1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
/*
* FFT/MDCT transform with Extended 3DNow! optimizations
* Copyright (c) 2006 Zuxy MENG Jie, Loren Merritt
* Based on fft_sse.c copyright (c) 2002 Fabrice Bellard.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "../dsputil.h"
#include <math.h>
#ifdef HAVE_MM3DNOW
#include <mm3dnow.h>
static const int p1m1[2] __attribute__((aligned(8))) =
{ 0, 1 << 31 };
static const int m1p1[2] __attribute__((aligned(8))) =
{ 1 << 31, 0 };
void ff_fft_calc_3dn2(FFTContext *s, FFTComplex *z)
{
int ln = s->nbits;
int j, np, np2;
int nblocks, nloops;
register FFTComplex *p, *q;
FFTComplex *cptr, *cptr1;
int k;
np = 1 << ln;
/* FEMMS is not a must here but recommended by AMD */
_m_femms();
{
__m64 *r, a0, a1, b0, b1, c;
r = (__m64 *)&z[0];
if (s->inverse)
c = *(__m64 *)m1p1;
else
c = *(__m64 *)p1m1;
j = (np >> 2);
do {
/* do the pass 0 butterfly */
a0 = _m_pfadd(r[0], r[1]);
a1 = _m_pfsub(r[0], r[1]);
/* do the pass 0 butterfly */
b0 = _m_pfadd(r[2], r[3]);
b1 = _m_pfsub(r[2], r[3]);
/* multiply third by -i */
b1 = _m_pswapd(b1);
b1 = _m_pxor(b1, c);
r[0] = _m_pfadd(a0, b0);
r[1] = _m_pfadd(a1, b1);
r[2] = _m_pfsub(a0, b0);
r[3] = _m_pfsub(a1, b1);
r += 4;
} while (--j != 0);
}
/* pass 2 .. ln-1 */
nblocks = np >> 3;
nloops = 1 << 2;
np2 = np >> 1;
cptr1 = s->exptab1;
do {
p = z;
q = z + nloops;
j = nblocks;
do {
cptr = cptr1;
k = nloops >> 1;
do {
__m64 a0, a1, b0, b1, c0, c1, t10, t11, t20, t21;
a0 = *(__m64 *)&p[0];
a1 = *(__m64 *)&p[1];
b0 = *(__m64 *)&q[0];
b1 = *(__m64 *)&q[1];
/* complex mul */
c0 = *(__m64 *)&cptr[0];
c1 = *(__m64 *)&cptr[1];
/* cre*re cim*im */
t10 = _m_pfmul(c0, b0);
t11 = _m_pfmul(c1, b1);
/* no need to access cptr[2] & cptr[3] */
c0 = _m_pswapd(c0);
c1 = _m_pswapd(c1);
/* cim*re cre*im */
t20 = _m_pfmul(c0, b0);
t21 = _m_pfmul(c1, b1);
/* cre*re-cim*im cim*re+cre*im */
b0 = _m_pfpnacc(t10, t20);
b1 = _m_pfpnacc(t11, t21);
/* butterfly */
*(__m64 *)&p[0] = _m_pfadd(a0, b0);
*(__m64 *)&p[1] = _m_pfadd(a1, b1);
*(__m64 *)&q[0] = _m_pfsub(a0, b0);
*(__m64 *)&q[1] = _m_pfsub(a1, b1);
p += 2;
q += 2;
cptr += 4;
} while (--k);
p += nloops;
q += nloops;
} while (--j);
cptr1 += nloops * 2;
nblocks = nblocks >> 1;
nloops = nloops << 1;
} while (nblocks != 0);
_m_femms();
}
#endif
void ff_imdct_calc_3dn2(MDCTContext *s, FFTSample *output,
const FFTSample *input, FFTSample *tmp)
{
long k, n8, n4, n2, n;
const uint16_t *revtab = s->fft.revtab;
const FFTSample *tcos = s->tcos;
const FFTSample *tsin = s->tsin;
const FFTSample *in1, *in2;
FFTComplex *z = (FFTComplex *)tmp;
n = 1 << s->nbits;
n2 = n >> 1;
n4 = n >> 2;
n8 = n >> 3;
/* pre rotation */
in1 = input;
in2 = input + n2 - 1;
for(k = 0; k < n4; k++) {
// FIXME a single block is faster, but gcc 2.95 and 3.4.x on 32bit can't compile it
asm volatile(
"movd %0, %%mm0 \n\t"
"movd %2, %%mm1 \n\t"
"punpckldq %1, %%mm0 \n\t"
"punpckldq %3, %%mm1 \n\t"
"movq %%mm0, %%mm2 \n\t"
"pfmul %%mm1, %%mm0 \n\t"
"pswapd %%mm1, %%mm1 \n\t"
"pfmul %%mm1, %%mm2 \n\t"
"pfpnacc %%mm2, %%mm0 \n\t"
::"m"(in2[-2*k]), "m"(in1[2*k]),
"m"(tcos[k]), "m"(tsin[k])
);
asm volatile(
"movq %%mm0, %0 \n\t"
:"=m"(z[revtab[k]])
);
}
ff_fft_calc(&s->fft, z);
/* post rotation + reordering */
for(k = 0; k < n4; k++) {
asm volatile(
"movq %0, %%mm0 \n\t"
"movd %1, %%mm1 \n\t"
"punpckldq %2, %%mm1 \n\t"
"movq %%mm0, %%mm2 \n\t"
"pfmul %%mm1, %%mm0 \n\t"
"pswapd %%mm1, %%mm1 \n\t"
"pfmul %%mm1, %%mm2 \n\t"
"pfpnacc %%mm2, %%mm0 \n\t"
"movq %%mm0, %0 \n\t"
:"+m"(z[k])
:"m"(tcos[k]), "m"(tsin[k])
);
}
z += n8;
asm volatile("movd %0, %%mm7" ::"r"(1<<31));
for(k = 0; k < n8; k++) {
asm volatile(
"movq %0, %%mm0 \n\t"
"pswapd %1, %%mm1 \n\t"
::"m"(z[k]), "m"(z[-1-k])
);
asm volatile(
"movq %%mm0, %%mm2 \n\t"
"pxor %%mm7, %%mm2 \n\t"
"punpckldq %%mm1, %%mm2 \n\t"
"pswapd %%mm2, %%mm3 \n\t"
"punpckhdq %%mm1, %%mm0 \n\t"
"pswapd %%mm0, %%mm4 \n\t"
"pxor %%mm7, %%mm0 \n\t"
"pxor %%mm7, %%mm4 \n\t"
"movq %%mm0, %0 \n\t" // { -z[n8+k].im, z[n8-1-k].re }
"movq %%mm4, %1 \n\t" // { -z[n8-1-k].re, z[n8+k].im }
"movq %%mm2, %2 \n\t" // { -z[n8+k].re, z[n8-1-k].im }
"movq %%mm3, %3 \n\t" // { z[n8-1-k].im, -z[n8+k].re }
:"=m"(output[2*k]), "=m"(output[n2-2-2*k]),
"=m"(output[n2+2*k]), "=m"(output[n-2-2*k])
::"memory"
);
}
asm volatile("emms");
}
|