aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/fft.c
blob: 19da4830a90a7f418f5a6aa61bcfe22d08d749bf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*
 * FFT/IFFT transforms
 * Copyright (c) 2008 Loren Merritt
 * Copyright (c) 2002 Fabrice Bellard
 * Partly based on libdjbfft by D. J. Bernstein
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * FFT/IFFT transforms.
 */

#include <stdlib.h>
#include <string.h>
#include "libavutil/mathematics.h"
#include "fft.h"
#include "fft-internal.h"

/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
#if !CONFIG_HARDCODED_TABLES
COSTABLE(16);
COSTABLE(32);
COSTABLE(64);
COSTABLE(128);
COSTABLE(256);
COSTABLE(512);
COSTABLE(1024);
COSTABLE(2048);
COSTABLE(4096);
COSTABLE(8192);
COSTABLE(16384);
COSTABLE(32768);
COSTABLE(65536);
#endif
COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = {
    NULL, NULL, NULL, NULL,
    FFT_NAME(ff_cos_16),
    FFT_NAME(ff_cos_32),
    FFT_NAME(ff_cos_64),
    FFT_NAME(ff_cos_128),
    FFT_NAME(ff_cos_256),
    FFT_NAME(ff_cos_512),
    FFT_NAME(ff_cos_1024),
    FFT_NAME(ff_cos_2048),
    FFT_NAME(ff_cos_4096),
    FFT_NAME(ff_cos_8192),
    FFT_NAME(ff_cos_16384),
    FFT_NAME(ff_cos_32768),
    FFT_NAME(ff_cos_65536),
};

static void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
static void ff_fft_calc_c(FFTContext *s, FFTComplex *z);

static int split_radix_permutation(int i, int n, int inverse)
{
    int m;
    if(n <= 2) return i&1;
    m = n >> 1;
    if(!(i&m))            return split_radix_permutation(i, m, inverse)*2;
    m >>= 1;
    if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
    else                  return split_radix_permutation(i, m, inverse)*4 - 1;
}

av_cold void ff_init_ff_cos_tabs(int index)
{
#if !CONFIG_HARDCODED_TABLES
    int i;
    int m = 1<<index;
    double freq = 2*M_PI/m;
    FFTSample *tab = FFT_NAME(ff_cos_tabs)[index];
    for(i=0; i<=m/4; i++)
        tab[i] = FIX15(cos(i*freq));
    for(i=1; i<m/4; i++)
        tab[m/2-i] = tab[i];
#endif
}

av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
{
    int i, j, n;

    if (nbits < 2 || nbits > 16)
        goto fail;
    s->nbits = nbits;
    n = 1 << nbits;

    s->revtab = av_malloc(n * sizeof(uint16_t));
    if (!s->revtab)
        goto fail;
    s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
    if (!s->tmp_buf)
        goto fail;
    s->inverse = inverse;
    s->fft_permutation = FF_FFT_PERM_DEFAULT;

    s->fft_permute = ff_fft_permute_c;
    s->fft_calc    = ff_fft_calc_c;
#if CONFIG_MDCT
    s->imdct_calc  = ff_imdct_calc_c;
    s->imdct_half  = ff_imdct_half_c;
    s->mdct_calc   = ff_mdct_calc_c;
#endif

#if CONFIG_FFT_FLOAT
    if (ARCH_ARM)     ff_fft_init_arm(s);
    if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
    if (HAVE_MMX)     ff_fft_init_mmx(s);
    if (CONFIG_MDCT)  s->mdct_calcw = s->mdct_calc;
#else
    if (CONFIG_MDCT)  s->mdct_calcw = ff_mdct_calcw_c;
#endif

    for(j=4; j<=nbits; j++) {
        ff_init_ff_cos_tabs(j);
    }
    for(i=0; i<n; i++) {
        int j = i;
        if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS)
            j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
        s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = j;
    }

    return 0;
 fail:
    av_freep(&s->revtab);
    av_freep(&s->tmp_buf);
    return -1;
}

static void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
{
    int j, np;
    const uint16_t *revtab = s->revtab;
    np = 1 << s->nbits;
    /* TODO: handle split-radix permute in a more optimal way, probably in-place */
    for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
    memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
}

av_cold void ff_fft_end(FFTContext *s)
{
    av_freep(&s->revtab);
    av_freep(&s->tmp_buf);
}

#define BUTTERFLIES(a0,a1,a2,a3) {\
    BF(t3, t5, t5, t1);\
    BF(a2.re, a0.re, a0.re, t5);\
    BF(a3.im, a1.im, a1.im, t3);\
    BF(t4, t6, t2, t6);\
    BF(a3.re, a1.re, a1.re, t4);\
    BF(a2.im, a0.im, a0.im, t6);\
}

// force loading all the inputs before storing any.
// this is slightly slower for small data, but avoids store->load aliasing
// for addresses separated by large powers of 2.
#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
    FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
    BF(t3, t5, t5, t1);\
    BF(a2.re, a0.re, r0, t5);\
    BF(a3.im, a1.im, i1, t3);\
    BF(t4, t6, t2, t6);\
    BF(a3.re, a1.re, r1, t4);\
    BF(a2.im, a0.im, i0, t6);\
}

#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
    CMUL(t1, t2, a2.re, a2.im, wre, -wim);\
    CMUL(t5, t6, a3.re, a3.im, wre,  wim);\
    BUTTERFLIES(a0,a1,a2,a3)\
}

#define TRANSFORM_ZERO(a0,a1,a2,a3) {\
    t1 = a2.re;\
    t2 = a2.im;\
    t5 = a3.re;\
    t6 = a3.im;\
    BUTTERFLIES(a0,a1,a2,a3)\
}

/* z[0...8n-1], w[1...2n-1] */
#define PASS(name)\
static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
{\
    FFTDouble t1, t2, t3, t4, t5, t6;\
    int o1 = 2*n;\
    int o2 = 4*n;\
    int o3 = 6*n;\
    const FFTSample *wim = wre+o1;\
    n--;\
\
    TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
    TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
    do {\
        z += 2;\
        wre += 2;\
        wim -= 2;\
        TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
        TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
    } while(--n);\
}

PASS(pass)
#undef BUTTERFLIES
#define BUTTERFLIES BUTTERFLIES_BIG
PASS(pass_big)

#define DECL_FFT(n,n2,n4)\
static void fft##n(FFTComplex *z)\
{\
    fft##n2(z);\
    fft##n4(z+n4*2);\
    fft##n4(z+n4*3);\
    pass(z,FFT_NAME(ff_cos_##n),n4/2);\
}

static void fft4(FFTComplex *z)
{
    FFTDouble t1, t2, t3, t4, t5, t6, t7, t8;

    BF(t3, t1, z[0].re, z[1].re);
    BF(t8, t6, z[3].re, z[2].re);
    BF(z[2].re, z[0].re, t1, t6);
    BF(t4, t2, z[0].im, z[1].im);
    BF(t7, t5, z[2].im, z[3].im);
    BF(z[3].im, z[1].im, t4, t8);
    BF(z[3].re, z[1].re, t3, t7);
    BF(z[2].im, z[0].im, t2, t5);
}

static void fft8(FFTComplex *z)
{
    FFTDouble t1, t2, t3, t4, t5, t6;

    fft4(z);

    BF(t1, z[5].re, z[4].re, -z[5].re);
    BF(t2, z[5].im, z[4].im, -z[5].im);
    BF(t5, z[7].re, z[6].re, -z[7].re);
    BF(t6, z[7].im, z[6].im, -z[7].im);

    BUTTERFLIES(z[0],z[2],z[4],z[6]);
    TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
}

#if !CONFIG_SMALL
static void fft16(FFTComplex *z)
{
    FFTDouble t1, t2, t3, t4, t5, t6;
    FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1];
    FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3];

    fft8(z);
    fft4(z+8);
    fft4(z+12);

    TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
    TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
    TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3);
    TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1);
}
#else
DECL_FFT(16,8,4)
#endif
DECL_FFT(32,16,8)
DECL_FFT(64,32,16)
DECL_FFT(128,64,32)
DECL_FFT(256,128,64)
DECL_FFT(512,256,128)
#if !CONFIG_SMALL
#define pass pass_big
#endif
DECL_FFT(1024,512,256)
DECL_FFT(2048,1024,512)
DECL_FFT(4096,2048,1024)
DECL_FFT(8192,4096,2048)
DECL_FFT(16384,8192,4096)
DECL_FFT(32768,16384,8192)
DECL_FFT(65536,32768,16384)

static void (* const fft_dispatch[])(FFTComplex*) = {
    fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
    fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
};

static void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
{
    fft_dispatch[s->nbits-2](z);
}