/*
* Copyright (c) 2018-2020, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Parse and build ParsedLogical::logicalTree and combInfoMap.
*/
#include "logical_combination.h"
#include "parser/parse_error.h"
#include "util/container.h"
#include "hs_compile.h"
#include "allocator.h"
#include <vector>
using namespace std;
namespace ue2 {
u32 ParsedLogical::getLogicalKey(u32 a) {
auto it = toLogicalKeyMap.find(a);
if (it == toLogicalKeyMap.end()) {
// get size before assigning to avoid wacky LHS shenanigans
u32 size = toLogicalKeyMap.size();
bool inserted;
tie(it, inserted) = toLogicalKeyMap.emplace(a, size);
assert(inserted);
}
DEBUG_PRINTF("%u -> lkey %u\n", it->first, it->second);
return it->second;
}
u32 ParsedLogical::getCombKey(u32 a) {
auto it = toCombKeyMap.find(a);
if (it == toCombKeyMap.end()) {
u32 size = toCombKeyMap.size();
bool inserted;
tie(it, inserted) = toCombKeyMap.emplace(a, size);
assert(inserted);
}
DEBUG_PRINTF("%u -> ckey %u\n", it->first, it->second);
return it->second;
}
void ParsedLogical::addRelateCKey(u32 lkey, u32 ckey) {
auto it = lkey2ckeys.find(lkey);
if (it == lkey2ckeys.end()) {
bool inserted;
tie(it, inserted) = lkey2ckeys.emplace(lkey, set<u32>());
assert(inserted);
}
it->second.insert(ckey);
DEBUG_PRINTF("lkey %u belongs to combination key %u\n",
it->first, ckey);
}
#define TRY_RENUM_OP(ckey) \
do { \
if (ckey & LOGICAL_OP_BIT) { \
ckey = (ckey & ~LOGICAL_OP_BIT) + toLogicalKeyMap.size(); \
} \
} while(0)
u32 ParsedLogical::logicalTreeAdd(u32 op, u32 left, u32 right) {
LogicalOp lop;
assert((LOGICAL_OP_BIT & (u32)logicalTree.size()) == 0);
lop.id = LOGICAL_OP_BIT | (u32)logicalTree.size();
lop.op = op;
lop.lo = left;
lop.ro = right;
logicalTree.push_back(lop);
return lop.id;
}
void ParsedLogical::combinationInfoAdd(UNUSED u32 ckey, u32 id, u32 ekey,
u32 lkey_start, u32 lkey_result,
u64a min_offset, u64a max_offset) {
assert(ckey == combInfoMap.size());
CombInfo ci;
ci.id = id;
ci.ekey = ekey;
ci.start = lkey_start;
ci.result = lkey_result;
ci.min_offset = min_offset;
ci.max_offset = max_offset;
combInfoMap.push_back(ci);
DEBUG_PRINTF("ckey %u (id %u) -> lkey %u..%u, ekey=0x%x\n", ckey, ci.id,
ci.start, ci.result, ci.ekey);
}
void ParsedLogical::validateSubIDs(const unsigned *ids,
const char *const *expressions,
const unsigned *flags,
unsigned elements) {
for (const auto &it : toLogicalKeyMap) {
bool unknown = true;
u32 i = 0;
for (i = 0; i < elements; i++) {
if ((ids ? ids[i] : 0) == it.first) {
unknown = false;
break;
}
}
if (unknown) {
throw CompileError("Unknown sub-expression id.");
}
if (contains(toCombKeyMap, it.first)) {
throw CompileError("Have combination of combination.");
}
if (flags && (flags[i] & HS_FLAG_SOM_LEFTMOST)) {
throw CompileError("Have SOM flag in sub-expression.");
}
if (flags && (flags[i] & HS_FLAG_PREFILTER)) {
throw CompileError("Have PREFILTER flag in sub-expression.");
}
hs_compile_error_t *compile_err = NULL;
hs_expr_info_t *info = NULL;
hs_error_t err = hs_expression_info(expressions[i], flags[i], &info,
&compile_err);
if (err != HS_SUCCESS) {
hs_free_compile_error(compile_err);
throw CompileError("Run hs_expression_info() failed.");
}
if (!info) {
throw CompileError("Get hs_expr_info_t failed.");
} else {
if (info->unordered_matches) {
throw CompileError("Have unordered match in sub-expressions.");
}
hs_misc_free(info);
}
}
}
void ParsedLogical::logicalKeyRenumber() {
// renumber operation lkey in op vector
for (auto &op : logicalTree) {
TRY_RENUM_OP(op.id);
TRY_RENUM_OP(op.lo);
TRY_RENUM_OP(op.ro);
}
// renumber operation lkey in info map
for (auto &ci : combInfoMap) {
TRY_RENUM_OP(ci.start);
TRY_RENUM_OP(ci.result);
}
}
struct LogicalOperator {
LogicalOperator(u32 op_in, u32 paren_in)
: op(op_in), paren(paren_in) {}
u32 op;
u32 paren;
};
static
u32 toOperator(char c) {
u32 op = UNKNOWN_OP;
switch (c) {
case '!' :
op = LOGICAL_OP_NOT;
break;
case '&' :
op = LOGICAL_OP_AND;
break;
case '|' :
op = LOGICAL_OP_OR;
break;
default:
break;
};
return op;
}
static
bool cmpOperator(const LogicalOperator &op1, const LogicalOperator &op2) {
if (op1.paren < op2.paren) {
return false;
}
if (op1.paren > op2.paren) {
return true;
}
assert(op1.paren == op2.paren);
if (op1.op > op2.op) {
return false;
}
if (op1.op < op2.op) {
return true;
}
return true;
}
static
u32 fetchSubID(const char *logical, u32 &digit, u32 end) {
if (digit == (u32)-1) { // no digit parsing in progress
return (u32)-1;
}
assert(end > digit);
if (end - digit > 9) {
throw LocatedParseError("Expression id too large");
}
u32 mult = 1;
u32 sum = 0;
for (u32 j = end - 1; (j >= digit) && (j != (u32)-1) ; j--) {
assert(isdigit(logical[j]));
sum += (logical[j] - '0') * mult;
mult *= 10;
}
digit = (u32)-1;
return sum;
}
static
void popOperator(vector<LogicalOperator> &op_stack, vector<u32> &subid_stack,
ParsedLogical &pl) {
if (subid_stack.empty()) {
throw LocatedParseError("Not enough operand");
}
u32 right = subid_stack.back();
subid_stack.pop_back();
u32 left = 0;
if (op_stack.back().op != LOGICAL_OP_NOT) {
if (subid_stack.empty()) {
throw LocatedParseError("Not enough operand");
}
left = subid_stack.back();
subid_stack.pop_back();
}
subid_stack.push_back(pl.logicalTreeAdd(op_stack.back().op, left, right));
op_stack.pop_back();
}
void ParsedLogical::parseLogicalCombination(unsigned id, const char *logical,
u32 ekey, u64a min_offset,
u64a max_offset) {
u32 ckey = getCombKey(id);
vector<LogicalOperator> op_stack;
vector<u32> subid_stack;
u32 lkey_start = INVALID_LKEY; // logical operation's lkey
u32 paren = 0; // parentheses
u32 digit = (u32)-1; // digit start offset, invalid offset is -1
u32 subid = (u32)-1;
u32 i;
try {
for (i = 0; logical[i]; i++) {
if (isdigit(logical[i])) {
if (digit == (u32)-1) { // new digit start
digit = i;
}
} else {
if ((subid = fetchSubID(logical, digit, i)) != (u32)-1) {
subid_stack.push_back(getLogicalKey(subid));
addRelateCKey(subid_stack.back(), ckey);
}
if (logical[i] == ' ') { // skip whitespace
continue;
}
if (logical[i] == '(') {
paren += 1;
} else if (logical[i] == ')') {
if (paren <= 0) {
throw LocatedParseError("Not enough left parentheses");
}
paren -= 1;
} else {
u32 prio = toOperator(logical[i]);
if (prio != UNKNOWN_OP) {
LogicalOperator op(prio, paren);
while (!op_stack.empty()
&& cmpOperator(op_stack.back(), op)) {
popOperator(op_stack, subid_stack, *this);
if (lkey_start == INVALID_LKEY) {
lkey_start = subid_stack.back();
}
}
op_stack.push_back(op);
} else {
throw LocatedParseError("Unknown character");
}
}
}
}
if (paren != 0) {
throw LocatedParseError("Not enough right parentheses");
}
if ((subid = fetchSubID(logical, digit, i)) != (u32)-1) {
subid_stack.push_back(getLogicalKey(subid));
addRelateCKey(subid_stack.back(), ckey);
}
while (!op_stack.empty()) {
popOperator(op_stack, subid_stack, *this);
if (lkey_start == INVALID_LKEY) {
lkey_start = subid_stack.back();
}
}
if (subid_stack.size() != 1) {
throw LocatedParseError("Not enough operator");
}
} catch (LocatedParseError &error) {
error.locate(i);
throw;
}
u32 lkey_result = subid_stack.back(); // logical operation's lkey
if (lkey_start == INVALID_LKEY) {
throw CompileError("No logical operation.");
}
combinationInfoAdd(ckey, id, ekey, lkey_start, lkey_result,
min_offset, max_offset);
}
} // namespace ue2