1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
|
/*
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* H.264 / AVC / MPEG-4 part10 codec.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#ifndef AVCODEC_H264DEC_H
#define AVCODEC_H264DEC_H
#include "libavutil/buffer.h"
#include "libavutil/mem_internal.h"
#include "cabac.h"
#include "error_resilience.h"
#include "h264_parse.h"
#include "h264_ps.h"
#include "h264_sei.h"
#include "h2645_parse.h"
#include "h264chroma.h"
#include "h264dsp.h"
#include "h264pred.h"
#include "h264qpel.h"
#include "h274.h"
#include "mpegutils.h"
#include "threadframe.h"
#include "videodsp.h"
#define H264_MAX_PICTURE_COUNT 36
/* Compiling in interlaced support reduces the speed
* of progressive decoding by about 2%. */
#define ALLOW_INTERLACE
#define FMO 0
/**
* The maximum number of slices supported by the decoder.
* must be a power of 2
*/
#define MAX_SLICES 32
#ifdef ALLOW_INTERLACE
#define MB_MBAFF(h) (h)->mb_mbaff
#define MB_FIELD(sl) (sl)->mb_field_decoding_flag
#define FRAME_MBAFF(h) (h)->mb_aff_frame
#define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
#define LEFT_MBS 2
#define LTOP 0
#define LBOT 1
#define LEFT(i) (i)
#else
#define MB_MBAFF(h) 0
#define MB_FIELD(sl) 0
#define FRAME_MBAFF(h) 0
#define FIELD_PICTURE(h) 0
#undef IS_INTERLACED
#define IS_INTERLACED(mb_type) 0
#define LEFT_MBS 1
#define LTOP 0
#define LBOT 0
#define LEFT(i) 0
#endif
#define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
#ifndef CABAC
#define CABAC(h) (h)->ps.pps->cabac
#endif
#define CHROMA(h) ((h)->ps.sps->chroma_format_idc)
#define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
#define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
#define IS_REF0(a) ((a) & MB_TYPE_REF0)
#define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
/**
* Memory management control operation.
*/
typedef struct MMCO {
MMCOOpcode opcode;
int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
int long_arg; ///< index, pic_num, or num long refs depending on opcode
} MMCO;
typedef struct H264Picture {
AVFrame *f;
ThreadFrame tf;
AVFrame *f_grain;
AVBufferRef *qscale_table_buf;
int8_t *qscale_table;
AVBufferRef *motion_val_buf[2];
int16_t (*motion_val[2])[2];
AVBufferRef *mb_type_buf;
uint32_t *mb_type;
/// RefStruct reference for hardware accelerator private data
void *hwaccel_picture_private;
AVBufferRef *ref_index_buf[2];
int8_t *ref_index[2];
int field_poc[2]; ///< top/bottom POC
int poc; ///< frame POC
int frame_num; ///< frame_num (raw frame_num from slice header)
int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
not mix pictures before and after MMCO_RESET. */
int pic_id; /**< pic_num (short -> no wrap version of pic_num,
pic_num & max_pic_num; long -> long_pic_num) */
int long_ref; ///< 1->long term reference 0->short term reference
int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice)
int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
int field_picture; ///< whether or not picture was encoded in separate fields
/**
* H264Picture.reference has this flag set,
* when the picture is held for delayed output.
*/
#define DELAYED_PIC_REF (1 << 2)
int reference;
int recovered; ///< picture at IDR or recovery point + recovery count
int invalid_gap;
int sei_recovery_frame_cnt;
int needs_fg; ///< whether picture needs film grain synthesis (see `f_grain`)
const PPS *pps;
int mb_width, mb_height;
int mb_stride;
/* data points to an atomic_int */
AVBufferRef *decode_error_flags;
} H264Picture;
typedef struct H264Ref {
uint8_t *data[3];
int linesize[3];
int reference;
int poc;
int pic_id;
const H264Picture *parent;
} H264Ref;
typedef struct H264SliceContext {
const struct H264Context *h264;
GetBitContext gb;
ERContext *er;
int slice_num;
int slice_type;
int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
int slice_type_fixed;
int qscale;
int chroma_qp[2]; // QPc
int qp_thresh; ///< QP threshold to skip loopfilter
int last_qscale_diff;
// deblock
int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
int slice_alpha_c0_offset;
int slice_beta_offset;
H264PredWeightTable pwt;
int prev_mb_skipped;
int next_mb_skipped;
int chroma_pred_mode;
int intra16x16_pred_mode;
int8_t intra4x4_pred_mode_cache[5 * 8];
int8_t(*intra4x4_pred_mode);
int topleft_mb_xy;
int top_mb_xy;
int topright_mb_xy;
int left_mb_xy[LEFT_MBS];
int topleft_type;
int top_type;
int topright_type;
int left_type[LEFT_MBS];
const uint8_t *left_block;
int topleft_partition;
unsigned int topleft_samples_available;
unsigned int top_samples_available;
unsigned int topright_samples_available;
unsigned int left_samples_available;
ptrdiff_t linesize, uvlinesize;
ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
ptrdiff_t mb_uvlinesize;
int mb_x, mb_y;
int mb_xy;
int resync_mb_x;
int resync_mb_y;
unsigned int first_mb_addr;
// index of the first MB of the next slice
int next_slice_idx;
int mb_skip_run;
int is_complex;
int picture_structure;
int mb_field_decoding_flag;
int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
int redundant_pic_count;
/**
* number of neighbors (top and/or left) that used 8x8 dct
*/
int neighbor_transform_size;
int direct_spatial_mv_pred;
int col_parity;
int col_fieldoff;
int cbp;
int top_cbp;
int left_cbp;
int dist_scale_factor[32];
int dist_scale_factor_field[2][32];
int map_col_to_list0[2][16 + 32];
int map_col_to_list0_field[2][2][16 + 32];
/**
* num_ref_idx_l0/1_active_minus1 + 1
*/
unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
unsigned int list_count;
H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
* Reordered version of default_ref_list
* according to picture reordering in slice header */
struct {
uint8_t op;
uint32_t val;
} ref_modifications[2][32];
int nb_ref_modifications[2];
unsigned int pps_id;
const uint8_t *intra_pcm_ptr;
uint8_t *bipred_scratchpad;
uint8_t *edge_emu_buffer;
uint8_t (*top_borders[2])[(16 * 3) * 2];
int bipred_scratchpad_allocated;
int edge_emu_buffer_allocated;
int top_borders_allocated[2];
/**
* non zero coeff count cache.
* is 64 if not available.
*/
DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
/**
* Motion vector cache.
*/
DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
uint8_t direct_cache[5 * 8];
DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
///< check that i is not too large or ensure that there is some unused stuff after mb
int16_t mb_padding[256 * 2];
uint8_t (*mvd_table[2])[2];
/**
* Cabac
*/
CABACContext cabac;
uint8_t cabac_state[1024];
int cabac_init_idc;
MMCO mmco[H264_MAX_MMCO_COUNT];
int nb_mmco;
int explicit_ref_marking;
int frame_num;
int idr_pic_id;
int poc_lsb;
int delta_poc_bottom;
int delta_poc[2];
int curr_pic_num;
int max_pic_num;
} H264SliceContext;
/**
* H264Context
*/
typedef struct H264Context {
const AVClass *class;
AVCodecContext *avctx;
VideoDSPContext vdsp;
H264DSPContext h264dsp;
H264ChromaContext h264chroma;
H264QpelContext h264qpel;
H274FilmGrainDatabase h274db;
H264Picture DPB[H264_MAX_PICTURE_COUNT];
H264Picture *cur_pic_ptr;
H264Picture cur_pic;
H264Picture last_pic_for_ec;
H264SliceContext *slice_ctx;
int nb_slice_ctx;
int nb_slice_ctx_queued;
H2645Packet pkt;
int pixel_shift; ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
/* coded dimensions -- 16 * mb w/h */
int width, height;
int chroma_x_shift, chroma_y_shift;
int droppable;
int coded_picture_number;
int context_initialized;
int flags;
int workaround_bugs;
int x264_build;
/* Set when slice threading is used and at least one slice uses deblocking
* mode 1 (i.e. across slice boundaries). Then we disable the loop filter
* during normal MB decoding and execute it serially at the end.
*/
int postpone_filter;
/*
* Set to 1 when the current picture is IDR, 0 otherwise.
*/
int picture_idr;
/*
* Set to 1 when the current picture contains only I slices, 0 otherwise.
*/
int picture_intra_only;
int crop_left;
int crop_right;
int crop_top;
int crop_bottom;
int8_t(*intra4x4_pred_mode);
H264PredContext hpc;
uint8_t (*non_zero_count)[48];
#define LIST_NOT_USED -1 // FIXME rename?
/**
* block_offset[ 0..23] for frame macroblocks
* block_offset[24..47] for field macroblocks
*/
int block_offset[2 * (16 * 3)];
uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
uint32_t *mb2br_xy;
int b_stride; // FIXME use s->b4_stride
uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
// interlacing specific flags
int mb_aff_frame;
int picture_structure;
int first_field;
uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
/* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
uint16_t *cbp_table;
/* chroma_pred_mode for i4x4 or i16x16, else 0 */
uint8_t *chroma_pred_mode_table;
uint8_t (*mvd_table[2])[2];
uint8_t *direct_table;
uint8_t scan_padding[16];
uint8_t zigzag_scan[16];
uint8_t zigzag_scan8x8[64];
uint8_t zigzag_scan8x8_cavlc[64];
uint8_t field_scan[16];
uint8_t field_scan8x8[64];
uint8_t field_scan8x8_cavlc[64];
uint8_t zigzag_scan_q0[16];
uint8_t zigzag_scan8x8_q0[64];
uint8_t zigzag_scan8x8_cavlc_q0[64];
uint8_t field_scan_q0[16];
uint8_t field_scan8x8_q0[64];
uint8_t field_scan8x8_cavlc_q0[64];
int mb_y;
int mb_height, mb_width;
int mb_stride;
int mb_num;
// =============================================================
// Things below are not used in the MB or more inner code
int nal_ref_idc;
int nal_unit_type;
int has_slice; ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()
/**
* Used to parse AVC variant of H.264
*/
int is_avc; ///< this flag is != 0 if codec is avc1
int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
int bit_depth_luma; ///< luma bit depth from sps to detect changes
int chroma_format_idc; ///< chroma format from sps to detect changes
H264ParamSets ps;
uint16_t *slice_table_base;
H264POCContext poc;
H264Ref default_ref[2];
H264Picture *short_ref[32];
H264Picture *long_ref[32];
H264Picture *delayed_pic[H264_MAX_DPB_FRAMES + 2]; // FIXME size?
int last_pocs[H264_MAX_DPB_FRAMES];
H264Picture *next_output_pic;
int next_outputed_poc;
int poc_offset; ///< PicOrderCnt_offset from SMPTE RDD-2006
/**
* memory management control operations buffer.
*/
MMCO mmco[H264_MAX_MMCO_COUNT];
int nb_mmco;
int mmco_reset;
int explicit_ref_marking;
int long_ref_count; ///< number of actual long term references
int short_ref_count; ///< number of actual short term references
/**
* @name Members for slice based multithreading
* @{
*/
/**
* current slice number, used to initialize slice_num of each thread/context
*/
int current_slice;
/** @} */
/**
* Complement sei_pic_struct
* SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
* However, soft telecined frames may have these values.
* This is used in an attempt to flag soft telecine progressive.
*/
int prev_interlaced_frame;
/**
* Are the SEI recovery points looking valid.
*/
int valid_recovery_point;
/**
* recovery_frame is the frame_num at which the next frame should
* be fully constructed.
*
* Set to -1 when not expecting a recovery point.
*/
int recovery_frame;
/**
* We have seen an IDR, so all the following frames in coded order are correctly
* decodable.
*/
#define FRAME_RECOVERED_IDR (1 << 0)
/**
* Sufficient number of frames have been decoded since a SEI recovery point,
* so all the following frames in presentation order are correct.
*/
#define FRAME_RECOVERED_SEI (1 << 1)
int frame_recovered; ///< Initial frame has been completely recovered
int has_recovery_point;
int missing_fields;
/* for frame threading, this is set to 1
* after finish_setup() has been called, so we cannot modify
* some context properties (which are supposed to stay constant between
* slices) anymore */
int setup_finished;
int cur_chroma_format_idc;
int cur_bit_depth_luma;
int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
/* original AVCodecContext dimensions, used to handle container
* cropping */
int width_from_caller;
int height_from_caller;
int enable_er;
ERContext er;
int16_t *dc_val_base;
H264SEIContext sei;
AVBufferPool *qscale_table_pool;
AVBufferPool *mb_type_pool;
AVBufferPool *motion_val_pool;
AVBufferPool *ref_index_pool;
AVBufferPool *decode_error_flags_pool;
int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
} H264Context;
extern const uint16_t ff_h264_mb_sizes[4];
/**
* Reconstruct bitstream slice_type.
*/
int ff_h264_get_slice_type(const H264SliceContext *sl);
/**
* Allocate tables.
* needs width/height
*/
int ff_h264_alloc_tables(H264Context *h);
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
void ff_h264_remove_all_refs(H264Context *h);
/**
* Execute the reference picture marking (memory management control operations).
*/
int ff_h264_execute_ref_pic_marking(H264Context *h);
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
const H2645NAL *nal, void *logctx);
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
void ff_h264_decode_init_vlc(void);
/**
* Decode a macroblock
* @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
*/
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
/**
* Decode a CABAC coded macroblock
* @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
*/
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
int *mb_type);
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
unsigned int linesize, unsigned int uvlinesize);
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
unsigned int linesize, unsigned int uvlinesize);
/*
* o-o o-o
* / / /
* o-o o-o
* ,---'
* o-o o-o
* / / /
* o-o o-o
*/
/* Scan8 organization:
* 0 1 2 3 4 5 6 7
* 0 DY y y y y y
* 1 y Y Y Y Y
* 2 y Y Y Y Y
* 3 y Y Y Y Y
* 4 y Y Y Y Y
* 5 DU u u u u u
* 6 u U U U U
* 7 u U U U U
* 8 u U U U U
* 9 u U U U U
* 10 DV v v v v v
* 11 v V V V V
* 12 v V V V V
* 13 v V V V V
* 14 v V V V V
* DY/DU/DV are for luma/chroma DC.
*/
#define LUMA_DC_BLOCK_INDEX 48
#define CHROMA_DC_BLOCK_INDEX 49
/**
* Get the chroma qp.
*/
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
{
return pps->chroma_qp_table[t][qscale];
}
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
int ff_h264_ref_picture(H264Picture *dst, const H264Picture *src);
int ff_h264_replace_picture(H264Picture *dst, const H264Picture *src);
void ff_h264_unref_picture(H264Picture *pic);
void ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
/**
* Submit a slice for decoding.
*
* Parse the slice header, starting a new field/frame if necessary. If any
* slices are queued for the previous field, they are decoded.
*/
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
int ff_h264_execute_decode_slices(H264Context *h);
int ff_h264_update_thread_context(AVCodecContext *dst,
const AVCodecContext *src);
int ff_h264_update_thread_context_for_user(AVCodecContext *dst,
const AVCodecContext *src);
void ff_h264_flush_change(H264Context *h);
void ff_h264_free_tables(H264Context *h);
void ff_h264_set_erpic(ERPicture *dst, const H264Picture *src);
#endif /* AVCODEC_H264DEC_H */
|