aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/alsdec.c
blob: fb196ac9410e69764476e711f7a31d84fc64dd00 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
/*
 * MPEG-4 ALS decoder
 * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file libavcodec/alsdec.c
 * MPEG-4 ALS decoder
 * @author Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
 */


//#define DEBUG


#include "avcodec.h"
#include "get_bits.h"
#include "unary.h"
#include "mpeg4audio.h"
#include "bytestream.h"

#include <stdint.h>

/** Rice parameters and corresponding index offsets for decoding the
 *  indices of scaled PARCOR values. The table choosen is set globally
 *  by the encoder and stored in ALSSpecificConfig.
 */
static const int8_t parcor_rice_table[3][20][2] = {
    { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
      { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
      { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
      {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
    { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
      { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
      {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
      {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
    { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
      { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
      {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
      {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
};


/** Scaled PARCOR values used for the first two PARCOR coefficients.
 *  To be indexed by the Rice coded indices.
 *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
 *  Actual values are divided by 32 in order to be stored in 16 bits.
 */
static const int16_t parcor_scaled_values[] = {
    -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
    -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
    -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
    -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
    -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
     -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
     -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
     -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
     -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
     -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
     -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
     -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
     -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
     -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
     -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
     -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
     -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
     -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
     -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
     -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
     -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
     -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
      -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
       46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
      143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
      244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
      349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
      458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
      571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
      688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
      810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
      935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
};


/** Gain values of p(0) for long-term prediction.
 *  To be indexed by the Rice coded indices.
 */
static const uint8_t ltp_gain_values [4][4] = {
    { 0,  8, 16,  24},
    {32, 40, 48,  56},
    {64, 70, 76,  82},
    {88, 92, 96, 100}
};


/** Inter-channel weighting factors for multi-channel correlation.
 *  To be indexed by the Rice coded indices.
 */
static const int16_t mcc_weightings[] = {
    204,  192,  179,  166,  153,  140,  128,  115,
    102,   89,   76,   64,   51,   38,   25,   12,
      0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
   -102, -115, -128, -140, -153, -166, -179, -192
};


enum RA_Flag {
    RA_FLAG_NONE,
    RA_FLAG_FRAMES,
    RA_FLAG_HEADER
};


typedef struct {
    uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
    int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
    int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
    int frame_length;         ///< frame length for each frame (last frame may differ)
    int ra_distance;          ///< distance between RA frames (in frames, 0...255)
    enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
    int adapt_order;          ///< adaptive order: 1 = on, 0 = off
    int coef_table;           ///< table index of Rice code parameters
    int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
    int max_order;            ///< maximum prediction order (0..1023)
    int block_switching;      ///< number of block switching levels
    int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
    int sb_part;              ///< sub-block partition
    int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
    int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
    int chan_config;          ///< indicates that a chan_config_info field is present
    int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
    int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
    int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
    int *chan_pos;            ///< original channel positions
    uint32_t header_size;     ///< header size of original audio file in bytes, provided for debugging
    uint32_t trailer_size;    ///< trailer size of original audio file in bytes, provided for debugging
} ALSSpecificConfig;


typedef struct {
    int stop_flag;
    int master_channel;
    int time_diff_flag;
    int time_diff_sign;
    int time_diff_index;
    int weighting[6];
} ALSChannelData;


typedef struct {
    AVCodecContext *avctx;
    ALSSpecificConfig sconf;
    GetBitContext gb;
    unsigned int cur_frame_length;  ///< length of the current frame to decode
    unsigned int frame_id;          ///< the frame ID / number of the current frame
    unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
    unsigned int num_blocks;        ///< number of blocks used in the current frame
    int ltp_lag_length;             ///< number of bits used for ltp lag value
    int *use_ltp;                   ///< contains use_ltp flags for all channels
    int *ltp_lag;                   ///< contains ltp lag values for all channels
    int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
    int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
    int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
    int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
    int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
    int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
    ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
    ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
    int *reverted_channels;         ///< stores a flag for each reverted channel
    int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
    int32_t **raw_samples;          ///< decoded raw samples for each channel
    int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
} ALSDecContext;


typedef struct {
    unsigned int block_length;      ///< number of samples within the block
    unsigned int ra_block;          ///< if true, this is a random access block
    int          const_block;       ///< if true, this is a constant value block
    int32_t      const_val;         ///< the sample value of a constant block
    int          js_blocks;         ///< true if this block contains a difference signal
    unsigned int shift_lsbs;        ///< shift of values for this block
    unsigned int opt_order;         ///< prediction order of this block
    int          store_prev_samples;///< if true, carryover samples have to be stored
    int          *use_ltp;          ///< if true, long-term prediction is used
    int          *ltp_lag;          ///< lag value for long-term prediction
    int          *ltp_gain;         ///< gain values for ltp 5-tap filter
    int32_t      *quant_cof;        ///< quantized parcor coefficients
    int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
    int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
    int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
    int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
} ALSBlockData;


static av_cold void dprint_specific_config(ALSDecContext *ctx)
{
#ifdef DEBUG
    AVCodecContext *avctx    = ctx->avctx;
    ALSSpecificConfig *sconf = &ctx->sconf;

    dprintf(avctx, "resolution = %i\n",           sconf->resolution);
    dprintf(avctx, "floating = %i\n",             sconf->floating);
    dprintf(avctx, "frame_length = %i\n",         sconf->frame_length);
    dprintf(avctx, "ra_distance = %i\n",          sconf->ra_distance);
    dprintf(avctx, "ra_flag = %i\n",              sconf->ra_flag);
    dprintf(avctx, "adapt_order = %i\n",          sconf->adapt_order);
    dprintf(avctx, "coef_table = %i\n",           sconf->coef_table);
    dprintf(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
    dprintf(avctx, "max_order = %i\n",            sconf->max_order);
    dprintf(avctx, "block_switching = %i\n",      sconf->block_switching);
    dprintf(avctx, "bgmc = %i\n",                 sconf->bgmc);
    dprintf(avctx, "sb_part = %i\n",              sconf->sb_part);
    dprintf(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
    dprintf(avctx, "mc_coding = %i\n",            sconf->mc_coding);
    dprintf(avctx, "chan_config = %i\n",          sconf->chan_config);
    dprintf(avctx, "chan_sort = %i\n",            sconf->chan_sort);
    dprintf(avctx, "RLSLMS = %i\n",               sconf->rlslms);
    dprintf(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
    dprintf(avctx, "header_size = %i\n",          sconf->header_size);
    dprintf(avctx, "trailer_size = %i\n",         sconf->trailer_size);
#endif
}


/** Reads an ALSSpecificConfig from a buffer into the output struct.
 */
static av_cold int read_specific_config(ALSDecContext *ctx)
{
    GetBitContext gb;
    uint64_t ht_size;
    int i, config_offset, crc_enabled;
    MPEG4AudioConfig m4ac;
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
    uint32_t als_id;

    init_get_bits(&gb, avctx->extradata, avctx->extradata_size * 8);

    config_offset = ff_mpeg4audio_get_config(&m4ac, avctx->extradata,
                                             avctx->extradata_size);

    if (config_offset < 0)
        return -1;

    skip_bits_long(&gb, config_offset);

    if (get_bits_left(&gb) < (30 << 3))
        return -1;

    // read the fixed items
    als_id                      = get_bits_long(&gb, 32);
    avctx->sample_rate          = m4ac.sample_rate;
    skip_bits_long(&gb, 32); // sample rate already known
    sconf->samples              = get_bits_long(&gb, 32);
    avctx->channels             = m4ac.channels;
    skip_bits(&gb, 16);      // number of channels already knwon
    skip_bits(&gb, 3);       // skip file_type
    sconf->resolution           = get_bits(&gb, 3);
    sconf->floating             = get_bits1(&gb);
    skip_bits1(&gb);         // skip msb_first
    sconf->frame_length         = get_bits(&gb, 16) + 1;
    sconf->ra_distance          = get_bits(&gb, 8);
    sconf->ra_flag              = get_bits(&gb, 2);
    sconf->adapt_order          = get_bits1(&gb);
    sconf->coef_table           = get_bits(&gb, 2);
    sconf->long_term_prediction = get_bits1(&gb);
    sconf->max_order            = get_bits(&gb, 10);
    sconf->block_switching      = get_bits(&gb, 2);
    sconf->bgmc                 = get_bits1(&gb);
    sconf->sb_part              = get_bits1(&gb);
    sconf->joint_stereo         = get_bits1(&gb);
    sconf->mc_coding            = get_bits1(&gb);
    sconf->chan_config          = get_bits1(&gb);
    sconf->chan_sort            = get_bits1(&gb);
    crc_enabled                 = get_bits1(&gb);
    sconf->rlslms               = get_bits1(&gb);
    skip_bits(&gb, 5);       // skip 5 reserved bits
    skip_bits1(&gb);         // skip aux_data_enabled


    // check for ALSSpecificConfig struct
    if (als_id != MKBETAG('A','L','S','\0'))
        return -1;

    ctx->cur_frame_length = sconf->frame_length;

    // read channel config
    if (sconf->chan_config)
        sconf->chan_config_info = get_bits(&gb, 16);
    // TODO: use this to set avctx->channel_layout


    // read channel sorting
    if (sconf->chan_sort && avctx->channels > 1) {
        int chan_pos_bits = av_ceil_log2(avctx->channels);
        int bits_needed  = avctx->channels * chan_pos_bits + 7;
        if (get_bits_left(&gb) < bits_needed)
            return -1;

        if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
            return AVERROR(ENOMEM);

        for (i = 0; i < avctx->channels; i++)
            sconf->chan_pos[i] = get_bits(&gb, chan_pos_bits);

        align_get_bits(&gb);
        // TODO: use this to actually do channel sorting
    } else {
        sconf->chan_sort = 0;
    }


    // read fixed header and trailer sizes,
    // if size = 0xFFFFFFFF then there is no data field!
    if (get_bits_left(&gb) < 64)
        return -1;

    sconf->header_size  = get_bits_long(&gb, 32);
    sconf->trailer_size = get_bits_long(&gb, 32);
    if (sconf->header_size  == 0xFFFFFFFF)
        sconf->header_size  = 0;
    if (sconf->trailer_size == 0xFFFFFFFF)
        sconf->trailer_size = 0;

    ht_size = ((int64_t)(sconf->header_size) + (int64_t)(sconf->trailer_size)) << 3;


    // skip the header and trailer data
    if (get_bits_left(&gb) < ht_size)
        return -1;

    if (ht_size > INT32_MAX)
        return -1;

    skip_bits_long(&gb, ht_size);


    // skip the crc data
    if (crc_enabled) {
        if (get_bits_left(&gb) < 32)
            return -1;

        skip_bits_long(&gb, 32);
    }


    // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)

    dprint_specific_config(ctx);

    return 0;
}


/** Checks the ALSSpecificConfig for unsupported features.
 */
static int check_specific_config(ALSDecContext *ctx)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    int error = 0;

    // report unsupported feature and set error value
    #define MISSING_ERR(cond, str, errval)              \
    {                                                   \
        if (cond) {                                     \
            av_log_missing_feature(ctx->avctx, str, 0); \
            error = errval;                             \
        }                                               \
    }

    MISSING_ERR(sconf->floating,             "Floating point decoding",     -1);
    MISSING_ERR(sconf->bgmc,                 "BGMC entropy decoding",       -1);
    MISSING_ERR(sconf->rlslms,               "Adaptive RLS-LMS prediction", -1);
    MISSING_ERR(sconf->chan_sort,            "Channel sorting",              0);

    return error;
}


/** Parses the bs_info field to extract the block partitioning used in
 *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
 */
static void parse_bs_info(const uint32_t bs_info, unsigned int n,
                          unsigned int div, unsigned int **div_blocks,
                          unsigned int *num_blocks)
{
    if (n < 31 && ((bs_info << n) & 0x40000000)) {
        // if the level is valid and the investigated bit n is set
        // then recursively check both children at bits (2n+1) and (2n+2)
        n   *= 2;
        div += 1;
        parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
        parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
    } else {
        // else the bit is not set or the last level has been reached
        // (bit implicitly not set)
        **div_blocks = div;
        (*div_blocks)++;
        (*num_blocks)++;
    }
}


/** Reads and decodes a Rice codeword.
 */
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
{
    int max = get_bits_left(gb) - k;
    int q   = get_unary(gb, 0, max);
    int r   = k ? get_bits1(gb) : !(q & 1);

    if (k > 1) {
        q <<= (k - 1);
        q  += get_bits_long(gb, k - 1);
    } else if (!k) {
        q >>= 1;
    }
    return r ? q : ~q;
}


/** Converts PARCOR coefficient k to direct filter coefficient.
 */
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
{
    int i, j;

    for (i = 0, j = k - 1; i < j; i++, j--) {
        int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
        cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
        cof[i]  += tmp1;
    }
    if (i == j)
        cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);

    cof[k] = par[k];
}


/** Reads block switching field if necessary and sets actual block sizes.
 *  Also assures that the block sizes of the last frame correspond to the
 *  actual number of samples.
 */
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
                            uint32_t *bs_info)
{
    ALSSpecificConfig *sconf     = &ctx->sconf;
    GetBitContext *gb            = &ctx->gb;
    unsigned int *ptr_div_blocks = div_blocks;
    unsigned int b;

    if (sconf->block_switching) {
        unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
        *bs_info = get_bits_long(gb, bs_info_len);
        *bs_info <<= (32 - bs_info_len);
    }

    ctx->num_blocks = 0;
    parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);

    // The last frame may have an overdetermined block structure given in
    // the bitstream. In that case the defined block structure would need
    // more samples than available to be consistent.
    // The block structure is actually used but the block sizes are adapted
    // to fit the actual number of available samples.
    // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
    // This results in the actual block sizes:    2 2 1 0.
    // This is not specified in 14496-3 but actually done by the reference
    // codec RM22 revision 2.
    // This appears to happen in case of an odd number of samples in the last
    // frame which is actually not allowed by the block length switching part
    // of 14496-3.
    // The ALS conformance files feature an odd number of samples in the last
    // frame.

    for (b = 0; b < ctx->num_blocks; b++)
        div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];

    if (ctx->cur_frame_length != ctx->sconf.frame_length) {
        unsigned int remaining = ctx->cur_frame_length;

        for (b = 0; b < ctx->num_blocks; b++) {
            if (remaining < div_blocks[b]) {
                div_blocks[b] = remaining;
                ctx->num_blocks = b + 1;
                break;
            }

            remaining -= div_blocks[b];
        }
    }
}


/** Reads the block data for a constant block
 */
static void read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
    GetBitContext *gb        = &ctx->gb;

    bd->const_val    = 0;
    bd->const_block  = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
    bd->js_blocks    = get_bits1(gb);

    // skip 5 reserved bits
    skip_bits(gb, 5);

    if (bd->const_block) {
        unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
        bd->const_val = get_sbits_long(gb, const_val_bits);
    }

    // ensure constant block decoding by reusing this field
    bd->const_block = 1;
}


/** Decodes the block data for a constant block
 */
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
{
    int      smp = bd->block_length;
    int32_t  val = bd->const_val;
    int32_t *dst = bd->raw_samples;

    // write raw samples into buffer
    for (; smp; smp--)
        *dst++ = val;
}


/** Reads the block data for a non-constant block
 */
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
    GetBitContext *gb        = &ctx->gb;
    unsigned int k;
    unsigned int s[8];
    unsigned int sub_blocks, log2_sub_blocks, sb_length;
    unsigned int start      = 0;
    unsigned int opt_order;
    int          sb;
    int32_t      *quant_cof = bd->quant_cof;


    // ensure variable block decoding by reusing this field
    bd->const_block = 0;

    bd->opt_order   = 1;
    bd->js_blocks   = get_bits1(gb);

    opt_order       = bd->opt_order;

    // determine the number of subblocks for entropy decoding
    if (!sconf->bgmc && !sconf->sb_part) {
        log2_sub_blocks = 0;
    } else {
        if (sconf->bgmc && sconf->sb_part)
            log2_sub_blocks = get_bits(gb, 2);
        else
            log2_sub_blocks = 2 * get_bits1(gb);
    }

    sub_blocks = 1 << log2_sub_blocks;

    // do not continue in case of a damaged stream since
    // block_length must be evenly divisible by sub_blocks
    if (bd->block_length & (sub_blocks - 1)) {
        av_log(avctx, AV_LOG_WARNING,
               "Block length is not evenly divisible by the number of subblocks.\n");
        return -1;
    }

    sb_length = bd->block_length >> log2_sub_blocks;


    if (sconf->bgmc) {
        // TODO: BGMC mode
    } else {
        s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
        for (k = 1; k < sub_blocks; k++)
            s[k] = s[k - 1] + decode_rice(gb, 0);
    }

    if (get_bits1(gb))
        bd->shift_lsbs = get_bits(gb, 4) + 1;

    bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || bd->shift_lsbs;


    if (!sconf->rlslms) {
        if (sconf->adapt_order) {
            int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
                                                2, sconf->max_order + 1));
            bd->opt_order        = get_bits(gb, opt_order_length);
        } else {
            bd->opt_order = sconf->max_order;
        }

        opt_order = bd->opt_order;

        if (opt_order) {
            int add_base;

            if (sconf->coef_table == 3) {
                add_base = 0x7F;

                // read coefficient 0
                quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];

                // read coefficient 1
                if (opt_order > 1)
                    quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];

                // read coefficients 2 to opt_order
                for (k = 2; k < opt_order; k++)
                    quant_cof[k] = get_bits(gb, 7);
            } else {
                int k_max;
                add_base = 1;

                // read coefficient 0 to 19
                k_max = FFMIN(opt_order, 20);
                for (k = 0; k < k_max; k++) {
                    int rice_param = parcor_rice_table[sconf->coef_table][k][1];
                    int offset     = parcor_rice_table[sconf->coef_table][k][0];
                    quant_cof[k] = decode_rice(gb, rice_param) + offset;
                }

                // read coefficients 20 to 126
                k_max = FFMIN(opt_order, 127);
                for (; k < k_max; k++)
                    quant_cof[k] = decode_rice(gb, 2) + (k & 1);

                // read coefficients 127 to opt_order
                for (; k < opt_order; k++)
                    quant_cof[k] = decode_rice(gb, 1);

                quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];

                if (opt_order > 1)
                    quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
            }

            for (k = 2; k < opt_order; k++)
                quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
        }
    }

    // read LTP gain and lag values
    if (sconf->long_term_prediction) {
        *bd->use_ltp = get_bits1(gb);

        if (*bd->use_ltp) {
            bd->ltp_gain[0]   = decode_rice(gb, 1) << 3;
            bd->ltp_gain[1]   = decode_rice(gb, 2) << 3;

            bd->ltp_gain[2]   = ltp_gain_values[get_unary(gb, 0, 4)][get_bits(gb, 2)];

            bd->ltp_gain[3]   = decode_rice(gb, 2) << 3;
            bd->ltp_gain[4]   = decode_rice(gb, 1) << 3;

            *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
            *bd->ltp_lag     += FFMAX(4, opt_order + 1);
        }
    }

    // read first value and residuals in case of a random access block
    if (bd->ra_block) {
        if (opt_order)
            bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
        if (opt_order > 1)
            bd->raw_samples[1] = decode_rice(gb, s[0] + 3);
        if (opt_order > 2)
            bd->raw_samples[2] = decode_rice(gb, s[0] + 1);

        start = FFMIN(opt_order, 3);
    }

    // read all residuals
    if (sconf->bgmc) {
        // TODO: BGMC mode
    } else {
        int32_t *current_res = bd->raw_samples + start;

        for (sb = 0; sb < sub_blocks; sb++, start = 0)
            for (; start < sb_length; start++)
                *current_res++ = decode_rice(gb, s[sb]);
     }

    if (!sconf->mc_coding || ctx->js_switch)
        align_get_bits(gb);

    return 0;
}


/** Decodes the block data for a non-constant block
 */
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    unsigned int block_length = bd->block_length;
    unsigned int smp = 0;
    unsigned int k;
    unsigned int opt_order    = bd->opt_order;
    int sb;
    int64_t y;
    int32_t *quant_cof        = bd->quant_cof;
    int32_t *lpc_cof          = bd->lpc_cof;
    int32_t *raw_samples      = bd->raw_samples;
    int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
    int32_t lpc_cof_reversed[opt_order];

    // reverse long-term prediction
    if (*bd->use_ltp) {
        int ltp_smp;

        for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
            int center = ltp_smp - *bd->ltp_lag;
            int begin  = FFMAX(0, center - 2);
            int end    = center + 3;
            int tab    = 5 - (end - begin);
            int base;

            y = 1 << 6;

            for (base = begin; base < end; base++, tab++)
                y += MUL64(bd->ltp_gain[tab], raw_samples[base]);

            raw_samples[ltp_smp] += y >> 7;
        }
    }

    // reconstruct all samples from residuals
    if (bd->ra_block) {
        for (smp = 0; smp < opt_order; smp++) {
            y = 1 << 19;

            for (sb = 0; sb < smp; sb++)
                y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);

            *raw_samples++ -= y >> 20;
            parcor_to_lpc(smp, quant_cof, lpc_cof);
        }
    } else {
        for (k = 0; k < opt_order; k++)
            parcor_to_lpc(k, quant_cof, lpc_cof);

        // store previous samples in case that they have to be altered
        if (bd->store_prev_samples)
            memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
                   sizeof(*bd->prev_raw_samples) * sconf->max_order);

        // reconstruct difference signal for prediction (joint-stereo)
        if (bd->js_blocks && bd->raw_other) {
            int32_t *left, *right;

            if (bd->raw_other > raw_samples) {  // D = R - L
                left  = raw_samples;
                right = bd->raw_other;
            } else {                                // D = R - L
                left  = bd->raw_other;
                right = raw_samples;
            }

            for (sb = -1; sb >= -sconf->max_order; sb--)
                raw_samples[sb] = right[sb] - left[sb];
        }

        // reconstruct shifted signal
        if (bd->shift_lsbs)
            for (sb = -1; sb >= -sconf->max_order; sb--)
                raw_samples[sb] >>= bd->shift_lsbs;
    }

    // reverse linear prediction coefficients for efficiency
    lpc_cof = lpc_cof + opt_order;

    for (sb = 0; sb < opt_order; sb++)
        lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];

    // reconstruct raw samples
    raw_samples = bd->raw_samples + smp;
    lpc_cof     = lpc_cof_reversed + opt_order;

    for (; raw_samples < raw_samples_end; raw_samples++) {
        y = 1 << 19;

        for (sb = -opt_order; sb < 0; sb++)
            y += MUL64(lpc_cof[sb], raw_samples[sb]);

        *raw_samples -= y >> 20;
    }

    raw_samples = bd->raw_samples;

    // restore previous samples in case that they have been altered
    if (bd->store_prev_samples)
        memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
               sizeof(*raw_samples) * sconf->max_order);

    return 0;
}


/** Reads the block data.
 */
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
{
    GetBitContext *gb        = &ctx->gb;

    // read block type flag and read the samples accordingly
    if (get_bits1(gb)) {
        if (read_var_block_data(ctx, bd))
            return -1;
    } else {
        read_const_block_data(ctx, bd);
    }

    return 0;
}


/** Decodes the block data.
 */
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
{
    unsigned int smp;

    // read block type flag and read the samples accordingly
    if (bd->const_block)
        decode_const_block_data(ctx, bd);
    else if (decode_var_block_data(ctx, bd))
        return -1;

    // TODO: read RLSLMS extension data

    if (bd->shift_lsbs)
        for (smp = 0; smp < bd->block_length; smp++)
            bd->raw_samples[smp] <<= bd->shift_lsbs;

    return 0;
}


/** Reads and decodes block data successively.
 */
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
{
    int ret;

    ret = read_block(ctx, bd);

    if (ret)
        return ret;

    ret = decode_block(ctx, bd);

    return ret;
}


/** Computes the number of samples left to decode for the current frame and
 *  sets these samples to zero.
 */
static void zero_remaining(unsigned int b, unsigned int b_max,
                           const unsigned int *div_blocks, int32_t *buf)
{
    unsigned int count = 0;

    while (b < b_max)
        count += div_blocks[b];

    if (count)
        memset(buf, 0, sizeof(*buf) * count);
}


/** Decodes blocks independently.
 */
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
                             unsigned int c, const unsigned int *div_blocks,
                             unsigned int *js_blocks)
{
    unsigned int b;
    ALSBlockData bd;

    memset(&bd, 0, sizeof(ALSBlockData));

    bd.ra_block         = ra_frame;
    bd.use_ltp          = ctx->use_ltp;
    bd.ltp_lag          = ctx->ltp_lag;
    bd.ltp_gain         = ctx->ltp_gain[0];
    bd.quant_cof        = ctx->quant_cof[0];
    bd.lpc_cof          = ctx->lpc_cof[0];
    bd.prev_raw_samples = ctx->prev_raw_samples;
    bd.raw_samples      = ctx->raw_samples[c];


    for (b = 0; b < ctx->num_blocks; b++) {
        bd.shift_lsbs       = 0;
        bd.block_length     = div_blocks[b];

        if (read_decode_block(ctx, &bd)) {
            // damaged block, write zero for the rest of the frame
            zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
            return -1;
        }
        bd.raw_samples += div_blocks[b];
        bd.ra_block     = 0;
    }

    return 0;
}


/** Decodes blocks dependently.
 */
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
                         unsigned int c, const unsigned int *div_blocks,
                         unsigned int *js_blocks)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    unsigned int offset = 0;
    unsigned int b;
    ALSBlockData bd[2];

    memset(bd, 0, 2 * sizeof(ALSBlockData));

    bd[0].ra_block         = ra_frame;
    bd[0].use_ltp          = ctx->use_ltp;
    bd[0].ltp_lag          = ctx->ltp_lag;
    bd[0].ltp_gain         = ctx->ltp_gain[0];
    bd[0].quant_cof        = ctx->quant_cof[0];
    bd[0].lpc_cof          = ctx->lpc_cof[0];
    bd[0].prev_raw_samples = ctx->prev_raw_samples;
    bd[0].js_blocks        = *js_blocks;

    bd[1].ra_block         = ra_frame;
    bd[1].use_ltp          = ctx->use_ltp;
    bd[1].ltp_lag          = ctx->ltp_lag;
    bd[1].ltp_gain         = ctx->ltp_gain[0];
    bd[1].quant_cof        = ctx->quant_cof[0];
    bd[1].lpc_cof          = ctx->lpc_cof[0];
    bd[1].prev_raw_samples = ctx->prev_raw_samples;
    bd[1].js_blocks        = *(js_blocks + 1);

    // decode all blocks
    for (b = 0; b < ctx->num_blocks; b++) {
        unsigned int s;

        bd[0].shift_lsbs   = 0;
        bd[1].shift_lsbs   = 0;

        bd[0].block_length = div_blocks[b];
        bd[1].block_length = div_blocks[b];

        bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
        bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;

        bd[0].raw_other    = bd[1].raw_samples;
        bd[1].raw_other    = bd[0].raw_samples;

        if(read_decode_block(ctx, &bd[0]) || read_decode_block(ctx, &bd[1])) {
            // damaged block, write zero for the rest of the frame
            zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
            zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
            return -1;
        }

        // reconstruct joint-stereo blocks
        if (bd[0].js_blocks) {
            if (bd[1].js_blocks)
                av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair!\n");

            for (s = 0; s < div_blocks[b]; s++)
                bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
        } else if (bd[1].js_blocks) {
            for (s = 0; s < div_blocks[b]; s++)
                bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
        }

        offset  += div_blocks[b];
        bd[0].ra_block = 0;
        bd[1].ra_block = 0;
    }

    // store carryover raw samples,
    // the others channel raw samples are stored by the calling function.
    memmove(ctx->raw_samples[c] - sconf->max_order,
            ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
            sizeof(*ctx->raw_samples[c]) * sconf->max_order);

    return 0;
}


/** Reads the channel data.
  */
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
{
    GetBitContext *gb       = &ctx->gb;
    ALSChannelData *current = cd;
    unsigned int channels   = ctx->avctx->channels;
    int entries             = 0;

    while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
        current->master_channel = get_bits_long(gb, av_ceil_log2(channels));

        if (current->master_channel >= channels) {
            av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel!\n");
            return -1;
        }

        if (current->master_channel != c) {
            current->time_diff_flag = get_bits1(gb);
            current->weighting[0]   = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
            current->weighting[1]   = mcc_weightings[av_clip(decode_rice(gb, 2) + 14, 0, 32)];
            current->weighting[2]   = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];

            if (current->time_diff_flag) {
                current->weighting[3] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
                current->weighting[4] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];
                current->weighting[5] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 32)];

                current->time_diff_sign  = get_bits1(gb);
                current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
            }
        }

        current++;
        entries++;
    }

    if (entries == channels) {
        av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data!\n");
        return -1;
    }

    align_get_bits(gb);
    return 0;
}


/** Recursively reverts the inter-channel correlation for a block.
 */
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
                                       ALSChannelData **cd, int *reverted,
                                       unsigned int offset, int c)
{
    ALSChannelData *ch = cd[c];
    unsigned int   dep = 0;
    unsigned int channels = ctx->avctx->channels;

    if (reverted[c])
        return 0;

    reverted[c] = 1;

    while (dep < channels && !ch[dep].stop_flag) {
        revert_channel_correlation(ctx, bd, cd, reverted, offset,
                                   ch[dep].master_channel);

        dep++;
    }

    if (dep == channels) {
        av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation!\n");
        return -1;
    }

    bd->use_ltp     = ctx->use_ltp + c;
    bd->ltp_lag     = ctx->ltp_lag + c;
    bd->ltp_gain    = ctx->ltp_gain[c];
    bd->lpc_cof     = ctx->lpc_cof[c];
    bd->quant_cof   = ctx->quant_cof[c];
    bd->raw_samples = ctx->raw_samples[c] + offset;

    dep = 0;
    while (!ch[dep].stop_flag) {
        unsigned int smp;
        unsigned int begin = 1;
        unsigned int end   = bd->block_length - 1;
        int64_t y;
        int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;

        if (ch[dep].time_diff_flag) {
            int t = ch[dep].time_diff_index;

            if (ch[dep].time_diff_sign) {
                t      = -t;
                begin -= t;
            } else {
                end   -= t;
            }

            for (smp = begin; smp < end; smp++) {
                y  = (1 << 6) +
                     MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
                     MUL64(ch[dep].weighting[1], master[smp        ]) +
                     MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
                     MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
                     MUL64(ch[dep].weighting[4], master[smp     + t]) +
                     MUL64(ch[dep].weighting[5], master[smp + 1 + t]);

                bd->raw_samples[smp] += y >> 7;
            }
        } else {
            for (smp = begin; smp < end; smp++) {
                y  = (1 << 6) +
                     MUL64(ch[dep].weighting[0], master[smp - 1]) +
                     MUL64(ch[dep].weighting[1], master[smp    ]) +
                     MUL64(ch[dep].weighting[2], master[smp + 1]);

                bd->raw_samples[smp] += y >> 7;
            }
        }

        dep++;
    }

    return 0;
}


/** Reads the frame data.
 */
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
    GetBitContext *gb = &ctx->gb;
    unsigned int div_blocks[32];                ///< block sizes.
    unsigned int c;
    unsigned int js_blocks[2];

    uint32_t bs_info = 0;

    // skip the size of the ra unit if present in the frame
    if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
        skip_bits_long(gb, 32);

    if (sconf->mc_coding && sconf->joint_stereo) {
        ctx->js_switch = get_bits1(gb);
        align_get_bits(gb);
    }

    if (!sconf->mc_coding || ctx->js_switch) {
        int independent_bs = !sconf->joint_stereo;

        for (c = 0; c < avctx->channels; c++) {
            js_blocks[0] = 0;
            js_blocks[1] = 0;

            get_block_sizes(ctx, div_blocks, &bs_info);

            // if joint_stereo and block_switching is set, independent decoding
            // is signaled via the first bit of bs_info
            if (sconf->joint_stereo && sconf->block_switching)
                if (bs_info >> 31)
                    independent_bs = 2;

            // if this is the last channel, it has to be decoded independently
            if (c == avctx->channels - 1)
                independent_bs = 1;

            if (independent_bs) {
                if (decode_blocks_ind(ctx, ra_frame, c, div_blocks, js_blocks))
                    return -1;

                independent_bs--;
            } else {
                if (decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks))
                    return -1;

                c++;
            }

            // store carryover raw samples
            memmove(ctx->raw_samples[c] - sconf->max_order,
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
        }
    } else { // multi-channel coding
        ALSBlockData   bd;
        int            b;
        int            *reverted_channels = ctx->reverted_channels;
        unsigned int   offset             = 0;

        for (c = 0; c < avctx->channels; c++)
            if (ctx->chan_data[c] < ctx->chan_data_buffer) {
                av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data!\n");
                return -1;
            }

        memset(&bd,               0, sizeof(ALSBlockData));
        memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);

        bd.ra_block         = ra_frame;
        bd.prev_raw_samples = ctx->prev_raw_samples;

        get_block_sizes(ctx, div_blocks, &bs_info);

        for (b = 0; b < ctx->num_blocks; b++) {
            bd.shift_lsbs   = 0;
            bd.block_length = div_blocks[b];

            for (c = 0; c < avctx->channels; c++) {
                bd.use_ltp     = ctx->use_ltp + c;
                bd.ltp_lag     = ctx->ltp_lag + c;
                bd.ltp_gain    = ctx->ltp_gain[c];
                bd.lpc_cof     = ctx->lpc_cof[c];
                bd.quant_cof   = ctx->quant_cof[c];
                bd.raw_samples = ctx->raw_samples[c] + offset;
                bd.raw_other   = NULL;

                read_block(ctx, &bd);
                if (read_channel_data(ctx, ctx->chan_data[c], c))
                    return -1;
            }

            for (c = 0; c < avctx->channels; c++)
                if (revert_channel_correlation(ctx, &bd, ctx->chan_data,
                                               reverted_channels, offset, c))
                    return -1;

            for (c = 0; c < avctx->channels; c++) {
                bd.use_ltp     = ctx->use_ltp + c;
                bd.ltp_lag     = ctx->ltp_lag + c;
                bd.ltp_gain    = ctx->ltp_gain[c];
                bd.lpc_cof     = ctx->lpc_cof[c];
                bd.quant_cof   = ctx->quant_cof[c];
                bd.raw_samples = ctx->raw_samples[c] + offset;
                decode_block(ctx, &bd);
            }

            memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
            offset      += div_blocks[b];
            bd.ra_block  = 0;
        }

        // store carryover raw samples
        for (c = 0; c < avctx->channels; c++)
            memmove(ctx->raw_samples[c] - sconf->max_order,
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
    }

    // TODO: read_diff_float_data

    return 0;
}


/** Decodes an ALS frame.
 */
static int decode_frame(AVCodecContext *avctx,
                        void *data, int *data_size,
                        AVPacket *avpkt)
{
    ALSDecContext *ctx       = avctx->priv_data;
    ALSSpecificConfig *sconf = &ctx->sconf;
    const uint8_t *buffer    = avpkt->data;
    int buffer_size          = avpkt->size;
    int invalid_frame, size;
    unsigned int c, sample, ra_frame, bytes_read, shift;

    init_get_bits(&ctx->gb, buffer, buffer_size * 8);

    // In the case that the distance between random access frames is set to zero
    // (sconf->ra_distance == 0) no frame is treated as a random access frame.
    // For the first frame, if prediction is used, all samples used from the
    // previous frame are assumed to be zero.
    ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);

    // the last frame to decode might have a different length
    if (sconf->samples != 0xFFFFFFFF)
        ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
                                      sconf->frame_length);
    else
        ctx->cur_frame_length = sconf->frame_length;

    // decode the frame data
    if ((invalid_frame = read_frame_data(ctx, ra_frame) < 0))
        av_log(ctx->avctx, AV_LOG_WARNING,
               "Reading frame data failed. Skipping RA unit.\n");

    ctx->frame_id++;

    // check for size of decoded data
    size = ctx->cur_frame_length * avctx->channels *
           (av_get_bits_per_sample_format(avctx->sample_fmt) >> 3);

    if (size > *data_size) {
        av_log(avctx, AV_LOG_ERROR, "Decoded data exceeds buffer size.\n");
        return -1;
    }

    *data_size = size;

    // transform decoded frame into output format
    #define INTERLEAVE_OUTPUT(bps)                                 \
    {                                                              \
        int##bps##_t *dest = (int##bps##_t*) data;                 \
        shift = bps - ctx->avctx->bits_per_raw_sample;             \
        for (sample = 0; sample < ctx->cur_frame_length; sample++) \
            for (c = 0; c < avctx->channels; c++)                  \
                *dest++ = ctx->raw_samples[c][sample] << shift;    \
    }

    if (ctx->avctx->bits_per_raw_sample <= 16) {
        INTERLEAVE_OUTPUT(16)
    } else {
        INTERLEAVE_OUTPUT(32)
    }

    bytes_read = invalid_frame ? buffer_size :
                                 (get_bits_count(&ctx->gb) + 7) >> 3;

    return bytes_read;
}


/** Uninitializes the ALS decoder.
 */
static av_cold int decode_end(AVCodecContext *avctx)
{
    ALSDecContext *ctx = avctx->priv_data;

    av_freep(&ctx->sconf.chan_pos);

    av_freep(&ctx->use_ltp);
    av_freep(&ctx->ltp_lag);
    av_freep(&ctx->ltp_gain);
    av_freep(&ctx->ltp_gain_buffer);
    av_freep(&ctx->quant_cof);
    av_freep(&ctx->lpc_cof);
    av_freep(&ctx->quant_cof_buffer);
    av_freep(&ctx->lpc_cof_buffer);
    av_freep(&ctx->prev_raw_samples);
    av_freep(&ctx->raw_samples);
    av_freep(&ctx->raw_buffer);
    av_freep(&ctx->chan_data);
    av_freep(&ctx->chan_data_buffer);
    av_freep(&ctx->reverted_channels);

    return 0;
}


/** Initializes the ALS decoder.
 */
static av_cold int decode_init(AVCodecContext *avctx)
{
    unsigned int c;
    unsigned int channel_size;
    int num_buffers;
    ALSDecContext *ctx = avctx->priv_data;
    ALSSpecificConfig *sconf = &ctx->sconf;
    ctx->avctx = avctx;

    if (!avctx->extradata) {
        av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
        return -1;
    }

    if (read_specific_config(ctx)) {
        av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
        decode_end(avctx);
        return -1;
    }

    if (check_specific_config(ctx)) {
        decode_end(avctx);
        return -1;
    }

    if (sconf->floating) {
        avctx->sample_fmt          = SAMPLE_FMT_FLT;
        avctx->bits_per_raw_sample = 32;
    } else {
        avctx->sample_fmt          = sconf->resolution > 1
                                     ? SAMPLE_FMT_S32 : SAMPLE_FMT_S16;
        avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
    }

    // set lag value for long-term prediction
    ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
                              (avctx->sample_rate >= 192000);

    // allocate quantized parcor coefficient buffer
    num_buffers = sconf->mc_coding ? avctx->channels : 1;

    ctx->quant_cof        = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
    ctx->lpc_cof          = av_malloc(sizeof(*ctx->lpc_cof)   * num_buffers);
    ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
                                      num_buffers * sconf->max_order);
    ctx->lpc_cof_buffer   = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
                                      num_buffers * sconf->max_order);

    if (!ctx->quant_cof        || !ctx->lpc_cof       ||
        !ctx->quant_cof_buffer || !ctx->lpc_cof_buffer) {
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
        return AVERROR(ENOMEM);
    }

    // assign quantized parcor coefficient buffers
    for (c = 0; c < num_buffers; c++) {
        ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
        ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
    }

    // allocate and assign lag and gain data buffer for ltp mode
    ctx->use_ltp         = av_mallocz(sizeof(*ctx->use_ltp)  * num_buffers);
    ctx->ltp_lag         = av_malloc (sizeof(*ctx->ltp_lag)  * num_buffers);
    ctx->ltp_gain        = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
    ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
                                      num_buffers * 5);

    if (!ctx->use_ltp  || !ctx->ltp_lag ||
        !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
        decode_end(avctx);
        return AVERROR(ENOMEM);
    }

    for (c = 0; c < num_buffers; c++)
        ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;

    // allocate and assign channel data buffer for mcc mode
    if (sconf->mc_coding) {
        ctx->chan_data_buffer  = av_malloc(sizeof(*ctx->chan_data_buffer) *
                                           num_buffers);
        ctx->chan_data         = av_malloc(sizeof(ALSChannelData) *
                                           num_buffers);
        ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
                                           num_buffers);

        if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
            decode_end(avctx);
            return AVERROR(ENOMEM);
        }

        for (c = 0; c < num_buffers; c++)
            ctx->chan_data[c] = ctx->chan_data_buffer + c;
    } else {
        ctx->chan_data         = NULL;
        ctx->chan_data_buffer  = NULL;
        ctx->reverted_channels = NULL;
    }

    avctx->frame_size = sconf->frame_length;
    channel_size      = sconf->frame_length + sconf->max_order;

    ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
    ctx->raw_buffer       = av_mallocz(sizeof(*ctx->     raw_buffer)  * avctx->channels * channel_size);
    ctx->raw_samples      = av_malloc (sizeof(*ctx->     raw_samples) * avctx->channels);

    // allocate previous raw sample buffer
    if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
        decode_end(avctx);
        return AVERROR(ENOMEM);
    }

    // assign raw samples buffers
    ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
    for (c = 1; c < avctx->channels; c++)
        ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;

    return 0;
}


/** Flushes (resets) the frame ID after seeking.
 */
static av_cold void flush(AVCodecContext *avctx)
{
    ALSDecContext *ctx = avctx->priv_data;

    ctx->frame_id = 0;
}


AVCodec als_decoder = {
    "als",
    CODEC_TYPE_AUDIO,
    CODEC_ID_MP4ALS,
    sizeof(ALSDecContext),
    decode_init,
    NULL,
    decode_end,
    decode_frame,
    .flush = flush,
    .capabilities = CODEC_CAP_SUBFRAMES,
    .long_name = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
};