aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/ac3dec.c
blob: efec001c01facfa410242246f94e055ffc070010 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
/*
 * AC-3 Audio Decoder
 * This code was developed as part of Google Summer of Code 2006.
 * E-AC-3 support was added as part of Google Summer of Code 2007.
 *
 * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
 * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
 * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <stdio.h>
#include <stddef.h>
#include <math.h>
#include <string.h>

#include "libavutil/crc.h"
#include "libavutil/opt.h"
#include "internal.h"
#include "aac_ac3_parser.h"
#include "ac3_parser.h"
#include "ac3dec.h"
#include "ac3dec_data.h"
#include "kbdwin.h"

/**
 * table for ungrouping 3 values in 7 bits.
 * used for exponents and bap=2 mantissas
 */
static uint8_t ungroup_3_in_7_bits_tab[128][3];

/** tables for ungrouping mantissas */
static int b1_mantissas[32][3];
static int b2_mantissas[128][3];
static int b3_mantissas[8];
static int b4_mantissas[128][2];
static int b5_mantissas[16];

/**
 * Quantization table: levels for symmetric. bits for asymmetric.
 * reference: Table 7.18 Mapping of bap to Quantizer
 */
static const uint8_t quantization_tab[16] = {
    0, 3, 5, 7, 11, 15,
    5, 6, 7, 8, 9, 10, 11, 12, 14, 16
};

/** dynamic range table. converts codes to scale factors. */
static float dynamic_range_tab[256];

/** Adjustments in dB gain */
static const float gain_levels[9] = {
    LEVEL_PLUS_3DB,
    LEVEL_PLUS_1POINT5DB,
    LEVEL_ONE,
    LEVEL_MINUS_1POINT5DB,
    LEVEL_MINUS_3DB,
    LEVEL_MINUS_4POINT5DB,
    LEVEL_MINUS_6DB,
    LEVEL_ZERO,
    LEVEL_MINUS_9DB
};

/**
 * Table for default stereo downmixing coefficients
 * reference: Section 7.8.2 Downmixing Into Two Channels
 */
static const uint8_t ac3_default_coeffs[8][5][2] = {
    { { 2, 7 }, { 7, 2 },                               },
    { { 4, 4 },                                         },
    { { 2, 7 }, { 7, 2 },                               },
    { { 2, 7 }, { 5, 5 }, { 7, 2 },                     },
    { { 2, 7 }, { 7, 2 }, { 6, 6 },                     },
    { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 },           },
    { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 },           },
    { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
};

/**
 * Symmetrical Dequantization
 * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
 *            Tables 7.19 to 7.23
 */
static inline int
symmetric_dequant(int code, int levels)
{
    return ((code - (levels >> 1)) << 24) / levels;
}

/*
 * Initialize tables at runtime.
 */
static av_cold void ac3_tables_init(void)
{
    int i;

    /* generate table for ungrouping 3 values in 7 bits
       reference: Section 7.1.3 Exponent Decoding */
    for (i = 0; i < 128; i++) {
        ungroup_3_in_7_bits_tab[i][0] =  i / 25;
        ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
        ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
    }

    /* generate grouped mantissa tables
       reference: Section 7.3.5 Ungrouping of Mantissas */
    for (i = 0; i < 32; i++) {
        /* bap=1 mantissas */
        b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
        b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
        b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
    }
    for (i = 0; i < 128; i++) {
        /* bap=2 mantissas */
        b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
        b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
        b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);

        /* bap=4 mantissas */
        b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
        b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
    }
    /* generate ungrouped mantissa tables
       reference: Tables 7.21 and 7.23 */
    for (i = 0; i < 7; i++) {
        /* bap=3 mantissas */
        b3_mantissas[i] = symmetric_dequant(i, 7);
    }
    for (i = 0; i < 15; i++) {
        /* bap=5 mantissas */
        b5_mantissas[i] = symmetric_dequant(i, 15);
    }

    /* generate dynamic range table
       reference: Section 7.7.1 Dynamic Range Control */
    for (i = 0; i < 256; i++) {
        int v = (i >> 5) - ((i >> 7) << 3) - 5;
        dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
    }
}

/**
 * AVCodec initialization
 */
static av_cold int ac3_decode_init(AVCodecContext *avctx)
{
    AC3DecodeContext *s = avctx->priv_data;
    int i;

    s->avctx = avctx;

    ff_ac3_common_init();
    ac3_tables_init();
    ff_mdct_init(&s->imdct_256, 8, 1, 1.0);
    ff_mdct_init(&s->imdct_512, 9, 1, 1.0);
    ff_kbd_window_init(s->window, 5.0, 256);
    ff_dsputil_init(&s->dsp, avctx);
    ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT);
    ff_fmt_convert_init(&s->fmt_conv, avctx);
    av_lfg_init(&s->dith_state, 0);

    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;

    /* allow downmixing to stereo or mono */
    if (avctx->channels > 0 && avctx->request_channels > 0 &&
            avctx->request_channels < avctx->channels &&
            avctx->request_channels <= 2) {
        avctx->channels = avctx->request_channels;
    }
    s->downmixed = 1;

    avcodec_get_frame_defaults(&s->frame);
    avctx->coded_frame = &s->frame;

    for (i = 0; i < AC3_MAX_CHANNELS; i++) {
        s->xcfptr[i] = s->transform_coeffs[i];
        s->dlyptr[i] = s->delay[i];
    }

    return 0;
}

/**
 * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
 * GetBitContext within AC3DecodeContext must point to
 * the start of the synchronized AC-3 bitstream.
 */
static int ac3_parse_header(AC3DecodeContext *s)
{
    GetBitContext *gbc = &s->gbc;
    int i;

    /* read the rest of the bsi. read twice for dual mono mode. */
    i = !s->channel_mode;
    do {
        skip_bits(gbc, 5); // skip dialog normalization
        if (get_bits1(gbc))
            skip_bits(gbc, 8); //skip compression
        if (get_bits1(gbc))
            skip_bits(gbc, 8); //skip language code
        if (get_bits1(gbc))
            skip_bits(gbc, 7); //skip audio production information
    } while (i--);

    skip_bits(gbc, 2); //skip copyright bit and original bitstream bit

    /* skip the timecodes (or extra bitstream information for Alternate Syntax)
       TODO: read & use the xbsi1 downmix levels */
    if (get_bits1(gbc))
        skip_bits(gbc, 14); //skip timecode1 / xbsi1
    if (get_bits1(gbc))
        skip_bits(gbc, 14); //skip timecode2 / xbsi2

    /* skip additional bitstream info */
    if (get_bits1(gbc)) {
        i = get_bits(gbc, 6);
        do {
            skip_bits(gbc, 8);
        } while (i--);
    }

    return 0;
}

/**
 * Common function to parse AC-3 or E-AC-3 frame header
 */
static int parse_frame_header(AC3DecodeContext *s)
{
    AC3HeaderInfo hdr;
    int err;

    err = avpriv_ac3_parse_header(&s->gbc, &hdr);
    if (err)
        return err;

    /* get decoding parameters from header info */
    s->bit_alloc_params.sr_code     = hdr.sr_code;
    s->bitstream_mode               = hdr.bitstream_mode;
    s->channel_mode                 = hdr.channel_mode;
    s->channel_layout               = hdr.channel_layout;
    s->lfe_on                       = hdr.lfe_on;
    s->bit_alloc_params.sr_shift    = hdr.sr_shift;
    s->sample_rate                  = hdr.sample_rate;
    s->bit_rate                     = hdr.bit_rate;
    s->channels                     = hdr.channels;
    s->fbw_channels                 = s->channels - s->lfe_on;
    s->lfe_ch                       = s->fbw_channels + 1;
    s->frame_size                   = hdr.frame_size;
    s->center_mix_level             = hdr.center_mix_level;
    s->surround_mix_level           = hdr.surround_mix_level;
    s->num_blocks                   = hdr.num_blocks;
    s->frame_type                   = hdr.frame_type;
    s->substreamid                  = hdr.substreamid;

    if (s->lfe_on) {
        s->start_freq[s->lfe_ch]     = 0;
        s->end_freq[s->lfe_ch]       = 7;
        s->num_exp_groups[s->lfe_ch] = 2;
        s->channel_in_cpl[s->lfe_ch] = 0;
    }

    if (hdr.bitstream_id <= 10) {
        s->eac3                  = 0;
        s->snr_offset_strategy   = 2;
        s->block_switch_syntax   = 1;
        s->dither_flag_syntax    = 1;
        s->bit_allocation_syntax = 1;
        s->fast_gain_syntax      = 0;
        s->first_cpl_leak        = 0;
        s->dba_syntax            = 1;
        s->skip_syntax           = 1;
        memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
        return ac3_parse_header(s);
    } else if (CONFIG_EAC3_DECODER) {
        s->eac3 = 1;
        return ff_eac3_parse_header(s);
    } else {
        av_log(s->avctx, AV_LOG_ERROR, "E-AC-3 support not compiled in\n");
        return AVERROR(ENOSYS);
    }
}

/**
 * Set stereo downmixing coefficients based on frame header info.
 * reference: Section 7.8.2 Downmixing Into Two Channels
 */
static void set_downmix_coeffs(AC3DecodeContext *s)
{
    int i;
    float cmix = gain_levels[s->  center_mix_level];
    float smix = gain_levels[s->surround_mix_level];
    float norm0, norm1;

    for (i = 0; i < s->fbw_channels; i++) {
        s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
        s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
    }
    if (s->channel_mode > 1 && s->channel_mode & 1) {
        s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
    }
    if (s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
        int nf = s->channel_mode - 2;
        s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
    }
    if (s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
        int nf = s->channel_mode - 4;
        s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
    }

    /* renormalize */
    norm0 = norm1 = 0.0;
    for (i = 0; i < s->fbw_channels; i++) {
        norm0 += s->downmix_coeffs[i][0];
        norm1 += s->downmix_coeffs[i][1];
    }
    norm0 = 1.0f / norm0;
    norm1 = 1.0f / norm1;
    for (i = 0; i < s->fbw_channels; i++) {
        s->downmix_coeffs[i][0] *= norm0;
        s->downmix_coeffs[i][1] *= norm1;
    }

    if (s->output_mode == AC3_CHMODE_MONO) {
        for (i = 0; i < s->fbw_channels; i++)
            s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] +
                                       s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
    }
}

/**
 * Decode the grouped exponents according to exponent strategy.
 * reference: Section 7.1.3 Exponent Decoding
 */
static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
                            uint8_t absexp, int8_t *dexps)
{
    int i, j, grp, group_size;
    int dexp[256];
    int expacc, prevexp;

    /* unpack groups */
    group_size = exp_strategy + (exp_strategy == EXP_D45);
    for (grp = 0, i = 0; grp < ngrps; grp++) {
        expacc = get_bits(gbc, 7);
        dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
        dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
        dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
    }

    /* convert to absolute exps and expand groups */
    prevexp = absexp;
    for (i = 0, j = 0; i < ngrps * 3; i++) {
        prevexp += dexp[i] - 2;
        if (prevexp > 24U)
            return -1;
        switch (group_size) {
        case 4: dexps[j++] = prevexp;
                dexps[j++] = prevexp;
        case 2: dexps[j++] = prevexp;
        case 1: dexps[j++] = prevexp;
        }
    }
    return 0;
}

/**
 * Generate transform coefficients for each coupled channel in the coupling
 * range using the coupling coefficients and coupling coordinates.
 * reference: Section 7.4.3 Coupling Coordinate Format
 */
static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
{
    int bin, band, ch;

    bin = s->start_freq[CPL_CH];
    for (band = 0; band < s->num_cpl_bands; band++) {
        int band_start = bin;
        int band_end = bin + s->cpl_band_sizes[band];
        for (ch = 1; ch <= s->fbw_channels; ch++) {
            if (s->channel_in_cpl[ch]) {
                int cpl_coord = s->cpl_coords[ch][band] << 5;
                for (bin = band_start; bin < band_end; bin++) {
                    s->fixed_coeffs[ch][bin] =
                        MULH(s->fixed_coeffs[CPL_CH][bin] << 4, cpl_coord);
                }
                if (ch == 2 && s->phase_flags[band]) {
                    for (bin = band_start; bin < band_end; bin++)
                        s->fixed_coeffs[2][bin] = -s->fixed_coeffs[2][bin];
                }
            }
        }
        bin = band_end;
    }
}

/**
 * Grouped mantissas for 3-level 5-level and 11-level quantization
 */
typedef struct {
    int b1_mant[2];
    int b2_mant[2];
    int b4_mant;
    int b1;
    int b2;
    int b4;
} mant_groups;

/**
 * Decode the transform coefficients for a particular channel
 * reference: Section 7.3 Quantization and Decoding of Mantissas
 */
static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
{
    int start_freq = s->start_freq[ch_index];
    int end_freq   = s->end_freq[ch_index];
    uint8_t *baps  = s->bap[ch_index];
    int8_t *exps   = s->dexps[ch_index];
    int *coeffs    = s->fixed_coeffs[ch_index];
    int dither     = (ch_index == CPL_CH) || s->dither_flag[ch_index];
    GetBitContext *gbc = &s->gbc;
    int freq;

    for (freq = start_freq; freq < end_freq; freq++) {
        int bap = baps[freq];
        int mantissa;
        switch (bap) {
        case 0:
            if (dither)
                mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
            else
                mantissa = 0;
            break;
        case 1:
            if (m->b1) {
                m->b1--;
                mantissa = m->b1_mant[m->b1];
            } else {
                int bits      = get_bits(gbc, 5);
                mantissa      = b1_mantissas[bits][0];
                m->b1_mant[1] = b1_mantissas[bits][1];
                m->b1_mant[0] = b1_mantissas[bits][2];
                m->b1         = 2;
            }
            break;
        case 2:
            if (m->b2) {
                m->b2--;
                mantissa = m->b2_mant[m->b2];
            } else {
                int bits      = get_bits(gbc, 7);
                mantissa      = b2_mantissas[bits][0];
                m->b2_mant[1] = b2_mantissas[bits][1];
                m->b2_mant[0] = b2_mantissas[bits][2];
                m->b2         = 2;
            }
            break;
        case 3:
            mantissa = b3_mantissas[get_bits(gbc, 3)];
            break;
        case 4:
            if (m->b4) {
                m->b4 = 0;
                mantissa = m->b4_mant;
            } else {
                int bits   = get_bits(gbc, 7);
                mantissa   = b4_mantissas[bits][0];
                m->b4_mant = b4_mantissas[bits][1];
                m->b4      = 1;
            }
            break;
        case 5:
            mantissa = b5_mantissas[get_bits(gbc, 4)];
            break;
        default: /* 6 to 15 */
            /* Shift mantissa and sign-extend it. */
            mantissa = get_sbits(gbc, quantization_tab[bap]);
            mantissa <<= 24 - quantization_tab[bap];
            break;
        }
        coeffs[freq] = mantissa >> exps[freq];
    }
}

/**
 * Remove random dithering from coupling range coefficients with zero-bit
 * mantissas for coupled channels which do not use dithering.
 * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
 */
static void remove_dithering(AC3DecodeContext *s) {
    int ch, i;

    for (ch = 1; ch <= s->fbw_channels; ch++) {
        if (!s->dither_flag[ch] && s->channel_in_cpl[ch]) {
            for (i = s->start_freq[CPL_CH]; i < s->end_freq[CPL_CH]; i++) {
                if (!s->bap[CPL_CH][i])
                    s->fixed_coeffs[ch][i] = 0;
            }
        }
    }
}

static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
                                       mant_groups *m)
{
    if (!s->channel_uses_aht[ch]) {
        ac3_decode_transform_coeffs_ch(s, ch, m);
    } else {
        /* if AHT is used, mantissas for all blocks are encoded in the first
           block of the frame. */
        int bin;
        if (!blk && CONFIG_EAC3_DECODER)
            ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
        for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
            s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
        }
    }
}

/**
 * Decode the transform coefficients.
 */
static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
{
    int ch, end;
    int got_cplchan = 0;
    mant_groups m;

    m.b1 = m.b2 = m.b4 = 0;

    for (ch = 1; ch <= s->channels; ch++) {
        /* transform coefficients for full-bandwidth channel */
        decode_transform_coeffs_ch(s, blk, ch, &m);
        /* transform coefficients for coupling channel come right after the
           coefficients for the first coupled channel*/
        if (s->channel_in_cpl[ch])  {
            if (!got_cplchan) {
                decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
                calc_transform_coeffs_cpl(s);
                got_cplchan = 1;
            }
            end = s->end_freq[CPL_CH];
        } else {
            end = s->end_freq[ch];
        }
        do
            s->fixed_coeffs[ch][end] = 0;
        while (++end < 256);
    }

    /* zero the dithered coefficients for appropriate channels */
    remove_dithering(s);
}

/**
 * Stereo rematrixing.
 * reference: Section 7.5.4 Rematrixing : Decoding Technique
 */
static void do_rematrixing(AC3DecodeContext *s)
{
    int bnd, i;
    int end, bndend;

    end = FFMIN(s->end_freq[1], s->end_freq[2]);

    for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++) {
        if (s->rematrixing_flags[bnd]) {
            bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd + 1]);
            for (i = ff_ac3_rematrix_band_tab[bnd]; i < bndend; i++) {
                int tmp0 = s->fixed_coeffs[1][i];
                s->fixed_coeffs[1][i] += s->fixed_coeffs[2][i];
                s->fixed_coeffs[2][i]  = tmp0 - s->fixed_coeffs[2][i];
            }
        }
    }
}

/**
 * Inverse MDCT Transform.
 * Convert frequency domain coefficients to time-domain audio samples.
 * reference: Section 7.9.4 Transformation Equations
 */
static inline void do_imdct(AC3DecodeContext *s, int channels)
{
    int ch;

    for (ch = 1; ch <= channels; ch++) {
        if (s->block_switch[ch]) {
            int i;
            float *x = s->tmp_output + 128;
            for (i = 0; i < 128; i++)
                x[i] = s->transform_coeffs[ch][2 * i];
            s->imdct_256.imdct_half(&s->imdct_256, s->tmp_output, x);
            s->dsp.vector_fmul_window(s->outptr[ch - 1], s->delay[ch - 1],
                                      s->tmp_output, s->window, 128);
            for (i = 0; i < 128; i++)
                x[i] = s->transform_coeffs[ch][2 * i + 1];
            s->imdct_256.imdct_half(&s->imdct_256, s->delay[ch - 1], x);
        } else {
            s->imdct_512.imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
            s->dsp.vector_fmul_window(s->outptr[ch - 1], s->delay[ch - 1],
                                      s->tmp_output, s->window, 128);
            memcpy(s->delay[ch - 1], s->tmp_output + 128, 128 * sizeof(float));
        }
    }
}

/**
 * Upmix delay samples from stereo to original channel layout.
 */
static void ac3_upmix_delay(AC3DecodeContext *s)
{
    int channel_data_size = sizeof(s->delay[0]);
    switch (s->channel_mode) {
    case AC3_CHMODE_DUALMONO:
    case AC3_CHMODE_STEREO:
        /* upmix mono to stereo */
        memcpy(s->delay[1], s->delay[0], channel_data_size);
        break;
    case AC3_CHMODE_2F2R:
        memset(s->delay[3], 0, channel_data_size);
    case AC3_CHMODE_2F1R:
        memset(s->delay[2], 0, channel_data_size);
        break;
    case AC3_CHMODE_3F2R:
        memset(s->delay[4], 0, channel_data_size);
    case AC3_CHMODE_3F1R:
        memset(s->delay[3], 0, channel_data_size);
    case AC3_CHMODE_3F:
        memcpy(s->delay[2], s->delay[1], channel_data_size);
        memset(s->delay[1], 0, channel_data_size);
        break;
    }
}

/**
 * Decode band structure for coupling, spectral extension, or enhanced coupling.
 * The band structure defines how many subbands are in each band.  For each
 * subband in the range, 1 means it is combined with the previous band, and 0
 * means that it starts a new band.
 *
 * @param[in] gbc bit reader context
 * @param[in] blk block number
 * @param[in] eac3 flag to indicate E-AC-3
 * @param[in] ecpl flag to indicate enhanced coupling
 * @param[in] start_subband subband number for start of range
 * @param[in] end_subband subband number for end of range
 * @param[in] default_band_struct default band structure table
 * @param[out] num_bands number of bands (optionally NULL)
 * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
 */
static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
                                  int ecpl, int start_subband, int end_subband,
                                  const uint8_t *default_band_struct,
                                  int *num_bands, uint8_t *band_sizes)
{
    int subbnd, bnd, n_subbands, n_bands=0;
    uint8_t bnd_sz[22];
    uint8_t coded_band_struct[22];
    const uint8_t *band_struct;

    n_subbands = end_subband - start_subband;

    /* decode band structure from bitstream or use default */
    if (!eac3 || get_bits1(gbc)) {
        for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
            coded_band_struct[subbnd] = get_bits1(gbc);
        }
        band_struct = coded_band_struct;
    } else if (!blk) {
        band_struct = &default_band_struct[start_subband+1];
    } else {
        /* no change in band structure */
        return;
    }

    /* calculate number of bands and band sizes based on band structure.
       note that the first 4 subbands in enhanced coupling span only 6 bins
       instead of 12. */
    if (num_bands || band_sizes ) {
        n_bands = n_subbands;
        bnd_sz[0] = ecpl ? 6 : 12;
        for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
            int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
            if (band_struct[subbnd - 1]) {
                n_bands--;
                bnd_sz[bnd] += subbnd_size;
            } else {
                bnd_sz[++bnd] = subbnd_size;
            }
        }
    }

    /* set optional output params */
    if (num_bands)
        *num_bands = n_bands;
    if (band_sizes)
        memcpy(band_sizes, bnd_sz, n_bands);
}

/**
 * Decode a single audio block from the AC-3 bitstream.
 */
static int decode_audio_block(AC3DecodeContext *s, int blk)
{
    int fbw_channels = s->fbw_channels;
    int channel_mode = s->channel_mode;
    int i, bnd, seg, ch;
    int different_transforms;
    int downmix_output;
    int cpl_in_use;
    GetBitContext *gbc = &s->gbc;
    uint8_t bit_alloc_stages[AC3_MAX_CHANNELS] = { 0 };

    /* block switch flags */
    different_transforms = 0;
    if (s->block_switch_syntax) {
        for (ch = 1; ch <= fbw_channels; ch++) {
            s->block_switch[ch] = get_bits1(gbc);
            if (ch > 1 && s->block_switch[ch] != s->block_switch[1])
                different_transforms = 1;
        }
    }

    /* dithering flags */
    if (s->dither_flag_syntax) {
        for (ch = 1; ch <= fbw_channels; ch++) {
            s->dither_flag[ch] = get_bits1(gbc);
        }
    }

    /* dynamic range */
    i = !s->channel_mode;
    do {
        if (get_bits1(gbc)) {
            s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)] - 1.0) *
                                  s->drc_scale) + 1.0;
        } else if (blk == 0) {
            s->dynamic_range[i] = 1.0f;
        }
    } while (i--);

    /* spectral extension strategy */
    if (s->eac3 && (!blk || get_bits1(gbc))) {
        s->spx_in_use = get_bits1(gbc);
        if (s->spx_in_use) {
            int dst_start_freq, dst_end_freq, src_start_freq,
                start_subband, end_subband;

            /* determine which channels use spx */
            if (s->channel_mode == AC3_CHMODE_MONO) {
                s->channel_uses_spx[1] = 1;
            } else {
                for (ch = 1; ch <= fbw_channels; ch++)
                    s->channel_uses_spx[ch] = get_bits1(gbc);
            }

            /* get the frequency bins of the spx copy region and the spx start
               and end subbands */
            dst_start_freq = get_bits(gbc, 2);
            start_subband  = get_bits(gbc, 3) + 2;
            if (start_subband > 7)
                start_subband += start_subband - 7;
            end_subband    = get_bits(gbc, 3) + 5;
            if (end_subband   > 7)
                end_subband   += end_subband   - 7;
            dst_start_freq = dst_start_freq * 12 + 25;
            src_start_freq = start_subband  * 12 + 25;
            dst_end_freq   = end_subband    * 12 + 25;

            /* check validity of spx ranges */
            if (start_subband >= end_subband) {
                av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
                       "range (%d >= %d)\n", start_subband, end_subband);
                return AVERROR_INVALIDDATA;
            }
            if (dst_start_freq >= src_start_freq) {
                av_log(s->avctx, AV_LOG_ERROR, "invalid spectral extension "
                       "copy start bin (%d >= %d)\n", dst_start_freq, src_start_freq);
                return AVERROR_INVALIDDATA;
            }

            s->spx_dst_start_freq = dst_start_freq;
            s->spx_src_start_freq = src_start_freq;
            s->spx_dst_end_freq   = dst_end_freq;

            decode_band_structure(gbc, blk, s->eac3, 0,
                                  start_subband, end_subband,
                                  ff_eac3_default_spx_band_struct,
                                  &s->num_spx_bands,
                                  s->spx_band_sizes);
        } else {
            for (ch = 1; ch <= fbw_channels; ch++) {
                s->channel_uses_spx[ch] = 0;
                s->first_spx_coords[ch] = 1;
            }
        }
    }

    /* spectral extension coordinates */
    if (s->spx_in_use) {
        for (ch = 1; ch <= fbw_channels; ch++) {
            if (s->channel_uses_spx[ch]) {
                if (s->first_spx_coords[ch] || get_bits1(gbc)) {
                    float spx_blend;
                    int bin, master_spx_coord;

                    s->first_spx_coords[ch] = 0;
                    spx_blend = get_bits(gbc, 5) * (1.0f/32);
                    master_spx_coord = get_bits(gbc, 2) * 3;

                    bin = s->spx_src_start_freq;
                    for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
                        int bandsize;
                        int spx_coord_exp, spx_coord_mant;
                        float nratio, sblend, nblend, spx_coord;

                        /* calculate blending factors */
                        bandsize = s->spx_band_sizes[bnd];
                        nratio = ((float)((bin + (bandsize >> 1))) / s->spx_dst_end_freq) - spx_blend;
                        nratio = av_clipf(nratio, 0.0f, 1.0f);
                        nblend = sqrtf(3.0f * nratio); // noise is scaled by sqrt(3)
                                                       // to give unity variance
                        sblend = sqrtf(1.0f - nratio);
                        bin += bandsize;

                        /* decode spx coordinates */
                        spx_coord_exp  = get_bits(gbc, 4);
                        spx_coord_mant = get_bits(gbc, 2);
                        if (spx_coord_exp == 15) spx_coord_mant <<= 1;
                        else                     spx_coord_mant += 4;
                        spx_coord_mant <<= (25 - spx_coord_exp - master_spx_coord);
                        spx_coord = spx_coord_mant * (1.0f / (1 << 23));

                        /* multiply noise and signal blending factors by spx coordinate */
                        s->spx_noise_blend [ch][bnd] = nblend * spx_coord;
                        s->spx_signal_blend[ch][bnd] = sblend * spx_coord;
                    }
                }
            } else {
                s->first_spx_coords[ch] = 1;
            }
        }
    }

    /* coupling strategy */
    if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
        memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
        if (!s->eac3)
            s->cpl_in_use[blk] = get_bits1(gbc);
        if (s->cpl_in_use[blk]) {
            /* coupling in use */
            int cpl_start_subband, cpl_end_subband;

            if (channel_mode < AC3_CHMODE_STEREO) {
                av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
                return AVERROR_INVALIDDATA;
            }

            /* check for enhanced coupling */
            if (s->eac3 && get_bits1(gbc)) {
                /* TODO: parse enhanced coupling strategy info */
                av_log_missing_feature(s->avctx, "Enhanced coupling", 1);
                return AVERROR_PATCHWELCOME;
            }

            /* determine which channels are coupled */
            if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
                s->channel_in_cpl[1] = 1;
                s->channel_in_cpl[2] = 1;
            } else {
                for (ch = 1; ch <= fbw_channels; ch++)
                    s->channel_in_cpl[ch] = get_bits1(gbc);
            }

            /* phase flags in use */
            if (channel_mode == AC3_CHMODE_STEREO)
                s->phase_flags_in_use = get_bits1(gbc);

            /* coupling frequency range */
            cpl_start_subband = get_bits(gbc, 4);
            cpl_end_subband = s->spx_in_use ? (s->spx_src_start_freq - 37) / 12 :
                                              get_bits(gbc, 4) + 3;
            if (cpl_start_subband >= cpl_end_subband) {
                av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
                       cpl_start_subband, cpl_end_subband);
                return AVERROR_INVALIDDATA;
            }
            s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
            s->end_freq[CPL_CH]   = cpl_end_subband   * 12 + 37;

            decode_band_structure(gbc, blk, s->eac3, 0, cpl_start_subband,
                                  cpl_end_subband,
                                  ff_eac3_default_cpl_band_struct,
                                  &s->num_cpl_bands, s->cpl_band_sizes);
        } else {
            /* coupling not in use */
            for (ch = 1; ch <= fbw_channels; ch++) {
                s->channel_in_cpl[ch] = 0;
                s->first_cpl_coords[ch] = 1;
            }
            s->first_cpl_leak = s->eac3;
            s->phase_flags_in_use = 0;
        }
    } else if (!s->eac3) {
        if (!blk) {
            av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must "
                   "be present in block 0\n");
            return AVERROR_INVALIDDATA;
        } else {
            s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
        }
    }
    cpl_in_use = s->cpl_in_use[blk];

    /* coupling coordinates */
    if (cpl_in_use) {
        int cpl_coords_exist = 0;

        for (ch = 1; ch <= fbw_channels; ch++) {
            if (s->channel_in_cpl[ch]) {
                if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
                    int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
                    s->first_cpl_coords[ch] = 0;
                    cpl_coords_exist = 1;
                    master_cpl_coord = 3 * get_bits(gbc, 2);
                    for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                        cpl_coord_exp = get_bits(gbc, 4);
                        cpl_coord_mant = get_bits(gbc, 4);
                        if (cpl_coord_exp == 15)
                            s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
                        else
                            s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
                        s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
                    }
                } else if (!blk) {
                    av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must "
                           "be present in block 0\n");
                    return AVERROR_INVALIDDATA;
                }
            } else {
                /* channel not in coupling */
                s->first_cpl_coords[ch] = 1;
            }
        }
        /* phase flags */
        if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
            }
        }
    }

    /* stereo rematrixing strategy and band structure */
    if (channel_mode == AC3_CHMODE_STEREO) {
        if ((s->eac3 && !blk) || get_bits1(gbc)) {
            s->num_rematrixing_bands = 4;
            if (cpl_in_use && s->start_freq[CPL_CH] <= 61) {
                s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
            } else if (s->spx_in_use && s->spx_src_start_freq <= 61) {
                s->num_rematrixing_bands--;
            }
            for (bnd = 0; bnd < s->num_rematrixing_bands; bnd++)
                s->rematrixing_flags[bnd] = get_bits1(gbc);
        } else if (!blk) {
            av_log(s->avctx, AV_LOG_WARNING, "Warning: "
                   "new rematrixing strategy not present in block 0\n");
            s->num_rematrixing_bands = 0;
        }
    }

    /* exponent strategies for each channel */
    for (ch = !cpl_in_use; ch <= s->channels; ch++) {
        if (!s->eac3)
            s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
        if (s->exp_strategy[blk][ch] != EXP_REUSE)
            bit_alloc_stages[ch] = 3;
    }

    /* channel bandwidth */
    for (ch = 1; ch <= fbw_channels; ch++) {
        s->start_freq[ch] = 0;
        if (s->exp_strategy[blk][ch] != EXP_REUSE) {
            int group_size;
            int prev = s->end_freq[ch];
            if (s->channel_in_cpl[ch])
                s->end_freq[ch] = s->start_freq[CPL_CH];
            else if (s->channel_uses_spx[ch])
                s->end_freq[ch] = s->spx_src_start_freq;
            else {
                int bandwidth_code = get_bits(gbc, 6);
                if (bandwidth_code > 60) {
                    av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
                    return AVERROR_INVALIDDATA;
                }
                s->end_freq[ch] = bandwidth_code * 3 + 73;
            }
            group_size = 3 << (s->exp_strategy[blk][ch] - 1);
            s->num_exp_groups[ch] = (s->end_freq[ch] + group_size-4) / group_size;
            if (blk > 0 && s->end_freq[ch] != prev)
                memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
        }
    }
    if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
        s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
                                    (3 << (s->exp_strategy[blk][CPL_CH] - 1));
    }

    /* decode exponents for each channel */
    for (ch = !cpl_in_use; ch <= s->channels; ch++) {
        if (s->exp_strategy[blk][ch] != EXP_REUSE) {
            s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
            if (decode_exponents(gbc, s->exp_strategy[blk][ch],
                                 s->num_exp_groups[ch], s->dexps[ch][0],
                                 &s->dexps[ch][s->start_freq[ch]+!!ch])) {
                av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
                return AVERROR_INVALIDDATA;
            }
            if (ch != CPL_CH && ch != s->lfe_ch)
                skip_bits(gbc, 2); /* skip gainrng */
        }
    }

    /* bit allocation information */
    if (s->bit_allocation_syntax) {
        if (get_bits1(gbc)) {
            s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
            s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
            s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
            s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
            s->bit_alloc_params.floor  = ff_ac3_floor_tab[get_bits(gbc, 3)];
            for (ch = !cpl_in_use; ch <= s->channels; ch++)
                bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
        } else if (!blk) {
            av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must "
                   "be present in block 0\n");
            return AVERROR_INVALIDDATA;
        }
    }

    /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
    if (!s->eac3 || !blk) {
        if (s->snr_offset_strategy && get_bits1(gbc)) {
            int snr = 0;
            int csnr;
            csnr = (get_bits(gbc, 6) - 15) << 4;
            for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
                /* snr offset */
                if (ch == i || s->snr_offset_strategy == 2)
                    snr = (csnr + get_bits(gbc, 4)) << 2;
                /* run at least last bit allocation stage if snr offset changes */
                if (blk && s->snr_offset[ch] != snr) {
                    bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
                }
                s->snr_offset[ch] = snr;

                /* fast gain (normal AC-3 only) */
                if (!s->eac3) {
                    int prev = s->fast_gain[ch];
                    s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
                    /* run last 2 bit allocation stages if fast gain changes */
                    if (blk && prev != s->fast_gain[ch])
                        bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
                }
            }
        } else if (!s->eac3 && !blk) {
            av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
            return AVERROR_INVALIDDATA;
        }
    }

    /* fast gain (E-AC-3 only) */
    if (s->fast_gain_syntax && get_bits1(gbc)) {
        for (ch = !cpl_in_use; ch <= s->channels; ch++) {
            int prev = s->fast_gain[ch];
            s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
            /* run last 2 bit allocation stages if fast gain changes */
            if (blk && prev != s->fast_gain[ch])
                bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
        }
    } else if (s->eac3 && !blk) {
        for (ch = !cpl_in_use; ch <= s->channels; ch++)
            s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
    }

    /* E-AC-3 to AC-3 converter SNR offset */
    if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
        skip_bits(gbc, 10); // skip converter snr offset
    }

    /* coupling leak information */
    if (cpl_in_use) {
        if (s->first_cpl_leak || get_bits1(gbc)) {
            int fl = get_bits(gbc, 3);
            int sl = get_bits(gbc, 3);
            /* run last 2 bit allocation stages for coupling channel if
               coupling leak changes */
            if (blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
                sl != s->bit_alloc_params.cpl_slow_leak)) {
                bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
            }
            s->bit_alloc_params.cpl_fast_leak = fl;
            s->bit_alloc_params.cpl_slow_leak = sl;
        } else if (!s->eac3 && !blk) {
            av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must "
                   "be present in block 0\n");
            return AVERROR_INVALIDDATA;
        }
        s->first_cpl_leak = 0;
    }

    /* delta bit allocation information */
    if (s->dba_syntax && get_bits1(gbc)) {
        /* delta bit allocation exists (strategy) */
        for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
            s->dba_mode[ch] = get_bits(gbc, 2);
            if (s->dba_mode[ch] == DBA_RESERVED) {
                av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
                return AVERROR_INVALIDDATA;
            }
            bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
        }
        /* channel delta offset, len and bit allocation */
        for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
            if (s->dba_mode[ch] == DBA_NEW) {
                s->dba_nsegs[ch] = get_bits(gbc, 3) + 1;
                for (seg = 0; seg < s->dba_nsegs[ch]; seg++) {
                    s->dba_offsets[ch][seg] = get_bits(gbc, 5);
                    s->dba_lengths[ch][seg] = get_bits(gbc, 4);
                    s->dba_values[ch][seg]  = get_bits(gbc, 3);
                }
                /* run last 2 bit allocation stages if new dba values */
                bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
            }
        }
    } else if (blk == 0) {
        for (ch = 0; ch <= s->channels; ch++) {
            s->dba_mode[ch] = DBA_NONE;
        }
    }

    /* Bit allocation */
    for (ch = !cpl_in_use; ch <= s->channels; ch++) {
        if (bit_alloc_stages[ch] > 2) {
            /* Exponent mapping into PSD and PSD integration */
            ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
                                      s->start_freq[ch], s->end_freq[ch],
                                      s->psd[ch], s->band_psd[ch]);
        }
        if (bit_alloc_stages[ch] > 1) {
            /* Compute excitation function, Compute masking curve, and
               Apply delta bit allocation */
            if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
                                           s->start_freq[ch],  s->end_freq[ch],
                                           s->fast_gain[ch],   (ch == s->lfe_ch),
                                           s->dba_mode[ch],    s->dba_nsegs[ch],
                                           s->dba_offsets[ch], s->dba_lengths[ch],
                                           s->dba_values[ch],  s->mask[ch])) {
                av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
                return AVERROR_INVALIDDATA;
            }
        }
        if (bit_alloc_stages[ch] > 0) {
            /* Compute bit allocation */
            const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
                                     ff_eac3_hebap_tab : ff_ac3_bap_tab;
            s->ac3dsp.bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
                                      s->start_freq[ch], s->end_freq[ch],
                                      s->snr_offset[ch],
                                      s->bit_alloc_params.floor,
                                      bap_tab, s->bap[ch]);
        }
    }

    /* unused dummy data */
    if (s->skip_syntax && get_bits1(gbc)) {
        int skipl = get_bits(gbc, 9);
        while (skipl--)
            skip_bits(gbc, 8);
    }

    /* unpack the transform coefficients
       this also uncouples channels if coupling is in use. */
    decode_transform_coeffs(s, blk);

    /* TODO: generate enhanced coupling coordinates and uncouple */

    /* recover coefficients if rematrixing is in use */
    if (s->channel_mode == AC3_CHMODE_STEREO)
        do_rematrixing(s);

    /* apply scaling to coefficients (headroom, dynrng) */
    for (ch = 1; ch <= s->channels; ch++) {
        float gain = 1.0 / 4194304.0f;
        if (s->channel_mode == AC3_CHMODE_DUALMONO) {
            gain *= s->dynamic_range[2 - ch];
        } else {
            gain *= s->dynamic_range[0];
        }
        s->fmt_conv.int32_to_float_fmul_scalar(s->transform_coeffs[ch],
                                               s->fixed_coeffs[ch], gain, 256);
    }

    /* apply spectral extension to high frequency bins */
    if (s->spx_in_use && CONFIG_EAC3_DECODER) {
        ff_eac3_apply_spectral_extension(s);
    }

    /* downmix and MDCT. order depends on whether block switching is used for
       any channel in this block. this is because coefficients for the long
       and short transforms cannot be mixed. */
    downmix_output = s->channels != s->out_channels &&
                     !((s->output_mode & AC3_OUTPUT_LFEON) &&
                     s->fbw_channels == s->out_channels);
    if (different_transforms) {
        /* the delay samples have already been downmixed, so we upmix the delay
           samples in order to reconstruct all channels before downmixing. */
        if (s->downmixed) {
            s->downmixed = 0;
            ac3_upmix_delay(s);
        }

        do_imdct(s, s->channels);

        if (downmix_output) {
            s->ac3dsp.downmix(s->outptr, s->downmix_coeffs,
                              s->out_channels, s->fbw_channels, 256);
        }
    } else {
        if (downmix_output) {
            s->ac3dsp.downmix(s->xcfptr + 1, s->downmix_coeffs,
                              s->out_channels, s->fbw_channels, 256);
        }

        if (downmix_output && !s->downmixed) {
            s->downmixed = 1;
            s->ac3dsp.downmix(s->dlyptr, s->downmix_coeffs, s->out_channels,
                              s->fbw_channels, 128);
        }

        do_imdct(s, s->out_channels);
    }

    return 0;
}

/**
 * Decode a single AC-3 frame.
 */
static int ac3_decode_frame(AVCodecContext * avctx, void *data,
                            int *got_frame_ptr, AVPacket *avpkt)
{
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
    AC3DecodeContext *s = avctx->priv_data;
    int blk, ch, err, ret;
    const uint8_t *channel_map;
    const float *output[AC3_MAX_CHANNELS];

    /* copy input buffer to decoder context to avoid reading past the end
       of the buffer, which can be caused by a damaged input stream. */
    if (buf_size >= 2 && AV_RB16(buf) == 0x770B) {
        // seems to be byte-swapped AC-3
        int cnt = FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE) >> 1;
        s->dsp.bswap16_buf((uint16_t *)s->input_buffer, (const uint16_t *)buf, cnt);
    } else
        memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
    buf = s->input_buffer;
    /* initialize the GetBitContext with the start of valid AC-3 Frame */
    init_get_bits(&s->gbc, buf, buf_size * 8);

    /* parse the syncinfo */
    err = parse_frame_header(s);

    if (err) {
        switch (err) {
        case AAC_AC3_PARSE_ERROR_SYNC:
            av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
            return AVERROR_INVALIDDATA;
        case AAC_AC3_PARSE_ERROR_BSID:
            av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
            break;
        case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
            av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
            break;
        case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
            av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
            break;
        case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
            /* skip frame if CRC is ok. otherwise use error concealment. */
            /* TODO: add support for substreams and dependent frames */
            if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
                av_log(avctx, AV_LOG_WARNING, "unsupported frame type : "
                       "skipping frame\n");
                *got_frame_ptr = 0;
                return buf_size;
            } else {
                av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
            }
            break;
        case AAC_AC3_PARSE_ERROR_CRC:
        case AAC_AC3_PARSE_ERROR_CHANNEL_CFG:
            break;
        default: // Normal AVERROR do not try to recover.
            *got_frame_ptr = 0;
            return err;
        }
    } else {
        /* check that reported frame size fits in input buffer */
        if (s->frame_size > buf_size) {
            av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
            err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
        } else if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
            /* check for crc mismatch */
            if (av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2],
                       s->frame_size - 2)) {
                av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
                err = AAC_AC3_PARSE_ERROR_CRC;
            }
        }
    }

    /* if frame is ok, set audio parameters */
    if (!err) {
        avctx->sample_rate = s->sample_rate;
        avctx->bit_rate    = s->bit_rate;
    }

    /* channel config */
    if (!err || (s->channels && s->out_channels != s->channels)) {
        s->out_channels = s->channels;
        s->output_mode  = s->channel_mode;
        if (s->lfe_on)
            s->output_mode |= AC3_OUTPUT_LFEON;
        if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
                avctx->request_channels < s->channels) {
            s->out_channels = avctx->request_channels;
            s->output_mode  = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
            s->channel_layout = avpriv_ac3_channel_layout_tab[s->output_mode];
        }
        avctx->channels       = s->out_channels;
        avctx->channel_layout = s->channel_layout;

        s->loro_center_mix_level   = gain_levels[s->  center_mix_level];
        s->loro_surround_mix_level = gain_levels[s->surround_mix_level];
        s->ltrt_center_mix_level   = LEVEL_MINUS_3DB;
        s->ltrt_surround_mix_level = LEVEL_MINUS_3DB;
        /* set downmixing coefficients if needed */
        if (s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
                s->fbw_channels == s->out_channels)) {
            set_downmix_coeffs(s);
        }
    } else if (!s->channels) {
        av_log(avctx, AV_LOG_ERROR, "unable to determine channel mode\n");
        return AVERROR_INVALIDDATA;
    }
    avctx->channels = s->out_channels;

    /* set audio service type based on bitstream mode for AC-3 */
    avctx->audio_service_type = s->bitstream_mode;
    if (s->bitstream_mode == 0x7 && s->channels > 1)
        avctx->audio_service_type = AV_AUDIO_SERVICE_TYPE_KARAOKE;

    /* get output buffer */
    s->frame.nb_samples = s->num_blocks * 256;
    if ((ret = ff_get_buffer(avctx, &s->frame)) < 0) {
        av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
        return ret;
    }

    /* decode the audio blocks */
    channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on];
    for (ch = 0; ch < AC3_MAX_CHANNELS; ch++) {
        output[ch] = s->output[ch];
        s->outptr[ch] = s->output[ch];
    }
    for (ch = 0; ch < s->channels; ch++) {
        if (ch < s->out_channels)
            s->outptr[channel_map[ch]] = (float *)s->frame.data[ch];
    }
    for (blk = 0; blk < s->num_blocks; blk++) {
        if (!err && decode_audio_block(s, blk)) {
            av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
            err = 1;
        }
        if (err)
            for (ch = 0; ch < s->out_channels; ch++)
                memcpy(((float*)s->frame.data[ch]) + AC3_BLOCK_SIZE*blk, output[ch], 1024);
        for (ch = 0; ch < s->out_channels; ch++)
            output[ch] = s->outptr[channel_map[ch]];
        for (ch = 0; ch < s->out_channels; ch++) {
            if (!ch || channel_map[ch])
                s->outptr[channel_map[ch]] += AC3_BLOCK_SIZE;
        }
    }

    s->frame.decode_error_flags = err ? FF_DECODE_ERROR_INVALID_BITSTREAM : 0;

    /* keep last block for error concealment in next frame */
    for (ch = 0; ch < s->out_channels; ch++)
        memcpy(s->output[ch], output[ch], 1024);

    *got_frame_ptr   = 1;
    *(AVFrame *)data = s->frame;

    return FFMIN(buf_size, s->frame_size);
}

/**
 * Uninitialize the AC-3 decoder.
 */
static av_cold int ac3_decode_end(AVCodecContext *avctx)
{
    AC3DecodeContext *s = avctx->priv_data;
    ff_mdct_end(&s->imdct_512);
    ff_mdct_end(&s->imdct_256);

    return 0;
}

#define OFFSET(x) offsetof(AC3DecodeContext, x)
#define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
static const AVOption options[] = {
    { "drc_scale", "percentage of dynamic range compression to apply", OFFSET(drc_scale), AV_OPT_TYPE_FLOAT, {.dbl = 1.0}, 0.0, 1.0, PAR },

{"dmix_mode", "Preferred Stereo Downmix Mode", OFFSET(preferred_stereo_downmix), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, 2, 0, "dmix_mode"},
{"ltrt_cmixlev",   "Lt/Rt Center Mix Level",   OFFSET(ltrt_center_mix_level),    AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
{"ltrt_surmixlev", "Lt/Rt Surround Mix Level", OFFSET(ltrt_surround_mix_level),  AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
{"loro_cmixlev",   "Lo/Ro Center Mix Level",   OFFSET(loro_center_mix_level),    AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},
{"loro_surmixlev", "Lo/Ro Surround Mix Level", OFFSET(loro_surround_mix_level),  AV_OPT_TYPE_FLOAT, {.dbl = -1.0 }, -1.0, 2.0, 0},

    { NULL},
};

static const AVClass ac3_decoder_class = {
    .class_name = "AC3 decoder",
    .item_name  = av_default_item_name,
    .option     = options,
    .version    = LIBAVUTIL_VERSION_INT,
};

AVCodec ff_ac3_decoder = {
    .name           = "ac3",
    .type           = AVMEDIA_TYPE_AUDIO,
    .id             = AV_CODEC_ID_AC3,
    .priv_data_size = sizeof (AC3DecodeContext),
    .init           = ac3_decode_init,
    .close          = ac3_decode_end,
    .decode         = ac3_decode_frame,
    .capabilities   = CODEC_CAP_DR1,
    .long_name      = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
                                                      AV_SAMPLE_FMT_NONE },
    .priv_class     = &ac3_decoder_class,
};

#if CONFIG_EAC3_DECODER
static const AVClass eac3_decoder_class = {
    .class_name = "E-AC3 decoder",
    .item_name  = av_default_item_name,
    .option     = options,
    .version    = LIBAVUTIL_VERSION_INT,
};

AVCodec ff_eac3_decoder = {
    .name           = "eac3",
    .type           = AVMEDIA_TYPE_AUDIO,
    .id             = AV_CODEC_ID_EAC3,
    .priv_data_size = sizeof (AC3DecodeContext),
    .init           = ac3_decode_init,
    .close          = ac3_decode_end,
    .decode         = ac3_decode_frame,
    .capabilities   = CODEC_CAP_DR1,
    .long_name      = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
                                                      AV_SAMPLE_FMT_NONE },
    .priv_class     = &eac3_decoder_class,
};
#endif