/* dgesv.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int dgesv_(integer *n, integer *nrhs, doublereal *a, integer
*lda, integer *ipiv, doublereal *b, integer *ldb, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1;
/* Local variables */
extern /* Subroutine */ int dgetrf_(integer *, integer *, doublereal *,
integer *, integer *, integer *), xerbla_(char *, integer *), dgetrs_(char *, integer *, integer *, doublereal *,
integer *, integer *, doublereal *, integer *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGESV computes the solution to a real system of linear equations */
/* A * X = B, */
/* where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */
/* The LU decomposition with partial pivoting and row interchanges is */
/* used to factor A as */
/* A = P * L * U, */
/* where P is a permutation matrix, L is unit lower triangular, and U is */
/* upper triangular. The factored form of A is then used to solve the */
/* system of equations A * X = B. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The number of linear equations, i.e., the order of the */
/* matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrix B. NRHS >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the N-by-N coefficient matrix A. */
/* On exit, the factors L and U from the factorization */
/* A = P*L*U; the unit diagonal elements of L are not stored. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* IPIV (output) INTEGER array, dimension (N) */
/* The pivot indices that define the permutation matrix P; */
/* row i of the matrix was interchanged with row IPIV(i). */
/* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/* On entry, the N-by-NRHS matrix of right hand side matrix B. */
/* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, U(i,i) is exactly zero. The factorization */
/* has been completed, but the factor U is exactly */
/* singular, so the solution could not be computed. */
/* ===================================================================== */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--ipiv;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
*info = 0;
if (*n < 0) {
*info = -1;
} else if (*nrhs < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
} else if (*ldb < max(1,*n)) {
*info = -7;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGESV ", &i__1);
return 0;
}
/* Compute the LU factorization of A. */
dgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info);
if (*info == 0) {
/* Solve the system A*X = B, overwriting B with X. */
dgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[
b_offset], ldb, info);
}
return 0;
/* End of DGESV */
} /* dgesv_ */