aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/ac3enc.c
blob: 904ea3e20c8e10ebea103b1764a6ff43983b5449 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
/*
 * The simplest AC-3 encoder
 * Copyright (c) 2000 Fabrice Bellard
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * The simplest AC-3 encoder.
 */

//#define DEBUG

#include "libavcore/audioconvert.h"
#include "libavutil/crc.h"
#include "avcodec.h"
#include "put_bits.h"
#include "ac3.h"
#include "audioconvert.h"


#define MDCT_NBITS 9
#define MDCT_SAMPLES (1 << MDCT_NBITS)

/** Maximum number of exponent groups. +1 for separate DC exponent. */
#define AC3_MAX_EXP_GROUPS 85

/** Scale a float value by 2^bits and convert to an integer. */
#define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits)))

/** Scale a float value by 2^15, convert to an integer, and clip to int16_t range. */
#define FIX15(a) av_clip_int16(SCALE_FLOAT(a, 15))


/**
 * Compex number.
 * Used in fixed-point MDCT calculation.
 */
typedef struct IComplex {
    int16_t re,im;
} IComplex;

/**
 * AC-3 encoder private context.
 */
typedef struct AC3EncodeContext {
    PutBitContext pb;                       ///< bitstream writer context

    int bitstream_id;                       ///< bitstream id                           (bsid)
    int bitstream_mode;                     ///< bitstream mode                         (bsmod)

    int bit_rate;                           ///< target bit rate, in bits-per-second
    int sample_rate;                        ///< sampling frequency, in Hz

    int frame_size_min;                     ///< minimum frame size in case rounding is necessary
    int frame_size;                         ///< current frame size in bytes
    int frame_size_code;                    ///< frame size code                        (frmsizecod)
    int bits_written;                       ///< bit count    (used to avg. bitrate)
    int samples_written;                    ///< sample count (used to avg. bitrate)

    int fbw_channels;                       ///< number of full-bandwidth channels      (nfchans)
    int channels;                           ///< total number of channels               (nchans)
    int lfe_on;                             ///< indicates if there is an LFE channel   (lfeon)
    int lfe_channel;                        ///< channel index of the LFE channel
    int channel_mode;                       ///< channel mode                           (acmod)
    const uint8_t *channel_map;             ///< channel map used to reorder channels

    int bandwidth_code[AC3_MAX_CHANNELS];   ///< bandwidth code (0 to 60)               (chbwcod)
    int nb_coefs[AC3_MAX_CHANNELS];

    /* bitrate allocation control */
    int slow_gain_code;                     ///< slow gain code                         (sgaincod)
    int slow_decay_code;                    ///< slow decay code                        (sdcycod)
    int fast_decay_code;                    ///< fast decay code                        (fdcycod)
    int db_per_bit_code;                    ///< dB/bit code                            (dbpbcod)
    int floor_code;                         ///< floor code                             (floorcod)
    AC3BitAllocParameters bit_alloc;        ///< bit allocation parameters
    int coarse_snr_offset;                  ///< coarse SNR offsets                     (csnroffst)
    int fast_gain_code[AC3_MAX_CHANNELS];   ///< fast gain codes (signal-to-mask ratio) (fgaincod)
    int fine_snr_offset[AC3_MAX_CHANNELS];  ///< fine SNR offsets                       (fsnroffst)

    /* mantissa encoding */
    int mant1_cnt, mant2_cnt, mant4_cnt;    ///< mantissa counts for bap=1,2,4
    uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4

    int16_t last_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE]; ///< last 256 samples from previous frame
} AC3EncodeContext;


/** MDCT and FFT tables */
static int16_t costab[64];
static int16_t sintab[64];
static int16_t xcos1[128];
static int16_t xsin1[128];


/**
 * Adjust the frame size to make the average bit rate match the target bit rate.
 * This is only needed for 11025, 22050, and 44100 sample rates.
 */
static void adjust_frame_size(AC3EncodeContext *s)
{
    while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
        s->bits_written    -= s->bit_rate;
        s->samples_written -= s->sample_rate;
    }
    s->frame_size = s->frame_size_min + 2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
    s->bits_written    += s->frame_size * 8;
    s->samples_written += AC3_FRAME_SIZE;
}


/**
 * Deinterleave input samples.
 * Channels are reordered from FFmpeg's default order to AC-3 order.
 */
static void deinterleave_input_samples(AC3EncodeContext *s,
                                       const int16_t *samples,
                                       int16_t planar_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE+AC3_FRAME_SIZE])
{
    int ch, i;

    /* deinterleave and remap input samples */
    for (ch = 0; ch < s->channels; ch++) {
        const int16_t *sptr;
        int sinc;

        /* copy last 256 samples of previous frame to the start of the current frame */
        memcpy(&planar_samples[ch][0], s->last_samples[ch],
               AC3_BLOCK_SIZE * sizeof(planar_samples[0][0]));

        /* deinterleave */
        sinc = s->channels;
        sptr = samples + s->channel_map[ch];
        for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) {
            planar_samples[ch][i] = *sptr;
            sptr += sinc;
        }

        /* save last 256 samples for next frame */
        memcpy(s->last_samples[ch], &planar_samples[ch][6* AC3_BLOCK_SIZE],
               AC3_BLOCK_SIZE * sizeof(planar_samples[0][0]));
    }
}


/**
 * Initialize FFT tables.
 * @param ln log2(FFT size)
 */
static av_cold void fft_init(int ln)
{
    int i, n, n2;
    float alpha;

    n  = 1 << ln;
    n2 = n >> 1;

    for (i = 0; i < n2; i++) {
        alpha     = 2.0 * M_PI * i / n;
        costab[i] = FIX15(cos(alpha));
        sintab[i] = FIX15(sin(alpha));
    }
}


/**
 * Initialize MDCT tables.
 * @param nbits log2(MDCT size)
 */
static av_cold void mdct_init(int nbits)
{
    int i, n, n4;

    n  = 1 << nbits;
    n4 = n >> 2;

    fft_init(nbits - 2);

    for (i = 0; i < n4; i++) {
        float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n;
        xcos1[i] = FIX15(-cos(alpha));
        xsin1[i] = FIX15(-sin(alpha));
    }
}


/** Butterfly op */
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1)  \
{                                                       \
  int ax, ay, bx, by;                                   \
  bx  = pre1;                                           \
  by  = pim1;                                           \
  ax  = qre1;                                           \
  ay  = qim1;                                           \
  pre = (bx + ax) >> 1;                                 \
  pim = (by + ay) >> 1;                                 \
  qre = (bx - ax) >> 1;                                 \
  qim = (by - ay) >> 1;                                 \
}


/** Complex multiply */
#define CMUL(pre, pim, are, aim, bre, bim)              \
{                                                       \
   pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;     \
   pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;     \
}


/**
 * Calculate a 2^n point complex FFT on 2^ln points.
 * @param z  complex input/output samples
 * @param ln log2(FFT size)
 */
static void fft(IComplex *z, int ln)
{
    int j, l, np, np2;
    int nblocks, nloops;
    register IComplex *p,*q;
    int tmp_re, tmp_im;

    np = 1 << ln;

    /* reverse */
    for (j = 0; j < np; j++) {
        int k = av_reverse[j] >> (8 - ln);
        if (k < j)
            FFSWAP(IComplex, z[k], z[j]);
    }

    /* pass 0 */

    p = &z[0];
    j = np >> 1;
    do {
        BF(p[0].re, p[0].im, p[1].re, p[1].im,
           p[0].re, p[0].im, p[1].re, p[1].im);
        p += 2;
    } while (--j);

    /* pass 1 */

    p = &z[0];
    j = np >> 2;
    do {
        BF(p[0].re, p[0].im, p[2].re,  p[2].im,
           p[0].re, p[0].im, p[2].re,  p[2].im);
        BF(p[1].re, p[1].im, p[3].re,  p[3].im,
           p[1].re, p[1].im, p[3].im, -p[3].re);
        p+=4;
    } while (--j);

    /* pass 2 .. ln-1 */

    nblocks = np >> 3;
    nloops  =  1 << 2;
    np2     = np >> 1;
    do {
        p = z;
        q = z + nloops;
        for (j = 0; j < nblocks; j++) {
            BF(p->re, p->im, q->re, q->im,
               p->re, p->im, q->re, q->im);
            p++;
            q++;
            for(l = nblocks; l < np2; l += nblocks) {
                CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
                BF(p->re, p->im, q->re,  q->im,
                   p->re, p->im, tmp_re, tmp_im);
                p++;
                q++;
            }
            p += nloops;
            q += nloops;
        }
        nblocks = nblocks >> 1;
        nloops  = nloops  << 1;
    } while (nblocks);
}


/**
 * Calculate a 512-point MDCT
 * @param out 256 output frequency coefficients
 * @param in  512 windowed input audio samples
 */
static void mdct512(int32_t *out, int16_t *in)
{
    int i, re, im, re1, im1;
    int16_t rot[MDCT_SAMPLES];
    IComplex x[MDCT_SAMPLES/4];

    /* shift to simplify computations */
    for (i = 0; i < MDCT_SAMPLES/4; i++)
        rot[i] = -in[i + 3*MDCT_SAMPLES/4];
    for (;i < MDCT_SAMPLES; i++)
        rot[i] =  in[i -   MDCT_SAMPLES/4];

    /* pre rotation */
    for (i = 0; i < MDCT_SAMPLES/4; i++) {
        re =  ((int)rot[               2*i] - (int)rot[MDCT_SAMPLES  -1-2*i]) >> 1;
        im = -((int)rot[MDCT_SAMPLES/2+2*i] - (int)rot[MDCT_SAMPLES/2-1-2*i]) >> 1;
        CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
    }

    fft(x, MDCT_NBITS - 2);

    /* post rotation */
    for (i = 0; i < MDCT_SAMPLES/4; i++) {
        re = x[i].re;
        im = x[i].im;
        CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
        out[                 2*i] = im1;
        out[MDCT_SAMPLES/2-1-2*i] = re1;
    }
}


/**
 * Apply KBD window to input samples prior to MDCT.
 */
static void apply_window(int16_t *output, const int16_t *input,
                         const int16_t *window, int n)
{
    int i;
    int n2 = n >> 1;

    for (i = 0; i < n2; i++) {
        output[i]     = MUL16(input[i],     window[i]) >> 15;
        output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15;
    }
}


/**
 * Calculate the log2() of the maximum absolute value in an array.
 * @param tab input array
 * @param n   number of values in the array
 * @return    log2(max(abs(tab[])))
 */
static int log2_tab(int16_t *tab, int n)
{
    int i, v;

    v = 0;
    for (i = 0; i < n; i++)
        v |= abs(tab[i]);

    return av_log2(v);
}


/**
 * Left-shift each value in an array by a specified amount.
 * @param tab    input array
 * @param n      number of values in the array
 * @param lshift left shift amount. a negative value means right shift.
 */
static void lshift_tab(int16_t *tab, int n, int lshift)
{
    int i;

    if (lshift > 0) {
        for(i = 0; i < n; i++)
            tab[i] <<= lshift;
    } else if (lshift < 0) {
        lshift = -lshift;
        for (i = 0; i < n; i++)
            tab[i] >>= lshift;
    }
}


/**
 * Normalize the input samples to use the maximum available precision.
 * This assumes signed 16-bit input samples. Exponents are reduced by 9 to
 * match the 24-bit internal precision for MDCT coefficients.
 *
 * @return exponent shift
 */
static int normalize_samples(AC3EncodeContext *s,
                             int16_t windowed_samples[AC3_WINDOW_SIZE])
{
    int v = 14 - log2_tab(windowed_samples, AC3_WINDOW_SIZE);
    v = FFMAX(0, v);
    lshift_tab(windowed_samples, AC3_WINDOW_SIZE, v);
    return v - 9;
}


/**
 * Apply the MDCT to input samples to generate frequency coefficients.
 * This applies the KBD window and normalizes the input to reduce precision
 * loss due to fixed-point calculations.
 */
static void apply_mdct(AC3EncodeContext *s,
                       int16_t planar_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE+AC3_FRAME_SIZE],
                       int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                       int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS])
{
    int blk, ch;
    int16_t windowed_samples[AC3_WINDOW_SIZE];

    for (ch = 0; ch < s->channels; ch++) {
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
            const int16_t *input_samples = &planar_samples[ch][blk * AC3_BLOCK_SIZE];

            apply_window(windowed_samples, input_samples, ff_ac3_window, AC3_WINDOW_SIZE);

            exp_shift[blk][ch] = normalize_samples(s, windowed_samples);

            mdct512(mdct_coef[blk][ch], windowed_samples);
        }
    }
}


/**
 * Extract exponents from the MDCT coefficients.
 * This takes into account the normalization that was done to the input samples
 * by adjusting the exponents by the exponent shift values.
 */
static void extract_exponents(AC3EncodeContext *s,
                              int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                              int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                              uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS])
{
    int blk, ch, i;

    /* extract exponents */
    for (ch = 0; ch < s->channels; ch++) {
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
            /* compute "exponents". We take into account the normalization there */
            for (i = 0; i < AC3_MAX_COEFS; i++) {
                int e;
                int v = abs(mdct_coef[blk][ch][i]);
                if (v == 0)
                    e = 24;
                else {
                    e = 23 - av_log2(v) + exp_shift[blk][ch];
                    if (e >= 24) {
                        e = 24;
                        mdct_coef[blk][ch][i] = 0;
                    }
                }
                exp[blk][ch][i] = e;
            }
        }
    }
}


/**
 * Calculate the sum of absolute differences (SAD) between 2 sets of exponents.
 */
static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
{
    int sum, i;
    sum = 0;
    for (i = 0; i < n; i++)
        sum += abs(exp1[i] - exp2[i]);
    return sum;
}


/**
 * Exponent Difference Threshold.
 * New exponents are sent if their SAD exceed this number.
 */
#define EXP_DIFF_THRESHOLD 1000


/**
 * Calculate exponent strategies for all blocks in a single channel.
 */
static void compute_exp_strategy_ch(uint8_t *exp_strategy, uint8_t **exp)
{
    int blk, blk1;
    int exp_diff;

    /* estimate if the exponent variation & decide if they should be
       reused in the next frame */
    exp_strategy[0] = EXP_NEW;
    for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) {
        exp_diff = calc_exp_diff(exp[blk], exp[blk-1], AC3_MAX_COEFS);
        if (exp_diff > EXP_DIFF_THRESHOLD)
            exp_strategy[blk] = EXP_NEW;
        else
            exp_strategy[blk] = EXP_REUSE;
    }

    /* now select the encoding strategy type : if exponents are often
       recoded, we use a coarse encoding */
    blk = 0;
    while (blk < AC3_MAX_BLOCKS) {
        blk1 = blk + 1;
        while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE)
            blk1++;
        switch (blk1 - blk) {
        case 1:  exp_strategy[blk] = EXP_D45; break;
        case 2:
        case 3:  exp_strategy[blk] = EXP_D25; break;
        default: exp_strategy[blk] = EXP_D15; break;
        }
        blk = blk1;
    }
}


/**
 * Calculate exponent strategies for all channels.
 * Array arrangement is reversed to simplify the per-channel calculation.
 */
static void compute_exp_strategy(AC3EncodeContext *s,
                                 uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                                 uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS])
{
    uint8_t *exp1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS];
    uint8_t exp_str1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS];
    int ch, blk;

    for (ch = 0; ch < s->fbw_channels; ch++) {
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
            exp1[ch][blk]     = exp[blk][ch];
            exp_str1[ch][blk] = exp_strategy[blk][ch];
        }

        compute_exp_strategy_ch(exp_str1[ch], exp1[ch]);

        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++)
            exp_strategy[blk][ch] = exp_str1[ch][blk];
    }
    if (s->lfe_on) {
        ch = s->lfe_channel;
        exp_strategy[0][ch] = EXP_D15;
        for (blk = 1; blk < 5; blk++)
            exp_strategy[blk][ch] = EXP_REUSE;
    }
}


/**
 * Set each encoded exponent in a block to the minimum of itself and the
 * exponent in the same frequency bin of a following block.
 * exp[i] = min(exp[i], exp1[i]
 */
static void exponent_min(uint8_t exp[AC3_MAX_COEFS], uint8_t exp1[AC3_MAX_COEFS], int n)
{
    int i;
    for (i = 0; i < n; i++) {
        if (exp1[i] < exp[i])
            exp[i] = exp1[i];
    }
}


/**
 * Update the exponents so that they are the ones the decoder will decode.
 */
static void encode_exponents_blk_ch(uint8_t encoded_exp[AC3_MAX_COEFS],
                                    uint8_t exp[AC3_MAX_COEFS],
                                    int nb_exps, int exp_strategy,
                                    uint8_t *num_exp_groups)
{
    int group_size, nb_groups, i, j, k, exp_min;
    uint8_t exp1[AC3_MAX_COEFS];

    group_size = exp_strategy + (exp_strategy == EXP_D45);
    *num_exp_groups = (nb_exps + (group_size * 3) - 4) / (3 * group_size);
    nb_groups = *num_exp_groups * 3;

    /* for each group, compute the minimum exponent */
    exp1[0] = exp[0]; /* DC exponent is handled separately */
    k = 1;
    for (i = 1; i <= nb_groups; i++) {
        exp_min = exp[k];
        assert(exp_min >= 0 && exp_min <= 24);
        for (j = 1; j < group_size; j++) {
            if (exp[k+j] < exp_min)
                exp_min = exp[k+j];
        }
        exp1[i] = exp_min;
        k += group_size;
    }

    /* constraint for DC exponent */
    if (exp1[0] > 15)
        exp1[0] = 15;

    /* decrease the delta between each groups to within 2 so that they can be
       differentially encoded */
    for (i = 1; i <= nb_groups; i++)
        exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
    for (i = nb_groups-1; i >= 0; i--)
        exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);

    /* now we have the exponent values the decoder will see */
    encoded_exp[0] = exp1[0];
    k = 1;
    for (i = 1; i <= nb_groups; i++) {
        for (j = 0; j < group_size; j++)
            encoded_exp[k+j] = exp1[i];
        k += group_size;
    }
}


/**
 * Encode exponents from original extracted form to what the decoder will see.
 * This copies and groups exponents based on exponent strategy and reduces
 * deltas between adjacent exponent groups so that they can be differentially
 * encoded.
 */
static void encode_exponents(AC3EncodeContext *s,
                             uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                             uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                             uint8_t num_exp_groups[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                             uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS])
{
    int blk, blk1, blk2, ch;

    for (ch = 0; ch < s->channels; ch++) {
        /* for the EXP_REUSE case we select the min of the exponents */
        blk = 0;
        while (blk < AC3_MAX_BLOCKS) {
            blk1 = blk + 1;
            while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1][ch] == EXP_REUSE) {
                exponent_min(exp[blk][ch], exp[blk1][ch], s->nb_coefs[ch]);
                blk1++;
            }
            encode_exponents_blk_ch(encoded_exp[blk][ch],
                                                  exp[blk][ch], s->nb_coefs[ch],
                                                  exp_strategy[blk][ch],
                                                  &num_exp_groups[blk][ch]);
            /* copy encoded exponents for reuse case */
            for (blk2 = blk+1; blk2 < blk1; blk2++) {
                memcpy(encoded_exp[blk2][ch], encoded_exp[blk][ch],
                       s->nb_coefs[ch] * sizeof(uint8_t));
            }
            blk = blk1;
        }
    }
}


/**
 * Group exponents.
 * 3 delta-encoded exponents are in each 7-bit group. The number of groups
 * varies depending on exponent strategy and bandwidth.
 * @return bits needed to encode the exponents
 */
static int group_exponents(AC3EncodeContext *s,
                           uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                           uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                           uint8_t num_exp_groups[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                           uint8_t grouped_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_EXP_GROUPS])
{
    int blk, ch, i;
    int group_size, bit_count;
    uint8_t *p;
    int delta0, delta1, delta2;
    int exp0, exp1;

    bit_count = 0;
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        for (ch = 0; ch < s->channels; ch++) {
            if (exp_strategy[blk][ch] == EXP_REUSE) {
                num_exp_groups[blk][ch] = 0;
                continue;
            }
            group_size = exp_strategy[blk][ch] + (exp_strategy[blk][ch] == EXP_D45);
            bit_count += 4 + (num_exp_groups[blk][ch] * 7);
            p = encoded_exp[blk][ch];

            /* DC exponent */
            exp1 = *p++;
            grouped_exp[blk][ch][0] = exp1;

            /* remaining exponents are delta encoded */
            for (i = 1; i <= num_exp_groups[blk][ch]; i++) {
                /* merge three delta in one code */
                exp0   = exp1;
                exp1   = p[0];
                p     += group_size;
                delta0 = exp1 - exp0 + 2;

                exp0   = exp1;
                exp1   = p[0];
                p     += group_size;
                delta1 = exp1 - exp0 + 2;

                exp0   = exp1;
                exp1   = p[0];
                p     += group_size;
                delta2 = exp1 - exp0 + 2;

                grouped_exp[blk][ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
            }
        }
    }

    return bit_count;
}


/**
 * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
 * Extract exponents from MDCT coefficients, calculate exponent strategies,
 * and encode final exponents.
 * @return bits needed to encode the exponents
 */
static int process_exponents(AC3EncodeContext *s,
                             int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                             int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                             uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                             uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                             uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                             uint8_t num_exp_groups[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                             uint8_t grouped_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_EXP_GROUPS])
{
    extract_exponents(s, mdct_coef, exp_shift, exp);

    compute_exp_strategy(s, exp_strategy, exp);

    encode_exponents(s, exp, exp_strategy, num_exp_groups, encoded_exp);

    return group_exponents(s, encoded_exp, exp_strategy, num_exp_groups, grouped_exp);
}


/**
 * Calculate the number of bits needed to encode a set of mantissas.
 */
static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
{
    int bits, mant, i;

    bits = 0;
    for (i = 0; i < nb_coefs; i++) {
        mant = m[i];
        switch (mant) {
        case 0:
            /* nothing */
            break;
        case 1:
            /* 3 mantissa in 5 bits */
            if (s->mant1_cnt == 0)
                bits += 5;
            if (++s->mant1_cnt == 3)
                s->mant1_cnt = 0;
            break;
        case 2:
            /* 3 mantissa in 7 bits */
            if (s->mant2_cnt == 0)
                bits += 7;
            if (++s->mant2_cnt == 3)
                s->mant2_cnt = 0;
            break;
        case 3:
            bits += 3;
            break;
        case 4:
            /* 2 mantissa in 7 bits */
            if (s->mant4_cnt == 0)
                bits += 7;
            if (++s->mant4_cnt == 2)
                s->mant4_cnt = 0;
            break;
        case 14:
            bits += 14;
            break;
        case 15:
            bits += 16;
            break;
        default:
            bits += mant - 1;
            break;
        }
    }
    return bits;
}


/**
 * Calculate masking curve based on the final exponents.
 * Also calculate the power spectral densities to use in future calculations.
 */
static void bit_alloc_masking(AC3EncodeContext *s,
                              uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                              uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                              int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                              int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_CRITICAL_BANDS])
{
    int blk, ch;
    int16_t band_psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_CRITICAL_BANDS];

    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        for (ch = 0; ch < s->channels; ch++) {
            if(exp_strategy[blk][ch] == EXP_REUSE) {
                memcpy(psd[blk][ch],  psd[blk-1][ch],  AC3_MAX_COEFS*sizeof(psd[0][0][0]));
                memcpy(mask[blk][ch], mask[blk-1][ch], AC3_CRITICAL_BANDS*sizeof(mask[0][0][0]));
            } else {
                ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
                                          s->nb_coefs[ch],
                                          psd[blk][ch], band_psd[blk][ch]);
                ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch],
                                           0, s->nb_coefs[ch],
                                           ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
                                           ch == s->lfe_channel,
                                           DBA_NONE, 0, NULL, NULL, NULL,
                                           mask[blk][ch]);
            }
        }
    }
}


/**
 * Run the bit allocation with a given SNR offset.
 * This calculates the bit allocation pointers that will be used to determine
 * the quantization of each mantissa.
 * @return the number of remaining bits (positive or negative) if the given
 *         SNR offset is used to quantize the mantissas.
 */
static int bit_alloc(AC3EncodeContext *s,
                     int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_CRITICAL_BANDS],
                     int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                     uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                     int frame_bits, int coarse_snr_offset, int fine_snr_offset)
{
    int blk, ch;
    int snr_offset;

    snr_offset = (((coarse_snr_offset - 15) << 4) + fine_snr_offset) << 2;

    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        s->mant1_cnt = 0;
        s->mant2_cnt = 0;
        s->mant4_cnt = 0;
        for (ch = 0; ch < s->channels; ch++) {
            ff_ac3_bit_alloc_calc_bap(mask[blk][ch], psd[blk][ch], 0,
                                      s->nb_coefs[ch], snr_offset,
                                      s->bit_alloc.floor, ff_ac3_bap_tab,
                                      bap[blk][ch]);
            frame_bits += compute_mantissa_size(s, bap[blk][ch], s->nb_coefs[ch]);
        }
    }
    return 8 * s->frame_size - frame_bits;
}


#define SNR_INC1 4

/**
 * Perform bit allocation search.
 * Finds the SNR offset value that maximizes quality and fits in the specified
 * frame size.  Output is the SNR offset and a set of bit allocation pointers
 * used to quantize the mantissas.
 */
static int compute_bit_allocation(AC3EncodeContext *s,
                                  uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                                  uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                                  uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                                  int frame_bits)
{
    int blk, ch;
    int coarse_snr_offset, fine_snr_offset;
    uint8_t bap1[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
    int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
    int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_CRITICAL_BANDS];
    static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };

    /* init default parameters */
    s->slow_decay_code = 2;
    s->fast_decay_code = 1;
    s->slow_gain_code  = 1;
    s->db_per_bit_code = 2;
    s->floor_code      = 4;
    for (ch = 0; ch < s->channels; ch++)
        s->fast_gain_code[ch] = 4;

    /* compute real values */
    s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
    s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
    s->bit_alloc.slow_gain  = ff_ac3_slow_gain_tab[s->slow_gain_code];
    s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
    s->bit_alloc.floor      = ff_ac3_floor_tab[s->floor_code];

    /* header size */
    frame_bits += 65;
    // if (s->channel_mode == 2)
    //    frame_bits += 2;
    frame_bits += frame_bits_inc[s->channel_mode];

    /* audio blocks */
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
        if (s->channel_mode == AC3_CHMODE_STEREO) {
            frame_bits++; /* rematstr */
            if (!blk)
                frame_bits += 4;
        }
        frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */
        if (s->lfe_on)
            frame_bits++; /* lfeexpstr */
        for (ch = 0; ch < s->fbw_channels; ch++) {
            if (exp_strategy[blk][ch] != EXP_REUSE)
                frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
        }
        frame_bits++; /* baie */
        frame_bits++; /* snr */
        frame_bits += 2; /* delta / skip */
    }
    frame_bits++; /* cplinu for block 0 */
    /* bit alloc info */
    /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
    /* csnroffset[6] */
    /* (fsnoffset[4] + fgaincod[4]) * c */
    frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3);

    /* auxdatae, crcrsv */
    frame_bits += 2;

    /* CRC */
    frame_bits += 16;

    /* calculate psd and masking curve before doing bit allocation */
    bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask);

    /* now the big work begins : do the bit allocation. Modify the snr
       offset until we can pack everything in the requested frame size */

    coarse_snr_offset = s->coarse_snr_offset;
    while (coarse_snr_offset >= 0 &&
           bit_alloc(s, mask, psd, bap, frame_bits, coarse_snr_offset, 0) < 0)
        coarse_snr_offset -= SNR_INC1;
    if (coarse_snr_offset < 0) {
        return AVERROR(EINVAL);
    }
    while (coarse_snr_offset + SNR_INC1 <= 63 &&
           bit_alloc(s, mask, psd, bap1, frame_bits,
                     coarse_snr_offset + SNR_INC1, 0) >= 0) {
        coarse_snr_offset += SNR_INC1;
        memcpy(bap, bap1, sizeof(bap1));
    }
    while (coarse_snr_offset + 1 <= 63 &&
           bit_alloc(s, mask, psd, bap1, frame_bits, coarse_snr_offset + 1, 0) >= 0) {
        coarse_snr_offset++;
        memcpy(bap, bap1, sizeof(bap1));
    }

    fine_snr_offset = 0;
    while (fine_snr_offset + SNR_INC1 <= 15 &&
           bit_alloc(s, mask, psd, bap1, frame_bits,
                     coarse_snr_offset, fine_snr_offset + SNR_INC1) >= 0) {
        fine_snr_offset += SNR_INC1;
        memcpy(bap, bap1, sizeof(bap1));
    }
    while (fine_snr_offset + 1 <= 15 &&
           bit_alloc(s, mask, psd, bap1, frame_bits,
                     coarse_snr_offset, fine_snr_offset + 1) >= 0) {
        fine_snr_offset++;
        memcpy(bap, bap1, sizeof(bap1));
    }

    s->coarse_snr_offset = coarse_snr_offset;
    for (ch = 0; ch < s->channels; ch++)
        s->fine_snr_offset[ch] = fine_snr_offset;

    return 0;
}


/**
 * Symmetric quantization on 'levels' levels.
 */
static inline int sym_quant(int c, int e, int levels)
{
    int v;

    if (c >= 0) {
        v = (levels * (c << e)) >> 24;
        v = (v + 1) >> 1;
        v = (levels >> 1) + v;
    } else {
        v = (levels * ((-c) << e)) >> 24;
        v = (v + 1) >> 1;
        v = (levels >> 1) - v;
    }
    assert (v >= 0 && v < levels);
    return v;
}


/**
 * Asymmetric quantization on 2^qbits levels.
 */
static inline int asym_quant(int c, int e, int qbits)
{
    int lshift, m, v;

    lshift = e + qbits - 24;
    if (lshift >= 0)
        v = c << lshift;
    else
        v = c >> (-lshift);
    /* rounding */
    v = (v + 1) >> 1;
    m = (1 << (qbits-1));
    if (v >= m)
        v = m - 1;
    assert(v >= -m);
    return v & ((1 << qbits)-1);
}


/**
 * Quantize a set of mantissas for a single channel in a single block.
 */
static void quantize_mantissas_blk_ch(AC3EncodeContext *s,
                                      int32_t *mdct_coef, int8_t exp_shift,
                                      uint8_t *encoded_exp, uint8_t *bap,
                                      uint16_t *qmant, int n)
{
    int i;

    for (i = 0; i < n; i++) {
        int v;
        int c = mdct_coef[i];
        int e = encoded_exp[i] - exp_shift;
        int b = bap[i];
        switch (b) {
        case 0:
            v = 0;
            break;
        case 1:
            v = sym_quant(c, e, 3);
            switch (s->mant1_cnt) {
            case 0:
                s->qmant1_ptr = &qmant[i];
                v = 9 * v;
                s->mant1_cnt = 1;
                break;
            case 1:
                *s->qmant1_ptr += 3 * v;
                s->mant1_cnt = 2;
                v = 128;
                break;
            default:
                *s->qmant1_ptr += v;
                s->mant1_cnt = 0;
                v = 128;
                break;
            }
            break;
        case 2:
            v = sym_quant(c, e, 5);
            switch (s->mant2_cnt) {
            case 0:
                s->qmant2_ptr = &qmant[i];
                v = 25 * v;
                s->mant2_cnt = 1;
                break;
            case 1:
                *s->qmant2_ptr += 5 * v;
                s->mant2_cnt = 2;
                v = 128;
                break;
            default:
                *s->qmant2_ptr += v;
                s->mant2_cnt = 0;
                v = 128;
                break;
            }
            break;
        case 3:
            v = sym_quant(c, e, 7);
            break;
        case 4:
            v = sym_quant(c, e, 11);
            switch (s->mant4_cnt) {
            case 0:
                s->qmant4_ptr = &qmant[i];
                v = 11 * v;
                s->mant4_cnt = 1;
                break;
            default:
                *s->qmant4_ptr += v;
                s->mant4_cnt = 0;
                v = 128;
                break;
            }
            break;
        case 5:
            v = sym_quant(c, e, 15);
            break;
        case 14:
            v = asym_quant(c, e, 14);
            break;
        case 15:
            v = asym_quant(c, e, 16);
            break;
        default:
            v = asym_quant(c, e, b - 1);
            break;
        }
        qmant[i] = v;
    }
}


/**
 * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
 */
static void quantize_mantissas(AC3EncodeContext *s,
                               int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                               int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                               uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                               uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                               uint16_t qmant[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS])
{
    int blk, ch;


    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        s->mant1_cnt  = s->mant2_cnt  = s->mant4_cnt  = 0;
        s->qmant1_ptr = s->qmant2_ptr = s->qmant4_ptr = NULL;

        for (ch = 0; ch < s->channels; ch++) {
            quantize_mantissas_blk_ch(s, mdct_coef[blk][ch], exp_shift[blk][ch],
                                      encoded_exp[blk][ch], bap[blk][ch],
                                      qmant[blk][ch], s->nb_coefs[ch]);
        }
    }
}


/**
 * Write the AC-3 frame header to the output bitstream.
 */
static void output_frame_header(AC3EncodeContext *s)
{
    put_bits(&s->pb, 16, 0x0b77);   /* frame header */
    put_bits(&s->pb, 16, 0);        /* crc1: will be filled later */
    put_bits(&s->pb, 2,  s->bit_alloc.sr_code);
    put_bits(&s->pb, 6,  s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
    put_bits(&s->pb, 5,  s->bitstream_id);
    put_bits(&s->pb, 3,  s->bitstream_mode);
    put_bits(&s->pb, 3,  s->channel_mode);
    if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
        put_bits(&s->pb, 2, 1);     /* XXX -4.5 dB */
    if (s->channel_mode & 0x04)
        put_bits(&s->pb, 2, 1);     /* XXX -6 dB */
    if (s->channel_mode == AC3_CHMODE_STEREO)
        put_bits(&s->pb, 2, 0);     /* surround not indicated */
    put_bits(&s->pb, 1, s->lfe_on); /* LFE */
    put_bits(&s->pb, 5, 31);        /* dialog norm: -31 db */
    put_bits(&s->pb, 1, 0);         /* no compression control word */
    put_bits(&s->pb, 1, 0);         /* no lang code */
    put_bits(&s->pb, 1, 0);         /* no audio production info */
    put_bits(&s->pb, 1, 0);         /* no copyright */
    put_bits(&s->pb, 1, 1);         /* original bitstream */
    put_bits(&s->pb, 1, 0);         /* no time code 1 */
    put_bits(&s->pb, 1, 0);         /* no time code 2 */
    put_bits(&s->pb, 1, 0);         /* no additional bit stream info */
}


/**
 * Write one audio block to the output bitstream.
 */
static void output_audio_block(AC3EncodeContext *s,
                               uint8_t exp_strategy[AC3_MAX_CHANNELS],
                               uint8_t num_exp_groups[AC3_MAX_CHANNELS],
                               uint8_t grouped_exp[AC3_MAX_CHANNELS][AC3_MAX_EXP_GROUPS],
                               uint8_t bap[AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                               uint16_t qmant[AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                               int block_num)
{
    int ch, i, baie, rbnd;

    for (ch = 0; ch < s->fbw_channels; ch++)
        put_bits(&s->pb, 1, 0); /* no block switching */
    for (ch = 0; ch < s->fbw_channels; ch++)
        put_bits(&s->pb, 1, 1); /* no dither */
    put_bits(&s->pb, 1, 0);     /* no dynamic range */
    if (!block_num) {
        put_bits(&s->pb, 1, 1); /* coupling strategy present */
        put_bits(&s->pb, 1, 0); /* no coupling strategy */
    } else {
        put_bits(&s->pb, 1, 0); /* no new coupling strategy */
    }

    if (s->channel_mode == AC3_CHMODE_STEREO) {
        if (!block_num) {
            /* first block must define rematrixing (rematstr) */
            put_bits(&s->pb, 1, 1);

            /* dummy rematrixing rematflg(1:4)=0 */
            for (rbnd = 0; rbnd < 4; rbnd++)
                put_bits(&s->pb, 1, 0);
        } else {
            /* no matrixing (but should be used in the future) */
            put_bits(&s->pb, 1, 0);
        }
    }

    /* exponent strategy */
    for (ch = 0; ch < s->fbw_channels; ch++)
        put_bits(&s->pb, 2, exp_strategy[ch]);

    if (s->lfe_on)
        put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);

    /* bandwidth */
    for (ch = 0; ch < s->fbw_channels; ch++) {
        if (exp_strategy[ch] != EXP_REUSE)
            put_bits(&s->pb, 6, s->bandwidth_code[ch]);
    }

    /* exponents */
    for (ch = 0; ch < s->channels; ch++) {
        if (exp_strategy[ch] == EXP_REUSE)
            continue;

        /* first exponent */
        put_bits(&s->pb, 4, grouped_exp[ch][0]);

        /* next ones are delta-encoded and grouped */
        for (i = 1; i <= num_exp_groups[ch]; i++)
            put_bits(&s->pb, 7, grouped_exp[ch][i]);

        if (ch != s->lfe_channel)
            put_bits(&s->pb, 2, 0); /* no gain range info */
    }

    /* bit allocation info */
    baie = (block_num == 0);
    put_bits(&s->pb, 1, baie);
    if (baie) {
        put_bits(&s->pb, 2, s->slow_decay_code);
        put_bits(&s->pb, 2, s->fast_decay_code);
        put_bits(&s->pb, 2, s->slow_gain_code);
        put_bits(&s->pb, 2, s->db_per_bit_code);
        put_bits(&s->pb, 3, s->floor_code);
    }

    /* snr offset */
    put_bits(&s->pb, 1, baie);
    if (baie) {
        put_bits(&s->pb, 6, s->coarse_snr_offset);
        for (ch = 0; ch < s->channels; ch++) {
            put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
            put_bits(&s->pb, 3, s->fast_gain_code[ch]);
        }
    }

    put_bits(&s->pb, 1, 0); /* no delta bit allocation */
    put_bits(&s->pb, 1, 0); /* no data to skip */

    /* mantissa encoding */
    for (ch = 0; ch < s->channels; ch++) {
        int b, q;

        for (i = 0; i < s->nb_coefs[ch]; i++) {
            q = qmant[ch][i];
            b = bap[ch][i];
            switch (b) {
            case 0:                                         break;
            case 1: if (q != 128) put_bits(&s->pb,   5, q); break;
            case 2: if (q != 128) put_bits(&s->pb,   7, q); break;
            case 3:               put_bits(&s->pb,   3, q); break;
            case 4: if (q != 128) put_bits(&s->pb,   7, q); break;
            case 14:              put_bits(&s->pb,  14, q); break;
            case 15:              put_bits(&s->pb,  16, q); break;
            default:              put_bits(&s->pb, b-1, q); break;
            }
        }
    }
}


/** CRC-16 Polynomial */
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))


static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
{
    unsigned int c;

    c = 0;
    while (a) {
        if (a & 1)
            c ^= b;
        a = a >> 1;
        b = b << 1;
        if (b & (1 << 16))
            b ^= poly;
    }
    return c;
}


static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
{
    unsigned int r;
    r = 1;
    while (n) {
        if (n & 1)
            r = mul_poly(r, a, poly);
        a = mul_poly(a, a, poly);
        n >>= 1;
    }
    return r;
}


/**
 * Fill the end of the frame with 0's and compute the two CRCs.
 */
static void output_frame_end(AC3EncodeContext *s)
{
    int frame_size, frame_size_58, pad_bytes, crc1, crc2, crc_inv;
    uint8_t *frame;

    frame_size = s->frame_size; /* frame size in words */
    /* align to 8 bits */
    flush_put_bits(&s->pb);
    /* add zero bytes to reach the frame size */
    frame = s->pb.buf;
    pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
    assert(pad_bytes >= 0);
    if (pad_bytes > 0)
        memset(put_bits_ptr(&s->pb), 0, pad_bytes);

    /* Now we must compute both crcs : this is not so easy for crc1
       because it is at the beginning of the data... */
    frame_size_58 = ((frame_size >> 2) + (frame_size >> 4)) << 1;

    crc1 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
                             frame + 4, frame_size_58 - 4));

    /* XXX: could precompute crc_inv */
    crc_inv = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
    crc1    = mul_poly(crc_inv, crc1, CRC16_POLY);
    AV_WB16(frame + 2, crc1);

    crc2 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
                             frame + frame_size_58,
                             frame_size - frame_size_58 - 2));
    AV_WB16(frame + frame_size - 2, crc2);
}


/**
 * Write the frame to the output bitstream.
 */
static void output_frame(AC3EncodeContext *s,
                         unsigned char *frame,
                         uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                         uint8_t num_exp_groups[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
                         uint8_t grouped_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_EXP_GROUPS],
                         uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
                         uint16_t qmant[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS])
{
    int blk;

    init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);

    output_frame_header(s);

    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        output_audio_block(s, exp_strategy[blk], num_exp_groups[blk],
                           grouped_exp[blk], bap[blk], qmant[blk], blk);
    }

    output_frame_end(s);
}


/**
 * Encode a single AC-3 frame.
 */
static int ac3_encode_frame(AVCodecContext *avctx,
                            unsigned char *frame, int buf_size, void *data)
{
    AC3EncodeContext *s = avctx->priv_data;
    const int16_t *samples = data;
    int16_t planar_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE+AC3_FRAME_SIZE];
    int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
    uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
    uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS];
    uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
    uint8_t num_exp_groups[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS];
    uint8_t grouped_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_EXP_GROUPS];
    uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
    int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS];
    uint16_t qmant[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
    int frame_bits;
    int ret;

    if (s->bit_alloc.sr_code == 1)
        adjust_frame_size(s);

    deinterleave_input_samples(s, samples, planar_samples);

    apply_mdct(s, planar_samples, exp_shift, mdct_coef);

    frame_bits = process_exponents(s, mdct_coef, exp_shift, exp, exp_strategy,
                                   encoded_exp, num_exp_groups, grouped_exp);

    ret = compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
    if (ret) {
        av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
        return ret;
    }

    quantize_mantissas(s, mdct_coef, exp_shift, encoded_exp, bap, qmant);

    output_frame(s, frame, exp_strategy, num_exp_groups, grouped_exp, bap, qmant);

    return s->frame_size;
}


/**
 * Finalize encoding and free any memory allocated by the encoder.
 */
static av_cold int ac3_encode_close(AVCodecContext *avctx)
{
    av_freep(&avctx->coded_frame);
    return 0;
}


/**
 * Set channel information during initialization.
 */
static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
                                    int64_t *channel_layout)
{
    int ch_layout;

    if (channels < 1 || channels > AC3_MAX_CHANNELS)
        return AVERROR(EINVAL);
    if ((uint64_t)*channel_layout > 0x7FF)
        return AVERROR(EINVAL);
    ch_layout = *channel_layout;
    if (!ch_layout)
        ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
    if (av_get_channel_layout_nb_channels(ch_layout) != channels)
        return AVERROR(EINVAL);

    s->lfe_on       = !!(ch_layout & AV_CH_LOW_FREQUENCY);
    s->channels     = channels;
    s->fbw_channels = channels - s->lfe_on;
    s->lfe_channel  = s->lfe_on ? s->fbw_channels : -1;
    if (s->lfe_on)
        ch_layout -= AV_CH_LOW_FREQUENCY;

    switch (ch_layout) {
    case AV_CH_LAYOUT_MONO:           s->channel_mode = AC3_CHMODE_MONO;   break;
    case AV_CH_LAYOUT_STEREO:         s->channel_mode = AC3_CHMODE_STEREO; break;
    case AV_CH_LAYOUT_SURROUND:       s->channel_mode = AC3_CHMODE_3F;     break;
    case AV_CH_LAYOUT_2_1:            s->channel_mode = AC3_CHMODE_2F1R;   break;
    case AV_CH_LAYOUT_4POINT0:        s->channel_mode = AC3_CHMODE_3F1R;   break;
    case AV_CH_LAYOUT_QUAD:
    case AV_CH_LAYOUT_2_2:            s->channel_mode = AC3_CHMODE_2F2R;   break;
    case AV_CH_LAYOUT_5POINT0:
    case AV_CH_LAYOUT_5POINT0_BACK:   s->channel_mode = AC3_CHMODE_3F2R;   break;
    default:
        return AVERROR(EINVAL);
    }

    s->channel_map  = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
    *channel_layout = ch_layout;
    if (s->lfe_on)
        *channel_layout |= AV_CH_LOW_FREQUENCY;

    return 0;
}


static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s)
{
    int i, ret;

    /* validate channel layout */
    if (!avctx->channel_layout) {
        av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
                                      "encoder will guess the layout, but it "
                                      "might be incorrect.\n");
    }
    ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
    if (ret) {
        av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
        return ret;
    }

    /* validate sample rate */
    for (i = 0; i < 9; i++) {
        if ((ff_ac3_sample_rate_tab[i / 3] >> (i % 3)) == avctx->sample_rate)
            break;
    }
    if (i == 9) {
        av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
        return AVERROR(EINVAL);
    }
    s->sample_rate        = avctx->sample_rate;
    s->bit_alloc.sr_shift = i % 3;
    s->bit_alloc.sr_code  = i / 3;

    /* validate bit rate */
    for (i = 0; i < 19; i++) {
        if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate)
            break;
    }
    if (i == 19) {
        av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n");
        return AVERROR(EINVAL);
    }
    s->bit_rate        = avctx->bit_rate;
    s->frame_size_code = i << 1;

    return 0;
}


/**
 * Set bandwidth for all channels.
 * The user can optionally supply a cutoff frequency. Otherwise an appropriate
 * default value will be used.
 */
static av_cold void set_bandwidth(AC3EncodeContext *s, int cutoff)
{
    int ch, bw_code;

    if (cutoff) {
        /* calculate bandwidth based on user-specified cutoff frequency */
        int fbw_coeffs;
        cutoff         = av_clip(cutoff, 1, s->sample_rate >> 1);
        fbw_coeffs     = cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
        bw_code        = av_clip((fbw_coeffs - 73) / 3, 0, 60);
    } else {
        /* use default bandwidth setting */
        /* XXX: should compute the bandwidth according to the frame
           size, so that we avoid annoying high frequency artifacts */
        bw_code = 50;
    }

    /* set number of coefficients for each channel */
    for (ch = 0; ch < s->fbw_channels; ch++) {
        s->bandwidth_code[ch] = bw_code;
        s->nb_coefs[ch]       = bw_code * 3 + 73;
    }
    if (s->lfe_on)
        s->nb_coefs[s->lfe_channel] = 7; /* LFE channel always has 7 coefs */
}


/**
 * Initialize the encoder.
 */
static av_cold int ac3_encode_init(AVCodecContext *avctx)
{
    AC3EncodeContext *s = avctx->priv_data;
    int ret;

    avctx->frame_size = AC3_FRAME_SIZE;

    ac3_common_init();

    ret = validate_options(avctx, s);
    if (ret)
        return ret;

    s->bitstream_id   = 8 + s->bit_alloc.sr_shift;
    s->bitstream_mode = 0; /* complete main audio service */

    s->frame_size_min  = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
    s->bits_written    = 0;
    s->samples_written = 0;
    s->frame_size      = s->frame_size_min;

    set_bandwidth(s, avctx->cutoff);

    /* initial snr offset */
    s->coarse_snr_offset = 40;

    mdct_init(9);

    avctx->coded_frame= avcodec_alloc_frame();
    avctx->coded_frame->key_frame= 1;

    return 0;
}


#ifdef TEST
/*************************************************************************/
/* TEST */

#include "libavutil/lfg.h"

#define FN (MDCT_SAMPLES/4)


static void fft_test(AVLFG *lfg)
{
    IComplex in[FN], in1[FN];
    int k, n, i;
    float sum_re, sum_im, a;

    for (i = 0; i < FN; i++) {
        in[i].re = av_lfg_get(lfg) % 65535 - 32767;
        in[i].im = av_lfg_get(lfg) % 65535 - 32767;
        in1[i]   = in[i];
    }
    fft(in, 7);

    /* do it by hand */
    for (k = 0; k < FN; k++) {
        sum_re = 0;
        sum_im = 0;
        for (n = 0; n < FN; n++) {
            a = -2 * M_PI * (n * k) / FN;
            sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
            sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
        }
        av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n",
               k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
    }
}


static void mdct_test(AVLFG *lfg)
{
    int16_t input[MDCT_SAMPLES];
    int32_t output[AC3_MAX_COEFS];
    float input1[MDCT_SAMPLES];
    float output1[AC3_MAX_COEFS];
    float s, a, err, e, emax;
    int i, k, n;

    for (i = 0; i < MDCT_SAMPLES; i++) {
        input[i]  = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10;
        input1[i] = input[i];
    }

    mdct512(output, input);

    /* do it by hand */
    for (k = 0; k < AC3_MAX_COEFS; k++) {
        s = 0;
        for (n = 0; n < MDCT_SAMPLES; n++) {
            a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES));
            s += input1[n] * cos(a);
        }
        output1[k] = -2 * s / MDCT_SAMPLES;
    }

    err  = 0;
    emax = 0;
    for (i = 0; i < AC3_MAX_COEFS; i++) {
        av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]);
        e = output[i] - output1[i];
        if (e > emax)
            emax = e;
        err += e * e;
    }
    av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax);
}


int main(void)
{
    AVLFG lfg;

    av_log_set_level(AV_LOG_DEBUG);
    mdct_init(9);

    fft_test(&lfg);
    mdct_test(&lfg);

    return 0;
}
#endif /* TEST */


AVCodec ac3_encoder = {
    "ac3",
    AVMEDIA_TYPE_AUDIO,
    CODEC_ID_AC3,
    sizeof(AC3EncodeContext),
    ac3_encode_init,
    ac3_encode_frame,
    ac3_encode_close,
    NULL,
    .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
    .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
    .channel_layouts = (const int64_t[]){
        AV_CH_LAYOUT_MONO,
        AV_CH_LAYOUT_STEREO,
        AV_CH_LAYOUT_2_1,
        AV_CH_LAYOUT_SURROUND,
        AV_CH_LAYOUT_2_2,
        AV_CH_LAYOUT_QUAD,
        AV_CH_LAYOUT_4POINT0,
        AV_CH_LAYOUT_5POINT0,
        AV_CH_LAYOUT_5POINT0_BACK,
       (AV_CH_LAYOUT_MONO     | AV_CH_LOW_FREQUENCY),
       (AV_CH_LAYOUT_STEREO   | AV_CH_LOW_FREQUENCY),
       (AV_CH_LAYOUT_2_1      | AV_CH_LOW_FREQUENCY),
       (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
       (AV_CH_LAYOUT_2_2      | AV_CH_LOW_FREQUENCY),
       (AV_CH_LAYOUT_QUAD     | AV_CH_LOW_FREQUENCY),
       (AV_CH_LAYOUT_4POINT0  | AV_CH_LOW_FREQUENCY),
        AV_CH_LAYOUT_5POINT1,
        AV_CH_LAYOUT_5POINT1_BACK,
        0 },
};