aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/alac.c
blob: ce1244fc1820e81e4d73310cee26d503407c7cce (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
/*
 * ALAC (Apple Lossless Audio Codec) decoder
 * Copyright (c) 2005 David Hammerton
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * ALAC (Apple Lossless Audio Codec) decoder
 * @author 2005 David Hammerton
 * @see http://crazney.net/programs/itunes/alac.html
 *
 * Note: This decoder expects a 36- (0x24-)byte QuickTime atom to be
 * passed through the extradata[_size] fields. This atom is tacked onto
 * the end of an 'alac' stsd atom and has the following format:
 *  bytes 0-3   atom size (0x24), big-endian
 *  bytes 4-7   atom type ('alac', not the 'alac' tag from start of stsd)
 *  bytes 8-35  data bytes needed by decoder
 *
 * Extradata:
 * 32bit  size
 * 32bit  tag (=alac)
 * 32bit  zero?
 * 32bit  max sample per frame
 *  8bit  ?? (zero?)
 *  8bit  sample size
 *  8bit  history mult
 *  8bit  initial history
 *  8bit  kmodifier
 *  8bit  channels?
 * 16bit  ??
 * 32bit  max coded frame size
 * 32bit  bitrate?
 * 32bit  samplerate
 */


#include "avcodec.h"
#include "get_bits.h"
#include "bytestream.h"
#include "unary.h"
#include "mathops.h"

#define ALAC_EXTRADATA_SIZE 36
#define MAX_CHANNELS 2

typedef struct {

    AVCodecContext *avctx;
    GetBitContext gb;

    int numchannels;
    int bytespersample;

    /* buffers */
    int32_t *predicterror_buffer[MAX_CHANNELS];

    int32_t *outputsamples_buffer[MAX_CHANNELS];

    int32_t *extra_bits_buffer[MAX_CHANNELS];

    /* stuff from setinfo */
    uint32_t setinfo_max_samples_per_frame; /* 0x1000 = 4096 */    /* max samples per frame? */
    uint8_t setinfo_sample_size; /* 0x10 */
    uint8_t setinfo_rice_historymult; /* 0x28 */
    uint8_t setinfo_rice_initialhistory; /* 0x0a */
    uint8_t setinfo_rice_kmodifier; /* 0x0e */
    /* end setinfo stuff */

    int extra_bits;                         /**< number of extra bits beyond 16-bit */
} ALACContext;

static inline int decode_scalar(GetBitContext *gb, int k, int limit, int readsamplesize){
    /* read x - number of 1s before 0 represent the rice */
    int x = get_unary_0_9(gb);

    if (x > 8) { /* RICE THRESHOLD */
        /* use alternative encoding */
        x = get_bits(gb, readsamplesize);
    } else {
        if (k >= limit)
            k = limit;

        if (k != 1) {
            int extrabits = show_bits(gb, k);

            /* multiply x by 2^k - 1, as part of their strange algorithm */
            x = (x << k) - x;

            if (extrabits > 1) {
                x += extrabits - 1;
                skip_bits(gb, k);
            } else
                skip_bits(gb, k - 1);
        }
    }
    return x;
}

static void bastardized_rice_decompress(ALACContext *alac,
                                 int32_t *output_buffer,
                                 int output_size,
                                 int readsamplesize, /* arg_10 */
                                 int rice_initialhistory, /* arg424->b */
                                 int rice_kmodifier, /* arg424->d */
                                 int rice_historymult, /* arg424->c */
                                 int rice_kmodifier_mask /* arg424->e */
        )
{
    int output_count;
    unsigned int history = rice_initialhistory;
    int sign_modifier = 0;

    for (output_count = 0; output_count < output_size; output_count++) {
        int32_t x;
        int32_t x_modified;
        int32_t final_val;

        /* standard rice encoding */
        int k; /* size of extra bits */

        /* read k, that is bits as is */
        k = av_log2((history >> 9) + 3);
        x= decode_scalar(&alac->gb, k, rice_kmodifier, readsamplesize);

        x_modified = sign_modifier + x;
        final_val = (x_modified + 1) / 2;
        if (x_modified & 1) final_val *= -1;

        output_buffer[output_count] = final_val;

        sign_modifier = 0;

        /* now update the history */
        history += x_modified * rice_historymult
                   - ((history * rice_historymult) >> 9);

        if (x_modified > 0xffff)
            history = 0xffff;

        /* special case: there may be compressed blocks of 0 */
        if ((history < 128) && (output_count+1 < output_size)) {
            int k;
            unsigned int block_size;

            sign_modifier = 1;

            k = 7 - av_log2(history) + ((history + 16) >> 6 /* / 64 */);

            block_size= decode_scalar(&alac->gb, k, rice_kmodifier, 16);

            if (block_size > 0) {
                if(block_size >= output_size - output_count){
                    av_log(alac->avctx, AV_LOG_ERROR, "invalid zero block size of %d %d %d\n", block_size, output_size, output_count);
                    block_size= output_size - output_count - 1;
                }
                memset(&output_buffer[output_count+1], 0, block_size * 4);
                output_count += block_size;
            }

            if (block_size > 0xffff)
                sign_modifier = 0;

            history = 0;
        }
    }
}

static inline int sign_only(int v)
{
    return v ? FFSIGN(v) : 0;
}

static void predictor_decompress_fir_adapt(int32_t *error_buffer,
                                           int32_t *buffer_out,
                                           int output_size,
                                           int readsamplesize,
                                           int16_t *predictor_coef_table,
                                           int predictor_coef_num,
                                           int predictor_quantitization)
{
    int i;

    /* first sample always copies */
    *buffer_out = *error_buffer;

    if (!predictor_coef_num) {
        if (output_size <= 1)
            return;

        memcpy(buffer_out+1, error_buffer+1, (output_size-1) * 4);
        return;
    }

    if (predictor_coef_num == 0x1f) { /* 11111 - max value of predictor_coef_num */
      /* second-best case scenario for fir decompression,
       * error describes a small difference from the previous sample only
       */
        if (output_size <= 1)
            return;
        for (i = 0; i < output_size - 1; i++) {
            int32_t prev_value;
            int32_t error_value;

            prev_value = buffer_out[i];
            error_value = error_buffer[i+1];
            buffer_out[i+1] =
                sign_extend((prev_value + error_value), readsamplesize);
        }
        return;
    }

    /* read warm-up samples */
    if (predictor_coef_num > 0)
        for (i = 0; i < predictor_coef_num; i++) {
            int32_t val;

            val = buffer_out[i] + error_buffer[i+1];
            val = sign_extend(val, readsamplesize);
            buffer_out[i+1] = val;
        }

    /* 4 and 8 are very common cases (the only ones i've seen). these
     * should be unrolled and optimized
     */

    /* general case */
    if (predictor_coef_num > 0) {
        for (i = predictor_coef_num + 1; i < output_size; i++) {
            int j;
            int sum = 0;
            int outval;
            int error_val = error_buffer[i];

            for (j = 0; j < predictor_coef_num; j++) {
                sum += (buffer_out[predictor_coef_num-j] - buffer_out[0]) *
                       predictor_coef_table[j];
            }

            outval = (1 << (predictor_quantitization-1)) + sum;
            outval = outval >> predictor_quantitization;
            outval = outval + buffer_out[0] + error_val;
            outval = sign_extend(outval, readsamplesize);

            buffer_out[predictor_coef_num+1] = outval;

            if (error_val > 0) {
                int predictor_num = predictor_coef_num - 1;

                while (predictor_num >= 0 && error_val > 0) {
                    int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
                    int sign = sign_only(val);

                    predictor_coef_table[predictor_num] -= sign;

                    val *= sign; /* absolute value */

                    error_val -= ((val >> predictor_quantitization) *
                                  (predictor_coef_num - predictor_num));

                    predictor_num--;
                }
            } else if (error_val < 0) {
                int predictor_num = predictor_coef_num - 1;

                while (predictor_num >= 0 && error_val < 0) {
                    int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
                    int sign = - sign_only(val);

                    predictor_coef_table[predictor_num] -= sign;

                    val *= sign; /* neg value */

                    error_val -= ((val >> predictor_quantitization) *
                                  (predictor_coef_num - predictor_num));

                    predictor_num--;
                }
            }

            buffer_out++;
        }
    }
}

static void reconstruct_stereo_16(int32_t *buffer[MAX_CHANNELS],
                                  int16_t *buffer_out,
                                  int numchannels, int numsamples,
                                  uint8_t interlacing_shift,
                                  uint8_t interlacing_leftweight)
{
    int i;

    /* weighted interlacing */
    if (interlacing_leftweight) {
        for (i = 0; i < numsamples; i++) {
            int32_t a, b;

            a = buffer[0][i];
            b = buffer[1][i];

            a -= (b * interlacing_leftweight) >> interlacing_shift;
            b += a;

            buffer_out[i*numchannels] = b;
            buffer_out[i*numchannels + 1] = a;
        }

        return;
    }

    /* otherwise basic interlacing took place */
    for (i = 0; i < numsamples; i++) {
        int16_t left, right;

        left = buffer[0][i];
        right = buffer[1][i];

        buffer_out[i*numchannels] = left;
        buffer_out[i*numchannels + 1] = right;
    }
}

static void decorrelate_stereo_24(int32_t *buffer[MAX_CHANNELS],
                                  int32_t *buffer_out,
                                  int32_t *extra_bits_buffer[MAX_CHANNELS],
                                  int extra_bits,
                                  int numchannels, int numsamples,
                                  uint8_t interlacing_shift,
                                  uint8_t interlacing_leftweight)
{
    int i;

    /* weighted interlacing */
    if (interlacing_leftweight) {
        for (i = 0; i < numsamples; i++) {
            int32_t a, b;

            a = buffer[0][i];
            b = buffer[1][i];

            a -= (b * interlacing_leftweight) >> interlacing_shift;
            b += a;

            if (extra_bits) {
                b  = (b  << extra_bits) | extra_bits_buffer[0][i];
                a  = (a  << extra_bits) | extra_bits_buffer[1][i];
            }

            buffer_out[i * numchannels]     = b << 8;
            buffer_out[i * numchannels + 1] = a << 8;
        }
    } else {
        for (i = 0; i < numsamples; i++) {
            int32_t left, right;

            left  = buffer[0][i];
            right = buffer[1][i];

            if (extra_bits) {
                left   = (left   << extra_bits) | extra_bits_buffer[0][i];
                right  = (right  << extra_bits) | extra_bits_buffer[1][i];
            }

            buffer_out[i * numchannels]     = left  << 8;
            buffer_out[i * numchannels + 1] = right << 8;
        }
    }
}

static int alac_decode_frame(AVCodecContext *avctx,
                             void *outbuffer, int *outputsize,
                             AVPacket *avpkt)
{
    const uint8_t *inbuffer = avpkt->data;
    int input_buffer_size = avpkt->size;
    ALACContext *alac = avctx->priv_data;

    int channels;
    unsigned int outputsamples;
    int hassize;
    unsigned int readsamplesize;
    int isnotcompressed;
    uint8_t interlacing_shift;
    uint8_t interlacing_leftweight;

    /* short-circuit null buffers */
    if (!inbuffer || !input_buffer_size)
        return -1;

    init_get_bits(&alac->gb, inbuffer, input_buffer_size * 8);

    channels = get_bits(&alac->gb, 3) + 1;
    if (channels != avctx->channels) {
        av_log(avctx, AV_LOG_ERROR, "frame header channel count mismatch\n");
        return AVERROR_INVALIDDATA;
    }

    /* 2^result = something to do with output waiting.
     * perhaps matters if we read > 1 frame in a pass?
     */
    skip_bits(&alac->gb, 4);

    skip_bits(&alac->gb, 12); /* unknown, skip 12 bits */

    /* the output sample size is stored soon */
    hassize = get_bits1(&alac->gb);

    alac->extra_bits = get_bits(&alac->gb, 2) << 3;

    /* whether the frame is compressed */
    isnotcompressed = get_bits1(&alac->gb);

    if (hassize) {
        /* now read the number of samples as a 32bit integer */
        outputsamples = get_bits_long(&alac->gb, 32);
        if(outputsamples > alac->setinfo_max_samples_per_frame){
            av_log(avctx, AV_LOG_ERROR, "outputsamples %d > %d\n", outputsamples, alac->setinfo_max_samples_per_frame);
            return -1;
        }
    } else
        outputsamples = alac->setinfo_max_samples_per_frame;

    alac->bytespersample = channels * av_get_bytes_per_sample(avctx->sample_fmt);

    if(outputsamples > *outputsize / alac->bytespersample){
        av_log(avctx, AV_LOG_ERROR, "sample buffer too small\n");
        return -1;
    }

    *outputsize = outputsamples * alac->bytespersample;
    readsamplesize = alac->setinfo_sample_size - alac->extra_bits + channels - 1;
    if (readsamplesize > MIN_CACHE_BITS) {
        av_log(avctx, AV_LOG_ERROR, "readsamplesize too big (%d)\n", readsamplesize);
        return -1;
    }

    if (!isnotcompressed) {
        /* so it is compressed */
        int16_t predictor_coef_table[MAX_CHANNELS][32];
        int predictor_coef_num[MAX_CHANNELS];
        int prediction_type[MAX_CHANNELS];
        int prediction_quantitization[MAX_CHANNELS];
        int ricemodifier[MAX_CHANNELS];
        int i, chan;

        interlacing_shift = get_bits(&alac->gb, 8);
        interlacing_leftweight = get_bits(&alac->gb, 8);

        for (chan = 0; chan < channels; chan++) {
            prediction_type[chan] = get_bits(&alac->gb, 4);
            prediction_quantitization[chan] = get_bits(&alac->gb, 4);

            ricemodifier[chan] = get_bits(&alac->gb, 3);
            predictor_coef_num[chan] = get_bits(&alac->gb, 5);

            /* read the predictor table */
            for (i = 0; i < predictor_coef_num[chan]; i++)
                predictor_coef_table[chan][i] = (int16_t)get_bits(&alac->gb, 16);
        }

        if (alac->extra_bits) {
            int i, ch;
            for (i = 0; i < outputsamples; i++) {
                for (ch = 0; ch < channels; ch++)
                    alac->extra_bits_buffer[ch][i] = get_bits(&alac->gb, alac->extra_bits);
            }
        }
        for (chan = 0; chan < channels; chan++) {
            bastardized_rice_decompress(alac,
                                        alac->predicterror_buffer[chan],
                                        outputsamples,
                                        readsamplesize,
                                        alac->setinfo_rice_initialhistory,
                                        alac->setinfo_rice_kmodifier,
                                        ricemodifier[chan] * alac->setinfo_rice_historymult / 4,
                                        (1 << alac->setinfo_rice_kmodifier) - 1);

            if (prediction_type[chan] == 0) {
                /* adaptive fir */
                predictor_decompress_fir_adapt(alac->predicterror_buffer[chan],
                                               alac->outputsamples_buffer[chan],
                                               outputsamples,
                                               readsamplesize,
                                               predictor_coef_table[chan],
                                               predictor_coef_num[chan],
                                               prediction_quantitization[chan]);
            } else {
                av_log(avctx, AV_LOG_ERROR, "FIXME: unhandled prediction type: %i\n", prediction_type[chan]);
                /* I think the only other prediction type (or perhaps this is
                 * just a boolean?) runs adaptive fir twice.. like:
                 * predictor_decompress_fir_adapt(predictor_error, tempout, ...)
                 * predictor_decompress_fir_adapt(predictor_error, outputsamples ...)
                 * little strange..
                 */
            }
        }
    } else {
        /* not compressed, easy case */
        int i, chan;
        if (alac->setinfo_sample_size <= 16) {
        for (i = 0; i < outputsamples; i++)
            for (chan = 0; chan < channels; chan++) {
                int32_t audiobits;

                audiobits = get_sbits_long(&alac->gb, alac->setinfo_sample_size);

                alac->outputsamples_buffer[chan][i] = audiobits;
            }
        } else {
            for (i = 0; i < outputsamples; i++) {
                for (chan = 0; chan < channels; chan++) {
                    alac->outputsamples_buffer[chan][i] = get_bits(&alac->gb,
                                                          alac->setinfo_sample_size);
                    alac->outputsamples_buffer[chan][i] = sign_extend(alac->outputsamples_buffer[chan][i],
                                                                      alac->setinfo_sample_size);
                }
            }
        }
        alac->extra_bits = 0;
        interlacing_shift = 0;
        interlacing_leftweight = 0;
    }
    if (get_bits(&alac->gb, 3) != 7)
        av_log(avctx, AV_LOG_ERROR, "Error : Wrong End Of Frame\n");

    switch(alac->setinfo_sample_size) {
    case 16:
        if (channels == 2) {
            reconstruct_stereo_16(alac->outputsamples_buffer,
                                  (int16_t*)outbuffer,
                                  alac->numchannels,
                                  outputsamples,
                                  interlacing_shift,
                                  interlacing_leftweight);
        } else {
            int i;
            for (i = 0; i < outputsamples; i++) {
                ((int16_t*)outbuffer)[i] = alac->outputsamples_buffer[0][i];
            }
        }
        break;
    case 24:
        if (channels == 2) {
            decorrelate_stereo_24(alac->outputsamples_buffer,
                                  outbuffer,
                                  alac->extra_bits_buffer,
                                  alac->extra_bits,
                                  alac->numchannels,
                                  outputsamples,
                                  interlacing_shift,
                                  interlacing_leftweight);
        } else {
            int i;
            for (i = 0; i < outputsamples; i++)
                ((int32_t *)outbuffer)[i] = alac->outputsamples_buffer[0][i] << 8;
        }
        break;
    }

    if (input_buffer_size * 8 - get_bits_count(&alac->gb) > 8)
        av_log(avctx, AV_LOG_ERROR, "Error : %d bits left\n", input_buffer_size * 8 - get_bits_count(&alac->gb));

    return input_buffer_size;
}

static av_cold int alac_decode_close(AVCodecContext *avctx)
{
    ALACContext *alac = avctx->priv_data;

    int chan;
    for (chan = 0; chan < alac->numchannels; chan++) {
        av_freep(&alac->predicterror_buffer[chan]);
        av_freep(&alac->outputsamples_buffer[chan]);
        av_freep(&alac->extra_bits_buffer[chan]);
    }

    return 0;
}

static int allocate_buffers(ALACContext *alac)
{
    int chan;
    for (chan = 0; chan < alac->numchannels; chan++) {
        alac->predicterror_buffer[chan] =
            av_malloc(alac->setinfo_max_samples_per_frame * 4);

        alac->outputsamples_buffer[chan] =
            av_malloc(alac->setinfo_max_samples_per_frame * 4);

        alac->extra_bits_buffer[chan] = av_malloc(alac->setinfo_max_samples_per_frame * 4);

        if (!alac->predicterror_buffer[chan]  ||
            !alac->outputsamples_buffer[chan] ||
            !alac->extra_bits_buffer[chan]) {
            alac_decode_close(alac->avctx);
            return AVERROR(ENOMEM);
        }
    }
    return 0;
}

static int alac_set_info(ALACContext *alac)
{
    const unsigned char *ptr = alac->avctx->extradata;

    ptr += 4; /* size */
    ptr += 4; /* alac */
    ptr += 4; /* 0 ? */

    if(AV_RB32(ptr) >= UINT_MAX/4){
        av_log(alac->avctx, AV_LOG_ERROR, "setinfo_max_samples_per_frame too large\n");
        return -1;
    }

    /* buffer size / 2 ? */
    alac->setinfo_max_samples_per_frame = bytestream_get_be32(&ptr);
    ptr++;                          /* ??? */
    alac->setinfo_sample_size           = *ptr++;
    alac->setinfo_rice_historymult      = *ptr++;
    alac->setinfo_rice_initialhistory   = *ptr++;
    alac->setinfo_rice_kmodifier        = *ptr++;
    alac->numchannels                   = *ptr++;
    bytestream_get_be16(&ptr);      /* ??? */
    bytestream_get_be32(&ptr);      /* max coded frame size */
    bytestream_get_be32(&ptr);      /* bitrate ? */
    bytestream_get_be32(&ptr);      /* samplerate */

    return 0;
}

static av_cold int alac_decode_init(AVCodecContext * avctx)
{
    int ret;
    ALACContext *alac = avctx->priv_data;
    alac->avctx = avctx;

    /* initialize from the extradata */
    if (alac->avctx->extradata_size != ALAC_EXTRADATA_SIZE) {
        av_log(avctx, AV_LOG_ERROR, "alac: expected %d extradata bytes\n",
            ALAC_EXTRADATA_SIZE);
        return -1;
    }
    if (alac_set_info(alac)) {
        av_log(avctx, AV_LOG_ERROR, "alac: set_info failed\n");
        return -1;
    }

    switch (alac->setinfo_sample_size) {
    case 16: avctx->sample_fmt    = AV_SAMPLE_FMT_S16;
             break;
    case 24: avctx->sample_fmt    = AV_SAMPLE_FMT_S32;
             break;
    default: av_log(avctx, AV_LOG_ERROR, "Sample depth %d is not supported.\n",
                    alac->setinfo_sample_size);
             return -1;
    }

    if (alac->numchannels < 1) {
        av_log(avctx, AV_LOG_WARNING, "Invalid channel count\n");
        alac->numchannels = avctx->channels;
    } else {
        if (alac->numchannels > MAX_CHANNELS)
            alac->numchannels = avctx->channels;
        else
            avctx->channels = alac->numchannels;
    }
    if (avctx->channels > MAX_CHANNELS) {
        av_log(avctx, AV_LOG_ERROR, "Unsupported channel count: %d\n",
               avctx->channels);
        return AVERROR_PATCHWELCOME;
    }

    if ((ret = allocate_buffers(alac)) < 0) {
        av_log(avctx, AV_LOG_ERROR, "Error allocating buffers\n");
        return ret;
    }

    return 0;
}

AVCodec ff_alac_decoder = {
    .name           = "alac",
    .type           = AVMEDIA_TYPE_AUDIO,
    .id             = CODEC_ID_ALAC,
    .priv_data_size = sizeof(ALACContext),
    .init           = alac_decode_init,
    .close          = alac_decode_close,
    .decode         = alac_decode_frame,
    .long_name = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),
};