aboutsummaryrefslogtreecommitdiffstats
path: root/libavcodec/aacsbr.c
blob: f39806e30fe3e87073c788b8fd3502b91ba570e7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
/*
 * AAC Spectral Band Replication decoding functions
 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * AAC Spectral Band Replication decoding functions
 * @author Robert Swain ( rob opendot cl )
 */

#include "aac.h"
#include "sbr.h"
#include "aacsbr.h"
#include "aacsbrdata.h"
#include "fft.h"
#include "aacps.h"
#include "sbrdsp.h"
#include "libavutil/libm.h"

#include <stdint.h>
#include <float.h>

#define ENVELOPE_ADJUSTMENT_OFFSET 2
#define NOISE_FLOOR_OFFSET 6.0f

/**
 * SBR VLC tables
 */
enum {
    T_HUFFMAN_ENV_1_5DB,
    F_HUFFMAN_ENV_1_5DB,
    T_HUFFMAN_ENV_BAL_1_5DB,
    F_HUFFMAN_ENV_BAL_1_5DB,
    T_HUFFMAN_ENV_3_0DB,
    F_HUFFMAN_ENV_3_0DB,
    T_HUFFMAN_ENV_BAL_3_0DB,
    F_HUFFMAN_ENV_BAL_3_0DB,
    T_HUFFMAN_NOISE_3_0DB,
    T_HUFFMAN_NOISE_BAL_3_0DB,
};

/**
 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
 */
enum {
    FIXFIX,
    FIXVAR,
    VARFIX,
    VARVAR,
};

enum {
    EXTENSION_ID_PS = 2,
};

static VLC vlc_sbr[10];
static const int8_t vlc_sbr_lav[10] =
    { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
static const DECLARE_ALIGNED(16, float, zero64)[64];

#define SBR_INIT_VLC_STATIC(num, size) \
    INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size,     \
                    sbr_tmp[num].sbr_bits ,                      1,                      1, \
                    sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
                    size)

#define SBR_VLC_ROW(name) \
    { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }

av_cold void ff_aac_sbr_init(void)
{
    int n;
    static const struct {
        const void *sbr_codes, *sbr_bits;
        const unsigned int table_size, elem_size;
    } sbr_tmp[] = {
        SBR_VLC_ROW(t_huffman_env_1_5dB),
        SBR_VLC_ROW(f_huffman_env_1_5dB),
        SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
        SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
        SBR_VLC_ROW(t_huffman_env_3_0dB),
        SBR_VLC_ROW(f_huffman_env_3_0dB),
        SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
        SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
        SBR_VLC_ROW(t_huffman_noise_3_0dB),
        SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
    };

    // SBR VLC table initialization
    SBR_INIT_VLC_STATIC(0, 1098);
    SBR_INIT_VLC_STATIC(1, 1092);
    SBR_INIT_VLC_STATIC(2, 768);
    SBR_INIT_VLC_STATIC(3, 1026);
    SBR_INIT_VLC_STATIC(4, 1058);
    SBR_INIT_VLC_STATIC(5, 1052);
    SBR_INIT_VLC_STATIC(6, 544);
    SBR_INIT_VLC_STATIC(7, 544);
    SBR_INIT_VLC_STATIC(8, 592);
    SBR_INIT_VLC_STATIC(9, 512);

    for (n = 1; n < 320; n++)
        sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
    sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
    sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];

    for (n = 0; n < 320; n++)
        sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];

    ff_ps_init();
}

/** Places SBR in pure upsampling mode. */
static void sbr_turnoff(SpectralBandReplication *sbr) {
    sbr->start = 0;
    // Init defults used in pure upsampling mode
    sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
    sbr->m[1] = 0;
    // Reset values for first SBR header
    sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
    memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
}

av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
{
    float mdct_scale;
    sbr->kx[0] = sbr->kx[1];
    sbr_turnoff(sbr);
    sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
    sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
    /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
     * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
     * and scale back down at synthesis. */
    mdct_scale = ac->avctx->sample_fmt == AV_SAMPLE_FMT_FLT ? 32768.0f : 1.0f;
    ff_mdct_init(&sbr->mdct,     7, 1, 1.0 / (64 * mdct_scale));
    ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * mdct_scale);
    ff_ps_ctx_init(&sbr->ps);
    ff_sbrdsp_init(&sbr->dsp);
}

av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
{
    ff_mdct_end(&sbr->mdct);
    ff_mdct_end(&sbr->mdct_ana);
}

static int qsort_comparison_function_int16(const void *a, const void *b)
{
    return *(const int16_t *)a - *(const int16_t *)b;
}

static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
{
    int i;
    for (i = 0; i <= last_el; i++)
        if (table[i] == needle)
            return 1;
    return 0;
}

/// Limiter Frequency Band Table (14496-3 sp04 p198)
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
{
    int k;
    if (sbr->bs_limiter_bands > 0) {
        static const float bands_warped[3] = { 1.32715174233856803909f,   //2^(0.49/1.2)
                                               1.18509277094158210129f,   //2^(0.49/2)
                                               1.11987160404675912501f }; //2^(0.49/3)
        const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
        int16_t patch_borders[7];
        uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;

        patch_borders[0] = sbr->kx[1];
        for (k = 1; k <= sbr->num_patches; k++)
            patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];

        memcpy(sbr->f_tablelim, sbr->f_tablelow,
               (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
        if (sbr->num_patches > 1)
            memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
                   (sbr->num_patches - 1) * sizeof(patch_borders[0]));

        qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
              sizeof(sbr->f_tablelim[0]),
              qsort_comparison_function_int16);

        sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
        while (out < sbr->f_tablelim + sbr->n_lim) {
            if (*in >= *out * lim_bands_per_octave_warped) {
                *++out = *in++;
            } else if (*in == *out ||
                !in_table_int16(patch_borders, sbr->num_patches, *in)) {
                in++;
                sbr->n_lim--;
            } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
                *out = *in++;
                sbr->n_lim--;
            } else {
                *++out = *in++;
            }
        }
    } else {
        sbr->f_tablelim[0] = sbr->f_tablelow[0];
        sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
        sbr->n_lim = 1;
    }
}

static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
{
    unsigned int cnt = get_bits_count(gb);
    uint8_t bs_header_extra_1;
    uint8_t bs_header_extra_2;
    int old_bs_limiter_bands = sbr->bs_limiter_bands;
    SpectrumParameters old_spectrum_params;

    sbr->start = 1;

    // Save last spectrum parameters variables to compare to new ones
    memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));

    sbr->bs_amp_res_header              = get_bits1(gb);
    sbr->spectrum_params.bs_start_freq  = get_bits(gb, 4);
    sbr->spectrum_params.bs_stop_freq   = get_bits(gb, 4);
    sbr->spectrum_params.bs_xover_band  = get_bits(gb, 3);
                                          skip_bits(gb, 2); // bs_reserved

    bs_header_extra_1 = get_bits1(gb);
    bs_header_extra_2 = get_bits1(gb);

    if (bs_header_extra_1) {
        sbr->spectrum_params.bs_freq_scale  = get_bits(gb, 2);
        sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
        sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
    } else {
        sbr->spectrum_params.bs_freq_scale  = 2;
        sbr->spectrum_params.bs_alter_scale = 1;
        sbr->spectrum_params.bs_noise_bands = 2;
    }

    // Check if spectrum parameters changed
    if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
        sbr->reset = 1;

    if (bs_header_extra_2) {
        sbr->bs_limiter_bands  = get_bits(gb, 2);
        sbr->bs_limiter_gains  = get_bits(gb, 2);
        sbr->bs_interpol_freq  = get_bits1(gb);
        sbr->bs_smoothing_mode = get_bits1(gb);
    } else {
        sbr->bs_limiter_bands  = 2;
        sbr->bs_limiter_gains  = 2;
        sbr->bs_interpol_freq  = 1;
        sbr->bs_smoothing_mode = 1;
    }

    if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
        sbr_make_f_tablelim(sbr);

    return get_bits_count(gb) - cnt;
}

static int array_min_int16(const int16_t *array, int nel)
{
    int i, min = array[0];
    for (i = 1; i < nel; i++)
        min = FFMIN(array[i], min);
    return min;
}

static void make_bands(int16_t* bands, int start, int stop, int num_bands)
{
    int k, previous, present;
    float base, prod;

    base = powf((float)stop / start, 1.0f / num_bands);
    prod = start;
    previous = start;

    for (k = 0; k < num_bands-1; k++) {
        prod *= base;
        present  = lrintf(prod);
        bands[k] = present - previous;
        previous = present;
    }
    bands[num_bands-1] = stop - previous;
}

static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
{
    // Requirements (14496-3 sp04 p205)
    if (n_master <= 0) {
        av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
        return -1;
    }
    if (bs_xover_band >= n_master) {
        av_log(avctx, AV_LOG_ERROR,
               "Invalid bitstream, crossover band index beyond array bounds: %d\n",
               bs_xover_band);
        return -1;
    }
    return 0;
}

/// Master Frequency Band Table (14496-3 sp04 p194)
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
                             SpectrumParameters *spectrum)
{
    unsigned int temp, max_qmf_subbands;
    unsigned int start_min, stop_min;
    int k;
    const int8_t *sbr_offset_ptr;
    int16_t stop_dk[13];

    if (sbr->sample_rate < 32000) {
        temp = 3000;
    } else if (sbr->sample_rate < 64000) {
        temp = 4000;
    } else
        temp = 5000;

    start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
    stop_min  = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;

    switch (sbr->sample_rate) {
    case 16000:
        sbr_offset_ptr = sbr_offset[0];
        break;
    case 22050:
        sbr_offset_ptr = sbr_offset[1];
        break;
    case 24000:
        sbr_offset_ptr = sbr_offset[2];
        break;
    case 32000:
        sbr_offset_ptr = sbr_offset[3];
        break;
    case 44100: case 48000: case 64000:
        sbr_offset_ptr = sbr_offset[4];
        break;
    case 88200: case 96000: case 128000: case 176400: case 192000:
        sbr_offset_ptr = sbr_offset[5];
        break;
    default:
        av_log(ac->avctx, AV_LOG_ERROR,
               "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
        return -1;
    }

    sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];

    if (spectrum->bs_stop_freq < 14) {
        sbr->k[2] = stop_min;
        make_bands(stop_dk, stop_min, 64, 13);
        qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
        for (k = 0; k < spectrum->bs_stop_freq; k++)
            sbr->k[2] += stop_dk[k];
    } else if (spectrum->bs_stop_freq == 14) {
        sbr->k[2] = 2*sbr->k[0];
    } else if (spectrum->bs_stop_freq == 15) {
        sbr->k[2] = 3*sbr->k[0];
    } else {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
        return -1;
    }
    sbr->k[2] = FFMIN(64, sbr->k[2]);

    // Requirements (14496-3 sp04 p205)
    if (sbr->sample_rate <= 32000) {
        max_qmf_subbands = 48;
    } else if (sbr->sample_rate == 44100) {
        max_qmf_subbands = 35;
    } else if (sbr->sample_rate >= 48000)
        max_qmf_subbands = 32;

    if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
        return -1;
    }

    if (!spectrum->bs_freq_scale) {
        int dk, k2diff;

        dk = spectrum->bs_alter_scale + 1;
        sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
        if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
            return -1;

        for (k = 1; k <= sbr->n_master; k++)
            sbr->f_master[k] = dk;

        k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
        if (k2diff < 0) {
            sbr->f_master[1]--;
            sbr->f_master[2]-= (k2diff < -1);
        } else if (k2diff) {
            sbr->f_master[sbr->n_master]++;
        }

        sbr->f_master[0] = sbr->k[0];
        for (k = 1; k <= sbr->n_master; k++)
            sbr->f_master[k] += sbr->f_master[k - 1];

    } else {
        int half_bands = 7 - spectrum->bs_freq_scale;      // bs_freq_scale  = {1,2,3}
        int two_regions, num_bands_0;
        int vdk0_max, vdk1_min;
        int16_t vk0[49];

        if (49 * sbr->k[2] > 110 * sbr->k[0]) {
            two_regions = 1;
            sbr->k[1] = 2 * sbr->k[0];
        } else {
            two_regions = 0;
            sbr->k[1] = sbr->k[2];
        }

        num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;

        if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
            av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
            return -1;
        }

        vk0[0] = 0;

        make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);

        qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
        vdk0_max = vk0[num_bands_0];

        vk0[0] = sbr->k[0];
        for (k = 1; k <= num_bands_0; k++) {
            if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
                av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
                return -1;
            }
            vk0[k] += vk0[k-1];
        }

        if (two_regions) {
            int16_t vk1[49];
            float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
                                                     : 1.0f; // bs_alter_scale = {0,1}
            int num_bands_1 = lrintf(half_bands * invwarp *
                                     log2f(sbr->k[2] / (float)sbr->k[1])) * 2;

            make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);

            vdk1_min = array_min_int16(vk1 + 1, num_bands_1);

            if (vdk1_min < vdk0_max) {
                int change;
                qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
                change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
                vk1[1]           += change;
                vk1[num_bands_1] -= change;
            }

            qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);

            vk1[0] = sbr->k[1];
            for (k = 1; k <= num_bands_1; k++) {
                if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
                    av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
                    return -1;
                }
                vk1[k] += vk1[k-1];
            }

            sbr->n_master = num_bands_0 + num_bands_1;
            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
                return -1;
            memcpy(&sbr->f_master[0],               vk0,
                   (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
            memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
                    num_bands_1      * sizeof(sbr->f_master[0]));

        } else {
            sbr->n_master = num_bands_0;
            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
                return -1;
            memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
        }
    }

    return 0;
}

/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
{
    int i, k, sb = 0;
    int msb = sbr->k[0];
    int usb = sbr->kx[1];
    int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;

    sbr->num_patches = 0;

    if (goal_sb < sbr->kx[1] + sbr->m[1]) {
        for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
    } else
        k = sbr->n_master;

    do {
        int odd = 0;
        for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
            sb = sbr->f_master[i];
            odd = (sb + sbr->k[0]) & 1;
        }

        // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
        // After this check the final number of patches can still be six which is
        // illegal however the Coding Technologies decoder check stream has a final
        // count of 6 patches
        if (sbr->num_patches > 5) {
            av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
            return -1;
        }

        sbr->patch_num_subbands[sbr->num_patches]  = FFMAX(sb - usb, 0);
        sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];

        if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
            usb = sb;
            msb = sb;
            sbr->num_patches++;
        } else
            msb = sbr->kx[1];

        if (sbr->f_master[k] - sb < 3)
            k = sbr->n_master;
    } while (sb != sbr->kx[1] + sbr->m[1]);

    if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
        sbr->num_patches--;

    return 0;
}

/// Derived Frequency Band Tables (14496-3 sp04 p197)
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
{
    int k, temp;

    sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
    sbr->n[0] = (sbr->n[1] + 1) >> 1;

    memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
           (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
    sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
    sbr->kx[1] = sbr->f_tablehigh[0];

    // Requirements (14496-3 sp04 p205)
    if (sbr->kx[1] + sbr->m[1] > 64) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
        return -1;
    }
    if (sbr->kx[1] > 32) {
        av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
        return -1;
    }

    sbr->f_tablelow[0] = sbr->f_tablehigh[0];
    temp = sbr->n[1] & 1;
    for (k = 1; k <= sbr->n[0]; k++)
        sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];

    sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
                               log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
    if (sbr->n_q > 5) {
        av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
        return -1;
    }

    sbr->f_tablenoise[0] = sbr->f_tablelow[0];
    temp = 0;
    for (k = 1; k <= sbr->n_q; k++) {
        temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
        sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
    }

    if (sbr_hf_calc_npatches(ac, sbr) < 0)
        return -1;

    sbr_make_f_tablelim(sbr);

    sbr->data[0].f_indexnoise = 0;
    sbr->data[1].f_indexnoise = 0;

    return 0;
}

static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
                                              int elements)
{
    int i;
    for (i = 0; i < elements; i++) {
        vec[i] = get_bits1(gb);
    }
}

/** ceil(log2(index+1)) */
static const int8_t ceil_log2[] = {
    0, 1, 2, 2, 3, 3,
};

static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
                         GetBitContext *gb, SBRData *ch_data)
{
    int i;
    unsigned bs_pointer = 0;
    // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
    int abs_bord_trail = 16;
    int num_rel_lead, num_rel_trail;
    unsigned bs_num_env_old = ch_data->bs_num_env;

    ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
    ch_data->bs_amp_res = sbr->bs_amp_res_header;
    ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];

    switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
    case FIXFIX:
        ch_data->bs_num_env                 = 1 << get_bits(gb, 2);
        num_rel_lead                        = ch_data->bs_num_env - 1;
        if (ch_data->bs_num_env == 1)
            ch_data->bs_amp_res = 0;

        if (ch_data->bs_num_env > 4) {
            av_log(ac->avctx, AV_LOG_ERROR,
                   "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
                   ch_data->bs_num_env);
            return -1;
        }

        ch_data->t_env[0]                   = 0;
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;

        abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
                   ch_data->bs_num_env;
        for (i = 0; i < num_rel_lead; i++)
            ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;

        ch_data->bs_freq_res[1] = get_bits1(gb);
        for (i = 1; i < ch_data->bs_num_env; i++)
            ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
        break;
    case FIXVAR:
        abs_bord_trail                     += get_bits(gb, 2);
        num_rel_trail                       = get_bits(gb, 2);
        ch_data->bs_num_env                 = num_rel_trail + 1;
        ch_data->t_env[0]                   = 0;
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;

        for (i = 0; i < num_rel_trail; i++)
            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;

        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);

        for (i = 0; i < ch_data->bs_num_env; i++)
            ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
        break;
    case VARFIX:
        ch_data->t_env[0]                   = get_bits(gb, 2);
        num_rel_lead                        = get_bits(gb, 2);
        ch_data->bs_num_env                 = num_rel_lead + 1;
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;

        for (i = 0; i < num_rel_lead; i++)
            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;

        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);

        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
        break;
    case VARVAR:
        ch_data->t_env[0]                   = get_bits(gb, 2);
        abs_bord_trail                     += get_bits(gb, 2);
        num_rel_lead                        = get_bits(gb, 2);
        num_rel_trail                       = get_bits(gb, 2);
        ch_data->bs_num_env                 = num_rel_lead + num_rel_trail + 1;

        if (ch_data->bs_num_env > 5) {
            av_log(ac->avctx, AV_LOG_ERROR,
                   "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
                   ch_data->bs_num_env);
            return -1;
        }

        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;

        for (i = 0; i < num_rel_lead; i++)
            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
        for (i = 0; i < num_rel_trail; i++)
            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;

        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);

        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
        break;
    }

    if (bs_pointer > ch_data->bs_num_env + 1) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
               bs_pointer);
        return -1;
    }

    for (i = 1; i <= ch_data->bs_num_env; i++) {
        if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
            av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
            return -1;
        }
    }

    ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;

    ch_data->t_q[0]                     = ch_data->t_env[0];
    ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
    if (ch_data->bs_num_noise > 1) {
        unsigned int idx;
        if (ch_data->bs_frame_class == FIXFIX) {
            idx = ch_data->bs_num_env >> 1;
        } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
            idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
        } else { // VARFIX
            if (!bs_pointer)
                idx = 1;
            else if (bs_pointer == 1)
                idx = ch_data->bs_num_env - 1;
            else // bs_pointer > 1
                idx = bs_pointer - 1;
        }
        ch_data->t_q[1] = ch_data->t_env[idx];
    }

    ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
    ch_data->e_a[1] = -1;
    if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
        ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
    } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
        ch_data->e_a[1] = bs_pointer - 1;

    return 0;
}

static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
    //These variables are saved from the previous frame rather than copied
    dst->bs_freq_res[0]    = dst->bs_freq_res[dst->bs_num_env];
    dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
    dst->e_a[0]            = -(dst->e_a[1] != dst->bs_num_env);

    //These variables are read from the bitstream and therefore copied
    memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
    memcpy(dst->t_env,         src->t_env,         sizeof(dst->t_env));
    memcpy(dst->t_q,           src->t_q,           sizeof(dst->t_q));
    dst->bs_num_env        = src->bs_num_env;
    dst->bs_amp_res        = src->bs_amp_res;
    dst->bs_num_noise      = src->bs_num_noise;
    dst->bs_frame_class    = src->bs_frame_class;
    dst->e_a[1]            = src->e_a[1];
}

/// Read how the envelope and noise floor data is delta coded
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
                          SBRData *ch_data)
{
    get_bits1_vector(gb, ch_data->bs_df_env,   ch_data->bs_num_env);
    get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
}

/// Read inverse filtering data
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
                          SBRData *ch_data)
{
    int i;

    memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
    for (i = 0; i < sbr->n_q; i++)
        ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
}

static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
                              SBRData *ch_data, int ch)
{
    int bits;
    int i, j, k;
    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
    int t_lav, f_lav;
    const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
    const int odd = sbr->n[1] & 1;

    if (sbr->bs_coupling && ch) {
        if (ch_data->bs_amp_res) {
            bits   = 5;
            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
        } else {
            bits   = 6;
            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
        }
    } else {
        if (ch_data->bs_amp_res) {
            bits   = 6;
            t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
            f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
        } else {
            bits   = 7;
            t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
            f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
        }
    }

    for (i = 0; i < ch_data->bs_num_env; i++) {
        if (ch_data->bs_df_env[i]) {
            // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
            if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
            } else if (ch_data->bs_freq_res[i + 1]) {
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
                    k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
                }
            } else {
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
                    k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
                }
            }
        } else {
            ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
            for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
                ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
        }
    }

    //assign 0th elements of env_facs from last elements
    memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
           sizeof(ch_data->env_facs[0]));
}

static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
                           SBRData *ch_data, int ch)
{
    int i, j;
    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
    int t_lav, f_lav;
    int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;

    if (sbr->bs_coupling && ch) {
        t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
        f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
    } else {
        t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
        f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
    }

    for (i = 0; i < ch_data->bs_num_noise; i++) {
        if (ch_data->bs_df_noise[i]) {
            for (j = 0; j < sbr->n_q; j++)
                ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
        } else {
            ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
            for (j = 1; j < sbr->n_q; j++)
                ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
        }
    }

    //assign 0th elements of noise_facs from last elements
    memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
           sizeof(ch_data->noise_facs[0]));
}

static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
                               GetBitContext *gb,
                               int bs_extension_id, int *num_bits_left)
{
    switch (bs_extension_id) {
    case EXTENSION_ID_PS:
        if (!ac->m4ac.ps) {
            av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
            skip_bits_long(gb, *num_bits_left); // bs_fill_bits
            *num_bits_left = 0;
        } else {
#if 1
            *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
#else
            av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
            skip_bits_long(gb, *num_bits_left); // bs_fill_bits
            *num_bits_left = 0;
#endif
        }
        break;
    default:
        av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
        skip_bits_long(gb, *num_bits_left); // bs_fill_bits
        *num_bits_left = 0;
        break;
    }
}

static int read_sbr_single_channel_element(AACContext *ac,
                                            SpectralBandReplication *sbr,
                                            GetBitContext *gb)
{
    if (get_bits1(gb)) // bs_data_extra
        skip_bits(gb, 4); // bs_reserved

    if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
        return -1;
    read_sbr_dtdf(sbr, gb, &sbr->data[0]);
    read_sbr_invf(sbr, gb, &sbr->data[0]);
    read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
    read_sbr_noise(sbr, gb, &sbr->data[0], 0);

    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);

    return 0;
}

static int read_sbr_channel_pair_element(AACContext *ac,
                                          SpectralBandReplication *sbr,
                                          GetBitContext *gb)
{
    if (get_bits1(gb))    // bs_data_extra
        skip_bits(gb, 8); // bs_reserved

    if ((sbr->bs_coupling = get_bits1(gb))) {
        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
            return -1;
        copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
        read_sbr_invf(sbr, gb, &sbr->data[0]);
        memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
        memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
        read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
        read_sbr_noise(sbr, gb, &sbr->data[0], 0);
        read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
        read_sbr_noise(sbr, gb, &sbr->data[1], 1);
    } else {
        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
            read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
            return -1;
        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
        read_sbr_invf(sbr, gb, &sbr->data[0]);
        read_sbr_invf(sbr, gb, &sbr->data[1]);
        read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
        read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
        read_sbr_noise(sbr, gb, &sbr->data[0], 0);
        read_sbr_noise(sbr, gb, &sbr->data[1], 1);
    }

    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
    if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
        get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);

    return 0;
}

static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
                                  GetBitContext *gb, int id_aac)
{
    unsigned int cnt = get_bits_count(gb);

    if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
        if (read_sbr_single_channel_element(ac, sbr, gb)) {
            sbr_turnoff(sbr);
            return get_bits_count(gb) - cnt;
        }
    } else if (id_aac == TYPE_CPE) {
        if (read_sbr_channel_pair_element(ac, sbr, gb)) {
            sbr_turnoff(sbr);
            return get_bits_count(gb) - cnt;
        }
    } else {
        av_log(ac->avctx, AV_LOG_ERROR,
            "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
        sbr_turnoff(sbr);
        return get_bits_count(gb) - cnt;
    }
    if (get_bits1(gb)) { // bs_extended_data
        int num_bits_left = get_bits(gb, 4); // bs_extension_size
        if (num_bits_left == 15)
            num_bits_left += get_bits(gb, 8); // bs_esc_count

        num_bits_left <<= 3;
        while (num_bits_left > 7) {
            num_bits_left -= 2;
            read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
        }
        if (num_bits_left < 0) {
            av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
        }
        if (num_bits_left > 0)
            skip_bits(gb, num_bits_left);
    }

    return get_bits_count(gb) - cnt;
}

static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
{
    int err;
    err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
    if (err >= 0)
        err = sbr_make_f_derived(ac, sbr);
    if (err < 0) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "SBR reset failed. Switching SBR to pure upsampling mode.\n");
        sbr_turnoff(sbr);
    }
}

/**
 * Decode Spectral Band Replication extension data; reference: table 4.55.
 *
 * @param   crc flag indicating the presence of CRC checksum
 * @param   cnt length of TYPE_FIL syntactic element in bytes
 *
 * @return  Returns number of bytes consumed from the TYPE_FIL element.
 */
int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
                            GetBitContext *gb_host, int crc, int cnt, int id_aac)
{
    unsigned int num_sbr_bits = 0, num_align_bits;
    unsigned bytes_read;
    GetBitContext gbc = *gb_host, *gb = &gbc;
    skip_bits_long(gb_host, cnt*8 - 4);

    sbr->reset = 0;

    if (!sbr->sample_rate)
        sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
    if (!ac->m4ac.ext_sample_rate)
        ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;

    if (crc) {
        skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
        num_sbr_bits += 10;
    }

    //Save some state from the previous frame.
    sbr->kx[0] = sbr->kx[1];
    sbr->m[0] = sbr->m[1];
    sbr->kx_and_m_pushed = 1;

    num_sbr_bits++;
    if (get_bits1(gb)) // bs_header_flag
        num_sbr_bits += read_sbr_header(sbr, gb);

    if (sbr->reset)
        sbr_reset(ac, sbr);

    if (sbr->start)
        num_sbr_bits  += read_sbr_data(ac, sbr, gb, id_aac);

    num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
    bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);

    if (bytes_read > cnt) {
        av_log(ac->avctx, AV_LOG_ERROR,
               "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
    }
    return cnt;
}

/// Dequantization and stereo decoding (14496-3 sp04 p203)
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
{
    int k, e;
    int ch;

    if (id_aac == TYPE_CPE && sbr->bs_coupling) {
        float alpha      = sbr->data[0].bs_amp_res ?  1.0f :  0.5f;
        float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
        for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
            for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
                float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
                float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
                float fac   = temp1 / (1.0f + temp2);
                sbr->data[0].env_facs[e][k] = fac;
                sbr->data[1].env_facs[e][k] = fac * temp2;
            }
        }
        for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
            for (k = 0; k < sbr->n_q; k++) {
                float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
                float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
                float fac   = temp1 / (1.0f + temp2);
                sbr->data[0].noise_facs[e][k] = fac;
                sbr->data[1].noise_facs[e][k] = fac * temp2;
            }
        }
    } else { // SCE or one non-coupled CPE
        for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
            float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
            for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
                for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
                    sbr->data[ch].env_facs[e][k] =
                        exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
            for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
                for (k = 0; k < sbr->n_q; k++)
                    sbr->data[ch].noise_facs[e][k] =
                        exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
        }
    }
}

/**
 * Analysis QMF Bank (14496-3 sp04 p206)
 *
 * @param   x       pointer to the beginning of the first sample window
 * @param   W       array of complex-valued samples split into subbands
 */
static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct,
                             SBRDSPContext *sbrdsp, const float *in, float *x,
                             float z[320], float W[2][32][32][2])
{
    int i;
    memcpy(W[0], W[1], sizeof(W[0]));
    memcpy(x    , x+1024, (320-32)*sizeof(x[0]));
    memcpy(x+288, in,         1024*sizeof(x[0]));
    for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
                               // are not supported
        dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
        sbrdsp->sum64x5(z);
        sbrdsp->qmf_pre_shuffle(z);
        mdct->imdct_half(mdct, z, z+64);
        sbrdsp->qmf_post_shuffle(W[1][i], z);
        x += 32;
    }
}

/**
 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
 * (14496-3 sp04 p206)
 */
static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
                              SBRDSPContext *sbrdsp,
                              float *out, float X[2][38][64],
                              float mdct_buf[2][64],
                              float *v0, int *v_off, const unsigned int div)
{
    int i, n;
    const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
    const int step = 128 >> div;
    float *v;
    for (i = 0; i < 32; i++) {
        if (*v_off < step) {
            int saved_samples = (1280 - 128) >> div;
            memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
            *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
        } else {
            *v_off -= step;
        }
        v = v0 + *v_off;
        if (div) {
            for (n = 0; n < 32; n++) {
                X[0][i][   n] = -X[0][i][n];
                X[0][i][32+n] =  X[1][i][31-n];
            }
            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
            sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
        } else {
            sbrdsp->neg_odd_64(X[1][i]);
            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
            mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
            sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
        }
        dsp->vector_fmul_add(out, v                , sbr_qmf_window               , zero64, 64 >> div);
        dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out   , 64 >> div);
        dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out   , 64 >> div);
        out += 64 >> div;
    }
}

/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
 * (14496-3 sp04 p214)
 * Warning: This routine does not seem numerically stable.
 */
static void sbr_hf_inverse_filter(SBRDSPContext *dsp,
                                  float (*alpha0)[2], float (*alpha1)[2],
                                  const float X_low[32][40][2], int k0)
{
    int k;
    for (k = 0; k < k0; k++) {
        LOCAL_ALIGNED_16(float, phi, [3], [2][2]);
        float dk;

        dsp->autocorrelate(X_low[k], phi);

        dk =  phi[2][1][0] * phi[1][0][0] -
             (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;

        if (!dk) {
            alpha1[k][0] = 0;
            alpha1[k][1] = 0;
        } else {
            float temp_real, temp_im;
            temp_real = phi[0][0][0] * phi[1][1][0] -
                        phi[0][0][1] * phi[1][1][1] -
                        phi[0][1][0] * phi[1][0][0];
            temp_im   = phi[0][0][0] * phi[1][1][1] +
                        phi[0][0][1] * phi[1][1][0] -
                        phi[0][1][1] * phi[1][0][0];

            alpha1[k][0] = temp_real / dk;
            alpha1[k][1] = temp_im   / dk;
        }

        if (!phi[1][0][0]) {
            alpha0[k][0] = 0;
            alpha0[k][1] = 0;
        } else {
            float temp_real, temp_im;
            temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
                                       alpha1[k][1] * phi[1][1][1];
            temp_im   = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
                                       alpha1[k][0] * phi[1][1][1];

            alpha0[k][0] = -temp_real / phi[1][0][0];
            alpha0[k][1] = -temp_im   / phi[1][0][0];
        }

        if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
           alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
            alpha1[k][0] = 0;
            alpha1[k][1] = 0;
            alpha0[k][0] = 0;
            alpha0[k][1] = 0;
        }
    }
}

/// Chirp Factors (14496-3 sp04 p214)
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
{
    int i;
    float new_bw;
    static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };

    for (i = 0; i < sbr->n_q; i++) {
        if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
            new_bw = 0.6f;
        } else
            new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];

        if (new_bw < ch_data->bw_array[i]) {
            new_bw = 0.75f    * new_bw + 0.25f    * ch_data->bw_array[i];
        } else
            new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
        ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
    }
}

/// Generate the subband filtered lowband
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
                      float X_low[32][40][2], const float W[2][32][32][2])
{
    int i, k;
    const int t_HFGen = 8;
    const int i_f = 32;
    memset(X_low, 0, 32*sizeof(*X_low));
    for (k = 0; k < sbr->kx[1]; k++) {
        for (i = t_HFGen; i < i_f + t_HFGen; i++) {
            X_low[k][i][0] = W[1][i - t_HFGen][k][0];
            X_low[k][i][1] = W[1][i - t_HFGen][k][1];
        }
    }
    for (k = 0; k < sbr->kx[0]; k++) {
        for (i = 0; i < t_HFGen; i++) {
            X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
            X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
        }
    }
    return 0;
}

/// High Frequency Generator (14496-3 sp04 p215)
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
                      float X_high[64][40][2], const float X_low[32][40][2],
                      const float (*alpha0)[2], const float (*alpha1)[2],
                      const float bw_array[5], const uint8_t *t_env,
                      int bs_num_env)
{
    int j, x;
    int g = 0;
    int k = sbr->kx[1];
    for (j = 0; j < sbr->num_patches; j++) {
        for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
            const int p = sbr->patch_start_subband[j] + x;
            while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
                g++;
            g--;

            if (g < 0) {
                av_log(ac->avctx, AV_LOG_ERROR,
                       "ERROR : no subband found for frequency %d\n", k);
                return -1;
            }

            sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
                            X_low[p]  + ENVELOPE_ADJUSTMENT_OFFSET,
                            alpha0[p], alpha1[p], bw_array[g],
                            2 * t_env[0], 2 * t_env[bs_num_env]);
        }
    }
    if (k < sbr->m[1] + sbr->kx[1])
        memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));

    return 0;
}

/// Generate the subband filtered lowband
static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
                     const float Y0[38][64][2], const float Y1[38][64][2],
                     const float X_low[32][40][2], int ch)
{
    int k, i;
    const int i_f = 32;
    const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
    memset(X, 0, 2*sizeof(*X));
    for (k = 0; k < sbr->kx[0]; k++) {
        for (i = 0; i < i_Temp; i++) {
            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
        }
    }
    for (; k < sbr->kx[0] + sbr->m[0]; k++) {
        for (i = 0; i < i_Temp; i++) {
            X[0][i][k] = Y0[i + i_f][k][0];
            X[1][i][k] = Y0[i + i_f][k][1];
        }
    }

    for (k = 0; k < sbr->kx[1]; k++) {
        for (i = i_Temp; i < 38; i++) {
            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
        }
    }
    for (; k < sbr->kx[1] + sbr->m[1]; k++) {
        for (i = i_Temp; i < i_f; i++) {
            X[0][i][k] = Y1[i][k][0];
            X[1][i][k] = Y1[i][k][1];
        }
    }
    return 0;
}

/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
 * (14496-3 sp04 p217)
 */
static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
                        SBRData *ch_data, int e_a[2])
{
    int e, i, m;

    memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
    for (e = 0; e < ch_data->bs_num_env; e++) {
        const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
        uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
        int k;

        for (i = 0; i < ilim; i++)
            for (m = table[i]; m < table[i + 1]; m++)
                sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];

        // ch_data->bs_num_noise > 1 => 2 noise floors
        k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
        for (i = 0; i < sbr->n_q; i++)
            for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
                sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];

        for (i = 0; i < sbr->n[1]; i++) {
            if (ch_data->bs_add_harmonic_flag) {
                const unsigned int m_midpoint =
                    (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;

                ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
                    (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
            }
        }

        for (i = 0; i < ilim; i++) {
            int additional_sinusoid_present = 0;
            for (m = table[i]; m < table[i + 1]; m++) {
                if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
                    additional_sinusoid_present = 1;
                    break;
                }
            }
            memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
                   (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
        }
    }

    memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
}

/// Estimation of current envelope (14496-3 sp04 p218)
static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
                             SpectralBandReplication *sbr, SBRData *ch_data)
{
    int e, m;
    int kx1 = sbr->kx[1];

    if (sbr->bs_interpol_freq) {
        for (e = 0; e < ch_data->bs_num_env; e++) {
            const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;

            for (m = 0; m < sbr->m[1]; m++) {
                float sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
                e_curr[e][m] = sum * recip_env_size;
            }
        }
    } else {
        int k, p;

        for (e = 0; e < ch_data->bs_num_env; e++) {
            const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
            const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;

            for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
                float sum = 0.0f;
                const int den = env_size * (table[p + 1] - table[p]);

                for (k = table[p]; k < table[p + 1]; k++) {
                    sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
                }
                sum /= den;
                for (k = table[p]; k < table[p + 1]; k++) {
                    e_curr[e][k - kx1] = sum;
                }
            }
        }
    }
}

/**
 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
 * and Calculation of gain (14496-3 sp04 p219)
 */
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
                          SBRData *ch_data, const int e_a[2])
{
    int e, k, m;
    // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
    static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };

    for (e = 0; e < ch_data->bs_num_env; e++) {
        int delta = !((e == e_a[1]) || (e == e_a[0]));
        for (k = 0; k < sbr->n_lim; k++) {
            float gain_boost, gain_max;
            float sum[2] = { 0.0f, 0.0f };
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
                sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
                sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
                if (!sbr->s_mapped[e][m]) {
                    sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
                                            ((1.0f + sbr->e_curr[e][m]) *
                                             (1.0f + sbr->q_mapped[e][m] * delta)));
                } else {
                    sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
                                            ((1.0f + sbr->e_curr[e][m]) *
                                             (1.0f + sbr->q_mapped[e][m])));
                }
            }
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                sum[0] += sbr->e_origmapped[e][m];
                sum[1] += sbr->e_curr[e][m];
            }
            gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
            gain_max = FFMIN(100000.f, gain_max);
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                float q_m_max   = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
                sbr->q_m[e][m]  = FFMIN(sbr->q_m[e][m], q_m_max);
                sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
            }
            sum[0] = sum[1] = 0.0f;
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                sum[0] += sbr->e_origmapped[e][m];
                sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
                          + sbr->s_m[e][m] * sbr->s_m[e][m]
                          + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
            }
            gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
            gain_boost = FFMIN(1.584893192f, gain_boost);
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
                sbr->gain[e][m] *= gain_boost;
                sbr->q_m[e][m]  *= gain_boost;
                sbr->s_m[e][m]  *= gain_boost;
            }
        }
    }
}

/// Assembling HF Signals (14496-3 sp04 p220)
static void sbr_hf_assemble(float Y1[38][64][2],
                            const float X_high[64][40][2],
                            SpectralBandReplication *sbr, SBRData *ch_data,
                            const int e_a[2])
{
    int e, i, j, m;
    const int h_SL = 4 * !sbr->bs_smoothing_mode;
    const int kx = sbr->kx[1];
    const int m_max = sbr->m[1];
    static const float h_smooth[5] = {
        0.33333333333333,
        0.30150283239582,
        0.21816949906249,
        0.11516383427084,
        0.03183050093751,
    };
    static const int8_t phi[2][4] = {
        {  1,  0, -1,  0}, // real
        {  0,  1,  0, -1}, // imaginary
    };
    float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
    int indexnoise = ch_data->f_indexnoise;
    int indexsine  = ch_data->f_indexsine;

    if (sbr->reset) {
        for (i = 0; i < h_SL; i++) {
            memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
            memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0],  m_max * sizeof(sbr->q_m[0][0]));
        }
    } else if (h_SL) {
        memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
        memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
    }

    for (e = 0; e < ch_data->bs_num_env; e++) {
        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
            memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
            memcpy(q_temp[h_SL + i], sbr->q_m[e],  m_max * sizeof(sbr->q_m[0][0]));
        }
    }

    for (e = 0; e < ch_data->bs_num_env; e++) {
        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
            int phi_sign = (1 - 2*(kx & 1));
            LOCAL_ALIGNED_16(float, g_filt_tab, [48]);
            LOCAL_ALIGNED_16(float, q_filt_tab, [48]);
            float *g_filt, *q_filt;

            if (h_SL && e != e_a[0] && e != e_a[1]) {
                g_filt = g_filt_tab;
                q_filt = q_filt_tab;
                for (m = 0; m < m_max; m++) {
                    const int idx1 = i + h_SL;
                    g_filt[m] = 0.0f;
                    q_filt[m] = 0.0f;
                    for (j = 0; j <= h_SL; j++) {
                        g_filt[m] += g_temp[idx1 - j][m] * h_smooth[j];
                        q_filt[m] += q_temp[idx1 - j][m] * h_smooth[j];
                    }
                }
            } else {
                g_filt = g_temp[i + h_SL];
                q_filt = q_temp[i];
            }

            sbr->dsp.hf_g_filt(Y1[i] + kx, X_high + kx, g_filt, m_max,
                               i + ENVELOPE_ADJUSTMENT_OFFSET);

            if (e != e_a[0] && e != e_a[1]) {
                sbr->dsp.hf_apply_noise[indexsine](Y1[i] + kx, sbr->s_m[e],
                                                   q_filt, indexnoise,
                                                   kx, m_max);
            } else {
                for (m = 0; m < m_max; m++) {
                    Y1[i][m + kx][0] +=
                        sbr->s_m[e][m] * phi[0][indexsine];
                    Y1[i][m + kx][1] +=
                        sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
                    phi_sign = -phi_sign;
                }
            }
            indexnoise = (indexnoise + m_max) & 0x1ff;
            indexsine = (indexsine + 1) & 3;
        }
    }
    ch_data->f_indexnoise = indexnoise;
    ch_data->f_indexsine  = indexsine;
}

void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
                  float* L, float* R)
{
    int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
    int ch;
    int nch = (id_aac == TYPE_CPE) ? 2 : 1;

    if (!sbr->kx_and_m_pushed) {
        sbr->kx[0] = sbr->kx[1];
        sbr->m[0] = sbr->m[1];
    } else {
        sbr->kx_and_m_pushed = 0;
    }

    if (sbr->start) {
        sbr_dequant(sbr, id_aac);
    }
    for (ch = 0; ch < nch; ch++) {
        /* decode channel */
        sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
                         (float*)sbr->qmf_filter_scratch,
                         sbr->data[ch].W);
        sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
        sbr->data[ch].Ypos ^= 1;
        if (sbr->start) {
            sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
            sbr_chirp(sbr, &sbr->data[ch]);
            sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
                       sbr->data[ch].bw_array, sbr->data[ch].t_env,
                       sbr->data[ch].bs_num_env);

            // hf_adj
            sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
            sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
            sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
            sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
                            sbr->X_high, sbr, &sbr->data[ch],
                            sbr->data[ch].e_a);
        }

        /* synthesis */
        sbr_x_gen(sbr, sbr->X[ch],
                  sbr->data[ch].Y[1-sbr->data[ch].Ypos],
                  sbr->data[ch].Y[  sbr->data[ch].Ypos],
                  sbr->X_low, ch);
    }

    if (ac->m4ac.ps == 1) {
        if (sbr->ps.start) {
            ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
        } else {
            memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
        }
        nch = 2;
    }

    sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, &sbr->dsp, L, sbr->X[0], sbr->qmf_filter_scratch,
                      sbr->data[0].synthesis_filterbank_samples,
                      &sbr->data[0].synthesis_filterbank_samples_offset,
                      downsampled);
    if (nch == 2)
        sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, &sbr->dsp, R, sbr->X[1], sbr->qmf_filter_scratch,
                          sbr->data[1].synthesis_filterbank_samples,
                          &sbr->data[1].synthesis_filterbank_samples_offset,
                          downsampled);
}