1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
|
/*
* IFF PBM/ILBM bitmap decoder
* Copyright (c) 2010 Peter Ross <pross@xvid.org>
* Copyright (c) 2010 Sebastian Vater <cdgs.basty@googlemail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* IFF PBM/ILBM bitmap decoder
*/
#include "libavutil/imgutils.h"
#include "bytestream.h"
#include "avcodec.h"
#include "get_bits.h"
// TODO: masking bits
typedef enum {
MASK_NONE,
MASK_HAS_MASK,
MASK_HAS_TRANSPARENT_COLOR,
MASK_LASSO
} mask_type;
typedef struct {
AVFrame frame;
int planesize;
uint8_t * planebuf;
uint8_t * ham_buf; ///< temporary buffer for planar to chunky conversation
uint32_t *ham_palbuf; ///< HAM decode table
unsigned compression; ///< delta compression method used
unsigned bpp; ///< bits per plane to decode (differs from bits_per_coded_sample if HAM)
unsigned ham; ///< 0 if non-HAM or number of hold bits (6 for bpp > 6, 4 otherwise)
unsigned flags; ///< 1 for EHB, 0 is no extra half darkening
unsigned transparency; ///< TODO: transparency color index in palette
unsigned masking; ///< TODO: masking method used
int init; // 1 if buffer and palette data already initialized, 0 otherwise
} IffContext;
#define LUT8_PART(plane, v) \
AV_LE2NE64C(UINT64_C(0x0000000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010000)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0000100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010100)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0000001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010001)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0000101)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1000101)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x0010101)<<32 | v) << plane, \
AV_LE2NE64C(UINT64_C(0x1010101)<<32 | v) << plane
#define LUT8(plane) { \
LUT8_PART(plane, 0x0000000), \
LUT8_PART(plane, 0x1000000), \
LUT8_PART(plane, 0x0010000), \
LUT8_PART(plane, 0x1010000), \
LUT8_PART(plane, 0x0000100), \
LUT8_PART(plane, 0x1000100), \
LUT8_PART(plane, 0x0010100), \
LUT8_PART(plane, 0x1010100), \
LUT8_PART(plane, 0x0000001), \
LUT8_PART(plane, 0x1000001), \
LUT8_PART(plane, 0x0010001), \
LUT8_PART(plane, 0x1010001), \
LUT8_PART(plane, 0x0000101), \
LUT8_PART(plane, 0x1000101), \
LUT8_PART(plane, 0x0010101), \
LUT8_PART(plane, 0x1010101), \
}
// 8 planes * 8-bit mask
static const uint64_t plane8_lut[8][256] = {
LUT8(0), LUT8(1), LUT8(2), LUT8(3),
LUT8(4), LUT8(5), LUT8(6), LUT8(7),
};
#define LUT32(plane) { \
0, 0, 0, 0, \
0, 0, 0, 1 << plane, \
0, 0, 1 << plane, 0, \
0, 0, 1 << plane, 1 << plane, \
0, 1 << plane, 0, 0, \
0, 1 << plane, 0, 1 << plane, \
0, 1 << plane, 1 << plane, 0, \
0, 1 << plane, 1 << plane, 1 << plane, \
1 << plane, 0, 0, 0, \
1 << plane, 0, 0, 1 << plane, \
1 << plane, 0, 1 << plane, 0, \
1 << plane, 0, 1 << plane, 1 << plane, \
1 << plane, 1 << plane, 0, 0, \
1 << plane, 1 << plane, 0, 1 << plane, \
1 << plane, 1 << plane, 1 << plane, 0, \
1 << plane, 1 << plane, 1 << plane, 1 << plane, \
}
// 32 planes * 4-bit mask * 4 lookup tables each
static const uint32_t plane32_lut[32][16*4] = {
LUT32( 0), LUT32( 1), LUT32( 2), LUT32( 3),
LUT32( 4), LUT32( 5), LUT32( 6), LUT32( 7),
LUT32( 8), LUT32( 9), LUT32(10), LUT32(11),
LUT32(12), LUT32(13), LUT32(14), LUT32(15),
LUT32(16), LUT32(17), LUT32(18), LUT32(19),
LUT32(20), LUT32(21), LUT32(22), LUT32(23),
LUT32(24), LUT32(25), LUT32(26), LUT32(27),
LUT32(28), LUT32(29), LUT32(30), LUT32(31),
};
// Gray to RGB, required for palette table of grayscale images with bpp < 8
static av_always_inline uint32_t gray2rgb(const uint32_t x) {
return x << 16 | x << 8 | x;
}
/**
* Convert CMAP buffer (stored in extradata) to lavc palette format
*/
static int ff_cmap_read_palette(AVCodecContext *avctx, uint32_t *pal)
{
IffContext *s = avctx->priv_data;
int count, i;
const uint8_t *const palette = avctx->extradata + AV_RB16(avctx->extradata);
int palette_size = avctx->extradata_size - AV_RB16(avctx->extradata);
if (avctx->bits_per_coded_sample > 8) {
av_log(avctx, AV_LOG_ERROR, "bit_per_coded_sample > 8 not supported\n");
return AVERROR_INVALIDDATA;
}
count = 1 << avctx->bits_per_coded_sample;
// If extradata is smaller than actually needed, fill the remaining with black.
count = FFMIN(palette_size / 3, count);
if (count) {
for (i=0; i < count; i++) {
pal[i] = 0xFF000000 | AV_RB24(palette + i*3);
}
if (s->flags && count >= 32) { // EHB
for (i = 0; i < 32; i++)
pal[i + 32] = 0xFF000000 | (AV_RB24(palette + i*3) & 0xFEFEFE) >> 1;
}
} else { // Create gray-scale color palette for bps < 8
count = 1 << avctx->bits_per_coded_sample;
for (i=0; i < count; i++) {
pal[i] = 0xFF000000 | gray2rgb((i * 255) >> avctx->bits_per_coded_sample);
}
}
return 0;
}
/**
* Extracts the IFF extra context and updates internal
* decoder structures.
*
* @param avctx the AVCodecContext where to extract extra context to
* @param avpkt the AVPacket to extract extra context from or NULL to use avctx
* @return 0 in case of success, a negative error code otherwise
*/
static int extract_header(AVCodecContext *const avctx,
const AVPacket *const avpkt) {
const uint8_t *buf;
unsigned buf_size;
IffContext *s = avctx->priv_data;
int palette_size = avctx->extradata_size - AV_RB16(avctx->extradata);
if (avpkt) {
int image_size;
if (avpkt->size < 2)
return AVERROR_INVALIDDATA;
image_size = avpkt->size - AV_RB16(avpkt->data);
buf = avpkt->data;
buf_size = bytestream_get_be16(&buf);
if (buf_size <= 1 || image_size <= 1) {
av_log(avctx, AV_LOG_ERROR,
"Invalid image size received: %u -> image data offset: %d\n",
buf_size, image_size);
return AVERROR_INVALIDDATA;
}
} else {
if (avctx->extradata_size < 2)
return AVERROR_INVALIDDATA;
buf = avctx->extradata;
buf_size = bytestream_get_be16(&buf);
if (buf_size <= 1 || palette_size < 0) {
av_log(avctx, AV_LOG_ERROR,
"Invalid palette size received: %u -> palette data offset: %d\n",
buf_size, palette_size);
return AVERROR_INVALIDDATA;
}
}
if (buf_size > 8) {
s->compression = bytestream_get_byte(&buf);
s->bpp = bytestream_get_byte(&buf);
s->ham = bytestream_get_byte(&buf);
s->flags = bytestream_get_byte(&buf);
s->transparency = bytestream_get_be16(&buf);
s->masking = bytestream_get_byte(&buf);
if (s->masking == MASK_HAS_TRANSPARENT_COLOR) {
av_log(avctx, AV_LOG_ERROR, "Transparency not supported\n");
return AVERROR_PATCHWELCOME;
} else if (s->masking != MASK_NONE) {
av_log(avctx, AV_LOG_ERROR, "Masking not supported\n");
return AVERROR_PATCHWELCOME;
}
if (!s->bpp || s->bpp > 32) {
av_log(avctx, AV_LOG_ERROR, "Invalid number of bitplanes: %u\n", s->bpp);
return AVERROR_INVALIDDATA;
} else if (s->ham >= 8) {
av_log(avctx, AV_LOG_ERROR, "Invalid number of hold bits for HAM: %u\n", s->ham);
return AVERROR_INVALIDDATA;
}
av_freep(&s->ham_buf);
av_freep(&s->ham_palbuf);
if (s->ham) {
int i, count = FFMIN(palette_size / 3, 1 << s->ham);
const uint8_t *const palette = avctx->extradata + AV_RB16(avctx->extradata);
s->ham_buf = av_malloc((s->planesize * 8) + FF_INPUT_BUFFER_PADDING_SIZE);
if (!s->ham_buf)
return AVERROR(ENOMEM);
s->ham_palbuf = av_malloc((8 * (1 << s->ham) * sizeof (uint32_t)) + FF_INPUT_BUFFER_PADDING_SIZE);
if (!s->ham_palbuf) {
av_freep(&s->ham_buf);
return AVERROR(ENOMEM);
}
if (count) { // HAM with color palette attached
// prefill with black and palette and set HAM take direct value mask to zero
memset(s->ham_palbuf, 0, (1 << s->ham) * 2 * sizeof (uint32_t));
for (i=0; i < count; i++) {
s->ham_palbuf[i*2+1] = AV_RL24(palette + i*3);
}
count = 1 << s->ham;
} else { // HAM with grayscale color palette
count = 1 << s->ham;
for (i=0; i < count; i++) {
s->ham_palbuf[i*2] = 0; // take direct color value from palette
s->ham_palbuf[i*2+1] = av_le2ne32(gray2rgb((i * 255) >> s->ham));
}
}
for (i=0; i < count; i++) {
uint32_t tmp = i << (8 - s->ham);
tmp |= tmp >> s->ham;
s->ham_palbuf[(i+count)*2] = 0x00FFFF; // just modify blue color component
s->ham_palbuf[(i+count*2)*2] = 0xFFFF00; // just modify red color component
s->ham_palbuf[(i+count*3)*2] = 0xFF00FF; // just modify green color component
s->ham_palbuf[(i+count)*2+1] = tmp << 16;
s->ham_palbuf[(i+count*2)*2+1] = tmp;
s->ham_palbuf[(i+count*3)*2+1] = tmp << 8;
}
}
}
return 0;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
IffContext *s = avctx->priv_data;
int err;
if (avctx->bits_per_coded_sample <= 8) {
int palette_size = avctx->extradata_size - AV_RB16(avctx->extradata);
avctx->pix_fmt = (avctx->bits_per_coded_sample < 8) ||
(avctx->extradata_size >= 2 && palette_size) ? PIX_FMT_PAL8 : PIX_FMT_GRAY8;
} else if (avctx->bits_per_coded_sample <= 32) {
avctx->pix_fmt = PIX_FMT_BGR32;
} else {
return AVERROR_INVALIDDATA;
}
if ((err = av_image_check_size(avctx->width, avctx->height, 0, avctx)))
return err;
s->planesize = FFALIGN(avctx->width, 16) >> 3; // Align plane size in bits to word-boundary
s->planebuf = av_malloc(s->planesize + FF_INPUT_BUFFER_PADDING_SIZE);
if (!s->planebuf)
return AVERROR(ENOMEM);
s->bpp = avctx->bits_per_coded_sample;
avcodec_get_frame_defaults(&s->frame);
if ((err = extract_header(avctx, NULL)) < 0)
return err;
s->frame.reference = 3;
return 0;
}
/**
* Decode interleaved plane buffer up to 8bpp
* @param dst Destination buffer
* @param buf Source buffer
* @param buf_size
* @param plane plane number to decode as
*/
static void decodeplane8(uint8_t *dst, const uint8_t *buf, int buf_size, int plane)
{
const uint64_t *lut = plane8_lut[plane];
do {
uint64_t v = AV_RN64A(dst) | lut[*buf++];
AV_WN64A(dst, v);
dst += 8;
} while (--buf_size);
}
/**
* Decode interleaved plane buffer up to 24bpp
* @param dst Destination buffer
* @param buf Source buffer
* @param buf_size
* @param plane plane number to decode as
*/
static void decodeplane32(uint32_t *dst, const uint8_t *buf, int buf_size, int plane)
{
const uint32_t *lut = plane32_lut[plane];
do {
unsigned mask = (*buf >> 2) & ~3;
dst[0] |= lut[mask++];
dst[1] |= lut[mask++];
dst[2] |= lut[mask++];
dst[3] |= lut[mask];
mask = (*buf++ << 2) & 0x3F;
dst[4] |= lut[mask++];
dst[5] |= lut[mask++];
dst[6] |= lut[mask++];
dst[7] |= lut[mask];
dst += 8;
} while (--buf_size);
}
#define DECODE_HAM_PLANE32(x) \
first = buf[x] << 1; \
second = buf[(x)+1] << 1; \
delta &= pal[first++]; \
delta |= pal[first]; \
dst[x] = delta; \
delta &= pal[second++]; \
delta |= pal[second]; \
dst[(x)+1] = delta
/**
* Converts one line of HAM6/8-encoded chunky buffer to 24bpp.
*
* @param dst the destination 24bpp buffer
* @param buf the source 8bpp chunky buffer
* @param pal the HAM decode table
* @param buf_size the plane size in bytes
*/
static void decode_ham_plane32(uint32_t *dst, const uint8_t *buf,
const uint32_t *const pal, unsigned buf_size)
{
uint32_t delta = 0;
do {
uint32_t first, second;
DECODE_HAM_PLANE32(0);
DECODE_HAM_PLANE32(2);
DECODE_HAM_PLANE32(4);
DECODE_HAM_PLANE32(6);
buf += 8;
dst += 8;
} while (--buf_size);
}
/**
* Decode one complete byterun1 encoded line.
*
* @param dst the destination buffer where to store decompressed bitstream
* @param dst_size the destination plane size in bytes
* @param buf the source byterun1 compressed bitstream
* @param buf_end the EOF of source byterun1 compressed bitstream
* @return number of consumed bytes in byterun1 compressed bitstream
*/
static int decode_byterun(uint8_t *dst, int dst_size,
const uint8_t *buf, const uint8_t *const buf_end) {
const uint8_t *const buf_start = buf;
unsigned x;
for (x = 0; x < dst_size && buf < buf_end;) {
unsigned length;
const int8_t value = *buf++;
if (value >= 0) {
length = value + 1;
memcpy(dst + x, buf, FFMIN3(length, dst_size - x, buf_end - buf));
buf += length;
} else if (value > -128) {
length = -value + 1;
memset(dst + x, *buf++, FFMIN(length, dst_size - x));
} else { // noop
continue;
}
x += length;
}
return buf - buf_start;
}
static int decode_frame_ilbm(AVCodecContext *avctx,
void *data, int *data_size,
AVPacket *avpkt)
{
IffContext *s = avctx->priv_data;
const uint8_t *buf = avpkt->size >= 2 ? avpkt->data + AV_RB16(avpkt->data) : NULL;
const int buf_size = avpkt->size >= 2 ? avpkt->size - AV_RB16(avpkt->data) : 0;
const uint8_t *buf_end = buf+buf_size;
int y, plane, res;
if ((res = extract_header(avctx, avpkt)) < 0)
return res;
if (s->init) {
if ((res = avctx->reget_buffer(avctx, &s->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
return res;
}
} else if ((res = avctx->get_buffer(avctx, &s->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return res;
} else if (avctx->bits_per_coded_sample <= 8 && avctx->pix_fmt != PIX_FMT_GRAY8) {
if ((res = ff_cmap_read_palette(avctx, (uint32_t*)s->frame.data[1])) < 0)
return res;
}
s->init = 1;
if (avctx->codec_tag == MKTAG('A','C','B','M')) {
if (avctx->pix_fmt == PIX_FMT_PAL8 || avctx->pix_fmt == PIX_FMT_GRAY8) {
memset(s->frame.data[0], 0, avctx->height * s->frame.linesize[0]);
for (plane = 0; plane < s->bpp; plane++) {
for(y = 0; y < avctx->height && buf < buf_end; y++ ) {
uint8_t *row = &s->frame.data[0][ y*s->frame.linesize[0] ];
decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
}
} else if (s->ham) { // HAM to PIX_FMT_BGR32
memset(s->frame.data[0], 0, avctx->height * s->frame.linesize[0]);
for(y = 0; y < avctx->height; y++) {
uint8_t *row = &s->frame.data[0][y * s->frame.linesize[0]];
memset(s->ham_buf, 0, s->planesize * 8);
for (plane = 0; plane < s->bpp; plane++) {
const uint8_t * start = buf + (plane * avctx->height + y) * s->planesize;
if (start >= buf_end)
break;
decodeplane8(s->ham_buf, start, FFMIN(s->planesize, buf_end - start), plane);
}
decode_ham_plane32((uint32_t *) row, s->ham_buf, s->ham_palbuf, s->planesize);
}
}
} else if (avctx->codec_tag == MKTAG('I','L','B','M')) { // interleaved
if (avctx->pix_fmt == PIX_FMT_PAL8 || avctx->pix_fmt == PIX_FMT_GRAY8) {
for(y = 0; y < avctx->height; y++ ) {
uint8_t *row = &s->frame.data[0][ y*s->frame.linesize[0] ];
memset(row, 0, avctx->width);
for (plane = 0; plane < s->bpp && buf < buf_end; plane++) {
decodeplane8(row, buf, FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
}
} else if (s->ham) { // HAM to PIX_FMT_BGR32
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &s->frame.data[0][ y*s->frame.linesize[0] ];
memset(s->ham_buf, 0, s->planesize * 8);
for (plane = 0; plane < s->bpp && buf < buf_end; plane++) {
decodeplane8(s->ham_buf, buf, FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
decode_ham_plane32((uint32_t *) row, s->ham_buf, s->ham_palbuf, s->planesize);
}
} else { // PIX_FMT_BGR32
for(y = 0; y < avctx->height; y++ ) {
uint8_t *row = &s->frame.data[0][y*s->frame.linesize[0]];
memset(row, 0, avctx->width << 2);
for (plane = 0; plane < s->bpp && buf < buf_end; plane++) {
decodeplane32((uint32_t *) row, buf, FFMIN(s->planesize, buf_end - buf), plane);
buf += s->planesize;
}
}
}
} else if (avctx->pix_fmt == PIX_FMT_PAL8 || avctx->pix_fmt == PIX_FMT_GRAY8) { // IFF-PBM
for(y = 0; y < avctx->height; y++ ) {
uint8_t *row = &s->frame.data[0][y * s->frame.linesize[0]];
memcpy(row, buf, FFMIN(avctx->width, buf_end - buf));
buf += avctx->width + (avctx->width % 2); // padding if odd
}
} else { // IFF-PBM: HAM to PIX_FMT_BGR32
for (y = 0; y < avctx->height; y++) {
uint8_t *row = &s->frame.data[0][ y*s->frame.linesize[0] ];
memcpy(s->ham_buf, buf, FFMIN(avctx->width, buf_end - buf));
buf += avctx->width + (avctx->width & 1); // padding if odd
decode_ham_plane32((uint32_t *) row, s->ham_buf, s->ham_palbuf, avctx->width);
}
}
*data_size = sizeof(AVFrame);
*(AVFrame*)data = s->frame;
return buf_size;
}
static int decode_frame_byterun1(AVCodecContext *avctx,
void *data, int *data_size,
AVPacket *avpkt)
{
IffContext *s = avctx->priv_data;
const uint8_t *buf = avpkt->size >= 2 ? avpkt->data + AV_RB16(avpkt->data) : NULL;
const int buf_size = avpkt->size >= 2 ? avpkt->size - AV_RB16(avpkt->data) : 0;
const uint8_t *buf_end = buf+buf_size;
int y, plane, res;
if ((res = extract_header(avctx, avpkt)) < 0)
return res;
if (s->init) {
if ((res = avctx->reget_buffer(avctx, &s->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
return res;
}
} else if ((res = avctx->get_buffer(avctx, &s->frame)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return res;
} else if (avctx->bits_per_coded_sample <= 8 && avctx->pix_fmt != PIX_FMT_GRAY8) {
if ((res = ff_cmap_read_palette(avctx, (uint32_t*)s->frame.data[1])) < 0)
return res;
}
s->init = 1;
if (avctx->codec_tag == MKTAG('I','L','B','M')) { //interleaved
if (avctx->pix_fmt == PIX_FMT_PAL8 || avctx->pix_fmt == PIX_FMT_GRAY8) {
for(y = 0; y < avctx->height ; y++ ) {
uint8_t *row = &s->frame.data[0][ y*s->frame.linesize[0] ];
memset(row, 0, avctx->width);
for (plane = 0; plane < s->bpp; plane++) {
buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end);
decodeplane8(row, s->planebuf, s->planesize, plane);
}
}
} else if (s->ham) { // HAM to PIX_FMT_BGR32
for (y = 0; y < avctx->height ; y++) {
uint8_t *row = &s->frame.data[0][y*s->frame.linesize[0]];
memset(s->ham_buf, 0, s->planesize * 8);
for (plane = 0; plane < s->bpp; plane++) {
buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end);
decodeplane8(s->ham_buf, s->planebuf, s->planesize, plane);
}
decode_ham_plane32((uint32_t *) row, s->ham_buf, s->ham_palbuf, s->planesize);
}
} else { //PIX_FMT_BGR32
for(y = 0; y < avctx->height ; y++ ) {
uint8_t *row = &s->frame.data[0][y*s->frame.linesize[0]];
memset(row, 0, avctx->width << 2);
for (plane = 0; plane < s->bpp; plane++) {
buf += decode_byterun(s->planebuf, s->planesize, buf, buf_end);
decodeplane32((uint32_t *) row, s->planebuf, s->planesize, plane);
}
}
}
} else if (avctx->pix_fmt == PIX_FMT_PAL8 || avctx->pix_fmt == PIX_FMT_GRAY8) { // IFF-PBM
for(y = 0; y < avctx->height ; y++ ) {
uint8_t *row = &s->frame.data[0][y*s->frame.linesize[0]];
buf += decode_byterun(row, avctx->width, buf, buf_end);
}
} else { // IFF-PBM: HAM to PIX_FMT_BGR32
for (y = 0; y < avctx->height ; y++) {
uint8_t *row = &s->frame.data[0][y*s->frame.linesize[0]];
buf += decode_byterun(s->ham_buf, avctx->width, buf, buf_end);
decode_ham_plane32((uint32_t *) row, s->ham_buf, s->ham_palbuf, avctx->width);
}
}
*data_size = sizeof(AVFrame);
*(AVFrame*)data = s->frame;
return buf_size;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
IffContext *s = avctx->priv_data;
if (s->frame.data[0])
avctx->release_buffer(avctx, &s->frame);
av_freep(&s->planebuf);
av_freep(&s->ham_buf);
av_freep(&s->ham_palbuf);
return 0;
}
AVCodec ff_iff_ilbm_decoder = {
.name = "iff_ilbm",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_IFF_ILBM,
.priv_data_size = sizeof(IffContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame_ilbm,
.capabilities = CODEC_CAP_DR1,
.long_name = NULL_IF_CONFIG_SMALL("IFF ILBM"),
};
AVCodec ff_iff_byterun1_decoder = {
.name = "iff_byterun1",
.type = AVMEDIA_TYPE_VIDEO,
.id = CODEC_ID_IFF_BYTERUN1,
.priv_data_size = sizeof(IffContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame_byterun1,
.capabilities = CODEC_CAP_DR1,
.long_name = NULL_IF_CONFIG_SMALL("IFF ByteRun1"),
};
|