1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
|
/*
* Copyright (c) 2020 Paul B Mahol
*
* Speech Normalizer
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Speech Normalizer
*/
#include <float.h>
#include "libavutil/avassert.h"
#include "libavutil/channel_layout.h"
#include "libavutil/opt.h"
#define FF_BUFQUEUE_SIZE (1024)
#include "bufferqueue.h"
#include "audio.h"
#include "avfilter.h"
#include "filters.h"
#include "internal.h"
#define MAX_ITEMS 882000
#define MIN_PEAK (1. / 32768.)
typedef struct PeriodItem {
int size;
int type;
double max_peak;
} PeriodItem;
typedef struct ChannelContext {
int state;
int bypass;
PeriodItem pi[MAX_ITEMS];
double gain_state;
double pi_max_peak;
int pi_start;
int pi_end;
int pi_size;
} ChannelContext;
typedef struct SpeechNormalizerContext {
const AVClass *class;
double peak_value;
double max_expansion;
double max_compression;
double threshold_value;
double raise_amount;
double fall_amount;
char *ch_layout_str;
AVChannelLayout ch_layout;
int invert;
int link;
ChannelContext *cc;
double prev_gain;
int max_period;
int eof;
int64_t pts;
struct FFBufQueue queue;
void (*analyze_channel)(AVFilterContext *ctx, ChannelContext *cc,
const uint8_t *srcp, int nb_samples);
void (*filter_channels[2])(AVFilterContext *ctx,
AVFrame *in, AVFrame *out, int nb_samples);
} SpeechNormalizerContext;
#define OFFSET(x) offsetof(SpeechNormalizerContext, x)
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption speechnorm_options[] = {
{ "peak", "set the peak value", OFFSET(peak_value), AV_OPT_TYPE_DOUBLE, {.dbl=0.95}, 0.0, 1.0, FLAGS },
{ "p", "set the peak value", OFFSET(peak_value), AV_OPT_TYPE_DOUBLE, {.dbl=0.95}, 0.0, 1.0, FLAGS },
{ "expansion", "set the max expansion factor", OFFSET(max_expansion), AV_OPT_TYPE_DOUBLE, {.dbl=2.0}, 1.0, 50.0, FLAGS },
{ "e", "set the max expansion factor", OFFSET(max_expansion), AV_OPT_TYPE_DOUBLE, {.dbl=2.0}, 1.0, 50.0, FLAGS },
{ "compression", "set the max compression factor", OFFSET(max_compression), AV_OPT_TYPE_DOUBLE, {.dbl=2.0}, 1.0, 50.0, FLAGS },
{ "c", "set the max compression factor", OFFSET(max_compression), AV_OPT_TYPE_DOUBLE, {.dbl=2.0}, 1.0, 50.0, FLAGS },
{ "threshold", "set the threshold value", OFFSET(threshold_value), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0.0, 1.0, FLAGS },
{ "t", "set the threshold value", OFFSET(threshold_value), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0.0, 1.0, FLAGS },
{ "raise", "set the expansion raising amount", OFFSET(raise_amount), AV_OPT_TYPE_DOUBLE, {.dbl=0.001}, 0.0, 1.0, FLAGS },
{ "r", "set the expansion raising amount", OFFSET(raise_amount), AV_OPT_TYPE_DOUBLE, {.dbl=0.001}, 0.0, 1.0, FLAGS },
{ "fall", "set the compression raising amount", OFFSET(fall_amount), AV_OPT_TYPE_DOUBLE, {.dbl=0.001}, 0.0, 1.0, FLAGS },
{ "f", "set the compression raising amount", OFFSET(fall_amount), AV_OPT_TYPE_DOUBLE, {.dbl=0.001}, 0.0, 1.0, FLAGS },
{ "channels", "set channels to filter", OFFSET(ch_layout_str), AV_OPT_TYPE_STRING, {.str="all"}, 0, 0, FLAGS },
{ "h", "set channels to filter", OFFSET(ch_layout_str), AV_OPT_TYPE_STRING, {.str="all"}, 0, 0, FLAGS },
{ "invert", "set inverted filtering", OFFSET(invert), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ "i", "set inverted filtering", OFFSET(invert), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ "link", "set linked channels filtering", OFFSET(link), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ "l", "set linked channels filtering", OFFSET(link), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
{ NULL }
};
AVFILTER_DEFINE_CLASS(speechnorm);
static int get_pi_samples(PeriodItem *pi, int start, int end, int remain)
{
int sum;
if (pi[start].type == 0)
return remain;
sum = remain;
while (start != end) {
start++;
if (start >= MAX_ITEMS)
start = 0;
if (pi[start].type == 0)
break;
av_assert1(pi[start].size > 0);
sum += pi[start].size;
}
return sum;
}
static int available_samples(AVFilterContext *ctx)
{
SpeechNormalizerContext *s = ctx->priv;
AVFilterLink *inlink = ctx->inputs[0];
int min_pi_nb_samples;
min_pi_nb_samples = get_pi_samples(s->cc[0].pi, s->cc[0].pi_start, s->cc[0].pi_end, s->cc[0].pi_size);
for (int ch = 1; ch < inlink->ch_layout.nb_channels && min_pi_nb_samples > 0; ch++) {
ChannelContext *cc = &s->cc[ch];
min_pi_nb_samples = FFMIN(min_pi_nb_samples, get_pi_samples(cc->pi, cc->pi_start, cc->pi_end, cc->pi_size));
}
return min_pi_nb_samples;
}
static void consume_pi(ChannelContext *cc, int nb_samples)
{
if (cc->pi_size >= nb_samples) {
cc->pi_size -= nb_samples;
} else {
av_assert1(0);
}
}
static double next_gain(AVFilterContext *ctx, double pi_max_peak, int bypass, double state)
{
SpeechNormalizerContext *s = ctx->priv;
const double expansion = FFMIN(s->max_expansion, s->peak_value / pi_max_peak);
const double compression = 1. / s->max_compression;
const int type = s->invert ? pi_max_peak <= s->threshold_value : pi_max_peak >= s->threshold_value;
if (bypass) {
return 1.;
} else if (type) {
return FFMIN(expansion, state + s->raise_amount);
} else {
return FFMIN(expansion, FFMAX(compression, state - s->fall_amount));
}
}
static void next_pi(AVFilterContext *ctx, ChannelContext *cc, int bypass)
{
av_assert1(cc->pi_size >= 0);
if (cc->pi_size == 0) {
SpeechNormalizerContext *s = ctx->priv;
int start = cc->pi_start;
av_assert1(cc->pi[start].size > 0);
av_assert0(cc->pi[start].type > 0 || s->eof);
cc->pi_size = cc->pi[start].size;
cc->pi_max_peak = cc->pi[start].max_peak;
av_assert1(cc->pi_start != cc->pi_end || s->eof);
start++;
if (start >= MAX_ITEMS)
start = 0;
cc->pi_start = start;
cc->gain_state = next_gain(ctx, cc->pi_max_peak, bypass, cc->gain_state);
}
}
static double min_gain(AVFilterContext *ctx, ChannelContext *cc, int max_size)
{
SpeechNormalizerContext *s = ctx->priv;
double min_gain = s->max_expansion;
double gain_state = cc->gain_state;
int size = cc->pi_size;
int idx = cc->pi_start;
min_gain = FFMIN(min_gain, gain_state);
while (size <= max_size) {
if (idx == cc->pi_end)
break;
gain_state = next_gain(ctx, cc->pi[idx].max_peak, 0, gain_state);
min_gain = FFMIN(min_gain, gain_state);
size += cc->pi[idx].size;
idx++;
if (idx >= MAX_ITEMS)
idx = 0;
}
return min_gain;
}
#define ANALYZE_CHANNEL(name, ptype, zero, min_peak) \
static void analyze_channel_## name (AVFilterContext *ctx, ChannelContext *cc, \
const uint8_t *srcp, int nb_samples) \
{ \
SpeechNormalizerContext *s = ctx->priv; \
const ptype *src = (const ptype *)srcp; \
const int max_period = s->max_period; \
PeriodItem *pi = (PeriodItem *)&cc->pi; \
int pi_end = cc->pi_end; \
int n = 0; \
\
if (cc->state < 0) \
cc->state = src[0] >= zero; \
\
while (n < nb_samples) { \
ptype new_max_peak; \
int new_size; \
\
if ((cc->state != (src[n] >= zero)) || \
(pi[pi_end].size > max_period)) { \
ptype max_peak = pi[pi_end].max_peak; \
int state = cc->state; \
\
cc->state = src[n] >= zero; \
av_assert1(pi[pi_end].size > 0); \
if (max_peak >= min_peak || \
pi[pi_end].size > max_period) { \
pi[pi_end].type = 1; \
pi_end++; \
if (pi_end >= MAX_ITEMS) \
pi_end = 0; \
if (cc->state != state) \
pi[pi_end].max_peak = DBL_MIN; \
else \
pi[pi_end].max_peak = max_peak; \
pi[pi_end].type = 0; \
pi[pi_end].size = 0; \
av_assert1(pi_end != cc->pi_start); \
} \
} \
\
new_max_peak = pi[pi_end].max_peak; \
new_size = pi[pi_end].size; \
if (cc->state) { \
while (src[n] >= zero) { \
new_max_peak = FFMAX(new_max_peak, src[n]); \
new_size++; \
n++; \
if (n >= nb_samples) \
break; \
} \
} else { \
while (src[n] < zero) { \
new_max_peak = FFMAX(new_max_peak, -src[n]); \
new_size++; \
n++; \
if (n >= nb_samples) \
break; \
} \
} \
\
pi[pi_end].max_peak = new_max_peak; \
pi[pi_end].size = new_size; \
} \
cc->pi_end = pi_end; \
}
ANALYZE_CHANNEL(dbl, double, 0.0, MIN_PEAK)
ANALYZE_CHANNEL(flt, float, 0.f, (float)MIN_PEAK)
#define FILTER_CHANNELS(name, ptype) \
static void filter_channels_## name (AVFilterContext *ctx, \
AVFrame *in, AVFrame *out, int nb_samples) \
{ \
SpeechNormalizerContext *s = ctx->priv; \
AVFilterLink *inlink = ctx->inputs[0]; \
\
for (int ch = 0; ch < inlink->ch_layout.nb_channels; ch++) { \
ChannelContext *cc = &s->cc[ch]; \
const ptype *src = (const ptype *)in->extended_data[ch]; \
ptype *dst = (ptype *)out->extended_data[ch]; \
enum AVChannel channel = av_channel_layout_channel_from_index(&inlink->ch_layout, ch); \
const int bypass = av_channel_layout_index_from_channel(&s->ch_layout, channel) < 0; \
int n = 0; \
\
while (n < nb_samples) { \
ptype gain; \
int size; \
\
next_pi(ctx, cc, bypass); \
size = FFMIN(nb_samples - n, cc->pi_size); \
av_assert1(size > 0); \
gain = cc->gain_state; \
consume_pi(cc, size); \
for (int i = n; !ctx->is_disabled && i < n + size; i++) \
dst[i] = src[i] * gain; \
n += size; \
} \
} \
}
FILTER_CHANNELS(dbl, double)
FILTER_CHANNELS(flt, float)
static double dlerp(double min, double max, double mix)
{
return min + (max - min) * mix;
}
static float flerp(float min, float max, float mix)
{
return min + (max - min) * mix;
}
#define FILTER_LINK_CHANNELS(name, ptype, tlerp) \
static void filter_link_channels_## name (AVFilterContext *ctx, \
AVFrame *in, AVFrame *out, \
int nb_samples) \
{ \
SpeechNormalizerContext *s = ctx->priv; \
AVFilterLink *inlink = ctx->inputs[0]; \
int n = 0; \
\
while (n < nb_samples) { \
int min_size = nb_samples - n; \
int max_size = 1; \
ptype gain = s->max_expansion; \
\
for (int ch = 0; ch < inlink->ch_layout.nb_channels; ch++) { \
ChannelContext *cc = &s->cc[ch]; \
\
enum AVChannel channel = av_channel_layout_channel_from_index(&inlink->ch_layout, ch); \
cc->bypass = av_channel_layout_index_from_channel(&s->ch_layout, channel) < 0; \
\
next_pi(ctx, cc, cc->bypass); \
min_size = FFMIN(min_size, cc->pi_size); \
max_size = FFMAX(max_size, cc->pi_size); \
} \
\
av_assert1(min_size > 0); \
for (int ch = 0; ch < inlink->ch_layout.nb_channels; ch++) { \
ChannelContext *cc = &s->cc[ch]; \
\
if (cc->bypass) \
continue; \
gain = FFMIN(gain, min_gain(ctx, cc, max_size)); \
} \
\
for (int ch = 0; ch < inlink->ch_layout.nb_channels; ch++) { \
ChannelContext *cc = &s->cc[ch]; \
const ptype *src = (const ptype *)in->extended_data[ch]; \
ptype *dst = (ptype *)out->extended_data[ch]; \
\
consume_pi(cc, min_size); \
if (cc->bypass) \
continue; \
\
for (int i = n; !ctx->is_disabled && i < n + min_size; i++) { \
ptype g = tlerp(s->prev_gain, gain, (i - n) / (ptype)min_size); \
dst[i] = src[i] * g; \
} \
} \
\
s->prev_gain = gain; \
n += min_size; \
} \
}
FILTER_LINK_CHANNELS(dbl, double, dlerp)
FILTER_LINK_CHANNELS(flt, float, flerp)
static int filter_frame(AVFilterContext *ctx)
{
SpeechNormalizerContext *s = ctx->priv;
AVFilterLink *outlink = ctx->outputs[0];
AVFilterLink *inlink = ctx->inputs[0];
int ret;
while (s->queue.available > 0) {
int min_pi_nb_samples;
AVFrame *in, *out;
in = ff_bufqueue_peek(&s->queue, 0);
if (!in)
break;
min_pi_nb_samples = available_samples(ctx);
if (min_pi_nb_samples < in->nb_samples && !s->eof)
break;
in = ff_bufqueue_get(&s->queue);
if (av_frame_is_writable(in)) {
out = in;
} else {
out = ff_get_audio_buffer(outlink, in->nb_samples);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
}
s->filter_channels[s->link](ctx, in, out, in->nb_samples);
s->pts = in->pts + av_rescale_q(in->nb_samples, av_make_q(1, outlink->sample_rate),
outlink->time_base);
if (out != in)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
for (int f = 0; f < ff_inlink_queued_frames(inlink); f++) {
AVFrame *in;
ret = ff_inlink_consume_frame(inlink, &in);
if (ret < 0)
return ret;
if (ret == 0)
break;
ff_bufqueue_add(ctx, &s->queue, in);
for (int ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
ChannelContext *cc = &s->cc[ch];
s->analyze_channel(ctx, cc, in->extended_data[ch], in->nb_samples);
}
}
return 1;
}
static int activate(AVFilterContext *ctx)
{
AVFilterLink *inlink = ctx->inputs[0];
AVFilterLink *outlink = ctx->outputs[0];
SpeechNormalizerContext *s = ctx->priv;
int ret, status;
int64_t pts;
ret = av_channel_layout_copy(&s->ch_layout, &inlink->ch_layout);
if (ret < 0)
return ret;
if (strcmp(s->ch_layout_str, "all"))
av_channel_layout_from_string(&s->ch_layout,
s->ch_layout_str);
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
ret = filter_frame(ctx);
if (ret <= 0)
return ret;
if (!s->eof && ff_inlink_acknowledge_status(inlink, &status, &pts)) {
if (status == AVERROR_EOF)
s->eof = 1;
}
if (s->eof && ff_inlink_queued_samples(inlink) == 0 &&
s->queue.available == 0) {
ff_outlink_set_status(outlink, AVERROR_EOF, s->pts);
return 0;
}
if (s->queue.available > 0) {
AVFrame *in = ff_bufqueue_peek(&s->queue, 0);
const int nb_samples = available_samples(ctx);
if (nb_samples >= in->nb_samples || s->eof) {
ff_filter_set_ready(ctx, 10);
return 0;
}
}
FF_FILTER_FORWARD_WANTED(outlink, inlink);
return FFERROR_NOT_READY;
}
static int config_input(AVFilterLink *inlink)
{
AVFilterContext *ctx = inlink->dst;
SpeechNormalizerContext *s = ctx->priv;
s->max_period = inlink->sample_rate / 10;
s->prev_gain = 1.;
s->cc = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->cc));
if (!s->cc)
return AVERROR(ENOMEM);
for (int ch = 0; ch < inlink->ch_layout.nb_channels; ch++) {
ChannelContext *cc = &s->cc[ch];
cc->state = -1;
cc->gain_state = 1.;
}
switch (inlink->format) {
case AV_SAMPLE_FMT_FLTP:
s->analyze_channel = analyze_channel_flt;
s->filter_channels[0] = filter_channels_flt;
s->filter_channels[1] = filter_link_channels_flt;
break;
case AV_SAMPLE_FMT_DBLP:
s->analyze_channel = analyze_channel_dbl;
s->filter_channels[0] = filter_channels_dbl;
s->filter_channels[1] = filter_link_channels_dbl;
break;
default:
av_assert1(0);
}
return 0;
}
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
char *res, int res_len, int flags)
{
SpeechNormalizerContext *s = ctx->priv;
int link = s->link;
int ret;
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
if (ret < 0)
return ret;
if (link != s->link)
s->prev_gain = 1.;
return 0;
}
static av_cold void uninit(AVFilterContext *ctx)
{
SpeechNormalizerContext *s = ctx->priv;
ff_bufqueue_discard_all(&s->queue);
av_channel_layout_uninit(&s->ch_layout);
av_freep(&s->cc);
}
static const AVFilterPad inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
.config_props = config_input,
},
};
static const AVFilterPad outputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_AUDIO,
},
};
const AVFilter ff_af_speechnorm = {
.name = "speechnorm",
.description = NULL_IF_CONFIG_SMALL("Speech Normalizer."),
.priv_size = sizeof(SpeechNormalizerContext),
.priv_class = &speechnorm_class,
.activate = activate,
.uninit = uninit,
FILTER_INPUTS(inputs),
FILTER_OUTPUTS(outputs),
FILTER_SAMPLEFMTS(AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_DBLP),
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
.process_command = process_command,
};
|