunk(oldmem)) - overhead_for(mem2chunk(oldmem)); - if (minbytes >= MAX_REQUEST || maxbytes >= MAX_REQUEST) { - MALLOC_FAILURE_ACTION; - return 0; - } - else if(minbytes < MIN_REQUEST){ - minbytes = MIN_REQUEST; - } - if (minbytes > maxbytes) { - return 0; - } - - { - mchunkptr oldp = mem2chunk(oldmem); - size_t oldsize = chunksize(oldp); - mchunkptr next = chunk_plus_offset(oldp, oldsize); - void* extra = 0; - - /* Try to either shrink or extend into top. Else malloc-copy-free*/ - if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp) && - ok_next(oldp, next) && ok_pinuse(next))) { - size_t nbmin = request2size(minbytes); - size_t nbmax = request2size(maxbytes); - - if (nbmin > oldsize){ - /* Return error if old size is too small */ - } - else if (is_mmapped(oldp)){ - return internal_mmap_shrink_in_place(m, oldp, nbmin, nbmax, received_size, do_commit); - } - else{ // nbmin <= oldsize /* already big enough*/ - size_t nb = nbmin; - size_t rsize = oldsize - nb; - if (rsize >= MIN_CHUNK_SIZE) { - if(do_commit){ - mchunkptr remainder = chunk_plus_offset(oldp, nb); - set_inuse(m, oldp, nb); - set_inuse(m, remainder, rsize); - extra = chunk2mem(remainder); - } - *received_size = nb - overhead_for(oldp); - if(!do_commit) - return 1; - } - } - } - else { - USAGE_ERROR_ACTION(m, oldmem); - return 0; - } - - if (extra != 0 && do_commit) { - mspace_free_lockless(m, extra); - check_inuse_chunk(m, oldp); - return 1; - } - else { - return 0; - } - } -} - - -#define INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM 4096 - -#define SQRT_MAX_SIZE_T (((size_t)-1)>>(sizeof(size_t)*CHAR_BIT/2)) - -static int internal_node_multialloc - (mstate m, size_t n_elements, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) { - void* mem; /* malloced aggregate space */ - mchunkptr p; /* corresponding chunk */ - size_t remainder_size; /* remaining bytes while splitting */ - flag_t was_enabled; /* to disable mmap */ - size_t elements_per_segment = 0; - size_t element_req_size = request2size(element_size); - boost_cont_memchain_it prev_last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain); - - /*Error if wrong element_size parameter */ - if( !element_size || - /*OR Error if n_elements less thatn contiguous_elements */ - ((contiguous_elements + 1) > (DL_MULTIALLOC_DEFAULT_CONTIGUOUS + 1) && n_elements < contiguous_elements) || - /* OR Error if integer overflow */ - (SQRT_MAX_SIZE_T < (element_req_size | contiguous_elements) && - (MAX_SIZE_T/element_req_size) < contiguous_elements)){ - return 0; - } - switch(contiguous_elements){ - case DL_MULTIALLOC_DEFAULT_CONTIGUOUS: - { - /* Default contiguous, just check that we can store at least one element */ - elements_per_segment = INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM/element_req_size; - elements_per_segment += (size_t)(!elements_per_segment); - } - break; - case DL_MULTIALLOC_ALL_CONTIGUOUS: - /* All elements should be allocated in a single call */ - elements_per_segment = n_elements; - break; - default: - /* Allocate in chunks of "contiguous_elements" */ - elements_per_segment = contiguous_elements; - } - - { - size_t i; - size_t next_i; - /* - Allocate the aggregate chunk. First disable direct-mmapping so - malloc won't use it, since we would not be able to later - free/realloc space internal to a segregated mmap region. - */ - was_enabled = use_mmap(m); - disable_mmap(m); - for(i = 0; i != n_elements; i = next_i) - { - size_t accum_size; - size_t n_elements_left = n_elements - i; - next_i = i + ((n_elements_left < elements_per_segment) ? n_elements_left : elements_per_segment); - accum_size = element_req_size*(next_i - i); - - mem = mspace_malloc_lockless(m, accum_size - CHUNK_OVERHEAD); - if (mem == 0){ - BOOST_CONTAINER_MEMIT_NEXT(prev_last_it); - while(i--){ - void *addr = BOOST_CONTAINER_MEMIT_ADDR(prev_last_it); - BOOST_CONTAINER_MEMIT_NEXT(prev_last_it); - mspace_free_lockless(m, addr); - } - if (was_enabled) - enable_mmap(m); - return 0; - } - p = mem2chunk(mem); - remainder_size = chunksize(p); - s_allocated_memory += remainder_size; - - assert(!is_mmapped(p)); - { /* split out elements */ - void *mem_orig = mem; - boost_cont_memchain_it last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain); - size_t num_elements = next_i-i; - - size_t num_loops = num_elements - 1; - remainder_size -= element_req_size*num_loops; - while(num_loops--){ - void **mem_prev = ((void**)mem); - set_size_and_pinuse_of_inuse_chunk(m, p, element_req_size); - p = chunk_plus_offset(p, element_req_size); - mem = chunk2mem(p); - *mem_prev = mem; - } - set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); - BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER(pchain, last_it, mem_orig, mem, num_elements); - } - } - if (was_enabled) - enable_mmap(m); - } - return 1; -} - -static int internal_multialloc_arrays - (mstate m, size_t n_elements, const size_t* sizes, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) { - void* mem; /* malloced aggregate space */ - mchunkptr p; /* corresponding chunk */ - size_t remainder_size; /* remaining bytes while splitting */ - flag_t was_enabled; /* to disable mmap */ - size_t size; - size_t boost_cont_multialloc_segmented_malloc_size; - size_t max_size; - - /* Check overflow */ - if(!element_size){ - return 0; - } - max_size = MAX_REQUEST/element_size; - /* Different sizes*/ - switch(contiguous_elements){ - case DL_MULTIALLOC_DEFAULT_CONTIGUOUS: - /* Use default contiguous mem */ - boost_cont_multialloc_segmented_malloc_size = INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM; - break; - case DL_MULTIALLOC_ALL_CONTIGUOUS: - boost_cont_multialloc_segmented_malloc_size = MAX_REQUEST + CHUNK_OVERHEAD; - break; - default: - if(max_size < contiguous_elements){ - return 0; - } - else{ - /* The suggested buffer is just the the element count by the size */ - boost_cont_multialloc_segmented_malloc_size = element_size*contiguous_elements; - } - } - - { - size_t i; - size_t next_i; - /* - Allocate the aggregate chunk. First disable direct-mmapping so - malloc won't use it, since we would not be able to later - free/realloc space internal to a segregated mmap region. - */ - was_enabled = use_mmap(m); - disable_mmap(m); - for(i = 0, next_i = 0; i != n_elements; i = next_i) - { - int error = 0; - size_t accum_size; - for(accum_size = 0; next_i != n_elements; ++next_i){ - size_t cur_array_size = sizes[next_i]; - if(max_size < cur_array_size){ - error = 1; - break; - } - else{ - size_t reqsize = request2size(cur_array_size*element_size); - if(((boost_cont_multialloc_segmented_malloc_size - CHUNK_OVERHEAD) - accum_size) < reqsize){ - if(!accum_size){ - accum_size += reqsize; - ++next_i; - } - break; - } - accum_size += reqsize; - } - } - - mem = error ? 0 : mspace_malloc_lockless(m, accum_size - CHUNK_OVERHEAD); - if (mem == 0){ - boost_cont_memchain_it it = BOOST_CONTAINER_MEMCHAIN_BEGIN_IT(pchain); - while(i--){ - void *addr = BOOST_CONTAINER_MEMIT_ADDR(it); - BOOST_CONTAINER_MEMIT_NEXT(it); - mspace_free_lockless(m, addr); - } - if (was_enabled) - enable_mmap(m); - return 0; - } - p = mem2chunk(mem); - remainder_size = chunksize(p); - s_allocated_memory += remainder_size; - - assert(!is_mmapped(p)); - - { /* split out elements */ - void *mem_orig = mem; - boost_cont_memchain_it last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain); - size_t num_elements = next_i-i; - - for(++i; i != next_i; ++i) { - void **mem_prev = ((void**)mem); - size = request2size(sizes[i]*element_size); - remainder_size -= size; - set_size_and_pinuse_of_inuse_chunk(m, p, size); - p = chunk_plus_offset(p, size); - mem = chunk2mem(p); - *mem_prev = mem; - } - set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); - BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER(pchain, last_it, mem_orig, mem, num_elements); - } - } - if (was_enabled) - enable_mmap(m); - } - return 1; -} - -int boost_cont_multialloc_arrays - (size_t n_elements, const size_t *sizes, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) -{ - int ret = 0; - mstate ms = (mstate)gm; - ensure_initialization(); - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - } - else if (!PREACTION(ms)) { - ret = internal_multialloc_arrays(ms, n_elements, sizes, element_size, contiguous_elements, pchain); - POSTACTION(ms); - } - return ret; -} - - -/*Doug Lea malloc extensions*/ -static boost_cont_malloc_stats_t get_malloc_stats(mstate m) -{ - boost_cont_malloc_stats_t ret = { 0, 0, 0 }; - ensure_initialization(); - if (!PREACTION(m)) { - size_t maxfp = 0; - size_t fp = 0; - size_t used = 0; - check_malloc_state(m); - if (is_initialized(m)) { - msegmentptr s = &m->seg; - maxfp = m->max_footprint; - fp = m->footprint; - used = fp - (m->topsize + TOP_FOOT_SIZE); - - while (s != 0) { - mchunkptr q = align_as_chunk(s->base); - while (segment_holds(s, q) && - q != m->top && q->head != FENCEPOST_HEAD) { - if (!cinuse(q)) - used -= chunksize(q); - q = next_chunk(q); - } - s = s->next; - } - } - - ret.max_system_bytes = maxfp; - ret.system_bytes = fp; - ret.in_use_bytes = used; - POSTACTION(m); - } - return ret; -} - -size_t boost_cont_size(const void *p) -{ return DL_SIZE_IMPL(p); } - -void* boost_cont_malloc(size_t bytes) -{ - size_t received_bytes; - ensure_initialization(); - return boost_cont_allocation_command - (BOOST_CONTAINER_ALLOCATE_NEW, 1, bytes, bytes, &received_bytes, 0).first; -} - -void boost_cont_free(void* mem) -{ - mstate ms = (mstate)gm; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - } - else if (!PREACTION(ms)) { - mspace_free_lockless(ms, mem); - POSTACTION(ms); - } -} - -void* boost_cont_memalign(size_t bytes, size_t alignment) -{ - void *addr; - ensure_initialization(); - addr = mspace_memalign(gm, alignment, bytes); - if(addr){ - s_allocated_memory += chunksize(mem2chunk(addr)); - } - return addr; -} - -int boost_cont_multialloc_nodes - (size_t n_elements, size_t elem_size, size_t contiguous_elements, boost_cont_memchain *pchain) -{ - int ret = 0; - mstate ms = (mstate)gm; - ensure_initialization(); - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - } - else if (!PREACTION(ms)) { - ret = internal_node_multialloc(ms, n_elements, elem_size, contiguous_elements, pchain); - POSTACTION(ms); - } - return ret; -} - -size_t boost_cont_footprint() -{ - return ((mstate)gm)->footprint; -} - -size_t boost_cont_allocated_memory() -{ - size_t alloc_mem = 0; - mstate m = (mstate)gm; - ensure_initialization(); - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - } - - - if (!PREACTION(m)) { - check_malloc_state(m); - if (is_initialized(m)) { - size_t nfree = SIZE_T_ONE; /* top always free */ - size_t mfree = m->topsize + TOP_FOOT_SIZE; - size_t sum = mfree; - msegmentptr s = &m->seg; - while (s != 0) { - mchunkptr q = align_as_chunk(s->base); - while (segment_holds(s, q) && - q != m->top && q->head != FENCEPOST_HEAD) { - size_t sz = chunksize(q); - sum += sz; - if (!is_inuse(q)) { - mfree += sz; - ++nfree; - } - q = next_chunk(q); - } - s = s->next; - } - { - size_t uordblks = m->footprint - mfree; - if(nfree) - alloc_mem = (size_t)(uordblks - (nfree-1)*TOP_FOOT_SIZE); - else - alloc_mem = uordblks; - } - } - - POSTACTION(m); - } - return alloc_mem; -} - -size_t boost_cont_chunksize(const void *p) -{ return chunksize(mem2chunk(p)); } - -int boost_cont_all_deallocated() -{ return !s_allocated_memory; } - -boost_cont_malloc_stats_t boost_cont_malloc_stats() -{ - mstate ms = (mstate)gm; - if (ok_magic(ms)) { - return get_malloc_stats(ms); - } - else { - boost_cont_malloc_stats_t r = { 0, 0, 0 }; - USAGE_ERROR_ACTION(ms,ms); - return r; - } -} - -size_t boost_cont_in_use_memory() -{ return s_allocated_memory; } - -int boost_cont_trim(size_t pad) -{ - ensure_initialization(); - return dlmalloc_trim(pad); -} - -int boost_cont_grow - (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received) -{ - mstate ms = (mstate)gm; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - - if (!PREACTION(ms)) { - mchunkptr p = mem2chunk(oldmem); - size_t oldsize = chunksize(p); - p = try_realloc_chunk_with_min(ms, p, request2size(minbytes), request2size(maxbytes), 0); - POSTACTION(ms); - if(p){ - check_inuse_chunk(ms, p); - *received = DL_SIZE_IMPL(oldmem); - s_allocated_memory += chunksize(p) - oldsize; - } - return 0 != p; - } - return 0; -} - -int boost_cont_shrink - (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received, int do_commit) -{ - mstate ms = (mstate)gm; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - - if (!PREACTION(ms)) { - int ret = internal_shrink(ms, oldmem, minbytes, maxbytes, received, do_commit); - POSTACTION(ms); - return 0 != ret; - } - return 0; -} - - -void* boost_cont_alloc - (size_t minbytes, size_t preferred_bytes, size_t *received_bytes) -{ - //ensure_initialization provided by boost_cont_allocation_command - return boost_cont_allocation_command - (BOOST_CONTAINER_ALLOCATE_NEW, 1, minbytes, preferred_bytes, received_bytes, 0).first; -} - -void boost_cont_multidealloc(boost_cont_memchain *pchain) -{ - mstate ms = (mstate)gm; - if (!ok_magic(ms)) { - (void)ms; - USAGE_ERROR_ACTION(ms,ms); - } - internal_multialloc_free(ms, pchain); -} - -int boost_cont_malloc_check() -{ -#ifdef DEBUG - mstate ms = (mstate)gm; - ensure_initialization(); - if (!ok_magic(ms)) { - (void)ms; - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - check_malloc_state(ms); - return 1; -#else - return 1; -#endif -} - - -boost_cont_command_ret_t boost_cont_allocation_command - (allocation_type command, size_t sizeof_object, size_t limit_size - , size_t preferred_size, size_t *received_size, void *reuse_ptr) -{ - boost_cont_command_ret_t ret = { 0, 0 }; - ensure_initialization(); - if(command & (BOOST_CONTAINER_SHRINK_IN_PLACE | BOOST_CONTAINER_TRY_SHRINK_IN_PLACE)){ - int success = boost_cont_shrink( reuse_ptr, preferred_size, limit_size - , received_size, (command & BOOST_CONTAINER_SHRINK_IN_PLACE)); - ret.first = success ? reuse_ptr : 0; - return ret; - } - - *received_size = 0; - - if(limit_size > preferred_size) - return ret; - - { - mstate ms = (mstate)gm; - - /*Expand in place*/ - if (!PREACTION(ms)) { - #if FOOTERS - if(reuse_ptr){ - mstate m = get_mstate_for(mem2chunk(reuse_ptr)); - if (!ok_magic(m)) { - USAGE_ERROR_ACTION(m, reuse_ptr); - return ret; - } - } - #endif - if(reuse_ptr && (command & (BOOST_CONTAINER_EXPAND_FWD | BOOST_CONTAINER_EXPAND_BWD))){ - void *r = internal_grow_both_sides - ( ms, command, reuse_ptr, limit_size - , preferred_size, received_size, sizeof_object, 1); - if(r){ - ret.first = r; - ret.second = 1; - goto postaction; - } - } - - if(command & BOOST_CONTAINER_ALLOCATE_NEW){ - void *addr = mspace_malloc_lockless(ms, preferred_size); - if(!addr) addr = mspace_malloc_lockless(ms, limit_size); - if(addr){ - s_allocated_memory += chunksize(mem2chunk(addr)); - *received_size = DL_SIZE_IMPL(addr); - } - ret.first = addr; - ret.second = 0; - if(addr){ - goto postaction; - } - } - - //Now try to expand both sides with min size - if(reuse_ptr && (command & (BOOST_CONTAINER_EXPAND_FWD | BOOST_CONTAINER_EXPAND_BWD))){ - void *r = internal_grow_both_sides - ( ms, command, reuse_ptr, limit_size - , preferred_size, received_size, sizeof_object, 0); - if(r){ - ret.first = r; - ret.second = 1; - goto postaction; - } - } - postaction: - POSTACTION(ms); - } - } - return ret; -} - -int boost_cont_mallopt(int param_number, int value) -{ - return change_mparam(param_number, value); -} - -void *boost_cont_sync_create() -{ - void *p = boost_cont_malloc(sizeof(MLOCK_T)); - if(p){ - if(0 != INITIAL_LOCK((MLOCK_T*)p)){ - boost_cont_free(p); - p = 0; - } - } - return p; -} - -void boost_cont_sync_destroy(void *sync) -{ - if(sync){ - (void)DESTROY_LOCK((MLOCK_T*)sync); - boost_cont_free(sync); - } -} - -int boost_cont_sync_lock(void *sync) -{ return 0 == (ACQUIRE_LOCK((MLOCK_T*)sync)); } - -void boost_cont_sync_unlock(void *sync) -{ RELEASE_LOCK((MLOCK_T*)sync); } - -int boost_cont_global_sync_lock() -{ - int ret; - ensure_initialization(); - ret = ACQUIRE_MALLOC_GLOBAL_LOCK(); - return 0 == ret; -} - -void boost_cont_global_sync_unlock() -{ - RELEASE_MALLOC_GLOBAL_LOCK() -} - -//#ifdef DL_DEBUG_DEFINED -// #undef DEBUG -//#endif - -#ifdef _MSC_VER -#pragma warning (pop) -#endif +////////////////////////////////////////////////////////////////////////////// +// +// (C) Copyright Ion Gaztanaga 2007-2015. Distributed under the Boost +// Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) +// +// See http://www.boost.org/libs/container for documentation. +// +////////////////////////////////////////////////////////////////////////////// + +#include <boost/container/detail/alloc_lib.h> + +#include "errno.h" //dlmalloc bug EINVAL is used in posix_memalign without checking LACKS_ERRNO_H +#include "limits.h" //CHAR_BIT +#ifdef BOOST_CONTAINER_DLMALLOC_FOOTERS +#define FOOTERS 1 +#endif +#define USE_LOCKS 1 +#define MSPACES 1 +#define NO_MALLINFO 1 +#define NO_MALLOC_STATS 1 + + +#if !defined(NDEBUG) + #if !defined(DEBUG) + #define DEBUG 1 + #define DL_DEBUG_DEFINED + #endif +#endif + +#define USE_DL_PREFIX + +#ifdef __GNUC__ +#define FORCEINLINE inline +#endif +#include "dlmalloc_2_8_6.c" + +#ifdef _MSC_VER +#pragma warning (push) +#pragma warning (disable : 4127) +#pragma warning (disable : 4267) +#pragma warning (disable : 4127) +#pragma warning (disable : 4702) +#pragma warning (disable : 4390) /*empty controlled statement found; is this the intent?*/ +#pragma warning (disable : 4251 4231 4660) /*dll warnings*/ +#endif + +#define DL_SIZE_IMPL(p) (chunksize(mem2chunk(p)) - overhead_for(mem2chunk(p))) + +static size_t s_allocated_memory; + +/////////////////////////////////////////////////////////////// +/////////////////////////////////////////////////////////////// +/////////////////////////////////////////////////////////////// +// +// SLIGHTLY MODIFIED DLMALLOC FUNCTIONS +// +/////////////////////////////////////////////////////////////// +/////////////////////////////////////////////////////////////// +/////////////////////////////////////////////////////////////// + +//This function is equal to mspace_free +//replacing PREACTION with 0 and POSTACTION with nothing +static void mspace_free_lockless(mspace msp, void* mem) +{ + if (mem != 0) { + mchunkptr p = mem2chunk(mem); +#if FOOTERS + mstate fm = get_mstate_for(p); + msp = msp; /* placate people compiling -Wunused */ +#else /* FOOTERS */ + mstate fm = (mstate)msp; +#endif /* FOOTERS */ + if (!ok_magic(fm)) { + USAGE_ERROR_ACTION(fm, p); + return; + } + if (!0){//PREACTION(fm)) { + check_inuse_chunk(fm, p); + if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { + size_t psize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, psize); + s_allocated_memory -= psize; + if (!pinuse(p)) { + size_t prevsize = p->prev_foot; + if (is_mmapped(p)) { + psize += prevsize + MMAP_FOOT_PAD; + if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) + fm->footprint -= psize; + goto postaction; + } + else { + mchunkptr prev = chunk_minus_offset(p, prevsize); + psize += prevsize; + p = prev; + if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ + if (p != fm->dv) { + unlink_chunk(fm, p, prevsize); + } + else if ((next->head & INUSE_BITS) == INUSE_BITS) { + fm->dvsize = psize; + set_free_with_pinuse(p, psize, next); + goto postaction; + } + } + else + goto erroraction; + } + } + + if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { + if (!cinuse(next)) { /* consolidate forward */ + if (next == fm->top) { + size_t tsize = fm->topsize += psize; + fm->top = p; + p->head = tsize | PINUSE_BIT; + if (p == fm->dv) { + fm->dv = 0; + fm->dvsize = 0; + } + if (should_trim(fm, tsize)) + sys_trim(fm, 0); + goto postaction; + } + else if (next == fm->dv) { + size_t dsize = fm->dvsize += psize; + fm->dv = p; + set_size_and_pinuse_of_free_chunk(p, dsize); + goto postaction; + } + else { + size_t nsize = chunksize(next); + psize += nsize; + unlink_chunk(fm, next, nsize); + set_size_and_pinuse_of_free_chunk(p, psize); + if (p == fm->dv) { + fm->dvsize = psize; + goto postaction; + } + } + } + else + set_free_with_pinuse(p, psize, next); + + if (is_small(psize)) { + insert_small_chunk(fm, p, psize); + check_free_chunk(fm, p); + } + else { + tchunkptr tp = (tchunkptr)p; + insert_large_chunk(fm, tp, psize); + check_free_chunk(fm, p); + if (--fm->release_checks == 0) + release_unused_segments(fm); + } + goto postaction; + } + } + erroraction: + USAGE_ERROR_ACTION(fm, p); + postaction: + ;//POSTACTION(fm); + } + } +} + +//This function is equal to mspace_malloc +//replacing PREACTION with 0 and POSTACTION with nothing +void* mspace_malloc_lockless(mspace msp, size_t bytes) +{ + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + if (!0){//PREACTION(ms)) { + void* mem; + size_t nb; + if (bytes <= MAX_SMALL_REQUEST) { + bindex_t idx; + binmap_t smallbits; + nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); + idx = small_index(nb); + smallbits = ms->smallmap >> idx; + + if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ + mchunkptr b, p; + idx += ~smallbits & 1; /* Uses next bin if idx empty */ + b = smallbin_at(ms, idx); + p = b->fd; + assert(chunksize(p) == small_index2size(idx)); + unlink_first_small_chunk(ms, b, p, idx); + set_inuse_and_pinuse(ms, p, small_index2size(idx)); + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (nb > ms->dvsize) { + if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ + mchunkptr b, p, r; + size_t rsize; + bindex_t i; + binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + b = smallbin_at(ms, i); + p = b->fd; + assert(chunksize(p) == small_index2size(i)); + unlink_first_small_chunk(ms, b, p, i); + rsize = small_index2size(i) - nb; + /* Fit here cannot be remainderless if 4byte sizes */ + if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(ms, p, small_index2size(i)); + else { + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + r = chunk_plus_offset(p, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(ms, r, rsize); + } + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + } + } + else if (bytes >= MAX_REQUEST) + nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ + else { + nb = pad_request(bytes); + if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + } + + if (nb <= ms->dvsize) { + size_t rsize = ms->dvsize - nb; + mchunkptr p = ms->dv; + if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ + mchunkptr r = ms->dv = chunk_plus_offset(p, nb); + ms->dvsize = rsize; + set_size_and_pinuse_of_free_chunk(r, rsize); + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + } + else { /* exhaust dv */ + size_t dvs = ms->dvsize; + ms->dvsize = 0; + ms->dv = 0; + set_inuse_and_pinuse(ms, p, dvs); + } + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (nb < ms->topsize) { /* Split top */ + size_t rsize = ms->topsize -= nb; + mchunkptr p = ms->top; + mchunkptr r = ms->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + mem = chunk2mem(p); + check_top_chunk(ms, ms->top); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + mem = sys_alloc(ms, nb); + + postaction: + ;//POSTACTION(ms); + return mem; + } + + return 0; +} + +//This function is equal to try_realloc_chunk but handling +//minimum and desired bytes +static mchunkptr try_realloc_chunk_with_min(mstate m, mchunkptr p, size_t min_nb, size_t des_nb, int can_move) +{ + mchunkptr newp = 0; + size_t oldsize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, oldsize); + if (RTCHECK(ok_address(m, p) && ok_inuse(p) && + ok_next(p, next) && ok_pinuse(next))) { + if (is_mmapped(p)) { + newp = mmap_resize(m, p, des_nb, can_move); + if(!newp) //mmap does not return how many bytes we could reallocate, so go the minimum + newp = mmap_resize(m, p, min_nb, can_move); + } + else if (oldsize >= min_nb) { /* already big enough */ + size_t nb = oldsize >= des_nb ? des_nb : oldsize; + size_t rsize = oldsize - nb; + if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */ + mchunkptr r = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + set_inuse(m, r, rsize); + dispose_chunk(m, r, rsize); + } + newp = p; + } + else if (next == m->top) { /* extend into top */ + if (oldsize + m->topsize > min_nb) { + size_t nb = (oldsize + m->topsize) > des_nb ? des_nb : (oldsize + m->topsize - MALLOC_ALIGNMENT); + size_t newsize = oldsize + m->topsize; + size_t newtopsize = newsize - nb; + mchunkptr newtop = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + newtop->head = newtopsize |PINUSE_BIT; + m->top = newtop; + m->topsize = newtopsize; + newp = p; + } + } + else if (next == m->dv) { /* extend into dv */ + size_t dvs = m->dvsize; + if (oldsize + dvs >= min_nb) { + size_t nb = (oldsize + dvs) >= des_nb ? des_nb : (oldsize + dvs); + size_t dsize = oldsize + dvs - nb; + if (dsize >= MIN_CHUNK_SIZE) { + mchunkptr r = chunk_plus_offset(p, nb); + mchunkptr n = chunk_plus_offset(r, dsize); + set_inuse(m, p, nb); + set_size_and_pinuse_of_free_chunk(r, dsize); + clear_pinuse(n); + m->dvsize = dsize; + m->dv = r; + } + else { /* exhaust dv */ + size_t newsize = oldsize + dvs; + set_inuse(m, p, newsize); + m->dvsize = 0; + m->dv = 0; + } + newp = p; + } + } + else if (!cinuse(next)) { /* extend into next free chunk */ + size_t nextsize = chunksize(next); + if (oldsize + nextsize >= min_nb) { + size_t nb = (oldsize + nextsize) >= des_nb ? des_nb : (oldsize + nextsize); + size_t rsize = oldsize + nextsize - nb; + unlink_chunk(m, next, nextsize); + if (rsize < MIN_CHUNK_SIZE) { + size_t newsize = oldsize + nextsize; + set_inuse(m, p, newsize); + } + else { + mchunkptr r = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + set_inuse(m, r, rsize); + dispose_chunk(m, r, rsize); + } + newp = p; + } + } + } + else { + USAGE_ERROR_ACTION(m, chunk2mem(p)); + } + return newp; +} + +#define BOOST_ALLOC_PLUS_MEMCHAIN_MEM_JUMP_NEXT(THISMEM, NEXTMEM) \ + *((void**)(THISMEM)) = *((void**)((NEXTMEM))) + +//This function is based on internal_bulk_free +//replacing iteration over array[] with boost_cont_memchain. +//Instead of returning the unallocated nodes, returns a chain of non-deallocated nodes. +//After forward merging, backwards merging is also tried +static void internal_multialloc_free(mstate m, boost_cont_memchain *pchain) +{ +#if FOOTERS + boost_cont_memchain ret_chain; + BOOST_CONTAINER_MEMCHAIN_INIT(&ret_chain); +#endif + if (!PREACTION(m)) { + boost_cont_memchain_it a_it = BOOST_CONTAINER_MEMCHAIN_BEGIN_IT(pchain); + while(!BOOST_CONTAINER_MEMCHAIN_IS_END_IT(pchain, a_it)) { /* Iterate though all memory holded by the chain */ + void* a_mem = BOOST_CONTAINER_MEMIT_ADDR(a_it); + mchunkptr a_p = mem2chunk(a_mem); + size_t psize = chunksize(a_p); +#if FOOTERS + if (get_mstate_for(a_p) != m) { + BOOST_CONTAINER_MEMIT_NEXT(a_it); + BOOST_CONTAINER_MEMCHAIN_PUSH_BACK(&ret_chain, a_mem); + continue; + } +#endif + check_inuse_chunk(m, a_p); + if (RTCHECK(ok_address(m, a_p) && ok_inuse(a_p))) { + while(1) { /* Internal loop to speed up forward and backward merging (avoids some redundant checks) */ + boost_cont_memchain_it b_it = a_it; + BOOST_CONTAINER_MEMIT_NEXT(b_it); + if(!BOOST_CONTAINER_MEMCHAIN_IS_END_IT(pchain, b_it)){ + void *b_mem = BOOST_CONTAINER_MEMIT_ADDR(b_it); + mchunkptr b_p = mem2chunk(b_mem); + if (b_p == next_chunk(a_p)) { /* b chunk is contiguous and next so b's size can be added to a */ + psize += chunksize(b_p); + set_inuse(m, a_p, psize); + BOOST_ALLOC_PLUS_MEMCHAIN_MEM_JUMP_NEXT(a_mem, b_mem); + continue; + } + if(RTCHECK(ok_address(m, b_p) && ok_inuse(b_p))){ + /* b chunk is contiguous and previous so a's size can be added to b */ + if(a_p == next_chunk(b_p)) { + psize += chunksize(b_p); + set_inuse(m, b_p, psize); + a_it = b_it; + a_p = b_p; + a_mem = b_mem; + continue; + } + } + } + /* Normal deallocation starts again in the outer loop */ + a_it = b_it; + s_allocated_memory -= psize; + dispose_chunk(m, a_p, psize); + break; + } + } + else { + CORRUPTION_ERROR_ACTION(m); + break; + } + } + if (should_trim(m, m->topsize)) + sys_trim(m, 0); + POSTACTION(m); + } +#if FOOTERS + { + boost_cont_memchain_it last_pchain = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain); + BOOST_CONTAINER_MEMCHAIN_INIT(pchain); + BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER + (pchain + , last_pchain + , BOOST_CONTAINER_MEMCHAIN_FIRSTMEM(&ret_chain) + , BOOST_CONTAINER_MEMCHAIN_LASTMEM(&ret_chain) + , BOOST_CONTAINER_MEMCHAIN_SIZE(&ret_chain) + ); + } +#endif +} + +/////////////////////////////////////////////////////////////// +/////////////////////////////////////////////////////////////// +/////////////////////////////////////////////////////////////// +// +// NEW FUNCTIONS BASED ON DLMALLOC INTERNALS +// +/////////////////////////////////////////////////////////////// +/////////////////////////////////////////////////////////////// +/////////////////////////////////////////////////////////////// + +#define GET_TRUNCATED_SIZE(ORIG_SIZE, ROUNDTO) ((ORIG_SIZE)/(ROUNDTO)*(ROUNDTO)) +#define GET_ROUNDED_SIZE(ORIG_SIZE, ROUNDTO) ((((ORIG_SIZE)-1)/(ROUNDTO)+1)*(ROUNDTO)) +#define GET_TRUNCATED_PO2_SIZE(ORIG_SIZE, ROUNDTO) ((ORIG_SIZE) & (~(ROUNDTO-1))) +#define GET_ROUNDED_PO2_SIZE(ORIG_SIZE, ROUNDTO) (((ORIG_SIZE - 1) & (~(ROUNDTO-1))) + ROUNDTO) + +/* Greatest common divisor and least common multiple + gcd is an algorithm that calculates the greatest common divisor of two + integers, using Euclid's algorithm. + + Pre: A > 0 && B > 0 + Recommended: A > B*/ +#define CALCULATE_GCD(A, B, OUT)\ +{\ + size_t a = A;\ + size_t b = B;\ + do\ + {\ + size_t tmp = b;\ + b = a % b;\ + a = tmp;\ + } while (b != 0);\ +\ + OUT = a;\ +} + +/* lcm is an algorithm that calculates the least common multiple of two + integers. + + Pre: A > 0 && B > 0 + Recommended: A > B*/ +#define CALCULATE_LCM(A, B, OUT)\ +{\ + CALCULATE_GCD(A, B, OUT);\ + OUT = (A / OUT)*B;\ +} + +static int calculate_lcm_and_needs_backwards_lcmed + (size_t backwards_multiple, size_t received_size, size_t size_to_achieve, + size_t *plcm, size_t *pneeds_backwards_lcmed) +{ + /* Now calculate lcm */ + size_t max = backwards_multiple; + size_t min = MALLOC_ALIGNMENT; + size_t needs_backwards; + size_t needs_backwards_lcmed; + size_t lcm; + size_t current_forward; + /*Swap if necessary*/ + if(max < min){ + size_t tmp = min; + min = max; + max = tmp; + } + /*Check if it's power of two*/ + if((backwards_multiple & (backwards_multiple-1)) == 0){ + if(0 != (size_to_achieve & ((backwards_multiple-1)))){ + USAGE_ERROR_ACTION(m, oldp); + return 0; + } + + lcm = max; + /*If we want to use minbytes data to get a buffer between maxbytes + and minbytes if maxbytes can't be achieved, calculate the + biggest of all possibilities*/ + current_forward = GET_TRUNCATED_PO2_SIZE(received_size, backwards_multiple); + needs_backwards = size_to_achieve - current_forward; + assert((needs_backwards % backwards_multiple) == 0); + needs_backwards_lcmed = GET_ROUNDED_PO2_SIZE(needs_backwards, lcm); + *plcm = lcm; + *pneeds_backwards_lcmed = needs_backwards_lcmed; + return 1; + } + /*Check if it's multiple of alignment*/ + else if((backwards_multiple & (MALLOC_ALIGNMENT - 1u)) == 0){ + lcm = backwards_multiple; + current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple); + //No need to round needs_backwards because backwards_multiple == lcm + needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward; + assert((needs_backwards_lcmed & (MALLOC_ALIGNMENT - 1u)) == 0); + *plcm = lcm; + *pneeds_backwards_lcmed = needs_backwards_lcmed; + return 1; + } + /*Check if it's multiple of the half of the alignmment*/ + else if((backwards_multiple & ((MALLOC_ALIGNMENT/2u) - 1u)) == 0){ + lcm = backwards_multiple*2u; + current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple); + needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward; + if(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))) + //while(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))) + needs_backwards_lcmed += backwards_multiple; + assert((needs_backwards_lcmed % lcm) == 0); + *plcm = lcm; + *pneeds_backwards_lcmed = needs_backwards_lcmed; + return 1; + } + /*Check if it's multiple of the quarter of the alignmment*/ + else if((backwards_multiple & ((MALLOC_ALIGNMENT/4u) - 1u)) == 0){ + size_t remainder; + lcm = backwards_multiple*4u; + current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple); + needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward; + //while(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))) + //needs_backwards_lcmed += backwards_multiple; + if(0 != (remainder = ((needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))>>(MALLOC_ALIGNMENT/8u)))){ + if(backwards_multiple & MALLOC_ALIGNMENT/2u){ + needs_backwards_lcmed += (remainder)*backwards_multiple; + } + else{ + needs_backwards_lcmed += (4-remainder)*backwards_multiple; + } + } + assert((needs_backwards_lcmed % lcm) == 0); + *plcm = lcm; + *pneeds_backwards_lcmed = needs_backwards_lcmed; + return 1; + } + else{ + CALCULATE_LCM(max, min, lcm); + /*If we want to use minbytes data to get a buffer between maxbytes + and minbytes if maxbytes can't be achieved, calculate the + biggest of all possibilities*/ + current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple); + needs_backwards = size_to_achieve - current_forward; + assert((needs_backwards % backwards_multiple) == 0); + needs_backwards_lcmed = GET_ROUNDED_SIZE(needs_backwards, lcm); + *plcm = lcm; + *pneeds_backwards_lcmed = needs_backwards_lcmed; + return 1; + } +} + +static void *internal_grow_both_sides + (mstate m + ,allocation_type command + ,void *oldmem + ,size_t minbytes + ,size_t maxbytes + ,size_t *received_size + ,size_t backwards_multiple + ,int only_preferred_backwards) +{ + mchunkptr oldp = mem2chunk(oldmem); + size_t oldsize = chunksize(oldp); + *received_size = oldsize - overhead_for(oldp); + if(minbytes <= *received_size) + return oldmem; + + if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp))) { + if(command & BOOST_CONTAINER_EXPAND_FWD){ + if(try_realloc_chunk_with_min(m, oldp, request2size(minbytes), request2size(maxbytes), 0)){ + check_inuse_chunk(m, oldp); + *received_size = DL_SIZE_IMPL(oldmem); + s_allocated_memory += chunksize(oldp) - oldsize; + return oldmem; + } + } + else{ + *received_size = DL_SIZE_IMPL(oldmem); + if(*received_size >= maxbytes) + return oldmem; + } +/* + Should we check this? + if(backwards_multiple && + (0 != (minbytes % backwards_multiple) && + 0 != (maxbytes % backwards_multiple)) ){ + USAGE_ERROR_ACTION(m, oldp); + return 0; + } +*/ + /* We reach here only if forward expansion fails */ + if(!(command & BOOST_CONTAINER_EXPAND_BWD) || pinuse(oldp)){ + return 0; + } + { + size_t prevsize = oldp->prev_foot; + if ((prevsize & USE_MMAP_BIT) != 0){ + /*Return failure the previous chunk was mmapped. + mremap does not allow expanding to a fixed address (MREMAP_MAYMOVE) without + copying (MREMAP_MAYMOVE must be also set).*/ + return 0; + } + else { + mchunkptr prev = chunk_minus_offset(oldp, prevsize); + size_t dsize = oldsize + prevsize; + size_t needs_backwards_lcmed; + size_t lcm; + + /* Let's calculate the number of extra bytes of data before the current + block's begin. The value is a multiple of backwards_multiple + and the alignment*/ + if(!calculate_lcm_and_needs_backwards_lcmed + ( backwards_multiple, *received_size + , only_preferred_backwards ? maxbytes : minbytes + , &lcm, &needs_backwards_lcmed) + || !RTCHECK(ok_address(m, prev))){ + USAGE_ERROR_ACTION(m, oldp); + return 0; + } + /* Check if previous block has enough size */ + else if(prevsize < needs_backwards_lcmed){ + /* preferred size? */ + return 0; + } + /* Now take all next space. This must succeed, as we've previously calculated the correct size */ + if(command & BOOST_CONTAINER_EXPAND_FWD){ + if(!try_realloc_chunk_with_min(m, oldp, request2size(*received_size), request2size(*received_size), 0)){ + assert(0); + } + check_inuse_chunk(m, oldp); + *received_size = DL_SIZE_IMPL(oldmem); + s_allocated_memory += chunksize(oldp) - oldsize; + oldsize = chunksize(oldp); + dsize = oldsize + prevsize; + } + /* We need a minimum size to split the previous one */ + if(prevsize >= (needs_backwards_lcmed + MIN_CHUNK_SIZE)){ + mchunkptr r = chunk_minus_offset(oldp, needs_backwards_lcmed); + size_t rsize = oldsize + needs_backwards_lcmed; + size_t newprevsize = dsize - rsize; + int prev_was_dv = prev == m->dv; + + assert(newprevsize >= MIN_CHUNK_SIZE); + + if (prev_was_dv) { + m->dvsize = newprevsize; + } + else{/* if ((next->head & INUSE_BITS) == INUSE_BITS) { */ + unlink_chunk(m, prev, prevsize); + insert_chunk(m, prev, newprevsize); + } + + set_size_and_pinuse_of_free_chunk(prev, newprevsize); + clear_pinuse(r); + set_inuse(m, r, rsize); + check_malloced_chunk(m, chunk2mem(r), rsize); + *received_size = chunksize(r) - overhead_for(r); + s_allocated_memory += chunksize(r) - oldsize; + return chunk2mem(r); + } + /* Check if there is no place to create a new block and + the whole new block is multiple of the backwards expansion multiple */ + else if(prevsize >= needs_backwards_lcmed && !(prevsize % lcm)) { + /* Just merge the whole previous block */ + /* prevsize is multiple of lcm (and backwards_multiple)*/ + *received_size += prevsize; + + if (prev != m->dv) { + unlink_chunk(m, prev, prevsize); + } + else{ + m->dvsize = 0; + m->dv = 0; + } + set_inuse(m, prev, dsize); + check_malloced_chunk(m, chunk2mem(prev), dsize); + s_allocated_memory += chunksize(prev) - oldsize; + return chunk2mem(prev); + } + else{ + /* Previous block was big enough but there is no room + to create an empty block and taking the whole block does + not fulfill alignment requirements */ + return 0; + } + } + } + } + else{ + USAGE_ERROR_ACTION(m, oldmem); + return 0; + } + return 0; +} + +/* This is similar to mmap_resize but: + * Only to shrink + * It takes min and max sizes + * Takes additional 'do_commit' argument to obtain the final + size before doing the real shrink operation. +*/ +static int internal_mmap_shrink_in_place(mstate m, mchunkptr oldp, size_t nbmin, size_t nbmax, size_t *received_size, int do_commit) +{ + size_t oldsize = chunksize(oldp); + *received_size = oldsize; + #if HAVE_MREMAP + if (is_small(nbmax)) /* Can't shrink mmap regions below small size */ + return 0; + { + size_t effective_min = nbmin > MIN_LARGE_SIZE ? nbmin : MIN_LARGE_SIZE; + /* Keep old chunk if big enough but not too big */ + if (oldsize >= effective_min + SIZE_T_SIZE && + (oldsize - effective_min) <= (mparams.granularity << 1)) + return 0; + /* Now calculate new sizes */ + { + size_t offset = oldp->prev_foot; + size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; + size_t newmmsize = mmap_align(effective_min + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + *received_size = newmmsize; + if(!do_commit){ + const int flags = 0; /* placate people compiling -Wunused */ + char* cp = (char*)CALL_MREMAP((char*)oldp - offset, + oldmmsize, newmmsize, flags); + /*This must always succeed */ + if(!cp){ + USAGE_ERROR_ACTION(m, m); + return 0; + } + { + mchunkptr newp = (mchunkptr)(cp + offset); + size_t psize = newmmsize - offset - MMAP_FOOT_PAD; + newp->head = psize; + mark_inuse_foot(m, newp, psize); + chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; + chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; + + if (cp < m->least_addr) + m->least_addr = cp; + if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) + m->max_footprint = m->footprint; + check_mmapped_chunk(m, newp); + } + } + } + return 1; + } + #else //#if HAVE_MREMAP + (void)m; + (void)oldp; + (void)nbmin; + (void)nbmax; + (void)received_size; + (void)do_commit; + return 0; + #endif //#if HAVE_MREMAP +} + +static int internal_shrink(mstate m, void* oldmem, size_t minbytes, size_t maxbytes, size_t *received_size, int do_commit) +{ + *received_size = chunksize(mem2chunk(oldmem)) - overhead_for(mem2chunk(oldmem)); + if (minbytes >= MAX_REQUEST || maxbytes >= MAX_REQUEST) { + MALLOC_FAILURE_ACTION; + return 0; + } + else if(minbytes < MIN_REQUEST){ + minbytes = MIN_REQUEST; + } + if (minbytes > maxbytes) { + return 0; + } + + { + mchunkptr oldp = mem2chunk(oldmem); + size_t oldsize = chunksize(oldp); + mchunkptr next = chunk_plus_offset(oldp, oldsize); + void* extra = 0; + + /* Try to either shrink or extend into top. Else malloc-copy-free*/ + if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp) && + ok_next(oldp, next) && ok_pinuse(next))) { + size_t nbmin = request2size(minbytes); + size_t nbmax = request2size(maxbytes); + + if (nbmin > oldsize){ + /* Return error if old size is too small */ + } + else if (is_mmapped(oldp)){ + return internal_mmap_shrink_in_place(m, oldp, nbmin, nbmax, received_size, do_commit); + } + else{ // nbmin <= oldsize /* already big enough*/ + size_t nb = nbmin; + size_t rsize = oldsize - nb; + if (rsize >= MIN_CHUNK_SIZE) { + if(do_commit){ + mchunkptr remainder = chunk_plus_offset(oldp, nb); + set_inuse(m, oldp, nb); + set_inuse(m, remainder, rsize); + extra = chunk2mem(remainder); + } + *received_size = nb - overhead_for(oldp); + if(!do_commit) + return 1; + } + } + } + else { + USAGE_ERROR_ACTION(m, oldmem); + return 0; + } + + if (extra != 0 && do_commit) { + mspace_free_lockless(m, extra); + check_inuse_chunk(m, oldp); + return 1; + } + else { + return 0; + } + } +} + + +#define INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM 4096 + +#define SQRT_MAX_SIZE_T (((size_t)-1)>>(sizeof(size_t)*CHAR_BIT/2)) + +static int internal_node_multialloc + (mstate m, size_t n_elements, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) { + void* mem; /* malloced aggregate space */ + mchunkptr p; /* corresponding chunk */ + size_t remainder_size; /* remaining bytes while splitting */ + flag_t was_enabled; /* to disable mmap */ + size_t elements_per_segment = 0; + size_t element_req_size = request2size(element_size); + boost_cont_memchain_it prev_last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain); + + /*Error if wrong element_size parameter */ + if( !element_size || + /*OR Error if n_elements less thatn contiguous_elements */ + ((contiguous_elements + 1) > (DL_MULTIALLOC_DEFAULT_CONTIGUOUS + 1) && n_elements < contiguous_elements) || + /* OR Error if integer overflow */ + (SQRT_MAX_SIZE_T < (element_req_size | contiguous_elements) && + (MAX_SIZE_T/element_req_size) < contiguous_elements)){ + return 0; + } + switch(contiguous_elements){ + case DL_MULTIALLOC_DEFAULT_CONTIGUOUS: + { + /* Default contiguous, just check that we can store at least one element */ + elements_per_segment = INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM/element_req_size; + elements_per_segment += (size_t)(!elements_per_segment); + } + break; + case DL_MULTIALLOC_ALL_CONTIGUOUS: + /* All elements should be allocated in a single call */ + elements_per_segment = n_elements; + break; + default: + /* Allocate in chunks of "contiguous_elements" */ + elements_per_segment = contiguous_elements; + } + + { + size_t i; + size_t next_i; + /* + Allocate the aggregate chunk. First disable direct-mmapping so + malloc won't use it, since we would not be able to later + free/realloc space internal to a segregated mmap region. + */ + was_enabled = use_mmap(m); + disable_mmap(m); + for(i = 0; i != n_elements; i = next_i) + { + size_t accum_size; + size_t n_elements_left = n_elements - i; + next_i = i + ((n_elements_left < elements_per_segment) ? n_elements_left : elements_per_segment); + accum_size = element_req_size*(next_i - i); + + mem = mspace_malloc_lockless(m, accum_size - CHUNK_OVERHEAD); + if (mem == 0){ + BOOST_CONTAINER_MEMIT_NEXT(prev_last_it); + while(i--){ + void *addr = BOOST_CONTAINER_MEMIT_ADDR(prev_last_it); + BOOST_CONTAINER_MEMIT_NEXT(prev_last_it); + mspace_free_lockless(m, addr); + } + if (was_enabled) + enable_mmap(m); + return 0; + } + p = mem2chunk(mem); + remainder_size = chunksize(p); + s_allocated_memory += remainder_size; + + assert(!is_mmapped(p)); + { /* split out elements */ + void *mem_orig = mem; + boost_cont_memchain_it last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain); + size_t num_elements = next_i-i; + + size_t num_loops = num_elements - 1; + remainder_size -= element_req_size*num_loops; + while(num_loops--){ + void **mem_prev = ((void**)mem); + set_size_and_pinuse_of_inuse_chunk(m, p, element_req_size); + p = chunk_plus_offset(p, element_req_size); + mem = chunk2mem(p); + *mem_prev = mem; + } + set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); + BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER(pchain, last_it, mem_orig, mem, num_elements); + } + } + if (was_enabled) + enable_mmap(m); + } + return 1; +} + +static int internal_multialloc_arrays + (mstate m, size_t n_elements, const size_t* sizes, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) { + void* mem; /* malloced aggregate space */ + mchunkptr p; /* corresponding chunk */ + size_t remainder_size; /* remaining bytes while splitting */ + flag_t was_enabled; /* to disable mmap */ + size_t size; + size_t boost_cont_multialloc_segmented_malloc_size; + size_t max_size; + + /* Check overflow */ + if(!element_size){ + return 0; + } + max_size = MAX_REQUEST/element_size; + /* Different sizes*/ + switch(contiguous_elements){ + case DL_MULTIALLOC_DEFAULT_CONTIGUOUS: + /* Use default contiguous mem */ + boost_cont_multialloc_segmented_malloc_size = INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM; + break; + case DL_MULTIALLOC_ALL_CONTIGUOUS: + boost_cont_multialloc_segmented_malloc_size = MAX_REQUEST + CHUNK_OVERHEAD; + break; + default: + if(max_size < contiguous_elements){ + return 0; + } + else{ + /* The suggested buffer is just the the element count by the size */ + boost_cont_multialloc_segmented_malloc_size = element_size*contiguous_elements; + } + } + + { + size_t i; + size_t next_i; + /* + Allocate the aggregate chunk. First disable direct-mmapping so + malloc won't use it, since we would not be able to later + free/realloc space internal to a segregated mmap region. + */ + was_enabled = use_mmap(m); + disable_mmap(m); + for(i = 0, next_i = 0; i != n_elements; i = next_i) + { + int error = 0; + size_t accum_size; + for(accum_size = 0; next_i != n_elements; ++next_i){ + size_t cur_array_size = sizes[next_i]; + if(max_size < cur_array_size){ + error = 1; + break; + } + else{ + size_t reqsize = request2size(cur_array_size*element_size); + if(((boost_cont_multialloc_segmented_malloc_size - CHUNK_OVERHEAD) - accum_size) < reqsize){ + if(!accum_size){ + accum_size += reqsize; + ++next_i; + } + break; + } + accum_size += reqsize; + } + } + + mem = error ? 0 : mspace_malloc_lockless(m, accum_size - CHUNK_OVERHEAD); + if (mem == 0){ + boost_cont_memchain_it it = BOOST_CONTAINER_MEMCHAIN_BEGIN_IT(pchain); + while(i--){ + void *addr = BOOST_CONTAINER_MEMIT_ADDR(it); + BOOST_CONTAINER_MEMIT_NEXT(it); + mspace_free_lockless(m, addr); + } + if (was_enabled) + enable_mmap(m); + return 0; + } + p = mem2chunk(mem); + remainder_size = chunksize(p); + s_allocated_memory += remainder_size; + + assert(!is_mmapped(p)); + + { /* split out elements */ + void *mem_orig = mem; + boost_cont_memchain_it last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain); + size_t num_elements = next_i-i; + + for(++i; i != next_i; ++i) { + void **mem_prev = ((void**)mem); + size = request2size(sizes[i]*element_size); + remainder_size -= size; + set_size_and_pinuse_of_inuse_chunk(m, p, size); + p = chunk_plus_offset(p, size); + mem = chunk2mem(p); + *mem_prev = mem; + } + set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); + BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER(pchain, last_it, mem_orig, mem, num_elements); + } + } + if (was_enabled) + enable_mmap(m); + } + return 1; +} + +int boost_cont_multialloc_arrays + (size_t n_elements, const size_t *sizes, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) +{ + int ret = 0; + mstate ms = (mstate)gm; + ensure_initialization(); + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + } + else if (!PREACTION(ms)) { + ret = internal_multialloc_arrays(ms, n_elements, sizes, element_size, contiguous_elements, pchain); + POSTACTION(ms); + } + return ret; +} + + +/*Doug Lea malloc extensions*/ +static boost_cont_malloc_stats_t get_malloc_stats(mstate m) +{ + boost_cont_malloc_stats_t ret = { 0, 0, 0 }; + ensure_initialization(); + if (!PREACTION(m)) { + size_t maxfp = 0; + size_t fp = 0; + size_t used = 0; + check_malloc_state(m); + if (is_initialized(m)) { + msegmentptr s = &m->seg; + maxfp = m->max_footprint; + fp = m->footprint; + used = fp - (m->topsize + TOP_FOOT_SIZE); + + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + if (!cinuse(q)) + used -= chunksize(q); + q = next_chunk(q); + } + s = s->next; + } + } + + ret.max_system_bytes = maxfp; + ret.system_bytes = fp; + ret.in_use_bytes = used; + POSTACTION(m); + } + return ret; +} + +size_t boost_cont_size(const void *p) +{ return DL_SIZE_IMPL(p); } + +void* boost_cont_malloc(size_t bytes) +{ + size_t received_bytes; + ensure_initialization(); + return boost_cont_allocation_command + (BOOST_CONTAINER_ALLOCATE_NEW, 1, bytes, bytes, &received_bytes, 0).first; +} + +void boost_cont_free(void* mem) +{ + mstate ms = (mstate)gm; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + } + else if (!PREACTION(ms)) { + mspace_free_lockless(ms, mem); + POSTACTION(ms); + } +} + +void* boost_cont_memalign(size_t bytes, size_t alignment) +{ + void *addr; + ensure_initialization(); + addr = mspace_memalign(gm, alignment, bytes); + if(addr){ + s_allocated_memory += chunksize(mem2chunk(addr)); + } + return addr; +} + +int boost_cont_multialloc_nodes + (size_t n_elements, size_t elem_size, size_t contiguous_elements, boost_cont_memchain *pchain) +{ + int ret = 0; + mstate ms = (mstate)gm; + ensure_initialization(); + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + } + else if (!PREACTION(ms)) { + ret = internal_node_multialloc(ms, n_elements, elem_size, contiguous_elements, pchain); + POSTACTION(ms); + } + return ret; +} + +size_t boost_cont_footprint() +{ + return ((mstate)gm)->footprint; +} + +size_t boost_cont_allocated_memory() +{ + size_t alloc_mem = 0; + mstate m = (mstate)gm; + ensure_initialization(); + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + } + + + if (!PREACTION(m)) { + check_malloc_state(m); + if (is_initialized(m)) { + size_t nfree = SIZE_T_ONE; /* top always free */ + size_t mfree = m->topsize + TOP_FOOT_SIZE; + size_t sum = mfree; + msegmentptr s = &m->seg; + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + size_t sz = chunksize(q); + sum += sz; + if (!is_inuse(q)) { + mfree += sz; + ++nfree; + } + q = next_chunk(q); + } + s = s->next; + } + { + size_t uordblks = m->footprint - mfree; + if(nfree) + alloc_mem = (size_t)(uordblks - (nfree-1)*TOP_FOOT_SIZE); + else + alloc_mem = uordblks; + } + } + + POSTACTION(m); + } + return alloc_mem; +} + +size_t boost_cont_chunksize(const void *p) +{ return chunksize(mem2chunk(p)); } + +int boost_cont_all_deallocated() +{ return !s_allocated_memory; } + +boost_cont_malloc_stats_t boost_cont_malloc_stats() +{ + mstate ms = (mstate)gm; + if (ok_magic(ms)) { + return get_malloc_stats(ms); + } + else { + boost_cont_malloc_stats_t r = { 0, 0, 0 }; + USAGE_ERROR_ACTION(ms,ms); + return r; + } +} + +size_t boost_cont_in_use_memory() +{ return s_allocated_memory; } + +int boost_cont_trim(size_t pad) +{ + ensure_initialization(); + return dlmalloc_trim(pad); +} + +int boost_cont_grow + (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received) +{ + mstate ms = (mstate)gm; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + + if (!PREACTION(ms)) { + mchunkptr p = mem2chunk(oldmem); + size_t oldsize = chunksize(p); + p = try_realloc_chunk_with_min(ms, p, request2size(minbytes), request2size(maxbytes), 0); + POSTACTION(ms); + if(p){ + check_inuse_chunk(ms, p); + *received = DL_SIZE_IMPL(oldmem); + s_allocated_memory += chunksize(p) - oldsize; + } + return 0 != p; + } + return 0; +} + +int boost_cont_shrink + (void* oldmem, size_t minbytes, size_t maxbytes, size_t *received, int do_commit) +{ + mstate ms = (mstate)gm; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + + if (!PREACTION(ms)) { + int ret = internal_shrink(ms, oldmem, minbytes, maxbytes, received, do_commit); + POSTACTION(ms); + return 0 != ret; + } + return 0; +} + + +void* boost_cont_alloc + (size_t minbytes, size_t preferred_bytes, size_t *received_bytes) +{ + //ensure_initialization provided by boost_cont_allocation_command + return boost_cont_allocation_command + (BOOST_CONTAINER_ALLOCATE_NEW, 1, minbytes, preferred_bytes, received_bytes, 0).first; +} + +void boost_cont_multidealloc(boost_cont_memchain *pchain) +{ + mstate ms = (mstate)gm; + if (!ok_magic(ms)) { + (void)ms; + USAGE_ERROR_ACTION(ms,ms); + } + internal_multialloc_free(ms, pchain); +} + +int boost_cont_malloc_check() +{ +#ifdef DEBUG + mstate ms = (mstate)gm; + ensure_initialization(); + if (!ok_magic(ms)) { + (void)ms; + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + check_malloc_state(ms); + return 1; +#else + return 1; +#endif +} + + +boost_cont_command_ret_t boost_cont_allocation_command + (allocation_type command, size_t sizeof_object, size_t limit_size + , size_t preferred_size, size_t *received_size, void *reuse_ptr) +{ + boost_cont_command_ret_t ret = { 0, 0 }; + ensure_initialization(); + if(command & (BOOST_CONTAINER_SHRINK_IN_PLACE | BOOST_CONTAINER_TRY_SHRINK_IN_PLACE)){ + int success = boost_cont_shrink( reuse_ptr, preferred_size, limit_size + , received_size, (command & BOOST_CONTAINER_SHRINK_IN_PLACE)); + ret.first = success ? reuse_ptr : 0; + return ret; + } + + *received_size = 0; + + if(limit_size > preferred_size) + return ret; + + { + mstate ms = (mstate)gm; + + /*Expand in place*/ + if (!PREACTION(ms)) { + #if FOOTERS + if(reuse_ptr){ + mstate m = get_mstate_for(mem2chunk(reuse_ptr)); + if (!ok_magic(m)) { + USAGE_ERROR_ACTION(m, reuse_ptr); + return ret; + } + } + #endif + if(reuse_ptr && (command & (BOOST_CONTAINER_EXPAND_FWD | BOOST_CONTAINER_EXPAND_BWD))){ + void *r = internal_grow_both_sides + ( ms, command, reuse_ptr, limit_size + , preferred_size, received_size, sizeof_object, 1); + if(r){ + ret.first = r; + ret.second = 1; + goto postaction; + } + } + + if(command & BOOST_CONTAINER_ALLOCATE_NEW){ + void *addr = mspace_malloc_lockless(ms, preferred_size); + if(!addr) addr = mspace_malloc_lockless(ms, limit_size); + if(addr){ + s_allocated_memory += chunksize(mem2chunk(addr)); + *received_size = DL_SIZE_IMPL(addr); + } + ret.first = addr; + ret.second = 0; + if(addr){ + goto postaction; + } + } + + //Now try to expand both sides with min size + if(reuse_ptr && (command & (BOOST_CONTAINER_EXPAND_FWD | BOOST_CONTAINER_EXPAND_BWD))){ + void *r = internal_grow_both_sides + ( ms, command, reuse_ptr, limit_size + , preferred_size, received_size, sizeof_object, 0); + if(r){ + ret.first = r; + ret.second = 1; + goto postaction; + } + } + postaction: + POSTACTION(ms); + } + } + return ret; +} + +int boost_cont_mallopt(int param_number, int value) +{ + return change_mparam(param_number, value); +} + +void *boost_cont_sync_create() +{ + void *p = boost_cont_malloc(sizeof(MLOCK_T)); + if(p){ + if(0 != INITIAL_LOCK((MLOCK_T*)p)){ + boost_cont_free(p); + p = 0; + } + } + return p; +} + +void boost_cont_sync_destroy(void *sync) +{ + if(sync){ + (void)DESTROY_LOCK((MLOCK_T*)sync); + boost_cont_free(sync); + } +} + +int boost_cont_sync_lock(void *sync) +{ return 0 == (ACQUIRE_LOCK((MLOCK_T*)sync)); } + +void boost_cont_sync_unlock(void *sync) +{ RELEASE_LOCK((MLOCK_T*)sync); } + +int boost_cont_global_sync_lock() +{ + int ret; + ensure_initialization(); + ret = ACQUIRE_MALLOC_GLOBAL_LOCK(); + return 0 == ret; +} + +void boost_cont_global_sync_unlock() +{ + RELEASE_MALLOC_GLOBAL_LOCK() +} + +//#ifdef DL_DEBUG_DEFINED +// #undef DEBUG +//#endif + +#ifdef _MSC_VER +#pragma warning (pop) +#endif diff --git a/contrib/restricted/boost/libs/container/src/global_resource.cpp b/contrib/restricted/boost/libs/container/src/global_resource.cpp index c4e9381c1a..15f4fe404c 100644 --- a/contrib/restricted/boost/libs/container/src/global_resource.cpp +++ b/contrib/restricted/boost/libs/container/src/global_resource.cpp @@ -1,106 +1,106 @@ -////////////////////////////////////////////////////////////////////////////// -// -// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost -// Software License, Version 1.0. (See accompanying file -// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -// -// See http://www.boost.org/libs/container for documentation. -// -////////////////////////////////////////////////////////////////////////////// - -#define BOOST_CONTAINER_SOURCE -#include <boost/container/pmr/memory_resource.hpp> - -#include <boost/core/no_exceptions_support.hpp> -#include <boost/container/throw_exception.hpp> -#include <boost/container/detail/dlmalloc.hpp> //For global lock - -#include <cstddef> -#include <new> - -namespace boost { -namespace container { -namespace pmr { - -class new_delete_resource_imp - : public memory_resource -{ - public: - - virtual ~new_delete_resource_imp() - {} - - virtual void* do_allocate(std::size_t bytes, std::size_t alignment) - { (void)bytes; (void)alignment; return new char[bytes]; } - - virtual void do_deallocate(void* p, std::size_t bytes, std::size_t alignment) - { (void)bytes; (void)alignment; delete[]((char*)p); } - - virtual bool do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT - { return &other == this; } -} new_delete_resource_instance; - -struct null_memory_resource_imp - : public memory_resource -{ - public: - - virtual ~null_memory_resource_imp() - {} - - virtual void* do_allocate(std::size_t bytes, std::size_t alignment) - { - (void)bytes; (void)alignment; - throw_bad_alloc(); - return 0; - } - - virtual void do_deallocate(void* p, std::size_t bytes, std::size_t alignment) - { (void)p; (void)bytes; (void)alignment; } - - virtual bool do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT - { return &other == this; } -} null_memory_resource_instance; - -BOOST_CONTAINER_DECL memory_resource* new_delete_resource() BOOST_NOEXCEPT -{ - return &new_delete_resource_instance; -} - -BOOST_CONTAINER_DECL memory_resource* null_memory_resource() BOOST_NOEXCEPT -{ - return &null_memory_resource_instance; -} - -static memory_resource *default_memory_resource = &new_delete_resource_instance; - -BOOST_CONTAINER_DECL memory_resource* set_default_resource(memory_resource* r) BOOST_NOEXCEPT -{ - //TO-DO: synchronizes-with part using atomics - if(dlmalloc_global_sync_lock()){ - memory_resource *previous = default_memory_resource; - default_memory_resource = r ? r : new_delete_resource(); - dlmalloc_global_sync_unlock(); - return previous; - } - else{ - return new_delete_resource(); - } -} - -BOOST_CONTAINER_DECL memory_resource* get_default_resource() BOOST_NOEXCEPT -{ - //TO-DO: synchronizes-with part using atomics - if(dlmalloc_global_sync_lock()){ - memory_resource *current = default_memory_resource; - dlmalloc_global_sync_unlock(); - return current; - } - else{ - return new_delete_resource(); - } -} - -} //namespace pmr { -} //namespace container { -} //namespace boost { +////////////////////////////////////////////////////////////////////////////// +// +// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost +// Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) +// +// See http://www.boost.org/libs/container for documentation. +// +////////////////////////////////////////////////////////////////////////////// + +#define BOOST_CONTAINER_SOURCE +#include <boost/container/pmr/memory_resource.hpp> + +#include <boost/core/no_exceptions_support.hpp> +#include <boost/container/throw_exception.hpp> +#include <boost/container/detail/dlmalloc.hpp> //For global lock + +#include <cstddef> +#include <new> + +namespace boost { +namespace container { +namespace pmr { + +class new_delete_resource_imp + : public memory_resource +{ + public: + + virtual ~new_delete_resource_imp() + {} + + virtual void* do_allocate(std::size_t bytes, std::size_t alignment) + { (void)bytes; (void)alignment; return new char[bytes]; } + + virtual void do_deallocate(void* p, std::size_t bytes, std::size_t alignment) + { (void)bytes; (void)alignment; delete[]((char*)p); } + + virtual bool do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT + { return &other == this; } +} new_delete_resource_instance; + +struct null_memory_resource_imp + : public memory_resource +{ + public: + + virtual ~null_memory_resource_imp() + {} + + virtual void* do_allocate(std::size_t bytes, std::size_t alignment) + { + (void)bytes; (void)alignment; + throw_bad_alloc(); + return 0; + } + + virtual void do_deallocate(void* p, std::size_t bytes, std::size_t alignment) + { (void)p; (void)bytes; (void)alignment; } + + virtual bool do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT + { return &other == this; } +} null_memory_resource_instance; + +BOOST_CONTAINER_DECL memory_resource* new_delete_resource() BOOST_NOEXCEPT +{ + return &new_delete_resource_instance; +} + +BOOST_CONTAINER_DECL memory_resource* null_memory_resource() BOOST_NOEXCEPT +{ + return &null_memory_resource_instance; +} + +static memory_resource *default_memory_resource = &new_delete_resource_instance; + +BOOST_CONTAINER_DECL memory_resource* set_default_resource(memory_resource* r) BOOST_NOEXCEPT +{ + //TO-DO: synchronizes-with part using atomics + if(dlmalloc_global_sync_lock()){ + memory_resource *previous = default_memory_resource; + default_memory_resource = r ? r : new_delete_resource(); + dlmalloc_global_sync_unlock(); + return previous; + } + else{ + return new_delete_resource(); + } +} + +BOOST_CONTAINER_DECL memory_resource* get_default_resource() BOOST_NOEXCEPT +{ + //TO-DO: synchronizes-with part using atomics + if(dlmalloc_global_sync_lock()){ + memory_resource *current = default_memory_resource; + dlmalloc_global_sync_unlock(); + return current; + } + else{ + return new_delete_resource(); + } +} + +} //namespace pmr { +} //namespace container { +} //namespace boost { diff --git a/contrib/restricted/boost/libs/container/src/monotonic_buffer_resource.cpp b/contrib/restricted/boost/libs/container/src/monotonic_buffer_resource.cpp index 2a4672ffa0..f9f6f4cbe5 100644 --- a/contrib/restricted/boost/libs/container/src/monotonic_buffer_resource.cpp +++ b/contrib/restricted/boost/libs/container/src/monotonic_buffer_resource.cpp @@ -1,159 +1,159 @@ -////////////////////////////////////////////////////////////////////////////// -// -// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost -// Software License, Version 1.0. (See accompanying file -// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -// -// See http://www.boost.org/libs/container for documentation. -// -////////////////////////////////////////////////////////////////////////////// - -#define BOOST_CONTAINER_SOURCE -#include <boost/container/detail/config_begin.hpp> -#include <boost/container/detail/workaround.hpp> - -#include <boost/container/pmr/monotonic_buffer_resource.hpp> -#include <boost/container/pmr/global_resource.hpp> - -#include <boost/container/detail/min_max.hpp> -#include <boost/intrusive/detail/math.hpp> -#include <boost/container/throw_exception.hpp> - - -#include <cstddef> - -namespace { - -#ifdef BOOST_HAS_INTPTR_T -typedef boost::uintptr_t uintptr_type; -#else -typedef std::size_t uintptr_type; -#endif - -static const std::size_t minimum_buffer_size = 2*sizeof(void*); - -} //namespace { - -namespace boost { -namespace container { -namespace pmr { - -void monotonic_buffer_resource::increase_next_buffer() -{ - m_next_buffer_size = (std::size_t(-1)/2 < m_next_buffer_size) ? std::size_t(-1) : m_next_buffer_size*2; -} - -void monotonic_buffer_resource::increase_next_buffer_at_least_to(std::size_t minimum_size) -{ - if(m_next_buffer_size < minimum_size){ - if(bi::detail::is_pow2(minimum_size)){ - m_next_buffer_size = minimum_size; - } - else if(std::size_t(-1)/2 < minimum_size){ - m_next_buffer_size = minimum_size; - } - else{ - m_next_buffer_size = bi::detail::ceil_pow2(minimum_size); - } - } -} - -monotonic_buffer_resource::monotonic_buffer_resource(memory_resource* upstream) BOOST_NOEXCEPT - : m_memory_blocks(upstream ? *upstream : *get_default_resource()) - , m_current_buffer(0) - , m_current_buffer_size(0u) - , m_next_buffer_size(initial_next_buffer_size) -{} - -monotonic_buffer_resource::monotonic_buffer_resource(std::size_t initial_size, memory_resource* upstream) BOOST_NOEXCEPT - : m_memory_blocks(upstream ? *upstream : *get_default_resource()) - , m_current_buffer(0) - , m_current_buffer_size(0u) - , m_next_buffer_size(minimum_buffer_size) -{ //In case initial_size is zero - this->increase_next_buffer_at_least_to(initial_size + !initial_size); -} - -monotonic_buffer_resource::monotonic_buffer_resource(void* buffer, std::size_t buffer_size, memory_resource* upstream) BOOST_NOEXCEPT - : m_memory_blocks(upstream ? *upstream : *get_default_resource()) - , m_current_buffer(buffer) - , m_current_buffer_size(buffer_size) - , m_next_buffer_size - (bi::detail::previous_or_equal_pow2 - (boost::container::dtl::max_value(buffer_size, std::size_t(initial_next_buffer_size)))) -{ this->increase_next_buffer(); } - -monotonic_buffer_resource::~monotonic_buffer_resource() -{ this->release(); } - -void monotonic_buffer_resource::release() BOOST_NOEXCEPT -{ - m_memory_blocks.release(); - m_current_buffer = 0u; - m_current_buffer_size = 0u; - m_next_buffer_size = initial_next_buffer_size; -} - -memory_resource* monotonic_buffer_resource::upstream_resource() const BOOST_NOEXCEPT -{ return &m_memory_blocks.upstream_resource(); } - -std::size_t monotonic_buffer_resource::remaining_storage(std::size_t alignment, std::size_t &wasted_due_to_alignment) const BOOST_NOEXCEPT -{ - const uintptr_type up_alignment_minus1 = alignment - 1u; - const uintptr_type up_alignment_mask = ~up_alignment_minus1; - const uintptr_type up_addr = uintptr_type(m_current_buffer); - const uintptr_type up_aligned_addr = (up_addr + up_alignment_minus1) & up_alignment_mask; - wasted_due_to_alignment = std::size_t(up_aligned_addr - up_addr); - return m_current_buffer_size <= wasted_due_to_alignment ? 0u : m_current_buffer_size - wasted_due_to_alignment; -} - -std::size_t monotonic_buffer_resource::remaining_storage(std::size_t alignment) const BOOST_NOEXCEPT -{ - std::size_t ignore_this; - return this->remaining_storage(alignment, ignore_this); -} - -const void *monotonic_buffer_resource::current_buffer() const BOOST_NOEXCEPT -{ return m_current_buffer; } - -std::size_t monotonic_buffer_resource::next_buffer_size() const BOOST_NOEXCEPT -{ return m_next_buffer_size; } - -void *monotonic_buffer_resource::allocate_from_current(std::size_t aligner, std::size_t bytes) -{ - char * p = (char*)m_current_buffer + aligner; - m_current_buffer = p + bytes; - m_current_buffer_size -= aligner + bytes; - return p; -} - -void* monotonic_buffer_resource::do_allocate(std::size_t bytes, std::size_t alignment) -{ - if(alignment > memory_resource::max_align) - throw_bad_alloc(); - - //See if there is room in current buffer - std::size_t aligner = 0u; - if(this->remaining_storage(alignment, aligner) < bytes){ - //Update next_buffer_size to at least bytes - this->increase_next_buffer_at_least_to(bytes); - //Now allocate and update internal data - m_current_buffer = (char*)m_memory_blocks.allocate(m_next_buffer_size); - m_current_buffer_size = m_next_buffer_size; - this->increase_next_buffer(); - } - //Enough internal storage, extract from it - return this->allocate_from_current(aligner, bytes); -} - -void monotonic_buffer_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) BOOST_NOEXCEPT -{ (void)p; (void)bytes; (void)alignment; } - -bool monotonic_buffer_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT -{ return this == dynamic_cast<const monotonic_buffer_resource*>(&other); } - -} //namespace pmr { -} //namespace container { -} //namespace boost { - -#include <boost/container/detail/config_end.hpp> +////////////////////////////////////////////////////////////////////////////// +// +// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost +// Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) +// +// See http://www.boost.org/libs/container for documentation. +// +////////////////////////////////////////////////////////////////////////////// + +#define BOOST_CONTAINER_SOURCE +#include <boost/container/detail/config_begin.hpp> +#include <boost/container/detail/workaround.hpp> + +#include <boost/container/pmr/monotonic_buffer_resource.hpp> +#include <boost/container/pmr/global_resource.hpp> + +#include <boost/container/detail/min_max.hpp> +#include <boost/intrusive/detail/math.hpp> +#include <boost/container/throw_exception.hpp> + + +#include <cstddef> + +namespace { + +#ifdef BOOST_HAS_INTPTR_T +typedef boost::uintptr_t uintptr_type; +#else +typedef std::size_t uintptr_type; +#endif + +static const std::size_t minimum_buffer_size = 2*sizeof(void*); + +} //namespace { + +namespace boost { +namespace container { +namespace pmr { + +void monotonic_buffer_resource::increase_next_buffer() +{ + m_next_buffer_size = (std::size_t(-1)/2 < m_next_buffer_size) ? std::size_t(-1) : m_next_buffer_size*2; +} + +void monotonic_buffer_resource::increase_next_buffer_at_least_to(std::size_t minimum_size) +{ + if(m_next_buffer_size < minimum_size){ + if(bi::detail::is_pow2(minimum_size)){ + m_next_buffer_size = minimum_size; + } + else if(std::size_t(-1)/2 < minimum_size){ + m_next_buffer_size = minimum_size; + } + else{ + m_next_buffer_size = bi::detail::ceil_pow2(minimum_size); + } + } +} + +monotonic_buffer_resource::monotonic_buffer_resource(memory_resource* upstream) BOOST_NOEXCEPT + : m_memory_blocks(upstream ? *upstream : *get_default_resource()) + , m_current_buffer(0) + , m_current_buffer_size(0u) + , m_next_buffer_size(initial_next_buffer_size) +{} + +monotonic_buffer_resource::monotonic_buffer_resource(std::size_t initial_size, memory_resource* upstream) BOOST_NOEXCEPT + : m_memory_blocks(upstream ? *upstream : *get_default_resource()) + , m_current_buffer(0) + , m_current_buffer_size(0u) + , m_next_buffer_size(minimum_buffer_size) +{ //In case initial_size is zero + this->increase_next_buffer_at_least_to(initial_size + !initial_size); +} + +monotonic_buffer_resource::monotonic_buffer_resource(void* buffer, std::size_t buffer_size, memory_resource* upstream) BOOST_NOEXCEPT + : m_memory_blocks(upstream ? *upstream : *get_default_resource()) + , m_current_buffer(buffer) + , m_current_buffer_size(buffer_size) + , m_next_buffer_size + (bi::detail::previous_or_equal_pow2 + (boost::container::dtl::max_value(buffer_size, std::size_t(initial_next_buffer_size)))) +{ this->increase_next_buffer(); } + +monotonic_buffer_resource::~monotonic_buffer_resource() +{ this->release(); } + +void monotonic_buffer_resource::release() BOOST_NOEXCEPT +{ + m_memory_blocks.release(); + m_current_buffer = 0u; + m_current_buffer_size = 0u; + m_next_buffer_size = initial_next_buffer_size; +} + +memory_resource* monotonic_buffer_resource::upstream_resource() const BOOST_NOEXCEPT +{ return &m_memory_blocks.upstream_resource(); } + +std::size_t monotonic_buffer_resource::remaining_storage(std::size_t alignment, std::size_t &wasted_due_to_alignment) const BOOST_NOEXCEPT +{ + const uintptr_type up_alignment_minus1 = alignment - 1u; + const uintptr_type up_alignment_mask = ~up_alignment_minus1; + const uintptr_type up_addr = uintptr_type(m_current_buffer); + const uintptr_type up_aligned_addr = (up_addr + up_alignment_minus1) & up_alignment_mask; + wasted_due_to_alignment = std::size_t(up_aligned_addr - up_addr); + return m_current_buffer_size <= wasted_due_to_alignment ? 0u : m_current_buffer_size - wasted_due_to_alignment; +} + +std::size_t monotonic_buffer_resource::remaining_storage(std::size_t alignment) const BOOST_NOEXCEPT +{ + std::size_t ignore_this; + return this->remaining_storage(alignment, ignore_this); +} + +const void *monotonic_buffer_resource::current_buffer() const BOOST_NOEXCEPT +{ return m_current_buffer; } + +std::size_t monotonic_buffer_resource::next_buffer_size() const BOOST_NOEXCEPT +{ return m_next_buffer_size; } + +void *monotonic_buffer_resource::allocate_from_current(std::size_t aligner, std::size_t bytes) +{ + char * p = (char*)m_current_buffer + aligner; + m_current_buffer = p + bytes; + m_current_buffer_size -= aligner + bytes; + return p; +} + +void* monotonic_buffer_resource::do_allocate(std::size_t bytes, std::size_t alignment) +{ + if(alignment > memory_resource::max_align) + throw_bad_alloc(); + + //See if there is room in current buffer + std::size_t aligner = 0u; + if(this->remaining_storage(alignment, aligner) < bytes){ + //Update next_buffer_size to at least bytes + this->increase_next_buffer_at_least_to(bytes); + //Now allocate and update internal data + m_current_buffer = (char*)m_memory_blocks.allocate(m_next_buffer_size); + m_current_buffer_size = m_next_buffer_size; + this->increase_next_buffer(); + } + //Enough internal storage, extract from it + return this->allocate_from_current(aligner, bytes); +} + +void monotonic_buffer_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) BOOST_NOEXCEPT +{ (void)p; (void)bytes; (void)alignment; } + +bool monotonic_buffer_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT +{ return this == dynamic_cast<const monotonic_buffer_resource*>(&other); } + +} //namespace pmr { +} //namespace container { +} //namespace boost { + +#include <boost/container/detail/config_end.hpp> diff --git a/contrib/restricted/boost/libs/container/src/pool_resource.cpp b/contrib/restricted/boost/libs/container/src/pool_resource.cpp index 46b36dcae7..e6829e28e7 100644 --- a/contrib/restricted/boost/libs/container/src/pool_resource.cpp +++ b/contrib/restricted/boost/libs/container/src/pool_resource.cpp @@ -1,291 +1,291 @@ -////////////////////////////////////////////////////////////////////////////// -// -// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost -// Software License, Version 1.0. (See accompanying file -// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -// -// See http://www.boost.org/libs/container for documentation. -// -////////////////////////////////////////////////////////////////////////////// - -#define BOOST_CONTAINER_SOURCE -#include <boost/container/detail/config_begin.hpp> -#include <boost/container/detail/workaround.hpp> - -#include <boost/container/pmr/global_resource.hpp> - -#include <boost/container/detail/pool_resource.hpp> -#include <boost/container/detail/block_slist.hpp> -#include <boost/container/detail/min_max.hpp> -#include <boost/container/detail/placement_new.hpp> -#include <boost/intrusive/linear_slist_algorithms.hpp> -#include <boost/intrusive/detail/math.hpp> - -#include <cstddef> - -namespace boost { -namespace container { -namespace pmr { - -//pool_data_t - -class pool_data_t - : public block_slist_base<> -{ - typedef block_slist_base<> block_slist_base_t; - - public: - explicit pool_data_t(std::size_t initial_blocks_per_chunk) - : block_slist_base_t(), next_blocks_per_chunk(initial_blocks_per_chunk) - { slist_algo::init_header(&free_slist); } - - void *allocate_block() BOOST_NOEXCEPT - { - if(slist_algo::unique(&free_slist)){ - return 0; - } - slist_node *pv = slist_algo::node_traits::get_next(&free_slist); - slist_algo::unlink_after(&free_slist); - pv->~slist_node(); - return pv; - } - - void deallocate_block(void *p) BOOST_NOEXCEPT - { - slist_node *pv = ::new(p, boost_container_new_t()) slist_node(); - slist_algo::link_after(&free_slist, pv); - } - - void release(memory_resource &upstream) - { - slist_algo::init_header(&free_slist); - this->block_slist_base_t::release(upstream); - next_blocks_per_chunk = pool_options_minimum_max_blocks_per_chunk; - } - - void replenish(memory_resource &mr, std::size_t pool_block, std::size_t max_blocks_per_chunk) - { - //Limit max value - std::size_t blocks_per_chunk = boost::container::dtl::min_value(max_blocks_per_chunk, next_blocks_per_chunk); - //Avoid overflow - blocks_per_chunk = boost::container::dtl::min_value(blocks_per_chunk, std::size_t(-1)/pool_block); - - //Minimum block size is at least max_align, so all pools allocate sizes that are multiple of max_align, - //meaning that all blocks are max_align-aligned. - char *p = static_cast<char *>(block_slist_base_t::allocate(blocks_per_chunk*pool_block, mr)); - - //Create header types. This is no-throw - for(std::size_t i = 0, max = blocks_per_chunk; i != max; ++i){ - slist_node *const pv = ::new(p, boost_container_new_t()) slist_node(); - slist_algo::link_after(&free_slist, pv); - p += pool_block; - } - - //Update next block per chunk - next_blocks_per_chunk = max_blocks_per_chunk/2u < blocks_per_chunk ? max_blocks_per_chunk : blocks_per_chunk*2u; - } - - std::size_t cache_count() const - { return slist_algo::count(&free_slist) - 1u; } - - slist_node free_slist; - std::size_t next_blocks_per_chunk; -}; - -//pool_resource - -//Detect overflow in ceil_pow2 -BOOST_STATIC_ASSERT(pool_options_default_max_blocks_per_chunk <= (std::size_t(-1)/2u+1u)); -//Sanity checks -BOOST_STATIC_ASSERT(bi::detail::static_is_pow2<pool_options_default_max_blocks_per_chunk>::value); -BOOST_STATIC_ASSERT(bi::detail::static_is_pow2<pool_options_minimum_largest_required_pool_block>::value); - -//unsynchronized_pool_resource - -void pool_resource::priv_limit_option(std::size_t &val, std::size_t min, std::size_t max) //static -{ - if(!val){ - val = max; - } - else{ - val = val < min ? min : boost::container::dtl::min_value(val, max); - } -} - -std::size_t pool_resource::priv_pool_index(std::size_t block_size) //static -{ - //For allocations equal or less than pool_options_minimum_largest_required_pool_block - //the smallest pool is used - block_size = boost::container::dtl::max_value(block_size, pool_options_minimum_largest_required_pool_block); - return bi::detail::ceil_log2(block_size) - - bi::detail::ceil_log2(pool_options_minimum_largest_required_pool_block); -} - -std::size_t pool_resource::priv_pool_block(std::size_t index) //static -{ - //For allocations equal or less than pool_options_minimum_largest_required_pool_block - //the smallest pool is used - return pool_options_minimum_largest_required_pool_block << index; -} - -void pool_resource::priv_fix_options() -{ - priv_limit_option(m_options.max_blocks_per_chunk - , pool_options_minimum_max_blocks_per_chunk - , pool_options_default_max_blocks_per_chunk); - priv_limit_option - ( m_options.largest_required_pool_block - , pool_options_minimum_largest_required_pool_block - , pool_options_default_largest_required_pool_block); - m_options.largest_required_pool_block = bi::detail::ceil_pow2(m_options.largest_required_pool_block); -} - -void pool_resource::priv_init_pools() -{ - const std::size_t num_pools = priv_pool_index(m_options.largest_required_pool_block)+1u; - //Otherwise, just use the default alloc (zero pools) - void *p = 0; - //This can throw - p = m_upstream.allocate(sizeof(pool_data_t)*num_pools); - //This is nothrow - m_pool_data = static_cast<pool_data_t *>(p); - for(std::size_t i = 0, max = num_pools; i != max; ++i){ - ::new(&m_pool_data[i], boost_container_new_t()) pool_data_t(pool_options_minimum_max_blocks_per_chunk); - } - m_pool_count = num_pools; -} - -void pool_resource::priv_constructor_body() -{ - this->priv_fix_options(); -} - -pool_resource::pool_resource(const pool_options& opts, memory_resource* upstream) BOOST_NOEXCEPT - : m_options(opts), m_upstream(*upstream), m_oversized_list(), m_pool_data(), m_pool_count() -{ this->priv_constructor_body(); } - -pool_resource::pool_resource() BOOST_NOEXCEPT - : m_options(), m_upstream(*get_default_resource()), m_oversized_list(), m_pool_data(), m_pool_count() -{ this->priv_constructor_body(); } - -pool_resource::pool_resource(memory_resource* upstream) BOOST_NOEXCEPT - : m_options(), m_upstream(*upstream), m_oversized_list(), m_pool_data(), m_pool_count() -{ this->priv_constructor_body(); } - -pool_resource::pool_resource(const pool_options& opts) BOOST_NOEXCEPT - : m_options(opts), m_upstream(*get_default_resource()), m_oversized_list(), m_pool_data(), m_pool_count() -{ this->priv_constructor_body(); } - -pool_resource::~pool_resource() //virtual -{ - this->release(); - - for(std::size_t i = 0, max = m_pool_count; i != max; ++i){ - m_pool_data[i].~pool_data_t(); - } - if(m_pool_data){ - m_upstream.deallocate((void*)m_pool_data, sizeof(pool_data_t)*m_pool_count); - } -} - -void pool_resource::release() -{ - m_oversized_list.release(m_upstream); - for(std::size_t i = 0, max = m_pool_count; i != max; ++i) - { - m_pool_data[i].release(m_upstream); - } -} - -memory_resource* pool_resource::upstream_resource() const -{ return &m_upstream; } - -pool_options pool_resource::options() const -{ return m_options; } - -void* pool_resource::do_allocate(std::size_t bytes, std::size_t alignment) //virtual -{ - if(!m_pool_data){ - this->priv_init_pools(); - } - (void)alignment; //alignment ignored here, max_align is used by pools - if(bytes > m_options.largest_required_pool_block){ - return m_oversized_list.allocate(bytes, m_upstream); - } - else{ - const std::size_t pool_idx = priv_pool_index(bytes); - pool_data_t & pool = m_pool_data[pool_idx]; - void *p = pool.allocate_block(); - if(!p){ - pool.replenish(m_upstream, priv_pool_block(pool_idx), m_options.max_blocks_per_chunk); - p = pool.allocate_block(); - } - return p; - } -} - -void pool_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) //virtual -{ - (void)alignment; //alignment ignored here, max_align is used by pools - if(bytes > m_options.largest_required_pool_block){ - //Just cached - return m_oversized_list.deallocate(p, m_upstream); - } - else{ - const std::size_t pool_idx = priv_pool_index(bytes); - return m_pool_data[pool_idx].deallocate_block(p); - } -} - -bool pool_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT //virtual -{ return this == dynamic_cast<const pool_resource*>(&other); } - - -std::size_t pool_resource::pool_count() const -{ - if(BOOST_LIKELY((0 != m_pool_data))){ - return m_pool_count; - } - else{ - return priv_pool_index(m_options.largest_required_pool_block)+1u; - } -} - -std::size_t pool_resource::pool_index(std::size_t bytes) const -{ - if(bytes > m_options.largest_required_pool_block){ - return pool_count(); - } - else{ - return priv_pool_index(bytes); - } -} - -std::size_t pool_resource::pool_next_blocks_per_chunk(std::size_t pool_idx) const -{ - if(BOOST_LIKELY((m_pool_data && pool_idx < m_pool_count))){ - return m_pool_data[pool_idx].next_blocks_per_chunk; - } - else{ - return 1u; - } -} - -std::size_t pool_resource::pool_block(std::size_t pool_idx) const -{ return priv_pool_block(pool_idx); } - -std::size_t pool_resource::pool_cached_blocks(std::size_t pool_idx) const -{ - if(BOOST_LIKELY((m_pool_data && pool_idx < m_pool_count))){ - return m_pool_data[pool_idx].cache_count(); - } - else{ - return 0u; - } -} - -} //namespace pmr { -} //namespace container { -} //namespace boost { - -#include <boost/container/detail/config_end.hpp> +////////////////////////////////////////////////////////////////////////////// +// +// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost +// Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) +// +// See http://www.boost.org/libs/container for documentation. +// +////////////////////////////////////////////////////////////////////////////// + +#define BOOST_CONTAINER_SOURCE +#include <boost/container/detail/config_begin.hpp> +#include <boost/container/detail/workaround.hpp> + +#include <boost/container/pmr/global_resource.hpp> + +#include <boost/container/detail/pool_resource.hpp> +#include <boost/container/detail/block_slist.hpp> +#include <boost/container/detail/min_max.hpp> +#include <boost/container/detail/placement_new.hpp> +#include <boost/intrusive/linear_slist_algorithms.hpp> +#include <boost/intrusive/detail/math.hpp> + +#include <cstddef> + +namespace boost { +namespace container { +namespace pmr { + +//pool_data_t + +class pool_data_t + : public block_slist_base<> +{ + typedef block_slist_base<> block_slist_base_t; + + public: + explicit pool_data_t(std::size_t initial_blocks_per_chunk) + : block_slist_base_t(), next_blocks_per_chunk(initial_blocks_per_chunk) + { slist_algo::init_header(&free_slist); } + + void *allocate_block() BOOST_NOEXCEPT + { + if(slist_algo::unique(&free_slist)){ + return 0; + } + slist_node *pv = slist_algo::node_traits::get_next(&free_slist); + slist_algo::unlink_after(&free_slist); + pv->~slist_node(); + return pv; + } + + void deallocate_block(void *p) BOOST_NOEXCEPT + { + slist_node *pv = ::new(p, boost_container_new_t()) slist_node(); + slist_algo::link_after(&free_slist, pv); + } + + void release(memory_resource &upstream) + { + slist_algo::init_header(&free_slist); + this->block_slist_base_t::release(upstream); + next_blocks_per_chunk = pool_options_minimum_max_blocks_per_chunk; + } + + void replenish(memory_resource &mr, std::size_t pool_block, std::size_t max_blocks_per_chunk) + { + //Limit max value + std::size_t blocks_per_chunk = boost::container::dtl::min_value(max_blocks_per_chunk, next_blocks_per_chunk); + //Avoid overflow + blocks_per_chunk = boost::container::dtl::min_value(blocks_per_chunk, std::size_t(-1)/pool_block); + + //Minimum block size is at least max_align, so all pools allocate sizes that are multiple of max_align, + //meaning that all blocks are max_align-aligned. + char *p = static_cast<char *>(block_slist_base_t::allocate(blocks_per_chunk*pool_block, mr)); + + //Create header types. This is no-throw + for(std::size_t i = 0, max = blocks_per_chunk; i != max; ++i){ + slist_node *const pv = ::new(p, boost_container_new_t()) slist_node(); + slist_algo::link_after(&free_slist, pv); + p += pool_block; + } + + //Update next block per chunk + next_blocks_per_chunk = max_blocks_per_chunk/2u < blocks_per_chunk ? max_blocks_per_chunk : blocks_per_chunk*2u; + } + + std::size_t cache_count() const + { return slist_algo::count(&free_slist) - 1u; } + + slist_node free_slist; + std::size_t next_blocks_per_chunk; +}; + +//pool_resource + +//Detect overflow in ceil_pow2 +BOOST_STATIC_ASSERT(pool_options_default_max_blocks_per_chunk <= (std::size_t(-1)/2u+1u)); +//Sanity checks +BOOST_STATIC_ASSERT(bi::detail::static_is_pow2<pool_options_default_max_blocks_per_chunk>::value); +BOOST_STATIC_ASSERT(bi::detail::static_is_pow2<pool_options_minimum_largest_required_pool_block>::value); + +//unsynchronized_pool_resource + +void pool_resource::priv_limit_option(std::size_t &val, std::size_t min, std::size_t max) //static +{ + if(!val){ + val = max; + } + else{ + val = val < min ? min : boost::container::dtl::min_value(val, max); + } +} + +std::size_t pool_resource::priv_pool_index(std::size_t block_size) //static +{ + //For allocations equal or less than pool_options_minimum_largest_required_pool_block + //the smallest pool is used + block_size = boost::container::dtl::max_value(block_size, pool_options_minimum_largest_required_pool_block); + return bi::detail::ceil_log2(block_size) + - bi::detail::ceil_log2(pool_options_minimum_largest_required_pool_block); +} + +std::size_t pool_resource::priv_pool_block(std::size_t index) //static +{ + //For allocations equal or less than pool_options_minimum_largest_required_pool_block + //the smallest pool is used + return pool_options_minimum_largest_required_pool_block << index; +} + +void pool_resource::priv_fix_options() +{ + priv_limit_option(m_options.max_blocks_per_chunk + , pool_options_minimum_max_blocks_per_chunk + , pool_options_default_max_blocks_per_chunk); + priv_limit_option + ( m_options.largest_required_pool_block + , pool_options_minimum_largest_required_pool_block + , pool_options_default_largest_required_pool_block); + m_options.largest_required_pool_block = bi::detail::ceil_pow2(m_options.largest_required_pool_block); +} + +void pool_resource::priv_init_pools() +{ + const std::size_t num_pools = priv_pool_index(m_options.largest_required_pool_block)+1u; + //Otherwise, just use the default alloc (zero pools) + void *p = 0; + //This can throw + p = m_upstream.allocate(sizeof(pool_data_t)*num_pools); + //This is nothrow + m_pool_data = static_cast<pool_data_t *>(p); + for(std::size_t i = 0, max = num_pools; i != max; ++i){ + ::new(&m_pool_data[i], boost_container_new_t()) pool_data_t(pool_options_minimum_max_blocks_per_chunk); + } + m_pool_count = num_pools; +} + +void pool_resource::priv_constructor_body() +{ + this->priv_fix_options(); +} + +pool_resource::pool_resource(const pool_options& opts, memory_resource* upstream) BOOST_NOEXCEPT + : m_options(opts), m_upstream(*upstream), m_oversized_list(), m_pool_data(), m_pool_count() +{ this->priv_constructor_body(); } + +pool_resource::pool_resource() BOOST_NOEXCEPT + : m_options(), m_upstream(*get_default_resource()), m_oversized_list(), m_pool_data(), m_pool_count() +{ this->priv_constructor_body(); } + +pool_resource::pool_resource(memory_resource* upstream) BOOST_NOEXCEPT + : m_options(), m_upstream(*upstream), m_oversized_list(), m_pool_data(), m_pool_count() +{ this->priv_constructor_body(); } + +pool_resource::pool_resource(const pool_options& opts) BOOST_NOEXCEPT + : m_options(opts), m_upstream(*get_default_resource()), m_oversized_list(), m_pool_data(), m_pool_count() +{ this->priv_constructor_body(); } + +pool_resource::~pool_resource() //virtual +{ + this->release(); + + for(std::size_t i = 0, max = m_pool_count; i != max; ++i){ + m_pool_data[i].~pool_data_t(); + } + if(m_pool_data){ + m_upstream.deallocate((void*)m_pool_data, sizeof(pool_data_t)*m_pool_count); + } +} + +void pool_resource::release() +{ + m_oversized_list.release(m_upstream); + for(std::size_t i = 0, max = m_pool_count; i != max; ++i) + { + m_pool_data[i].release(m_upstream); + } +} + +memory_resource* pool_resource::upstream_resource() const +{ return &m_upstream; } + +pool_options pool_resource::options() const +{ return m_options; } + +void* pool_resource::do_allocate(std::size_t bytes, std::size_t alignment) //virtual +{ + if(!m_pool_data){ + this->priv_init_pools(); + } + (void)alignment; //alignment ignored here, max_align is used by pools + if(bytes > m_options.largest_required_pool_block){ + return m_oversized_list.allocate(bytes, m_upstream); + } + else{ + const std::size_t pool_idx = priv_pool_index(bytes); + pool_data_t & pool = m_pool_data[pool_idx]; + void *p = pool.allocate_block(); + if(!p){ + pool.replenish(m_upstream, priv_pool_block(pool_idx), m_options.max_blocks_per_chunk); + p = pool.allocate_block(); + } + return p; + } +} + +void pool_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) //virtual +{ + (void)alignment; //alignment ignored here, max_align is used by pools + if(bytes > m_options.largest_required_pool_block){ + //Just cached + return m_oversized_list.deallocate(p, m_upstream); + } + else{ + const std::size_t pool_idx = priv_pool_index(bytes); + return m_pool_data[pool_idx].deallocate_block(p); + } +} + +bool pool_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT //virtual +{ return this == dynamic_cast<const pool_resource*>(&other); } + + +std::size_t pool_resource::pool_count() const +{ + if(BOOST_LIKELY((0 != m_pool_data))){ + return m_pool_count; + } + else{ + return priv_pool_index(m_options.largest_required_pool_block)+1u; + } +} + +std::size_t pool_resource::pool_index(std::size_t bytes) const +{ + if(bytes > m_options.largest_required_pool_block){ + return pool_count(); + } + else{ + return priv_pool_index(bytes); + } +} + +std::size_t pool_resource::pool_next_blocks_per_chunk(std::size_t pool_idx) const +{ + if(BOOST_LIKELY((m_pool_data && pool_idx < m_pool_count))){ + return m_pool_data[pool_idx].next_blocks_per_chunk; + } + else{ + return 1u; + } +} + +std::size_t pool_resource::pool_block(std::size_t pool_idx) const +{ return priv_pool_block(pool_idx); } + +std::size_t pool_resource::pool_cached_blocks(std::size_t pool_idx) const +{ + if(BOOST_LIKELY((m_pool_data && pool_idx < m_pool_count))){ + return m_pool_data[pool_idx].cache_count(); + } + else{ + return 0u; + } +} + +} //namespace pmr { +} //namespace container { +} //namespace boost { + +#include <boost/container/detail/config_end.hpp> diff --git a/contrib/restricted/boost/libs/container/src/synchronized_pool_resource.cpp b/contrib/restricted/boost/libs/container/src/synchronized_pool_resource.cpp index 4d7cda6b3d..b98bed4f63 100644 --- a/contrib/restricted/boost/libs/container/src/synchronized_pool_resource.cpp +++ b/contrib/restricted/boost/libs/container/src/synchronized_pool_resource.cpp @@ -1,123 +1,123 @@ -////////////////////////////////////////////////////////////////////////////// -// -// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost -// Software License, Version 1.0. (See accompanying file -// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -// -// See http://www.boost.org/libs/container for documentation. -// -////////////////////////////////////////////////////////////////////////////// - -#define BOOST_CONTAINER_SOURCE -#include <boost/container/detail/config_begin.hpp> -#include <boost/container/detail/workaround.hpp> -#include <boost/container/detail/dlmalloc.hpp> - -#include <boost/container/pmr/synchronized_pool_resource.hpp> -#include <cstddef> - -namespace { - -using namespace boost::container; - -class dlmalloc_sync_scoped_lock -{ - void *m_sync; - - public: - explicit dlmalloc_sync_scoped_lock(void *sync) - : m_sync(sync) - { - if(!dlmalloc_sync_lock(m_sync)){ - throw_bad_alloc(); - } - } - - ~dlmalloc_sync_scoped_lock() - { - dlmalloc_sync_unlock(m_sync); - } -}; - -} //namespace { - -namespace boost { -namespace container { -namespace pmr { - -synchronized_pool_resource::synchronized_pool_resource(const pool_options& opts, memory_resource* upstream) BOOST_NOEXCEPT - : m_pool_resource(opts, upstream), m_opaque_sync() -{} - -synchronized_pool_resource::synchronized_pool_resource() BOOST_NOEXCEPT - : m_pool_resource(), m_opaque_sync() -{} - -synchronized_pool_resource::synchronized_pool_resource(memory_resource* upstream) BOOST_NOEXCEPT - : m_pool_resource(upstream), m_opaque_sync() -{} - -synchronized_pool_resource::synchronized_pool_resource(const pool_options& opts) BOOST_NOEXCEPT - : m_pool_resource(opts), m_opaque_sync() -{} - -synchronized_pool_resource::~synchronized_pool_resource() //virtual -{ - if(m_opaque_sync) - dlmalloc_sync_destroy(m_opaque_sync); -} - -void synchronized_pool_resource::release() -{ - if(m_opaque_sync){ //If there is no mutex, no allocation could be done - m_pool_resource.release(); - } -} - -memory_resource* synchronized_pool_resource::upstream_resource() const -{ return m_pool_resource.upstream_resource(); } - -pool_options synchronized_pool_resource::options() const -{ return m_pool_resource.options(); } - -void* synchronized_pool_resource::do_allocate(std::size_t bytes, std::size_t alignment) //virtual -{ - if(!m_opaque_sync){ //If there is no mutex, no allocation could be done - m_opaque_sync = dlmalloc_sync_create(); - if(!m_opaque_sync){ - throw_bad_alloc(); - } - } - dlmalloc_sync_scoped_lock lock(m_opaque_sync); (void)lock; - return m_pool_resource.do_allocate(bytes, alignment); -} - -void synchronized_pool_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) //virtual -{ - dlmalloc_sync_scoped_lock lock(m_opaque_sync); (void)lock; - return m_pool_resource.do_deallocate(p, bytes, alignment); -} - -bool synchronized_pool_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT //virtual -{ return this == dynamic_cast<const synchronized_pool_resource*>(&other); } - -std::size_t synchronized_pool_resource::pool_count() const -{ return m_pool_resource.pool_count(); } - -std::size_t synchronized_pool_resource::pool_index(std::size_t bytes) const -{ return m_pool_resource.pool_index(bytes); } - -std::size_t synchronized_pool_resource::pool_next_blocks_per_chunk(std::size_t pool_idx) const -{ return m_pool_resource.pool_next_blocks_per_chunk(pool_idx); } - -std::size_t synchronized_pool_resource::pool_block(std::size_t pool_idx) const -{ return m_pool_resource.pool_block(pool_idx); } - -std::size_t synchronized_pool_resource::pool_cached_blocks(std::size_t pool_idx) const -{ return m_pool_resource.pool_cached_blocks(pool_idx); } - -} //namespace pmr { -} //namespace container { -} //namespace boost { - -#include <boost/container/detail/config_end.hpp> +////////////////////////////////////////////////////////////////////////////// +// +// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost +// Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) +// +// See http://www.boost.org/libs/container for documentation. +// +////////////////////////////////////////////////////////////////////////////// + +#define BOOST_CONTAINER_SOURCE +#include <boost/container/detail/config_begin.hpp> +#include <boost/container/detail/workaround.hpp> +#include <boost/container/detail/dlmalloc.hpp> + +#include <boost/container/pmr/synchronized_pool_resource.hpp> +#include <cstddef> + +namespace { + +using namespace boost::container; + +class dlmalloc_sync_scoped_lock +{ + void *m_sync; + + public: + explicit dlmalloc_sync_scoped_lock(void *sync) + : m_sync(sync) + { + if(!dlmalloc_sync_lock(m_sync)){ + throw_bad_alloc(); + } + } + + ~dlmalloc_sync_scoped_lock() + { + dlmalloc_sync_unlock(m_sync); + } +}; + +} //namespace { + +namespace boost { +namespace container { +namespace pmr { + +synchronized_pool_resource::synchronized_pool_resource(const pool_options& opts, memory_resource* upstream) BOOST_NOEXCEPT + : m_pool_resource(opts, upstream), m_opaque_sync() +{} + +synchronized_pool_resource::synchronized_pool_resource() BOOST_NOEXCEPT + : m_pool_resource(), m_opaque_sync() +{} + +synchronized_pool_resource::synchronized_pool_resource(memory_resource* upstream) BOOST_NOEXCEPT + : m_pool_resource(upstream), m_opaque_sync() +{} + +synchronized_pool_resource::synchronized_pool_resource(const pool_options& opts) BOOST_NOEXCEPT + : m_pool_resource(opts), m_opaque_sync() +{} + +synchronized_pool_resource::~synchronized_pool_resource() //virtual +{ + if(m_opaque_sync) + dlmalloc_sync_destroy(m_opaque_sync); +} + +void synchronized_pool_resource::release() +{ + if(m_opaque_sync){ //If there is no mutex, no allocation could be done + m_pool_resource.release(); + } +} + +memory_resource* synchronized_pool_resource::upstream_resource() const +{ return m_pool_resource.upstream_resource(); } + +pool_options synchronized_pool_resource::options() const +{ return m_pool_resource.options(); } + +void* synchronized_pool_resource::do_allocate(std::size_t bytes, std::size_t alignment) //virtual +{ + if(!m_opaque_sync){ //If there is no mutex, no allocation could be done + m_opaque_sync = dlmalloc_sync_create(); + if(!m_opaque_sync){ + throw_bad_alloc(); + } + } + dlmalloc_sync_scoped_lock lock(m_opaque_sync); (void)lock; + return m_pool_resource.do_allocate(bytes, alignment); +} + +void synchronized_pool_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) //virtual +{ + dlmalloc_sync_scoped_lock lock(m_opaque_sync); (void)lock; + return m_pool_resource.do_deallocate(p, bytes, alignment); +} + +bool synchronized_pool_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT //virtual +{ return this == dynamic_cast<const synchronized_pool_resource*>(&other); } + +std::size_t synchronized_pool_resource::pool_count() const +{ return m_pool_resource.pool_count(); } + +std::size_t synchronized_pool_resource::pool_index(std::size_t bytes) const +{ return m_pool_resource.pool_index(bytes); } + +std::size_t synchronized_pool_resource::pool_next_blocks_per_chunk(std::size_t pool_idx) const +{ return m_pool_resource.pool_next_blocks_per_chunk(pool_idx); } + +std::size_t synchronized_pool_resource::pool_block(std::size_t pool_idx) const +{ return m_pool_resource.pool_block(pool_idx); } + +std::size_t synchronized_pool_resource::pool_cached_blocks(std::size_t pool_idx) const +{ return m_pool_resource.pool_cached_blocks(pool_idx); } + +} //namespace pmr { +} //namespace container { +} //namespace boost { + +#include <boost/container/detail/config_end.hpp> diff --git a/contrib/restricted/boost/libs/container/src/unsynchronized_pool_resource.cpp b/contrib/restricted/boost/libs/container/src/unsynchronized_pool_resource.cpp index 4164925f76..0c84f694a3 100644 --- a/contrib/restricted/boost/libs/container/src/unsynchronized_pool_resource.cpp +++ b/contrib/restricted/boost/libs/container/src/unsynchronized_pool_resource.cpp @@ -1,79 +1,79 @@ -////////////////////////////////////////////////////////////////////////////// -// -// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost -// Software License, Version 1.0. (See accompanying file -// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -// -// See http://www.boost.org/libs/container for documentation. -// -////////////////////////////////////////////////////////////////////////////// - -#define BOOST_CONTAINER_SOURCE -#include <boost/container/detail/config_begin.hpp> -#include <boost/container/detail/workaround.hpp> - -#include <boost/container/pmr/unsynchronized_pool_resource.hpp> - -namespace boost { -namespace container { -namespace pmr { - -unsynchronized_pool_resource::unsynchronized_pool_resource(const pool_options& opts, memory_resource* upstream) BOOST_NOEXCEPT - : m_resource(opts, upstream) -{} - -unsynchronized_pool_resource::unsynchronized_pool_resource() BOOST_NOEXCEPT - : m_resource() -{} - -unsynchronized_pool_resource::unsynchronized_pool_resource(memory_resource* upstream) BOOST_NOEXCEPT - : m_resource(upstream) -{} - -unsynchronized_pool_resource::unsynchronized_pool_resource(const pool_options& opts) BOOST_NOEXCEPT - : m_resource(opts) -{} - -unsynchronized_pool_resource::~unsynchronized_pool_resource() //virtual -{} - -void unsynchronized_pool_resource::release() -{ - m_resource.release(); -} - -memory_resource* unsynchronized_pool_resource::upstream_resource() const -{ return m_resource.upstream_resource(); } - -pool_options unsynchronized_pool_resource::options() const -{ return m_resource.options(); } - -void* unsynchronized_pool_resource::do_allocate(std::size_t bytes, std::size_t alignment) //virtual -{ return m_resource.do_allocate(bytes, alignment); } - -void unsynchronized_pool_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) //virtual -{ return m_resource.do_deallocate(p, bytes, alignment); } - -bool unsynchronized_pool_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT //virtual -{ return this == dynamic_cast<const unsynchronized_pool_resource*>(&other); } - -std::size_t unsynchronized_pool_resource::pool_count() const -{ return m_resource.pool_count(); } - -std::size_t unsynchronized_pool_resource::pool_index(std::size_t bytes) const -{ return m_resource.pool_index(bytes); } - -std::size_t unsynchronized_pool_resource::pool_next_blocks_per_chunk(std::size_t pool_idx) const -{ return m_resource.pool_next_blocks_per_chunk(pool_idx); } - -std::size_t unsynchronized_pool_resource::pool_block(std::size_t pool_idx) const -{ return m_resource.pool_block(pool_idx); } - -std::size_t unsynchronized_pool_resource::pool_cached_blocks(std::size_t pool_idx) const -{ return m_resource.pool_cached_blocks(pool_idx); } - -} //namespace pmr { -} //namespace container { -} //namespace boost { - -#include <boost/container/detail/config_end.hpp> +////////////////////////////////////////////////////////////////////////////// +// +// (C) Copyright Ion Gaztanaga 2015-2015. Distributed under the Boost +// Software License, Version 1.0. (See accompanying file +// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) +// +// See http://www.boost.org/libs/container for documentation. +// +////////////////////////////////////////////////////////////////////////////// + +#define BOOST_CONTAINER_SOURCE +#include <boost/container/detail/config_begin.hpp> +#include <boost/container/detail/workaround.hpp> + +#include <boost/container/pmr/unsynchronized_pool_resource.hpp> + +namespace boost { +namespace container { +namespace pmr { + +unsynchronized_pool_resource::unsynchronized_pool_resource(const pool_options& opts, memory_resource* upstream) BOOST_NOEXCEPT + : m_resource(opts, upstream) +{} + +unsynchronized_pool_resource::unsynchronized_pool_resource() BOOST_NOEXCEPT + : m_resource() +{} + +unsynchronized_pool_resource::unsynchronized_pool_resource(memory_resource* upstream) BOOST_NOEXCEPT + : m_resource(upstream) +{} + +unsynchronized_pool_resource::unsynchronized_pool_resource(const pool_options& opts) BOOST_NOEXCEPT + : m_resource(opts) +{} + +unsynchronized_pool_resource::~unsynchronized_pool_resource() //virtual +{} + +void unsynchronized_pool_resource::release() +{ + m_resource.release(); +} + +memory_resource* unsynchronized_pool_resource::upstream_resource() const +{ return m_resource.upstream_resource(); } + +pool_options unsynchronized_pool_resource::options() const +{ return m_resource.options(); } + +void* unsynchronized_pool_resource::do_allocate(std::size_t bytes, std::size_t alignment) //virtual +{ return m_resource.do_allocate(bytes, alignment); } + +void unsynchronized_pool_resource::do_deallocate(void* p, std::size_t bytes, std::size_t alignment) //virtual +{ return m_resource.do_deallocate(p, bytes, alignment); } + +bool unsynchronized_pool_resource::do_is_equal(const memory_resource& other) const BOOST_NOEXCEPT //virtual +{ return this == dynamic_cast<const unsynchronized_pool_resource*>(&other); } + +std::size_t unsynchronized_pool_resource::pool_count() const +{ return m_resource.pool_count(); } + +std::size_t unsynchronized_pool_resource::pool_index(std::size_t bytes) const +{ return m_resource.pool_index(bytes); } + +std::size_t unsynchronized_pool_resource::pool_next_blocks_per_chunk(std::size_t pool_idx) const +{ return m_resource.pool_next_blocks_per_chunk(pool_idx); } + +std::size_t unsynchronized_pool_resource::pool_block(std::size_t pool_idx) const +{ return m_resource.pool_block(pool_idx); } + +std::size_t unsynchronized_pool_resource::pool_cached_blocks(std::size_t pool_idx) const +{ return m_resource.pool_cached_blocks(pool_idx); } + +} //namespace pmr { +} //namespace container { +} //namespace boost { + +#include <boost/container/detail/config_end.hpp> diff --git a/contrib/restricted/boost/libs/container/ya.make b/contrib/restricted/boost/libs/container/ya.make index 0575a06293..bc9a2cd150 100644 --- a/contrib/restricted/boost/libs/container/ya.make +++ b/contrib/restricted/boost/libs/container/ya.make @@ -1,12 +1,12 @@ -LIBRARY() - +LIBRARY() + LICENSE( BSL-1.0 AND CC0-1.0 ) LICENSE_TEXTS(.yandex_meta/licenses.list.txt) - + OWNER( antoshkka g:cpp-committee @@ -14,15 +14,15 @@ OWNER( ) INCLUDE(${ARCADIA_ROOT}/contrib/restricted/boost/boost_common.inc) - -SRCS( - src/alloc_lib.c - src/dlmalloc.cpp - src/global_resource.cpp - src/monotonic_buffer_resource.cpp - src/pool_resource.cpp - src/synchronized_pool_resource.cpp - src/unsynchronized_pool_resource.cpp -) - -END() + +SRCS( + src/alloc_lib.c + src/dlmalloc.cpp + src/global_resource.cpp + src/monotonic_buffer_resource.cpp + src/pool_resource.cpp + src/synchronized_pool_resource.cpp + src/unsynchronized_pool_resource.cpp +) + +END() diff --git a/contrib/restricted/boost/libs/context/src/asm/jump_i386_sysv_elf_gas.S b/contrib/restricted/boost/libs/context/src/asm/jump_i386_sysv_elf_gas.S index 23f5a23498..c56ef14202 100644 --- a/contrib/restricted/boost/libs/context/src/asm/jump_i386_sysv_elf_gas.S +++ b/contrib/restricted/boost/libs/context/src/asm/jump_i386_sysv_elf_gas.S @@ -12,14 +12,14 @@ * ---------------------------------------------------------------------------------- * * | 0x0 | 0x4 | 0x8 | 0xc | 0x10 | 0x14 | 0x18 | 0x1c | * * ---------------------------------------------------------------------------------- * - * | fc_mxcsr|fc_x87_cw| guard | EDI | ESI | EBX | EBP | EIP | * + * | fc_mxcsr|fc_x87_cw| guard | EDI | ESI | EBX | EBP | EIP | * * ---------------------------------------------------------------------------------- * * ---------------------------------------------------------------------------------- * * | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | * * ---------------------------------------------------------------------------------- * - * | 0x20 | 0x24 | 0x28 | | * + * | 0x20 | 0x24 | 0x28 | | * * ---------------------------------------------------------------------------------- * - * | hidden | to | data | | * + * | hidden | to | data | | * * ---------------------------------------------------------------------------------- * * * ****************************************************************************************/ @@ -29,61 +29,61 @@ .align 2 .type jump_fcontext,@function jump_fcontext: - leal -0x1c(%esp), %esp /* prepare stack */ + leal -0x1c(%esp), %esp /* prepare stack */ #if !defined(BOOST_USE_TSX) stmxcsr (%esp) /* save MMX control- and status-word */ fnstcw 0x4(%esp) /* save x87 control-word */ #endif -#if defined(TLS_STACK_PROTECTOR) - movl %gs:0x14, %ecx /* read stack guard from TLS record */ - movl %ecx, 0x8(%esp) /* save stack guard */ -#endif +#if defined(TLS_STACK_PROTECTOR) + movl %gs:0x14, %ecx /* read stack guard from TLS record */ + movl %ecx, 0x8(%esp) /* save stack guard */ +#endif + + movl %edi, 0xc(%esp) /* save EDI */ + movl %esi, 0x10(%esp) /* save ESI */ + movl %ebx, 0x14(%esp) /* save EBX */ + movl %ebp, 0x18(%esp) /* save EBP */ - movl %edi, 0xc(%esp) /* save EDI */ - movl %esi, 0x10(%esp) /* save ESI */ - movl %ebx, 0x14(%esp) /* save EBX */ - movl %ebp, 0x18(%esp) /* save EBP */ - /* store ESP (pointing to context-data) in ECX */ movl %esp, %ecx /* first arg of jump_fcontext() == fcontext to jump to */ - movl 0x24(%esp), %eax + movl 0x24(%esp), %eax /* second arg of jump_fcontext() == data to be transferred */ - movl 0x28(%esp), %edx + movl 0x28(%esp), %edx /* restore ESP (pointing to context-data) from EAX */ movl %eax, %esp /* address of returned transport_t */ - movl 0x20(%esp), %eax + movl 0x20(%esp), %eax /* return parent fcontext_t */ movl %ecx, (%eax) /* return data */ movl %edx, 0x4(%eax) - movl 0x1c(%esp), %ecx /* restore EIP */ + movl 0x1c(%esp), %ecx /* restore EIP */ #if !defined(BOOST_USE_TSX) ldmxcsr (%esp) /* restore MMX control- and status-word */ fldcw 0x4(%esp) /* restore x87 control-word */ #endif -#if defined(TLS_STACK_PROTECTOR) - movl 0x8(%esp), %edx /* load stack guard */ - movl %edx, %gs:0x14 /* restore stack guard to TLS record */ -#endif +#if defined(TLS_STACK_PROTECTOR) + movl 0x8(%esp), %edx /* load stack guard */ + movl %edx, %gs:0x14 /* restore stack guard to TLS record */ +#endif + + movl 0xc(%esp), %edi /* restore EDI */ + movl 0x10(%esp), %esi /* restore ESI */ + movl 0x14(%esp), %ebx /* restore EBX */ + movl 0x18(%esp), %ebp /* restore EBP */ - movl 0xc(%esp), %edi /* restore EDI */ - movl 0x10(%esp), %esi /* restore ESI */ - movl 0x14(%esp), %ebx /* restore EBX */ - movl 0x18(%esp), %ebp /* restore EBP */ + leal 0x24(%esp), %esp /* prepare stack */ - leal 0x24(%esp), %esp /* prepare stack */ - /* jump to context */ jmp *%ecx .size jump_fcontext,.-jump_fcontext diff --git a/contrib/restricted/boost/libs/context/src/asm/jump_x86_64_sysv_elf_gas.S b/contrib/restricted/boost/libs/context/src/asm/jump_x86_64_sysv_elf_gas.S index 6ed1edd0be..551aaf5a78 100644 --- a/contrib/restricted/boost/libs/context/src/asm/jump_x86_64_sysv_elf_gas.S +++ b/contrib/restricted/boost/libs/context/src/asm/jump_x86_64_sysv_elf_gas.S @@ -12,22 +12,22 @@ * ---------------------------------------------------------------------------------- * * | 0x0 | 0x4 | 0x8 | 0xc | 0x10 | 0x14 | 0x18 | 0x1c | * * ---------------------------------------------------------------------------------- * - * | fc_mxcsr|fc_x87_cw| guard | R12 | R13 | * + * | fc_mxcsr|fc_x87_cw| guard | R12 | R13 | * * ---------------------------------------------------------------------------------- * * ---------------------------------------------------------------------------------- * * | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | * * ---------------------------------------------------------------------------------- * * | 0x20 | 0x24 | 0x28 | 0x2c | 0x30 | 0x34 | 0x38 | 0x3c | * * ---------------------------------------------------------------------------------- * - * | R14 | R15 | RBX | RBP | * + * | R14 | R15 | RBX | RBP | * + * ---------------------------------------------------------------------------------- * + * ---------------------------------------------------------------------------------- * + * | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | * + * ---------------------------------------------------------------------------------- * + * | 0x40 | 0x44 | | * + * ---------------------------------------------------------------------------------- * + * | RIP | | * * ---------------------------------------------------------------------------------- * - * ---------------------------------------------------------------------------------- * - * | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | * - * ---------------------------------------------------------------------------------- * - * | 0x40 | 0x44 | | * - * ---------------------------------------------------------------------------------- * - * | RIP | | * - * ---------------------------------------------------------------------------------- * * * ****************************************************************************************/ @@ -36,52 +36,52 @@ .type jump_fcontext,@function .align 16 jump_fcontext: - leaq -0x40(%rsp), %rsp /* prepare stack */ + leaq -0x40(%rsp), %rsp /* prepare stack */ #if !defined(BOOST_USE_TSX) stmxcsr (%rsp) /* save MMX control- and status-word */ fnstcw 0x4(%rsp) /* save x87 control-word */ #endif -#if defined(TLS_STACK_PROTECTOR) - movq %fs:0x28, %rcx /* read stack guard from TLS record */ - movq %rcx, 0x8(%rsp) /* save stack guard */ -#endif +#if defined(TLS_STACK_PROTECTOR) + movq %fs:0x28, %rcx /* read stack guard from TLS record */ + movq %rcx, 0x8(%rsp) /* save stack guard */ +#endif + + movq %r12, 0x10(%rsp) /* save R12 */ + movq %r13, 0x18(%rsp) /* save R13 */ + movq %r14, 0x20(%rsp) /* save R14 */ + movq %r15, 0x28(%rsp) /* save R15 */ + movq %rbx, 0x30(%rsp) /* save RBX */ + movq %rbp, 0x38(%rsp) /* save RBP */ - movq %r12, 0x10(%rsp) /* save R12 */ - movq %r13, 0x18(%rsp) /* save R13 */ - movq %r14, 0x20(%rsp) /* save R14 */ - movq %r15, 0x28(%rsp) /* save R15 */ - movq %rbx, 0x30(%rsp) /* save RBX */ - movq %rbp, 0x38(%rsp) /* save RBP */ - /* store RSP (pointing to context-data) in RAX */ movq %rsp, %rax /* restore RSP (pointing to context-data) from RDI */ movq %rdi, %rsp - movq 0x40(%rsp), %r8 /* restore return-address */ + movq 0x40(%rsp), %r8 /* restore return-address */ #if !defined(BOOST_USE_TSX) ldmxcsr (%rsp) /* restore MMX control- and status-word */ fldcw 0x4(%rsp) /* restore x87 control-word */ #endif -#if defined(TLS_STACK_PROTECTOR) - movq 0x8(%rsp), %rdx /* load stack guard */ - movq %rdx, %fs:0x28 /* restore stack guard to TLS record */ -#endif +#if defined(TLS_STACK_PROTECTOR) + movq 0x8(%rsp), %rdx /* load stack guard */ + movq %rdx, %fs:0x28 /* restore stack guard to TLS record */ +#endif + + movq 0x10(%rsp), %r12 /* restore R12 */ + movq 0x18(%rsp), %r13 /* restore R13 */ + movq 0x20(%rsp), %r14 /* restore R14 */ + movq 0x28(%rsp), %r15 /* restore R15 */ + movq 0x30(%rsp), %rbx /* restore RBX */ + movq 0x38(%rsp), %rbp /* restore RBP */ - movq 0x10(%rsp), %r12 /* restore R12 */ - movq 0x18(%rsp), %r13 /* restore R13 */ - movq 0x20(%rsp), %r14 /* restore R14 */ - movq 0x28(%rsp), %r15 /* restore R15 */ - movq 0x30(%rsp), %rbx /* restore RBX */ - movq 0x38(%rsp), %rbp /* restore RBP */ + leaq 0x48(%rsp), %rsp /* prepare stack */ - leaq 0x48(%rsp), %rsp /* prepare stack */ - /* return transfer_t from jump */ /* RAX == fctx, RDX == data */ movq %rsi, %rdx diff --git a/contrib/restricted/boost/libs/context/src/asm/make_i386_sysv_elf_gas.S b/contrib/restricted/boost/libs/context/src/asm/make_i386_sysv_elf_gas.S index e9c78bbdc1..3ad353cfa2 100644 --- a/contrib/restricted/boost/libs/context/src/asm/make_i386_sysv_elf_gas.S +++ b/contrib/restricted/boost/libs/context/src/asm/make_i386_sysv_elf_gas.S @@ -12,14 +12,14 @@ * ---------------------------------------------------------------------------------- * * | 0x0 | 0x4 | 0x8 | 0xc | 0x10 | 0x14 | 0x18 | 0x1c | * * ---------------------------------------------------------------------------------- * - * | fc_mxcsr|fc_x87_cw| guard | EDI | ESI | EBX | EBP | EIP | * + * | fc_mxcsr|fc_x87_cw| guard | EDI | ESI | EBX | EBP | EIP | * * ---------------------------------------------------------------------------------- * * ---------------------------------------------------------------------------------- * * | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | * * ---------------------------------------------------------------------------------- * - * | 0x20 | 0x24 | 0x28 | | * + * | 0x20 | 0x24 | 0x28 | | * * ---------------------------------------------------------------------------------- * - * | hidden | to | data | | * + * | hidden | to | data | | * * ---------------------------------------------------------------------------------- * * * ****************************************************************************************/ @@ -40,28 +40,28 @@ make_fcontext: andl $-16, %eax /* reserve space for context-data on context-stack */ - leal -0x2c(%eax), %eax + leal -0x2c(%eax), %eax /* third arg of make_fcontext() == address of context-function */ /* stored in EBX */ movl 0xc(%esp), %ecx - movl %ecx, 0x14(%eax) + movl %ecx, 0x14(%eax) /* save MMX control- and status-word */ stmxcsr (%eax) /* save x87 control-word */ fnstcw 0x4(%eax) -#if defined(TLS_STACK_PROTECTOR) - /* save stack guard */ - movl %gs:0x14, %ecx /* read stack guard from TLS record */ - movl %ecx, 0x8(%eax) /* save stack guard */ -#endif - +#if defined(TLS_STACK_PROTECTOR) + /* save stack guard */ + movl %gs:0x14, %ecx /* read stack guard from TLS record */ + movl %ecx, 0x8(%eax) /* save stack guard */ +#endif + /* return transport_t */ /* FCTX == EDI, DATA == ESI */ - leal 0xc(%eax), %ecx - movl %ecx, 0x20(%eax) + leal 0xc(%eax), %ecx + movl %ecx, 0x20(%eax) /* compute abs address of label trampoline */ call 1f @@ -71,7 +71,7 @@ make_fcontext: addl $trampoline-1b, %ecx /* save address of trampoline as return address */ /* will be entered after calling jump_fcontext() first time */ - movl %ecx, 0x1c(%eax) + movl %ecx, 0x1c(%eax) /* compute abs address of label finish */ call 2f @@ -81,7 +81,7 @@ make_fcontext: addl $finish-2b, %ecx /* save address of finish as return-address for context-function */ /* will be entered after context-function returns */ - movl %ecx, 0x18(%eax) + movl %ecx, 0x18(%eax) ret /* return pointer to context-data */ diff --git a/contrib/restricted/boost/libs/context/src/asm/make_x86_64_sysv_elf_gas.S b/contrib/restricted/boost/libs/context/src/asm/make_x86_64_sysv_elf_gas.S index 3d8fdf68e5..d0753b95d6 100644 --- a/contrib/restricted/boost/libs/context/src/asm/make_x86_64_sysv_elf_gas.S +++ b/contrib/restricted/boost/libs/context/src/asm/make_x86_64_sysv_elf_gas.S @@ -12,22 +12,22 @@ * ---------------------------------------------------------------------------------- * * | 0x0 | 0x4 | 0x8 | 0xc | 0x10 | 0x14 | 0x18 | 0x1c | * * ---------------------------------------------------------------------------------- * - * | fc_mxcsr|fc_x87_cw| guard | R12 | R13 | * + * | fc_mxcsr|fc_x87_cw| guard | R12 | R13 | * * ---------------------------------------------------------------------------------- * * ---------------------------------------------------------------------------------- * * | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | * * ---------------------------------------------------------------------------------- * * | 0x20 | 0x24 | 0x28 | 0x2c | 0x30 | 0x34 | 0x38 | 0x3c | * * ---------------------------------------------------------------------------------- * - * | R14 | R15 | RBX | RBP | * + * | R14 | R15 | RBX | RBP | * + * ---------------------------------------------------------------------------------- * + * ---------------------------------------------------------------------------------- * + * | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | * + * ---------------------------------------------------------------------------------- * + * | 0x40 | 0x44 | | * + * ---------------------------------------------------------------------------------- * + * | RIP | | * * ---------------------------------------------------------------------------------- * - * ---------------------------------------------------------------------------------- * - * | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | * - * ---------------------------------------------------------------------------------- * - * | 0x40 | 0x44 | | * - * ---------------------------------------------------------------------------------- * - * | RIP | | * - * ---------------------------------------------------------------------------------- * * * ****************************************************************************************/ @@ -44,34 +44,34 @@ make_fcontext: /* reserve space for context-data on context-stack */ /* on context-function entry: (RSP -0x8) % 16 == 0 */ - leaq -0x48(%rax), %rax + leaq -0x48(%rax), %rax /* third arg of make_fcontext() == address of context-function */ /* stored in RBX */ - movq %rdx, 0x30(%rax) + movq %rdx, 0x30(%rax) /* save MMX control- and status-word */ stmxcsr (%rax) /* save x87 control-word */ fnstcw 0x4(%rax) -#if defined(TLS_STACK_PROTECTOR) - /* save stack guard */ - movq %fs:0x28, %rcx /* read stack guard from TLS record */ - movq %rcx, 0x8(%rsp) /* save stack guard */ -#endif - +#if defined(TLS_STACK_PROTECTOR) + /* save stack guard */ + movq %fs:0x28, %rcx /* read stack guard from TLS record */ + movq %rcx, 0x8(%rsp) /* save stack guard */ +#endif + /* compute abs address of label trampoline */ leaq trampoline(%rip), %rcx /* save address of trampoline as return-address for context-function */ /* will be entered after calling jump_fcontext() first time */ - movq %rcx, 0x40(%rax) + movq %rcx, 0x40(%rax) /* compute abs address of label finish */ leaq finish(%rip), %rcx /* save address of finish as return-address for context-function */ /* will be entered after context-function returns */ - movq %rcx, 0x38(%rax) + movq %rcx, 0x38(%rax) ret /* return pointer to context-data */ diff --git a/contrib/restricted/boost/libs/context/src/asm/ontop_i386_sysv_elf_gas.S b/contrib/restricted/boost/libs/context/src/asm/ontop_i386_sysv_elf_gas.S index ed8e3d93e4..03eb0f0c09 100644 --- a/contrib/restricted/boost/libs/context/src/asm/ontop_i386_sysv_elf_gas.S +++ b/contrib/restricted/boost/libs/context/src/asm/ontop_i386_sysv_elf_gas.S @@ -12,14 +12,14 @@ * ---------------------------------------------------------------------------------- * * | 0x0 | 0x4 | 0x8 | 0xc | 0x10 | 0x14 | 0x18 | 0x1c | * * ---------------------------------------------------------------------------------- * - * | fc_mxcsr|fc_x87_cw| guard | EDI | ESI | EBX | EBP | EIP | * + * | fc_mxcsr|fc_x87_cw| guard | EDI | ESI | EBX | EBP | EIP | * * ---------------------------------------------------------------------------------- * * ---------------------------------------------------------------------------------- * * | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | * * ---------------------------------------------------------------------------------- * - * | 0x20 | 0x24 | 0x28 | | * + * | 0x20 | 0x24 | 0x28 | | * * ---------------------------------------------------------------------------------- * - * | hidden | to | data | | * + * | hidden | to | data | | * * ---------------------------------------------------------------------------------- * * * ****************************************************************************************/ @@ -29,46 +29,46 @@ .align 2 .type ontop_fcontext,@function ontop_fcontext: - leal -0x1c(%esp), %esp /* prepare stack */ + leal -0x1c(%esp), %esp /* prepare stack */ #if !defined(BOOST_USE_TSX) stmxcsr (%esp) /* save MMX control- and status-word */ fnstcw 0x4(%esp) /* save x87 control-word */ #endif -#if defined(TLS_STACK_PROTECTOR) - movl %gs:0x14, %ecx /* read stack guard from TLS record */ - movl %ecx, 0x8(%esp) /* save stack guard */ -#endif +#if defined(TLS_STACK_PROTECTOR) + movl %gs:0x14, %ecx /* read stack guard from TLS record */ + movl %ecx, 0x8(%esp) /* save stack guard */ +#endif + + movl %edi, 0xc(%esp) /* save EDI */ + movl %esi, 0x10(%esp) /* save ESI */ + movl %ebx, 0x14(%esp) /* save EBX */ + movl %ebp, 0x18(%esp) /* save EBP */ - movl %edi, 0xc(%esp) /* save EDI */ - movl %esi, 0x10(%esp) /* save ESI */ - movl %ebx, 0x14(%esp) /* save EBX */ - movl %ebp, 0x18(%esp) /* save EBP */ - /* store ESP (pointing to context-data) in ECX */ movl %esp, %ecx /* first arg of ontop_fcontext() == fcontext to jump to */ - movl 0x24(%esp), %eax + movl 0x24(%esp), %eax /* pass parent fcontext_t */ - movl %ecx, 0x24(%eax) + movl %ecx, 0x24(%eax) /* second arg of ontop_fcontext() == data to be transferred */ - movl 0x28(%esp), %ecx + movl 0x28(%esp), %ecx /* pass data */ - movl %ecx, 0x28(%eax) + movl %ecx, 0x28(%eax) /* third arg of ontop_fcontext() == ontop-function */ - movl 0x2c(%esp), %ecx + movl 0x2c(%esp), %ecx /* restore ESP (pointing to context-data) from EAX */ movl %eax, %esp /* address of returned transport_t */ - movl 0x20(%esp), %eax + movl 0x20(%esp), %eax /* return parent fcontext_t */ movl %ecx, (%eax) /* return data */ @@ -79,18 +79,18 @@ ontop_fcontext: fldcw 0x4(%esp) /* restore x87 control-word */ #endif -#if defined(TLS_STACK_PROTECTOR) - movl 0x8(%esp), %edx /* load stack guard */ - movl %edx, %gs:0x14 /* restore stack guard to TLS record */ -#endif +#if defined(TLS_STACK_PROTECTOR) + movl 0x8(%esp), %edx /* load stack guard */ + movl %edx, %gs:0x14 /* restore stack guard to TLS record */ +#endif + + movl 0xc(%esp), %edi /* restore EDI */ + movl 0x10(%esp), %esi /* restore ESI */ + movl 0x14(%esp), %ebx /* restore EBX */ + movl 0x18(%esp), %ebp /* restore EBP */ - movl 0xc(%esp), %edi /* restore EDI */ - movl 0x10(%esp), %esi /* restore ESI */ - movl 0x14(%esp), %ebx /* restore EBX */ - movl 0x18(%esp), %ebp /* restore EBP */ + leal 0x1c(%esp), %esp /* prepare stack */ - leal 0x1c(%esp), %esp /* prepare stack */ - /* jump to context */ jmp *%ecx .size ontop_fcontext,.-ontop_fcontext diff --git a/contrib/restricted/boost/libs/context/src/asm/ontop_x86_64_sysv_elf_gas.S b/contrib/restricted/boost/libs/context/src/asm/ontop_x86_64_sysv_elf_gas.S index 8fb83ecfc5..95e9981f24 100644 --- a/contrib/restricted/boost/libs/context/src/asm/ontop_x86_64_sysv_elf_gas.S +++ b/contrib/restricted/boost/libs/context/src/asm/ontop_x86_64_sysv_elf_gas.S @@ -12,22 +12,22 @@ * ---------------------------------------------------------------------------------- * * | 0x0 | 0x4 | 0x8 | 0xc | 0x10 | 0x14 | 0x18 | 0x1c | * * ---------------------------------------------------------------------------------- * - * | fc_mxcsr|fc_x87_cw| guard | R12 | R13 | * + * | fc_mxcsr|fc_x87_cw| guard | R12 | R13 | * * ---------------------------------------------------------------------------------- * * ---------------------------------------------------------------------------------- * * | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | * * ---------------------------------------------------------------------------------- * * | 0x20 | 0x24 | 0x28 | 0x2c | 0x30 | 0x34 | 0x38 | 0x3c | * * ---------------------------------------------------------------------------------- * - * | R14 | R15 | RBX | RBP | * + * | R14 | R15 | RBX | RBP | * + * ---------------------------------------------------------------------------------- * + * ---------------------------------------------------------------------------------- * + * | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | * + * ---------------------------------------------------------------------------------- * + * | 0x40 | 0x44 | | * + * ---------------------------------------------------------------------------------- * + * | RIP | | * * ---------------------------------------------------------------------------------- * - * ---------------------------------------------------------------------------------- * - * | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | * - * ---------------------------------------------------------------------------------- * - * | 0x40 | 0x44 | | * - * ---------------------------------------------------------------------------------- * - * | RIP | | * - * ---------------------------------------------------------------------------------- * * * ****************************************************************************************/ @@ -39,25 +39,25 @@ ontop_fcontext: /* preserve ontop-function in R8 */ movq %rdx, %r8 - leaq -0x40(%rsp), %rsp /* prepare stack */ + leaq -0x40(%rsp), %rsp /* prepare stack */ #if !defined(BOOST_USE_TSX) stmxcsr (%rsp) /* save MMX control- and status-word */ fnstcw 0x4(%rsp) /* save x87 control-word */ #endif -#if defined(TLS_STACK_PROTECTOR) - movq %fs:0x28, %rcx /* read stack guard from TLS record */ - movq %rcx, 0x8(%rsp) /* save stack guard */ -#endif - - movq %r12, 0x10(%rsp) /* save R12 */ - movq %r13, 0x18(%rsp) /* save R13 */ - movq %r14, 0x20(%rsp) /* save R14 */ - movq %r15, 0x28(%rsp) /* save R15 */ - movq %rbx, 0x30(%rsp) /* save RBX */ - movq %rbp, 0x38(%rsp) /* save RBP */ - +#if defined(TLS_STACK_PROTECTOR) + movq %fs:0x28, %rcx /* read stack guard from TLS record */ + movq %rcx, 0x8(%rsp) /* save stack guard */ +#endif + + movq %r12, 0x10(%rsp) /* save R12 */ + movq %r13, 0x18(%rsp) /* save R13 */ + movq %r14, 0x20(%rsp) /* save R14 */ + movq %r15, 0x28(%rsp) /* save R15 */ + movq %rbx, 0x30(%rsp) /* save RBX */ + movq %rbp, 0x38(%rsp) /* save RBP */ + /* store RSP (pointing to context-data) in RAX */ movq %rsp, %rax @@ -69,20 +69,20 @@ ontop_fcontext: fldcw 0x4(%rsp) /* restore x87 control-word */ #endif -#if defined(TLS_STACK_PROTECTOR) - movq 0x8(%rsp), %rdx /* load stack guard */ - movq %rdx, %fs:0x28 /* restore stack guard to TLS record */ -#endif +#if defined(TLS_STACK_PROTECTOR) + movq 0x8(%rsp), %rdx /* load stack guard */ + movq %rdx, %fs:0x28 /* restore stack guard to TLS record */ +#endif + + movq 0x10(%rsp), %r12 /* restore R12 */ + movq 0x18(%rsp), %r13 /* restore R13 */ + movq 0x20(%rsp), %r14 /* restore R14 */ + movq 0x28(%rsp), %r15 /* restore R15 */ + movq 0x30(%rsp), %rbx /* restore RBX */ + movq 0x38(%rsp), %rbp /* restore RBP */ - movq 0x10(%rsp), %r12 /* restore R12 */ - movq 0x18(%rsp), %r13 /* restore R13 */ - movq 0x20(%rsp), %r14 /* restore R14 */ - movq 0x28(%rsp), %r15 /* restore R15 */ - movq 0x30(%rsp), %rbx /* restore RBX */ - movq 0x38(%rsp), %rbp /* restore RBP */ + leaq 0x40(%rsp), %rsp /* prepare stack */ - leaq 0x40(%rsp), %rsp /* prepare stack */ - /* return transfer_t from jump */ /* RAX == fctx, RDX == data */ movq %rsi, %rdx diff --git a/contrib/restricted/boost/libs/coroutine/ya.make b/contrib/restricted/boost/libs/coroutine/ya.make index 6491a8a400..b0093b9475 100644 --- a/contrib/restricted/boost/libs/coroutine/ya.make +++ b/contrib/restricted/boost/libs/coroutine/ya.make @@ -12,10 +12,10 @@ OWNER( INCLUDE(${ARCADIA_ROOT}/contrib/restricted/boost/boost_common.inc) -PEERDIR( +PEERDIR( ${BOOST_ROOT}/libs/context -) - +) + IF (OS_WINDOWS) SRCS( src/windows/stack_traits.cpp diff --git a/contrib/restricted/boost/libs/filesystem/ya.make b/contrib/restricted/boost/libs/filesystem/ya.make index 0800b703ff..bfad363675 100644 --- a/contrib/restricted/boost/libs/filesystem/ya.make +++ b/contrib/restricted/boost/libs/filesystem/ya.make @@ -12,15 +12,15 @@ OWNER( INCLUDE(${ARCADIA_ROOT}/contrib/restricted/boost/boost_common.inc) -IF (DYNAMIC_BOOST) +IF (DYNAMIC_BOOST) CFLAGS( -DBOOST_FILESYSTEM_DYN_LINK=1 ) -ELSE() +ELSE() CFLAGS( -DBOOST_FILESYSTEM_STATIC_LINK=1 ) -ENDIF() +ENDIF() PEERDIR( ${BOOST_ROOT}/libs/system diff --git a/contrib/restricted/boost/libs/ya.make b/contrib/restricted/boost/libs/ya.make index 7095662df7..c42a994cdc 100644 --- a/contrib/restricted/boost/libs/ya.make +++ b/contrib/restricted/boost/libs/ya.make @@ -41,28 +41,28 @@ PEERDIR( END() -RECURSE( +RECURSE( asio - atomic - chrono - container - context - coroutine - date_time - exception - filesystem - iostreams - locale - log - program_options - random - regex - serialization - system - test - thread - timer -) + atomic + chrono + container + context + coroutine + date_time + exception + filesystem + iostreams + locale + log + program_options + random + regex + serialization + system + test + thread + timer +) IF (NOT OS_ANDROID) RECURSE( diff --git a/contrib/restricted/boost/ya.make b/contrib/restricted/boost/ya.make index c1f5975860..77e2dc66c0 100644 --- a/contrib/restricted/boost/ya.make +++ b/contrib/restricted/boost/ya.make @@ -32,10 +32,10 @@ ADDINCL( END() -RECURSE( - libs -) - +RECURSE( + libs +) + RECURSE_FOR_TESTS( arcadia_test ) |