aboutsummaryrefslogtreecommitdiffstats
path: root/postproc/swscale.c
blob: d492a03b91b2ced71e7b6191b9dd9c79608370d5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
// Software scaling and colorspace conversion routines for MPlayer

// Orginal C implementation by A'rpi/ESP-team <arpi@thot.banki.hu>
// current version mostly by Michael Niedermayer (michaelni@gmx.at)
// the parts written by michael are under GNU GPL

/*
  supported Input formats: YV12 (grayscale soon too)
  supported output formats: YV12, BGR15, BGR16, BGR24, BGR32 (grayscale soon too)
*/

#include <inttypes.h>
#include <string.h>
#include <math.h>
#include <stdio.h>
#include "../config.h"
#include "../mangle.h"
#ifdef HAVE_MALLOC_H
#include <malloc.h>
#endif
#include "swscale.h"
#include "../cpudetect.h"
#include "../libvo/img_format.h"
#undef MOVNTQ
#undef PAVGB

//#undef HAVE_MMX2
//#define HAVE_3DNOW
//#undef HAVE_MMX
//#undef ARCH_X86
#define DITHER1XBPP

#define RET 0xC3 //near return opcode

#ifdef MP_DEBUG
#define ASSERT(x) if(!(x)) { printf("ASSERT " #x " failed\n"); *((int*)0)=0; }
#else
#define ASSERT(x) ;
#endif

#ifdef M_PI
#define PI M_PI
#else
#define PI 3.14159265358979323846
#endif

extern int verbose; // defined in mplayer.c
/*
NOTES

known BUGS with known cause (no bugreports please!, but patches are welcome :) )
horizontal fast_bilinear MMX2 scaler reads 1-7 samples too much (might cause a sig11)

Supported output formats BGR15 BGR16 BGR24 BGR32 YV12
BGR15 & BGR16 MMX verions support dithering
Special versions: fast Y 1:1 scaling (no interpolation in y direction)

TODO
more intelligent missalignment avoidance for the horizontal scaler
dither in C
change the distance of the u & v buffer
Move static / global vars into a struct so multiple scalers can be used
write special vertical cubic upscale version
Optimize C code (yv12 / minmax)
*/

#define ABS(a) ((a) > 0 ? (a) : (-(a)))
#define MIN(a,b) ((a) > (b) ? (b) : (a))
#define MAX(a,b) ((a) < (b) ? (b) : (a))

#ifdef ARCH_X86
#define CAN_COMPILE_X86_ASM
#endif

#ifdef CAN_COMPILE_X86_ASM
static uint64_t __attribute__((aligned(8))) yCoeff=    0x2568256825682568LL;
static uint64_t __attribute__((aligned(8))) vrCoeff=   0x3343334333433343LL;
static uint64_t __attribute__((aligned(8))) ubCoeff=   0x40cf40cf40cf40cfLL;
static uint64_t __attribute__((aligned(8))) vgCoeff=   0xE5E2E5E2E5E2E5E2LL;
static uint64_t __attribute__((aligned(8))) ugCoeff=   0xF36EF36EF36EF36ELL;
static uint64_t __attribute__((aligned(8))) bF8=       0xF8F8F8F8F8F8F8F8LL;
static uint64_t __attribute__((aligned(8))) bFC=       0xFCFCFCFCFCFCFCFCLL;
static uint64_t __attribute__((aligned(8))) w400=      0x0400040004000400LL;
static uint64_t __attribute__((aligned(8))) w80=       0x0080008000800080LL;
static uint64_t __attribute__((aligned(8))) w10=       0x0010001000100010LL;
static uint64_t __attribute__((aligned(8))) w02=       0x0002000200020002LL;
static uint64_t __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
static uint64_t __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
static uint64_t __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;

static volatile uint64_t __attribute__((aligned(8))) b5Dither;
static volatile uint64_t __attribute__((aligned(8))) g5Dither;
static volatile uint64_t __attribute__((aligned(8))) g6Dither;
static volatile uint64_t __attribute__((aligned(8))) r5Dither;

static uint64_t __attribute__((aligned(8))) dither4[2]={
	0x0103010301030103LL,
	0x0200020002000200LL,};

static uint64_t __attribute__((aligned(8))) dither8[2]={
	0x0602060206020602LL,
	0x0004000400040004LL,};

static uint64_t __attribute__((aligned(8))) b16Mask=   0x001F001F001F001FLL;
static uint64_t __attribute__((aligned(8))) g16Mask=   0x07E007E007E007E0LL;
static uint64_t __attribute__((aligned(8))) r16Mask=   0xF800F800F800F800LL;
static uint64_t __attribute__((aligned(8))) b15Mask=   0x001F001F001F001FLL;
static uint64_t __attribute__((aligned(8))) g15Mask=   0x03E003E003E003E0LL;
static uint64_t __attribute__((aligned(8))) r15Mask=   0x7C007C007C007C00LL;

static uint64_t __attribute__((aligned(8))) M24A=   0x00FF0000FF0000FFLL;
static uint64_t __attribute__((aligned(8))) M24B=   0xFF0000FF0000FF00LL;
static uint64_t __attribute__((aligned(8))) M24C=   0x0000FF0000FF0000LL;

// FIXME remove
static uint64_t __attribute__((aligned(8))) asm_yalpha1;
static uint64_t __attribute__((aligned(8))) asm_uvalpha1;
#endif

// clipping helper table for C implementations:
static unsigned char clip_table[768];

static unsigned short clip_table16b[768];
static unsigned short clip_table16g[768];
static unsigned short clip_table16r[768];
static unsigned short clip_table15b[768];
static unsigned short clip_table15g[768];
static unsigned short clip_table15r[768];

// yuv->rgb conversion tables:
static    int yuvtab_2568[256];
static    int yuvtab_3343[256];
static    int yuvtab_0c92[256];
static    int yuvtab_1a1e[256];
static    int yuvtab_40cf[256];
// Needed for cubic scaler to catch overflows
static    int clip_yuvtab_2568[768];
static    int clip_yuvtab_3343[768];
static    int clip_yuvtab_0c92[768];
static    int clip_yuvtab_1a1e[768];
static    int clip_yuvtab_40cf[768];

//global sws_flags from the command line
int sws_flags=0;

/* cpuCaps combined from cpudetect and whats actually compiled in
   (if there is no support for something compiled in it wont appear here) */
static CpuCaps cpuCaps;

void (*swScale)(SwsContext *context, uint8_t* src[], int srcStride[], int srcSliceY,
             int srcSliceH, uint8_t* dst[], int dstStride[])=NULL;

#ifdef CAN_COMPILE_X86_ASM
void in_asm_used_var_warning_killer()
{
 volatile int i= yCoeff+vrCoeff+ubCoeff+vgCoeff+ugCoeff+bF8+bFC+w400+w80+w10+
 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+asm_yalpha1+ asm_uvalpha1+
 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0];
 if(i) i=0;
}
#endif

static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
				    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
				    uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW)
{
	//FIXME Optimize (just quickly writen not opti..)
	int i;
	for(i=0; i<dstW; i++)
	{
		int val=0;
		int j;
		for(j=0; j<lumFilterSize; j++)
			val += lumSrc[j][i] * lumFilter[j];

		dest[i]= MIN(MAX(val>>19, 0), 255);
	}

	if(uDest != NULL)
		for(i=0; i<(dstW>>1); i++)
		{
			int u=0;
			int v=0;
			int j;
			for(j=0; j<chrFilterSize; j++)
			{
				u += chrSrc[j][i] * chrFilter[j];
				v += chrSrc[j][i + 2048] * chrFilter[j];
			}

			uDest[i]= MIN(MAX(u>>19, 0), 255);
			vDest[i]= MIN(MAX(v>>19, 0), 255);
		}
}

static inline void yuv2rgbXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
				    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
				    uint8_t *dest, int dstW, int dstFormat)
{
	if(dstFormat==IMGFMT_BGR32)
	{
		int i;
		for(i=0; i<(dstW>>1); i++){
			int j;
			int Y1=0;
			int Y2=0;
			int U=0;
			int V=0;
			int Cb, Cr, Cg;
			for(j=0; j<lumFilterSize; j++)
			{
				Y1 += lumSrc[j][2*i] * lumFilter[j];
				Y2 += lumSrc[j][2*i+1] * lumFilter[j];
			}
			for(j=0; j<chrFilterSize; j++)
			{
				U += chrSrc[j][i] * chrFilter[j];
				V += chrSrc[j][i+2048] * chrFilter[j];
			}
			Y1= clip_yuvtab_2568[ (Y1>>19) + 256 ];
			Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ];
			U >>= 19;
			V >>= 19;

			Cb= clip_yuvtab_40cf[U+ 256];
			Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256];
			Cr= clip_yuvtab_3343[V+ 256];

			dest[8*i+0]=clip_table[((Y1 + Cb) >>13)];
			dest[8*i+1]=clip_table[((Y1 + Cg) >>13)];
			dest[8*i+2]=clip_table[((Y1 + Cr) >>13)];

			dest[8*i+4]=clip_table[((Y2 + Cb) >>13)];
			dest[8*i+5]=clip_table[((Y2 + Cg) >>13)];
			dest[8*i+6]=clip_table[((Y2 + Cr) >>13)];
		}
	}
	else if(dstFormat==IMGFMT_BGR24)
	{
		int i;
		for(i=0; i<(dstW>>1); i++){
			int j;
			int Y1=0;
			int Y2=0;
			int U=0;
			int V=0;
			int Cb, Cr, Cg;
			for(j=0; j<lumFilterSize; j++)
			{
				Y1 += lumSrc[j][2*i] * lumFilter[j];
				Y2 += lumSrc[j][2*i+1] * lumFilter[j];
			}
			for(j=0; j<chrFilterSize; j++)
			{
				U += chrSrc[j][i] * chrFilter[j];
				V += chrSrc[j][i+2048] * chrFilter[j];
			}
			Y1= clip_yuvtab_2568[ (Y1>>19) + 256 ];
			Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ];
			U >>= 19;
			V >>= 19;

			Cb= clip_yuvtab_40cf[U+ 256];
			Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256];
			Cr= clip_yuvtab_3343[V+ 256];

			dest[0]=clip_table[((Y1 + Cb) >>13)];
			dest[1]=clip_table[((Y1 + Cg) >>13)];
			dest[2]=clip_table[((Y1 + Cr) >>13)];

			dest[3]=clip_table[((Y2 + Cb) >>13)];
			dest[4]=clip_table[((Y2 + Cg) >>13)];
			dest[5]=clip_table[((Y2 + Cr) >>13)];
			dest+=6;
		}
	}
	else if(dstFormat==IMGFMT_BGR16)
	{
		int i;
		for(i=0; i<(dstW>>1); i++){
			int j;
			int Y1=0;
			int Y2=0;
			int U=0;
			int V=0;
			int Cb, Cr, Cg;
			for(j=0; j<lumFilterSize; j++)
			{
				Y1 += lumSrc[j][2*i] * lumFilter[j];
				Y2 += lumSrc[j][2*i+1] * lumFilter[j];
			}
			for(j=0; j<chrFilterSize; j++)
			{
				U += chrSrc[j][i] * chrFilter[j];
				V += chrSrc[j][i+2048] * chrFilter[j];
			}
			Y1= clip_yuvtab_2568[ (Y1>>19) + 256 ];
			Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ];
			U >>= 19;
			V >>= 19;

			Cb= clip_yuvtab_40cf[U+ 256];
			Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256];
			Cr= clip_yuvtab_3343[V+ 256];

			((uint16_t*)dest)[2*i] =
				clip_table16b[(Y1 + Cb) >>13] |
				clip_table16g[(Y1 + Cg) >>13] |
				clip_table16r[(Y1 + Cr) >>13];

			((uint16_t*)dest)[2*i+1] =
				clip_table16b[(Y2 + Cb) >>13] |
				clip_table16g[(Y2 + Cg) >>13] |
				clip_table16r[(Y2 + Cr) >>13];
		}
	}
	else if(dstFormat==IMGFMT_BGR15)
	{
		int i;
		for(i=0; i<(dstW>>1); i++){
			int j;
			int Y1=0;
			int Y2=0;
			int U=0;
			int V=0;
			int Cb, Cr, Cg;
			for(j=0; j<lumFilterSize; j++)
			{
				Y1 += lumSrc[j][2*i] * lumFilter[j];
				Y2 += lumSrc[j][2*i+1] * lumFilter[j];
			}
			for(j=0; j<chrFilterSize; j++)
			{
				U += chrSrc[j][i] * chrFilter[j];
				V += chrSrc[j][i+2048] * chrFilter[j];
			}
			Y1= clip_yuvtab_2568[ (Y1>>19) + 256 ];
			Y2= clip_yuvtab_2568[ (Y2>>19) + 256 ];
			U >>= 19;
			V >>= 19;

			Cb= clip_yuvtab_40cf[U+ 256];
			Cg= clip_yuvtab_1a1e[V+ 256] + yuvtab_0c92[U+ 256];
			Cr= clip_yuvtab_3343[V+ 256];

			((uint16_t*)dest)[2*i] =
				clip_table15b[(Y1 + Cb) >>13] |
				clip_table15g[(Y1 + Cg) >>13] |
				clip_table15r[(Y1 + Cr) >>13];

			((uint16_t*)dest)[2*i+1] =
				clip_table15b[(Y2 + Cb) >>13] |
				clip_table15g[(Y2 + Cg) >>13] |
				clip_table15r[(Y2 + Cr) >>13];
		}
	}
}


//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
//Plain C versions
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
#define COMPILE_C
#endif

#ifdef CAN_COMPILE_X86_ASM

#if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
#define COMPILE_MMX
#endif

#if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
#define COMPILE_MMX2
#endif

#if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
#define COMPILE_3DNOW
#endif
#endif //CAN_COMPILE_X86_ASM

#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#undef ARCH_X86

#ifdef COMPILE_C
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#undef ARCH_X86
#define RENAME(a) a ## _C
#include "swscale_template.c"
#endif

#ifdef CAN_COMPILE_X86_ASM

//X86 versions
/*
#undef RENAME
#undef HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#define ARCH_X86
#define RENAME(a) a ## _X86
#include "swscale_template.c"
*/
//MMX versions
#ifdef COMPILE_MMX
#undef RENAME
#define HAVE_MMX
#undef HAVE_MMX2
#undef HAVE_3DNOW
#define ARCH_X86
#define RENAME(a) a ## _MMX
#include "swscale_template.c"
#endif

//MMX2 versions
#ifdef COMPILE_MMX2
#undef RENAME
#define HAVE_MMX
#define HAVE_MMX2
#undef HAVE_3DNOW
#define ARCH_X86
#define RENAME(a) a ## _MMX2
#include "swscale_template.c"
#endif

//3DNOW versions
#ifdef COMPILE_3DNOW
#undef RENAME
#define HAVE_MMX
#undef HAVE_MMX2
#define HAVE_3DNOW
#define ARCH_X86
#define RENAME(a) a ## _3DNow
#include "swscale_template.c"
#endif

#endif //CAN_COMPILE_X86_ASM

// minor note: the HAVE_xyz is messed up after that line so dont use it


// old global scaler, dont use for new code
// will use sws_flags from the command line
void SwScale_YV12slice(unsigned char* src[], int srcStride[], int srcSliceY ,
			     int srcSliceH, uint8_t* dst[], int dstStride, int dstbpp,
			     int srcW, int srcH, int dstW, int dstH){

	static SwsContext *context=NULL;
	int dstFormat;
	int flags=0;
	static int firstTime=1;
	int dstStride3[3]= {dstStride, dstStride>>1, dstStride>>1};

	if(firstTime)
	{
		flags= SWS_PRINT_INFO;
		firstTime=0;
	}

	switch(dstbpp)
	{
		case 8 : dstFormat= IMGFMT_Y8;		break;
		case 12: dstFormat= IMGFMT_YV12;	break;
		case 15: dstFormat= IMGFMT_BGR15;	break;
		case 16: dstFormat= IMGFMT_BGR16;	break;
		case 24: dstFormat= IMGFMT_BGR24;	break;
		case 32: dstFormat= IMGFMT_BGR32;	break;
		default: return;
	}

	switch(sws_flags)
	{
		case 0: flags|= SWS_FAST_BILINEAR; break;
		case 1: flags|= SWS_BILINEAR; break;
		case 2: flags|= SWS_BICUBIC; break;
		case 3: flags|= SWS_X; break;
		default:flags|= SWS_BILINEAR; break;
	}

	if(!context) context=getSwsContext(srcW, srcH, IMGFMT_YV12, dstW, dstH, dstFormat, flags, NULL, NULL);


	swScale(context, src, srcStride, srcSliceY, srcSliceH, dst, dstStride3);
}

static inline void initFilter(int16_t *dstFilter, int16_t *filterPos, int *filterSize, int xInc,
			      int srcW, int dstW, int filterAlign, int one, int flags)
{
	int i;
	double filter[10000];
#ifdef ARCH_X86
	if(gCpuCaps.hasMMX)
		asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
#endif

	if(ABS(xInc - 0x10000) <10) // unscaled
	{
		int i;
		*filterSize= (1 +(filterAlign-1)) & (~(filterAlign-1)); // 1 or 4 normaly
		for(i=0; i<dstW*(*filterSize); i++) filter[i]=0;

		for(i=0; i<dstW; i++)
		{
			filter[i*(*filterSize)]=1;
			filterPos[i]=i;
		}

	}
	else if(xInc <= (1<<16) || (flags&SWS_FAST_BILINEAR)) // upscale
	{
		int i;
		int xDstInSrc;
		if     (flags&SWS_BICUBIC) *filterSize= 4;
		else if(flags&SWS_X      ) *filterSize= 4;
		else			   *filterSize= 2;
//		printf("%d %d %d\n", filterSize, srcW, dstW);
		*filterSize= (*filterSize +(filterAlign-1)) & (~(filterAlign-1));

		xDstInSrc= xInc/2 - 0x8000;
		for(i=0; i<dstW; i++)
		{
			int xx= (xDstInSrc>>16) - (*filterSize>>1) + 1;
			int j;

			filterPos[i]= xx;
			if((flags & SWS_BICUBIC) || (flags & SWS_X))
			{
				double d= ABS(((xx+1)<<16) - xDstInSrc)/(double)(1<<16);
				double y1,y2,y3,y4;
				double A= -0.6;
				if(flags & SWS_BICUBIC){
						// Equation is from VirtualDub
					y1 = (        +     A*d -       2.0*A*d*d +       A*d*d*d);
					y2 = (+ 1.0             -     (A+3.0)*d*d + (A+2.0)*d*d*d);
					y3 = (        -     A*d + (2.0*A+3.0)*d*d - (A+2.0)*d*d*d);
					y4 = (                  +           A*d*d -       A*d*d*d);
				}else{
						// cubic interpolation (derived it myself)
					y1 = (    -2.0*d + 3.0*d*d - 1.0*d*d*d)/6.0;
					y2 = (6.0 -3.0*d - 6.0*d*d + 3.0*d*d*d)/6.0;
					y3 = (    +6.0*d + 3.0*d*d - 3.0*d*d*d)/6.0;
					y4 = (    -1.0*d           + 1.0*d*d*d)/6.0;
				}

//				printf("%d %d %d \n", coeff, (int)d, xDstInSrc);
				filter[i*(*filterSize) + 0]= y1;
				filter[i*(*filterSize) + 1]= y2;
				filter[i*(*filterSize) + 2]= y3;
				filter[i*(*filterSize) + 3]= y4;
//				printf("%1.3f %1.3f %1.3f %1.3f %1.3f\n",d , y1, y2, y3, y4);
			}
			else
			{
				for(j=0; j<*filterSize; j++)
				{
					double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
					double coeff= 1.0 - d;
					if(coeff<0) coeff=0;
	//				printf("%d %d %d \n", coeff, (int)d, xDstInSrc);
					filter[i*(*filterSize) + j]= coeff;
					xx++;
				}
			}
			xDstInSrc+= xInc;
		}
	}
	else // downscale
	{
		int xDstInSrc;
		if(flags&SWS_BICUBIC) *filterSize= (int)ceil(1 + 4.0*srcW / (double)dstW);
		else if(flags&SWS_X)  *filterSize= (int)ceil(1 + 4.0*srcW / (double)dstW);
		else		      *filterSize= (int)ceil(1 + 2.0*srcW / (double)dstW);
//		printf("%d %d %d\n", *filterSize, srcW, dstW);
		*filterSize= (*filterSize +(filterAlign-1)) & (~(filterAlign-1));

		xDstInSrc= xInc/2 - 0x8000;
		for(i=0; i<dstW; i++)
		{
			int xx= (int)((double)xDstInSrc/(double)(1<<16) - ((*filterSize)-1)*0.5 + 0.5);
			int j;
			filterPos[i]= xx;
			for(j=0; j<*filterSize; j++)
			{
				double d= ABS((xx<<16) - xDstInSrc)/(double)xInc;
				double coeff;
				if((flags & SWS_BICUBIC) || (flags & SWS_X))
				{
					double A= -0.75;
//					d*=2;
					// Equation is from VirtualDub
					if(d<1.0)
						coeff = (1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d);
					else if(d<2.0)
						coeff = (-4.0*A + 8.0*A*d - 5.0*A*d*d + A*d*d*d);
					else
						coeff=0.0;
				}
/*				else if(flags & SWS_X)
				{
				}*/
				else
				{
					coeff= 1.0 - d;
					if(coeff<0) coeff=0;
				}
//				printf("%1.3f %d %d \n", coeff, (int)d, xDstInSrc);
				filter[i*(*filterSize) + j]= coeff;
				xx++;
			}
			xDstInSrc+= xInc;
		}
	}

	//fix borders
	for(i=0; i<dstW; i++)
	{
		int j;
		if(filterPos[i] < 0)
		{
			// Move filter coeffs left to compensate for filterPos
			for(j=1; j<*filterSize; j++)
			{
				int left= MAX(j + filterPos[i], 0);
				filter[i*(*filterSize) + left] += filter[i*(*filterSize) + j];
				filter[i*(*filterSize) + j]=0;
			}
			filterPos[i]= 0;
		}

		if(filterPos[i] + (*filterSize) > srcW)
		{
			int shift= filterPos[i] + (*filterSize) - srcW;
			// Move filter coeffs right to compensate for filterPos
			for(j=(*filterSize)-2; j>=0; j--)
			{
				int right= MIN(j + shift, (*filterSize)-1);
				filter[i*(*filterSize) +right] += filter[i*(*filterSize) +j];
				filter[i*(*filterSize) +j]=0;
			}
			filterPos[i]= srcW - (*filterSize);
		}
	}

	//FIXME try to align filterpos if possible / try to shift filterpos to put zeros at the end
	// and skip these than later

	//Normalize
	for(i=0; i<dstW; i++)
	{
		int j;
		double sum=0;
		double scale= one;
		for(j=0; j<*filterSize; j++)
		{
			sum+= filter[i*(*filterSize) + j];
		}
		scale/= sum;
		for(j=0; j<*filterSize; j++)
		{
			dstFilter[i*(*filterSize) + j]= (int)(filter[i*(*filterSize) + j]*scale);
		}
	}
}

#ifdef ARCH_X86
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode)
{
	uint8_t *fragment;
	int imm8OfPShufW1;
	int imm8OfPShufW2;
	int fragmentLength;

	int xpos, i;

	// create an optimized horizontal scaling routine

	//code fragment

	asm volatile(
		"jmp 9f				\n\t"
	// Begin
		"0:				\n\t"
		"movq (%%esi), %%mm0		\n\t" //FIXME Alignment
		"movq %%mm0, %%mm1		\n\t"
		"psrlq $8, %%mm0		\n\t"
		"punpcklbw %%mm7, %%mm1	\n\t"
		"movq %%mm2, %%mm3		\n\t"
		"punpcklbw %%mm7, %%mm0	\n\t"
		"addw %%bx, %%cx		\n\t" //2*xalpha += (4*lumXInc)&0xFFFF
		"pshufw $0xFF, %%mm1, %%mm1	\n\t"
		"1:				\n\t"
		"adcl %%edx, %%esi		\n\t" //xx+= (4*lumXInc)>>16 + carry
		"pshufw $0xFF, %%mm0, %%mm0	\n\t"
		"2:				\n\t"
		"psrlw $9, %%mm3		\n\t"
		"psubw %%mm1, %%mm0		\n\t"
		"pmullw %%mm3, %%mm0		\n\t"
		"paddw %%mm6, %%mm2		\n\t" // 2*alpha += xpos&0xFFFF
		"psllw $7, %%mm1		\n\t"
		"paddw %%mm1, %%mm0		\n\t"

		"movq %%mm0, (%%edi, %%eax)	\n\t"

		"addl $8, %%eax			\n\t"
	// End
		"9:				\n\t"
//		"int $3\n\t"
		"leal 0b, %0			\n\t"
		"leal 1b, %1			\n\t"
		"leal 2b, %2			\n\t"
		"decl %1			\n\t"
		"decl %2			\n\t"
		"subl %0, %1			\n\t"
		"subl %0, %2			\n\t"
		"leal 9b, %3			\n\t"
		"subl %0, %3			\n\t"
		:"=r" (fragment), "=r" (imm8OfPShufW1), "=r" (imm8OfPShufW2),
		"=r" (fragmentLength)
	);

	xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers

	for(i=0; i<dstW/8; i++)
	{
		int xx=xpos>>16;

		if((i&3) == 0)
		{
			int a=0;
			int b=((xpos+xInc)>>16) - xx;
			int c=((xpos+xInc*2)>>16) - xx;
			int d=((xpos+xInc*3)>>16) - xx;

			memcpy(funnyCode + fragmentLength*i/4, fragment, fragmentLength);

			funnyCode[fragmentLength*i/4 + imm8OfPShufW1]=
			funnyCode[fragmentLength*i/4 + imm8OfPShufW2]=
				a | (b<<2) | (c<<4) | (d<<6);

			// if we dont need to read 8 bytes than dont :), reduces the chance of
			// crossing a cache line
			if(d<3) funnyCode[fragmentLength*i/4 + 1]= 0x6E;

			funnyCode[fragmentLength*(i+4)/4]= RET;
		}
		xpos+=xInc;
	}
}
#endif // ARCH_X86

//FIXME remove
void SwScale_Init(){
}

static void globalInit(){
    // generating tables:
    int i;
    for(i=0; i<768; i++){
	int c= MIN(MAX(i-256, 0), 255);
	clip_table[i]=c;
	yuvtab_2568[c]= clip_yuvtab_2568[i]=(0x2568*(c-16))+(256<<13);
	yuvtab_3343[c]= clip_yuvtab_3343[i]=0x3343*(c-128);
	yuvtab_0c92[c]= clip_yuvtab_0c92[i]=-0x0c92*(c-128);
	yuvtab_1a1e[c]= clip_yuvtab_1a1e[i]=-0x1a1e*(c-128);
	yuvtab_40cf[c]= clip_yuvtab_40cf[i]=0x40cf*(c-128);
    }

    for(i=0; i<768; i++)
    {
	int v= clip_table[i];
	clip_table16b[i]= v>>3;
	clip_table16g[i]= (v<<3)&0x07E0;
	clip_table16r[i]= (v<<8)&0xF800;
	clip_table15b[i]= v>>3;
	clip_table15g[i]= (v<<2)&0x03E0;
	clip_table15r[i]= (v<<7)&0x7C00;
    }

cpuCaps= gCpuCaps;

#ifdef RUNTIME_CPUDETECT
#ifdef CAN_COMPILE_X86_ASM
	// ordered per speed fasterst first
	if(gCpuCaps.hasMMX2)
		swScale= swScale_MMX2;
	else if(gCpuCaps.has3DNow)
		swScale= swScale_3DNow;
	else if(gCpuCaps.hasMMX)
		swScale= swScale_MMX;
	else
		swScale= swScale_C;

#else
	swScale= swScale_C;
	cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0;
#endif
#else //RUNTIME_CPUDETECT
#ifdef HAVE_MMX2
	swScale= swScale_MMX2;
	cpuCaps.has3DNow = 0;
#elif defined (HAVE_3DNOW)
	swScale= swScale_3DNow;
	cpuCaps.hasMMX2 = 0;
#elif defined (HAVE_MMX)
	swScale= swScale_MMX;
	cpuCaps.hasMMX2 = cpuCaps.has3DNow = 0;
#else
	swScale= swScale_C;
	cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0;
#endif
#endif //!RUNTIME_CPUDETECT
}


SwsContext *getSwsContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
                         SwsFilter *srcFilter, SwsFilter *dstFilter){

	const int widthAlign= dstFormat==IMGFMT_YV12 ? 16 : 8;
	SwsContext *c;
	int i;
//const int bytespp= (dstbpp+1)/8; //(12->1, 15&16->2, 24->3, 32->4)
//const int over= dstFormat==IMGFMT_YV12 ? 	  (((dstW+15)&(~15))) - dststride
//						: (((dstW+7)&(~7)))*bytespp - dststride;
	if(swScale==NULL) globalInit();

	/* sanity check */
	if(srcW<1 || srcH<1 || dstW<1 || dstH<1) return NULL;
	if(srcW>=SWS_MAX_SIZE || dstW>=SWS_MAX_SIZE || srcH>=SWS_MAX_SIZE || dstH>=SWS_MAX_SIZE)
	{
		fprintf(stderr, "size is too large, increase SWS_MAX_SIZE\n");
		return NULL;
	}

/* FIXME
	if(dstStride[0]%widthAlign !=0 )
	{
		if(flags & SWS_PRINT_INFO)
			fprintf(stderr, "SwScaler: Warning: dstStride is not a multiple of %d!\n"
					"SwScaler:          ->cannot do aligned memory acesses anymore\n",
					widthAlign);
	}
*/
	c= memalign(64, sizeof(SwsContext));

	c->srcW= srcW;
	c->srcH= srcH;
	c->dstW= dstW;
	c->dstH= dstH;
	c->lumXInc= ((srcW<<16) + (1<<15))/dstW;
	c->lumYInc= ((srcH<<16) + (1<<15))/dstH;
	c->flags= flags;
	c->dstFormat= dstFormat;
	c->srcFormat= srcFormat;

	if(cpuCaps.hasMMX2)
	{
		c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
		if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
		{
			if(flags&SWS_PRINT_INFO)
				fprintf(stderr, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
		}
	}
	else
		c->canMMX2BeUsed=0;

	// match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
	// but only for the FAST_BILINEAR mode otherwise do correct scaling
	// n-2 is the last chrominance sample available
	// this is not perfect, but noone shuld notice the difference, the more correct variant
	// would be like the vertical one, but that would require some special code for the
	// first and last pixel
	if(flags&SWS_FAST_BILINEAR)
	{
		if(c->canMMX2BeUsed) 	c->lumXInc+= 20;
		//we dont use the x86asm scaler if mmx is available
		else if(cpuCaps.hasMMX)	c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
	}

	/* set chrXInc & chrDstW */
	if((flags&SWS_FULL_UV_IPOL) && dstFormat!=IMGFMT_YV12)
		c->chrXInc= c->lumXInc>>1, c->chrDstW= dstW;
	else
		c->chrXInc= c->lumXInc,    c->chrDstW= (dstW+1)>>1;

	/* set chrYInc & chrDstH */
	if(dstFormat==IMGFMT_YV12)	c->chrYInc= c->lumYInc,    c->chrDstH= (dstH+1)>>1;
	else				c->chrYInc= c->lumYInc>>1, c->chrDstH= dstH;

	/* precalculate horizontal scaler filter coefficients */
	{
		const int filterAlign= cpuCaps.hasMMX ? 4 : 1;

		initFilter(c->hLumFilter, c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
				 srcW      ,       dstW, filterAlign, 1<<14, flags);
		initFilter(c->hChrFilter, c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
				(srcW+1)>>1, c->chrDstW, filterAlign, 1<<14, flags);

#ifdef ARCH_X86
// cant downscale !!!
		if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
		{
			initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode);
			initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode);
		}
#endif
	} // Init Horizontal stuff



	/* precalculate vertical scaler filter coefficients */
	initFilter(c->vLumFilter, c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
			srcH      ,        dstH, 1, (1<<12)-4, flags);
	initFilter(c->vChrFilter, c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
			(srcH+1)>>1, c->chrDstH, 1, (1<<12)-4, flags);

	// Calculate Buffer Sizes so that they wont run out while handling these damn slices
	c->vLumBufSize= c->vLumFilterSize;
	c->vChrBufSize= c->vChrFilterSize;
	for(i=0; i<dstH; i++)
	{
		int chrI= i*c->chrDstH / dstH;
		int nextSlice= MAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
				 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<1));
		nextSlice&= ~1; // Slices start at even boundaries
		if(c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
			c->vLumBufSize= nextSlice - c->vLumFilterPos[i   ];
		if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>1))
			c->vChrBufSize= (nextSlice>>1) - c->vChrFilterPos[chrI];
	}

	// allocate pixbufs (we use dynamic allocation because otherwise we would need to
	// allocate several megabytes to handle all possible cases)
	for(i=0; i<c->vLumBufSize; i++)
		c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(8, 4000);
	for(i=0; i<c->vChrBufSize; i++)
		c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(8, 8000);

	//try to avoid drawing green stuff between the right end and the stride end
	for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
	for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);

	ASSERT(c->chrDstH <= dstH)
	ASSERT(c->vLumFilterSize*      dstH*4 <= SWS_MAX_SIZE*20)
	ASSERT(c->vChrFilterSize*c->chrDstH*4 <= SWS_MAX_SIZE*20)

	// pack filter data for mmx code
	if(cpuCaps.hasMMX)
	{
		for(i=0; i<c->vLumFilterSize*dstH; i++)
			c->lumMmxFilter[4*i]=c->lumMmxFilter[4*i+1]=c->lumMmxFilter[4*i+2]=c->lumMmxFilter[4*i+3]=
				c->vLumFilter[i];
		for(i=0; i<c->vChrFilterSize*c->chrDstH; i++)
			c->chrMmxFilter[4*i]=c->chrMmxFilter[4*i+1]=c->chrMmxFilter[4*i+2]=c->chrMmxFilter[4*i+3]=
				c->vChrFilter[i];
	}

	if(flags&SWS_PRINT_INFO)
	{
#ifdef DITHER1XBPP
		char *dither= cpuCaps.hasMMX ? " dithered" : "";
#endif
		if(flags&SWS_FAST_BILINEAR)
			fprintf(stderr, "\nSwScaler: FAST_BILINEAR scaler ");
		else if(flags&SWS_BILINEAR)
			fprintf(stderr, "\nSwScaler: BILINEAR scaler ");
		else if(flags&SWS_BICUBIC)
			fprintf(stderr, "\nSwScaler: BICUBIC scaler ");
		else
			fprintf(stderr, "\nSwScaler: ehh flags invalid?! ");

		if(dstFormat==IMGFMT_BGR15)
			fprintf(stderr, "with%s BGR15 output ", dither);
		else if(dstFormat==IMGFMT_BGR16)
			fprintf(stderr, "with%s BGR16 output ", dither);
		else if(dstFormat==IMGFMT_BGR24)
			fprintf(stderr, "with BGR24 output ");
		else if(dstFormat==IMGFMT_BGR32)
			fprintf(stderr, "with BGR32 output ");
		else if(dstFormat==IMGFMT_YV12)
			fprintf(stderr, "with YV12 output ");
		else
			fprintf(stderr, "without output ");

		if(cpuCaps.hasMMX2)
			fprintf(stderr, "using MMX2\n");
		else if(cpuCaps.has3DNow)
			fprintf(stderr, "using 3DNOW\n");
		else if(cpuCaps.hasMMX)
			fprintf(stderr, "using MMX\n");
		else
			fprintf(stderr, "using C\n");
	}

	if((flags & SWS_PRINT_INFO) && verbose)
	{
		if(cpuCaps.hasMMX)
		{
			if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
				printf("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
			else
			{
				if(c->hLumFilterSize==4)
					printf("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
				else if(c->hLumFilterSize==8)
					printf("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
				else
					printf("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");

				if(c->hChrFilterSize==4)
					printf("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
				else if(c->hChrFilterSize==8)
					printf("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
				else
					printf("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
			}
		}
		else
		{
#ifdef ARCH_X86
			printf("SwScaler: using X86-Asm scaler for horizontal scaling\n");
#else
			if(flags & SWS_FAST_BILINEAR)
				printf("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
			else
				printf("SwScaler: using C scaler for horizontal scaling\n");
#endif
		}
		if(dstFormat==IMGFMT_YV12)
		{
			if(c->vLumFilterSize==1)
				printf("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12)\n", cpuCaps.hasMMX ? "MMX" : "C");
			else
				printf("SwScaler: using n-tap %s scaler for vertical scaling (YV12)\n", cpuCaps.hasMMX ? "MMX" : "C");
		}
		else
		{
			if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
				printf("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
				       "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n",cpuCaps.hasMMX ? "MMX" : "C");
			else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
				printf("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C");
			else
				printf("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C");
		}

		if(dstFormat==IMGFMT_BGR24)
			printf("SwScaler: using %s YV12->BGR24 Converter\n",
				cpuCaps.hasMMX2 ? "MMX2" : (cpuCaps.hasMMX ? "MMX" : "C"));
		else
			printf("SwScaler: using %s YV12->BGR Converter\n", cpuCaps.hasMMX ? "MMX" : "C");//FIXME print format

		printf("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
	}

	return c;
}

/**
 * returns a normalized gaussian curve used to filter stuff
 * quality=3 is high quality, lowwer is lowwer quality
 */
double *getGaussian(double variance, double quality){
	const int length= (int)(variance*quality + 0.5) | 1;
	int i;
	double *coeff= memalign(sizeof(double), length*sizeof(double));
	double middle= (length-1)*0.5;

	for(i=0; i<length; i++)
	{
		double dist= i-middle;
		coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
	}

	normalize(coeff, length, 1.0);
	return coeff;
}

void normalize(double *coeff, int length, double height){
	int i;
	double sum=0;
	double inv;

	for(i=0; i<length; i++)
		sum+= coeff[i];

	inv= height/sum;

	for(i=0; i<length; i++)
		coeff[i]*= height;
}

double *conv(double *a, int aLength, double *b, int bLength){
	int length= aLength + bLength - 1;
	double *coeff= memalign(sizeof(double), length*sizeof(double));
	int i, j;

	for(i=0; i<length; i++) coeff[i]= 0.0;

	for(i=0; i<aLength; i++)
	{
		for(j=0; j<bLength; j++)
		{
			coeff[i+j]+= a[i]*b[j];
		}
	}

	return coeff;
}

/*
double *sum(double *a, int aLength, double *b, int bLength){
	int length= MAX(aLength, bLength);
	double *coeff= memalign(sizeof(double), length*sizeof(double));
	int i;

	for(i=0; i<length; i++) coeff[i]= 0.0;

	for(i=0; i<aLength; i++) coeff[i]+= a[i];
}
*/