aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/ppc/mpegvideo_altivec.c
blob: f564aa3c37f40c9f1b8ef53ecd168789019b5919 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
/*
 * Copyright (c) 2002 Dieter Shirley
 *
 * dct_unquantize_h263_altivec:
 * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <stdlib.h>
#include <stdio.h>
#include "dsputil.h"
#include "mpegvideo.h"

#include "gcc_fixes.h"

#include "dsputil_altivec.h"

// Swaps two variables (used for altivec registers)
#define SWAP(a,b) \
do { \
    __typeof__(a) swap_temp=a; \
    a=b; \
    b=swap_temp; \
} while (0)

// transposes a matrix consisting of four vectors with four elements each
#define TRANSPOSE4(a,b,c,d) \
do { \
  __typeof__(a) _trans_ach = vec_mergeh(a, c); \
  __typeof__(a) _trans_acl = vec_mergel(a, c); \
  __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
  __typeof__(a) _trans_bdl = vec_mergel(b, d); \
 \
  a = vec_mergeh(_trans_ach, _trans_bdh); \
  b = vec_mergel(_trans_ach, _trans_bdh); \
  c = vec_mergeh(_trans_acl, _trans_bdl); \
  d = vec_mergel(_trans_acl, _trans_bdl); \
} while (0)


// Loads a four-byte value (int or float) from the target address
// into every element in the target vector.  Only works if the
// target address is four-byte aligned (which should be always).
#define LOAD4(vec, address) \
{ \
    __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
    vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
    vec = vec_ld(0, _load_addr); \
    vec = vec_perm(vec, vec, _perm_vec); \
    vec = vec_splat(vec, 0); \
}


#ifdef CONFIG_DARWIN
#define FOUROF(a) (a)
#else
// slower, for dumb non-apple GCC
#define FOUROF(a) {a,a,a,a}
#endif
int dct_quantize_altivec(MpegEncContext* s,
                        DCTELEM* data, int n,
                        int qscale, int* overflow)
{
    int lastNonZero;
    vector float row0, row1, row2, row3, row4, row5, row6, row7;
    vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
    const_vector float zero = (const_vector float)FOUROF(0.);
    // used after quantise step
    int oldBaseValue = 0;

    // Load the data into the row/alt vectors
    {
        vector signed short data0, data1, data2, data3, data4, data5, data6, data7;

        data0 = vec_ld(0, data);
        data1 = vec_ld(16, data);
        data2 = vec_ld(32, data);
        data3 = vec_ld(48, data);
        data4 = vec_ld(64, data);
        data5 = vec_ld(80, data);
        data6 = vec_ld(96, data);
        data7 = vec_ld(112, data);

        // Transpose the data before we start
        TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);

        // load the data into floating point vectors.  We load
        // the high half of each row into the main row vectors
        // and the low half into the alt vectors.
        row0 = vec_ctf(vec_unpackh(data0), 0);
        alt0 = vec_ctf(vec_unpackl(data0), 0);
        row1 = vec_ctf(vec_unpackh(data1), 0);
        alt1 = vec_ctf(vec_unpackl(data1), 0);
        row2 = vec_ctf(vec_unpackh(data2), 0);
        alt2 = vec_ctf(vec_unpackl(data2), 0);
        row3 = vec_ctf(vec_unpackh(data3), 0);
        alt3 = vec_ctf(vec_unpackl(data3), 0);
        row4 = vec_ctf(vec_unpackh(data4), 0);
        alt4 = vec_ctf(vec_unpackl(data4), 0);
        row5 = vec_ctf(vec_unpackh(data5), 0);
        alt5 = vec_ctf(vec_unpackl(data5), 0);
        row6 = vec_ctf(vec_unpackh(data6), 0);
        alt6 = vec_ctf(vec_unpackl(data6), 0);
        row7 = vec_ctf(vec_unpackh(data7), 0);
        alt7 = vec_ctf(vec_unpackl(data7), 0);
    }

    // The following block could exist as a separate an altivec dct
                // function.  However, if we put it inline, the DCT data can remain
                // in the vector local variables, as floats, which we'll use during the
                // quantize step...
    {
        const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
        const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
        const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
        const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
        const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
        const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
        const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
        const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
        const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
        const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
        const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
        const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);


        int whichPass, whichHalf;

        for(whichPass = 1; whichPass<=2; whichPass++)
        {
            for(whichHalf = 1; whichHalf<=2; whichHalf++)
            {
                vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
                vector float tmp10, tmp11, tmp12, tmp13;
                vector float z1, z2, z3, z4, z5;

                tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
                tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
                tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
                tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
                tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
                tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
                tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
                tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];

                tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
                tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
                tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
                tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;


                // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
                row0 = vec_add(tmp10, tmp11);

                // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
                row4 = vec_sub(tmp10, tmp11);


                // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
                z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);

                // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
                //                                CONST_BITS-PASS1_BITS);
                row2 = vec_madd(tmp13, vec_0_765366865, z1);

                // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
                //                                CONST_BITS-PASS1_BITS);
                row6 = vec_madd(tmp12, vec_1_847759065, z1);

                z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
                z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
                z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
                z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;

                // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
                z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);

                // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
                z3 = vec_madd(z3, vec_1_961570560, z5);

                // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
                z4 = vec_madd(z4, vec_0_390180644, z5);

                // The following adds are rolled into the multiplies above
                // z3 = vec_add(z3, z5);  // z3 += z5;
                // z4 = vec_add(z4, z5);  // z4 += z5;

                // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
                // Wow!  It's actually more effecient to roll this multiply
                // into the adds below, even thought the multiply gets done twice!
                // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);

                // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
                // Same with this one...
                // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);

                // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
                // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
                row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));

                // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
                // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
                row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));

                // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
                // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
                row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));

                // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
                // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
                row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));

                // Swap the row values with the alts.  If this is the first half,
                // this sets up the low values to be acted on in the second half.
                // If this is the second half, it puts the high values back in
                // the row values where they are expected to be when we're done.
                SWAP(row0, alt0);
                SWAP(row1, alt1);
                SWAP(row2, alt2);
                SWAP(row3, alt3);
                SWAP(row4, alt4);
                SWAP(row5, alt5);
                SWAP(row6, alt6);
                SWAP(row7, alt7);
            }

            if (whichPass == 1)
            {
                // transpose the data for the second pass

                // First, block transpose the upper right with lower left.
                SWAP(row4, alt0);
                SWAP(row5, alt1);
                SWAP(row6, alt2);
                SWAP(row7, alt3);

                // Now, transpose each block of four
                TRANSPOSE4(row0, row1, row2, row3);
                TRANSPOSE4(row4, row5, row6, row7);
                TRANSPOSE4(alt0, alt1, alt2, alt3);
                TRANSPOSE4(alt4, alt5, alt6, alt7);
            }
        }
    }

    // perform the quantise step, using the floating point data
    // still in the row/alt registers
    {
        const int* biasAddr;
        const vector signed int* qmat;
        vector float bias, negBias;

        if (s->mb_intra)
        {
            vector signed int baseVector;

            // We must cache element 0 in the intra case
            // (it needs special handling).
            baseVector = vec_cts(vec_splat(row0, 0), 0);
            vec_ste(baseVector, 0, &oldBaseValue);

            qmat = (vector signed int*)s->q_intra_matrix[qscale];
            biasAddr = &(s->intra_quant_bias);
        }
        else
        {
            qmat = (vector signed int*)s->q_inter_matrix[qscale];
            biasAddr = &(s->inter_quant_bias);
        }

        // Load the bias vector (We add 0.5 to the bias so that we're
                                // rounding when we convert to int, instead of flooring.)
        {
            vector signed int biasInt;
            const vector float negOneFloat = (vector float)FOUROF(-1.0f);
            LOAD4(biasInt, biasAddr);
            bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
            negBias = vec_madd(bias, negOneFloat, zero);
        }

        {
            vector float q0, q1, q2, q3, q4, q5, q6, q7;

            q0 = vec_ctf(qmat[0], QMAT_SHIFT);
            q1 = vec_ctf(qmat[2], QMAT_SHIFT);
            q2 = vec_ctf(qmat[4], QMAT_SHIFT);
            q3 = vec_ctf(qmat[6], QMAT_SHIFT);
            q4 = vec_ctf(qmat[8], QMAT_SHIFT);
            q5 = vec_ctf(qmat[10], QMAT_SHIFT);
            q6 = vec_ctf(qmat[12], QMAT_SHIFT);
            q7 = vec_ctf(qmat[14], QMAT_SHIFT);

            row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
                    vec_cmpgt(row0, zero));
            row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
                    vec_cmpgt(row1, zero));
            row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
                    vec_cmpgt(row2, zero));
            row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
                    vec_cmpgt(row3, zero));
            row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
                    vec_cmpgt(row4, zero));
            row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
                    vec_cmpgt(row5, zero));
            row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
                    vec_cmpgt(row6, zero));
            row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
                    vec_cmpgt(row7, zero));

            q0 = vec_ctf(qmat[1], QMAT_SHIFT);
            q1 = vec_ctf(qmat[3], QMAT_SHIFT);
            q2 = vec_ctf(qmat[5], QMAT_SHIFT);
            q3 = vec_ctf(qmat[7], QMAT_SHIFT);
            q4 = vec_ctf(qmat[9], QMAT_SHIFT);
            q5 = vec_ctf(qmat[11], QMAT_SHIFT);
            q6 = vec_ctf(qmat[13], QMAT_SHIFT);
            q7 = vec_ctf(qmat[15], QMAT_SHIFT);

            alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
                    vec_cmpgt(alt0, zero));
            alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
                    vec_cmpgt(alt1, zero));
            alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
                    vec_cmpgt(alt2, zero));
            alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
                    vec_cmpgt(alt3, zero));
            alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
                    vec_cmpgt(alt4, zero));
            alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
                    vec_cmpgt(alt5, zero));
            alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
                    vec_cmpgt(alt6, zero));
            alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
                    vec_cmpgt(alt7, zero));
        }


    }

    // Store the data back into the original block
    {
        vector signed short data0, data1, data2, data3, data4, data5, data6, data7;

        data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
        data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
        data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
        data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
        data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
        data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
        data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
        data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));

        {
            // Clamp for overflow
            vector signed int max_q_int, min_q_int;
            vector signed short max_q, min_q;

            LOAD4(max_q_int, &(s->max_qcoeff));
            LOAD4(min_q_int, &(s->min_qcoeff));

            max_q = vec_pack(max_q_int, max_q_int);
            min_q = vec_pack(min_q_int, min_q_int);

            data0 = vec_max(vec_min(data0, max_q), min_q);
            data1 = vec_max(vec_min(data1, max_q), min_q);
            data2 = vec_max(vec_min(data2, max_q), min_q);
            data4 = vec_max(vec_min(data4, max_q), min_q);
            data5 = vec_max(vec_min(data5, max_q), min_q);
            data6 = vec_max(vec_min(data6, max_q), min_q);
            data7 = vec_max(vec_min(data7, max_q), min_q);
        }

        {
        vector bool char zero_01, zero_23, zero_45, zero_67;
        vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67;
        vector signed char negOne = vec_splat_s8(-1);
        vector signed char* scanPtr =
                (vector signed char*)(s->intra_scantable.inverse);
        signed char lastNonZeroChar;

        // Determine the largest non-zero index.
        zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
                vec_cmpeq(data1, (vector signed short)zero));
        zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
                vec_cmpeq(data3, (vector signed short)zero));
        zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
                vec_cmpeq(data5, (vector signed short)zero));
        zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
                vec_cmpeq(data7, (vector signed short)zero));

        // 64 biggest values
        scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01);
        scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23);
        scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45);
        scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67);

        // 32 largest values
        scanIndices_01 = vec_max(scanIndices_01, scanIndices_23);
        scanIndices_45 = vec_max(scanIndices_45, scanIndices_67);

        // 16 largest values
        scanIndices_01 = vec_max(scanIndices_01, scanIndices_45);

        // 8 largest values
        scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
                vec_mergel(scanIndices_01, negOne));

        // 4 largest values
        scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
                vec_mergel(scanIndices_01, negOne));

        // 2 largest values
        scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
                vec_mergel(scanIndices_01, negOne));

        // largest value
        scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
                vec_mergel(scanIndices_01, negOne));

        scanIndices_01 = vec_splat(scanIndices_01, 0);


        vec_ste(scanIndices_01, 0, &lastNonZeroChar);

        lastNonZero = lastNonZeroChar;

        // While the data is still in vectors we check for the transpose IDCT permute
        // and handle it using the vector unit if we can.  This is the permute used
        // by the altivec idct, so it is common when using the altivec dct.

        if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM))
        {
            TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
        }

        vec_st(data0, 0, data);
        vec_st(data1, 16, data);
        vec_st(data2, 32, data);
        vec_st(data3, 48, data);
        vec_st(data4, 64, data);
        vec_st(data5, 80, data);
        vec_st(data6, 96, data);
        vec_st(data7, 112, data);
        }
    }

    // special handling of block[0]
    if (s->mb_intra)
    {
        if (!s->h263_aic)
        {
            if (n < 4)
                oldBaseValue /= s->y_dc_scale;
            else
                oldBaseValue /= s->c_dc_scale;
        }

        // Divide by 8, rounding the result
        data[0] = (oldBaseValue + 4) >> 3;
    }

    // We handled the tranpose permutation above and we don't
    // need to permute the "no" permutation case.
    if ((lastNonZero > 0) &&
        (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
        (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM))
    {
        ff_block_permute(data, s->dsp.idct_permutation,
                s->intra_scantable.scantable, lastNonZero);
    }

    return lastNonZero;
}
#undef FOUROF

/*
  AltiVec version of dct_unquantize_h263
  this code assumes `block' is 16 bytes-aligned
*/
void dct_unquantize_h263_altivec(MpegEncContext *s,
                                 DCTELEM *block, int n, int qscale)
{
POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
    int i, level, qmul, qadd;
    int nCoeffs;

    assert(s->block_last_index[n]>=0);

POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);

    qadd = (qscale - 1) | 1;
    qmul = qscale << 1;

    if (s->mb_intra) {
        if (!s->h263_aic) {
            if (n < 4)
                block[0] = block[0] * s->y_dc_scale;
            else
                block[0] = block[0] * s->c_dc_scale;
        }else
            qadd = 0;
        i = 1;
        nCoeffs= 63; //does not always use zigzag table
    } else {
        i = 0;
        nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
    }

    {
      register const_vector signed short vczero = (const_vector signed short)vec_splat_s16(0);
      short __attribute__ ((aligned(16))) qmul8[] =
          {
            qmul, qmul, qmul, qmul,
            qmul, qmul, qmul, qmul
          };
      short __attribute__ ((aligned(16))) qadd8[] =
          {
            qadd, qadd, qadd, qadd,
            qadd, qadd, qadd, qadd
          };
      short __attribute__ ((aligned(16))) nqadd8[] =
          {
            -qadd, -qadd, -qadd, -qadd,
            -qadd, -qadd, -qadd, -qadd
          };
      register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
      register vector bool short blockv_null, blockv_neg;
      register short backup_0 = block[0];
      register int j = 0;

      qmulv = vec_ld(0, qmul8);
      qaddv = vec_ld(0, qadd8);
      nqaddv = vec_ld(0, nqadd8);

#if 0 // block *is* 16 bytes-aligned, it seems.
      // first make sure block[j] is 16 bytes-aligned
      for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
        level = block[j];
        if (level) {
          if (level < 0) {
                level = level * qmul - qadd;
            } else {
                level = level * qmul + qadd;
            }
            block[j] = level;
        }
      }
#endif

      // vectorize all the 16 bytes-aligned blocks
      // of 8 elements
      for(; (j + 7) <= nCoeffs ; j+=8)
      {
        blockv = vec_ld(j << 1, block);
        blockv_neg = vec_cmplt(blockv, vczero);
        blockv_null = vec_cmpeq(blockv, vczero);
        // choose between +qadd or -qadd as the third operand
        temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
        // multiply & add (block{i,i+7} * qmul [+-] qadd)
        temp1 = vec_mladd(blockv, qmulv, temp1);
        // put 0 where block[{i,i+7} used to have 0
        blockv = vec_sel(temp1, blockv, blockv_null);
        vec_st(blockv, j << 1, block);
      }

      // if nCoeffs isn't a multiple of 8, finish the job
      // using good old scalar units.
      // (we could do it using a truncated vector,
      // but I'm not sure it's worth the hassle)
      for(; j <= nCoeffs ; j++) {
        level = block[j];
        if (level) {
          if (level < 0) {
                level = level * qmul - qadd;
            } else {
                level = level * qmul + qadd;
            }
            block[j] = level;
        }
      }

      if (i == 1)
      { // cheat. this avoid special-casing the first iteration
        block[0] = backup_0;
      }
    }
POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
}