1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
/*
* (I)RDFT transforms
* Copyright (c) 2009 Alex Converse <alex dot converse at gmail dot com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <math.h>
#include "dsputil.h"
/**
* @file libavcodec/rdft.c
* (Inverse) Real Discrete Fourier Transforms.
*/
/* sin(2*pi*x/n) for 0<=x<n/4, followed by n/2<=x<3n/4 */
DECLARE_ALIGNED_16(FFTSample, ff_sin_16[8]);
DECLARE_ALIGNED_16(FFTSample, ff_sin_32[16]);
DECLARE_ALIGNED_16(FFTSample, ff_sin_64[32]);
DECLARE_ALIGNED_16(FFTSample, ff_sin_128[64]);
DECLARE_ALIGNED_16(FFTSample, ff_sin_256[128]);
DECLARE_ALIGNED_16(FFTSample, ff_sin_512[256]);
DECLARE_ALIGNED_16(FFTSample, ff_sin_1024[512]);
DECLARE_ALIGNED_16(FFTSample, ff_sin_2048[1024]);
DECLARE_ALIGNED_16(FFTSample, ff_sin_4096[2048]);
DECLARE_ALIGNED_16(FFTSample, ff_sin_8192[4096]);
DECLARE_ALIGNED_16(FFTSample, ff_sin_16384[8192]);
DECLARE_ALIGNED_16(FFTSample, ff_sin_32768[16384]);
DECLARE_ALIGNED_16(FFTSample, ff_sin_65536[32768]);
FFTSample * const ff_sin_tabs[] = {
ff_sin_16, ff_sin_32, ff_sin_64, ff_sin_128, ff_sin_256, ff_sin_512, ff_sin_1024,
ff_sin_2048, ff_sin_4096, ff_sin_8192, ff_sin_16384, ff_sin_32768, ff_sin_65536,
};
av_cold int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans)
{
int n = 1 << nbits;
int i;
const double theta = (trans == RDFT || trans == IRIDFT ? -1 : 1)*2*M_PI/n;
s->nbits = nbits;
s->inverse = trans == IRDFT || trans == IRIDFT;
s->sign_convention = trans == RIDFT || trans == IRIDFT ? 1 : -1;
if (nbits < 4 || nbits > 16)
return -1;
if (ff_fft_init(&s->fft, nbits-1, trans == IRDFT || trans == RIDFT) < 0)
return -1;
s->tcos = ff_cos_tabs[nbits-4];
s->tsin = ff_sin_tabs[nbits-4]+(trans == RDFT || trans == IRIDFT)*(n>>2);
for (i = 0; i < (n>>2); i++) {
s->tsin[i] = sin(i*theta);
}
return 0;
}
/** Map one real FFT into two parallel real even and odd FFTs. Then interleave
* the two real FFTs into one complex FFT. Unmangle the results.
* ref: http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM
*/
void ff_rdft_calc_c(RDFTContext* s, FFTSample* data)
{
int i, i1, i2;
FFTComplex ev, od;
const int n = 1 << s->nbits;
const float k1 = 0.5;
const float k2 = 0.5 - s->inverse;
const FFTSample *tcos = s->tcos;
const FFTSample *tsin = s->tsin;
if (!s->inverse) {
ff_fft_permute(&s->fft, (FFTComplex*)data);
ff_fft_calc(&s->fft, (FFTComplex*)data);
}
/* i=0 is a special case because of packing, the DC term is real, so we
are going to throw the N/2 term (also real) in with it. */
ev.re = data[0];
data[0] = ev.re+data[1];
data[1] = ev.re-data[1];
for (i = 1; i < (n>>2); i++) {
i1 = 2*i;
i2 = n-i1;
/* Separate even and odd FFTs */
ev.re = k1*(data[i1 ]+data[i2 ]);
od.im = -k2*(data[i1 ]-data[i2 ]);
ev.im = k1*(data[i1+1]-data[i2+1]);
od.re = k2*(data[i1+1]+data[i2+1]);
/* Apply twiddle factors to the odd FFT and add to the even FFT */
data[i1 ] = ev.re + od.re*tcos[i] - od.im*tsin[i];
data[i1+1] = ev.im + od.im*tcos[i] + od.re*tsin[i];
data[i2 ] = ev.re - od.re*tcos[i] + od.im*tsin[i];
data[i2+1] = -ev.im + od.im*tcos[i] + od.re*tsin[i];
}
data[2*i+1]=s->sign_convention*data[2*i+1];
if (s->inverse) {
data[0] *= k1;
data[1] *= k1;
ff_fft_permute(&s->fft, (FFTComplex*)data);
ff_fft_calc(&s->fft, (FFTComplex*)data);
}
}
void ff_rdft_calc(RDFTContext *s, FFTSample *data)
{
ff_rdft_calc_c(s, data);
}
av_cold void ff_rdft_end(RDFTContext *s)
{
ff_fft_end(&s->fft);
}
|