aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/opus_pvq.c
blob: 0dbf14184d11e863dd7b4c2fd94e4865b70eff44 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
/*
 * Copyright (c) 2007-2008 CSIRO
 * Copyright (c) 2007-2009 Xiph.Org Foundation
 * Copyright (c) 2008-2009 Gregory Maxwell
 * Copyright (c) 2012 Andrew D'Addesio
 * Copyright (c) 2013-2014 Mozilla Corporation
 * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "opustab.h"
#include "opus_pvq.h"

#define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))

static inline int16_t celt_cos(int16_t x)
{
    x = (MUL16(x, x) + 4096) >> 13;
    x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
    return x + 1;
}

static inline int celt_log2tan(int isin, int icos)
{
    int lc, ls;
    lc = opus_ilog(icos);
    ls = opus_ilog(isin);
    icos <<= 15 - lc;
    isin <<= 15 - ls;
    return (ls << 11) - (lc << 11) +
           ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
           ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
}

static inline int celt_bits2pulses(const uint8_t *cache, int bits)
{
    // TODO: Find the size of cache and make it into an array in the parameters list
    int i, low = 0, high;

    high = cache[0];
    bits--;

    for (i = 0; i < 6; i++) {
        int center = (low + high + 1) >> 1;
        if (cache[center] >= bits)
            high = center;
        else
            low = center;
    }

    return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
}

static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
{
    // TODO: Find the size of cache and make it into an array in the parameters list
   return (pulses == 0) ? 0 : cache[pulses] + 1;
}

static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
                                           int N, float g)
{
    int i;
    for (i = 0; i < N; i++)
        X[i] = g * iy[i];
}

static void celt_exp_rotation_impl(float *X, uint32_t len, uint32_t stride,
                                   float c, float s)
{
    float *Xptr;
    int i;

    Xptr = X;
    for (i = 0; i < len - stride; i++) {
        float x1     = Xptr[0];
        float x2     = Xptr[stride];
        Xptr[stride] = c * x2 + s * x1;
        *Xptr++      = c * x1 - s * x2;
    }

    Xptr = &X[len - 2 * stride - 1];
    for (i = len - 2 * stride - 1; i >= 0; i--) {
        float x1     = Xptr[0];
        float x2     = Xptr[stride];
        Xptr[stride] = c * x2 + s * x1;
        *Xptr--      = c * x1 - s * x2;
    }
}

static inline void celt_exp_rotation(float *X, uint32_t len,
                                     uint32_t stride, uint32_t K,
                                     enum CeltSpread spread, const int encode)
{
    uint32_t stride2 = 0;
    float c, s;
    float gain, theta;
    int i;

    if (2*K >= len || spread == CELT_SPREAD_NONE)
        return;

    gain = (float)len / (len + (20 - 5*spread) * K);
    theta = M_PI * gain * gain / 4;

    c = cosf(theta);
    s = sinf(theta);

    if (len >= stride << 3) {
        stride2 = 1;
        /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
        It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
        while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
            stride2++;
    }

    len /= stride;
    for (i = 0; i < stride; i++) {
        if (encode) {
            celt_exp_rotation_impl(X + i * len, len, 1, c, -s);
            if (stride2)
                celt_exp_rotation_impl(X + i * len, len, stride2, s, -c);
        } else {
            if (stride2)
                celt_exp_rotation_impl(X + i * len, len, stride2, s, c);
            celt_exp_rotation_impl(X + i * len, len, 1, c, s);
        }
    }
}

static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B)
{
    int i, j, N0 = N / B;
    uint32_t collapse_mask = 0;

    if (B <= 1)
        return 1;

    for (i = 0; i < B; i++)
        for (j = 0; j < N0; j++)
            collapse_mask |= (!!iy[i*N0+j]) << i;
    return collapse_mask;
}

static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
{
    int i;
    float xp = 0, side = 0;
    float E[2];
    float mid2;
    float gain[2];

    /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
    for (i = 0; i < N; i++) {
        xp   += X[i] * Y[i];
        side += Y[i] * Y[i];
    }

    /* Compensating for the mid normalization */
    xp *= mid;
    mid2 = mid;
    E[0] = mid2 * mid2 + side - 2 * xp;
    E[1] = mid2 * mid2 + side + 2 * xp;
    if (E[0] < 6e-4f || E[1] < 6e-4f) {
        for (i = 0; i < N; i++)
            Y[i] = X[i];
        return;
    }

    gain[0] = 1.0f / sqrtf(E[0]);
    gain[1] = 1.0f / sqrtf(E[1]);

    for (i = 0; i < N; i++) {
        float value[2];
        /* Apply mid scaling (side is already scaled) */
        value[0] = mid * X[i];
        value[1] = Y[i];
        X[i] = gain[0] * (value[0] - value[1]);
        Y[i] = gain[1] * (value[0] + value[1]);
    }
}

static void celt_interleave_hadamard(float *tmp, float *X, int N0,
                                     int stride, int hadamard)
{
    int i, j, N = N0*stride;
    const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30];

    for (i = 0; i < stride; i++)
        for (j = 0; j < N0; j++)
            tmp[j*stride+i] = X[order[i]*N0+j];

    memcpy(X, tmp, N*sizeof(float));
}

static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
                                       int stride, int hadamard)
{
    int i, j, N = N0*stride;
    const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30];

    for (i = 0; i < stride; i++)
        for (j = 0; j < N0; j++)
            tmp[order[i]*N0+j] = X[j*stride+i];

    memcpy(X, tmp, N*sizeof(float));
}

static void celt_haar1(float *X, int N0, int stride)
{
    int i, j;
    N0 >>= 1;
    for (i = 0; i < stride; i++) {
        for (j = 0; j < N0; j++) {
            float x0 = X[stride * (2 * j + 0) + i];
            float x1 = X[stride * (2 * j + 1) + i];
            X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
            X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
        }
    }
}

static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
                                  int stereo)
{
    int qn, qb;
    int N2 = 2 * N - 1;
    if (stereo && N == 2)
        N2--;

    /* The upper limit ensures that in a stereo split with itheta==16384, we'll
     * always have enough bits left over to code at least one pulse in the
     * side; otherwise it would collapse, since it doesn't get folded. */
    qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
    qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
    return qn;
}

/* Convert the quantized vector to an index */
static inline uint32_t celt_icwrsi(uint32_t N, uint32_t K, const int *y)
{
    int i, idx = 0, sum = 0;
    for (i = N - 1; i >= 0; i--) {
        const uint32_t i_s = CELT_PVQ_U(N - i, sum + FFABS(y[i]) + 1);
        idx += CELT_PVQ_U(N - i, sum) + (y[i] < 0)*i_s;
        sum += FFABS(y[i]);
    }
    return idx;
}

// this code was adapted from libopus
static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y)
{
    uint64_t norm = 0;
    uint32_t q, p;
    int s, val;
    int k0;

    while (N > 2) {
        /*Lots of pulses case:*/
        if (K >= N) {
            const uint32_t *row = ff_celt_pvq_u_row[N];

            /* Are the pulses in this dimension negative? */
            p  = row[K + 1];
            s  = -(i >= p);
            i -= p & s;

            /*Count how many pulses were placed in this dimension.*/
            k0 = K;
            q = row[N];
            if (q > i) {
                K = N;
                do {
                    p = ff_celt_pvq_u_row[--K][N];
                } while (p > i);
            } else
                for (p = row[K]; p > i; p = row[K])
                    K--;

            i    -= p;
            val   = (k0 - K + s) ^ s;
            norm += val * val;
            *y++  = val;
        } else { /*Lots of dimensions case:*/
            /*Are there any pulses in this dimension at all?*/
            p = ff_celt_pvq_u_row[K    ][N];
            q = ff_celt_pvq_u_row[K + 1][N];

            if (p <= i && i < q) {
                i -= p;
                *y++ = 0;
            } else {
                /*Are the pulses in this dimension negative?*/
                s  = -(i >= q);
                i -= q & s;

                /*Count how many pulses were placed in this dimension.*/
                k0 = K;
                do p = ff_celt_pvq_u_row[--K][N];
                while (p > i);

                i    -= p;
                val   = (k0 - K + s) ^ s;
                norm += val * val;
                *y++  = val;
            }
        }
        N--;
    }

    /* N == 2 */
    p  = 2 * K + 1;
    s  = -(i >= p);
    i -= p & s;
    k0 = K;
    K  = (i + 1) / 2;

    if (K)
        i -= 2 * K - 1;

    val   = (k0 - K + s) ^ s;
    norm += val * val;
    *y++  = val;

    /* N==1 */
    s     = -i;
    val   = (K + s) ^ s;
    norm += val * val;
    *y    = val;

    return norm;
}

static inline void celt_encode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
{
    ff_opus_rc_enc_uint(rc, celt_icwrsi(N, K, y), CELT_PVQ_V(N, K));
}

static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
{
    const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
    return celt_cwrsi(N, K, idx, y);
}

/*
 * Faster than libopus's search, operates entirely in the signed domain.
 * Slightly worse/better depending on N, K and the input vector.
 */
static float ppp_pvq_search_c(float *X, int *y, int K, int N)
{
    int i, y_norm = 0;
    float res = 0.0f, xy_norm = 0.0f;

    for (i = 0; i < N; i++)
        res += FFABS(X[i]);

    res = K/(res + FLT_EPSILON);

    for (i = 0; i < N; i++) {
        y[i] = lrintf(res*X[i]);
        y_norm  += y[i]*y[i];
        xy_norm += y[i]*X[i];
        K -= FFABS(y[i]);
    }

    while (K) {
        int max_idx = 0, phase = FFSIGN(K);
        float max_num = 0.0f;
        float max_den = 1.0f;
        y_norm += 1.0f;

        for (i = 0; i < N; i++) {
            /* If the sum has been overshot and the best place has 0 pulses allocated
             * to it, attempting to decrease it further will actually increase the
             * sum. Prevent this by disregarding any 0 positions when decrementing. */
            const int ca = 1 ^ ((y[i] == 0) & (phase < 0));
            const int y_new = y_norm  + 2*phase*FFABS(y[i]);
            float xy_new = xy_norm + 1*phase*FFABS(X[i]);
            xy_new = xy_new * xy_new;
            if (ca && (max_den*xy_new) > (y_new*max_num)) {
                max_den = y_new;
                max_num = xy_new;
                max_idx = i;
            }
        }

        K -= phase;

        phase *= FFSIGN(X[max_idx]);
        xy_norm += 1*phase*X[max_idx];
        y_norm  += 2*phase*y[max_idx];
        y[max_idx] += phase;
    }

    return (float)y_norm;
}

static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
                               enum CeltSpread spread, uint32_t blocks, float gain,
                               CeltPVQ *pvq)
{
    int *y = pvq->qcoeff;

    celt_exp_rotation(X, N, blocks, K, spread, 1);
    gain /= sqrtf(pvq->pvq_search(X, y, K, N));
    celt_encode_pulses(rc, y,  N, K);
    celt_normalize_residual(y, X, N, gain);
    celt_exp_rotation(X, N, blocks, K, spread, 0);
    return celt_extract_collapse_mask(y, N, blocks);
}

/** Decode pulse vector and combine the result with the pitch vector to produce
    the final normalised signal in the current band. */
static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
                                 enum CeltSpread spread, uint32_t blocks, float gain,
                                 CeltPVQ *pvq)
{
    int *y = pvq->qcoeff;

    gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
    celt_normalize_residual(y, X, N, gain);
    celt_exp_rotation(X, N, blocks, K, spread, 0);
    return celt_extract_collapse_mask(y, N, blocks);
}

static int celt_calc_theta(const float *X, const float *Y, int coupling, int N)
{
    int i;
    float e[2] = { 0.0f, 0.0f };
    if (coupling) { /* Coupling case */
        for (i = 0; i < N; i++) {
            e[0] += (X[i] + Y[i])*(X[i] + Y[i]);
            e[1] += (X[i] - Y[i])*(X[i] - Y[i]);
        }
    } else {
        for (i = 0; i < N; i++) {
            e[0] += X[i]*X[i];
            e[1] += Y[i]*Y[i];
        }
    }
    return lrintf(32768.0f*atan2f(sqrtf(e[1]), sqrtf(e[0]))/M_PI);
}

static void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, int N)
{
    int i;
    const float energy_n = 1.0f/(sqrtf(e_l*e_l + e_r*e_r) + FLT_EPSILON);
    e_l *= energy_n;
    e_r *= energy_n;
    for (i = 0; i < N; i++)
        X[i] = e_l*X[i] + e_r*Y[i];
}

static void celt_stereo_ms_decouple(float *X, float *Y, int N)
{
    int i;
    for (i = 0; i < N; i++) {
        const float Xret = X[i];
        X[i] = (X[i] + Y[i])*M_SQRT1_2;
        Y[i] = (Y[i] - Xret)*M_SQRT1_2;
    }
}

static av_always_inline uint32_t quant_band_template(CeltPVQ *pvq, CeltFrame *f,
                                                     OpusRangeCoder *rc,
                                                     const int band, float *X,
                                                     float *Y, int N, int b,
                                                     uint32_t blocks, float *lowband,
                                                     int duration, float *lowband_out,
                                                     int level, float gain,
                                                     float *lowband_scratch,
                                                     int fill, int quant)
{
    int i;
    const uint8_t *cache;
    int stereo = !!Y, split = stereo;
    int imid = 0, iside = 0;
    uint32_t N0 = N;
    int N_B = N / blocks;
    int N_B0 = N_B;
    int B0 = blocks;
    int time_divide = 0;
    int recombine = 0;
    int inv = 0;
    float mid = 0, side = 0;
    int longblocks = (B0 == 1);
    uint32_t cm = 0;

    if (N == 1) {
        float *x = X;
        for (i = 0; i <= stereo; i++) {
            int sign = 0;
            if (f->remaining2 >= 1 << 3) {
                if (quant) {
                    sign = x[0] < 0;
                    ff_opus_rc_put_raw(rc, sign, 1);
                } else {
                    sign = ff_opus_rc_get_raw(rc, 1);
                }
                f->remaining2 -= 1 << 3;
            }
            x[0] = 1.0f - 2.0f*sign;
            x = Y;
        }
        if (lowband_out)
            lowband_out[0] = X[0];
        return 1;
    }

    if (!stereo && level == 0) {
        int tf_change = f->tf_change[band];
        int k;
        if (tf_change > 0)
            recombine = tf_change;
        /* Band recombining to increase frequency resolution */

        if (lowband &&
            (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
            for (i = 0; i < N; i++)
                lowband_scratch[i] = lowband[i];
            lowband = lowband_scratch;
        }

        for (k = 0; k < recombine; k++) {
            if (quant || lowband)
                celt_haar1(quant ? X : lowband, N >> k, 1 << k);
            fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
        }
        blocks >>= recombine;
        N_B <<= recombine;

        /* Increasing the time resolution */
        while ((N_B & 1) == 0 && tf_change < 0) {
            if (quant || lowband)
                celt_haar1(quant ? X : lowband, N_B, blocks);
            fill |= fill << blocks;
            blocks <<= 1;
            N_B >>= 1;
            time_divide++;
            tf_change++;
        }
        B0 = blocks;
        N_B0 = N_B;

        /* Reorganize the samples in time order instead of frequency order */
        if (B0 > 1 && (quant || lowband))
            celt_deinterleave_hadamard(pvq->hadamard_tmp, quant ? X : lowband,
                                       N_B >> recombine, B0 << recombine,
                                       longblocks);
    }

    /* If we need 1.5 more bit than we can produce, split the band in two. */
    cache = ff_celt_cache_bits +
            ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
    if (!stereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
        N >>= 1;
        Y = X + N;
        split = 1;
        duration -= 1;
        if (blocks == 1)
            fill = (fill & 1) | (fill << 1);
        blocks = (blocks + 1) >> 1;
    }

    if (split) {
        int qn;
        int itheta = quant ? celt_calc_theta(X, Y, stereo, N) : 0;
        int mbits, sbits, delta;
        int qalloc;
        int pulse_cap;
        int offset;
        int orig_fill;
        int tell;

        /* Decide on the resolution to give to the split parameter theta */
        pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
        offset = (pulse_cap >> 1) - (stereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
                                                          CELT_QTHETA_OFFSET);
        qn = (stereo && band >= f->intensity_stereo) ? 1 :
             celt_compute_qn(N, b, offset, pulse_cap, stereo);
        tell = opus_rc_tell_frac(rc);
        if (qn != 1) {
            if (quant)
                itheta = (itheta*qn + 8192) >> 14;
            /* Entropy coding of the angle. We use a uniform pdf for the
             * time split, a step for stereo, and a triangular one for the rest. */
            if (quant) {
                if (stereo && N > 2)
                    ff_opus_rc_enc_uint_step(rc, itheta, qn / 2);
                else if (stereo || B0 > 1)
                    ff_opus_rc_enc_uint(rc, itheta, qn + 1);
                else
                    ff_opus_rc_enc_uint_tri(rc, itheta, qn);
                itheta = itheta * 16384 / qn;
                if (stereo) {
                    if (itheta == 0)
                        celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
                                                f->block[1].lin_energy[band], N);
                    else
                        celt_stereo_ms_decouple(X, Y, N);
                }
            } else {
                if (stereo && N > 2)
                    itheta = ff_opus_rc_dec_uint_step(rc, qn / 2);
                else if (stereo || B0 > 1)
                    itheta = ff_opus_rc_dec_uint(rc, qn+1);
                else
                    itheta = ff_opus_rc_dec_uint_tri(rc, qn);
                itheta = itheta * 16384 / qn;
            }
        } else if (stereo) {
            if (quant) {
                inv = itheta > 8192;
                 if (inv) {
                    for (i = 0; i < N; i++)
                       Y[i] *= -1;
                 }
                 celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
                                         f->block[1].lin_energy[band], N);

                if (b > 2 << 3 && f->remaining2 > 2 << 3) {
                    ff_opus_rc_enc_log(rc, inv, 2);
                } else {
                    inv = 0;
                }
            } else {
                inv = (b > 2 << 3 && f->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0;
                inv = f->apply_phase_inv ? inv : 0;
            }
            itheta = 0;
        }
        qalloc = opus_rc_tell_frac(rc) - tell;
        b -= qalloc;

        orig_fill = fill;
        if (itheta == 0) {
            imid = 32767;
            iside = 0;
            fill = av_mod_uintp2(fill, blocks);
            delta = -16384;
        } else if (itheta == 16384) {
            imid = 0;
            iside = 32767;
            fill &= ((1 << blocks) - 1) << blocks;
            delta = 16384;
        } else {
            imid = celt_cos(itheta);
            iside = celt_cos(16384-itheta);
            /* This is the mid vs side allocation that minimizes squared error
            in that band. */
            delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
        }

        mid  = imid  / 32768.0f;
        side = iside / 32768.0f;

        /* This is a special case for N=2 that only works for stereo and takes
        advantage of the fact that mid and side are orthogonal to encode
        the side with just one bit. */
        if (N == 2 && stereo) {
            int c;
            int sign = 0;
            float tmp;
            float *x2, *y2;
            mbits = b;
            /* Only need one bit for the side */
            sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
            mbits -= sbits;
            c = (itheta > 8192);
            f->remaining2 -= qalloc+sbits;

            x2 = c ? Y : X;
            y2 = c ? X : Y;
            if (sbits) {
                if (quant) {
                    sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
                    ff_opus_rc_put_raw(rc, sign, 1);
                } else {
                    sign = ff_opus_rc_get_raw(rc, 1);
                }
            }
            sign = 1 - 2 * sign;
            /* We use orig_fill here because we want to fold the side, but if
            itheta==16384, we'll have cleared the low bits of fill. */
            cm = pvq->quant_band(pvq, f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration,
                                 lowband_out, level, gain, lowband_scratch, orig_fill);
            /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
            and there's no need to worry about mixing with the other channel. */
            y2[0] = -sign * x2[1];
            y2[1] =  sign * x2[0];
            X[0] *= mid;
            X[1] *= mid;
            Y[0] *= side;
            Y[1] *= side;
            tmp = X[0];
            X[0] = tmp - Y[0];
            Y[0] = tmp + Y[0];
            tmp = X[1];
            X[1] = tmp - Y[1];
            Y[1] = tmp + Y[1];
        } else {
            /* "Normal" split code */
            float *next_lowband2     = NULL;
            float *next_lowband_out1 = NULL;
            int next_level = 0;
            int rebalance;
            uint32_t cmt;

            /* Give more bits to low-energy MDCTs than they would
             * otherwise deserve */
            if (B0 > 1 && !stereo && (itheta & 0x3fff)) {
                if (itheta > 8192)
                    /* Rough approximation for pre-echo masking */
                    delta -= delta >> (4 - duration);
                else
                    /* Corresponds to a forward-masking slope of
                     * 1.5 dB per 10 ms */
                    delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
            }
            mbits = av_clip((b - delta) / 2, 0, b);
            sbits = b - mbits;
            f->remaining2 -= qalloc;

            if (lowband && !stereo)
                next_lowband2 = lowband + N; /* >32-bit split case */

            /* Only stereo needs to pass on lowband_out.
             * Otherwise, it's handled at the end */
            if (stereo)
                next_lowband_out1 = lowband_out;
            else
                next_level = level + 1;

            rebalance = f->remaining2;
            if (mbits >= sbits) {
                /* In stereo mode, we do not apply a scaling to the mid
                 * because we need the normalized mid for folding later */
                cm = pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks,
                                     lowband, duration, next_lowband_out1, next_level,
                                     stereo ? 1.0f : (gain * mid), lowband_scratch, fill);
                rebalance = mbits - (rebalance - f->remaining2);
                if (rebalance > 3 << 3 && itheta != 0)
                    sbits += rebalance - (3 << 3);

                /* For a stereo split, the high bits of fill are always zero,
                 * so no folding will be done to the side. */
                cmt = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks,
                                      next_lowband2, duration, NULL, next_level,
                                      gain * side, NULL, fill >> blocks);
                cm |= cmt << ((B0 >> 1) & (stereo - 1));
            } else {
                /* For a stereo split, the high bits of fill are always zero,
                 * so no folding will be done to the side. */
                cm = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks,
                                     next_lowband2, duration, NULL, next_level,
                                     gain * side, NULL, fill >> blocks);
                cm <<= ((B0 >> 1) & (stereo - 1));
                rebalance = sbits - (rebalance - f->remaining2);
                if (rebalance > 3 << 3 && itheta != 16384)
                    mbits += rebalance - (3 << 3);

                /* In stereo mode, we do not apply a scaling to the mid because
                 * we need the normalized mid for folding later */
                cm |= pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks,
                                      lowband, duration, next_lowband_out1, next_level,
                                      stereo ? 1.0f : (gain * mid), lowband_scratch, fill);
            }
        }
    } else {
        /* This is the basic no-split case */
        uint32_t q         = celt_bits2pulses(cache, b);
        uint32_t curr_bits = celt_pulses2bits(cache, q);
        f->remaining2 -= curr_bits;

        /* Ensures we can never bust the budget */
        while (f->remaining2 < 0 && q > 0) {
            f->remaining2 += curr_bits;
            curr_bits      = celt_pulses2bits(cache, --q);
            f->remaining2 -= curr_bits;
        }

        if (q != 0) {
            /* Finally do the actual (de)quantization */
            if (quant) {
                cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
                                    f->spread, blocks, gain, pvq);
            } else {
                cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
                                      f->spread, blocks, gain, pvq);
            }
        } else {
            /* If there's no pulse, fill the band anyway */
            uint32_t cm_mask = (1 << blocks) - 1;
            fill &= cm_mask;
            if (fill) {
                if (!lowband) {
                    /* Noise */
                    for (i = 0; i < N; i++)
                        X[i] = (((int32_t)celt_rng(f)) >> 20);
                    cm = cm_mask;
                } else {
                    /* Folded spectrum */
                    for (i = 0; i < N; i++) {
                        /* About 48 dB below the "normal" folding level */
                        X[i] = lowband[i] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
                    }
                    cm = fill;
                }
                celt_renormalize_vector(X, N, gain);
            } else {
                memset(X, 0, N*sizeof(float));
            }
        }
    }

    /* This code is used by the decoder and by the resynthesis-enabled encoder */
    if (stereo) {
        if (N > 2)
            celt_stereo_merge(X, Y, mid, N);
        if (inv) {
            for (i = 0; i < N; i++)
                Y[i] *= -1;
        }
    } else if (level == 0) {
        int k;

        /* Undo the sample reorganization going from time order to frequency order */
        if (B0 > 1)
            celt_interleave_hadamard(pvq->hadamard_tmp, X, N_B >> recombine,
                                     B0 << recombine, longblocks);

        /* Undo time-freq changes that we did earlier */
        N_B = N_B0;
        blocks = B0;
        for (k = 0; k < time_divide; k++) {
            blocks >>= 1;
            N_B <<= 1;
            cm |= cm >> blocks;
            celt_haar1(X, N_B, blocks);
        }

        for (k = 0; k < recombine; k++) {
            cm = ff_celt_bit_deinterleave[cm];
            celt_haar1(X, N0>>k, 1<<k);
        }
        blocks <<= recombine;

        /* Scale output for later folding */
        if (lowband_out) {
            float n = sqrtf(N0);
            for (i = 0; i < N0; i++)
                lowband_out[i] = n * X[i];
        }
        cm = av_mod_uintp2(cm, blocks);
    }

    return cm;
}

static QUANT_FN(pvq_decode_band)
{
#if CONFIG_OPUS_DECODER
    return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
                               lowband_out, level, gain, lowband_scratch, fill, 0);
#else
    return 0;
#endif
}

static QUANT_FN(pvq_encode_band)
{
#if CONFIG_OPUS_ENCODER
    return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
                               lowband_out, level, gain, lowband_scratch, fill, 1);
#else
    return 0;
#endif
}

int av_cold ff_celt_pvq_init(CeltPVQ **pvq, int encode)
{
    CeltPVQ *s = av_malloc(sizeof(CeltPVQ));
    if (!s)
        return AVERROR(ENOMEM);

    s->pvq_search = ppp_pvq_search_c;
    s->quant_band = encode ? pvq_encode_band : pvq_decode_band;

    if (ARCH_X86)
        ff_opus_dsp_init_x86(s);

    *pvq = s;

    return 0;
}

void av_cold ff_celt_pvq_uninit(CeltPVQ **pvq)
{
    av_freep(pvq);
}