diff options
| author | vnik <[email protected]> | 2022-02-10 16:50:11 +0300 | 
|---|---|---|
| committer | Daniil Cherednik <[email protected]> | 2022-02-10 16:50:11 +0300 | 
| commit | eeb44fff3b21a0abc3a28ecf80df8ea214338f2a (patch) | |
| tree | 5d5cb817648f650d76cf1076100726fd9b8448e8 | |
| parent | 82dd4d47353b9ff187773dd251163024db870e2a (diff) | |
Restoring authorship annotation for <[email protected]>. Commit 2 of 2.
| -rw-r--r-- | library/cpp/linear_regression/linear_model.h | 6 | ||||
| -rw-r--r-- | library/cpp/linear_regression/linear_regression.cpp | 18 | ||||
| -rw-r--r-- | library/cpp/linear_regression/linear_regression.h | 16 | 
3 files changed, 20 insertions, 20 deletions
diff --git a/library/cpp/linear_regression/linear_model.h b/library/cpp/linear_regression/linear_model.h index 649ccd69884..8bb050cff79 100644 --- a/library/cpp/linear_regression/linear_model.h +++ b/library/cpp/linear_regression/linear_model.h @@ -7,7 +7,7 @@  #include <utility> -class TLinearModel {  +class TLinearModel {  private:      TVector<double> Coefficients;      double Intercept; @@ -30,11 +30,11 @@ public:      const TVector<double>& GetCoefficients() const {          return Coefficients;      } -  +      double GetIntercept() const {          return Intercept;      } -  +      template <typename T>      double Prediction(const TVector<T>& features) const {          return InnerProduct(Coefficients, features, Intercept); diff --git a/library/cpp/linear_regression/linear_regression.cpp b/library/cpp/linear_regression/linear_regression.cpp index e19c4a8736f..150f9d214e9 100644 --- a/library/cpp/linear_regression/linear_regression.cpp +++ b/library/cpp/linear_regression/linear_regression.cpp @@ -41,8 +41,8 @@ bool TFastLinearRegressionSolver::Add(const TVector<double>& features, const dou      *olsVectorElement += weightedGoal;      SumSquaredGoals += goal * goal * weight; -  -    return true;  + +    return true;  }  bool TLinearRegressionSolver::Add(const TVector<double>& features, const double goal, const double weight) { @@ -59,7 +59,7 @@ bool TLinearRegressionSolver::Add(const TVector<double>& features, const double      SumWeights += weight;      if (!SumWeights.Get()) { -        return false;  +        return false;      }      for (size_t featureNumber = 0; featureNumber < featuresCount; ++featureNumber) { @@ -109,8 +109,8 @@ bool TLinearRegressionSolver::Add(const TVector<double>& features, const double      const double oldGoalsMean = GoalsMean;      GoalsMean += weight * (goal - GoalsMean) / SumWeights.Get();      GoalsDeviation += weight * (goal - oldGoalsMean) * (goal - GoalsMean); -  -    return true;  + +    return true;  }  TLinearModel TFastLinearRegressionSolver::Solve() const { @@ -147,10 +147,10 @@ double TLinearRegressionSolver::SumSquaredErrors() const {      return ::SumSquaredErrors(LinearizedOLSMatrix, OLSVector, coefficients, GoalsDeviation);  } -bool TSLRSolver::Add(const double feature, const double goal, const double weight) {  +bool TSLRSolver::Add(const double feature, const double goal, const double weight) {      SumWeights += weight;      if (!SumWeights.Get()) { -        return false;  +        return false;      }      const double weightedFeatureDiff = weight * (feature - FeaturesMean); @@ -163,8 +163,8 @@ bool TSLRSolver::Add(const double feature, const double goal, const double weigh      GoalsDeviation += weightedGoalDiff * (goal - GoalsMean);      Covariation += weightedFeatureDiff * (goal - GoalsMean); -  -    return true;  + +    return true;  }  bool TSLRSolver::Add(const double* featuresBegin, diff --git a/library/cpp/linear_regression/linear_regression.h b/library/cpp/linear_regression/linear_regression.h index 7e37e1b9b3b..e57de5ff6cc 100644 --- a/library/cpp/linear_regression/linear_regression.h +++ b/library/cpp/linear_regression/linear_regression.h @@ -56,7 +56,7 @@ private:      TStoreType SumWeights = TStoreType();  public: -    bool Add(const double feature, const double goal, const double weight = 1.) {  +    bool Add(const double feature, const double goal, const double weight = 1.) {          SumFeatures += feature * weight;          SumSquaredFeatures += feature * feature * weight; @@ -66,8 +66,8 @@ public:          SumProducts += goal * feature * weight;          SumWeights += weight; -  -        return true;  + +        return true;      }      template <typename TFloatType> @@ -140,7 +140,7 @@ private:      double Covariation = 0.;  public: -    bool Add(const double feature, const double goal, const double weight = 1.);  +    bool Add(const double feature, const double goal, const double weight = 1.);      bool Add(const double* featuresBegin, const double* featuresEnd, const double* goalsBegin);      bool Add(const double* featuresBegin, const double* featuresEnd, const double* goalsBegin, const double* weightsBegin); @@ -188,8 +188,8 @@ public:          for (size_t featureNumber = 0; featureNumber < features.size(); ++featureNumber) {              SLRSolvers[featureNumber].Add(features[featureNumber], goal, weight);          } -  -        return true;  + +        return true;      }      TLinearModel Solve(const double regularizationParameter = 0.1) const { @@ -201,9 +201,9 @@ public:          }          TVector<double> coefficients(SLRSolvers.size()); -        double intercept = 0.0;  +        double intercept = 0.0;          if (bestSolver) { -            bestSolver->Solve(coefficients[bestSolver - SLRSolvers.begin()], intercept, regularizationParameter);  +            bestSolver->Solve(coefficients[bestSolver - SLRSolvers.begin()], intercept, regularizationParameter);          }          TLinearModel model(std::move(coefficients), intercept);  | 
