aboutsummaryrefslogtreecommitdiffstats
path: root/libswresample/resample.c
blob: a657a0394ed973396357b77521aee4d0fc36e1b3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/*
 * audio resampling
 * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * audio resampling
 * @author Michael Niedermayer <michaelni@gmx.at>
 */

#include "libavutil/log.h"
#include "libavutil/avassert.h"
#include "swresample_internal.h"


typedef struct ResampleContext {
    const AVClass *av_class;
    uint8_t *filter_bank;
    int filter_length;
    int filter_alloc;
    int ideal_dst_incr;
    int dst_incr;
    int index;
    int frac;
    int src_incr;
    int compensation_distance;
    int phase_shift;
    int phase_mask;
    int linear;
    enum SwrFilterType filter_type;
    int kaiser_beta;
    double factor;
    enum AVSampleFormat format;
    int felem_size;
    int filter_shift;
} ResampleContext;

/**
 * 0th order modified bessel function of the first kind.
 */
static double bessel(double x){
    double v=1;
    double lastv=0;
    double t=1;
    int i;
    static const double inv[100]={
 1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10),
 1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20),
 1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30),
 1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40),
 1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50),
 1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60),
 1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70),
 1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80),
 1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90),
 1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000)
    };

    x= x*x/4;
    for(i=0; v != lastv; i++){
        lastv=v;
        t *= x*inv[i];
        v += t;
        av_assert2(i<99);
    }
    return v;
}

/**
 * builds a polyphase filterbank.
 * @param factor resampling factor
 * @param scale wanted sum of coefficients for each filter
 * @param filter_type  filter type
 * @param kaiser_beta  kaiser window beta
 * @return 0 on success, negative on error
 */
static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
                        int filter_type, int kaiser_beta){
    int ph, i;
    double x, y, w;
    double *tab = av_malloc_array(tap_count,  sizeof(*tab));
    const int center= (tap_count-1)/2;

    if (!tab)
        return AVERROR(ENOMEM);

    /* if upsampling, only need to interpolate, no filter */
    if (factor > 1.0)
        factor = 1.0;

    for(ph=0;ph<phase_count;ph++) {
        double norm = 0;
        for(i=0;i<tap_count;i++) {
            x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
            if (x == 0) y = 1.0;
            else        y = sin(x) / x;
            switch(filter_type){
            case SWR_FILTER_TYPE_CUBIC:{
                const float d= -0.5; //first order derivative = -0.5
                x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
                if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
                else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
                break;}
            case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
                w = 2.0*x / (factor*tap_count) + M_PI;
                y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
                break;
            case SWR_FILTER_TYPE_KAISER:
                w = 2.0*x / (factor*tap_count*M_PI);
                y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
                break;
            default:
                av_assert0(0);
            }

            tab[i] = y;
            norm += y;
        }

        /* normalize so that an uniform color remains the same */
        switch(c->format){
        case AV_SAMPLE_FMT_S16P:
            for(i=0;i<tap_count;i++)
                ((int16_t*)filter)[ph * alloc + i] = av_clip(lrintf(tab[i] * scale / norm), INT16_MIN, INT16_MAX);
            break;
        case AV_SAMPLE_FMT_S32P:
            for(i=0;i<tap_count;i++)
                ((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
            break;
        case AV_SAMPLE_FMT_FLTP:
            for(i=0;i<tap_count;i++)
                ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
            break;
        case AV_SAMPLE_FMT_DBLP:
            for(i=0;i<tap_count;i++)
                ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
            break;
        }
    }
#if 0
    {
#define LEN 1024
        int j,k;
        double sine[LEN + tap_count];
        double filtered[LEN];
        double maxff=-2, minff=2, maxsf=-2, minsf=2;
        for(i=0; i<LEN; i++){
            double ss=0, sf=0, ff=0;
            for(j=0; j<LEN+tap_count; j++)
                sine[j]= cos(i*j*M_PI/LEN);
            for(j=0; j<LEN; j++){
                double sum=0;
                ph=0;
                for(k=0; k<tap_count; k++)
                    sum += filter[ph * tap_count + k] * sine[k+j];
                filtered[j]= sum / (1<<FILTER_SHIFT);
                ss+= sine[j + center] * sine[j + center];
                ff+= filtered[j] * filtered[j];
                sf+= sine[j + center] * filtered[j];
            }
            ss= sqrt(2*ss/LEN);
            ff= sqrt(2*ff/LEN);
            sf= 2*sf/LEN;
            maxff= FFMAX(maxff, ff);
            minff= FFMIN(minff, ff);
            maxsf= FFMAX(maxsf, sf);
            minsf= FFMIN(minsf, sf);
            if(i%11==0){
                av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
                minff=minsf= 2;
                maxff=maxsf= -2;
            }
        }
    }
#endif

    av_free(tab);
    return 0;
}

static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
                                    double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, int kaiser_beta,
                                    double precision, int cheby){
    double cutoff = cutoff0? cutoff0 : 0.97;
    double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
    int phase_count= 1<<phase_shift;

    if (!c || c->phase_shift != phase_shift || c->linear!=linear || c->factor != factor
           || c->filter_length != FFMAX((int)ceil(filter_size/factor), 1) || c->format != format
           || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
        c = av_mallocz(sizeof(*c));
        if (!c)
            return NULL;

        c->format= format;

        c->felem_size= av_get_bytes_per_sample(c->format);

        switch(c->format){
        case AV_SAMPLE_FMT_S16P:
            c->filter_shift = 15;
            break;
        case AV_SAMPLE_FMT_S32P:
            c->filter_shift = 30;
            break;
        case AV_SAMPLE_FMT_FLTP:
        case AV_SAMPLE_FMT_DBLP:
            c->filter_shift = 0;
            break;
        default:
            av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
            av_assert0(0);
        }

        if (filter_size/factor > INT32_MAX/256) {
            av_log(NULL, AV_LOG_ERROR, "Filter length too large\n");
            goto error;
        }

        c->phase_shift   = phase_shift;
        c->phase_mask    = phase_count - 1;
        c->linear        = linear;
        c->factor        = factor;
        c->filter_length = FFMAX((int)ceil(filter_size/factor), 1);
        c->filter_alloc  = FFALIGN(c->filter_length, 8);
        c->filter_bank   = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
        c->filter_type   = filter_type;
        c->kaiser_beta   = kaiser_beta;
        if (!c->filter_bank)
            goto error;
        if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
            goto error;
        memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
        memcpy(c->filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
    }

    c->compensation_distance= 0;
    if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
        goto error;
    c->ideal_dst_incr= c->dst_incr;

    c->index= -phase_count*((c->filter_length-1)/2);
    c->frac= 0;

    return c;
error:
    av_freep(&c->filter_bank);
    av_free(c);
    return NULL;
}

static void resample_free(ResampleContext **c){
    if(!*c)
        return;
    av_freep(&(*c)->filter_bank);
    av_freep(c);
}

static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
    c->compensation_distance= compensation_distance;
    if (compensation_distance)
        c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
    else
        c->dst_incr = c->ideal_dst_incr;
    return 0;
}

#define TEMPLATE_RESAMPLE_S16
#include "resample_template.c"
#undef TEMPLATE_RESAMPLE_S16

#define TEMPLATE_RESAMPLE_S32
#include "resample_template.c"
#undef TEMPLATE_RESAMPLE_S32

#define TEMPLATE_RESAMPLE_FLT
#include "resample_template.c"
#undef TEMPLATE_RESAMPLE_FLT

#define TEMPLATE_RESAMPLE_DBL
#include "resample_template.c"
#undef TEMPLATE_RESAMPLE_DBL

// XXX FIXME the whole C loop should be written in asm so this x86 specific code here isnt needed
#if HAVE_MMXEXT_INLINE

#include "x86/resample_mmx.h"

#define TEMPLATE_RESAMPLE_S16_MMX2
#include "resample_template.c"
#undef TEMPLATE_RESAMPLE_S16_MMX2

#if HAVE_SSE_INLINE
#define TEMPLATE_RESAMPLE_FLT_SSE
#include "resample_template.c"
#undef TEMPLATE_RESAMPLE_FLT_SSE
#endif

#if HAVE_SSE2_INLINE
#define TEMPLATE_RESAMPLE_S16_SSE2
#include "resample_template.c"
#undef TEMPLATE_RESAMPLE_S16_SSE2

#define TEMPLATE_RESAMPLE_DBL_SSE2
#include "resample_template.c"
#undef TEMPLATE_RESAMPLE_DBL_SSE2
#endif

#if HAVE_AVX_INLINE
#define TEMPLATE_RESAMPLE_FLT_AVX
#include "resample_template.c"
#undef TEMPLATE_RESAMPLE_FLT_AVX
#endif

#endif // HAVE_MMXEXT_INLINE

static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
    int i, ret= -1;
    int av_unused mm_flags = av_get_cpu_flags();
    int need_emms= 0;

    if (c->compensation_distance)
        dst_size = FFMIN(dst_size, c->compensation_distance);

    for(i=0; i<dst->ch_count; i++){
#if HAVE_MMXEXT_INLINE
#if HAVE_SSE2_INLINE
             if(c->format == AV_SAMPLE_FMT_S16P && (mm_flags&AV_CPU_FLAG_SSE2)) ret= swri_resample_int16_sse2 (c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
        else
#endif
             if(c->format == AV_SAMPLE_FMT_S16P && (mm_flags&AV_CPU_FLAG_MMX2 )){
                 ret= swri_resample_int16_mmx2 (c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
                 need_emms= 1;
             } else
#endif
             if(c->format == AV_SAMPLE_FMT_S16P) ret= swri_resample_int16(c, (int16_t*)dst->ch[i], (const int16_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
        else if(c->format == AV_SAMPLE_FMT_S32P) ret= swri_resample_int32(c, (int32_t*)dst->ch[i], (const int32_t*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
#if HAVE_AVX_INLINE
        else if(c->format == AV_SAMPLE_FMT_FLTP && (mm_flags&AV_CPU_FLAG_AVX))
                                                 ret= swri_resample_float_avx (c, (float*)dst->ch[i], (const float*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
#endif
#if HAVE_SSE_INLINE
        else if(c->format == AV_SAMPLE_FMT_FLTP && (mm_flags&AV_CPU_FLAG_SSE))
                                                 ret= swri_resample_float_sse (c, (float*)dst->ch[i], (const float*)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
#endif
        else if(c->format == AV_SAMPLE_FMT_FLTP) ret= swri_resample_float(c, (float  *)dst->ch[i], (const float  *)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
#if HAVE_SSE2_INLINE
        else if(c->format == AV_SAMPLE_FMT_DBLP && (mm_flags&AV_CPU_FLAG_SSE2))
                                                 ret= swri_resample_double_sse2(c,(double *)dst->ch[i], (const double *)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
#endif
        else if(c->format == AV_SAMPLE_FMT_DBLP) ret= swri_resample_double(c,(double *)dst->ch[i], (const double *)src->ch[i], consumed, src_size, dst_size, i+1==dst->ch_count);
    }
    if(need_emms)
        emms_c();

    if (c->compensation_distance) {
        c->compensation_distance -= ret;
        if (!c->compensation_distance)
            c->dst_incr = c->ideal_dst_incr / c->src_incr;
    }

    return ret;
}

static int64_t get_delay(struct SwrContext *s, int64_t base){
    ResampleContext *c = s->resample;
    int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
    num <<= c->phase_shift;
    num -= c->index;
    num *= c->src_incr;
    num -= c->frac;
    return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr << c->phase_shift);
}

static int resample_flush(struct SwrContext *s) {
    AudioData *a= &s->in_buffer;
    int i, j, ret;
    if((ret = swri_realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
        return ret;
    av_assert0(a->planar);
    for(i=0; i<a->ch_count; i++){
        for(j=0; j<s->in_buffer_count; j++){
            memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j  )*a->bps,
                a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
        }
    }
    s->in_buffer_count += (s->in_buffer_count+1)/2;
    return 0;
}

struct Resampler const swri_resampler={
  resample_init,
  resample_free,
  multiple_resample,
  resample_flush,
  set_compensation,
  get_delay,
};