aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/lsp.c
blob: ffd2410b48f137816936400507b26d8df739e735 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*
 * LSP routines for ACELP-based codecs
 *
 * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder)
 * Copyright (c) 2008 Vladimir Voroshilov
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <inttypes.h>

#include "avcodec.h"
#define FRAC_BITS 14
#include "mathops.h"
#include "lsp.h"
#include "celp_math.h"

void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order)
{
    int i, j;

    /* sort lsfq in ascending order. float bubble agorithm,
       O(n) if data already sorted, O(n^2) - otherwise */
    for(i=0; i<lp_order-1; i++)
        for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--)
            FFSWAP(int16_t, lsfq[j], lsfq[j+1]);

    for(i=0; i<lp_order; i++)
    {
        lsfq[i] = FFMAX(lsfq[i], lsfq_min);
        lsfq_min = lsfq[i] + lsfq_min_distance;
    }
    lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ?
}

void ff_set_min_dist_lsf(float *lsf, float min_spacing, int size)
{
    int i;
    float prev = 0.0;
    for (i = 0; i < size; i++)
        prev = lsf[i] = FFMAX(lsf[i], prev + min_spacing);
}

void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order)
{
    int i;

    /* Convert LSF to LSP, lsp=cos(lsf) */
    for(i=0; i<lp_order; i++)
        // 20861 = 2.0 / PI in (0.15)
        lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14)
}

/**
 * \brief decodes polynomial coefficients from LSP
 * \param f [out] decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff)
 * \param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff)
 */
static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order)
{
    int i, j;

    f[0] = 0x400000;          // 1.0 in (3.22)
    f[1] = -lsp[0] << 8;      // *2 and (0.15) -> (3.22)

    for(i=2; i<=lp_half_order; i++)
    {
        f[i] = f[i-2];
        for(j=i; j>1; j--)
            f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2];

        f[1] -= lsp[2*i-2] << 8;
    }
}

void ff_acelp_lsp2lpc(int16_t* lp, const int16_t* lsp, int lp_half_order)
{
    int i;
    int f1[lp_half_order+1]; // (3.22)
    int f2[lp_half_order+1]; // (3.22)

    lsp2poly(f1, lsp  , lp_half_order);
    lsp2poly(f2, lsp+1, lp_half_order);

    /* 3.2.6 of G.729, Equations 25 and  26*/
    lp[0] = 4096;
    for(i=1; i<lp_half_order+1; i++)
    {
        int ff1 = f1[i] + f1[i-1]; // (3.22)
        int ff2 = f2[i] - f2[i-1]; // (3.22)

        ff1 += 1 << 10; // for rounding
        lp[i]    = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
        lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
    }
}

void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order)
{
    int16_t lsp_1st[lp_order]; // (0.15)
    int i;

    /* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/
    for(i=0; i<lp_order; i++)
#ifdef G729_BITEXACT
        lsp_1st[i] = (lsp_2nd[i] >> 1) + (lsp_prev[i] >> 1);
#else
        lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1;
#endif

    ff_acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1);

    /* LSP values for second subframe (3.2.5 of G.729)*/
    ff_acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1);
}

/**
 * Computes the Pa / (1 + z(-1)) or Qa / (1 - z(-1)) coefficients
 * needed for LSP to LPC conversion.
 * We only need to calculate the 6 first elements of the polynomial.
 *
 * @param lsp line spectral pairs in cosine domain
 * @param f [out] polynomial input/output as a vector
 *
 * TIA/EIA/IS-733 2.4.3.3.5-1/2
 */
static void lsp2polyf(const double *lsp, double *f, int lp_half_order)
{
    int i, j;

    f[0] = 1.0;
    f[1] = -2 * lsp[0];
    lsp -= 2;
    for(i=2; i<=lp_half_order; i++)
    {
        double val = -2 * lsp[2*i];
        f[i] = val * f[i-1] + 2*f[i-2];
        for(j=i-1; j>1; j--)
            f[j] += f[j-1] * val + f[j-2];
        f[1] += val;
    }
}

void ff_acelp_lspd2lpc(const double *lsp, float *lpc, int lp_half_order)
{
    double pa[MAX_LP_HALF_ORDER+1], qa[MAX_LP_HALF_ORDER+1];
    float *lpc2 = lpc + (lp_half_order << 1) - 1;

    assert(lp_half_order <= MAX_LP_HALF_ORDER);

    lsp2polyf(lsp,     pa, lp_half_order);
    lsp2polyf(lsp + 1, qa, lp_half_order);

    while (lp_half_order--) {
        double paf = pa[lp_half_order+1] + pa[lp_half_order];
        double qaf = qa[lp_half_order+1] - qa[lp_half_order];

        lpc [ lp_half_order] = 0.5*(paf+qaf);
        lpc2[-lp_half_order] = 0.5*(paf-qaf);
    }
}