aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/aptx.c
blob: 64a63a7d5b668c67336f300342e0974235337ea4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
/*
 * Audio Processing Technology codec for Bluetooth (aptX)
 *
 * Copyright (C) 2017  Aurelien Jacobs <aurel@gnuage.org>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/intreadwrite.h"
#include "avcodec.h"
#include "internal.h"
#include "mathops.h"
#include "audio_frame_queue.h"


enum channels {
    LEFT,
    RIGHT,
    NB_CHANNELS
};

enum subbands {
    LF,  // Low Frequency (0-5.5 kHz)
    MLF, // Medium-Low Frequency (5.5-11kHz)
    MHF, // Medium-High Frequency (11-16.5kHz)
    HF,  // High Frequency (16.5-22kHz)
    NB_SUBBANDS
};

#define NB_FILTERS 2
#define FILTER_TAPS 16

typedef struct {
    int pos;
    int32_t buffer[2*FILTER_TAPS];
} FilterSignal;

typedef struct {
    FilterSignal outer_filter_signal[NB_FILTERS];
    FilterSignal inner_filter_signal[NB_FILTERS][NB_FILTERS];
} QMFAnalysis;

typedef struct {
    int32_t quantized_sample;
    int32_t quantized_sample_parity_change;
    int32_t error;
} Quantize;

typedef struct {
    int32_t quantization_factor;
    int32_t factor_select;
    int32_t reconstructed_difference;
} InvertQuantize;

typedef struct {
    int32_t prev_sign[2];
    int32_t s_weight[2];
    int32_t d_weight[24];
    int32_t pos;
    int32_t reconstructed_differences[48];
    int32_t previous_reconstructed_sample;
    int32_t predicted_difference;
    int32_t predicted_sample;
} Prediction;

typedef struct {
    int32_t codeword_history;
    int32_t dither_parity;
    int32_t dither[NB_SUBBANDS];

    QMFAnalysis qmf;
    Quantize quantize[NB_SUBBANDS];
    InvertQuantize invert_quantize[NB_SUBBANDS];
    Prediction prediction[NB_SUBBANDS];
} Channel;

typedef struct {
    int32_t sync_idx;
    Channel channels[NB_CHANNELS];
    AudioFrameQueue afq;
} AptXContext;


static const int32_t quantize_intervals_LF[65] = {
      -9948,    9948,   29860,   49808,   69822,   89926,  110144,  130502,
     151026,  171738,  192666,  213832,  235264,  256982,  279014,  301384,
     324118,  347244,  370790,  394782,  419250,  444226,  469742,  495832,
     522536,  549890,  577936,  606720,  636290,  666700,  698006,  730270,
     763562,  797958,  833538,  870398,  908640,  948376,  989740, 1032874,
    1077948, 1125150, 1174700, 1226850, 1281900, 1340196, 1402156, 1468282,
    1539182, 1615610, 1698514, 1789098, 1888944, 2000168, 2125700, 2269750,
    2438670, 2642660, 2899462, 3243240, 3746078, 4535138, 5664098, 7102424,
    8897462,
};
static const int32_t invert_quantize_dither_factors_LF[65] = {
       9948,   9948,   9962,   9988,  10026,  10078,  10142,  10218,
      10306,  10408,  10520,  10646,  10784,  10934,  11098,  11274,
      11462,  11664,  11880,  12112,  12358,  12618,  12898,  13194,
      13510,  13844,  14202,  14582,  14988,  15422,  15884,  16380,
      16912,  17484,  18098,  18762,  19480,  20258,  21106,  22030,
      23044,  24158,  25390,  26760,  28290,  30008,  31954,  34172,
      36728,  39700,  43202,  47382,  52462,  58762,  66770,  77280,
      91642, 112348, 144452, 199326, 303512, 485546, 643414, 794914,
    1000124,
};
static const int32_t quantize_dither_factors_LF[65] = {
        0,     4,     7,    10,    13,    16,    19,    22,
       26,    28,    32,    35,    38,    41,    44,    47,
       51,    54,    58,    62,    65,    70,    74,    79,
       84,    90,    95,   102,   109,   116,   124,   133,
      143,   154,   166,   180,   195,   212,   231,   254,
      279,   308,   343,   383,   430,   487,   555,   639,
      743,   876,  1045,  1270,  1575,  2002,  2628,  3591,
     5177,  8026, 13719, 26047, 45509, 39467, 37875, 51303,
        0,
};
static const int16_t quantize_factor_select_offset_LF[65] = {
      0, -21, -19, -17, -15, -12, -10,  -8,
     -6,  -4,  -1,   1,   3,   6,   8,  10,
     13,  15,  18,  20,  23,  26,  29,  31,
     34,  37,  40,  43,  47,  50,  53,  57,
     60,  64,  68,  72,  76,  80,  85,  89,
     94,  99, 105, 110, 116, 123, 129, 136,
    144, 152, 161, 171, 182, 194, 207, 223,
    241, 263, 291, 328, 382, 467, 522, 522,
    522,
};


static const int32_t quantize_intervals_MLF[9] = {
    -89806, 89806, 278502, 494338, 759442, 1113112, 1652322, 2720256, 5190186,
};
static const int32_t invert_quantize_dither_factors_MLF[9] = {
    89806, 89806, 98890, 116946, 148158, 205512, 333698, 734236, 1735696,
};
static const int32_t quantize_dither_factors_MLF[9] = {
    0, 2271, 4514, 7803, 14339, 32047, 100135, 250365, 0,
};
static const int16_t quantize_factor_select_offset_MLF[9] = {
    0, -14, 6, 29, 58, 96, 154, 270, 521,
};


static const int32_t quantize_intervals_MHF[3] = {
    -194080, 194080, 890562,
};
static const int32_t invert_quantize_dither_factors_MHF[3] = {
    194080, 194080, 502402,
};
static const int32_t quantize_dither_factors_MHF[3] = {
    0, 77081, 0,
};
static const int16_t quantize_factor_select_offset_MHF[3] = {
    0, -33, 136,
};


static const int32_t quantize_intervals_HF[5] = {
    -163006, 163006, 542708, 1120554, 2669238,
};
static const int32_t invert_quantize_dither_factors_HF[5] = {
    163006, 163006, 216698, 361148, 1187538,
};
static const int32_t quantize_dither_factors_HF[5] = {
    0, 13423, 36113, 206598, 0,
};
static const int16_t quantize_factor_select_offset_HF[5] = {
    0, -8, 33, 95, 262,
};

typedef const struct {
    const int32_t *quantize_intervals;
    const int32_t *invert_quantize_dither_factors;
    const int32_t *quantize_dither_factors;
    const int16_t *quantize_factor_select_offset;
    int tables_size;
    int32_t factor_max;
    int32_t prediction_order;
} ConstTables;

static ConstTables tables[NB_SUBBANDS] = {
    [LF]  = { quantize_intervals_LF,
              invert_quantize_dither_factors_LF,
              quantize_dither_factors_LF,
              quantize_factor_select_offset_LF,
              FF_ARRAY_ELEMS(quantize_intervals_LF),
              0x11FF, 24 },
    [MLF] = { quantize_intervals_MLF,
              invert_quantize_dither_factors_MLF,
              quantize_dither_factors_MLF,
              quantize_factor_select_offset_MLF,
              FF_ARRAY_ELEMS(quantize_intervals_MLF),
              0x14FF, 12 },
    [MHF] = { quantize_intervals_MHF,
              invert_quantize_dither_factors_MHF,
              quantize_dither_factors_MHF,
              quantize_factor_select_offset_MHF,
              FF_ARRAY_ELEMS(quantize_intervals_MHF),
              0x16FF, 6 },
    [HF]  = { quantize_intervals_HF,
              invert_quantize_dither_factors_HF,
              quantize_dither_factors_HF,
              quantize_factor_select_offset_HF,
              FF_ARRAY_ELEMS(quantize_intervals_HF),
              0x15FF, 12 },
};

static const int16_t quantization_factors[32] = {
    2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
    2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
    2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
    3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008,
};


/* Rounded right shift with optionnal clipping */
#define RSHIFT_SIZE(size)                                                     \
av_always_inline                                                              \
static int##size##_t rshift##size(int##size##_t value, int shift)             \
{                                                                             \
    int##size##_t rounding = (int##size##_t)1 << (shift - 1);                 \
    int##size##_t mask = ((int##size##_t)1 << (shift + 1)) - 1;               \
    return ((value + rounding) >> shift) - ((value & mask) == rounding);      \
}                                                                             \
av_always_inline                                                              \
static int##size##_t rshift##size##_clip24(int##size##_t value, int shift)    \
{                                                                             \
    return av_clip_intp2(rshift##size(value, shift), 23);                     \
}
RSHIFT_SIZE(32)
RSHIFT_SIZE(64)


av_always_inline
static void aptx_update_codeword_history(Channel *channel)
{
    int32_t cw = ((channel->quantize[0].quantized_sample & 3) << 0) +
                 ((channel->quantize[1].quantized_sample & 2) << 1) +
                 ((channel->quantize[2].quantized_sample & 1) << 3);
    channel->codeword_history = (cw << 8) + (channel->codeword_history << 4);
}

static void aptx_generate_dither(Channel *channel)
{
    int subband;
    int64_t m;
    int32_t d;

    aptx_update_codeword_history(channel);

    m = (int64_t)5184443 * (channel->codeword_history >> 7);
    d = (m << 2) + (m >> 22);
    for (subband = 0; subband < NB_SUBBANDS; subband++)
        channel->dither[subband] = d << (23 - 5*subband);
    channel->dither_parity = (d >> 25) & 1;
}

/*
 * Convolution filter coefficients for the outer QMF of the QMF tree.
 * The 2 sets are a mirror of each other.
 */
static const int32_t aptx_qmf_outer_coeffs[NB_FILTERS][FILTER_TAPS] = {
    {
        730, -413, -9611, 43626, -121026, 269973, -585547, 2801966,
        697128, -160481, 27611, 8478, -10043, 3511, 688, -897,
    },
    {
        -897, 688, 3511, -10043, 8478, 27611, -160481, 697128,
        2801966, -585547, 269973, -121026, 43626, -9611, -413, 730,
    },
};

/*
 * Convolution filter coefficients for the inner QMF of the QMF tree.
 * The 2 sets are a mirror of each other.
 */
static const int32_t aptx_qmf_inner_coeffs[NB_FILTERS][FILTER_TAPS] = {
    {
       1033, -584, -13592, 61697, -171156, 381799, -828088, 3962579,
       985888, -226954, 39048, 11990, -14203, 4966, 973, -1268,
    },
    {
      -1268, 973, 4966, -14203, 11990, 39048, -226954, 985888,
      3962579, -828088, 381799, -171156, 61697, -13592, -584, 1033,
    },
};

/*
 * Push one sample into a circular signal buffer.
 */
av_always_inline
static void aptx_qmf_filter_signal_push(FilterSignal *signal, int32_t sample)
{
    signal->buffer[signal->pos            ] = sample;
    signal->buffer[signal->pos+FILTER_TAPS] = sample;
    signal->pos = (signal->pos + 1) & (FILTER_TAPS - 1);
}

/*
 * Compute the convolution of the signal with the coefficients, and reduce
 * to 24 bits by applying the specified right shifting.
 */
av_always_inline
static int32_t aptx_qmf_convolution(FilterSignal *signal,
                                    const int32_t coeffs[FILTER_TAPS],
                                    int shift)
{
    int32_t *sig = &signal->buffer[signal->pos];
    int64_t e = 0;
    int i;

    for (i = 0; i < FILTER_TAPS; i++)
        e += MUL64(sig[i], coeffs[i]);

    return rshift64_clip24(e, shift);
}

/*
 * Half-band QMF analysis filter realized with a polyphase FIR filter.
 * Split into 2 subbands and downsample by 2.
 * So for each pair of samples that goes in, one sample goes out,
 * split into 2 separate subbands.
 */
av_always_inline
static void aptx_qmf_polyphase_analysis(FilterSignal signal[NB_FILTERS],
                                        const int32_t coeffs[NB_FILTERS][FILTER_TAPS],
                                        int shift,
                                        int32_t samples[NB_FILTERS],
                                        int32_t *low_subband_output,
                                        int32_t *high_subband_output)
{
    int32_t subbands[NB_FILTERS];
    int i;

    for (i = 0; i < NB_FILTERS; i++) {
        aptx_qmf_filter_signal_push(&signal[i], samples[NB_FILTERS-1-i]);
        subbands[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift);
    }

    *low_subband_output  = av_clip_intp2(subbands[0] + subbands[1], 23);
    *high_subband_output = av_clip_intp2(subbands[0] - subbands[1], 23);
}

/*
 * Two stage QMF analysis tree.
 * Split 4 input samples into 4 subbands and downsample by 4.
 * So for each group of 4 samples that goes in, one sample goes out,
 * split into 4 separate subbands.
 */
static void aptx_qmf_tree_analysis(QMFAnalysis *qmf,
                                   int32_t samples[4],
                                   int32_t subband_samples[4])
{
    int32_t intermediate_samples[4];
    int i;

    /* Split 4 input samples into 2 intermediate subbands downsampled to 2 samples */
    for (i = 0; i < 2; i++)
        aptx_qmf_polyphase_analysis(qmf->outer_filter_signal,
                                    aptx_qmf_outer_coeffs, 23,
                                    &samples[2*i],
                                    &intermediate_samples[0+i],
                                    &intermediate_samples[2+i]);

    /* Split 2 intermediate subband samples into 4 final subbands downsampled to 1 sample */
    for (i = 0; i < 2; i++)
        aptx_qmf_polyphase_analysis(qmf->inner_filter_signal[i],
                                    aptx_qmf_inner_coeffs, 23,
                                    &intermediate_samples[2*i],
                                    &subband_samples[2*i+0],
                                    &subband_samples[2*i+1]);
}

/*
 * Half-band QMF synthesis filter realized with a polyphase FIR filter.
 * Join 2 subbands and upsample by 2.
 * So for each 2 subbands sample that goes in, a pair of samples goes out.
 */
av_always_inline
static void aptx_qmf_polyphase_synthesis(FilterSignal signal[NB_FILTERS],
                                         const int32_t coeffs[NB_FILTERS][FILTER_TAPS],
                                         int shift,
                                         int32_t low_subband_input,
                                         int32_t high_subband_input,
                                         int32_t samples[NB_FILTERS])
{
    int32_t subbands[NB_FILTERS];
    int i;

    subbands[0] = low_subband_input + high_subband_input;
    subbands[1] = low_subband_input - high_subband_input;

    for (i = 0; i < NB_FILTERS; i++) {
        aptx_qmf_filter_signal_push(&signal[i], subbands[1-i]);
        samples[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift);
    }
}

/*
 * Two stage QMF synthesis tree.
 * Join 4 subbands and upsample by 4.
 * So for each 4 subbands sample that goes in, a group of 4 samples goes out.
 */
static void aptx_qmf_tree_synthesis(QMFAnalysis *qmf,
                                    int32_t subband_samples[4],
                                    int32_t samples[4])
{
    int32_t intermediate_samples[4];
    int i;

    /* Join 4 subbands into 2 intermediate subbands upsampled to 2 samples. */
    for (i = 0; i < 2; i++)
        aptx_qmf_polyphase_synthesis(qmf->inner_filter_signal[i],
                                     aptx_qmf_inner_coeffs, 22,
                                     subband_samples[2*i+0],
                                     subband_samples[2*i+1],
                                     &intermediate_samples[2*i]);

    /* Join 2 samples from intermediate subbands upsampled to 4 samples. */
    for (i = 0; i < 2; i++)
        aptx_qmf_polyphase_synthesis(qmf->outer_filter_signal,
                                     aptx_qmf_outer_coeffs, 21,
                                     intermediate_samples[0+i],
                                     intermediate_samples[2+i],
                                     &samples[2*i]);
}


av_always_inline
static int32_t aptx_bin_search(int32_t value, int32_t factor,
                               const int32_t *intervals, int32_t nb_intervals)
{
    int32_t idx = 0;
    int i;

    for (i = nb_intervals >> 1; i > 0; i >>= 1)
        if (MUL64(factor, intervals[idx + i]) <= ((int64_t)value << 24))
            idx += i;

    return idx;
}

static void aptx_quantize_difference(Quantize *quantize,
                                     int32_t sample_difference,
                                     int32_t dither,
                                     int32_t quantization_factor,
                                     ConstTables *tables)
{
    const int32_t *intervals = tables->quantize_intervals;
    int32_t quantized_sample, dithered_sample, parity_change;
    int32_t d, mean, interval, inv, sample_difference_abs;
    int64_t error;

    sample_difference_abs = FFABS(sample_difference);

    quantized_sample = aptx_bin_search(sample_difference_abs >> 4,
                                       quantization_factor,
                                       intervals, tables->tables_size);

    d = rshift32_clip24(MULH(dither, dither), 7) - (1 << 23);
    d = rshift64(MUL64(d, tables->quantize_dither_factors[quantized_sample]), 23);

    intervals += quantized_sample;
    mean = (intervals[1] + intervals[0]) / 2;
    interval = (intervals[1] - intervals[0]) * (-(sample_difference < 0) | 1);

    dithered_sample = rshift64_clip24(MUL64(dither, interval) + ((int64_t)(mean + d) << 32), 32);
    error = ((int64_t)sample_difference_abs << 20) - MUL64(dithered_sample, quantization_factor);
    quantize->error = FFABS(rshift64(error, 23));

    parity_change = quantized_sample;
    if (error < 0)
        quantized_sample--;
    else
        parity_change--;

    inv = -(sample_difference < 0);
    quantize->quantized_sample               = quantized_sample ^ inv;
    quantize->quantized_sample_parity_change = parity_change    ^ inv;
}

static void aptx_encode_channel(Channel *channel, int32_t samples[4])
{
    int32_t subband_samples[4];
    int subband;
    aptx_qmf_tree_analysis(&channel->qmf, samples, subband_samples);
    aptx_generate_dither(channel);
    for (subband = 0; subband < NB_SUBBANDS; subband++) {
        int32_t diff = av_clip_intp2(subband_samples[subband] - channel->prediction[subband].predicted_sample, 23);
        aptx_quantize_difference(&channel->quantize[subband], diff,
                                 channel->dither[subband],
                                 channel->invert_quantize[subband].quantization_factor,
                                 &tables[subband]);
    }
}

static void aptx_decode_channel(Channel *channel, int32_t samples[4])
{
    int32_t subband_samples[4];
    int subband;
    for (subband = 0; subband < NB_SUBBANDS; subband++)
        subband_samples[subband] = channel->prediction[subband].previous_reconstructed_sample;
    aptx_qmf_tree_synthesis(&channel->qmf, subband_samples, samples);
}


static void aptx_invert_quantization(InvertQuantize *invert_quantize,
                                     int32_t quantized_sample, int32_t dither,
                                     ConstTables *tables)
{
    int32_t qr, idx, shift, factor_select;

    idx = (quantized_sample ^ -(quantized_sample < 0)) + 1;
    qr = tables->quantize_intervals[idx] / 2;
    if (quantized_sample < 0)
        qr = -qr;

    qr = rshift64_clip24(((int64_t)qr<<32) + MUL64(dither, tables->invert_quantize_dither_factors[idx]), 32);
    invert_quantize->reconstructed_difference = MUL64(invert_quantize->quantization_factor, qr) >> 19;

    /* update factor_select */
    factor_select = 32620 * invert_quantize->factor_select;
    factor_select = rshift32(factor_select + (tables->quantize_factor_select_offset[idx] << 15), 15);
    invert_quantize->factor_select = av_clip(factor_select, 0, tables->factor_max);

    /* update quantization factor */
    idx = (invert_quantize->factor_select & 0xFF) >> 3;
    shift = (tables->factor_max - invert_quantize->factor_select) >> 8;
    invert_quantize->quantization_factor = (quantization_factors[idx] << 11) >> shift;
}

static int32_t *aptx_reconstructed_differences_update(Prediction *prediction,
                                                      int32_t reconstructed_difference,
                                                      int order)
{
    int32_t *rd1 = prediction->reconstructed_differences, *rd2 = rd1 + order;
    int p = prediction->pos;

    rd1[p] = rd2[p];
    prediction->pos = p = (p + 1) % order;
    rd2[p] = reconstructed_difference;
    return &rd2[p];
}

static void aptx_prediction_filtering(Prediction *prediction,
                                      int32_t reconstructed_difference,
                                      int order)
{
    int32_t reconstructed_sample, predictor, srd0;
    int32_t *reconstructed_differences;
    int64_t predicted_difference = 0;
    int i;

    reconstructed_sample = av_clip_intp2(reconstructed_difference + prediction->predicted_sample, 23);
    predictor = av_clip_intp2((MUL64(prediction->s_weight[0], prediction->previous_reconstructed_sample)
                             + MUL64(prediction->s_weight[1], reconstructed_sample)) >> 22, 23);
    prediction->previous_reconstructed_sample = reconstructed_sample;

    reconstructed_differences = aptx_reconstructed_differences_update(prediction, reconstructed_difference, order);
    srd0 = FFDIFFSIGN(reconstructed_difference, 0) << 23;
    for (i = 0; i < order; i++) {
        int32_t srd = FF_SIGNBIT(reconstructed_differences[-i-1]) | 1;
        prediction->d_weight[i] -= rshift32(prediction->d_weight[i] - srd*srd0, 8);
        predicted_difference += MUL64(reconstructed_differences[-i], prediction->d_weight[i]);
    }

    prediction->predicted_difference = av_clip_intp2(predicted_difference >> 22, 23);
    prediction->predicted_sample = av_clip_intp2(predictor + prediction->predicted_difference, 23);
}

static void aptx_process_subband(InvertQuantize *invert_quantize,
                                 Prediction *prediction,
                                 int32_t quantized_sample, int32_t dither,
                                 ConstTables *tables)
{
    int32_t sign, same_sign[2], weight[2], sw1, range;

    aptx_invert_quantization(invert_quantize, quantized_sample, dither, tables);

    sign = FFDIFFSIGN(invert_quantize->reconstructed_difference,
                      -prediction->predicted_difference);
    same_sign[0] = sign * prediction->prev_sign[0];
    same_sign[1] = sign * prediction->prev_sign[1];
    prediction->prev_sign[0] = prediction->prev_sign[1];
    prediction->prev_sign[1] = sign | 1;

    range = 0x100000;
    sw1 = rshift32(-same_sign[1] * prediction->s_weight[1], 1);
    sw1 = (av_clip(sw1, -range, range) & ~0xF) << 4;

    range = 0x300000;
    weight[0] = 254 * prediction->s_weight[0] + 0x800000*same_sign[0] + sw1;
    prediction->s_weight[0] = av_clip(rshift32(weight[0], 8), -range, range);

    range = 0x3C0000 - prediction->s_weight[0];
    weight[1] = 255 * prediction->s_weight[1] + 0xC00000*same_sign[1];
    prediction->s_weight[1] = av_clip(rshift32(weight[1], 8), -range, range);

    aptx_prediction_filtering(prediction,
                              invert_quantize->reconstructed_difference,
                              tables->prediction_order);
}

static void aptx_invert_quantize_and_prediction(Channel *channel)
{
    int subband;
    for (subband = 0; subband < NB_SUBBANDS; subband++)
        aptx_process_subband(&channel->invert_quantize[subband],
                             &channel->prediction[subband],
                             channel->quantize[subband].quantized_sample,
                             channel->dither[subband],
                             &tables[subband]);
}

static int32_t aptx_quantized_parity(Channel *channel)
{
    int32_t parity = channel->dither_parity;
    int subband;

    for (subband = 0; subband < NB_SUBBANDS; subband++)
        parity ^= channel->quantize[subband].quantized_sample;

    return parity & 1;
}

/* For each sample, ensure that the parity of all subbands of all channels
 * is 0 except once every 8 samples where the parity is forced to 1. */
static int aptx_check_parity(Channel channels[NB_CHANNELS], int32_t *idx)
{
    int32_t parity = aptx_quantized_parity(&channels[LEFT])
                   ^ aptx_quantized_parity(&channels[RIGHT]);

    int eighth = *idx == 7;
    *idx = (*idx + 1) & 7;

    return parity ^ eighth;
}

static void aptx_insert_sync(Channel channels[NB_CHANNELS], int32_t *idx)
{
    if (aptx_check_parity(channels, idx)) {
        int i;
        Channel *c;
        static const int map[] = { 1, 2, 0, 3 };
        Quantize *min = &channels[NB_CHANNELS-1].quantize[map[0]];
        for (c = &channels[NB_CHANNELS-1]; c >= channels; c--)
            for (i = 0; i < NB_SUBBANDS; i++)
                if (c->quantize[map[i]].error < min->error)
                    min = &c->quantize[map[i]];

        /* Forcing the desired parity is done by offsetting by 1 the quantized
         * sample from the subband featuring the smallest quantization error. */
        min->quantized_sample = min->quantized_sample_parity_change;
    }
}

static uint16_t aptx_pack_codeword(Channel *channel)
{
    int32_t parity = aptx_quantized_parity(channel);
    return (((channel->quantize[3].quantized_sample & 0x06) | parity) << 13)
         | (((channel->quantize[2].quantized_sample & 0x03)         ) << 11)
         | (((channel->quantize[1].quantized_sample & 0x0F)         ) <<  7)
         | (((channel->quantize[0].quantized_sample & 0x7F)         ) <<  0);
}

static void aptx_unpack_codeword(Channel *channel, uint16_t codeword)
{
    channel->quantize[0].quantized_sample = sign_extend(codeword >>  0, 7);
    channel->quantize[1].quantized_sample = sign_extend(codeword >>  7, 4);
    channel->quantize[2].quantized_sample = sign_extend(codeword >> 11, 2);
    channel->quantize[3].quantized_sample = sign_extend(codeword >> 13, 3);
    channel->quantize[3].quantized_sample = (channel->quantize[3].quantized_sample & ~1)
                                          | aptx_quantized_parity(channel);
}

static void aptx_encode_samples(AptXContext *ctx,
                                int32_t samples[NB_CHANNELS][4],
                                uint8_t output[2*NB_CHANNELS])
{
    int channel;
    for (channel = 0; channel < NB_CHANNELS; channel++)
        aptx_encode_channel(&ctx->channels[channel], samples[channel]);

    aptx_insert_sync(ctx->channels, &ctx->sync_idx);

    for (channel = 0; channel < NB_CHANNELS; channel++) {
        aptx_invert_quantize_and_prediction(&ctx->channels[channel]);
        AV_WB16(output + 2*channel, aptx_pack_codeword(&ctx->channels[channel]));
    }
}

static int aptx_decode_samples(AptXContext *ctx,
                                const uint8_t input[2*NB_CHANNELS],
                                int32_t samples[NB_CHANNELS][4])
{
    int channel, ret;

    for (channel = 0; channel < NB_CHANNELS; channel++) {
        uint16_t codeword;
        aptx_generate_dither(&ctx->channels[channel]);

        codeword = AV_RB16(input + 2*channel);
        aptx_unpack_codeword(&ctx->channels[channel], codeword);
        aptx_invert_quantize_and_prediction(&ctx->channels[channel]);
    }

    ret = aptx_check_parity(ctx->channels, &ctx->sync_idx);

    for (channel = 0; channel < NB_CHANNELS; channel++)
        aptx_decode_channel(&ctx->channels[channel], samples[channel]);

    return ret;
}


static av_cold int aptx_init(AVCodecContext *avctx)
{
    AptXContext *s = avctx->priv_data;
    int chan, subband;

    if (avctx->frame_size == 0)
        avctx->frame_size = 1024;

    if (avctx->frame_size & 3) {
        av_log(avctx, AV_LOG_ERROR, "Frame size must be a multiple of 4 samples\n");
        return AVERROR(EINVAL);
    }

    for (chan = 0; chan < NB_CHANNELS; chan++) {
        Channel *channel = &s->channels[chan];
        for (subband = 0; subband < NB_SUBBANDS; subband++) {
            Prediction *prediction = &channel->prediction[subband];
            prediction->prev_sign[0] = 1;
            prediction->prev_sign[1] = 1;
        }
    }

    ff_af_queue_init(avctx, &s->afq);
    return 0;
}

static int aptx_decode_frame(AVCodecContext *avctx, void *data,
                             int *got_frame_ptr, AVPacket *avpkt)
{
    AptXContext *s = avctx->priv_data;
    AVFrame *frame = data;
    int pos, channel, sample, ret;

    if (avpkt->size < 4) {
        av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
        return AVERROR_INVALIDDATA;
    }

    /* get output buffer */
    frame->channels = NB_CHANNELS;
    frame->format = AV_SAMPLE_FMT_S32P;
    frame->nb_samples = avpkt->size & ~3;
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
        return ret;

    for (pos = 0; pos < frame->nb_samples; pos += 4) {
        int32_t samples[NB_CHANNELS][4];

        if (aptx_decode_samples(s, &avpkt->data[pos], samples)) {
            av_log(avctx, AV_LOG_ERROR, "Synchronization error\n");
            return AVERROR_INVALIDDATA;
        }

        for (channel = 0; channel < NB_CHANNELS; channel++)
            for (sample = 0; sample < 4; sample++)
                AV_WN32A(&frame->data[channel][4*(sample+pos)],
                         samples[channel][sample] << 8);
    }

    *got_frame_ptr = 1;
    return frame->nb_samples;
}

static int aptx_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
                             const AVFrame *frame, int *got_packet_ptr)
{
    AptXContext *s = avctx->priv_data;
    int pos, channel, sample, ret;

    if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
        return ret;

    if ((ret = ff_alloc_packet2(avctx, avpkt, frame->nb_samples, 0)) < 0)
        return ret;

    for (pos = 0; pos < frame->nb_samples; pos += 4) {
        int32_t samples[NB_CHANNELS][4];

        for (channel = 0; channel < NB_CHANNELS; channel++)
            for (sample = 0; sample < 4; sample++)
                samples[channel][sample] = (int32_t)AV_RN32A(&frame->data[channel][4*(sample+pos)]) >> 8;

        aptx_encode_samples(s, samples, avpkt->data + pos);
    }

    ff_af_queue_remove(&s->afq, frame->nb_samples, &avpkt->pts, &avpkt->duration);
    *got_packet_ptr = 1;
    return 0;
}

static av_cold int aptx_close(AVCodecContext *avctx)
{
    AptXContext *s = avctx->priv_data;
    ff_af_queue_close(&s->afq);
    return 0;
}


#if CONFIG_APTX_DECODER
AVCodec ff_aptx_decoder = {
    .name                  = "aptx",
    .long_name             = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"),
    .type                  = AVMEDIA_TYPE_AUDIO,
    .id                    = AV_CODEC_ID_APTX,
    .priv_data_size        = sizeof(AptXContext),
    .init                  = aptx_init,
    .decode                = aptx_decode_frame,
    .close                 = aptx_close,
    .capabilities          = AV_CODEC_CAP_DR1,
    .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
    .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
    .sample_fmts           = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
                                                             AV_SAMPLE_FMT_NONE },
};
#endif

#if CONFIG_APTX_ENCODER
AVCodec ff_aptx_encoder = {
    .name                  = "aptx",
    .long_name             = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"),
    .type                  = AVMEDIA_TYPE_AUDIO,
    .id                    = AV_CODEC_ID_APTX,
    .priv_data_size        = sizeof(AptXContext),
    .init                  = aptx_init,
    .encode2               = aptx_encode_frame,
    .close                 = aptx_close,
    .capabilities          = AV_CODEC_CAP_SMALL_LAST_FRAME,
    .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
    .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
    .sample_fmts           = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
                                                             AV_SAMPLE_FMT_NONE },
    .supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0},
};
#endif