1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
#include "avcodec.h"
#include "bitstream.h"
#include "bytestream.h"
static int decode_init(AVCodecContext *avctx) {
avctx->pix_fmt = PIX_FMT_PAL8;
return 0;
}
static const uint8_t tc_offsets[9] = { 0, 1, 3, 4, 6, 7, 9, 10, 11 };
static const uint8_t tc_muls[9] = { 10, 6, 10, 6, 10, 6, 10, 10, 1 };
static uint64_t parse_timecode(uint8_t *buf) {
int i;
int64_t ms = 0;
if (buf[2] != ':' || buf[5] != ':' || buf[8] != '.')
return AV_NOPTS_VALUE;
for (i = 0; i < sizeof(tc_offsets); i++) {
uint8_t c = buf[tc_offsets[i]] - '0';
if (c > 9) return AV_NOPTS_VALUE;
ms = (ms + c) * tc_muls[i];
}
return ms;
}
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
uint8_t *buf, int buf_size) {
AVSubtitle *sub = data;
uint8_t *buf_end = buf + buf_size;
uint8_t *bitmap;
int w, h, x, y, rlelen, i;
GetBitContext gb;
// check that at least header fits
if (buf_size < 27 + 7 * 2 + 4 * 3) {
av_log(avctx, AV_LOG_ERROR, "coded frame too small\n");
return -1;
}
// read start and end time
if (buf[0] != '[' || buf[13] != '-' || buf[26] != ']') {
av_log(avctx, AV_LOG_ERROR, "invalid time code\n");
return -1;
}
sub->start_display_time = parse_timecode(buf + 1);
sub->end_display_time = parse_timecode(buf + 14);
buf += 27;
// read header
w = bytestream_get_le16(&buf);
h = bytestream_get_le16(&buf);
if (avcodec_check_dimensions(avctx, w, h) < 0)
return -1;
x = bytestream_get_le16(&buf);
y = bytestream_get_le16(&buf);
// skip bottom right position, it gives no new information
bytestream_get_le16(&buf);
bytestream_get_le16(&buf);
rlelen = bytestream_get_le16(&buf);
// allocate sub and set values
if (!sub->rects) {
sub->rects = av_mallocz(sizeof(AVSubtitleRect));
sub->num_rects = 1;
}
av_freep(&sub->rects[0].bitmap);
sub->rects[0].x = x; sub->rects[0].y = y;
sub->rects[0].w = w; sub->rects[0].h = h;
sub->rects[0].linesize = w;
sub->rects[0].bitmap = av_malloc(w * h);
sub->rects[0].nb_colors = 4;
sub->rects[0].rgba_palette = av_malloc(sub->rects[0].nb_colors * 4);
// read palette
for (i = 0; i < sub->rects[0].nb_colors; i++)
sub->rects[0].rgba_palette[i] = bytestream_get_be24(&buf);
// make all except background (first entry) non-transparent
for (i = 1; i < sub->rects[0].nb_colors; i++)
sub->rects[0].rgba_palette[i] |= 0xff000000;
// process RLE-compressed data
rlelen = FFMIN(rlelen, buf_end - buf);
init_get_bits(&gb, buf, rlelen * 8);
bitmap = sub->rects[0].bitmap;
for (y = 0; y < h; y++) {
// interlaced: do odd lines
if (y == (h + 1) / 2) bitmap = sub->rects[0].bitmap + w;
for (x = 0; x < w; ) {
int log2 = ff_log2_tab[show_bits(&gb, 8)];
int run = get_bits(&gb, 14 - 4 * (log2 >> 1));
int colour = get_bits(&gb, 2);
run = FFMIN(run, w - x);
// run length 0 means till end of row
if (!run) run = w - x;
memset(bitmap, colour, run);
bitmap += run;
x += run;
}
// interlaced, skip every second line
bitmap += w;
align_get_bits(&gb);
}
*data_size = 1;
return buf_size;
}
AVCodec xsub_decoder = {
"xsub",
CODEC_TYPE_SUBTITLE,
CODEC_ID_XSUB,
0,
decode_init,
NULL,
NULL,
decode_frame,
};
|