aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/indeo3.c
blob: 1221ffab181bce6ad0cff2055bbe5085cd1e238e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
/*
 * Indeo Video v3 compatible decoder
 * Copyright (c) 2009 - 2011 Maxim Poliakovski
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * This is a decoder for Intel Indeo Video v3.
 * It is based on vector quantization, run-length coding and motion compensation.
 * Known container formats: .avi and .mov
 * Known FOURCCs: 'IV31', 'IV32'
 *
 * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
 */

#include "libavutil/imgutils.h"
#include "libavutil/intreadwrite.h"
#include "avcodec.h"
#include "dsputil.h"
#include "bytestream.h"
#include "get_bits.h"

#include "indeo3data.h"

/* RLE opcodes. */
enum {
    RLE_ESC_F9    = 249, ///< same as RLE_ESC_FA + do the same with next block
    RLE_ESC_FA    = 250, ///< INTRA: skip block, INTER: copy data from reference
    RLE_ESC_FB    = 251, ///< apply null delta to N blocks / skip N blocks
    RLE_ESC_FC    = 252, ///< same as RLE_ESC_FD + do the same with next block
    RLE_ESC_FD    = 253, ///< apply null delta to all remaining lines of this block
    RLE_ESC_FE    = 254, ///< apply null delta to all lines up to the 3rd line
    RLE_ESC_FF    = 255  ///< apply null delta to all lines up to the 2nd line
};


/* Some constants for parsing frame bitstream flags. */
#define BS_8BIT_PEL     (1 << 1) ///< 8bit pixel bitdepth indicator
#define BS_KEYFRAME     (1 << 2) ///< intra frame indicator
#define BS_MV_Y_HALF    (1 << 4) ///< vertical mv halfpel resolution indicator
#define BS_MV_X_HALF    (1 << 5) ///< horizontal mv halfpel resolution indicator
#define BS_NONREF       (1 << 8) ///< nonref (discardable) frame indicator
#define BS_BUFFER        9       ///< indicates which of two frame buffers should be used


typedef struct Plane {
    uint8_t         *buffers[2];
    uint8_t         *pixels[2]; ///< pointer to the actual pixel data of the buffers above
    uint32_t        width;
    uint32_t        height;
    uint32_t        pitch;
} Plane;

#define CELL_STACK_MAX  20

typedef struct Cell {
    int16_t         xpos;       ///< cell coordinates in 4x4 blocks
    int16_t         ypos;
    int16_t         width;      ///< cell width  in 4x4 blocks
    int16_t         height;     ///< cell height in 4x4 blocks
    uint8_t         tree;       ///< tree id: 0- MC tree, 1 - VQ tree
    const int8_t    *mv_ptr;    ///< ptr to the motion vector if any
} Cell;

typedef struct Indeo3DecodeContext {
    AVCodecContext *avctx;
    AVFrame         frame;
    DSPContext      dsp;

    GetBitContext   gb;
    int             need_resync;
    int             skip_bits;
    const uint8_t   *next_cell_data;
    const uint8_t   *last_byte;
    const int8_t    *mc_vectors;
    unsigned        num_vectors;    ///< number of motion vectors in mc_vectors

    int16_t         width, height;
    uint32_t        frame_num;      ///< current frame number (zero-based)
    uint32_t        data_size;      ///< size of the frame data in bytes
    uint16_t        frame_flags;    ///< frame properties
    uint8_t         cb_offset;      ///< needed for selecting VQ tables
    uint8_t         buf_sel;        ///< active frame buffer: 0 - primary, 1 -secondary
    const uint8_t   *y_data_ptr;
    const uint8_t   *v_data_ptr;
    const uint8_t   *u_data_ptr;
    int32_t         y_data_size;
    int32_t         v_data_size;
    int32_t         u_data_size;
    const uint8_t   *alt_quant;     ///< secondary VQ table set for the modes 1 and 4
    Plane           planes[3];
} Indeo3DecodeContext;


static uint8_t requant_tab[8][128];

/*
 *  Build the static requantization table.
 *  This table is used to remap pixel values according to a specific
 *  quant index and thus avoid overflows while adding deltas.
 */
static av_cold void build_requant_tab(void)
{
    static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
    static int8_t deltas [8] = { 0, 1, 0,  4,  4, 1, 0, 1 };

    int i, j, step;

    for (i = 0; i < 8; i++) {
        step = i + 2;
        for (j = 0; j < 128; j++)
                requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
    }

    /* some last elements calculated above will have values >= 128 */
    /* pixel values shall never exceed 127 so set them to non-overflowing values */
    /* according with the quantization step of the respective section */
    requant_tab[0][127] = 126;
    requant_tab[1][119] = 118;
    requant_tab[1][120] = 118;
    requant_tab[2][126] = 124;
    requant_tab[2][127] = 124;
    requant_tab[6][124] = 120;
    requant_tab[6][125] = 120;
    requant_tab[6][126] = 120;
    requant_tab[6][127] = 120;

    /* Patch for compatibility with the Intel's binary decoders */
    requant_tab[1][7] = 10;
    requant_tab[4][8] = 10;
}


static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
                                          AVCodecContext *avctx)
{
    int p, luma_width, luma_height, chroma_width, chroma_height;
    int luma_pitch, chroma_pitch, luma_size, chroma_size;

    luma_width  = ctx->width;
    luma_height = ctx->height;

    if (luma_width  < 16 || luma_width  > 640 ||
        luma_height < 16 || luma_height > 480 ||
        luma_width  &  3 || luma_height &   3) {
        av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
               luma_width, luma_height);
        return AVERROR_INVALIDDATA;
    }

    chroma_width  = FFALIGN(luma_width  >> 2, 4);
    chroma_height = FFALIGN(luma_height >> 2, 4);

    luma_pitch   = FFALIGN(luma_width,   16);
    chroma_pitch = FFALIGN(chroma_width, 16);

    /* Calculate size of the luminance plane.  */
    /* Add one line more for INTRA prediction. */
    luma_size = luma_pitch * (luma_height + 1);

    /* Calculate size of a chrominance planes. */
    /* Add one line more for INTRA prediction. */
    chroma_size = chroma_pitch * (chroma_height + 1);

    /* allocate frame buffers */
    for (p = 0; p < 3; p++) {
        ctx->planes[p].pitch  = !p ? luma_pitch  : chroma_pitch;
        ctx->planes[p].width  = !p ? luma_width  : chroma_width;
        ctx->planes[p].height = !p ? luma_height : chroma_height;

        ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
        ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);

        /* fill the INTRA prediction lines with the middle pixel value = 64 */
        memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
        memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);

        /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
        ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
        ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
        memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
        memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
    }

    return 0;
}


static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
{
    int p;

    for (p = 0; p < 3; p++) {
        av_freep(&ctx->planes[p].buffers[0]);
        av_freep(&ctx->planes[p].buffers[1]);
    }
}


/**
 *  Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
 *  the cell(x, y) in the current frame.
 *
 *  @param ctx      pointer to the decoder context
 *  @param plane    pointer to the plane descriptor
 *  @param cell     pointer to the cell  descriptor
 */
static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
{
    int     h, w, mv_x, mv_y, offset, offset_dst;
    uint8_t *src, *dst;

    /* setup output and reference pointers */
    offset_dst  = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
    dst         = plane->pixels[ctx->buf_sel] + offset_dst;
    mv_y        = cell->mv_ptr[0];
    mv_x        = cell->mv_ptr[1];
    offset      = offset_dst + mv_y * plane->pitch + mv_x;
    src         = plane->pixels[ctx->buf_sel ^ 1] + offset;

    h = cell->height << 2;

    for (w = cell->width; w > 0;) {
        /* copy using 16xH blocks */
        if (!((cell->xpos << 2) & 15) && w >= 4) {
            for (; w >= 4; src += 16, dst += 16, w -= 4)
                ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
        }

        /* copy using 8xH blocks */
        if (!((cell->xpos << 2) & 7) && w >= 2) {
            ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
            w -= 2;
            src += 8;
            dst += 8;
        }

        if (w >= 1) {
            copy_block4(dst, src, plane->pitch, plane->pitch, h);
            w--;
            src += 4;
            dst += 4;
        }
    }
}


/* Average 4/8 pixels at once without rounding using SWAR */
#define AVG_32(dst, src, ref) \
    AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL)

#define AVG_64(dst, src, ref) \
    AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)


/*
 *  Replicate each even pixel as follows:
 *  ABCDEFGH -> AACCEEGG
 */
static inline uint64_t replicate64(uint64_t a) {
#if HAVE_BIGENDIAN
    a &= 0xFF00FF00FF00FF00ULL;
    a |= a >> 8;
#else
    a &= 0x00FF00FF00FF00FFULL;
    a |= a << 8;
#endif
    return a;
}

static inline uint32_t replicate32(uint32_t a) {
#if HAVE_BIGENDIAN
    a &= 0xFF00FF00UL;
    a |= a >> 8;
#else
    a &= 0x00FF00FFUL;
    a |= a << 8;
#endif
    return a;
}


/* Fill n lines with 64bit pixel value pix */
static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
                           int32_t row_offset)
{
    for (; n > 0; dst += row_offset, n--)
        AV_WN64A(dst, pix);
}


/* Error codes for cell decoding. */
enum {
    IV3_NOERR       = 0,
    IV3_BAD_RLE     = 1,
    IV3_BAD_DATA    = 2,
    IV3_BAD_COUNTER = 3,
    IV3_UNSUPPORTED = 4,
    IV3_OUT_OF_DATA = 5
};


#define BUFFER_PRECHECK \
if (*data_ptr >= last_ptr) \
    return IV3_OUT_OF_DATA; \

#define RLE_BLOCK_COPY \
    if (cell->mv_ptr || !skip_flag) \
        copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)

#define RLE_BLOCK_COPY_8 \
    pix64 = AV_RN64A(ref);\
    if (is_first_row) {/* special prediction case: top line of a cell */\
        pix64 = replicate64(pix64);\
        fill_64(dst + row_offset, pix64, 7, row_offset);\
        AVG_64(dst, ref, dst + row_offset);\
    } else \
        fill_64(dst, pix64, 8, row_offset)

#define RLE_LINES_COPY \
    copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)

#define RLE_LINES_COPY_M10 \
    pix64 = AV_RN64A(ref);\
    if (is_top_of_cell) {\
        pix64 = replicate64(pix64);\
        fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
        AVG_64(dst, ref, dst + row_offset);\
    } else \
        fill_64(dst, pix64, num_lines << 1, row_offset)

#define APPLY_DELTA_4 \
    AV_WN16A(dst + line_offset    ,\
             (AV_RN16A(ref    ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
    AV_WN16A(dst + line_offset + 2,\
             (AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
    if (mode >= 3) {\
        if (is_top_of_cell && !cell->ypos) {\
            AV_COPY32(dst, dst + row_offset);\
        } else {\
            AVG_32(dst, ref, dst + row_offset);\
        }\
    }

#define APPLY_DELTA_8 \
    /* apply two 32-bit VQ deltas to next even line */\
    if (is_top_of_cell) { \
        AV_WN32A(dst + row_offset    , \
                 (replicate32(AV_RN32A(ref    )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
        AV_WN32A(dst + row_offset + 4, \
                 (replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
    } else { \
        AV_WN32A(dst + row_offset    , \
                 (AV_RN32A(ref    ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
        AV_WN32A(dst + row_offset + 4, \
                 (AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
    } \
    /* odd lines are not coded but rather interpolated/replicated */\
    /* first line of the cell on the top of image? - replicate */\
    /* otherwise - interpolate */\
    if (is_top_of_cell && !cell->ypos) {\
        AV_COPY64(dst, dst + row_offset);\
    } else \
        AVG_64(dst, ref, dst + row_offset);


#define APPLY_DELTA_1011_INTER \
    if (mode == 10) { \
        AV_WN32A(dst                 , \
                 (AV_RN32A(dst                 ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
        AV_WN32A(dst + 4             , \
                 (AV_RN32A(dst + 4             ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
        AV_WN32A(dst + row_offset    , \
                 (AV_RN32A(dst + row_offset    ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
        AV_WN32A(dst + row_offset + 4, \
                 (AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
    } else { \
        AV_WN16A(dst                 , \
                 (AV_RN16A(dst                 ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
        AV_WN16A(dst + 2             , \
                 (AV_RN16A(dst + 2             ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
        AV_WN16A(dst + row_offset    , \
                 (AV_RN16A(dst + row_offset    ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
        AV_WN16A(dst + row_offset + 2, \
                 (AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
    }


static int decode_cell_data(Cell *cell, uint8_t *block, uint8_t *ref_block,
                            int pitch, int h_zoom, int v_zoom, int mode,
                            const vqEntry *delta[2], int swap_quads[2],
                            const uint8_t **data_ptr, const uint8_t *last_ptr)
{
    int           x, y, line, num_lines;
    int           rle_blocks = 0;
    uint8_t       code, *dst, *ref;
    const vqEntry *delta_tab;
    unsigned int  dyad1, dyad2;
    uint64_t      pix64;
    int           skip_flag = 0, is_top_of_cell, is_first_row = 1;
    int           row_offset, blk_row_offset, line_offset;

    row_offset     =  pitch;
    blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
    line_offset    = v_zoom ? row_offset : 0;

    for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
        for (x = 0; x < cell->width; x += 1 + h_zoom) {
            ref = ref_block;
            dst = block;

            if (rle_blocks > 0) {
                if (mode <= 4) {
                    RLE_BLOCK_COPY;
                } else if (mode == 10 && !cell->mv_ptr) {
                    RLE_BLOCK_COPY_8;
                }
                rle_blocks--;
            } else {
                for (line = 0; line < 4;) {
                    num_lines = 1;
                    is_top_of_cell = is_first_row && !line;

                    /* select primary VQ table for odd, secondary for even lines */
                    if (mode <= 4)
                        delta_tab = delta[line & 1];
                    else
                        delta_tab = delta[1];
                    BUFFER_PRECHECK;
                    code = bytestream_get_byte(data_ptr);
                    if (code < 248) {
                        if (code < delta_tab->num_dyads) {
                            BUFFER_PRECHECK;
                            dyad1 = bytestream_get_byte(data_ptr);
                            dyad2 = code;
                            if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
                                return IV3_BAD_DATA;
                        } else {
                            /* process QUADS */
                            code -= delta_tab->num_dyads;
                            dyad1 = code / delta_tab->quad_exp;
                            dyad2 = code % delta_tab->quad_exp;
                            if (swap_quads[line & 1])
                                FFSWAP(unsigned int, dyad1, dyad2);
                        }
                        if (mode <= 4) {
                            APPLY_DELTA_4;
                        } else if (mode == 10 && !cell->mv_ptr) {
                            APPLY_DELTA_8;
                        } else {
                            APPLY_DELTA_1011_INTER;
                        }
                    } else {
                        /* process RLE codes */
                        switch (code) {
                        case RLE_ESC_FC:
                            skip_flag  = 0;
                            rle_blocks = 1;
                            code       = 253;
                            /* FALLTHROUGH */
                        case RLE_ESC_FF:
                        case RLE_ESC_FE:
                        case RLE_ESC_FD:
                            num_lines = 257 - code - line;
                            if (num_lines <= 0)
                                return IV3_BAD_RLE;
                            if (mode <= 4) {
                                RLE_LINES_COPY;
                            } else if (mode == 10 && !cell->mv_ptr) {
                                RLE_LINES_COPY_M10;
                            }
                            break;
                        case RLE_ESC_FB:
                            BUFFER_PRECHECK;
                            code = bytestream_get_byte(data_ptr);
                            rle_blocks = (code & 0x1F) - 1; /* set block counter */
                            if (code >= 64 || rle_blocks < 0)
                                return IV3_BAD_COUNTER;
                            skip_flag = code & 0x20;
                            num_lines = 4 - line; /* enforce next block processing */
                            if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
                                if (mode <= 4) {
                                    RLE_LINES_COPY;
                                } else if (mode == 10 && !cell->mv_ptr) {
                                    RLE_LINES_COPY_M10;
                                }
                            }
                            break;
                        case RLE_ESC_F9:
                            skip_flag  = 1;
                            rle_blocks = 1;
                            /* FALLTHROUGH */
                        case RLE_ESC_FA:
                            if (line)
                                return IV3_BAD_RLE;
                            num_lines = 4; /* enforce next block processing */
                            if (cell->mv_ptr) {
                                if (mode <= 4) {
                                    RLE_LINES_COPY;
                                } else if (mode == 10 && !cell->mv_ptr) {
                                    RLE_LINES_COPY_M10;
                                }
                            }
                            break;
                        default:
                            return IV3_UNSUPPORTED;
                        }
                    }

                    line += num_lines;
                    ref  += row_offset * (num_lines << v_zoom);
                    dst  += row_offset * (num_lines << v_zoom);
                }
            }

            /* move to next horizontal block */
            block     += 4 << h_zoom;
            ref_block += 4 << h_zoom;
        }

        /* move to next line of blocks */
        ref_block += blk_row_offset;
        block     += blk_row_offset;
    }
    return IV3_NOERR;
}


/**
 *  Decode a vector-quantized cell.
 *  It consists of several routines, each of which handles one or more "modes"
 *  with which a cell can be encoded.
 *
 *  @param ctx      pointer to the decoder context
 *  @param avctx    ptr to the AVCodecContext
 *  @param plane    pointer to the plane descriptor
 *  @param cell     pointer to the cell  descriptor
 *  @param data_ptr pointer to the compressed data
 *  @param last_ptr pointer to the last byte to catch reads past end of buffer
 *  @return         number of consumed bytes or negative number in case of error
 */
static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
                       Plane *plane, Cell *cell, const uint8_t *data_ptr,
                       const uint8_t *last_ptr)
{
    int           x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
    int           zoom_fac;
    int           offset, error = 0, swap_quads[2];
    uint8_t       code, *block, *ref_block = 0;
    const vqEntry *delta[2];
    const uint8_t *data_start = data_ptr;

    /* get coding mode and VQ table index from the VQ descriptor byte */
    code     = *data_ptr++;
    mode     = code >> 4;
    vq_index = code & 0xF;

    /* setup output and reference pointers */
    offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
    block  =  plane->pixels[ctx->buf_sel] + offset;
    if (!cell->mv_ptr) {
        /* use previous line as reference for INTRA cells */
        ref_block = block - plane->pitch;
    } else if (mode >= 10) {
        /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
        /* so we don't need to do data copying for each RLE code later */
        copy_cell(ctx, plane, cell);
    } else {
        /* set the pointer to the reference pixels for modes 0-4 INTER */
        mv_y      = cell->mv_ptr[0];
        mv_x      = cell->mv_ptr[1];
        offset   += mv_y * plane->pitch + mv_x;
        ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
    }

    /* select VQ tables as follows: */
    /* modes 0 and 3 use only the primary table for all lines in a block */
    /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
    if (mode == 1 || mode == 4) {
        code        = ctx->alt_quant[vq_index];
        prim_indx   = (code >> 4)  + ctx->cb_offset;
        second_indx = (code & 0xF) + ctx->cb_offset;
    } else {
        vq_index += ctx->cb_offset;
        prim_indx = second_indx = vq_index;
    }

    if (prim_indx >= 24 || second_indx >= 24) {
        av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
               prim_indx, second_indx);
        return AVERROR_INVALIDDATA;
    }

    delta[0] = &vq_tab[second_indx];
    delta[1] = &vq_tab[prim_indx];
    swap_quads[0] = second_indx >= 16;
    swap_quads[1] = prim_indx   >= 16;

    /* requantize the prediction if VQ index of this cell differs from VQ index */
    /* of the predicted cell in order to avoid overflows. */
    if (vq_index >= 8 && ref_block) {
        for (x = 0; x < cell->width << 2; x++)
            ref_block[x] = requant_tab[vq_index & 7][ref_block[x]];
    }

    error = IV3_NOERR;

    switch (mode) {
    case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
    case 1:
    case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
    case 4:
        if (mode >= 3 && cell->mv_ptr) {
            av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
            return AVERROR_INVALIDDATA;
        }

        zoom_fac = mode >= 3;
        error = decode_cell_data(cell, block, ref_block, plane->pitch, 0, zoom_fac,
                                 mode, delta, swap_quads, &data_ptr, last_ptr);
        break;
    case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
    case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
        if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
            error = decode_cell_data(cell, block, ref_block, plane->pitch, 1, 1,
                                     mode, delta, swap_quads, &data_ptr, last_ptr);
        } else { /* mode 10 and 11 INTER processing */
            if (mode == 11 && !cell->mv_ptr) {
               av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
               return AVERROR_INVALIDDATA;
            }

            zoom_fac = mode == 10;
            error = decode_cell_data(cell, block, ref_block, plane->pitch,
                                     zoom_fac, 1, mode, delta, swap_quads,
                                     &data_ptr, last_ptr);
        }
        break;
    default:
        av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
        return AVERROR_INVALIDDATA;
    }//switch mode

    switch (error) {
    case IV3_BAD_RLE:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
               mode, data_ptr[-1]);
        return AVERROR_INVALIDDATA;
    case IV3_BAD_DATA:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
        return AVERROR_INVALIDDATA;
    case IV3_BAD_COUNTER:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
        return AVERROR_INVALIDDATA;
    case IV3_UNSUPPORTED:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
        return AVERROR_INVALIDDATA;
    case IV3_OUT_OF_DATA:
        av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
        return AVERROR_INVALIDDATA;
    }

    return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
}


/* Binary tree codes. */
enum {
    H_SPLIT    = 0,
    V_SPLIT    = 1,
    INTRA_NULL = 2,
    INTER_DATA = 3
};


#define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1

#define UPDATE_BITPOS(n) \
    ctx->skip_bits  += (n); \
    ctx->need_resync = 1

#define RESYNC_BITSTREAM \
    if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
        skip_bits_long(&ctx->gb, ctx->skip_bits);              \
        ctx->skip_bits   = 0;                                  \
        ctx->need_resync = 0;                                  \
    }

#define CHECK_CELL \
    if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) ||               \
        curr_cell.ypos + curr_cell.height > (plane->height >> 2)) {             \
        av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n",   \
               curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
        return AVERROR_INVALIDDATA;                                                              \
    }


static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
                         Plane *plane, int code, Cell *ref_cell,
                         const int depth, const int strip_width)
{
    Cell    curr_cell;
    int     bytes_used;

    if (depth <= 0) {
        av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
        return AVERROR_INVALIDDATA; // unwind recursion
    }

    curr_cell = *ref_cell; // clone parent cell
    if (code == H_SPLIT) {
        SPLIT_CELL(ref_cell->height, curr_cell.height);
        ref_cell->ypos   += curr_cell.height;
        ref_cell->height -= curr_cell.height;
        if (ref_cell->height <= 0 || curr_cell.height <= 0)
            return AVERROR_INVALIDDATA;
    } else if (code == V_SPLIT) {
        if (curr_cell.width > strip_width) {
            /* split strip */
            curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
        } else
            SPLIT_CELL(ref_cell->width, curr_cell.width);
        ref_cell->xpos  += curr_cell.width;
        ref_cell->width -= curr_cell.width;
        if (ref_cell->width <= 0 || curr_cell.width <= 0)
            return AVERROR_INVALIDDATA;
    }

    while (1) { /* loop until return */
        RESYNC_BITSTREAM;
        switch (code = get_bits(&ctx->gb, 2)) {
        case H_SPLIT:
        case V_SPLIT:
            if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
                return AVERROR_INVALIDDATA;
            break;
        case INTRA_NULL:
            if (!curr_cell.tree) { /* MC tree INTRA code */
                curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
                curr_cell.tree   = 1; /* enter the VQ tree */
            } else { /* VQ tree NULL code */
                RESYNC_BITSTREAM;
                code = get_bits(&ctx->gb, 2);
                if (code >= 2) {
                    av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
                    return AVERROR_INVALIDDATA;
                }
                if (code == 1)
                    av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");

                CHECK_CELL
                if (!curr_cell.mv_ptr)
                    return AVERROR_INVALIDDATA;
                copy_cell(ctx, plane, &curr_cell);
                return 0;
            }
            break;
        case INTER_DATA:
            if (!curr_cell.tree) { /* MC tree INTER code */
                unsigned mv_idx;
                /* get motion vector index and setup the pointer to the mv set */
                if (!ctx->need_resync)
                    ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
                mv_idx = *(ctx->next_cell_data++);
                if (mv_idx >= ctx->num_vectors) {
                    av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
                    return AVERROR_INVALIDDATA;
                }
                curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
                curr_cell.tree   = 1; /* enter the VQ tree */
                UPDATE_BITPOS(8);
            } else { /* VQ tree DATA code */
                if (!ctx->need_resync)
                    ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];

                CHECK_CELL
                bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
                                         ctx->next_cell_data, ctx->last_byte);
                if (bytes_used < 0)
                    return AVERROR_INVALIDDATA;

                UPDATE_BITPOS(bytes_used << 3);
                ctx->next_cell_data += bytes_used;
                return 0;
            }
            break;
        }
    }//while

    return 0;
}


static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
                        Plane *plane, const uint8_t *data, int32_t data_size,
                        int32_t strip_width)
{
    Cell            curr_cell;
    unsigned        num_vectors;

    /* each plane data starts with mc_vector_count field, */
    /* an optional array of motion vectors followed by the vq data */
    num_vectors = bytestream_get_le32(&data);
    if (num_vectors > 256) {
        av_log(ctx->avctx, AV_LOG_ERROR,
               "Read invalid number of motion vectors %d\n", num_vectors);
        return AVERROR_INVALIDDATA;
    }
    if (num_vectors * 2 >= data_size)
        return AVERROR_INVALIDDATA;

    ctx->num_vectors = num_vectors;
    ctx->mc_vectors  = num_vectors ? data : 0;

    /* init the bitreader */
    init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
    ctx->skip_bits   = 0;
    ctx->need_resync = 0;

    ctx->last_byte = data + data_size - 1;

    /* initialize the 1st cell and set its dimensions to whole plane */
    curr_cell.xpos   = curr_cell.ypos = 0;
    curr_cell.width  = plane->width  >> 2;
    curr_cell.height = plane->height >> 2;
    curr_cell.tree   = 0; // we are in the MC tree now
    curr_cell.mv_ptr = 0; // no motion vector = INTRA cell

    return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
}


#define OS_HDR_ID   MKBETAG('F', 'R', 'M', 'H')

static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
                                const uint8_t *buf, int buf_size)
{
    const uint8_t   *buf_ptr = buf, *bs_hdr;
    uint32_t        frame_num, word2, check_sum, data_size;
    uint32_t        y_offset, u_offset, v_offset, starts[3], ends[3];
    uint16_t        height, width;
    int             i, j;

    /* parse and check the OS header */
    frame_num = bytestream_get_le32(&buf_ptr);
    word2     = bytestream_get_le32(&buf_ptr);
    check_sum = bytestream_get_le32(&buf_ptr);
    data_size = bytestream_get_le32(&buf_ptr);

    if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
        av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
        return AVERROR_INVALIDDATA;
    }

    /* parse the bitstream header */
    bs_hdr = buf_ptr;

    if (bytestream_get_le16(&buf_ptr) != 32) {
        av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
        return AVERROR_INVALIDDATA;
    }

    ctx->frame_num   =  frame_num;
    ctx->frame_flags =  bytestream_get_le16(&buf_ptr);
    ctx->data_size   = (bytestream_get_le32(&buf_ptr) + 7) >> 3;
    ctx->cb_offset   = *buf_ptr++;

    if (ctx->data_size == 16)
        return 4;
    if (ctx->data_size > buf_size)
        ctx->data_size = buf_size;

    buf_ptr += 3; // skip reserved byte and checksum

    /* check frame dimensions */
    height = bytestream_get_le16(&buf_ptr);
    width  = bytestream_get_le16(&buf_ptr);
    if (av_image_check_size(width, height, 0, avctx))
        return AVERROR_INVALIDDATA;

    if (width != ctx->width || height != ctx->height) {
        int res;

        av_dlog(avctx, "Frame dimensions changed!\n");

        ctx->width  = width;
        ctx->height = height;

        free_frame_buffers(ctx);
        if ((res = allocate_frame_buffers(ctx, avctx)) < 0)
             return res;
        avcodec_set_dimensions(avctx, width, height);
    }

    y_offset = bytestream_get_le32(&buf_ptr);
    v_offset = bytestream_get_le32(&buf_ptr);
    u_offset = bytestream_get_le32(&buf_ptr);

    /* unfortunately there is no common order of planes in the buffer */
    /* so we use that sorting algo for determining planes data sizes  */
    starts[0] = y_offset;
    starts[1] = v_offset;
    starts[2] = u_offset;

    for (j = 0; j < 3; j++) {
        ends[j] = ctx->data_size;
        for (i = 2; i >= 0; i--)
            if (starts[i] < ends[j] && starts[i] > starts[j])
                ends[j] = starts[i];
    }

    ctx->y_data_size = ends[0] - starts[0];
    ctx->v_data_size = ends[1] - starts[1];
    ctx->u_data_size = ends[2] - starts[2];
    if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
        FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
        av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
        return AVERROR_INVALIDDATA;
    }

    ctx->y_data_ptr = bs_hdr + y_offset;
    ctx->v_data_ptr = bs_hdr + v_offset;
    ctx->u_data_ptr = bs_hdr + u_offset;
    ctx->alt_quant  = buf_ptr + sizeof(uint32_t);

    if (ctx->data_size == 16) {
        av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
        return 16;
    }

    if (ctx->frame_flags & BS_8BIT_PEL) {
        av_log_ask_for_sample(avctx, "8-bit pixel format\n");
        return AVERROR_PATCHWELCOME;
    }

    if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
        av_log_ask_for_sample(avctx, "halfpel motion vectors\n");
        return AVERROR_PATCHWELCOME;
    }

    return 0;
}


/**
 *  Convert and output the current plane.
 *  All pixel values will be upsampled by shifting right by one bit.
 *
 *  @param[in]  plane        pointer to the descriptor of the plane being processed
 *  @param[in]  buf_sel      indicates which frame buffer the input data stored in
 *  @param[out] dst          pointer to the buffer receiving converted pixels
 *  @param[in]  dst_pitch    pitch for moving to the next y line
 */
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, int dst_pitch)
{
    int             x,y;
    const uint8_t   *src  = plane->pixels[buf_sel];
    uint32_t        pitch = plane->pitch;

    for (y = 0; y < plane->height; y++) {
        /* convert four pixels at once using SWAR */
        for (x = 0; x < plane->width >> 2; x++) {
            AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
            src += 4;
            dst += 4;
        }

        for (x <<= 2; x < plane->width; x++)
            *dst++ = *src++ << 1;

        src += pitch     - plane->width;
        dst += dst_pitch - plane->width;
    }
}


static av_cold int decode_init(AVCodecContext *avctx)
{
    Indeo3DecodeContext *ctx = avctx->priv_data;

    ctx->avctx     = avctx;
    ctx->width     = avctx->width;
    ctx->height    = avctx->height;
    avctx->pix_fmt = PIX_FMT_YUV410P;

    build_requant_tab();

    ff_dsputil_init(&ctx->dsp, avctx);

    allocate_frame_buffers(ctx, avctx);

    return 0;
}


static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
                        AVPacket *avpkt)
{
    Indeo3DecodeContext *ctx = avctx->priv_data;
    const uint8_t *buf = avpkt->data;
    int buf_size       = avpkt->size;
    int res;

    res = decode_frame_headers(ctx, avctx, buf, buf_size);
    if (res < 0)
        return res;

    /* skip sync(null) frames */
    if (res) {
        // we have processed 16 bytes but no data was decoded
        *data_size = 0;
        return buf_size;
    }

    /* skip droppable INTER frames if requested */
    if (ctx->frame_flags & BS_NONREF &&
       (avctx->skip_frame >= AVDISCARD_NONREF))
        return 0;

    /* skip INTER frames if requested */
    if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
        return 0;

    /* use BS_BUFFER flag for buffer switching */
    ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;

    /* decode luma plane */
    if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
        return res;

    /* decode chroma planes */
    if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
        return res;

    if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
        return res;

    if (ctx->frame.data[0])
        avctx->release_buffer(avctx, &ctx->frame);

    ctx->frame.reference = 0;
    if ((res = avctx->get_buffer(avctx, &ctx->frame)) < 0) {
        av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
        return res;
    }

    output_plane(&ctx->planes[0], ctx->buf_sel, ctx->frame.data[0], ctx->frame.linesize[0]);
    output_plane(&ctx->planes[1], ctx->buf_sel, ctx->frame.data[1], ctx->frame.linesize[1]);
    output_plane(&ctx->planes[2], ctx->buf_sel, ctx->frame.data[2], ctx->frame.linesize[2]);

    *data_size      = sizeof(AVFrame);
    *(AVFrame*)data = ctx->frame;

    return buf_size;
}


static av_cold int decode_close(AVCodecContext *avctx)
{
    Indeo3DecodeContext *ctx = avctx->priv_data;

    free_frame_buffers(avctx->priv_data);

    if (ctx->frame.data[0])
        avctx->release_buffer(avctx, &ctx->frame);

    return 0;
}

AVCodec ff_indeo3_decoder = {
    .name           = "indeo3",
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = CODEC_ID_INDEO3,
    .priv_data_size = sizeof(Indeo3DecodeContext),
    .init           = decode_init,
    .close          = decode_close,
    .decode         = decode_frame,
    .long_name      = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
};