aboutsummaryrefslogtreecommitdiffstats
path: root/libavutil/tx.c
blob: c34d3d94fe1c7b54f2184abc32ce1822b4b365a6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
/*
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "cpu.h"
#include "qsort.h"
#include "bprint.h"

#include "tx_priv.h"

#define TYPE_IS(type, x)               \
    (((x) == AV_TX_FLOAT_ ## type)  || \
     ((x) == AV_TX_DOUBLE_ ## type) || \
     ((x) == AV_TX_INT32_ ## type))

/* Calculates the modular multiplicative inverse */
static av_always_inline int mulinv(int n, int m)
{
    n = n % m;
    for (int x = 1; x < m; x++)
        if (((n * x) % m) == 1)
            return x;
    av_assert0(0); /* Never reached */
    return 0;
}

/* Guaranteed to work for any n, m where gcd(n, m) == 1 */
int ff_tx_gen_compound_mapping(AVTXContext *s, int n, int m)
{
    int *in_map, *out_map;
    const int inv = s->inv;
    const int len = n*m;    /* Will not be equal to s->len for MDCTs */
    const int mdct = TYPE_IS(MDCT, s->type);
    int m_inv, n_inv;

    /* Make sure the numbers are coprime */
    if (av_gcd(n, m) != 1)
        return AVERROR(EINVAL);

    m_inv = mulinv(m, n);
    n_inv = mulinv(n, m);

    if (!(s->map = av_malloc(2*len*sizeof(*s->map))))
        return AVERROR(ENOMEM);

    in_map  = s->map;
    out_map = s->map + len;

    /* Ruritanian map for input, CRT map for output, can be swapped */
    for (int j = 0; j < m; j++) {
        for (int i = 0; i < n; i++) {
            /* Shifted by 1 to simplify MDCTs */
            in_map[j*n + i] = ((i*m + j*n) % len) << mdct;
            out_map[(i*m*m_inv + j*n*n_inv) % len] = i*m + j;
        }
    }

    /* Change transform direction by reversing all ACs */
    if (inv) {
        for (int i = 0; i < m; i++) {
            int *in = &in_map[i*n + 1]; /* Skip the DC */
            for (int j = 0; j < ((n - 1) >> 1); j++)
                FFSWAP(int, in[j], in[n - j - 2]);
        }
    }

    /* Our 15-point transform is also a compound one, so embed its input map */
    if (n == 15) {
        for (int k = 0; k < m; k++) {
            int tmp[15];
            memcpy(tmp, &in_map[k*15], 15*sizeof(*tmp));
            for (int i = 0; i < 5; i++) {
                for (int j = 0; j < 3; j++)
                    in_map[k*15 + i*3 + j] = tmp[(i*3 + j*5) % 15];
            }
        }
    }

    return 0;
}

static inline int split_radix_permutation(int i, int len, int inv)
{
    len >>= 1;
    if (len <= 1)
        return i & 1;
    if (!(i & len))
        return split_radix_permutation(i, len, inv) * 2;
    len >>= 1;
    return split_radix_permutation(i, len, inv) * 4 + 1 - 2*(!(i & len) ^ inv);
}

int ff_tx_gen_ptwo_revtab(AVTXContext *s, int invert_lookup)
{
    int len = s->len;

    if (!(s->map = av_malloc(len*sizeof(*s->map))))
        return AVERROR(ENOMEM);

    if (invert_lookup) {
        for (int i = 0; i < s->len; i++)
            s->map[i] = -split_radix_permutation(i, len, s->inv) & (len - 1);
    } else {
        for (int i = 0; i < s->len; i++)
            s->map[-split_radix_permutation(i, len, s->inv) & (len - 1)] = i;
    }

    return 0;
}

int ff_tx_gen_ptwo_inplace_revtab_idx(AVTXContext *s)
{
    int *src_map, out_map_idx = 0, len = s->len;

    if (!s->sub || !s->sub->map)
        return AVERROR(EINVAL);

    if (!(s->map = av_mallocz(len*sizeof(*s->map))))
        return AVERROR(ENOMEM);

    src_map = s->sub->map;

    /* The first coefficient is always already in-place */
    for (int src = 1; src < s->len; src++) {
        int dst = src_map[src];
        int found = 0;

        if (dst <= src)
            continue;

        /* This just checks if a closed loop has been encountered before,
         * and if so, skips it, since to fully permute a loop we must only
         * enter it once. */
        do {
            for (int j = 0; j < out_map_idx; j++) {
                if (dst == s->map[j]) {
                    found = 1;
                    break;
                }
            }
            dst = src_map[dst];
        } while (dst != src && !found);

        if (!found)
            s->map[out_map_idx++] = src;
    }

    s->map[out_map_idx++] = 0;

    return 0;
}

static void parity_revtab_generator(int *revtab, int n, int inv, int offset,
                                    int is_dual, int dual_high, int len,
                                    int basis, int dual_stride, int inv_lookup)
{
    len >>= 1;

    if (len <= basis) {
        int k1, k2, stride, even_idx, odd_idx;

        is_dual = is_dual && dual_stride;
        dual_high = is_dual & dual_high;
        stride = is_dual ? FFMIN(dual_stride, len) : 0;

        even_idx = offset + dual_high*(stride - 2*len);
        odd_idx  = even_idx + len + (is_dual && !dual_high)*len + dual_high*len;

        for (int i = 0; i < len; i++) {
            k1 = -split_radix_permutation(offset + i*2 + 0, n, inv) & (n - 1);
            k2 = -split_radix_permutation(offset + i*2 + 1, n, inv) & (n - 1);
            if (inv_lookup) {
                revtab[even_idx++] = k1;
                revtab[odd_idx++]  = k2;
            } else {
                revtab[k1] = even_idx++;
                revtab[k2] = odd_idx++;
            }
            if (stride && !((i + 1) % stride)) {
                even_idx += stride;
                odd_idx  += stride;
            }
        }

        return;
    }

    parity_revtab_generator(revtab, n, inv, offset,
                            0, 0, len >> 0, basis, dual_stride, inv_lookup);
    parity_revtab_generator(revtab, n, inv, offset + (len >> 0),
                            1, 0, len >> 1, basis, dual_stride, inv_lookup);
    parity_revtab_generator(revtab, n, inv, offset + (len >> 0) + (len >> 1),
                            1, 1, len >> 1, basis, dual_stride, inv_lookup);
}

int ff_tx_gen_split_radix_parity_revtab(AVTXContext *s, int invert_lookup,
                                        int basis, int dual_stride)
{
    int len = s->len;
    int inv = s->inv;

    if (!(s->map = av_mallocz(len*sizeof(*s->map))))
        return AVERROR(ENOMEM);

    basis >>= 1;
    if (len < basis)
        return AVERROR(EINVAL);

    av_assert0(!dual_stride || !(dual_stride & (dual_stride - 1)));
    av_assert0(dual_stride <= basis);
    parity_revtab_generator(s->map, len, inv, 0, 0, 0, len,
                            basis, dual_stride, invert_lookup);

    return 0;
}

static void reset_ctx(AVTXContext *s)
{
    if (!s)
        return;

    if (s->sub)
        for (int i = 0; i < s->nb_sub; i++)
            reset_ctx(&s->sub[i]);

    if (s->cd_self->uninit)
        s->cd_self->uninit(s);

    av_freep(&s->sub);
    av_freep(&s->map);
    av_freep(&s->exp);
    av_freep(&s->tmp);

    memset(s, 0, sizeof(*s));
}

av_cold void av_tx_uninit(AVTXContext **ctx)
{
    if (!(*ctx))
        return;

    reset_ctx(*ctx);
    av_freep(ctx);
}

static av_cold int ff_tx_null_init(AVTXContext *s, const FFTXCodelet *cd,
                                   uint64_t flags, FFTXCodeletOptions *opts,
                                   int len, int inv, const void *scale)
{
    /* Can only handle one sample+type to one sample+type transforms */
    if (TYPE_IS(MDCT, s->type))
        return AVERROR(EINVAL);
    return 0;
}

/* Null transform when the length is 1 */
static void ff_tx_null(AVTXContext *s, void *_out, void *_in, ptrdiff_t stride)
{
    memcpy(_out, _in, stride);
}

static const FFTXCodelet ff_tx_null_def = {
    .name       = "null",
    .function   = ff_tx_null,
    .type       = TX_TYPE_ANY,
    .flags      = AV_TX_UNALIGNED | FF_TX_ALIGNED |
                  FF_TX_OUT_OF_PLACE | AV_TX_INPLACE,
    .factors[0] = TX_FACTOR_ANY,
    .min_len    = 1,
    .max_len    = 1,
    .init       = ff_tx_null_init,
    .cpu_flags  = FF_TX_CPU_FLAGS_ALL,
    .prio       = FF_TX_PRIO_MAX,
};

static const FFTXCodelet * const ff_tx_null_list[] = {
    &ff_tx_null_def,
    NULL,
};

static void print_flags(AVBPrint *bp, uint64_t f)
{
    int prev = 0;
    const char *sep = ", ";
    av_bprintf(bp, "flags: [");
    if ((f & FF_TX_ALIGNED) && ++prev)
        av_bprintf(bp, "aligned");
    if ((f & AV_TX_UNALIGNED) && ++prev)
        av_bprintf(bp, "%sunaligned", prev > 1 ? sep : "");
    if ((f & AV_TX_INPLACE) && ++prev)
        av_bprintf(bp, "%sinplace", prev > 1 ? sep : "");
    if ((f & FF_TX_OUT_OF_PLACE) && ++prev)
        av_bprintf(bp, "%sout_of_place", prev > 1 ? sep : "");
    if ((f & FF_TX_FORWARD_ONLY) && ++prev)
        av_bprintf(bp, "%sfwd_only", prev > 1 ? sep : "");
    if ((f & FF_TX_INVERSE_ONLY) && ++prev)
        av_bprintf(bp, "%sinv_only", prev > 1 ? sep : "");
    if ((f & FF_TX_PRESHUFFLE) && ++prev)
        av_bprintf(bp, "%spreshuf", prev > 1 ? sep : "");
    if ((f & AV_TX_FULL_IMDCT) && ++prev)
        av_bprintf(bp, "%simdct_full", prev > 1 ? sep : "");
    av_bprintf(bp, "]");
}

static void print_type(AVBPrint *bp, enum AVTXType type)
{
    av_bprintf(bp, "%s",
               type == TX_TYPE_ANY       ? "any"         :
               type == AV_TX_FLOAT_FFT   ? "fft_float"   :
               type == AV_TX_FLOAT_MDCT  ? "mdct_float"  :
               type == AV_TX_DOUBLE_FFT  ? "fft_double"  :
               type == AV_TX_DOUBLE_MDCT ? "mdct_double" :
               type == AV_TX_INT32_FFT   ? "fft_int32"   :
               type == AV_TX_INT32_MDCT  ? "mdct_int32"  :
               "unknown");
}

static void print_cd_info(const FFTXCodelet *cd, int prio, int print_prio)
{
    AVBPrint bp = { 0 };
    av_bprint_init(&bp, 0, AV_BPRINT_SIZE_AUTOMATIC);

    av_bprintf(&bp, "%s - type: ", cd->name);

    print_type(&bp, cd->type);

    av_bprintf(&bp, ", len: ");
    if (cd->min_len != cd->max_len)
        av_bprintf(&bp, "[%i, ", cd->min_len);

    if (cd->max_len == TX_LEN_UNLIMITED)
        av_bprintf(&bp, "∞");
    else
        av_bprintf(&bp, "%i", cd->max_len);

    av_bprintf(&bp, "%s, factors: [", cd->min_len != cd->max_len ? "]" : "");
    for (int i = 0; i < TX_MAX_SUB; i++) {
        if (i && cd->factors[i])
            av_bprintf(&bp, ", ");
        if (cd->factors[i] == TX_FACTOR_ANY)
            av_bprintf(&bp, "any");
        else if (cd->factors[i])
            av_bprintf(&bp, "%i", cd->factors[i]);
        else
            break;
    }

    av_bprintf(&bp, "], ");
    print_flags(&bp, cd->flags);

    if (print_prio)
        av_bprintf(&bp, ", prio: %i", prio);

    av_log(NULL, AV_LOG_VERBOSE, "%s\n", bp.str);
}

typedef struct TXCodeletMatch {
    const FFTXCodelet *cd;
    int prio;
} TXCodeletMatch;

static int cmp_matches(TXCodeletMatch *a, TXCodeletMatch *b)
{
    return FFDIFFSIGN(b->prio, a->prio);
}

/* We want all factors to completely cover the length */
static inline int check_cd_factors(const FFTXCodelet *cd, int len)
{
    int all_flag = 0;

    for (int i = 0; i < TX_MAX_SUB; i++) {
        int factor = cd->factors[i];

        /* Conditions satisfied */
        if (len == 1)
            return 1;

        /* No more factors */
        if (!factor) {
            break;
        } else if (factor == TX_FACTOR_ANY) {
            all_flag = 1;
            continue;
        }

        if (factor == 2) { /* Fast path */
            int bits_2 = ff_ctz(len);
            if (!bits_2)
                return 0; /* Factor not supported */

            len >>= bits_2;
        } else {
            int res = len % factor;
            if (res)
                return 0; /* Factor not supported */

            while (!res) {
                len /= factor;
                res = len % factor;
            }
        }
    }

    return all_flag || (len == 1);
}

av_cold int ff_tx_init_subtx(AVTXContext *s, enum AVTXType type,
                             uint64_t flags, FFTXCodeletOptions *opts,
                             int len, int inv, const void *scale)
{
    int ret = 0;
    AVTXContext *sub = NULL;
    TXCodeletMatch *cd_tmp, *cd_matches = NULL;
    unsigned int cd_matches_size = 0;
    int nb_cd_matches = 0;
    AVBPrint bp = { 0 };

    /* Array of all compiled codelet lists. Order is irrelevant. */
    const FFTXCodelet * const * const codelet_list[] = {
        ff_tx_codelet_list_float_c,
        ff_tx_codelet_list_double_c,
        ff_tx_codelet_list_int32_c,
        ff_tx_null_list,
#if ARCH_X86
        ff_tx_codelet_list_float_x86,
#endif
    };
    int codelet_list_num = FF_ARRAY_ELEMS(codelet_list);

    /* We still accept functions marked with SLOW, even if the CPU is
     * marked with the same flag, but we give them lower priority. */
    const int cpu_flags = av_get_cpu_flags();
    const int slow_mask = AV_CPU_FLAG_SSE2SLOW | AV_CPU_FLAG_SSE3SLOW  |
                          AV_CPU_FLAG_ATOM     | AV_CPU_FLAG_SSSE3SLOW |
                          AV_CPU_FLAG_AVXSLOW  | AV_CPU_FLAG_SLOW_GATHER;

    /* Flags the transform wants */
    uint64_t req_flags = flags;

    /* Unaligned codelets are compatible with the aligned flag */
    if (req_flags & FF_TX_ALIGNED)
        req_flags |= AV_TX_UNALIGNED;

    /* If either flag is set, both are okay, so don't check for an exact match */
    if ((req_flags & AV_TX_INPLACE) && (req_flags & FF_TX_OUT_OF_PLACE))
        req_flags &= ~(AV_TX_INPLACE | FF_TX_OUT_OF_PLACE);
    if ((req_flags & FF_TX_ALIGNED) && (req_flags & AV_TX_UNALIGNED))
        req_flags &= ~(FF_TX_ALIGNED | AV_TX_UNALIGNED);

    /* Flags the codelet may require to be present */
    uint64_t inv_req_mask = AV_TX_FULL_IMDCT | FF_TX_PRESHUFFLE;

    /* Loop through all codelets in all codelet lists to find matches
     * to the requirements */
    while (codelet_list_num--) {
        const FFTXCodelet * const * list = codelet_list[codelet_list_num];
        const FFTXCodelet *cd = NULL;

        while ((cd = *list++)) {
            int max_factor = 0;

            /* Check if the type matches */
            if (cd->type != TX_TYPE_ANY && type != cd->type)
                continue;

            /* Check direction for non-orthogonal codelets */
            if (((cd->flags & FF_TX_FORWARD_ONLY) && inv) ||
                ((cd->flags & (FF_TX_INVERSE_ONLY | AV_TX_FULL_IMDCT)) && !inv))
                continue;

            /* Check if the requested flags match from both sides */
            if (((req_flags    & cd->flags) != (req_flags)) ||
                ((inv_req_mask & cd->flags) != (req_flags & inv_req_mask)))
                continue;

            /* Check if length is supported */
            if ((len < cd->min_len) || (cd->max_len != -1 && (len > cd->max_len)))
                continue;

            /* Check if the CPU supports the required ISA */
            if (!(!cd->cpu_flags || (cpu_flags & (cd->cpu_flags & ~slow_mask))))
                continue;

            /* Check for factors */
            if (!check_cd_factors(cd, len))
                continue;

            /* Realloc array and append */
            cd_tmp = av_fast_realloc(cd_matches, &cd_matches_size,
                                     sizeof(*cd_tmp) * (nb_cd_matches + 1));
            if (!cd_tmp) {
                av_free(cd_matches);
                return AVERROR(ENOMEM);
            }

            cd_matches                     = cd_tmp;
            cd_matches[nb_cd_matches].cd   = cd;
            cd_matches[nb_cd_matches].prio = cd->prio;

            /* If the CPU has a SLOW flag, and the instruction is also flagged
             * as being slow for such, reduce its priority */
            if ((cpu_flags & cd->cpu_flags) & slow_mask)
                cd_matches[nb_cd_matches].prio -= 64;

            /* Prioritize aligned-only codelets */
            if ((cd->flags & FF_TX_ALIGNED) && !(cd->flags & AV_TX_UNALIGNED))
                cd_matches[nb_cd_matches].prio += 64;

            /* Codelets for specific lengths are generally faster */
            if ((len == cd->min_len) && (len == cd->max_len))
                cd_matches[nb_cd_matches].prio += 64;

            /* Forward-only or inverse-only transforms are generally better */
            if ((cd->flags & (FF_TX_FORWARD_ONLY | FF_TX_INVERSE_ONLY)))
                cd_matches[nb_cd_matches].prio += 64;

            /* Larger factors are generally better */
            for (int i = 0; i < TX_MAX_SUB; i++)
                max_factor = FFMAX(cd->factors[i], max_factor);
            if (max_factor)
                cd_matches[nb_cd_matches].prio += 16*max_factor;

            nb_cd_matches++;
        }
    }

    /* No matches found */
    if (!nb_cd_matches)
        return AVERROR(ENOSYS);

    /* Sort the list */
    AV_QSORT(cd_matches, nb_cd_matches, TXCodeletMatch, cmp_matches);

    /* Print debugging info */
    av_bprint_init(&bp, 0, AV_BPRINT_SIZE_AUTOMATIC);
    av_bprintf(&bp, "For transform of length %i, %s, ", len,
               inv ? "inverse" : "forward");
    print_type(&bp, type);
    av_bprintf(&bp, ", ");
    print_flags(&bp, flags);
    av_bprintf(&bp, ", found %i matches:", nb_cd_matches);
    av_log(NULL, AV_LOG_VERBOSE, "%s\n", bp.str);

    for (int i = 0; i < nb_cd_matches; i++) {
        av_log(NULL, AV_LOG_VERBOSE, "    %i: ", i + 1);
        print_cd_info(cd_matches[i].cd, cd_matches[i].prio, 1);
    }

    if (!s->sub)
        s->sub = sub = av_mallocz(TX_MAX_SUB*sizeof(*sub));

    /* Attempt to initialize each */
    for (int i = 0; i < nb_cd_matches; i++) {
        const FFTXCodelet *cd = cd_matches[i].cd;
        AVTXContext *sctx = &s->sub[s->nb_sub];

        sctx->len        = len;
        sctx->inv        = inv;
        sctx->type       = type;
        sctx->flags      = flags;
        sctx->cd_self    = cd;

        s->fn[s->nb_sub] = cd->function;
        s->cd[s->nb_sub] = cd;

        ret = 0;
        if (cd->init)
            ret = cd->init(sctx, cd, flags, opts, len, inv, scale);

        if (ret >= 0) {
            s->nb_sub++;
            goto end;
        }

        s->fn[s->nb_sub] = NULL;
        s->cd[s->nb_sub] = NULL;

        reset_ctx(sctx);
        if (ret == AVERROR(ENOMEM))
            break;
    }

    av_free(sub);

    if (ret >= 0)
        ret = AVERROR(ENOSYS);

end:
    av_free(cd_matches);
    return ret;
}

static void print_tx_structure(AVTXContext *s, int depth)
{
    const FFTXCodelet *cd = s->cd_self;

    for (int i = 0; i <= depth; i++)
        av_log(NULL, AV_LOG_VERBOSE, "    ");

    print_cd_info(cd, cd->prio, 0);

    for (int i = 0; i < s->nb_sub; i++)
        print_tx_structure(&s->sub[i], depth + 1);
}

av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type,
                       int inv, int len, const void *scale, uint64_t flags)
{
    int ret;
    AVTXContext tmp = { 0 };
    const double default_scale_d = 1.0;
    const float  default_scale_f = 1.0f;

    if (!len || type >= AV_TX_NB || !ctx || !tx)
        return AVERROR(EINVAL);

    if (!(flags & AV_TX_UNALIGNED))
        flags |= FF_TX_ALIGNED;
    if (!(flags & AV_TX_INPLACE))
        flags |= FF_TX_OUT_OF_PLACE;

    if (!scale && ((type == AV_TX_FLOAT_MDCT) || (type == AV_TX_INT32_MDCT)))
        scale = &default_scale_f;
    else if (!scale && (type == AV_TX_DOUBLE_MDCT))
        scale = &default_scale_d;

    ret = ff_tx_init_subtx(&tmp, type, flags, NULL, len, inv, scale);
    if (ret < 0)
        return ret;

    *ctx = &tmp.sub[0];
    *tx  = tmp.fn[0];

    av_log(NULL, AV_LOG_VERBOSE, "Transform tree:\n");
    print_tx_structure(*ctx, 0);

    return ret;
}