aboutsummaryrefslogtreecommitdiffstats
path: root/libavfilter/dnn_interface.h
blob: 37e89d97895dab8e4ae5486be44b1dc8d32fa9e3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/*
 * Copyright (c) 2018 Sergey Lavrushkin
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * DNN inference engine interface.
 */

#ifndef AVFILTER_DNN_INTERFACE_H
#define AVFILTER_DNN_INTERFACE_H

#include <stdint.h>
#include "libavutil/frame.h"
#include "avfilter.h"

typedef enum {DNN_SUCCESS, DNN_ERROR} DNNReturnType;

typedef enum {DNN_NATIVE, DNN_TF, DNN_OV} DNNBackendType;

typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType;

typedef enum {
    DCO_NONE,
    DCO_BGR,
    DCO_RGB,
} DNNColorOrder;

typedef enum {
    DAST_FAIL,              // something wrong
    DAST_EMPTY_QUEUE,       // no more inference result to get
    DAST_NOT_READY,         // all queued inferences are not finished
    DAST_SUCCESS            // got a result frame successfully
} DNNAsyncStatusType;

typedef enum {
    DFT_NONE,
    DFT_PROCESS_FRAME,      // process the whole frame
    DFT_ANALYTICS_DETECT,   // detect from the whole frame
    DFT_ANALYTICS_CLASSIFY, // classify for each bounding box
}DNNFunctionType;

typedef struct DNNData{
    void *data;
    int width, height, channels;
    // dt and order together decide the color format
    DNNDataType dt;
    DNNColorOrder order;
} DNNData;

typedef struct DNNExecBaseParams {
    const char *input_name;
    const char **output_names;
    uint32_t nb_output;
    AVFrame *in_frame;
    AVFrame *out_frame;
} DNNExecBaseParams;

typedef struct DNNExecClassificationParams {
    DNNExecBaseParams base;
    const char *target;
} DNNExecClassificationParams;

typedef int (*FramePrePostProc)(AVFrame *frame, DNNData *model, AVFilterContext *filter_ctx);
typedef int (*DetectPostProc)(AVFrame *frame, DNNData *output, uint32_t nb, AVFilterContext *filter_ctx);
typedef int (*ClassifyPostProc)(AVFrame *frame, DNNData *output, uint32_t bbox_index, AVFilterContext *filter_ctx);

typedef struct DNNModel{
    // Stores model that can be different for different backends.
    void *model;
    // Stores options when the model is executed by the backend
    const char *options;
    // Stores FilterContext used for the interaction between AVFrame and DNNData
    AVFilterContext *filter_ctx;
    // Stores function type of the model
    DNNFunctionType func_type;
    // Gets model input information
    // Just reuse struct DNNData here, actually the DNNData.data field is not needed.
    DNNReturnType (*get_input)(void *model, DNNData *input, const char *input_name);
    // Gets model output width/height with given input w/h
    DNNReturnType (*get_output)(void *model, const char *input_name, int input_width, int input_height,
                                const char *output_name, int *output_width, int *output_height);
    // set the pre process to transfer data from AVFrame to DNNData
    // the default implementation within DNN is used if it is not provided by the filter
    FramePrePostProc frame_pre_proc;
    // set the post process to transfer data from DNNData to AVFrame
    // the default implementation within DNN is used if it is not provided by the filter
    FramePrePostProc frame_post_proc;
    // set the post process to interpret detect result from DNNData
    DetectPostProc detect_post_proc;
    // set the post process to interpret classify result from DNNData
    ClassifyPostProc classify_post_proc;
} DNNModel;

// Stores pointers to functions for loading, executing, freeing DNN models for one of the backends.
typedef struct DNNModule{
    // Loads model and parameters from given file. Returns NULL if it is not possible.
    DNNModel *(*load_model)(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx);
    // Executes model with specified input and output. Returns DNN_ERROR otherwise.
    DNNReturnType (*execute_model)(const DNNModel *model, DNNExecBaseParams *exec_params);
    // Retrieve inference result.
    DNNAsyncStatusType (*get_result)(const DNNModel *model, AVFrame **in, AVFrame **out);
    // Flush all the pending tasks.
    DNNReturnType (*flush)(const DNNModel *model);
    // Frees memory allocated for model.
    void (*free_model)(DNNModel **model);
} DNNModule;

// Initializes DNNModule depending on chosen backend.
DNNModule *ff_get_dnn_module(DNNBackendType backend_type);

#endif