aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/proresenc_kostya.c
blob: 684ae5362d8eebbb95c719fbc0ddaa3cb277682c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
/*
 * Apple ProRes encoder
 *
 * Copyright (c) 2012 Konstantin Shishkov
 *
 * This encoder appears to be based on Anatoliy Wassermans considering
 * similarities in the bugs.
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avcodec.h"
#include "fdctdsp.h"
#include "put_bits.h"
#include "bytestream.h"
#include "internal.h"
#include "proresdata.h"

#define CFACTOR_Y422 2
#define CFACTOR_Y444 3

#define MAX_MBS_PER_SLICE 8

#define MAX_PLANES 4

enum {
    PRORES_PROFILE_AUTO  = -1,
    PRORES_PROFILE_PROXY = 0,
    PRORES_PROFILE_LT,
    PRORES_PROFILE_STANDARD,
    PRORES_PROFILE_HQ,
    PRORES_PROFILE_4444,
};

enum {
    QUANT_MAT_PROXY = 0,
    QUANT_MAT_LT,
    QUANT_MAT_STANDARD,
    QUANT_MAT_HQ,
    QUANT_MAT_DEFAULT,
};

static const uint8_t prores_quant_matrices[][64] = {
    { // proxy
         4,  7,  9, 11, 13, 14, 15, 63,
         7,  7, 11, 12, 14, 15, 63, 63,
         9, 11, 13, 14, 15, 63, 63, 63,
        11, 11, 13, 14, 63, 63, 63, 63,
        11, 13, 14, 63, 63, 63, 63, 63,
        13, 14, 63, 63, 63, 63, 63, 63,
        13, 63, 63, 63, 63, 63, 63, 63,
        63, 63, 63, 63, 63, 63, 63, 63,
    },
    { // LT
         4,  5,  6,  7,  9, 11, 13, 15,
         5,  5,  7,  8, 11, 13, 15, 17,
         6,  7,  9, 11, 13, 15, 15, 17,
         7,  7,  9, 11, 13, 15, 17, 19,
         7,  9, 11, 13, 14, 16, 19, 23,
         9, 11, 13, 14, 16, 19, 23, 29,
         9, 11, 13, 15, 17, 21, 28, 35,
        11, 13, 16, 17, 21, 28, 35, 41,
    },
    { // standard
         4,  4,  5,  5,  6,  7,  7,  9,
         4,  4,  5,  6,  7,  7,  9,  9,
         5,  5,  6,  7,  7,  9,  9, 10,
         5,  5,  6,  7,  7,  9,  9, 10,
         5,  6,  7,  7,  8,  9, 10, 12,
         6,  7,  7,  8,  9, 10, 12, 15,
         6,  7,  7,  9, 10, 11, 14, 17,
         7,  7,  9, 10, 11, 14, 17, 21,
    },
    { // high quality
         4,  4,  4,  4,  4,  4,  4,  4,
         4,  4,  4,  4,  4,  4,  4,  4,
         4,  4,  4,  4,  4,  4,  4,  4,
         4,  4,  4,  4,  4,  4,  4,  5,
         4,  4,  4,  4,  4,  4,  5,  5,
         4,  4,  4,  4,  4,  5,  5,  6,
         4,  4,  4,  4,  5,  5,  6,  7,
         4,  4,  4,  4,  5,  6,  7,  7,
    },
    { // codec default
         4,  4,  4,  4,  4,  4,  4,  4,
         4,  4,  4,  4,  4,  4,  4,  4,
         4,  4,  4,  4,  4,  4,  4,  4,
         4,  4,  4,  4,  4,  4,  4,  4,
         4,  4,  4,  4,  4,  4,  4,  4,
         4,  4,  4,  4,  4,  4,  4,  4,
         4,  4,  4,  4,  4,  4,  4,  4,
         4,  4,  4,  4,  4,  4,  4,  4,
    },
};

#define NUM_MB_LIMITS 4
static const int prores_mb_limits[NUM_MB_LIMITS] = {
    1620, // up to 720x576
    2700, // up to 960x720
    6075, // up to 1440x1080
    9216, // up to 2048x1152
};

static const struct prores_profile {
    const char *full_name;
    uint32_t    tag;
    int         min_quant;
    int         max_quant;
    int         br_tab[NUM_MB_LIMITS];
    int         quant;
} prores_profile_info[5] = {
    {
        .full_name = "proxy",
        .tag       = MKTAG('a', 'p', 'c', 'o'),
        .min_quant = 4,
        .max_quant = 8,
        .br_tab    = { 300, 242, 220, 194 },
        .quant     = QUANT_MAT_PROXY,
    },
    {
        .full_name = "LT",
        .tag       = MKTAG('a', 'p', 'c', 's'),
        .min_quant = 1,
        .max_quant = 9,
        .br_tab    = { 720, 560, 490, 440 },
        .quant     = QUANT_MAT_LT,
    },
    {
        .full_name = "standard",
        .tag       = MKTAG('a', 'p', 'c', 'n'),
        .min_quant = 1,
        .max_quant = 6,
        .br_tab    = { 1050, 808, 710, 632 },
        .quant     = QUANT_MAT_STANDARD,
    },
    {
        .full_name = "high quality",
        .tag       = MKTAG('a', 'p', 'c', 'h'),
        .min_quant = 1,
        .max_quant = 6,
        .br_tab    = { 1566, 1216, 1070, 950 },
        .quant     = QUANT_MAT_HQ,
    },
    {
        .full_name = "4444",
        .tag       = MKTAG('a', 'p', '4', 'h'),
        .min_quant = 1,
        .max_quant = 6,
        .br_tab    = { 2350, 1828, 1600, 1425 },
        .quant     = QUANT_MAT_HQ,
    }
};

#define TRELLIS_WIDTH 16
#define SCORE_LIMIT   INT_MAX / 2

struct TrellisNode {
    int prev_node;
    int quant;
    int bits;
    int score;
};

#define MAX_STORED_Q 16

typedef struct ProresThreadData {
    DECLARE_ALIGNED(16, int16_t, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE];
    DECLARE_ALIGNED(16, uint16_t, emu_buf)[16 * 16];
    int16_t custom_q[64];
    struct TrellisNode *nodes;
} ProresThreadData;

typedef struct ProresContext {
    AVClass *class;
    DECLARE_ALIGNED(16, int16_t, blocks)[MAX_PLANES][64 * 4 * MAX_MBS_PER_SLICE];
    DECLARE_ALIGNED(16, uint16_t, emu_buf)[16*16];
    int16_t quants[MAX_STORED_Q][64];
    int16_t custom_q[64];
    const uint8_t *quant_mat;
    const uint8_t *scantable;

    void (*fdct)(FDCTDSPContext *fdsp, const uint16_t *src,
                 int linesize, int16_t *block);
    FDCTDSPContext fdsp;

    const AVFrame *pic;
    int mb_width, mb_height;
    int mbs_per_slice;
    int num_chroma_blocks, chroma_factor;
    int slices_width;
    int slices_per_picture;
    int pictures_per_frame; // 1 for progressive, 2 for interlaced
    int cur_picture_idx;
    int num_planes;
    int bits_per_mb;
    int force_quant;
    int alpha_bits;
    int warn;

    char *vendor;
    int quant_sel;

    int frame_size_upper_bound;

    int profile;
    const struct prores_profile *profile_info;

    int *slice_q;

    ProresThreadData *tdata;
} ProresContext;

static void get_slice_data(ProresContext *ctx, const uint16_t *src,
                           int linesize, int x, int y, int w, int h,
                           int16_t *blocks, uint16_t *emu_buf,
                           int mbs_per_slice, int blocks_per_mb, int is_chroma)
{
    const uint16_t *esrc;
    const int mb_width = 4 * blocks_per_mb;
    int elinesize;
    int i, j, k;

    for (i = 0; i < mbs_per_slice; i++, src += mb_width) {
        if (x >= w) {
            memset(blocks, 0, 64 * (mbs_per_slice - i) * blocks_per_mb
                              * sizeof(*blocks));
            return;
        }
        if (x + mb_width <= w && y + 16 <= h) {
            esrc      = src;
            elinesize = linesize;
        } else {
            int bw, bh, pix;

            esrc      = emu_buf;
            elinesize = 16 * sizeof(*emu_buf);

            bw = FFMIN(w - x, mb_width);
            bh = FFMIN(h - y, 16);

            for (j = 0; j < bh; j++) {
                memcpy(emu_buf + j * 16,
                       (const uint8_t*)src + j * linesize,
                       bw * sizeof(*src));
                pix = emu_buf[j * 16 + bw - 1];
                for (k = bw; k < mb_width; k++)
                    emu_buf[j * 16 + k] = pix;
            }
            for (; j < 16; j++)
                memcpy(emu_buf + j * 16,
                       emu_buf + (bh - 1) * 16,
                       mb_width * sizeof(*emu_buf));
        }
        if (!is_chroma) {
            ctx->fdct(&ctx->fdsp, esrc, elinesize, blocks);
            blocks += 64;
            if (blocks_per_mb > 2) {
                ctx->fdct(&ctx->fdsp, esrc + 8, elinesize, blocks);
                blocks += 64;
            }
            ctx->fdct(&ctx->fdsp, esrc + elinesize * 4, elinesize, blocks);
            blocks += 64;
            if (blocks_per_mb > 2) {
                ctx->fdct(&ctx->fdsp, esrc + elinesize * 4 + 8, elinesize, blocks);
                blocks += 64;
            }
        } else {
            ctx->fdct(&ctx->fdsp, esrc, elinesize, blocks);
            blocks += 64;
            ctx->fdct(&ctx->fdsp, esrc + elinesize * 4, elinesize, blocks);
            blocks += 64;
            if (blocks_per_mb > 2) {
                ctx->fdct(&ctx->fdsp, esrc + 8, elinesize, blocks);
                blocks += 64;
                ctx->fdct(&ctx->fdsp, esrc + elinesize * 4 + 8, elinesize, blocks);
                blocks += 64;
            }
        }

        x += mb_width;
    }
}

static void get_alpha_data(ProresContext *ctx, const uint16_t *src,
                           int linesize, int x, int y, int w, int h,
                           int16_t *blocks, int mbs_per_slice, int abits)
{
    const int slice_width = 16 * mbs_per_slice;
    int i, j, copy_w, copy_h;

    copy_w = FFMIN(w - x, slice_width);
    copy_h = FFMIN(h - y, 16);
    for (i = 0; i < copy_h; i++) {
        memcpy(blocks, src, copy_w * sizeof(*src));
        if (abits == 8)
            for (j = 0; j < copy_w; j++)
                blocks[j] >>= 2;
        else
            for (j = 0; j < copy_w; j++)
                blocks[j] = (blocks[j] << 6) | (blocks[j] >> 4);
        for (j = copy_w; j < slice_width; j++)
            blocks[j] = blocks[copy_w - 1];
        blocks += slice_width;
        src    += linesize >> 1;
    }
    for (; i < 16; i++) {
        memcpy(blocks, blocks - slice_width, slice_width * sizeof(*blocks));
        blocks += slice_width;
    }
}

/**
 * Write an unsigned rice/exp golomb codeword.
 */
static inline void encode_vlc_codeword(PutBitContext *pb, unsigned codebook, int val)
{
    unsigned int rice_order, exp_order, switch_bits, switch_val;
    int exponent;

    /* number of prefix bits to switch between Rice and expGolomb */
    switch_bits = (codebook & 3) + 1;
    rice_order  =  codebook >> 5;       /* rice code order */
    exp_order   = (codebook >> 2) & 7;  /* exp golomb code order */

    switch_val  = switch_bits << rice_order;

    if (val >= switch_val) {
        val -= switch_val - (1 << exp_order);
        exponent = av_log2(val);

        put_bits(pb, exponent - exp_order + switch_bits, 0);
        put_bits(pb, exponent + 1, val);
    } else {
        exponent = val >> rice_order;

        if (exponent)
            put_bits(pb, exponent, 0);
        put_bits(pb, 1, 1);
        if (rice_order)
            put_sbits(pb, rice_order, val);
    }
}

#define GET_SIGN(x)  ((x) >> 31)
#define MAKE_CODE(x) (((x) << 1) ^ GET_SIGN(x))

static void encode_dcs(PutBitContext *pb, int16_t *blocks,
                       int blocks_per_slice, int scale)
{
    int i;
    int codebook = 3, code, dc, prev_dc, delta, sign, new_sign;

    prev_dc = (blocks[0] - 0x4000) / scale;
    encode_vlc_codeword(pb, FIRST_DC_CB, MAKE_CODE(prev_dc));
    sign     = 0;
    codebook = 3;
    blocks  += 64;

    for (i = 1; i < blocks_per_slice; i++, blocks += 64) {
        dc       = (blocks[0] - 0x4000) / scale;
        delta    = dc - prev_dc;
        new_sign = GET_SIGN(delta);
        delta    = (delta ^ sign) - sign;
        code     = MAKE_CODE(delta);
        encode_vlc_codeword(pb, ff_prores_dc_codebook[codebook], code);
        codebook = (code + (code & 1)) >> 1;
        codebook = FFMIN(codebook, 3);
        sign     = new_sign;
        prev_dc  = dc;
    }
}

static void encode_acs(PutBitContext *pb, int16_t *blocks,
                       int blocks_per_slice,
                       int plane_size_factor,
                       const uint8_t *scan, const int16_t *qmat)
{
    int idx, i;
    int run, level, run_cb, lev_cb;
    int max_coeffs, abs_level;

    max_coeffs = blocks_per_slice << 6;
    run_cb     = ff_prores_run_to_cb_index[4];
    lev_cb     = ff_prores_lev_to_cb_index[2];
    run        = 0;

    for (i = 1; i < 64; i++) {
        for (idx = scan[i]; idx < max_coeffs; idx += 64) {
            level = blocks[idx] / qmat[scan[i]];
            if (level) {
                abs_level = FFABS(level);
                encode_vlc_codeword(pb, ff_prores_ac_codebook[run_cb], run);
                encode_vlc_codeword(pb, ff_prores_ac_codebook[lev_cb],
                                    abs_level - 1);
                put_sbits(pb, 1, GET_SIGN(level));

                run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)];
                lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)];
                run    = 0;
            } else {
                run++;
            }
        }
    }
}

static int encode_slice_plane(ProresContext *ctx, PutBitContext *pb,
                              const uint16_t *src, int linesize,
                              int mbs_per_slice, int16_t *blocks,
                              int blocks_per_mb, int plane_size_factor,
                              const int16_t *qmat)
{
    int blocks_per_slice, saved_pos;

    saved_pos = put_bits_count(pb);
    blocks_per_slice = mbs_per_slice * blocks_per_mb;

    encode_dcs(pb, blocks, blocks_per_slice, qmat[0]);
    encode_acs(pb, blocks, blocks_per_slice, plane_size_factor,
               ctx->scantable, qmat);
    flush_put_bits(pb);

    return (put_bits_count(pb) - saved_pos) >> 3;
}

static void put_alpha_diff(PutBitContext *pb, int cur, int prev, int abits)
{
    const int dbits = (abits == 8) ? 4 : 7;
    const int dsize = 1 << dbits - 1;
    int diff = cur - prev;

    diff = av_mod_uintp2(diff, abits);
    if (diff >= (1 << abits) - dsize)
        diff -= 1 << abits;
    if (diff < -dsize || diff > dsize || !diff) {
        put_bits(pb, 1, 1);
        put_bits(pb, abits, diff);
    } else {
        put_bits(pb, 1, 0);
        put_bits(pb, dbits - 1, FFABS(diff) - 1);
        put_bits(pb, 1, diff < 0);
    }
}

static void put_alpha_run(PutBitContext *pb, int run)
{
    if (run) {
        put_bits(pb, 1, 0);
        if (run < 0x10)
            put_bits(pb, 4, run);
        else
            put_bits(pb, 15, run);
    } else {
        put_bits(pb, 1, 1);
    }
}

// todo alpha quantisation for high quants
static int encode_alpha_plane(ProresContext *ctx, PutBitContext *pb,
                              int mbs_per_slice, uint16_t *blocks,
                              int quant)
{
    const int abits = ctx->alpha_bits;
    const int mask  = (1 << abits) - 1;
    const int num_coeffs = mbs_per_slice * 256;
    int saved_pos = put_bits_count(pb);
    int prev = mask, cur;
    int idx = 0;
    int run = 0;

    cur = blocks[idx++];
    put_alpha_diff(pb, cur, prev, abits);
    prev = cur;
    do {
        cur = blocks[idx++];
        if (cur != prev) {
            put_alpha_run (pb, run);
            put_alpha_diff(pb, cur, prev, abits);
            prev = cur;
            run  = 0;
        } else {
            run++;
        }
    } while (idx < num_coeffs);
    if (run)
        put_alpha_run(pb, run);
    flush_put_bits(pb);
    return (put_bits_count(pb) - saved_pos) >> 3;
}

static int encode_slice(AVCodecContext *avctx, const AVFrame *pic,
                        PutBitContext *pb,
                        int sizes[4], int x, int y, int quant,
                        int mbs_per_slice)
{
    ProresContext *ctx = avctx->priv_data;
    int i, xp, yp;
    int total_size = 0;
    const uint16_t *src;
    int slice_width_factor = av_log2(mbs_per_slice);
    int num_cblocks, pwidth, linesize, line_add;
    int plane_factor, is_chroma;
    uint16_t *qmat;

    if (ctx->pictures_per_frame == 1)
        line_add = 0;
    else
        line_add = ctx->cur_picture_idx ^ !pic->top_field_first;

    if (ctx->force_quant) {
        qmat = ctx->quants[0];
    } else if (quant < MAX_STORED_Q) {
        qmat = ctx->quants[quant];
    } else {
        qmat = ctx->custom_q;
        for (i = 0; i < 64; i++)
            qmat[i] = ctx->quant_mat[i] * quant;
    }

    for (i = 0; i < ctx->num_planes; i++) {
        is_chroma    = (i == 1 || i == 2);
        plane_factor = slice_width_factor + 2;
        if (is_chroma)
            plane_factor += ctx->chroma_factor - 3;
        if (!is_chroma || ctx->chroma_factor == CFACTOR_Y444) {
            xp          = x << 4;
            yp          = y << 4;
            num_cblocks = 4;
            pwidth      = avctx->width;
        } else {
            xp          = x << 3;
            yp          = y << 4;
            num_cblocks = 2;
            pwidth      = avctx->width >> 1;
        }

        linesize = pic->linesize[i] * ctx->pictures_per_frame;
        src = (const uint16_t*)(pic->data[i] + yp * linesize +
                                line_add * pic->linesize[i]) + xp;

        if (i < 3) {
            get_slice_data(ctx, src, linesize, xp, yp,
                           pwidth, avctx->height / ctx->pictures_per_frame,
                           ctx->blocks[0], ctx->emu_buf,
                           mbs_per_slice, num_cblocks, is_chroma);
            sizes[i] = encode_slice_plane(ctx, pb, src, linesize,
                                          mbs_per_slice, ctx->blocks[0],
                                          num_cblocks, plane_factor,
                                          qmat);
        } else {
            get_alpha_data(ctx, src, linesize, xp, yp,
                           pwidth, avctx->height / ctx->pictures_per_frame,
                           ctx->blocks[0], mbs_per_slice, ctx->alpha_bits);
            sizes[i] = encode_alpha_plane(ctx, pb, mbs_per_slice,
                                          ctx->blocks[0], quant);
        }
        total_size += sizes[i];
        if (put_bits_left(pb) < 0) {
            av_log(avctx, AV_LOG_ERROR,
                   "Underestimated required buffer size.\n");
            return AVERROR_BUG;
        }
    }
    return total_size;
}

static inline int estimate_vlc(unsigned codebook, int val)
{
    unsigned int rice_order, exp_order, switch_bits, switch_val;
    int exponent;

    /* number of prefix bits to switch between Rice and expGolomb */
    switch_bits = (codebook & 3) + 1;
    rice_order  =  codebook >> 5;       /* rice code order */
    exp_order   = (codebook >> 2) & 7;  /* exp golomb code order */

    switch_val  = switch_bits << rice_order;

    if (val >= switch_val) {
        val -= switch_val - (1 << exp_order);
        exponent = av_log2(val);

        return exponent * 2 - exp_order + switch_bits + 1;
    } else {
        return (val >> rice_order) + rice_order + 1;
    }
}

static int estimate_dcs(int *error, int16_t *blocks, int blocks_per_slice,
                        int scale)
{
    int i;
    int codebook = 3, code, dc, prev_dc, delta, sign, new_sign;
    int bits;

    prev_dc  = (blocks[0] - 0x4000) / scale;
    bits     = estimate_vlc(FIRST_DC_CB, MAKE_CODE(prev_dc));
    sign     = 0;
    codebook = 3;
    blocks  += 64;
    *error  += FFABS(blocks[0] - 0x4000) % scale;

    for (i = 1; i < blocks_per_slice; i++, blocks += 64) {
        dc       = (blocks[0] - 0x4000) / scale;
        *error  += FFABS(blocks[0] - 0x4000) % scale;
        delta    = dc - prev_dc;
        new_sign = GET_SIGN(delta);
        delta    = (delta ^ sign) - sign;
        code     = MAKE_CODE(delta);
        bits    += estimate_vlc(ff_prores_dc_codebook[codebook], code);
        codebook = (code + (code & 1)) >> 1;
        codebook = FFMIN(codebook, 3);
        sign     = new_sign;
        prev_dc  = dc;
    }

    return bits;
}

static int estimate_acs(int *error, int16_t *blocks, int blocks_per_slice,
                        int plane_size_factor,
                        const uint8_t *scan, const int16_t *qmat)
{
    int idx, i;
    int run, level, run_cb, lev_cb;
    int max_coeffs, abs_level;
    int bits = 0;

    max_coeffs = blocks_per_slice << 6;
    run_cb     = ff_prores_run_to_cb_index[4];
    lev_cb     = ff_prores_lev_to_cb_index[2];
    run        = 0;

    for (i = 1; i < 64; i++) {
        for (idx = scan[i]; idx < max_coeffs; idx += 64) {
            level   = blocks[idx] / qmat[scan[i]];
            *error += FFABS(blocks[idx]) % qmat[scan[i]];
            if (level) {
                abs_level = FFABS(level);
                bits += estimate_vlc(ff_prores_ac_codebook[run_cb], run);
                bits += estimate_vlc(ff_prores_ac_codebook[lev_cb],
                                     abs_level - 1) + 1;

                run_cb = ff_prores_run_to_cb_index[FFMIN(run, 15)];
                lev_cb = ff_prores_lev_to_cb_index[FFMIN(abs_level, 9)];
                run    = 0;
            } else {
                run++;
            }
        }
    }

    return bits;
}

static int estimate_slice_plane(ProresContext *ctx, int *error, int plane,
                                const uint16_t *src, int linesize,
                                int mbs_per_slice,
                                int blocks_per_mb, int plane_size_factor,
                                const int16_t *qmat, ProresThreadData *td)
{
    int blocks_per_slice;
    int bits;

    blocks_per_slice = mbs_per_slice * blocks_per_mb;

    bits  = estimate_dcs(error, td->blocks[plane], blocks_per_slice, qmat[0]);
    bits += estimate_acs(error, td->blocks[plane], blocks_per_slice,
                         plane_size_factor, ctx->scantable, qmat);

    return FFALIGN(bits, 8);
}

static int est_alpha_diff(int cur, int prev, int abits)
{
    const int dbits = (abits == 8) ? 4 : 7;
    const int dsize = 1 << dbits - 1;
    int diff = cur - prev;

    diff = av_mod_uintp2(diff, abits);
    if (diff >= (1 << abits) - dsize)
        diff -= 1 << abits;
    if (diff < -dsize || diff > dsize || !diff)
        return abits + 1;
    else
        return dbits + 1;
}

static int estimate_alpha_plane(ProresContext *ctx, int *error,
                                const uint16_t *src, int linesize,
                                int mbs_per_slice, int quant,
                                int16_t *blocks)
{
    const int abits = ctx->alpha_bits;
    const int mask  = (1 << abits) - 1;
    const int num_coeffs = mbs_per_slice * 256;
    int prev = mask, cur;
    int idx = 0;
    int run = 0;
    int bits;

    *error = 0;
    cur = blocks[idx++];
    bits = est_alpha_diff(cur, prev, abits);
    prev = cur;
    do {
        cur = blocks[idx++];
        if (cur != prev) {
            if (!run)
                bits++;
            else if (run < 0x10)
                bits += 4;
            else
                bits += 15;
            bits += est_alpha_diff(cur, prev, abits);
            prev = cur;
            run  = 0;
        } else {
            run++;
        }
    } while (idx < num_coeffs);

    if (run) {
        if (run < 0x10)
            bits += 4;
        else
            bits += 15;
    }

    return bits;
}

static int find_slice_quant(AVCodecContext *avctx,
                            int trellis_node, int x, int y, int mbs_per_slice,
                            ProresThreadData *td)
{
    ProresContext *ctx = avctx->priv_data;
    int i, q, pq, xp, yp;
    const uint16_t *src;
    int slice_width_factor = av_log2(mbs_per_slice);
    int num_cblocks[MAX_PLANES], pwidth;
    int plane_factor[MAX_PLANES], is_chroma[MAX_PLANES];
    const int min_quant = ctx->profile_info->min_quant;
    const int max_quant = ctx->profile_info->max_quant;
    int error, bits, bits_limit;
    int mbs, prev, cur, new_score;
    int slice_bits[TRELLIS_WIDTH], slice_score[TRELLIS_WIDTH];
    int overquant;
    uint16_t *qmat;
    int linesize[4], line_add;

    if (ctx->pictures_per_frame == 1)
        line_add = 0;
    else
        line_add = ctx->cur_picture_idx ^ !ctx->pic->top_field_first;
    mbs = x + mbs_per_slice;

    for (i = 0; i < ctx->num_planes; i++) {
        is_chroma[i]    = (i == 1 || i == 2);
        plane_factor[i] = slice_width_factor + 2;
        if (is_chroma[i])
            plane_factor[i] += ctx->chroma_factor - 3;
        if (!is_chroma[i] || ctx->chroma_factor == CFACTOR_Y444) {
            xp             = x << 4;
            yp             = y << 4;
            num_cblocks[i] = 4;
            pwidth         = avctx->width;
        } else {
            xp             = x << 3;
            yp             = y << 4;
            num_cblocks[i] = 2;
            pwidth         = avctx->width >> 1;
        }

        linesize[i] = ctx->pic->linesize[i] * ctx->pictures_per_frame;
        src = (const uint16_t *)(ctx->pic->data[i] + yp * linesize[i] +
                                 line_add * ctx->pic->linesize[i]) + xp;

        if (i < 3) {
            get_slice_data(ctx, src, linesize[i], xp, yp,
                           pwidth, avctx->height / ctx->pictures_per_frame,
                           td->blocks[i], td->emu_buf,
                           mbs_per_slice, num_cblocks[i], is_chroma[i]);
        } else {
            get_alpha_data(ctx, src, linesize[i], xp, yp,
                           pwidth, avctx->height / ctx->pictures_per_frame,
                           td->blocks[i], mbs_per_slice, ctx->alpha_bits);
        }
    }

    for (q = min_quant; q < max_quant + 2; q++) {
        td->nodes[trellis_node + q].prev_node = -1;
        td->nodes[trellis_node + q].quant     = q;
    }

    // todo: maybe perform coarser quantising to fit into frame size when needed
    for (q = min_quant; q <= max_quant; q++) {
        bits  = 0;
        error = 0;
        for (i = 0; i < ctx->num_planes - !!ctx->alpha_bits; i++) {
            bits += estimate_slice_plane(ctx, &error, i,
                                         src, linesize[i],
                                         mbs_per_slice,
                                         num_cblocks[i], plane_factor[i],
                                         ctx->quants[q], td);
        }
        if (ctx->alpha_bits)
            bits += estimate_alpha_plane(ctx, &error, src, linesize[3],
                                         mbs_per_slice, q, td->blocks[3]);
        if (bits > 65000 * 8)
            error = SCORE_LIMIT;

        slice_bits[q]  = bits;
        slice_score[q] = error;
    }
    if (slice_bits[max_quant] <= ctx->bits_per_mb * mbs_per_slice) {
        slice_bits[max_quant + 1]  = slice_bits[max_quant];
        slice_score[max_quant + 1] = slice_score[max_quant] + 1;
        overquant = max_quant;
    } else {
        for (q = max_quant + 1; q < 128; q++) {
            bits  = 0;
            error = 0;
            if (q < MAX_STORED_Q) {
                qmat = ctx->quants[q];
            } else {
                qmat = td->custom_q;
                for (i = 0; i < 64; i++)
                    qmat[i] = ctx->quant_mat[i] * q;
            }
            for (i = 0; i < ctx->num_planes - !!ctx->alpha_bits; i++) {
                bits += estimate_slice_plane(ctx, &error, i,
                                             src, linesize[i],
                                             mbs_per_slice,
                                             num_cblocks[i], plane_factor[i],
                                             qmat, td);
            }
            if (ctx->alpha_bits)
                bits += estimate_alpha_plane(ctx, &error, src, linesize[3],
                                             mbs_per_slice, q, td->blocks[3]);
            if (bits <= ctx->bits_per_mb * mbs_per_slice)
                break;
        }

        slice_bits[max_quant + 1]  = bits;
        slice_score[max_quant + 1] = error;
        overquant = q;
    }
    td->nodes[trellis_node + max_quant + 1].quant = overquant;

    bits_limit = mbs * ctx->bits_per_mb;
    for (pq = min_quant; pq < max_quant + 2; pq++) {
        prev = trellis_node - TRELLIS_WIDTH + pq;

        for (q = min_quant; q < max_quant + 2; q++) {
            cur = trellis_node + q;

            bits  = td->nodes[prev].bits + slice_bits[q];
            error = slice_score[q];
            if (bits > bits_limit)
                error = SCORE_LIMIT;

            if (td->nodes[prev].score < SCORE_LIMIT && error < SCORE_LIMIT)
                new_score = td->nodes[prev].score + error;
            else
                new_score = SCORE_LIMIT;
            if (td->nodes[cur].prev_node == -1 ||
                td->nodes[cur].score >= new_score) {

                td->nodes[cur].bits      = bits;
                td->nodes[cur].score     = new_score;
                td->nodes[cur].prev_node = prev;
            }
        }
    }

    error = td->nodes[trellis_node + min_quant].score;
    pq    = trellis_node + min_quant;
    for (q = min_quant + 1; q < max_quant + 2; q++) {
        if (td->nodes[trellis_node + q].score <= error) {
            error = td->nodes[trellis_node + q].score;
            pq    = trellis_node + q;
        }
    }

    return pq;
}

static int find_quant_thread(AVCodecContext *avctx, void *arg,
                             int jobnr, int threadnr)
{
    ProresContext *ctx = avctx->priv_data;
    ProresThreadData *td = ctx->tdata + threadnr;
    int mbs_per_slice = ctx->mbs_per_slice;
    int x, y = jobnr, mb, q = 0;

    for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) {
        while (ctx->mb_width - x < mbs_per_slice)
            mbs_per_slice >>= 1;
        q = find_slice_quant(avctx,
                             (mb + 1) * TRELLIS_WIDTH, x, y,
                             mbs_per_slice, td);
    }

    for (x = ctx->slices_width - 1; x >= 0; x--) {
        ctx->slice_q[x + y * ctx->slices_width] = td->nodes[q].quant;
        q = td->nodes[q].prev_node;
    }

    return 0;
}

static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
                        const AVFrame *pic, int *got_packet)
{
    ProresContext *ctx = avctx->priv_data;
    uint8_t *orig_buf, *buf, *slice_hdr, *slice_sizes, *tmp;
    uint8_t *picture_size_pos;
    PutBitContext pb;
    int x, y, i, mb, q = 0;
    int sizes[4] = { 0 };
    int slice_hdr_size = 2 + 2 * (ctx->num_planes - 1);
    int frame_size, picture_size, slice_size;
    int pkt_size, ret;
    int max_slice_size = (ctx->frame_size_upper_bound - 200) / (ctx->pictures_per_frame * ctx->slices_per_picture + 1);
    uint8_t frame_flags;

    ctx->pic = pic;
    pkt_size = ctx->frame_size_upper_bound;

    if ((ret = ff_alloc_packet2(avctx, pkt, pkt_size + FF_MIN_BUFFER_SIZE, 0)) < 0)
        return ret;

    orig_buf = pkt->data;

    // frame atom
    orig_buf += 4;                              // frame size
    bytestream_put_be32  (&orig_buf, FRAME_ID); // frame container ID
    buf = orig_buf;

    // frame header
    tmp = buf;
    buf += 2;                                   // frame header size will be stored here
    bytestream_put_be16  (&buf, 0);             // version 1
    bytestream_put_buffer(&buf, ctx->vendor, 4);
    bytestream_put_be16  (&buf, avctx->width);
    bytestream_put_be16  (&buf, avctx->height);

    frame_flags = ctx->chroma_factor << 6;
    if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT)
        frame_flags |= pic->top_field_first ? 0x04 : 0x08;
    bytestream_put_byte  (&buf, frame_flags);

    bytestream_put_byte  (&buf, 0);             // reserved
    bytestream_put_byte  (&buf, avctx->color_primaries);
    bytestream_put_byte  (&buf, avctx->color_trc);
    bytestream_put_byte  (&buf, avctx->colorspace);
    bytestream_put_byte  (&buf, 0x40 | (ctx->alpha_bits >> 3));
    bytestream_put_byte  (&buf, 0);             // reserved
    if (ctx->quant_sel != QUANT_MAT_DEFAULT) {
        bytestream_put_byte  (&buf, 0x03);      // matrix flags - both matrices are present
        // luma quantisation matrix
        for (i = 0; i < 64; i++)
            bytestream_put_byte(&buf, ctx->quant_mat[i]);
        // chroma quantisation matrix
        for (i = 0; i < 64; i++)
            bytestream_put_byte(&buf, ctx->quant_mat[i]);
    } else {
        bytestream_put_byte  (&buf, 0x00);      // matrix flags - default matrices are used
    }
    bytestream_put_be16  (&tmp, buf - orig_buf); // write back frame header size

    for (ctx->cur_picture_idx = 0;
         ctx->cur_picture_idx < ctx->pictures_per_frame;
         ctx->cur_picture_idx++) {
        // picture header
        picture_size_pos = buf + 1;
        bytestream_put_byte  (&buf, 0x40);          // picture header size (in bits)
        buf += 4;                                   // picture data size will be stored here
        bytestream_put_be16  (&buf, ctx->slices_per_picture);
        bytestream_put_byte  (&buf, av_log2(ctx->mbs_per_slice) << 4); // slice width and height in MBs

        // seek table - will be filled during slice encoding
        slice_sizes = buf;
        buf += ctx->slices_per_picture * 2;

        // slices
        if (!ctx->force_quant) {
            ret = avctx->execute2(avctx, find_quant_thread, (void*)pic, NULL,
                                  ctx->mb_height);
            if (ret)
                return ret;
        }

        for (y = 0; y < ctx->mb_height; y++) {
            int mbs_per_slice = ctx->mbs_per_slice;
            for (x = mb = 0; x < ctx->mb_width; x += mbs_per_slice, mb++) {
                q = ctx->force_quant ? ctx->force_quant
                                     : ctx->slice_q[mb + y * ctx->slices_width];

                while (ctx->mb_width - x < mbs_per_slice)
                    mbs_per_slice >>= 1;

                bytestream_put_byte(&buf, slice_hdr_size << 3);
                slice_hdr = buf;
                buf += slice_hdr_size - 1;
                if (pkt_size <= buf - orig_buf + 2 * max_slice_size) {
                    uint8_t *start = pkt->data;
                    // Recompute new size according to max_slice_size
                    // and deduce delta
                    int delta = 200 + (ctx->pictures_per_frame *
                                ctx->slices_per_picture + 1) *
                                max_slice_size - pkt_size;

                    delta = FFMAX(delta, 2 * max_slice_size);
                    ctx->frame_size_upper_bound += delta;

                    if (!ctx->warn) {
                        avpriv_request_sample(avctx,
                                              "Packet too small: is %i,"
                                              " needs %i (slice: %i). "
                                              "Correct allocation",
                                              pkt_size, delta, max_slice_size);
                        ctx->warn = 1;
                    }

                    ret = av_grow_packet(pkt, delta);
                    if (ret < 0)
                        return ret;

                    pkt_size += delta;
                    // restore pointers
                    orig_buf         = pkt->data + (orig_buf         - start);
                    buf              = pkt->data + (buf              - start);
                    picture_size_pos = pkt->data + (picture_size_pos - start);
                    slice_sizes      = pkt->data + (slice_sizes      - start);
                    slice_hdr        = pkt->data + (slice_hdr        - start);
                    tmp              = pkt->data + (tmp              - start);
                }
                init_put_bits(&pb, buf, (pkt_size - (buf - orig_buf)));
                ret = encode_slice(avctx, pic, &pb, sizes, x, y, q,
                                   mbs_per_slice);
                if (ret < 0)
                    return ret;

                bytestream_put_byte(&slice_hdr, q);
                slice_size = slice_hdr_size + sizes[ctx->num_planes - 1];
                for (i = 0; i < ctx->num_planes - 1; i++) {
                    bytestream_put_be16(&slice_hdr, sizes[i]);
                    slice_size += sizes[i];
                }
                bytestream_put_be16(&slice_sizes, slice_size);
                buf += slice_size - slice_hdr_size;
                if (max_slice_size < slice_size)
                    max_slice_size = slice_size;
            }
        }

        picture_size = buf - (picture_size_pos - 1);
        bytestream_put_be32(&picture_size_pos, picture_size);
    }

    orig_buf -= 8;
    frame_size = buf - orig_buf;
    bytestream_put_be32(&orig_buf, frame_size);

    pkt->size   = frame_size;
    pkt->flags |= AV_PKT_FLAG_KEY;
    *got_packet = 1;

    return 0;
}

static av_cold int encode_close(AVCodecContext *avctx)
{
    ProresContext *ctx = avctx->priv_data;
    int i;

    if (ctx->tdata) {
        for (i = 0; i < avctx->thread_count; i++)
            av_freep(&ctx->tdata[i].nodes);
    }
    av_freep(&ctx->tdata);
    av_freep(&ctx->slice_q);

    return 0;
}

static void prores_fdct(FDCTDSPContext *fdsp, const uint16_t *src,
                        int linesize, int16_t *block)
{
    int x, y;
    const uint16_t *tsrc = src;

    for (y = 0; y < 8; y++) {
        for (x = 0; x < 8; x++)
            block[y * 8 + x] = tsrc[x];
        tsrc += linesize >> 1;
    }
    fdsp->fdct(block);
}

static av_cold int encode_init(AVCodecContext *avctx)
{
    ProresContext *ctx = avctx->priv_data;
    int mps;
    int i, j;
    int min_quant, max_quant;
    int interlaced = !!(avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT);

    avctx->bits_per_raw_sample = 10;
#if FF_API_CODED_FRAME
FF_DISABLE_DEPRECATION_WARNINGS
    avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
    avctx->coded_frame->key_frame = 1;
FF_ENABLE_DEPRECATION_WARNINGS
#endif

    ctx->fdct      = prores_fdct;
    ctx->scantable = interlaced ? ff_prores_interlaced_scan
                                : ff_prores_progressive_scan;
    ff_fdctdsp_init(&ctx->fdsp, avctx);

    mps = ctx->mbs_per_slice;
    if (mps & (mps - 1)) {
        av_log(avctx, AV_LOG_ERROR,
               "there should be an integer power of two MBs per slice\n");
        return AVERROR(EINVAL);
    }
    if (ctx->profile == PRORES_PROFILE_AUTO) {
        const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
        ctx->profile = (desc->flags & AV_PIX_FMT_FLAG_ALPHA ||
                        !(desc->log2_chroma_w + desc->log2_chroma_h))
                     ? PRORES_PROFILE_4444 : PRORES_PROFILE_HQ;
        av_log(avctx, AV_LOG_INFO, "Autoselected %s. It can be overridden "
               "through -profile option.\n", ctx->profile == PRORES_PROFILE_4444
               ? "4:4:4:4 profile because of the used input colorspace"
               : "HQ profile to keep best quality");
    }
    if (av_pix_fmt_desc_get(avctx->pix_fmt)->flags & AV_PIX_FMT_FLAG_ALPHA) {
        if (ctx->profile != PRORES_PROFILE_4444) {
            // force alpha and warn
            av_log(avctx, AV_LOG_WARNING, "Profile selected will not "
                   "encode alpha. Override with -profile if needed.\n");
            ctx->alpha_bits = 0;
        }
        if (ctx->alpha_bits & 7) {
            av_log(avctx, AV_LOG_ERROR, "alpha bits should be 0, 8 or 16\n");
            return AVERROR(EINVAL);
        }
        avctx->bits_per_coded_sample = 32;
    } else {
        ctx->alpha_bits = 0;
    }

    ctx->chroma_factor = avctx->pix_fmt == AV_PIX_FMT_YUV422P10
                         ? CFACTOR_Y422
                         : CFACTOR_Y444;
    ctx->profile_info  = prores_profile_info + ctx->profile;
    ctx->num_planes    = 3 + !!ctx->alpha_bits;

    ctx->mb_width      = FFALIGN(avctx->width,  16) >> 4;

    if (interlaced)
        ctx->mb_height = FFALIGN(avctx->height, 32) >> 5;
    else
        ctx->mb_height = FFALIGN(avctx->height, 16) >> 4;

    ctx->slices_width  = ctx->mb_width / mps;
    ctx->slices_width += av_popcount(ctx->mb_width - ctx->slices_width * mps);
    ctx->slices_per_picture = ctx->mb_height * ctx->slices_width;
    ctx->pictures_per_frame = 1 + interlaced;

    if (ctx->quant_sel == -1)
        ctx->quant_mat = prores_quant_matrices[ctx->profile_info->quant];
    else
        ctx->quant_mat = prores_quant_matrices[ctx->quant_sel];

    if (strlen(ctx->vendor) != 4) {
        av_log(avctx, AV_LOG_ERROR, "vendor ID should be 4 bytes\n");
        return AVERROR_INVALIDDATA;
    }

    ctx->force_quant = avctx->global_quality / FF_QP2LAMBDA;
    if (!ctx->force_quant) {
        if (!ctx->bits_per_mb) {
            for (i = 0; i < NUM_MB_LIMITS - 1; i++)
                if (prores_mb_limits[i] >= ctx->mb_width * ctx->mb_height *
                                           ctx->pictures_per_frame)
                    break;
            ctx->bits_per_mb   = ctx->profile_info->br_tab[i];
        } else if (ctx->bits_per_mb < 128) {
            av_log(avctx, AV_LOG_ERROR, "too few bits per MB, please set at least 128\n");
            return AVERROR_INVALIDDATA;
        }

        min_quant = ctx->profile_info->min_quant;
        max_quant = ctx->profile_info->max_quant;
        for (i = min_quant; i < MAX_STORED_Q; i++) {
            for (j = 0; j < 64; j++)
                ctx->quants[i][j] = ctx->quant_mat[j] * i;
        }

        ctx->slice_q = av_malloc(ctx->slices_per_picture * sizeof(*ctx->slice_q));
        if (!ctx->slice_q) {
            encode_close(avctx);
            return AVERROR(ENOMEM);
        }

        ctx->tdata = av_mallocz(avctx->thread_count * sizeof(*ctx->tdata));
        if (!ctx->tdata) {
            encode_close(avctx);
            return AVERROR(ENOMEM);
        }

        for (j = 0; j < avctx->thread_count; j++) {
            ctx->tdata[j].nodes = av_malloc((ctx->slices_width + 1)
                                            * TRELLIS_WIDTH
                                            * sizeof(*ctx->tdata->nodes));
            if (!ctx->tdata[j].nodes) {
                encode_close(avctx);
                return AVERROR(ENOMEM);
            }
            for (i = min_quant; i < max_quant + 2; i++) {
                ctx->tdata[j].nodes[i].prev_node = -1;
                ctx->tdata[j].nodes[i].bits      = 0;
                ctx->tdata[j].nodes[i].score     = 0;
            }
        }
    } else {
        int ls = 0;

        if (ctx->force_quant > 64) {
            av_log(avctx, AV_LOG_ERROR, "too large quantiser, maximum is 64\n");
            return AVERROR_INVALIDDATA;
        }

        for (j = 0; j < 64; j++) {
            ctx->quants[0][j] = ctx->quant_mat[j] * ctx->force_quant;
            ls += av_log2((1 << 11)  / ctx->quants[0][j]) * 2 + 1;
        }

        ctx->bits_per_mb = ls * 8;
        if (ctx->chroma_factor == CFACTOR_Y444)
            ctx->bits_per_mb += ls * 4;
    }

    ctx->frame_size_upper_bound = (ctx->pictures_per_frame *
                                   ctx->slices_per_picture + 1) *
                                  (2 + 2 * ctx->num_planes +
                                   (mps * ctx->bits_per_mb) / 8)
                                  + 200;

    if (ctx->alpha_bits) {
         // The alpha plane is run-coded and might exceed the bit budget.
         ctx->frame_size_upper_bound += (ctx->pictures_per_frame *
                                         ctx->slices_per_picture + 1) *
         /* num pixels per slice */     (ctx->mbs_per_slice * 256 *
         /* bits per pixel */            (1 + ctx->alpha_bits + 1) + 7 >> 3);
    }

    avctx->codec_tag   = ctx->profile_info->tag;

    av_log(avctx, AV_LOG_DEBUG,
           "profile %d, %d slices, interlacing: %s, %d bits per MB\n",
           ctx->profile, ctx->slices_per_picture * ctx->pictures_per_frame,
           interlaced ? "yes" : "no", ctx->bits_per_mb);
    av_log(avctx, AV_LOG_DEBUG, "frame size upper bound: %d\n",
           ctx->frame_size_upper_bound);

    return 0;
}

#define OFFSET(x) offsetof(ProresContext, x)
#define VE     AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM

static const AVOption options[] = {
    { "mbs_per_slice", "macroblocks per slice", OFFSET(mbs_per_slice),
        AV_OPT_TYPE_INT, { .i64 = 8 }, 1, MAX_MBS_PER_SLICE, VE },
    { "profile",       NULL, OFFSET(profile), AV_OPT_TYPE_INT,
        { .i64 = PRORES_PROFILE_AUTO },
        PRORES_PROFILE_AUTO, PRORES_PROFILE_4444, VE, "profile" },
    { "auto",         NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_AUTO },
        0, 0, VE, "profile" },
    { "proxy",         NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_PROXY },
        0, 0, VE, "profile" },
    { "lt",            NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_LT },
        0, 0, VE, "profile" },
    { "standard",      NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_STANDARD },
        0, 0, VE, "profile" },
    { "hq",            NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_HQ },
        0, 0, VE, "profile" },
    { "4444",          NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PRORES_PROFILE_4444 },
        0, 0, VE, "profile" },
    { "vendor", "vendor ID", OFFSET(vendor),
        AV_OPT_TYPE_STRING, { .str = "Lavc" }, CHAR_MIN, CHAR_MAX, VE },
    { "bits_per_mb", "desired bits per macroblock", OFFSET(bits_per_mb),
        AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 8192, VE },
    { "quant_mat", "quantiser matrix", OFFSET(quant_sel), AV_OPT_TYPE_INT,
        { .i64 = -1 }, -1, QUANT_MAT_DEFAULT, VE, "quant_mat" },
    { "auto",          NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1 },
        0, 0, VE, "quant_mat" },
    { "proxy",         NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_PROXY },
        0, 0, VE, "quant_mat" },
    { "lt",            NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_LT },
        0, 0, VE, "quant_mat" },
    { "standard",      NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_STANDARD },
        0, 0, VE, "quant_mat" },
    { "hq",            NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_HQ },
        0, 0, VE, "quant_mat" },
    { "default",       NULL, 0, AV_OPT_TYPE_CONST, { .i64 = QUANT_MAT_DEFAULT },
        0, 0, VE, "quant_mat" },
    { "alpha_bits", "bits for alpha plane", OFFSET(alpha_bits), AV_OPT_TYPE_INT,
        { .i64 = 16 }, 0, 16, VE },
    { NULL }
};

static const AVClass proresenc_class = {
    .class_name = "ProRes encoder",
    .item_name  = av_default_item_name,
    .option     = options,
    .version    = LIBAVUTIL_VERSION_INT,
};

AVCodec ff_prores_ks_encoder = {
    .name           = "prores_ks",
    .long_name      = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"),
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = AV_CODEC_ID_PRORES,
    .priv_data_size = sizeof(ProresContext),
    .init           = encode_init,
    .close          = encode_close,
    .encode2        = encode_frame,
    .capabilities   = CODEC_CAP_SLICE_THREADS,
    .pix_fmts       = (const enum AVPixelFormat[]) {
                          AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
                          AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_NONE
                      },
    .priv_class     = &proresenc_class,
};