aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/ac3dec.c
blob: 6954366cebd82d3464c0a2d12a8fcb4589fd48fd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
/*
 * AC-3 Audio Decoder
 * This code is developed as part of Google Summer of Code 2006 Program.
 *
 * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
 * Copyright (c) 2007 Justin Ruggles
 *
 * Portions of this code are derived from liba52
 * http://liba52.sourceforge.net
 * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
 * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <stdio.h>
#include <stddef.h>
#include <math.h>
#include <string.h>

#include "avcodec.h"
#include "ac3_parser.h"
#include "bitstream.h"
#include "dsputil.h"
#include "random.h"

/**
 * Table of bin locations for rematrixing bands
 * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
 */
static const uint8_t rematrix_band_tbl[5] = { 13, 25, 37, 61, 253 };

/**
 * table for exponent to scale_factor mapping
 * scale_factors[i] = 2 ^ -i
 */
static float scale_factors[25];

/** table for grouping exponents */
static uint8_t exp_ungroup_tbl[128][3];


/** tables for ungrouping mantissas */
static float b1_mantissas[32][3];
static float b2_mantissas[128][3];
static float b3_mantissas[8];
static float b4_mantissas[128][2];
static float b5_mantissas[16];

/**
 * Quantization table: levels for symmetric. bits for asymmetric.
 * reference: Table 7.18 Mapping of bap to Quantizer
 */
static const uint8_t qntztab[16] = {
    0, 3, 5, 7, 11, 15,
    5, 6, 7, 8, 9, 10, 11, 12, 14, 16
};

/** dynamic range table. converts codes to scale factors. */
static float dynrng_tbl[256];

/** dialogue normalization table */
static float dialnorm_tbl[32];

/** Adjustments in dB gain */
#define LEVEL_MINUS_3DB         0.7071067811865476
#define LEVEL_MINUS_4POINT5DB   0.5946035575013605
#define LEVEL_MINUS_6DB         0.5000000000000000
#define LEVEL_MINUS_9DB         0.3535533905932738
#define LEVEL_ZERO              0.0000000000000000
#define LEVEL_ONE               1.0000000000000000

static const float gain_levels[6] = {
    LEVEL_ZERO,
    LEVEL_ONE,
    LEVEL_MINUS_3DB,
    LEVEL_MINUS_4POINT5DB,
    LEVEL_MINUS_6DB,
    LEVEL_MINUS_9DB
};

/**
 * Table for center mix levels
 * reference: Section 5.4.2.4 cmixlev
 */
static const uint8_t clevs[4] = { 2, 3, 4, 3 };

/**
 * Table for surround mix levels
 * reference: Section 5.4.2.5 surmixlev
 */
static const uint8_t slevs[4] = { 2, 4, 0, 4 };

/**
 * Table for default stereo downmixing coefficients
 * reference: Section 7.8.2 Downmixing Into Two Channels
 */
static const uint8_t ac3_default_coeffs[8][5][2] = {
    { { 1, 0 }, { 0, 1 },                               },
    { { 2, 2 },                                         },
    { { 1, 0 }, { 0, 1 },                               },
    { { 1, 0 }, { 3, 3 }, { 0, 1 },                     },
    { { 1, 0 }, { 0, 1 }, { 4, 4 },                     },
    { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 },           },
    { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 },           },
    { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
};

/* override ac3.h to include coupling channel */
#undef AC3_MAX_CHANNELS
#define AC3_MAX_CHANNELS 7
#define CPL_CH 0

#define AC3_OUTPUT_LFEON  8

typedef struct {
    int acmod;                              ///< audio coding mode
    int dsurmod;                            ///< dolby surround mode
    int blksw[AC3_MAX_CHANNELS];            ///< block switch flags
    int dithflag[AC3_MAX_CHANNELS];         ///< dither flags
    int dither_all;                         ///< true if all channels are dithered
    int cplinu;                             ///< coupling in use
    int chincpl[AC3_MAX_CHANNELS];          ///< channel in coupling
    int phsflginu;                          ///< phase flags in use
    int cplbndstrc[18];                     ///< coupling band structure
    int rematstr;                           ///< rematrixing strategy
    int nrematbnd;                          ///< number of rematrixing bands
    int rematflg[4];                        ///< rematrixing flags
    int expstr[AC3_MAX_CHANNELS];           ///< exponent strategies
    int snroffst[AC3_MAX_CHANNELS];         ///< signal-to-noise ratio offsets
    int fgain[AC3_MAX_CHANNELS];            ///< fast gain values (signal-to-mask ratio)
    int deltbae[AC3_MAX_CHANNELS];          ///< delta bit allocation exists
    int deltnseg[AC3_MAX_CHANNELS];         ///< number of delta segments
    uint8_t deltoffst[AC3_MAX_CHANNELS][8]; ///< delta segment offsets
    uint8_t deltlen[AC3_MAX_CHANNELS][8];   ///< delta segment lengths
    uint8_t deltba[AC3_MAX_CHANNELS][8];    ///< delta values for each segment

    int sampling_rate;                      ///< sample frequency, in Hz
    int bit_rate;                           ///< stream bit rate, in bits-per-second
    int frame_size;                         ///< current frame size, in bytes

    int nchans;                             ///< number of total channels
    int nfchans;                            ///< number of full-bandwidth channels
    int lfeon;                              ///< lfe channel in use
    int      lfe_ch;            ///< index of LFE channel
    int      output_mode;       ///< output channel configuration
    int      out_channels;      ///< number of output channels

    float    downmix_coeffs[AC3_MAX_CHANNELS][2];   ///< stereo downmix coefficients
    float    dialnorm[2];                       ///< dialogue normalization
    float    dynrng[2];                         ///< dynamic range
    float cplco[AC3_MAX_CHANNELS][18];      ///< coupling coordinates
    int ncplbnd;                            ///< number of coupling bands
    int ncplsubnd;                          ///< number of coupling sub bands
    int      startmant[AC3_MAX_CHANNELS];   ///< start frequency bin
    int endmant[AC3_MAX_CHANNELS];          ///< end frequency bin
    AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters

    int8_t   dexps[AC3_MAX_CHANNELS][256];  ///< decoded exponents
    uint8_t  bap[AC3_MAX_CHANNELS][256];    ///< bit allocation pointers
    int16_t  psd[AC3_MAX_CHANNELS][256];    ///< scaled exponents
    int16_t  bndpsd[AC3_MAX_CHANNELS][50];  ///< interpolated exponents
    int16_t  mask[AC3_MAX_CHANNELS][50];    ///< masking curve values

    DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]);  ///< transform coefficients

    /* For IMDCT. */
    MDCTContext imdct_512;                  ///< for 512 sample IMDCT
    MDCTContext imdct_256;                  ///< for 256 sample IMDCT
    DSPContext  dsp;                        ///< for optimization
    float       add_bias;   ///< offset for float_to_int16 conversion
    float       mul_bias;   ///< scaling for float_to_int16 conversion

    DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]);     ///< output after imdct transform and windowing
    DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
    DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]);      ///< delay - added to the next block
    DECLARE_ALIGNED_16(float, tmp_imdct[256]);                      ///< temporary storage for imdct transform
    DECLARE_ALIGNED_16(float, tmp_output[512]);                     ///< temporary storage for output before windowing
    DECLARE_ALIGNED_16(float, window[256]);                         ///< window coefficients

    /* Miscellaneous. */
    GetBitContext gb;                       ///< bitstream reader
    AVRandomState dith_state;               ///< for dither generation
    AVCodecContext *avctx;      ///< parent context
} AC3DecodeContext;

/**
 * Generate a Kaiser-Bessel Derived Window.
 */
static void ac3_window_init(float *window)
{
   int i, j;
   double sum = 0.0, bessel, tmp;
   double local_window[256];
   double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);

   for (i = 0; i < 256; i++) {
       tmp = i * (256 - i) * alpha2;
       bessel = 1.0;
       for (j = 100; j > 0; j--) /* default to 100 iterations */
           bessel = bessel * tmp / (j * j) + 1;
       sum += bessel;
       local_window[i] = sum;
   }

   sum++;
   for (i = 0; i < 256; i++)
       window[i] = sqrt(local_window[i] / sum);
}

/**
 * Symmetrical Dequantization
 * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
 *            Tables 7.19 to 7.23
 */
static inline float
symmetric_dequant(int code, int levels)
{
    return (code - (levels >> 1)) * (2.0f / levels);
}

/*
 * Initialize tables at runtime.
 */
static void ac3_tables_init(void)
{
    int i;

    /* generate grouped mantissa tables
       reference: Section 7.3.5 Ungrouping of Mantissas */
    for(i=0; i<32; i++) {
        /* bap=1 mantissas */
        b1_mantissas[i][0] = symmetric_dequant( i / 9     , 3);
        b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
        b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
    }
    for(i=0; i<128; i++) {
        /* bap=2 mantissas */
        b2_mantissas[i][0] = symmetric_dequant( i / 25     , 5);
        b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
        b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);

        /* bap=4 mantissas */
        b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
        b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
    }
    /* generate ungrouped mantissa tables
       reference: Tables 7.21 and 7.23 */
    for(i=0; i<7; i++) {
        /* bap=3 mantissas */
        b3_mantissas[i] = symmetric_dequant(i, 7);
    }
    for(i=0; i<15; i++) {
        /* bap=5 mantissas */
        b5_mantissas[i] = symmetric_dequant(i, 15);
    }

    /* generate dynamic range table
       reference: Section 7.7.1 Dynamic Range Control */
    for(i=0; i<256; i++) {
        int v = (i >> 5) - ((i >> 7) << 3) - 5;
        dynrng_tbl[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
    }

    /* generate dialogue normalization table
       references: Section 5.4.2.8 dialnorm
                   Section 7.6 Dialogue Normalization */
    for(i=1; i<32; i++) {
        dialnorm_tbl[i] = expf((i-31) * M_LN10 / 20.0f);
    }
    dialnorm_tbl[0] = dialnorm_tbl[31];

    /* generate scale factors for exponents and asymmetrical dequantization
       reference: Section 7.3.2 Expansion of Mantissas for Asymmetric Quantization */
    for (i = 0; i < 25; i++)
        scale_factors[i] = pow(2.0, -i);

    /* generate exponent tables
       reference: Section 7.1.3 Exponent Decoding */
    for(i=0; i<128; i++) {
        exp_ungroup_tbl[i][0] =  i / 25;
        exp_ungroup_tbl[i][1] = (i % 25) / 5;
        exp_ungroup_tbl[i][2] = (i % 25) % 5;
    }
}


/**
 * AVCodec initialization
 */
static int ac3_decode_init(AVCodecContext *avctx)
{
    AC3DecodeContext *ctx = avctx->priv_data;
    ctx->avctx = avctx;

    ac3_common_init();
    ac3_tables_init();
    ff_mdct_init(&ctx->imdct_256, 8, 1);
    ff_mdct_init(&ctx->imdct_512, 9, 1);
    ac3_window_init(ctx->window);
    dsputil_init(&ctx->dsp, avctx);
    av_init_random(0, &ctx->dith_state);

    /* set bias values for float to int16 conversion */
    if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) {
        ctx->add_bias = 385.0f;
        ctx->mul_bias = 1.0f;
    } else {
        ctx->add_bias = 0.0f;
        ctx->mul_bias = 32767.0f;
    }

    return 0;
}

/**
 * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
 * GetBitContext within AC3DecodeContext must point to
 * start of the synchronized ac3 bitstream.
 */
static int ac3_parse_header(AC3DecodeContext *ctx)
{
    AC3HeaderInfo hdr;
    GetBitContext *gb = &ctx->gb;
    float cmixlev, surmixlev;
    int err, i;

    err = ff_ac3_parse_header(gb->buffer, &hdr);
    if(err)
        return err;

    /* get decoding parameters from header info */
    ctx->bit_alloc_params.fscod       = hdr.fscod;
    ctx->acmod                        = hdr.acmod;
    cmixlev                           = gain_levels[clevs[hdr.cmixlev]];
    surmixlev                         = gain_levels[slevs[hdr.surmixlev]];
    ctx->dsurmod                      = hdr.dsurmod;
    ctx->lfeon                        = hdr.lfeon;
    ctx->bit_alloc_params.halfratecod = hdr.halfratecod;
    ctx->sampling_rate                = hdr.sample_rate;
    ctx->bit_rate                     = hdr.bit_rate;
    ctx->nchans                       = hdr.channels;
    ctx->nfchans                      = ctx->nchans - ctx->lfeon;
    ctx->lfe_ch                       = ctx->nfchans + 1;
    ctx->frame_size                   = hdr.frame_size;

    /* set default output to all source channels */
    ctx->out_channels = ctx->nchans;
    ctx->output_mode = ctx->acmod;
    if(ctx->lfeon)
        ctx->output_mode |= AC3_OUTPUT_LFEON;

    /* skip over portion of header which has already been read */
    skip_bits(gb, 16); // skip the sync_word
    skip_bits(gb, 16); // skip crc1
    skip_bits(gb, 8);  // skip fscod and frmsizecod
    skip_bits(gb, 11); // skip bsid, bsmod, and acmod
    if(ctx->acmod == AC3_ACMOD_STEREO) {
        skip_bits(gb, 2); // skip dsurmod
    } else {
        if((ctx->acmod & 1) && ctx->acmod != AC3_ACMOD_MONO)
            skip_bits(gb, 2); // skip cmixlev
        if(ctx->acmod & 4)
            skip_bits(gb, 2); // skip surmixlev
    }
    skip_bits1(gb); // skip lfeon

    /* read the rest of the bsi. read twice for dual mono mode. */
    i = !(ctx->acmod);
    do {
        ctx->dialnorm[i] = dialnorm_tbl[get_bits(gb, 5)]; // dialogue normalization
        if (get_bits1(gb))
            skip_bits(gb, 8); //skip compression
        if (get_bits1(gb))
            skip_bits(gb, 8); //skip language code
        if (get_bits1(gb))
            skip_bits(gb, 7); //skip audio production information
    } while (i--);

    skip_bits(gb, 2); //skip copyright bit and original bitstream bit

    /* skip the timecodes (or extra bitstream information for Alternate Syntax)
       TODO: read & use the xbsi1 downmix levels */
    if (get_bits1(gb))
        skip_bits(gb, 14); //skip timecode1 / xbsi1
    if (get_bits1(gb))
        skip_bits(gb, 14); //skip timecode2 / xbsi2

    /* skip additional bitstream info */
    if (get_bits1(gb)) {
        i = get_bits(gb, 6);
        do {
            skip_bits(gb, 8);
        } while(i--);
    }

    /* set stereo downmixing coefficients
       reference: Section 7.8.2 Downmixing Into Two Channels */
    for(i=0; i<ctx->nfchans; i++) {
        ctx->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[ctx->acmod][i][0]];
        ctx->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[ctx->acmod][i][1]];
    }
    if(ctx->acmod > 1 && ctx->acmod & 1) {
        ctx->downmix_coeffs[1][0] = ctx->downmix_coeffs[1][1] = cmixlev;
    }
    if(ctx->acmod == AC3_ACMOD_2F1R || ctx->acmod == AC3_ACMOD_3F1R) {
        int nf = ctx->acmod - 2;
        ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf][1] = surmixlev * LEVEL_MINUS_3DB;
    }
    if(ctx->acmod == AC3_ACMOD_2F2R || ctx->acmod == AC3_ACMOD_3F2R) {
        int nf = ctx->acmod - 4;
        ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf+1][1] = surmixlev;
    }

    return 0;
}

/**
 * Decode the grouped exponents according to exponent strategy.
 * reference: Section 7.1.3 Exponent Decoding
 */
static void decode_exponents(GetBitContext *gb, int expstr, int ngrps,
                             uint8_t absexp, int8_t *dexps)
{
    int i, j, grp, grpsize;
    int dexp[256];
    int expacc, prevexp;

    /* unpack groups */
    grpsize = expstr + (expstr == EXP_D45);
    for(grp=0,i=0; grp<ngrps; grp++) {
        expacc = get_bits(gb, 7);
        dexp[i++] = exp_ungroup_tbl[expacc][0];
        dexp[i++] = exp_ungroup_tbl[expacc][1];
        dexp[i++] = exp_ungroup_tbl[expacc][2];
    }

    /* convert to absolute exps and expand groups */
    prevexp = absexp;
    for(i=0; i<ngrps*3; i++) {
        prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
        for(j=0; j<grpsize; j++) {
            dexps[(i*grpsize)+j] = prevexp;
        }
    }
}

/**
 * Generate transform coefficients for each coupled channel in the coupling
 * range using the coupling coefficients and coupling coordinates.
 * reference: Section 7.4.3 Coupling Coordinate Format
 */
static void uncouple_channels(AC3DecodeContext *ctx)
{
    int i, j, ch, bnd, subbnd;

    subbnd = -1;
    i = ctx->startmant[CPL_CH];
    for(bnd=0; bnd<ctx->ncplbnd; bnd++) {
        do {
            subbnd++;
            for(j=0; j<12; j++) {
                for(ch=1; ch<=ctx->nfchans; ch++) {
                    if(ctx->chincpl[ch])
                        ctx->transform_coeffs[ch][i] = ctx->transform_coeffs[CPL_CH][i] * ctx->cplco[ch][bnd] * 8.0f;
                }
                i++;
            }
        } while(ctx->cplbndstrc[subbnd]);
    }
}

/**
 * Grouped mantissas for 3-level 5-level and 11-level quantization
 */
typedef struct {
    float b1_mant[3];
    float b2_mant[3];
    float b4_mant[2];
    int b1ptr;
    int b2ptr;
    int b4ptr;
} mant_groups;

/**
 * Get the transform coefficients for a particular channel
 * reference: Section 7.3 Quantization and Decoding of Mantissas
 */
static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m)
{
    GetBitContext *gb = &ctx->gb;
    int i, gcode, tbap, start, end;
    uint8_t *exps;
    uint8_t *bap;
    float *coeffs;

    exps = ctx->dexps[ch_index];
    bap = ctx->bap[ch_index];
    coeffs = ctx->transform_coeffs[ch_index];
    start = ctx->startmant[ch_index];
    end = ctx->endmant[ch_index];

    for (i = start; i < end; i++) {
        tbap = bap[i];
        switch (tbap) {
            case 0:
                coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) * LEVEL_MINUS_3DB) / 32768.0f;
                break;

            case 1:
                if(m->b1ptr > 2) {
                    gcode = get_bits(gb, 5);
                    m->b1_mant[0] = b1_mantissas[gcode][0];
                    m->b1_mant[1] = b1_mantissas[gcode][1];
                    m->b1_mant[2] = b1_mantissas[gcode][2];
                    m->b1ptr = 0;
                }
                coeffs[i] = m->b1_mant[m->b1ptr++];
                break;

            case 2:
                if(m->b2ptr > 2) {
                    gcode = get_bits(gb, 7);
                    m->b2_mant[0] = b2_mantissas[gcode][0];
                    m->b2_mant[1] = b2_mantissas[gcode][1];
                    m->b2_mant[2] = b2_mantissas[gcode][2];
                    m->b2ptr = 0;
                }
                coeffs[i] = m->b2_mant[m->b2ptr++];
                break;

            case 3:
                coeffs[i] = b3_mantissas[get_bits(gb, 3)];
                break;

            case 4:
                if(m->b4ptr > 1) {
                    gcode = get_bits(gb, 7);
                    m->b4_mant[0] = b4_mantissas[gcode][0];
                    m->b4_mant[1] = b4_mantissas[gcode][1];
                    m->b4ptr = 0;
                }
                coeffs[i] = m->b4_mant[m->b4ptr++];
                break;

            case 5:
                coeffs[i] = b5_mantissas[get_bits(gb, 4)];
                break;

            default:
                /* asymmetric dequantization */
                coeffs[i] = get_sbits(gb, qntztab[tbap]) * scale_factors[qntztab[tbap]-1];
                break;
        }
        coeffs[i] *= scale_factors[exps[i]];
    }

    return 0;
}

/**
 * Remove random dithering from coefficients with zero-bit mantissas
 * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
 */
static void remove_dithering(AC3DecodeContext *ctx) {
    int ch, i;
    int end=0;
    float *coeffs;
    uint8_t *bap;

    for(ch=1; ch<=ctx->nfchans; ch++) {
        if(!ctx->dithflag[ch]) {
            coeffs = ctx->transform_coeffs[ch];
            bap = ctx->bap[ch];
            if(ctx->chincpl[ch])
                end = ctx->startmant[CPL_CH];
            else
                end = ctx->endmant[ch];
            for(i=0; i<end; i++) {
                if(bap[i] == 0)
                    coeffs[i] = 0.0f;
            }
            if(ctx->chincpl[ch]) {
                bap = ctx->bap[CPL_CH];
                for(; i<ctx->endmant[CPL_CH]; i++) {
                    if(bap[i] == 0)
                        coeffs[i] = 0.0f;
                }
            }
        }
    }
}

/**
 * Get the transform coefficients.
 */
static int get_transform_coeffs(AC3DecodeContext * ctx)
{
    int ch, end;
    int got_cplchan = 0;
    mant_groups m;

    m.b1ptr = m.b2ptr = m.b4ptr = 3;

    for (ch = 1; ch <= ctx->nchans; ch++) {
        /* transform coefficients for full-bandwidth channel */
        if (get_transform_coeffs_ch(ctx, ch, &m))
            return -1;
        /* tranform coefficients for coupling channel come right after the
           coefficients for the first coupled channel*/
        if (ctx->chincpl[ch])  {
            if (!got_cplchan) {
                if (get_transform_coeffs_ch(ctx, CPL_CH, &m)) {
                    av_log(ctx->avctx, AV_LOG_ERROR, "error in decoupling channels\n");
                    return -1;
                }
                uncouple_channels(ctx);
                got_cplchan = 1;
            }
            end = ctx->endmant[CPL_CH];
        } else {
            end = ctx->endmant[ch];
        }
        do
            ctx->transform_coeffs[ch][end] = 0;
        while(++end < 256);
    }

    /* if any channel doesn't use dithering, zero appropriate coefficients */
    if(!ctx->dither_all)
        remove_dithering(ctx);

    return 0;
}

/**
 * Stereo rematrixing.
 * reference: Section 7.5.4 Rematrixing : Decoding Technique
 */
static void do_rematrixing(AC3DecodeContext *ctx)
{
    int bnd, i;
    int end, bndend;
    float tmp0, tmp1;

    end = FFMIN(ctx->endmant[1], ctx->endmant[2]);

    for(bnd=0; bnd<ctx->nrematbnd; bnd++) {
        if(ctx->rematflg[bnd]) {
            bndend = FFMIN(end, rematrix_band_tbl[bnd+1]);
            for(i=rematrix_band_tbl[bnd]; i<bndend; i++) {
                tmp0 = ctx->transform_coeffs[1][i];
                tmp1 = ctx->transform_coeffs[2][i];
                ctx->transform_coeffs[1][i] = tmp0 + tmp1;
                ctx->transform_coeffs[2][i] = tmp0 - tmp1;
            }
        }
    }
}

/**
 * Perform the 256-point IMDCT
 */
static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
{
    int i, k;
    DECLARE_ALIGNED_16(float, x[128]);
    FFTComplex z[2][64];
    float *o_ptr = ctx->tmp_output;

    for(i=0; i<2; i++) {
        /* de-interleave coefficients */
        for(k=0; k<128; k++) {
            x[k] = ctx->transform_coeffs[chindex][2*k+i];
        }

        /* run standard IMDCT */
        ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct);

        /* reverse the post-rotation & reordering from standard IMDCT */
        for(k=0; k<32; k++) {
            z[i][32+k].re = -o_ptr[128+2*k];
            z[i][32+k].im = -o_ptr[2*k];
            z[i][31-k].re =  o_ptr[2*k+1];
            z[i][31-k].im =  o_ptr[128+2*k+1];
        }
    }

    /* apply AC-3 post-rotation & reordering */
    for(k=0; k<64; k++) {
        o_ptr[    2*k  ] = -z[0][   k].im;
        o_ptr[    2*k+1] =  z[0][63-k].re;
        o_ptr[128+2*k  ] = -z[0][   k].re;
        o_ptr[128+2*k+1] =  z[0][63-k].im;
        o_ptr[256+2*k  ] = -z[1][   k].re;
        o_ptr[256+2*k+1] =  z[1][63-k].im;
        o_ptr[384+2*k  ] =  z[1][   k].im;
        o_ptr[384+2*k+1] = -z[1][63-k].re;
    }
}

/**
 * Inverse MDCT Transform.
 * Convert frequency domain coefficients to time-domain audio samples.
 * reference: Section 7.9.4 Transformation Equations
 */
static inline void do_imdct(AC3DecodeContext *ctx)
{
    int ch;
    int nchans;

    /* Don't perform the IMDCT on the LFE channel unless it's used in the output */
    nchans = ctx->nfchans;
    if(ctx->output_mode & AC3_OUTPUT_LFEON)
        nchans++;

    for (ch=1; ch<=nchans; ch++) {
        if (ctx->blksw[ch]) {
            do_imdct_256(ctx, ch);
        } else {
            ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
                                          ctx->transform_coeffs[ch],
                                          ctx->tmp_imdct);
        }
        /* For the first half of the block, apply the window, add the delay
           from the previous block, and send to output */
        ctx->dsp.vector_fmul_add_add(ctx->output[ch-1], ctx->tmp_output,
                                     ctx->window, ctx->delay[ch-1], 0, 256, 1);
        /* For the second half of the block, apply the window and store the
           samples to delay, to be combined with the next block */
        ctx->dsp.vector_fmul_reverse(ctx->delay[ch-1], ctx->tmp_output+256,
                                     ctx->window, 256);
    }
}

/**
 * Downmix the output to mono or stereo.
 */
static void ac3_downmix(float samples[AC3_MAX_CHANNELS][256], int nfchans,
                        int output_mode, float coef[AC3_MAX_CHANNELS][2])
{
    int i, j;
    float v0, v1, s0, s1;

    for(i=0; i<256; i++) {
        v0 = v1 = s0 = s1 = 0.0f;
        for(j=0; j<nfchans; j++) {
            v0 += samples[j][i] * coef[j][0];
            v1 += samples[j][i] * coef[j][1];
            s0 += coef[j][0];
            s1 += coef[j][1];
        }
        v0 /= s0;
        v1 /= s1;
        if(output_mode == AC3_ACMOD_MONO) {
            samples[0][i] = (v0 + v1) * LEVEL_MINUS_3DB;
        } else if(output_mode == AC3_ACMOD_STEREO) {
            samples[0][i] = v0;
            samples[1][i] = v1;
        }
    }
}

/**
 * Parse an audio block from AC-3 bitstream.
 */
static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
{
    int nfchans = ctx->nfchans;
    int acmod = ctx->acmod;
    int i, bnd, seg, ch;
    GetBitContext *gb = &ctx->gb;
    uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];

    memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);

    /* block switch flags */
    for (ch = 1; ch <= nfchans; ch++)
        ctx->blksw[ch] = get_bits1(gb);

    /* dithering flags */
    ctx->dither_all = 1;
    for (ch = 1; ch <= nfchans; ch++) {
        ctx->dithflag[ch] = get_bits1(gb);
        if(!ctx->dithflag[ch])
            ctx->dither_all = 0;
    }

    /* dynamic range */
    i = !(ctx->acmod);
    do {
        if(get_bits1(gb)) {
            ctx->dynrng[i] = dynrng_tbl[get_bits(gb, 8)];
        } else if(blk == 0) {
            ctx->dynrng[i] = 1.0f;
        }
    } while(i--);

    /* coupling strategy */
    if (get_bits1(gb)) {
        memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
        ctx->cplinu = get_bits1(gb);
        if (ctx->cplinu) {
            /* coupling in use */
            int cplbegf, cplendf;

            /* determine which channels are coupled */
            for (ch = 1; ch <= nfchans; ch++)
                ctx->chincpl[ch] = get_bits1(gb);

            /* phase flags in use */
            if (acmod == AC3_ACMOD_STEREO)
                ctx->phsflginu = get_bits1(gb);

            /* coupling frequency range and band structure */
            cplbegf = get_bits(gb, 4);
            cplendf = get_bits(gb, 4);
            if (3 + cplendf - cplbegf < 0) {
                av_log(ctx->avctx, AV_LOG_ERROR, "cplendf = %d < cplbegf = %d\n", cplendf, cplbegf);
                return -1;
            }
            ctx->ncplbnd = ctx->ncplsubnd = 3 + cplendf - cplbegf;
            ctx->startmant[CPL_CH] = cplbegf * 12 + 37;
            ctx->endmant[CPL_CH] = cplendf * 12 + 73;
            for (bnd = 0; bnd < ctx->ncplsubnd - 1; bnd++) {
                if (get_bits1(gb)) {
                    ctx->cplbndstrc[bnd] = 1;
                    ctx->ncplbnd--;
                }
            }
        } else {
            /* coupling not in use */
            for (ch = 1; ch <= nfchans; ch++)
                ctx->chincpl[ch] = 0;
        }
    }

    /* coupling coordinates */
    if (ctx->cplinu) {
        int cplcoe = 0;

        for (ch = 1; ch <= nfchans; ch++) {
            if (ctx->chincpl[ch]) {
                if (get_bits1(gb)) {
                    int mstrcplco, cplcoexp, cplcomant;
                    cplcoe = 1;
                    mstrcplco = 3 * get_bits(gb, 2);
                    for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
                        cplcoexp = get_bits(gb, 4);
                        cplcomant = get_bits(gb, 4);
                        if (cplcoexp == 15)
                            ctx->cplco[ch][bnd] = cplcomant / 16.0f;
                        else
                            ctx->cplco[ch][bnd] = (cplcomant + 16.0f) / 32.0f;
                        ctx->cplco[ch][bnd] *= scale_factors[cplcoexp + mstrcplco];
                    }
                }
            }
        }
        /* phase flags */
        if (acmod == AC3_ACMOD_STEREO && ctx->phsflginu && cplcoe) {
            for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
                if (get_bits1(gb))
                    ctx->cplco[2][bnd] = -ctx->cplco[2][bnd];
            }
        }
    }

    /* stereo rematrixing strategy and band structure */
    if (acmod == AC3_ACMOD_STEREO) {
        ctx->rematstr = get_bits1(gb);
        if (ctx->rematstr) {
            ctx->nrematbnd = 4;
            if(ctx->cplinu && ctx->startmant[CPL_CH] <= 61)
                ctx->nrematbnd -= 1 + (ctx->startmant[CPL_CH] == 37);
            for(bnd=0; bnd<ctx->nrematbnd; bnd++)
                ctx->rematflg[bnd] = get_bits1(gb);
        }
    }

    /* exponent strategies for each channel */
    ctx->expstr[CPL_CH] = EXP_REUSE;
    ctx->expstr[ctx->lfe_ch] = EXP_REUSE;
    for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) {
        if(ch == ctx->lfe_ch)
            ctx->expstr[ch] = get_bits(gb, 1);
        else
            ctx->expstr[ch] = get_bits(gb, 2);
        if(ctx->expstr[ch] != EXP_REUSE)
            bit_alloc_stages[ch] = 3;
    }

    /* channel bandwidth */
    for (ch = 1; ch <= nfchans; ch++) {
        ctx->startmant[ch] = 0;
        if (ctx->expstr[ch] != EXP_REUSE) {
            int prev = ctx->endmant[ch];
            if (ctx->chincpl[ch])
                ctx->endmant[ch] = ctx->startmant[CPL_CH];
            else {
                int chbwcod = get_bits(gb, 6);
                if (chbwcod > 60) {
                    av_log(ctx->avctx, AV_LOG_ERROR, "chbwcod = %d > 60", chbwcod);
                    return -1;
                }
                ctx->endmant[ch] = chbwcod * 3 + 73;
            }
            if(blk > 0 && ctx->endmant[ch] != prev)
                memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
        }
    }
    ctx->startmant[ctx->lfe_ch] = 0;
    ctx->endmant[ctx->lfe_ch] = 7;

    /* decode exponents for each channel */
    for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) {
        if (ctx->expstr[ch] != EXP_REUSE) {
            int grpsize, ngrps;
            grpsize = 3 << (ctx->expstr[ch] - 1);
            if(ch == CPL_CH)
                ngrps = (ctx->endmant[ch] - ctx->startmant[ch]) / grpsize;
            else if(ch == ctx->lfe_ch)
                ngrps = 2;
            else
                ngrps = (ctx->endmant[ch] + grpsize - 4) / grpsize;
            ctx->dexps[ch][0] = get_bits(gb, 4) << !ch;
            decode_exponents(gb, ctx->expstr[ch], ngrps, ctx->dexps[ch][0],
                             &ctx->dexps[ch][ctx->startmant[ch]+!!ch]);
            if(ch != CPL_CH && ch != ctx->lfe_ch)
                skip_bits(gb, 2); /* skip gainrng */
        }
    }

    /* bit allocation information */
    if (get_bits1(gb)) {
        ctx->bit_alloc_params.sdecay = ff_sdecaytab[get_bits(gb, 2)];
        ctx->bit_alloc_params.fdecay = ff_fdecaytab[get_bits(gb, 2)];
        ctx->bit_alloc_params.sgain  = ff_sgaintab[get_bits(gb, 2)];
        ctx->bit_alloc_params.dbknee = ff_dbkneetab[get_bits(gb, 2)];
        ctx->bit_alloc_params.floor  = ff_floortab[get_bits(gb, 3)];
        for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) {
            bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
        }
    }

    /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
    if (get_bits1(gb)) {
        int csnr;
        csnr = (get_bits(gb, 6) - 15) << 4;
        for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) { /* snr offset and fast gain */
            ctx->snroffst[ch] = (csnr + get_bits(gb, 4)) << 2;
            ctx->fgain[ch] = ff_fgaintab[get_bits(gb, 3)];
        }
        memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
    }

    /* coupling leak information */
    if (ctx->cplinu && get_bits1(gb)) {
        ctx->bit_alloc_params.cplfleak = get_bits(gb, 3);
        ctx->bit_alloc_params.cplsleak = get_bits(gb, 3);
        bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
    }

    /* delta bit allocation information */
    if (get_bits1(gb)) {
        /* delta bit allocation exists (strategy) */
        for (ch = !ctx->cplinu; ch <= nfchans; ch++) {
            ctx->deltbae[ch] = get_bits(gb, 2);
            if (ctx->deltbae[ch] == DBA_RESERVED) {
                av_log(ctx->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
                return -1;
            }
            bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
        }
        /* channel delta offset, len and bit allocation */
        for (ch = !ctx->cplinu; ch <= nfchans; ch++) {
            if (ctx->deltbae[ch] == DBA_NEW) {
                ctx->deltnseg[ch] = get_bits(gb, 3);
                for (seg = 0; seg <= ctx->deltnseg[ch]; seg++) {
                    ctx->deltoffst[ch][seg] = get_bits(gb, 5);
                    ctx->deltlen[ch][seg] = get_bits(gb, 4);
                    ctx->deltba[ch][seg] = get_bits(gb, 3);
                }
            }
        }
    } else if(blk == 0) {
        for(ch=0; ch<=ctx->nchans; ch++) {
            ctx->deltbae[ch] = DBA_NONE;
        }
    }

    /* Bit allocation */
    for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) {
        if(bit_alloc_stages[ch] > 2) {
            /* Exponent mapping into PSD and PSD integration */
            ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch],
                                      ctx->startmant[ch], ctx->endmant[ch],
                                      ctx->psd[ch], ctx->bndpsd[ch]);
        }
        if(bit_alloc_stages[ch] > 1) {
            /* Compute excitation function, Compute masking curve, and
               Apply delta bit allocation */
            ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->bndpsd[ch],
                                       ctx->startmant[ch], ctx->endmant[ch],
                                       ctx->fgain[ch], (ch == ctx->lfe_ch),
                                       ctx->deltbae[ch], ctx->deltnseg[ch],
                                       ctx->deltoffst[ch], ctx->deltlen[ch],
                                       ctx->deltba[ch], ctx->mask[ch]);
        }
        if(bit_alloc_stages[ch] > 0) {
            /* Compute bit allocation */
            ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch],
                                      ctx->startmant[ch], ctx->endmant[ch],
                                      ctx->snroffst[ch],
                                      ctx->bit_alloc_params.floor,
                                      ctx->bap[ch]);
        }
    }

    /* unused dummy data */
    if (get_bits1(gb)) {
        int skipl = get_bits(gb, 9);
        while(skipl--)
            skip_bits(gb, 8);
    }

    /* unpack the transform coefficients
       this also uncouples channels if coupling is in use. */
    if (get_transform_coeffs(ctx)) {
        av_log(ctx->avctx, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
        return -1;
    }

    /* recover coefficients if rematrixing is in use */
    if(ctx->acmod == AC3_ACMOD_STEREO)
        do_rematrixing(ctx);

    /* apply scaling to coefficients (headroom, dialnorm, dynrng) */
    for(ch=1; ch<=ctx->nchans; ch++) {
        float gain = 2.0f * ctx->mul_bias;
        if(ctx->acmod == AC3_ACMOD_DUALMONO) {
            gain *= ctx->dialnorm[ch-1] * ctx->dynrng[ch-1];
        } else {
            gain *= ctx->dialnorm[0] * ctx->dynrng[0];
        }
        for(i=0; i<ctx->endmant[ch]; i++) {
            ctx->transform_coeffs[ch][i] *= gain;
        }
    }

    do_imdct(ctx);

    /* downmix output if needed */
    if(ctx->nchans != ctx->out_channels && !((ctx->output_mode & AC3_OUTPUT_LFEON) &&
            ctx->nfchans == ctx->out_channels)) {
        ac3_downmix(ctx->output, ctx->nfchans, ctx->output_mode,
                    ctx->downmix_coeffs);
    }

    /* convert float to 16-bit integer */
    for(ch=0; ch<ctx->out_channels; ch++) {
        for(i=0; i<256; i++) {
            ctx->output[ch][i] += ctx->add_bias;
        }
        ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256);
    }

    return 0;
}

/**
 * Decode a single AC-3 frame.
 */
static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
{
    AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
    int16_t *out_samples = (int16_t *)data;
    int i, blk, ch;

    /* initialize the GetBitContext with the start of valid AC-3 Frame */
    init_get_bits(&ctx->gb, buf, buf_size * 8);

    /* parse the syncinfo */
    if (ac3_parse_header(ctx)) {
        av_log(avctx, AV_LOG_ERROR, "\n");
        *data_size = 0;
        return buf_size;
    }

    avctx->sample_rate = ctx->sampling_rate;
    avctx->bit_rate = ctx->bit_rate;

    /* channel config */
    ctx->out_channels = ctx->nchans;
    if (avctx->channels == 0) {
        avctx->channels = ctx->out_channels;
    } else if(ctx->out_channels < avctx->channels) {
        av_log(avctx, AV_LOG_ERROR, "Cannot upmix AC3 from %d to %d channels.\n",
               ctx->out_channels, avctx->channels);
        return -1;
    }
    if(avctx->channels == 2) {
        ctx->output_mode = AC3_ACMOD_STEREO;
    } else if(avctx->channels == 1) {
        ctx->output_mode = AC3_ACMOD_MONO;
    } else if(avctx->channels != ctx->out_channels) {
        av_log(avctx, AV_LOG_ERROR, "Cannot downmix AC3 from %d to %d channels.\n",
               ctx->out_channels, avctx->channels);
        return -1;
    }
    ctx->out_channels = avctx->channels;

    /* parse the audio blocks */
    for (blk = 0; blk < NB_BLOCKS; blk++) {
        if (ac3_parse_audio_block(ctx, blk)) {
            av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
            *data_size = 0;
            return ctx->frame_size;
        }
        for (i = 0; i < 256; i++)
            for (ch = 0; ch < ctx->out_channels; ch++)
                *(out_samples++) = ctx->int_output[ch][i];
    }
    *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
    return ctx->frame_size;
}

/**
 * Uninitialize the AC-3 decoder.
 */
static int ac3_decode_end(AVCodecContext *avctx)
{
    AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
    ff_mdct_end(&ctx->imdct_512);
    ff_mdct_end(&ctx->imdct_256);

    return 0;
}

AVCodec ac3_decoder = {
    .name = "ac3",
    .type = CODEC_TYPE_AUDIO,
    .id = CODEC_ID_AC3,
    .priv_data_size = sizeof (AC3DecodeContext),
    .init = ac3_decode_init,
    .close = ac3_decode_end,
    .decode = ac3_decode_frame,
};