1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
|
/*
* Copyright (C) 2007 Vitor Sessak <vitor1001@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Codebook Generator using the ELBG algorithm
*/
#include <string.h>
#include "libavutil/avassert.h"
#include "libavutil/common.h"
#include "libavutil/lfg.h"
#include "elbg.h"
#define DELTA_ERR_MAX 0.1 ///< Precision of the ELBG algorithm (as percentage error)
/**
* In the ELBG jargon, a cell is the set of points that are closest to a
* codebook entry. Not to be confused with a RoQ Video cell. */
typedef struct cell_s {
int index;
struct cell_s *next;
} cell;
/**
* ELBG internal data
*/
typedef struct ELBGContext {
int error;
int dim;
int num_cb;
int *codebook;
cell **cells;
int *utility;
int *utility_inc;
int *nearest_cb;
int *points;
int *temp_points;
int *size_part;
AVLFG *rand_state;
int *scratchbuf;
cell *cell_buffer;
/* Sizes for the buffers above. Pointers without such a field
* are not allocated by us and only valid for the duration
* of a single call to avpriv_elbg_do(). */
unsigned utility_allocated;
unsigned utility_inc_allocated;
unsigned size_part_allocated;
unsigned cells_allocated;
unsigned scratchbuf_allocated;
unsigned cell_buffer_allocated;
unsigned temp_points_allocated;
} ELBGContext;
static inline int distance_limited(int *a, int *b, int dim, int limit)
{
int i, dist=0;
for (i=0; i<dim; i++) {
int64_t distance = a[i] - b[i];
distance *= distance;
if (dist >= limit - distance)
return limit;
dist += distance;
}
return dist;
}
static inline void vect_division(int *res, int *vect, int div, int dim)
{
int i;
if (div > 1)
for (i=0; i<dim; i++)
res[i] = ROUNDED_DIV(vect[i],div);
else if (res != vect)
memcpy(res, vect, dim*sizeof(int));
}
static int eval_error_cell(ELBGContext *elbg, int *centroid, cell *cells)
{
int error=0;
for (; cells; cells=cells->next) {
int distance = distance_limited(centroid, elbg->points + cells->index*elbg->dim, elbg->dim, INT_MAX);
if (error >= INT_MAX - distance)
return INT_MAX;
error += distance;
}
return error;
}
static int get_closest_codebook(ELBGContext *elbg, int index)
{
int pick = 0;
for (int i = 0, diff_min = INT_MAX; i < elbg->num_cb; i++)
if (i != index) {
int diff;
diff = distance_limited(elbg->codebook + i*elbg->dim, elbg->codebook + index*elbg->dim, elbg->dim, diff_min);
if (diff < diff_min) {
pick = i;
diff_min = diff;
}
}
return pick;
}
static int get_high_utility_cell(ELBGContext *elbg)
{
int i=0;
/* Using linear search, do binary if it ever turns to be speed critical */
uint64_t r;
if (elbg->utility_inc[elbg->num_cb - 1] < INT_MAX) {
r = av_lfg_get(elbg->rand_state) % (unsigned int)elbg->utility_inc[elbg->num_cb - 1] + 1;
} else {
r = av_lfg_get(elbg->rand_state);
r = (av_lfg_get(elbg->rand_state) + (r<<32)) % elbg->utility_inc[elbg->num_cb - 1] + 1;
}
while (elbg->utility_inc[i] < r) {
i++;
}
av_assert2(elbg->cells[i]);
return i;
}
/**
* Implementation of the simple LBG algorithm for just two codebooks
*/
static int simple_lbg(ELBGContext *elbg,
int dim,
int *centroid[3],
int newutility[3],
int *points,
cell *cells)
{
int i, idx;
int numpoints[2] = {0,0};
int *newcentroid[2] = {
elbg->scratchbuf + 3*dim,
elbg->scratchbuf + 4*dim
};
cell *tempcell;
memset(newcentroid[0], 0, 2 * dim * sizeof(*newcentroid[0]));
newutility[0] =
newutility[1] = 0;
for (tempcell = cells; tempcell; tempcell=tempcell->next) {
idx = distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX)>=
distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX);
numpoints[idx]++;
for (i=0; i<dim; i++)
newcentroid[idx][i] += points[tempcell->index*dim + i];
}
vect_division(centroid[0], newcentroid[0], numpoints[0], dim);
vect_division(centroid[1], newcentroid[1], numpoints[1], dim);
for (tempcell = cells; tempcell; tempcell=tempcell->next) {
int dist[2] = {distance_limited(centroid[0], points + tempcell->index*dim, dim, INT_MAX),
distance_limited(centroid[1], points + tempcell->index*dim, dim, INT_MAX)};
int idx = dist[0] > dist[1];
if (newutility[idx] >= INT_MAX - dist[idx])
newutility[idx] = INT_MAX;
else
newutility[idx] += dist[idx];
}
return (newutility[0] >= INT_MAX - newutility[1]) ? INT_MAX : newutility[0] + newutility[1];
}
static void get_new_centroids(ELBGContext *elbg, int huc, int *newcentroid_i,
int *newcentroid_p)
{
cell *tempcell;
int *min = newcentroid_i;
int *max = newcentroid_p;
int i;
for (i=0; i< elbg->dim; i++) {
min[i]=INT_MAX;
max[i]=0;
}
for (tempcell = elbg->cells[huc]; tempcell; tempcell = tempcell->next)
for(i=0; i<elbg->dim; i++) {
min[i]=FFMIN(min[i], elbg->points[tempcell->index*elbg->dim + i]);
max[i]=FFMAX(max[i], elbg->points[tempcell->index*elbg->dim + i]);
}
for (i=0; i<elbg->dim; i++) {
int ni = min[i] + (max[i] - min[i])/3;
int np = min[i] + (2*(max[i] - min[i]))/3;
newcentroid_i[i] = ni;
newcentroid_p[i] = np;
}
}
/**
* Add the points in the low utility cell to its closest cell. Split the high
* utility cell, putting the separated points in the (now empty) low utility
* cell.
*
* @param elbg Internal elbg data
* @param indexes {luc, huc, cluc}
* @param newcentroid A vector with the position of the new centroids
*/
static void shift_codebook(ELBGContext *elbg, int *indexes,
int *newcentroid[3])
{
cell *tempdata;
cell **pp = &elbg->cells[indexes[2]];
while(*pp)
pp= &(*pp)->next;
*pp = elbg->cells[indexes[0]];
elbg->cells[indexes[0]] = NULL;
tempdata = elbg->cells[indexes[1]];
elbg->cells[indexes[1]] = NULL;
while(tempdata) {
cell *tempcell2 = tempdata->next;
int idx = distance_limited(elbg->points + tempdata->index*elbg->dim,
newcentroid[0], elbg->dim, INT_MAX) >
distance_limited(elbg->points + tempdata->index*elbg->dim,
newcentroid[1], elbg->dim, INT_MAX);
tempdata->next = elbg->cells[indexes[idx]];
elbg->cells[indexes[idx]] = tempdata;
tempdata = tempcell2;
}
}
static void evaluate_utility_inc(ELBGContext *elbg)
{
int64_t inc=0;
for (int i = 0; i < elbg->num_cb; i++) {
if (elbg->num_cb * (int64_t)elbg->utility[i] > elbg->error)
inc += elbg->utility[i];
elbg->utility_inc[i] = FFMIN(inc, INT_MAX);
}
}
static void update_utility_and_n_cb(ELBGContext *elbg, int idx, int newutility)
{
cell *tempcell;
elbg->utility[idx] = newutility;
for (tempcell=elbg->cells[idx]; tempcell; tempcell=tempcell->next)
elbg->nearest_cb[tempcell->index] = idx;
}
/**
* Evaluate if a shift lower the error. If it does, call shift_codebooks
* and update elbg->error, elbg->utility and elbg->nearest_cb.
*
* @param elbg Internal elbg data
* @param idx {luc (low utility cell, huc (high utility cell), cluc (closest cell to low utility cell)}
*/
static void try_shift_candidate(ELBGContext *elbg, int idx[3])
{
int j, k, cont=0, tmp;
int64_t olderror=0, newerror;
int newutility[3];
int *newcentroid[3] = {
elbg->scratchbuf,
elbg->scratchbuf + elbg->dim,
elbg->scratchbuf + 2*elbg->dim
};
cell *tempcell;
for (j=0; j<3; j++)
olderror += elbg->utility[idx[j]];
memset(newcentroid[2], 0, elbg->dim*sizeof(int));
for (k=0; k<2; k++)
for (tempcell=elbg->cells[idx[2*k]]; tempcell; tempcell=tempcell->next) {
cont++;
for (j=0; j<elbg->dim; j++)
newcentroid[2][j] += elbg->points[tempcell->index*elbg->dim + j];
}
vect_division(newcentroid[2], newcentroid[2], cont, elbg->dim);
get_new_centroids(elbg, idx[1], newcentroid[0], newcentroid[1]);
newutility[2] = eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[0]]);
tmp = eval_error_cell(elbg, newcentroid[2], elbg->cells[idx[2]]);
newutility[2] = (tmp >= INT_MAX - newutility[2]) ? INT_MAX : newutility[2] + tmp;
newerror = newutility[2];
tmp = simple_lbg(elbg, elbg->dim, newcentroid, newutility, elbg->points,
elbg->cells[idx[1]]);
if (tmp >= INT_MAX - newerror)
newerror = INT_MAX;
else
newerror += tmp;
if (olderror > newerror) {
shift_codebook(elbg, idx, newcentroid);
elbg->error += newerror - olderror;
for (j=0; j<3; j++)
update_utility_and_n_cb(elbg, idx[j], newutility[j]);
evaluate_utility_inc(elbg);
}
}
/**
* Implementation of the ELBG block
*/
static void do_shiftings(ELBGContext *elbg)
{
int idx[3];
evaluate_utility_inc(elbg);
for (idx[0]=0; idx[0] < elbg->num_cb; idx[0]++)
if (elbg->num_cb * (int64_t)elbg->utility[idx[0]] < elbg->error) {
if (elbg->utility_inc[elbg->num_cb - 1] == 0)
return;
idx[1] = get_high_utility_cell(elbg);
idx[2] = get_closest_codebook(elbg, idx[0]);
if (idx[1] != idx[0] && idx[1] != idx[2])
try_shift_candidate(elbg, idx);
}
}
static void do_elbg(ELBGContext *restrict elbg, int *points, int numpoints,
int max_steps)
{
int *const size_part = elbg->size_part;
int i, j, steps = 0;
int best_idx = 0;
int last_error;
elbg->error = INT_MAX;
elbg->points = points;
do {
cell *free_cells = elbg->cell_buffer;
last_error = elbg->error;
steps++;
memset(elbg->utility, 0, elbg->num_cb * sizeof(*elbg->utility));
memset(elbg->cells, 0, elbg->num_cb * sizeof(*elbg->cells));
elbg->error = 0;
/* This loop evaluate the actual Voronoi partition. It is the most
costly part of the algorithm. */
for (i=0; i < numpoints; i++) {
int best_dist = distance_limited(elbg->points + i * elbg->dim,
elbg->codebook + best_idx * elbg->dim,
elbg->dim, INT_MAX);
for (int k = 0; k < elbg->num_cb; k++) {
int dist = distance_limited(elbg->points + i * elbg->dim,
elbg->codebook + k * elbg->dim,
elbg->dim, best_dist);
if (dist < best_dist) {
best_dist = dist;
best_idx = k;
}
}
elbg->nearest_cb[i] = best_idx;
elbg->error = (elbg->error >= INT_MAX - best_dist) ? INT_MAX : elbg->error + best_dist;
elbg->utility[elbg->nearest_cb[i]] = (elbg->utility[elbg->nearest_cb[i]] >= INT_MAX - best_dist) ?
INT_MAX : elbg->utility[elbg->nearest_cb[i]] + best_dist;
free_cells->index = i;
free_cells->next = elbg->cells[elbg->nearest_cb[i]];
elbg->cells[elbg->nearest_cb[i]] = free_cells;
free_cells++;
}
do_shiftings(elbg);
memset(size_part, 0, elbg->num_cb * sizeof(*size_part));
memset(elbg->codebook, 0, elbg->num_cb * elbg->dim * sizeof(*elbg->codebook));
for (i=0; i < numpoints; i++) {
size_part[elbg->nearest_cb[i]]++;
for (j=0; j < elbg->dim; j++)
elbg->codebook[elbg->nearest_cb[i]*elbg->dim + j] +=
elbg->points[i*elbg->dim + j];
}
for (int i = 0; i < elbg->num_cb; i++)
vect_division(elbg->codebook + i*elbg->dim,
elbg->codebook + i*elbg->dim, size_part[i], elbg->dim);
} while(((last_error - elbg->error) > DELTA_ERR_MAX*elbg->error) &&
(steps < max_steps));
}
#define BIG_PRIME 433494437LL
/**
* Initialize the codebook vector for the elbg algorithm.
* If numpoints <= 24 * num_cb this function fills codebook with random numbers.
* If not, it calls do_elbg for a (smaller) random sample of the points in
* points.
*/
static void init_elbg(ELBGContext *restrict elbg, int *points, int *temp_points,
int numpoints, int max_steps)
{
int dim = elbg->dim;
if (numpoints > 24LL * elbg->num_cb) {
/* ELBG is very costly for a big number of points. So if we have a lot
of them, get a good initial codebook to save on iterations */
for (int i = 0; i < numpoints / 8; i++) {
int k = (i*BIG_PRIME) % numpoints;
memcpy(temp_points + i*dim, points + k*dim, dim * sizeof(*temp_points));
}
/* If anything is changed in the recursion parameters,
* the allocated size of temp_points will also need to be updated. */
init_elbg(elbg, temp_points, temp_points + numpoints / 8 * dim,
numpoints / 8, 2 * max_steps);
do_elbg(elbg, temp_points, numpoints / 8, 2 * max_steps);
} else // If not, initialize the codebook with random positions
for (int i = 0; i < elbg->num_cb; i++)
memcpy(elbg->codebook + i * dim, points + ((i*BIG_PRIME)%numpoints)*dim,
dim * sizeof(*elbg->codebook));
}
int avpriv_elbg_do(ELBGContext **elbgp, int *points, int dim, int numpoints,
int *codebook, int num_cb, int max_steps,
int *closest_cb, AVLFG *rand_state, uintptr_t flags)
{
ELBGContext *const restrict elbg = *elbgp ? *elbgp : av_mallocz(sizeof(*elbg));
if (!elbg)
return AVERROR(ENOMEM);
*elbgp = elbg;
elbg->nearest_cb = closest_cb;
elbg->rand_state = rand_state;
elbg->codebook = codebook;
elbg->num_cb = num_cb;
elbg->dim = dim;
#define ALLOCATE_IF_NECESSARY(field, new_elements, multiplicator) \
if (elbg->field ## _allocated < new_elements) { \
av_freep(&elbg->field); \
elbg->field = av_malloc_array(new_elements, \
multiplicator * sizeof(*elbg->field)); \
if (!elbg->field) { \
elbg->field ## _allocated = 0; \
return AVERROR(ENOMEM); \
} \
elbg->field ## _allocated = new_elements; \
}
/* Allocating the buffers for do_elbg() here once relies
* on their size being always the same even when do_elbg()
* is called from init_elbg(). It also relies on do_elbg()
* never calling itself recursively. */
ALLOCATE_IF_NECESSARY(cells, num_cb, 1)
ALLOCATE_IF_NECESSARY(utility, num_cb, 1)
ALLOCATE_IF_NECESSARY(utility_inc, num_cb, 1)
ALLOCATE_IF_NECESSARY(size_part, num_cb, 1)
ALLOCATE_IF_NECESSARY(cell_buffer, numpoints, 1)
ALLOCATE_IF_NECESSARY(scratchbuf, dim, 5)
if (numpoints > 24LL * elbg->num_cb) {
/* The first step in the recursion in init_elbg() needs a buffer with
* (numpoints / 8) * dim elements; the next step needs numpoints / 8 / 8
* * dim elements etc. The geometric series leads to an upper bound of
* numpoints / 8 * 8 / 7 * dim elements. */
uint64_t prod = dim * (uint64_t)(numpoints / 7U);
if (prod > INT_MAX)
return AVERROR(ERANGE);
ALLOCATE_IF_NECESSARY(temp_points, prod, 1)
}
init_elbg(elbg, points, elbg->temp_points, numpoints, max_steps);
do_elbg (elbg, points, numpoints, max_steps);
return 0;
}
av_cold void avpriv_elbg_free(ELBGContext **elbgp)
{
ELBGContext *elbg = *elbgp;
if (!elbg)
return;
av_freep(&elbg->size_part);
av_freep(&elbg->utility);
av_freep(&elbg->cell_buffer);
av_freep(&elbg->cells);
av_freep(&elbg->utility_inc);
av_freep(&elbg->scratchbuf);
av_freep(&elbg->temp_points);
av_freep(elbgp);
}
|