1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
|
/*
* OpenEXR (.exr) image decoder
* Copyright (c) 2009 Jimmy Christensen
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* OpenEXR decoder
* @author Jimmy Christensen
*
* For more information on the OpenEXR format, visit:
* http://openexr.com/
*
* exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger
*/
#include <zlib.h>
#include "avcodec.h"
#include "bytestream.h"
#include "mathops.h"
#include "thread.h"
#include "libavutil/imgutils.h"
enum ExrCompr {
EXR_RAW = 0,
EXR_RLE = 1,
EXR_ZIP1 = 2,
EXR_ZIP16 = 3,
EXR_PIZ = 4,
EXR_B44 = 6,
EXR_B44A = 7,
};
typedef struct EXRContext {
AVFrame picture;
int compr;
int bits_per_color_id;
int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
uint8_t *uncompressed_data;
int uncompressed_size;
uint8_t *tmp;
int tmp_size;
} EXRContext;
/**
* Converts from 32-bit float as uint32_t to uint16_t
*
* @param v 32-bit float
* @return normalized 16-bit unsigned int
*/
static inline uint16_t exr_flt2uint(uint32_t v)
{
unsigned int exp = v >> 23;
// "HACK": negative values result in exp< 0, so clipping them to 0
// is also handled by this condition, avoids explicit check for sign bit.
if (exp<= 127 + 7 - 24) // we would shift out all bits anyway
return 0;
if (exp >= 127)
return 0xffff;
v &= 0x007fffff;
return (v + (1 << 23)) >> (127 + 7 - exp);
}
/**
* Converts from 16-bit float as uint16_t to uint16_t
*
* @param v 16-bit float
* @return normalized 16-bit unsigned int
*/
static inline uint16_t exr_halflt2uint(uint16_t v)
{
unsigned exp = 14 - (v >> 10);
if (exp >= 14) {
if (exp == 14) return (v >> 9) & 1;
else return (v & 0x8000) ? 0 : 0xffff;
}
v <<= 6;
return (v + (1 << 16)) >> (exp + 1);
}
/**
* Gets the size of the header variable
*
* @param **buf the current pointer location in the header where
* the variable data starts
* @param *buf_end pointer location of the end of the buffer
* @return size of variable data
*/
static unsigned int get_header_variable_length(const uint8_t **buf,
const uint8_t *buf_end)
{
unsigned int variable_buffer_data_size = bytestream_get_le32(buf);
if (variable_buffer_data_size >= buf_end - *buf)
return 0;
return variable_buffer_data_size;
}
/**
* Checks if the variable name corresponds with it's data type
*
* @param *avctx the AVCodecContext
* @param **buf the current pointer location in the header where
* the variable name starts
* @param *buf_end pointer location of the end of the buffer
* @param *value_name name of the varible to check
* @param *value_type type of the varible to check
* @param minimum_length minimum length of the variable data
* @param variable_buffer_data_size variable length read from the header
* after it's checked
* @return negative if variable is invalid
*/
static int check_header_variable(AVCodecContext *avctx,
const uint8_t **buf,
const uint8_t *buf_end,
const char *value_name,
const char *value_type,
unsigned int minimum_length,
unsigned int *variable_buffer_data_size)
{
if (buf_end - *buf >= minimum_length && !strcmp(*buf, value_name)) {
*buf += strlen(value_name)+1;
if (!strcmp(*buf, value_type)) {
*buf += strlen(value_type)+1;
*variable_buffer_data_size = get_header_variable_length(buf, buf_end);
if (!*variable_buffer_data_size)
av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
if (*variable_buffer_data_size > buf_end - *buf)
return -1;
return 1;
}
*buf -= strlen(value_name)+1;
av_log(avctx, AV_LOG_WARNING, "Unknown data type for header variable %s\n", value_name);
}
return -1;
}
static void predictor(uint8_t *src, int size)
{
uint8_t *t = src + 1;
uint8_t *stop = src + size;
while (t < stop) {
int d = (int)t[-1] + (int)t[0] - 128;
t[0] = d;
++t;
}
}
static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
{
const int8_t *t1 = src;
const int8_t *t2 = src + (size + 1) / 2;
int8_t *s = dst;
int8_t *stop = s + size;
while (1) {
if (s < stop)
*(s++) = *(t1++);
else
break;
if (s < stop)
*(s++) = *(t2++);
else
break;
}
}
static int rle_uncompress(const uint8_t *src, int ssize, uint8_t *dst, int dsize)
{
int8_t *d = (int8_t *)dst;
const int8_t *s = (const int8_t *)src;
int8_t *dend = d + dsize;
int count;
while (ssize > 0) {
count = *s++;
if (count < 0) {
count = -count;
if ((dsize -= count ) < 0 ||
(ssize -= count + 1) < 0)
return -1;
while (count--)
*d++ = *s++;
} else {
count++;
if ((dsize -= count) < 0 ||
(ssize -= 2 ) < 0)
return -1;
while (count--)
*d++ = *s;
s++;
}
}
return dend != d;
}
static int decode_frame(AVCodecContext *avctx,
void *data,
int *got_frame,
AVPacket *avpkt)
{
const uint8_t *buf = avpkt->data;
unsigned int buf_size = avpkt->size;
const uint8_t *buf_end = buf + buf_size;
const uint8_t *src;
const AVPixFmtDescriptor *desc;
EXRContext *const s = avctx->priv_data;
AVFrame *picture = data;
AVFrame *const p = &s->picture;
uint8_t *ptr;
int i, x, y, stride, magic_number, version, flags, ret;
int w = 0;
int h = 0;
unsigned int xmin = ~0;
unsigned int xmax = ~0;
unsigned int ymin = ~0;
unsigned int ymax = ~0;
unsigned int xdelta = ~0;
int out_line_size;
int bxmin, axmax;
int scan_lines_per_block;
unsigned long scan_line_size;
unsigned long uncompressed_size;
unsigned int current_channel_offset = 0;
s->channel_offsets[0] = -1;
s->channel_offsets[1] = -1;
s->channel_offsets[2] = -1;
s->channel_offsets[3] = -1;
s->bits_per_color_id = -1;
s->compr = -1;
if (buf_size < 10) {
av_log(avctx, AV_LOG_ERROR, "Too short header to parse\n");
return AVERROR_INVALIDDATA;
}
magic_number = bytestream_get_le32(&buf);
if (magic_number != 20000630) { // As per documentation of OpenEXR it's supposed to be int 20000630 little-endian
av_log(avctx, AV_LOG_ERROR, "Wrong magic number %d\n", magic_number);
return AVERROR_INVALIDDATA;
}
version = bytestream_get_byte(&buf);
if (version != 2) {
av_log(avctx, AV_LOG_ERROR, "Unsupported version %d\n", version);
return AVERROR_PATCHWELCOME;
}
flags = bytestream_get_le24(&buf);
if (flags & 0x2) {
av_log(avctx, AV_LOG_ERROR, "Tile based images are not supported\n");
return AVERROR_PATCHWELCOME;
}
// Parse the header
while (buf < buf_end && buf[0]) {
unsigned int variable_buffer_data_size;
// Process the channel list
if (check_header_variable(avctx, &buf, buf_end, "channels", "chlist", 38, &variable_buffer_data_size) >= 0) {
const uint8_t *channel_list_end;
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
channel_list_end = buf + variable_buffer_data_size;
while (channel_list_end - buf >= 19) {
int current_bits_per_color_id = -1;
int channel_index = -1;
if (!strcmp(buf, "R"))
channel_index = 0;
else if (!strcmp(buf, "G"))
channel_index = 1;
else if (!strcmp(buf, "B"))
channel_index = 2;
else if (!strcmp(buf, "A"))
channel_index = 3;
else
av_log(avctx, AV_LOG_WARNING, "Unsupported channel %.256s\n", buf);
while (bytestream_get_byte(&buf) && buf < channel_list_end)
continue; /* skip */
if (channel_list_end - * &buf < 4) {
av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
return AVERROR_INVALIDDATA;
}
current_bits_per_color_id = bytestream_get_le32(&buf);
if (current_bits_per_color_id > 2) {
av_log(avctx, AV_LOG_ERROR, "Unknown color format\n");
return AVERROR_INVALIDDATA;
}
if (channel_index >= 0) {
if (s->bits_per_color_id != -1 && s->bits_per_color_id != current_bits_per_color_id) {
av_log(avctx, AV_LOG_ERROR, "RGB channels not of the same depth\n");
return AVERROR_INVALIDDATA;
}
s->bits_per_color_id = current_bits_per_color_id;
s->channel_offsets[channel_index] = current_channel_offset;
}
current_channel_offset += 1 << current_bits_per_color_id;
buf += 12;
}
/* Check if all channels are set with an offset or if the channels
* are causing an overflow */
if (FFMIN3(s->channel_offsets[0],
s->channel_offsets[1],
s->channel_offsets[2]) < 0) {
if (s->channel_offsets[0] < 0)
av_log(avctx, AV_LOG_ERROR, "Missing red channel\n");
if (s->channel_offsets[1] < 0)
av_log(avctx, AV_LOG_ERROR, "Missing green channel\n");
if (s->channel_offsets[2] < 0)
av_log(avctx, AV_LOG_ERROR, "Missing blue channel\n");
return AVERROR_INVALIDDATA;
}
buf = channel_list_end;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "dataWindow", "box2i", 31, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
xmin = AV_RL32(buf);
ymin = AV_RL32(buf + 4);
xmax = AV_RL32(buf + 8);
ymax = AV_RL32(buf + 12);
xdelta = (xmax-xmin) + 1;
buf += variable_buffer_data_size;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "displayWindow", "box2i", 34, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
w = AV_RL32(buf + 8) + 1;
h = AV_RL32(buf + 12) + 1;
buf += variable_buffer_data_size;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "lineOrder", "lineOrder", 25, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
if (*buf) {
av_log(avctx, AV_LOG_ERROR, "Doesn't support this line order : %d\n", *buf);
return AVERROR_PATCHWELCOME;
}
buf += variable_buffer_data_size;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "pixelAspectRatio", "float", 31, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
avctx->sample_aspect_ratio = av_d2q(av_int2float(AV_RL32(buf)), 255);
buf += variable_buffer_data_size;
continue;
} else if (check_header_variable(avctx, &buf, buf_end, "compression", "compression", 29, &variable_buffer_data_size) >= 0) {
if (!variable_buffer_data_size)
return AVERROR_INVALIDDATA;
if (s->compr == -1)
s->compr = *buf;
else
av_log(avctx, AV_LOG_WARNING, "Found more than one compression attribute\n");
buf += variable_buffer_data_size;
continue;
}
// Check if there is enough bytes for a header
if (buf_end - buf <= 9) {
av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
return AVERROR_INVALIDDATA;
}
// Process unknown variables
for (i = 0; i < 2; i++) {
// Skip variable name/type
while (++buf < buf_end)
if (buf[0] == 0x0)
break;
}
buf++;
// Skip variable length
if (buf_end - buf >= 5) {
variable_buffer_data_size = get_header_variable_length(&buf, buf_end);
if (!variable_buffer_data_size) {
av_log(avctx, AV_LOG_ERROR, "Incomplete header\n");
return AVERROR_INVALIDDATA;
}
buf += variable_buffer_data_size;
}
}
if (s->compr == -1) {
av_log(avctx, AV_LOG_ERROR, "Missing compression attribute\n");
return AVERROR_INVALIDDATA;
}
if (buf >= buf_end) {
av_log(avctx, AV_LOG_ERROR, "Incomplete frame\n");
return AVERROR_INVALIDDATA;
}
buf++;
switch (s->bits_per_color_id) {
case 2: // 32-bit
case 1: // 16-bit
if (s->channel_offsets[3] >= 0)
avctx->pix_fmt = AV_PIX_FMT_RGBA64;
else
avctx->pix_fmt = AV_PIX_FMT_RGB48;
break;
// 8-bit
case 0:
av_log_missing_feature(avctx, "8-bit OpenEXR", 1);
return AVERROR_PATCHWELCOME;
default:
av_log(avctx, AV_LOG_ERROR, "Unknown color format : %d\n", s->bits_per_color_id);
return AVERROR_INVALIDDATA;
}
switch (s->compr) {
case EXR_RAW:
case EXR_RLE:
case EXR_ZIP1:
scan_lines_per_block = 1;
break;
case EXR_ZIP16:
scan_lines_per_block = 16;
break;
default:
av_log(avctx, AV_LOG_ERROR, "Compression type %d is not supported\n", s->compr);
return AVERROR_PATCHWELCOME;
}
if (s->picture.data[0])
ff_thread_release_buffer(avctx, &s->picture);
if (av_image_check_size(w, h, 0, avctx))
return AVERROR_INVALIDDATA;
// Verify the xmin, xmax, ymin, ymax and xdelta before setting the actual image size
if (xmin > xmax || ymin > ymax || xdelta != xmax - xmin + 1 || xmax >= w || ymax >= h) {
av_log(avctx, AV_LOG_ERROR, "Wrong sizing or missing size information\n");
return AVERROR_INVALIDDATA;
}
if (w != avctx->width || h != avctx->height) {
avcodec_set_dimensions(avctx, w, h);
}
desc = av_pix_fmt_desc_get(avctx->pix_fmt);
bxmin = xmin * 2 * desc->nb_components;
axmax = (avctx->width - (xmax + 1)) * 2 * desc->nb_components;
out_line_size = avctx->width * 2 * desc->nb_components;
scan_line_size = xdelta * current_channel_offset;
uncompressed_size = scan_line_size * scan_lines_per_block;
if (s->compr != EXR_RAW) {
av_fast_padded_malloc(&s->uncompressed_data, &s->uncompressed_size, uncompressed_size);
av_fast_padded_malloc(&s->tmp, &s->tmp_size, uncompressed_size);
if (!s->uncompressed_data || !s->tmp)
return AVERROR(ENOMEM);
}
if ((ret = ff_thread_get_buffer(avctx, p)) < 0) {
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
return ret;
}
ptr = p->data[0];
stride = p->linesize[0];
// Zero out the start if ymin is not 0
for (y = 0; y < ymin; y++) {
memset(ptr, 0, out_line_size);
ptr += stride;
}
// Process the actual scan line blocks
for (y = ymin; y <= ymax; y += scan_lines_per_block) {
uint16_t *ptr_x = (uint16_t *)ptr;
if (buf_end - buf > 8) {
const uint8_t *red_channel_buffer, *green_channel_buffer, *blue_channel_buffer, *alpha_channel_buffer = 0;
const uint64_t line_offset = bytestream_get_le64(&buf);
int32_t data_size;
// Check if the buffer has the required bytes needed from the offset
if (line_offset > (uint64_t)buf_size - 8)
return AVERROR_INVALIDDATA;
src = avpkt->data + line_offset + 8;
data_size = AV_RL32(src - 4);
if (data_size <= 0 || data_size > buf_size)
return AVERROR_INVALIDDATA;
if ((s->compr == EXR_RAW && (data_size != uncompressed_size ||
line_offset > buf_size - uncompressed_size)) ||
(s->compr != EXR_RAW && line_offset > buf_size - data_size)) {
return AVERROR_INVALIDDATA;
}
if (scan_lines_per_block > 1)
uncompressed_size = scan_line_size * FFMIN(scan_lines_per_block, ymax - y + 1);
if ((s->compr == EXR_ZIP1 || s->compr == EXR_ZIP16) && data_size < uncompressed_size) {
unsigned long dest_len = uncompressed_size;
if (uncompress(s->tmp, &dest_len, src, data_size) != Z_OK ||
dest_len != uncompressed_size) {
av_log(avctx, AV_LOG_ERROR, "error during zlib decompression\n");
return AVERROR(EINVAL);
}
} else if (s->compr == EXR_RLE && data_size < uncompressed_size) {
if (rle_uncompress(src, data_size, s->tmp, uncompressed_size)) {
av_log(avctx, AV_LOG_ERROR, "error during rle decompression\n");
return AVERROR(EINVAL);
}
}
if (s->compr != EXR_RAW && data_size < uncompressed_size) {
predictor(s->tmp, uncompressed_size);
reorder_pixels(s->tmp, s->uncompressed_data, uncompressed_size);
red_channel_buffer = s->uncompressed_data + xdelta * s->channel_offsets[0];
green_channel_buffer = s->uncompressed_data + xdelta * s->channel_offsets[1];
blue_channel_buffer = s->uncompressed_data + xdelta * s->channel_offsets[2];
if (s->channel_offsets[3] >= 0)
alpha_channel_buffer = s->uncompressed_data + xdelta * s->channel_offsets[3];
} else {
red_channel_buffer = src + xdelta * s->channel_offsets[0];
green_channel_buffer = src + xdelta * s->channel_offsets[1];
blue_channel_buffer = src + xdelta * s->channel_offsets[2];
if (s->channel_offsets[3] >= 0)
alpha_channel_buffer = src + xdelta * s->channel_offsets[3];
}
for (i = 0; i < scan_lines_per_block && y + i <= ymax; i++, ptr += stride) {
const uint8_t *r, *g, *b, *a;
r = red_channel_buffer;
g = green_channel_buffer;
b = blue_channel_buffer;
if (alpha_channel_buffer)
a = alpha_channel_buffer;
ptr_x = (uint16_t *)ptr;
// Zero out the start if xmin is not 0
memset(ptr_x, 0, bxmin);
ptr_x += xmin * desc->nb_components;
if (s->bits_per_color_id == 2) {
// 32-bit
for (x = 0; x < xdelta; x++) {
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&r));
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&g));
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&b));
if (alpha_channel_buffer)
*ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
}
} else {
// 16-bit
for (x = 0; x < xdelta; x++) {
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&r));
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&g));
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&b));
if (alpha_channel_buffer)
*ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
}
}
// Zero out the end if xmax+1 is not w
memset(ptr_x, 0, axmax);
red_channel_buffer += scan_line_size;
green_channel_buffer += scan_line_size;
blue_channel_buffer += scan_line_size;
if (alpha_channel_buffer)
alpha_channel_buffer += scan_line_size;
}
}
}
// Zero out the end if ymax+1 is not h
for (y = ymax + 1; y < avctx->height; y++) {
memset(ptr, 0, out_line_size);
ptr += stride;
}
*picture = s->picture;
*got_frame = 1;
return buf_size;
}
static av_cold int decode_init(AVCodecContext *avctx)
{
EXRContext *s = avctx->priv_data;
avcodec_get_frame_defaults(&s->picture);
avctx->coded_frame = &s->picture;
return 0;
}
static av_cold int decode_end(AVCodecContext *avctx)
{
EXRContext *s = avctx->priv_data;
if (s->picture.data[0])
avctx->release_buffer(avctx, &s->picture);
av_freep(&s->uncompressed_data);
av_freep(&s->tmp);
return 0;
}
AVCodec ff_exr_decoder = {
.name = "exr",
.type = AVMEDIA_TYPE_VIDEO,
.id = AV_CODEC_ID_EXR,
.priv_data_size = sizeof(EXRContext),
.init = decode_init,
.close = decode_end,
.decode = decode_frame,
.capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
.long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
};
|