1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
|
#include "sle.h"
#include <include/libgha.h>
#include <tools/kiss_fftr.h>
/*
* Ref: http://www.apsipa.org/proceedings_2009/pdf/WA-L3-3.pdf
*/
struct gha_ctx {
size_t size;
size_t max_loops;
kiss_fftr_cfg fftr;
kiss_fft_cpx* fft_out;
FLOAT* freq;
FLOAT* window;
FLOAT* tmp_buf;
FLOAT max_magnitude;
};
static void gha_init_window(gha_ctx_t ctx)
{
size_t i;
size_t n = ctx->size + 1;
for (i = 0; i < ctx->size; i++) {
ctx->window[i] = sin(M_PI * (i + 1) / n);
}
}
gha_ctx_t gha_create_ctx(size_t size)
{
gha_ctx_t ctx = malloc(sizeof(struct gha_ctx));
if (!ctx)
return NULL;
ctx->size = size;
ctx->max_loops = 7;
ctx->max_magnitude = 1;
ctx->fftr = kiss_fftr_alloc(size, 0, NULL, NULL);
if (!ctx->fftr)
goto exit_free_gha_ctx;
ctx->freq = malloc(sizeof(FLOAT) * size);
if (!ctx->freq)
goto exit_free_fftr_ctx;
ctx->window = malloc(sizeof(FLOAT) * size);
if (!ctx->window)
goto exit_free_freq;
ctx->tmp_buf = malloc(sizeof(FLOAT) * size);
if (!ctx->tmp_buf)
goto exit_free_window;
ctx->fft_out = malloc(sizeof(kiss_fft_cpx) * (size/2 + 1));
if (!ctx->fft_out)
goto exit_free_tmp_buf;
gha_init_window(ctx);
return ctx;
exit_free_tmp_buf:
free(ctx->tmp_buf);
exit_free_window:
free(ctx->window);
exit_free_freq:
free(ctx->freq);
exit_free_fftr_ctx:
kiss_fftr_free(ctx->fftr);
exit_free_gha_ctx:
free(ctx);
return NULL;
}
void gha_set_max_loops(gha_ctx_t ctx, size_t max_loops)
{
ctx->max_loops = max_loops;
}
void gha_set_max_magnitude(gha_ctx_t ctx, FLOAT magnitude)
{
ctx->max_magnitude = magnitude;
}
void gha_free_ctx(gha_ctx_t ctx)
{
free(ctx->fft_out);
free(ctx->tmp_buf);
free(ctx->window);
free(ctx->freq);
kiss_fft_free(ctx->fftr);
free(ctx);
}
static size_t gha_estimate_bin(gha_ctx_t ctx)
{
size_t i, end;
size_t j = 0;
FLOAT max = 0.0;
FLOAT tmp = 0.0;
end = ctx->size/2 + 1;
for (i = 0; i < end; i++) {
tmp = ctx->fft_out[i].r * ctx->fft_out[i].r + ctx->fft_out[i].i * ctx->fft_out[i].i;
if (tmp > max) {
max = tmp;
j = i;
}
}
return j;
}
/*
* Perform search of frequency using Newton's method
* Also we calculate real and imaginary part of Fourier transform at target frequency
* so we also calculate phase here at last iteration
*/
static void gha_search_omega_newton(const FLOAT* pcm, size_t bin, size_t size, struct gha_info* result)
{
size_t loop;
int n;
double omega_rad = bin * 2 * M_PI / size;
const size_t MAX_LOOPS = 8;
for (loop = 0; loop <= MAX_LOOPS; loop++) {
double Xr = 0;
double Xi = 0;
double dXr = 0;
double dXi = 0;
double ddXr = 0;
double ddXs = 0;
const double a = cos(omega_rad);
const double b = sin(omega_rad);
double c = 1.0;
double s = 0.0;
for (n = 0; n < size; n++) {
double cm = pcm[n] * c;
double sm = pcm[n] * s;
double tc, ts;
Xr += cm;
Xi += sm;
tc = n * cm;
ts = n * sm;
dXr -= ts;
dXi += tc;
ddXr -= n * tc;
ddXs -= n * ts;
const double new_c = a * c - b * s;
const double new_s = b * c + a * s;
c = new_c;
s = new_s;
}
double F = Xr * dXr + Xi * dXi;
double G2 = Xr * Xr + Xi * Xi;
//fprintf(stderr, " %f %f \n", Xr, Xi);
//double dXg = F;
double dF = Xr * ddXr + dXr * dXr + Xi * ddXs + dXi * dXi;
//double dg = F / G;
//double ddXg = (dF * G - F * dg) / G;
//double dw = dXg / ddXg;
double dw = F / (dF - (F * F) / G2);
//fprintf(stderr, "dw: %f\n", dw);
omega_rad -= dw;
if (omega_rad < 0)
omega_rad *= -1;
while (omega_rad > M_PI * 2.0)
omega_rad -= M_PI * 2.0;
if (omega_rad > M_PI)
omega_rad = M_PI * 2.0 - omega_rad;
// Last iteration
if (loop == MAX_LOOPS) {
result->frequency = omega_rad;
//assume zero-phase sine
result->phase = M_PI / 2 - atan(Xi / Xr);
if (Xr < 0)
result->phase += M_PI;
}
}
}
static void gha_generate_sine(FLOAT* buf, size_t size, FLOAT omega, FLOAT phase)
{
int i;
for (i = 0; i < size; i++) {
buf[i] = sin(omega * i + phase);
}
}
static void gha_estimate_magnitude(const FLOAT* pcm, const FLOAT* regen, size_t size, struct gha_info* result)
{
int i;
double t1 = 0;
double t2 = 0;
for (i = 0; i < size; i++) {
t1 += pcm[i] * regen[i];
t2 += regen[i] * regen[i];
}
result->magnitude = t1 / t2;
}
int gha_adjust_info_newton_md(const FLOAT* pcm, struct gha_info* info, size_t dim, gha_ctx_t ctx, size_t sz)
{
size_t loop;
size_t i, j, k, n;
for (loop = 0; loop < ctx->max_loops; loop++) {
memcpy(ctx->tmp_buf, pcm, sz * sizeof(FLOAT));
// Use VLA for a while
FLOAT BA[dim][sz];
FLOAT Bw[dim][sz];
FLOAT Bp[dim][sz];
FLOAT BAw[dim][sz];
FLOAT BAp[dim][sz];
FLOAT Bww[dim][sz];
FLOAT Bwp[dim][sz];
FLOAT Bpp[dim][sz];
for (n = 0; n < sz; n++) {
for (k = 0; k < dim; k++) {
FLOAT Ak = (info+k)->magnitude;
FLOAT wk = (info+k)->frequency;
FLOAT pk = (info+k)->phase;
FLOAT s = sin(wk * n + pk);
FLOAT c = cos(wk * n + pk);
ctx->tmp_buf[n] -= Ak * s;
BA[k][n] = -s;
Bw[k][n] = -Ak * n * c;
Bp[k][n] = -Ak * c;
BAw[k][n] = -n * c;
BAp[k][n] = -c;
Bww[k][n] = Ak * n * n * s;
Bwp[k][n] = Ak * n * s;
Bpp[k][n] = Ak * s;
}
}
double M[dim * 3][dim * 3 + 1];
memset(M, '\0', dim * 3 * (dim * 3 + 1) * sizeof(double));
for (i = 0; i < dim; i++) {
for (j = 0; j < dim; j++) {
for (n = 0; n < sz; n++) {
if (i == j) {
M[i + dim * 0][j + dim * 0] += BA[i][n] * BA[i][n];
M[i + dim * 0][j + dim * 1] += ctx->tmp_buf[n] * BAw[i][n] + BA[i][n] * Bw[i][n];
M[i + dim * 0][j + dim * 2] += ctx->tmp_buf[n] * BAp[i][n] + BA[i][n] * Bp[i][n];
M[i + dim * 1][j + dim * 1] += ctx->tmp_buf[n] * Bww[i][n] + Bw[i][n] * Bw[i][n];
M[i + dim * 1][j + dim * 2] += ctx->tmp_buf[n] * Bwp[i][n] + Bw[i][n] * Bp[i][n];
M[i + dim * 2][j + dim * 2] += ctx->tmp_buf[n] * Bpp[i][n] + Bp[i][n] * Bp[i][n];
} else {
M[i + dim * 0][j + dim * 0] += BA[i][n] * BA[j][n];
M[i + dim * 0][j + dim * 1] += BA[i][n] * Bw[j][n];
M[i + dim * 0][j + dim * 2] += BA[i][n] * Bp[j][n];
M[i + dim * 1][j + dim * 1] += Bw[i][n] * Bw[j][n];
M[i + dim * 1][j + dim * 2] += Bw[i][n] * Bp[j][n];
M[i + dim * 2][j + dim * 2] += Bp[i][n] * Bp[j][n];
}
}
M[i + dim * 0][j + dim * 0] *= 2;
M[i + dim * 0][j + dim * 1] *= 2;
M[i + dim * 0][j + dim * 2] *= 2;
M[i + dim * 1][j + dim * 1] *= 2;
M[i + dim * 1][j + dim * 2] *= 2;
M[i + dim * 2][j + dim * 2] *= 2;
M[i + dim * 0][j + dim * 1] = M[i + dim * 1][j + dim * 0];
M[i + dim * 0][j + dim * 2] = M[i + dim * 2][j + dim * 0];
M[i + dim * 1][j + dim * 2] = M[i + dim * 2][j + dim * 1];
}
}
for (k = 0; k < dim; k++) {
for (n = 0; n < sz; n++) {
M[k + dim * 0][dim * 3] += ctx->tmp_buf[n] * BA[k][n];
M[k + dim * 1][dim * 3] += ctx->tmp_buf[n] * Bw[k][n];
M[k + dim * 2][dim * 3] += ctx->tmp_buf[n] * Bp[k][n];
}
M[k + dim * 0][dim * 3] *= 2;
M[k + dim * 1][dim * 3] *= 2;
M[k + dim * 2][dim * 3] *= 2;
}
double fx0[dim * 3];
memset(fx0, '\0', dim * 3 * sizeof(double));
if(sle_solve(&M[0][0], dim * 3, fx0)) {
return -1;
}
for (k = 0; k < dim; k++) {
//fprintf(stderr, "delta1: %f\n", fx0[k + dim * 0]);
//fprintf(stderr, "delta2: %f\n", fx0[k + dim * 1]);
//fprintf(stderr, "delta3: %f\n", fx0[k + dim * 2]);
(info+k)->magnitude -= (fx0[k + dim * 0] * 0.8);
(info+k)->frequency -= (fx0[k + dim * 1] * 0.8);
(info+k)->phase -= (fx0[k + dim * 2] * 0.8);
}
for (k = 0; k < dim; k++) {
if ((info+k)->magnitude < 0) {
(info+k)->magnitude *= -1;
(info+k)->phase += M_PI;
}
if ((info+k)->magnitude > ctx->max_magnitude) {
//TODO: ???
(info+k)->magnitude = ctx->max_magnitude * 0.5;
}
}
for (k = 0; k < dim; k++) {
if ((info + k)->frequency < 0) {
//fprintf(stderr, "negative freq\n");
(info + k)->frequency *= -1;
(info + k)->phase = 2 * M_PI - (info + k)->phase;
}
while ((info + k)->frequency > M_PI * 2.0) {
//fprintf(stderr, "freq over\n");
(info + k)->frequency -= M_PI * 2.0;
}
if ((info + k)->frequency > M_PI) {
//fprintf(stderr, "freq ??\n");
(info + k)->frequency = 2 * M_PI - (info + k)->frequency;
}
}
for (k = 0; k < dim; k++) {
while ((info+k)->phase > M_PI * 2.0) {
(info+k)->phase -= M_PI * 2;
}
while ((info + k)->phase < 0) {
(info+k)->phase += M_PI * 2;
}
}
}
return 0;
}
void gha_analyze_one(const FLOAT* pcm, struct gha_info* info, gha_ctx_t ctx)
{
int i = 0;
int bin = 0;
for (i = 0; i < ctx->size; i++)
ctx->tmp_buf[i] = pcm[i] * ctx->window[i];
kiss_fftr(ctx->fftr, ctx->tmp_buf, ctx->fft_out);
bin = gha_estimate_bin(ctx);
gha_search_omega_newton(ctx->tmp_buf, bin, ctx->size, info);
gha_generate_sine(ctx->tmp_buf, ctx->size, info->frequency, info->phase);
gha_estimate_magnitude(pcm, ctx->tmp_buf, ctx->size, info);
}
void gha_extract_one(FLOAT* pcm, struct gha_info* info, gha_ctx_t ctx)
{
int i;
FLOAT magnitude;
gha_analyze_one(pcm, info, ctx);
magnitude = info->magnitude;
for (i = 0; i < ctx->size; i++)
pcm[i] -= ctx->tmp_buf[i] * magnitude;
}
void gha_extract_many_simple(FLOAT* pcm, struct gha_info* info, size_t k, gha_ctx_t ctx)
{
int i;
for (i = 0; i < k; i++) {
gha_extract_one(pcm, info + i, ctx);
}
}
int gha_adjust_info(const FLOAT* pcm, struct gha_info* info, size_t k, gha_ctx_t ctx, resuidal_cb_t cb, void* user_ctx, size_t size_limit)
{
size_t actual_size = ctx->size;
int rv;
if (size_limit && size_limit < ctx->size) {
actual_size = size_limit;
}
rv = gha_adjust_info_newton_md(pcm, info, k, ctx, actual_size);
if (cb && rv != -1)
cb(ctx->tmp_buf, ctx->size, user_ctx);
return rv;
}
const FLOAT* gha_get_analyzed(gha_ctx_t ctx)
{
return ctx->tmp_buf;
}
|