/* zhegvd.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static doublecomplex c_b1 = {1.,0.};
/* Subroutine */ int zhegvd_(integer *itype, char *jobz, char *uplo, integer *
n, doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
doublereal *w, doublecomplex *work, integer *lwork, doublereal *rwork,
integer *lrwork, integer *iwork, integer *liwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1;
doublereal d__1, d__2;
/* Local variables */
integer lopt;
extern logical lsame_(char *, char *);
integer lwmin;
char trans[1];
integer liopt;
logical upper;
integer lropt;
logical wantz;
extern /* Subroutine */ int ztrmm_(char *, char *, char *, char *,
integer *, integer *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, integer *),
ztrsm_(char *, char *, char *, char *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *), xerbla_(char *,
integer *), zheevd_(char *, char *, integer *,
doublecomplex *, integer *, doublereal *, doublecomplex *,
integer *, doublereal *, integer *, integer *, integer *, integer
*);
integer liwmin;
extern /* Subroutine */ int zhegst_(integer *, char *, integer *,
doublecomplex *, integer *, doublecomplex *, integer *, integer *);
integer lrwmin;
logical lquery;
extern /* Subroutine */ int zpotrf_(char *, integer *, doublecomplex *,
integer *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors */
/* of a complex generalized Hermitian-definite eigenproblem, of the form */
/* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and */
/* B are assumed to be Hermitian and B is also positive definite. */
/* If eigenvectors are desired, it uses a divide and conquer algorithm. */
/* The divide and conquer algorithm makes very mild assumptions about */
/* floating point arithmetic. It will work on machines with a guard */
/* digit in add/subtract, or on those binary machines without guard */
/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */
/* without guard digits, but we know of none. */
/* Arguments */
/* ========= */
/* ITYPE (input) INTEGER */
/* Specifies the problem type to be solved: */
/* = 1: A*x = (lambda)*B*x */
/* = 2: A*B*x = (lambda)*x */
/* = 3: B*A*x = (lambda)*x */
/* JOBZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only; */
/* = 'V': Compute eigenvalues and eigenvectors. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangles of A and B are stored; */
/* = 'L': Lower triangles of A and B are stored. */
/* N (input) INTEGER */
/* The order of the matrices A and B. N >= 0. */
/* A (input/output) COMPLEX*16 array, dimension (LDA, N) */
/* On entry, the Hermitian matrix A. If UPLO = 'U', the */
/* leading N-by-N upper triangular part of A contains the */
/* upper triangular part of the matrix A. If UPLO = 'L', */
/* the leading N-by-N lower triangular part of A contains */
/* the lower triangular part of the matrix A. */
/* On exit, if JOBZ = 'V', then if INFO = 0, A contains the */
/* matrix Z of eigenvectors. The eigenvectors are normalized */
/* as follows: */
/* if ITYPE = 1 or 2, Z**H*B*Z = I; */
/* if ITYPE = 3, Z**H*inv(B)*Z = I. */
/* If JOBZ = 'N', then on exit the upper triangle (if UPLO='U') */
/* or the lower triangle (if UPLO='L') of A, including the */
/* diagonal, is destroyed. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* B (input/output) COMPLEX*16 array, dimension (LDB, N) */
/* On entry, the Hermitian matrix B. If UPLO = 'U', the */
/* leading N-by-N upper triangular part of B contains the */
/* upper triangular part of the matrix B. If UPLO = 'L', */
/* the leading N-by-N lower triangular part of B contains */
/* the lower triangular part of the matrix B. */
/* On exit, if INFO <= N, the part of B containing the matrix is */
/* overwritten by the triangular factor U or L from the Cholesky */
/* factorization B = U**H*U or B = L*L**H. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* W (output) DOUBLE PRECISION array, dimension (N) */
/* If INFO = 0, the eigenvalues in ascending order. */
/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The length of the array WORK. */
/* If N <= 1, LWORK >= 1. */
/* If JOBZ = 'N' and N > 1, LWORK >= N + 1. */
/* If JOBZ = 'V' and N > 1, LWORK >= 2*N + N**2. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal sizes of the WORK, RWORK and */
/* IWORK arrays, returns these values as the first entries of */
/* the WORK, RWORK and IWORK arrays, and no error message */
/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* RWORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) */
/* On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
/* LRWORK (input) INTEGER */
/* The dimension of the array RWORK. */
/* If N <= 1, LRWORK >= 1. */
/* If JOBZ = 'N' and N > 1, LRWORK >= N. */
/* If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. */
/* If LRWORK = -1, then a workspace query is assumed; the */
/* routine only calculates the optimal sizes of the WORK, RWORK */
/* and IWORK arrays, returns these values as the first entries */
/* of the WORK, RWORK and IWORK arrays, and no error message */
/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
/* LIWORK (input) INTEGER */
/* The dimension of the array IWORK. */
/* If N <= 1, LIWORK >= 1. */
/* If JOBZ = 'N' and N > 1, LIWORK >= 1. */
/* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. */
/* If LIWORK = -1, then a workspace query is assumed; the */
/* routine only calculates the optimal sizes of the WORK, RWORK */
/* and IWORK arrays, returns these values as the first entries */
/* of the WORK, RWORK and IWORK arrays, and no error message */
/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: ZPOTRF or ZHEEVD returned an error code: */
/* <= N: if INFO = i and JOBZ = 'N', then the algorithm */
/* failed to converge; i off-diagonal elements of an */
/* intermediate tridiagonal form did not converge to */
/* zero; */
/* if INFO = i and JOBZ = 'V', then the algorithm */
/* failed to compute an eigenvalue while working on */
/* the submatrix lying in rows and columns INFO/(N+1) */
/* through mod(INFO,N+1); */
/* > N: if INFO = N + i, for 1 <= i <= N, then the leading */
/* minor of order i of B is not positive definite. */
/* The factorization of B could not be completed and */
/* no eigenvalues or eigenvectors were computed. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
/* Modified so that no backsubstitution is performed if ZHEEVD fails to */
/* converge (NEIG in old code could be greater than N causing out of */
/* bounds reference to A - reported by Ralf Meyer). Also corrected the */
/* description of INFO and the test on ITYPE. Sven, 16 Feb 05. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
--w;
--work;
--rwork;
--iwork;
/* Function Body */
wantz = lsame_(jobz, "V");
upper = lsame_(uplo, "U");
lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1;
*info = 0;
if (*n <= 1) {
lwmin = 1;
lrwmin = 1;
liwmin = 1;
} else if (wantz) {
lwmin = (*n << 1) + *n * *n;
lrwmin = *n * 5 + 1 + (*n << 1) * *n;
liwmin = *n * 5 + 3;
} else {
lwmin = *n + 1;
lrwmin = *n;
liwmin = 1;
}
lopt = lwmin;
lropt = lrwmin;
liopt = liwmin;
if (*itype < 1 || *itype > 3) {
*info = -1;
} else if (! (wantz || lsame_(jobz, "N"))) {
*info = -2;
} else if (! (upper || lsame_(uplo, "L"))) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*lda < max(1,*n)) {
*info = -6;
} else if (*ldb < max(1,*n)) {
*info = -8;
}
if (*info == 0) {
work[1].r = (doublereal) lopt, work[1].i = 0.;
rwork[1] = (doublereal) lropt;
iwork[1] = liopt;
if (*lwork < lwmin && ! lquery) {
*info = -11;
} else if (*lrwork < lrwmin && ! lquery) {
*info = -13;
} else if (*liwork < liwmin && ! lquery) {
*info = -15;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZHEGVD", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Form a Cholesky factorization of B. */
zpotrf_(uplo, n, &b[b_offset], ldb, info);
if (*info != 0) {
*info = *n + *info;
return 0;
}
/* Transform problem to standard eigenvalue problem and solve. */
zhegst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
zheevd_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, &rwork[
1], lrwork, &iwork[1], liwork, info);
/* Computing MAX */
d__1 = (doublereal) lopt, d__2 = work[1].r;
lopt = (integer) max(d__1,d__2);
/* Computing MAX */
d__1 = (doublereal) lropt;
lropt = (integer) max(d__1,rwork[1]);
/* Computing MAX */
d__1 = (doublereal) liopt, d__2 = (doublereal) iwork[1];
liopt = (integer) max(d__1,d__2);
if (wantz && *info == 0) {
/* Backtransform eigenvectors to the original problem. */
if (*itype == 1 || *itype == 2) {
/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
/* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
if (upper) {
*(unsigned char *)trans = 'N';
} else {
*(unsigned char *)trans = 'C';
}
ztrsm_("Left", uplo, trans, "Non-unit", n, n, &c_b1, &b[b_offset],
ldb, &a[a_offset], lda);
} else if (*itype == 3) {
/* For B*A*x=(lambda)*x; */
/* backtransform eigenvectors: x = L*y or U'*y */
if (upper) {
*(unsigned char *)trans = 'C';
} else {
*(unsigned char *)trans = 'N';
}
ztrmm_("Left", uplo, trans, "Non-unit", n, n, &c_b1, &b[b_offset],
ldb, &a[a_offset], lda);
}
}
work[1].r = (doublereal) lopt, work[1].i = 0.;
rwork[1] = (doublereal) lropt;
iwork[1] = liopt;
return 0;
/* End of ZHEGVD */
} /* zhegvd_ */